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Abstract 

Hypothalamic gonadotropin-releasing hormone (GnRH) and 

gonadal hormones are important regulators of pituitary 

gonadotropin (GtH) release and synthesis in vertebrates. The 

brain of all vertebrates with the exception of placental 

mammals contain multiple forms of GnRH, and in goldfish 

there are two forms of GnRH, salmon GnRH ([Trp7, Leu8]-GnRH; 

sGnRH) and chicken GnRH-II ([His 5, Trp7, Tyr8]-GnRH; cGnRH-

II). This study investigated the control of release and 

synthesis of maturational GtH (GtH-II) by native GnRH 

molecules and gonadal steroids in the goldfish pituitary. 

The initial set of studies focused on the differences 

between sGnRH- and cGnRH-II-induced synthesis and release of 

GtH-II in the goldfish pituitary. The findings provide a 

strong support for the hypothesis that sGnRH and cGnRH-II 

function through different receptor-effector mechanisms in 

the goldfish pituitary. Further experiments were carried out 

to investigate the effects of steroids on GtH-II subunit 

gene expression. The findings demonstrate, for the first 

time, a biphasic regulation of GtH-II subunit inRNA levels by 

steroids in the goldfish pituitary. The GtH-II subunits were 

stimulated at lower physiological levels, and inhibited at 

higher doses of testosterone and estradiol. 
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1. 1. GnRH and Its Receptors 

The secretion of pituitary gonadotropins (GtH) is 

mediated by the hypothalamic decapeptide, gonadotropin-

releasing hormone (GnRH). Eight forms of native GnRH 

peptides have been characterized (Sower et al., 1993; Table 

I). The brain of all vertebrate classes contain more than 

one molecular form of GnRH. These include Agnatha (Sherwood 

et al.,1986a; Ngamvongchon et al., 1992), Chondrichthyes 

(Powell et al.,1986b), Osteichthyes (King and Millar, 1985; 

Powell et al.,1986b; Sherwood et al.,1984; Yu et al., 

1988), Amphibia (King and Millar, 1986; Sherwood et 

al.,1986b), Reptilia (Powell et al., 1985, 1986a; Sherwood 

and Whittier, 1988), Ayes (Mikami et al.,1988; Sherwood et 

al., 1988), and Mamirtalia (King et al., 1989; Gautron et: 

al., 1992). However, to date only one form of GnRH has been 

demonstrated in the brain of placental mammals. The 

physiological significance for the presence of multiple GnRH 

forms in the brain of a single species is at present 

unclear. It is interesting to note the universal presence of 

cGnRH-II as the second form of GnRH in most of these species 

suggesting that this form evolved early and is highly 

conserved across the various vertebrate species (Millar and 

King, 1994). Goldfish brain and pituitary contains two 



Table I. Primary structure of native GnRH peptides and their 

comparison to mammalian GnRH form. 

1 2 3 4 5 6 7 8 9 10 

Mammal GnRH(mGuRB-I) pGlu His Trp Ser Tyr Gly Leu Arg Pro Gly-NH2 

Mammal GnRH (mGnRH-II) pGlu His Trp Ser Tyr Gly Leu Arg Pro-OH Gly-NH2 

Salmon GnRH(sGnRH) pGlu His Trp Ser Tyr Gly Trp Leu Pro Gly-NH2 

Chicken GnRH(cGnRH-I) pGlu His Trp Ser Tyr Gly Leu Gin Pro Gly-NH2 

Chicken GnRH(cGnRH-II) pGlu His Trp Ser His Gly Trp Tyr Pro Gly-NH2 

Catfish GnRH(cGnRB) pGlu His Trp Ser His Gly Leu Asn Pro Gly-NH2 

Dogfish GnRH(dGnRB) pGlu His Trp Ser His Gly Trp Leu Pro Gly-NH2 

Lamprey GnRH(iGnRB-I) pGlu His Tyr Ser Leu Glu Trp Lye Pro Gly-NH2 

Lamprey GnRH (iGnRH-II) pGlu His Trp Ser His Asp Trp Lye Pro Gly-NH2 
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molecular forms of GnRH; [Trp7 1Leu 8 ]-GnRH, (sGnRH) and 

EHis 5 1Trp7 1Tyr8 ]-GnRH (cGnRH-II) (Peter et al., 1987; Yu et 

al.,1988). Unlike other vertebrates, teleosts lack the 

hypothalamo-hypophyseal portal system and control of GtH 

release is exerted directly through nerve fibers extending 

from hypothalamus to the pars distalis (Kaul and Volirath, 

1974; Ball, 1981). 

GnRH action is mediated through high affinity membrane 

receptors. Photoaffinity labelling studies have revealed the 

presence of one high affinity binding site with molecular 

weight of 53 and 42 kDa in rat, 42 kDa in bovine, and 39 kDa 

protein in ovine pituitaries (Catt et al., 1985). 

Characterization of GnRH receptors in the goldfish pituitary 

has demonstrated the presence of two classes of binding 

sites, a high affinity/low capacity site and a low 

affinity/high capacity site (Habibi et al., 1987;for review 

Habibi and Peter, 1991). Photoaffinity labeling demonstrated 

the presence of two major bands of molecular weight 71 kDa 

and 51 k]ia. The displacement characteristics of the 51 kDa 

band was found to be consistent with that of the high 

affinity binding sites involved in the control of GtH 

release in the goldfish pituitary (Habibi et al., 1989a, 

1990) 
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Recently, pituitary GnRH receptors (GnRH-R) have been 

cloned from mouse (Tsutsumi et al., 1992; Reinhart at al., 

1992), human (Kakar et al., 1992; Chi et al., 1993), and 

sheep (hung et al., 1993). GnRH-R cDNA codes for a 327 

amino acid polypeptide. The receptor has seven transmembrane 

domains typical of G-protein-linked receptors with two to 

three N-linked glycosylation sites. However, unlike a 

typical G-protein linked receptor, it lacks a C-terminal 

intracellular domain presumed to be involved in 

desensitization. It is likely that another region of GnRH-R 

is involved in the process of desensitization since 

prolonged administration of GnRH is known to cause 

refractoriness (Belchetz et al.,1978; Valk et al., 1980; 

Wildt et al., 1981). Northern blot analyses demonstrated 

the presence of two GnRH-R mRNAs (1.6 and 3.5 kb in length) 

in the mouse pituitary, while only one mRNA (4.6 kb) was 

found in the rat pituitary (Kakar et al., 1992). Presence of 

more than one transcript may imply the presence of multiple 

GnRH-R forms in some species. In this context, goldfish 

pituitary contains GnRH-R on both gonadotropes and 

somatotropes (Cook et al., 1991) with different molecular 

requirement for post-receptor activation (Habibi et al., 

1992). This indicates that multiple GnRH-R mRNA transcripts 
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may be produced in the goldfish pituitary. 

1.2. GnRH Desensitization 

In mammals, GnRH is released in a pulsatile fashion 

corresponding with episodic release of LH (Carmel et al., 

1976; Clark and Cummins, 1982). In ovariectomized sheep, LH 

pulse in the jugular vein is preceeded by GnRH pulse in the 

hypothalamic portal system (Clark and Cummins, 1982). 

Similar findings have also been reported in rats using the 

push-pull cannulae technique (Levine and Ramirez, 1982). A 

neuronal construct in the central nervous system is believed 

to be responsible for the rhythmic activation of GnRH cells 

and release of the neuropeptide. This is commonly referred 

to as the GnRH pulse generator, however, its cellular nature 

remains unknown (Knobil, 1990). The pulsatile release of 

GnRH is crucial for sustaining secretion of gonadotropins, 

and is the basis for use of GnRH for induction of ovulation. 

Studies have shown that pulsatile administration of GnRH to 

GnRH-deficient human or monkey maintains pituitary 

sensitivity to this releasing factor for several weeks, 

whereas continuous administration of GnRH agonists results 

in desensitization and reduction of LH serum level (Belchetz 

et al.,1978; Valk et al., 1980; Wildt et al., 1981). Other 
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studies have also shown that LH secretion progressively 

decreases with continuous or frequent (high frequency) 

infusion of GnRH (Rivier et al., 1978; Rivier et al., 1979; 

Schuling et al., 1976; Sandow et al.,1978). Studies using 

rat hernipituitaries (de Koning et al., 1978) and cultured 

pituitary cells (Rivier et al., 1979) have shown that 

initial rise in LH and FSH begins to decline even in the 

continued presence of GnRH. Mechanisms underlying 

desensitization involve multiple components such as receptor 

down regulation, uncoupling of receptor-effector systems, 

depletion of gonadotropin stores and decrease in 

gonadotropin synthesis (for review see Noar, 1990) 

Desensitization of pituitary gonadotropes through 

continuous administration of GnRH agonists has been shown in 

mammals (Badger et al., 1983; Jinnah and Conn, 1985; Smith 

and Conn, 1983; Smith et al.,1983; Smith and Vale, 1981), 

chicken (King et al., 1986), turtles (Licht and Porter, 

1985), amphibians (Tsai and Licht, 1993) and goldfish 

(Habibi, 1991a,b). Desensitization studies in the goldfish 

pituitary have shown that both sGnRH and cGnRH-II treatments 

result in biphasic GtH-II release, characterized by initial 

sharp peak followed by a lower sustained release (Habibi, 

1991b). GnRH desensitization in goldfish is an agonist-
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induced process, since occupancy of receptors by a GnRH 

antagonist with higher binding affinity than sGnRH and 

cGnRH-II does not result in pituitary refractoriness 

(Habibi, 1991a). Significant differences between sGnRH- and 

cGnRH-II-induced GtH-II release have been observed with 

respect to dependence on extracellular calcium, pulse 

frequency, and peptide concentrations (Habibi 1991 a,b; 

Habibi et al.,1991). These studies show significant 

differences in the biphasic pattern of GtH-II release; the 

GtH-II release during the second sustained phase is less 

pronounced for cGnRH-II-, than for sGnRH-,treated group. 

Also, cGnRH-II was found to exert a greater degree of 

desensitization at high frequency of GnRH pulse 

administration than sGnRH. 

1.3 Postreceptor Mechanisms in the GnRH Action 

Post-receptor mechanisms mediating GnRH action have been 

investigated in detail in mammals. Multiple mechanisms are 

involved including phosphoinosotide turnover regulating 

intracellular Ca2 levels, protein kinase C (PKC) 

activation, and arachidonic acid metabolism (for reviews, 

see Chang and Jobin, 1994; Naor, 1990; Fig.1.1). Briefly, 

GnRH stimulates phospholipase C (PLC) through a G-protein 
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Figure 1.1 Summary of post-receptor mechanisms involved in GnRH 
action in mammals (A) and goldfish (B). 
modified from Chang et al., 1994 
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linked GnRH-R. This results in increased levels of inositol 

triphosphate (IP3), which in turn releases calcium from the 

intracellular stores. Receptor activation also results in 

increased entry of calcium through receptor-gated channels 

during the spike phase of the release. During the plateau 

phase of LH release, calcium entry through voltage-gated 

channels plays an important role. In addition, activation of 

PLC generates diayclglycerol (DAG) which then activates 

protein kinase C (PKC). Arachidonic acid (AA) pathways also 

participate in GnRH action. Mobilization of AA may be 

through phopholipase A2 (PLA2) or DAG. The lipoxygenase 

metabolites of AA seem to be important in mediating GnRH 

response. In goldfish, the main pathways for GnRH-induced 

GtH release involve PKC activation, arachidonic acid 

metabolism, and calcium mobilization (for review see Chang 

and Jobin, 1994). Recent studies have demonstrated 

differences in the post-receptor mechanisms activated by the 

two native GnRH peptides in the goldfish pituitary (Chang et 

al., 1994; Jobin and Chang 1992 a,b; Chang and Jobin, 1991; 

Chang et al.,1991 a,b; 1990). sGnRH stimulatory action on 

long term GtH-II release involves both PKC and AA-dependent 

pathways. cGnRH-II action also involves the PKC pathway, 

however in contrast to sGnRH, long term cGnRH-II action does 
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not include mobilization of AA pathway. Furthermore, PKC 

plays a more prominent role in cGnRH-II-induced GtH-II 

release compared to sGnRH. Also calcium-deficient media 

revealed calcium independence in sGnRH-induced response but 

not in cGnRH-II-induced response. 

1.4. Structure of Gonadotropin Subunit Genes 

Pituitary gonadotropins, luteinizing hormone (LH) and 

follicle stimulating hormone (FSH) along with thyroid 

stimulating hormone and placental chorionic gonadotropin 

constitute the glycoprotein hormone family. LH and FSH are 

critical for normal gonadal function, while chorionic 

gonadotropin is responsible for maintainence of corpus 

luteum during pregnancy. Thyroid-stimulating hormone is 

important for regulation of thyroid cell activity. All 

members of this family are heterodimers consisting of two 

distinct subunits, a and 3, non-covalently bound by weak 

forces such as hydrogen bonding, van der Waals forces and 

electrostatic bonding. Within a given species, a-subunit is 

identical , while the n-subunit is unique and confers the 

biological activity of the hormone. These subunits are 

encoded on different genes. (Naylor et al.,1983; Pierce and 

Parsons, 1981). 
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The complementary ]JNAs (cDNA) and genes for LH,and FSH 

have been isolated and characterized in several species. The 

a-subunit gene and cDNA have been isolated and characterized 

in human (Fiddles and Goodman, 1979; 1981), bovine (Goodwin 

et al., 1983; Erwin et al., 1983; Nilson et al., 1983), 

mouse (Chin et al., 1981; Gordon et al., 1988), and rat 

(Burnside et al., 1988; Godine et al., 1982). In all these 

species, a-subunit is encoded on one gene and is composed of 

4 exons and 3 introns (Boothby et al. ,1981). The size of a-

subunit varies between 8-16.5 kb due to variation in the 

size of the first intron. The mature a-subunit protein is 96 

amino acids in length in all species except human, which 

encodes 92 amino acids (Chin et al., 1983). LH-D genes in 

human (Talmadge et al., 1983, 1984; Fiddes and Talmadge, 

1984), rat (Jameson et al., 1984; Chin et al., 1983; Tepper 

and Roberts, 1984), and bovine (Virgin et al., 1985; 

Maurer, 1985) were found to be approximately 1.5 kb in 

length, possessing 3 exons and 2 introns. The mature protein 

is 121 amino acids in length. FSH-D subunit gene in human 

(Watkins et al., 1987; Jameson et al., 1988), bovine (Kim 

et al., 1988), and rat (Gharib et al., 1989) varied from 

3.5-5 kb in length and comprised of 3 exons and 2 introns. 

The mature protein contains 110 amino acids. 
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Until recently, it was believed that teleosts had only 

one form of gonadotropin hormone (GtH) which was homologous 

to the mammalian LH/FSH family. However, recent studies 

provide evidence for duality of the gonadotropins. Distinct 

gonadotropins, referred to as GtH I and GtH II (structurally 

FSH-like and LH-like respectively), possessing different 0-

subunits, have recently been isolated and characterized in 

chum and coho salmon (Itoh et al., 1988; Suzuki et al., 

1988a,b; Sekine et al., 1989; Swanson et al., 1991), common 

carp (Van Der Kraak et al., 1992), and killifish (Lin et 

al., 1992). Molecular weights of chum salmon GtH I and GtH 

II were estimated to be 50 KDa and 36 KDa, respectively, 

while those of common carp were 45 KDa and 36 KDa. Although 

in mammals, a-subunit is encoded by a single gene and only 

one a-subuni€ is involved in covalent bonding with all the 

glycoprotein hormones, two distinct a-subunits have been 

demonstrated in piuitary extracts from salmon (Kitahara et 

al., 1988; Kawauchi et al., 1989; Itoh et al., 1990) and 

bonito (Koide et al., 1993). In salmon the two types of (X-

subunit give rise to two isoforms of GtH-I, GtH-Ia1 and GtH-

Ia2 (Itoh et al., 1990), while in bonito the reverse is 

observed (Koide et al., 1993). In carp, although two 

different a—mRNAs were isolated through cDNA cloning (cGtH-
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al and cGtH-a2), only one of the a-subunits (cGtH-(Xl) was 

present in the pituitary protein extracts (Chang et al., 

1988). The two a cDNAs are structurally different. However, 

the amino acid sequences are very similar (96 % homology). 

Bioassay studies demonstrated that only cGtH-al is 

functionally active while the cGtH-a2 is not. The 

relationship of the two carp a-subunits mRNAs with GtH-10 

and GtH-IIO is not clear yet. The first complete 

characterization of the primary structure of GtH n-subunit 

was done in chinook salmon (Trinh et al., 1986). cDNAs 

encoding both GtH-I and GtH-II 13-subunits have so far been 

cloned and sequenced in salmon (Suzuki et al., 1988a,b; 

Sekine et al., 1989) and killifish (Lin et al., 1992). In 

carp, only the GtH-II 13 subunit has been cloned and 

sequenced (Chang et al., 1988). In the present study, cGtH-

1113 and cGtH-a cDNAs were used as probes in Northern 

analysis. 

Complete amino acid sequences of GtH have been determined 

for chum salmon (Suzuki et al.,1988 a,b; Itoh et al. 

1988, 1990; Sekine et al., 1989), carp (Chang et al. 

1988, 1990; Van Der Kraak et al., 1992), and killifish 

(Lin et al., 1992). In all cases, the mature a-subunit was 

found to be 92 and/or 95 amino acids in length depending on 
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if the species contained two forms of a-subunits. The GtH-I 

P subunit ranged from 95-113 amino acids and GtH-II f 

subunit ranged form 115-119 amino acids in length. 

Information on the gene structure of the glycoprotein 

hormones in non-mammalian vertebrates is limited. Two 

different genes encoding two types of a-subunit have been 

cloned in carp (Huang et al., 1992) and demonstrate similar 

structure as the mammalian form (Pierce, 1988). With respect 

to the 0-subunits, only GtH-II P genes have been cloned in 

salmon (Xiong and Hew, 1991) and carp (Chang et al., 1992). 

Evolutionarily, it has been observed that the a-subunit 

shows high conservation between species. Carp a-subunit has 

70% homology with mammalian subunit (Chang et al., 1990). 

However, the n-subunit of carp GtH-II has 75% homology with 

that of salmon (Chang et al., 1988) and only 40% homology 

to mammalian LH (Chang et al., 1990). Although the amino 

acid sequences in the n-subunit are diversified between fish 

and mammals, all of the 12 half-cystine residues present are 

aligned at the same positions. It is believed that these 

similar regions represent the binding site of the a-subunit, 

while the variable regions are hormone specific and may be 

involved in binding to the receptor. Hence, the a-subunit of 

GtH has been highly conserved while the n-subunit is 
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diversified through evolution. 

1.5. Regulation of Gonadotropin Release and Subunit 

Synthesis 

Regulation of GtH release and synthesis involves a 

complex network of interplay between neuronal and endocrine 

factors. To study the role of GnRH and gonadal steroids in 

this regulation, investigators have utilized various 

methods, in vivo and in vitro studies in intact animals, 

castrated animals, and animals with hypothalamic-pituitary 

disconnection. These studies have yielded a complex set of 

results as summarized below. 

The pattern of GnRH administration (continuous or 

pulsatile) is an important regulator of GtH release and 

synthesis. As outlined earlier in section 1.2, continuous 

GnRH agonist treatment results in desensitization of GtH 

release. In rats, continuous GnRH treatment in vivo 

resulted in inhibition of LH-0 gene expression and synthesis 

without affecting (X—subunit gene (Lalloz et al., 1988b). 

Rodin et al. (1989) demonstrated that endogenous GnRH is 

essential for maintainance of FSH-P mRNA levels in intact 

and orchidectimized rats. Furthermore, studies in rats and 

sheep have demonstrated that the mode of GnRH puistaile 
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treatment can differentially regulate the gonadotropin 

subunit mRNA levels. Many in vivo studies in rats 

(Haisenleder et al., 1987; Dalkin et al., 1991) and sheep 

(Leung et al., 1987) have demonstrated that pulsatile GnRH 

treatment stimulates a subunit as well as LH-0 and FSH-3 

subunit mRNA concentrations. In addition, higher frequencies 

of GnRH pulse administration was found to increase a and LH-

0 mRNA levels, while slower frequencies increased FSH-0 mRNA 

levels (Haisenleder et al., 1991). 

In a number of studies, hypothalamic-pituitary link was 

lesioned to study regulation of GtH independent of 

hypothalamus. Hypothalamo-hypophysial lesioning in ewes 

resulted in significant and rapid reduction of serum LH 

levels with lower level of change in serum FSH concentration 

(Hamernik et al., 1986). Pulsatile replacement of GnRH in 

hypothalamic-pituitary disconnection ovariectomized ewes or 

hypothalamus-lesioned monkeys resulted in differential 

effect whereby low frequency of GnRH adminstration favored 

FSH release over LH release (Clarke et al., 1984; Wildt et 

al., 1981). 

Castration resulted in increased LH and FSH mRNA levels 

as well as increased pituitary and serum LH and FSH levels 

(Gharib et al., 1986, 1987; Wierman et al., 1988). In other 
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studies, postcastration increase in cytosolic LH subunit 

mRNA levels were shown to depend on endogenous GnRH since 

adminstration of a GnRH antagonist abolished this effect 

(Lalloz et al.,1988a; Wierman et al., 1989; Rodin et al., 

1989). 

Studies in vitro have also demonstrated that the mode of 

GnRH administration differentially regulates the expression 

of the different gonadotropin subunits. In the rat dispersed 

pituitary cells, the a—subunit mRNA responded to both 

pulsatile and continuous administration of GnRH, while LH-I3 

mRNA was not responsive to either (Weiss et al., 1990). In 

the same study, FSH-13 mRNA level was shown to increase 

following pulsatile treatments and decrease after continuous 

treatments with GnRH. Furthermore, the amplitude of GnRH 

pulse was found to be an important regulator of GtH subunit 

gene expression. Recent in vitro studies have demonstrated 

that LH-f and FSH-P mRNA levels are only stimulated in 

response to a specific range of pulse amplitudes 

(Haisenleder et al., 1993). 

Extensive studies have been carried out in mammals to 

study the gonadal steroid regulation of gonadotropin 

synthesis and release. Both inhibitory and stimulatory 

effects have been observed, and there is evidence that 
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steroids influence gonadotropin release and synthesis both 

through hypothalamic and pituitary pathways. To 

differentiate between a direct effect at the level of 

pituitary and indirect pathways, studies have been performed 

in in vivo and in vitro, using intact and castrated 

animals. 

In anestrous ewes, in vivo studies demonstrated 

differential regulation of GtH subunits by 17-estradiol (E-

2). It was observed that the c mRNA levels increased while, 

FSH-f3 levels decreased, and LH-P levels only slightly 

increased (Landefeld et al., 1989). Testosterone (T) has 

been demonstrated to decrease LH secretion in vivo 

(Papavasiliou et al., 1986b; Haisenleder et al., 1987; 

Steiner et al,, 1982). 

Many studies have reported a postcastration rise in 

gonadotropin gene expression (Godine et al., 1980; Counis 

et al., 1983; Gharib et al., 1986,1987; Wierman et al. 

1988). In another study, estradiol-treated pituitaries from 

ovariectomized rats specifically stimulated synthesis of LH-

0 gene with no effect on FSH-I3 and a mRNA levels. (Shupnik 

et al., 1989b). In castrate rats, T inhibits LH secretion 

with relatively lower effect on FSH release (Decker et al., 

1981) 
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Cultured pituitary cells from orchidectomized rats 

treated with T were found to have increased pituitary 

content of FSH and decreased content of LH (Kitahara et al., 

1991). In the same study, the LH-f3 and a-subunit mRNAS of 

the cultured cells were decreased and the FSH-f rnRNA levels 

remained unchanged (Wierman et al., 1988). In addition, T 

has been shown to stimulate FSH-f3 mRNA levels in rat 

pituitary cells in the absence of GnRH (Gharib et al., 1990; 

Winters et al., 1992) and inhibit FSH-f3 mRNA levels in 

presence of GnRH (Winters et al., 1992). 

In teleosts, several studies have shown a negative 

feedback effects of gonadal steroids on GtH release. Removal 

of gonads results in increased serum GtH levels in rainbow 

trout (Bornmelaer et al., 1981), African catfish (Habibi et 

al., 1989b), and goldfish (Kobayashi and Stacey, 1990). 

Estrogens and androgens inhibited the activity of pituitary 

gonadotrophs in the Indian catfish (Sundaraj and Gowswami, 

1968). Several studies in goldfish have demonstrated that 

the underlying mechanisms for the negative feedback effect 

by the steroids may be regulated by neuronal factors such as 

GABA and dopamine (DA), known to effect GtH synthesis and 

release (discussed in detail in chapter 3). Information on 

the regulation of GtH-II subunit synthesis in the fish 
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species is limited and will be discussed in detail in 

chapter 3. Briefly, in adult fish, as in mammals, gonadal 

steroids have generally exerted an inhibitory effect on 

gonadotropins as outlined above. However in juvenile fish, 

it has been observed that steroids induce an increase in 

pituitary GtH content (Crim and Evans, 1979; Dufour et al., 

1983) as well as on GtH subunit mRNA levels (Trinh et 

al.,1986; Querat et al,. 1991; Xiong et al., 1994). 
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1.6 Objectives of the Present Study 

At present, there is little known about the physiological 

significance for the presence of more than one form of GnRH 

in the brain of vertebrates. In addition, our information on 

the regulation of gonadotropin synthesis in lower 

vertebrates and teleosts is rather limited. 

This thesis attempts to investigate the regulation of 

GtH-II release and synthesis by the native GnRH peptides, 

sGnRH and cGnRH-II, in the goldfish pituitary. 

Desensitization and gene expression studies were carried out 

to elucidate differences between sGnRH- and cGnRH-II-induced 

GtH-II release and synthesis. The present study provides 

information on the existence of specific receptor-effector 

systems with preferential specificity for sGnRH and cGnRH-II 

coupled to release and synthesis of GtH-II in the goldfish 

pituitary. Furthermore, the findings also provide 

information on the effects of gonadal steroids on GtH-II 

gene expression in the goldfish pituitary. 
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Chapter 2 

Functional specificity for salmon GnRH and chicken 

GxiRH-II coupled to the gonadotropin release and 

subunit mRNA level in the goldfish pituitary 
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2.1 Introduction 

The secretion of gonadotropins (GtH) from the pituitary 

is mediated by the hypothalamic decapeptide, gonadotropin-

releasing hormone (GnRH). To date, the primary structure of 

eight native GnRH forms have been elucidated: one in mammal 

(Burgus et al., 1972), one in salmon (Sherwood et al., 

1983), two in chicken (King and Millar, 1982), one in 

dogfish (Lovejoy et al., 1992), two in lamprey (Sherwood et 

al., 1986a; Sower et al., 1993), and one in catfish 

(Ngamvongchon et al., 1992). Multiple GnRH forms have been 

demonstrated in the brain of Agnatha (Sherwood et al., 

1986a), Chondrichthyes (Powell et al., 1986b), Osteichthyes 

(Powell et al., 1986b; King and Millar, 1985; Sherwood et 

al., 1984; Yu et al., 1988) , Amphibia (King and Millar, 

1986; Sherwood et al., 1986b), Reptilia (Powell et al., 

1985; Powell et al., 1986a; Sherwood and Whittier, 1988), 

Ayes (Mikami et al.,1988; Sherwood et al., 1988), and 

Marsupial (King et al., 1988). However, the physiological 

significance for the presence of multiple forms of GnRH in 

the brain of any one species is at present unknown. 

Goldfish brain contains two forms of GnRH, (Trp7, Leu8 ]-GnRH 

(sGnRH) and [His 5, Trp7 , Tyr8] -GnRH (cGnRH-II) (Yu et al., 

1988; Peter et al., 1987). As for GtH, there is 
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immunological and biochemical evidence for the presence of 

two gonadotropic hormones, GtH-I and GtH-II in cyprinid 

pituitary (Van Der Kraak et al., 1992). However, specific 

antisera and genomic probes are only available for the 

maturational (steroidogenic) GtH which is analogous to and 

has activities similar to salmon GtH-II (Itoh et al., 1988; 

Suzuki et al., 1988; Lin et al., 1992) and tetrapod 

luteinizing hormone (LH), hereinafter described as GtH-II. 

Both sGnRH and cGnRH-II stimulate the release of GtH-II, 

although cGnRH-II has a greater GtH-II-releasing activity 

(ED503.5±1.5 nM) and binds with a greater affinity 

(Ka_9.2IflM) to the high affinity GnRH receptors than sGnRH 

(ED5014.6±4.3 nM, Ka 3.3/flN) in the sexually mature 

goldfish pituitary (Habibi, 1991a; Habibi et al., 1992; 

Chang et al., 1990). 

In mammals, GnRH is secreted in a pulsatile manner, 

leading to episodic secretion of LH and FSH (Carmel et al., 

1976; Clark and Cummins, 1982; Drouva and Gallo, 1976). It 

has been demonstrated that continuous administration of GnRH 

results in desensitization of pituitary gonadotropes while 

pulsatile treatment leads to little or no refractoriness 

(Badger et al., 1983; Jinnah and Conn, 1985; Smith and Conn, 

1983; Smith et al., 1983; Smith and Vale, 1981). GnRH 
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desensitization has also been demonstrated in chicken (King 

et al., 1986), turtle (Licht and Porter, 1985; Tsai and 

Licht, 1993), and goldfish (Habibi, 1991a,b) . In addition, 

in mammals it has been demonstrated that maintainance of 

steady production of LH subunits are dependent on pulsatile 

GnRH stimulation (Dalkin et al., 1989; Weiss et al., 1990; 

Haisenleder et al., 1991). 

Previous studies in goldfish have demonstrated 

significant differences between sGnRH- and cGnRH-II-induced 

desensitization of GtH-II release in terms of dependence on 

concentration, pulse frequency, and extracellular calcium 

(Habibi, 1991a,b; Habibi et al., 1991). Furthermore, recent 

studies also demonstrated differences in the post-receptor 

mechanisms involved in sGnRH- and cGnRH-II-induced GtH-II 

release in the goldfish pituitary (Chang et al., 1994; Jobin 

and Chang 1994, 1992a,b; Chang et al., 1991). These findings 

indicate that sGnRH action greatly depends on intracellular 

calcium concentration and is less affected by extracellular 

calcium concentration. On the other hand, cGnRH-II is 

largely dependent on extracellular calcium for stimulation 

of GtH-II release in the goldfish pituitary (Jobin and 

Chang, 1992a,b). As well, arachidonic acid pathway was shown 

to be a major component of sGnRH action, while cGnRH-II 
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action lacked this component (Chang et al., 1991). All 

together, the above differences are not fully compatible 

with the view that sGnRH and cGnRH-II interact with the same 

receptor population coupled to the same post-receptor 

mechanisms coupled to the release of GtH-II in the same 

pituitary cell populations. An important question is whether 

sGnRH and cGnRH-II, physiologically, work through different 

receptor-effector mechanisms in regulating GtH-II synthesis 

and release. 

The purpose of the present study was to examine the 

possible existence of GnRH receptor-effector system that 

respond differentially to sGnRH and cGnRH-II in the goldfish 

pituitary. The experimental approach was to compare 

homologous and heterologous GtH-II release desensitization 

to sGnRH and cGnRH-II in the goldfish pituitary, as well as 

studying the effect of these native peptides on GtH-II 

subunit mRNA levels. 
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2.2 Materials and Methods 

2.2.]. Animals 

Goldfish, Carassius auratus, (mixed sex, ranging 8-10 cm 

in length) were purchased from Ozark Fisheries in Southland, 

MO. They were maintained in a 1500 L semi-recirculating 

aquarium at 17 C on a 16 hr light/8 hr dark photoperiod, and 

were fed a commercial fish diet. 

2.2.2 Hormones and other chemicals 

[Trp71Leu8]-GnRH (sGnRH) and [His 5 , Trp7 , Tyr8 ]-GnRH 

(cGnRH-II) were purchased from Peninsula, Belmont, CA. 

Peptides were solubilzed in 0.1 M acetic acid at the 

concentration of 10.tg/20.L1, stored at -20 C. Appropriate 

concentrations of peptides were prepared through dilution 

immediately prior to use for the experiment. Carp 

gonadotropin (GtH-II), purified as described by Peter et 

al. (1983), was a gift from Dr. B. Breton, Laboratoire de 

physiologie des Poissons, Institute Nationale de la 

Recherche Agronomique, Rennes, France. This particular GtH-

II corresponds to maturational GtH or LH in its 

physiological function (Van Der Kraak et al., 1992). 

Antibody specific to cGtH-II was a gift from Dr. R.E. Peter, 
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from Dept. of Zoology, University of Alberta, Edmonton, 

Alberta, Canada. Calcium ionophore (A23187) obtained from 

Calbiochem, San Diego, CA, was solubilzed in 

dimethlysulf oxide at 25mM stock solution and stored at -20 

C. 

The carp GtH-II-0 cDNA fragment, 0.7-0.8 kB in length and 

carp GtH-II-a cDNA fragment, 0.8-0.9 kB in length, were 

provided by Dr. FL Huang from Institute of Biological 

Chemistry, Academia Sinica, Taipei, Taiwan. The trout cx-

tubulin cDNA fragment (1.5 kB) was provided by Dr. G. Dixon 

from Department of Medical Biochemistry, University of 

Calgary, Calgary, Alberta. 

2.2.3 Superfusion of pituitary fragments 

The in vitro pituitary GtH-II release in response to 

sGnRH and cGnRH-II were determined using a superfusion 

system as described previously by Habibi et al. (1989a). 

Pituitary fragments (three pituitary equivalent per column) 

were treated with sGnRH and cGnRH-II in pulsatile or 

continuous fashion at various concentrations. All 

experiments involved running eight columns simultaneously 

with automatic fraction collection at 2, 5, or 10 mm 

intervals. Samples were frozen at -20 C until determination 
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of GtH-II concentration by a radioirnmunoassay as described 

by Peter et al. (1984). The GtH-II release was quantified 

by determination of area under the curve as described in 

Habibi et al. (1989, 1991b, 1992). Briefly, basal GtH-II 

level prior to each treatment was subtracted from hormone 

levels following treatment. The GtH-II concentrations are 

expressed as the mean ± SEM, and were analyzed statistically 

by one-way analysis of variance (ZN0VA) followed by Duncan's 

multiple range test with P< 0.05 degree of significance. 

For the area under the curve, we also estimated the slope of 

each line (GtH % initial response vs. pulse number) ± 95% 

confidence intervals using regression analysis. Please note 

that the GtH-II release experiments were not designed to 

provide a comparison between sGnRH and cGnRH-II potency; 

ED50 values and receptor binding affinities for these 

peptides were reported in previous studies (Habibi, 1991a). 

2.2.4 Determination of GtH-IZ subunit mRNA 

Goldfish of mixed sex at two different stages of gonadal 

development were treated with either SGnRH or cGnRH-II in 

order to investigate regulation of GtH-II subunit gene 

expression. Female goldfish with follicle diameter 0.18-0.25 

mm were classified as sexually regressed, while fish with 
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follicle diameter size 1.08-1.34 mm were classified as 

sexually mature. Male goldfish containing transparent, non-

spermiating testis were classified as immature (regressed), 

while fish with sperm containing or spermiating testis were 

classified as sexually mature. In regressed goldfish basal 

circulating GtH-II level is 3.5 ± 0.7 ng/ml, whereas in 

sexually mature goldfish the basal circulating GtH-II level 

is 10.6 ± 1.5 ng/ml). 

Following IP injections of sGnRH, cGnRH-II, or saline 

(control) (1 or 4 pjg/fish), groups of fish were anesthetized 

and sacrificed at various time intervals in accordance with 

the Animal Care Regulations of the University of Calgary (7-

10 animals per treatment group). Total RNA was extracted 

from the pituitaries using guanidine thiocyanate-phenol-

chloroform extraction method (Chomczyski and Sacchi, 1987). 

Five .tg of total RNA was loaded in separate wells, resolved 

on a 1.2% agarose/formaldehyde gel and transferred onto 

Hybond--N nylon membrane (Amersham) using 20X SSPE. Membranes 

were prehybridized at 60 C overnight in 5 ml of 6X ssc, lox 

Denhardt, 10 mM EDTA (pH 8), 0.5% SDS, 0.05% sodium 

pyrophosphate, and 100 jig/ml of sheared and denatured E. 

coli DNA. The membranes were hybridized initially with 

complementary DNA for cGtH-II-IL stripped and subsequently 
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hybridized with cGtH-II-a and a-tubulin from trout. Please 

note that a-tubulin expression is not affected by sGnRH and 

cGnRH-II and was therefore used as a internal marker for all 

experimental groups. The cDNAs were labeled by random primer 

method (T7 Quick Prime, Pharmacia). Hybridization was 

carried out for 24-28 hours at 60 C. The membranes were 

subsequently washed with a series of stringent washes up to 

O.1X SSPE in presence of 0.1% SDS and 0.1% sodium 

pyrophosphate. The autoradiograms were scanned using a 

computerized densitometer scanner, gelscan, and quantified 

using the Image program provided by NIH (Bethesda, MD). The 

program computes the area and average density of given 

selection. The values were transferred to a spreadsheet and 

statistical analysis program for further analysis of the 

data. The quantified mRNA levels for GtH-IIP and GtH-IIa 

were each divided by a-tubulin mRNA value in the 

corresponding lane. The relative mRNA levels shown in Fig. 8 

and 9 represent difference from the control group within 

each experiment. The values were statistically analyzed by 

student's t-test. Blood samples were also obtained from the 

same groups of regressed goldfish used for determination of 

mRNA levels. Serum samples were frozen at -20 C until 

determination of GtH-II concentration by a radioirnmunoassay 
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as described by Peter et al. (1984). Circulating GtH-II 

concentration was expressed in terms of ng/inl (mean ± S.E.), 

and were analyzed statistically by one-way ANOVA followed by 

Duncan's multiple range test with P<O.05 degree of 

significance. 
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2.3 Results 

2.3.1 Pulsatile treatments with sGnRH and cGnRH-ZZ: 

Sexually mature goldfish pituitary fragments were exposed 

to pulsatile treatments (3 min pulses) of sGnRH and cGnRH-II 

at different doses and frequencies. In these studies, 

peptides were administered either in a homologous 

(sGnRH/sGnRH or cGnRH-II/cGnRH-II) or heterologous fashion. 

In the heterologous paradigm, sGnRH and cGnR}i-II were either 

administered together (sGnRH+cGnRH-II) or in an alternate 

fashion, so that a sGnRH treatment was followed by cGnRH-II 

treatment or vice versa. With respect to the sequence of 

alternate pulse application, experiments were carried out 

using both paradigms (sGnRH/cGnRH-II/sGnRH/.., or cGnRH-

II/sGnRH/cGnRH-II/. .1) and no significant differences were 

observed between the two modes of treatment. In the case of 

combined treatments (sGnRH+cGnRH-II), the concentration of 

each peptide was half the indicated total concentration, 

giving combined final concentrations indicated. Each 

experiment involved running 

(grouped into 4 pairs), each 

following pulsatile treatments: 

eight superfusion columns 

pair receiving one of the 

sGnRH/ sGnRH, cGnRH- II! cGnRH-

II, sGnRH/cGnRH-II, or sGnRH+cGnRH-II. First set of 
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experiments involved pulsatile homologous and heterologous 

treatments every 60 min at 10-7 M, io8 N, and 5 X 10 M. A 

total of six pulses (3-minute) were administered every 60 

minutes in each experiment. Fractions were collected every 

five minutes for the first 20 minutes following a treatment 

and thereafter every 10 minutes until the next pulse. 

Pulsatile, treatments at 10- 7 N, resulted in significant 

desensitization of the pituitary GtH-II release with no 

consistent differences between the desensitization pattern 

induced by homologous and heterologous treatments (Figs.2.1, 

2.2) . Determination of the slope values indicated 

significant (P<0.05) regression from horizontal line 

(slope=0) for all treatment groups (Fig. 2.3). Similar 

pulsatile treatments at lower concentrations of M and 

5x10 9 N did not result in sufficient GtH-II release 

desensitization and therefore were unsuitable to reveal 

differences between homologous and heterologous 

desensitization (results not shown). However, treatments 

administered at a higher frequency (3 minute pulses every 30 

minutes) at io 8 N resulted in desensitization of the 

pituitary GtH-II release with significant differences 

between homologous and heterologous desensitization; 

alternate treatments with sGnRH and cGnRH-II resulted in a 
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Figure 2.1 Gonadatropin (GtH-II) release from 
superfused goldfish pituitary fragments following 
homologous pulsatile treatment at 10-7 M (3 min pulses 
every 60 minutes). At the end of the experiment, 
pituitary fragments were exposed to 3 min pulse of 0.1 
mm calcium ionophore (A23187). Fractions were 
collected every five minutes for the first 20 minutes 
of each treatment and thereafter every 10 minutes. 
GtH-II concentration was measured by radioimmunoassay. 
Each value represents mean ± S.E. of 4 observations (4 
different columns). 
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Figure 2.2 Gonadatropin (GtH-II) release from 
superfused goldfish pituitary fragments following 
heterologous pulsatile treatment at 10-7 M (3 mm 
pulses every 60 minutes). Heterologous treatments 
included a combination of peptides (both peptides 
present in the treatment; s+cGnRH) or an alternation 
of peptides (s/cGnRH) during the pulsatile treatment. 
At the end of the experiment, pituitary fragments were 
exposed to 3 min pulse of 0.1 mM calcium ionophore 
(A23187). Fractions were collected every five minutes 
for the first 20 minutes of each treatment and 
thereafter every 10 minutes. GtH-II concentration was 
measured by radioirnmunoassay. Each value represents 
mean ± S.E. of 4 observations (4 different columns). 
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Figure 2.3 GtFI-II response to sGnRH and cGnRH-II 
pulses at 10-7 every 60 minutes was quantified for 
each treatment by determination of area under the 
curve. Values were expressed in terms of percentage 
control, taking the initial treatment as 100%. Values 
displaying (*) are significantly different from the 
initial 100% value. The slope values and 95% 
confidence intervalls were estimated by regression 
analysis. 
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significantly lower degree of desensitization of GtH-II 

release compared with homologous treatments (sGnRH or cGnRH-

II alone), or combination of these peptides (sGnRH + cGnRH-

II) (Figs.2.4, 2.5). In terms of time-related overall 

release, the slope of regression line for alternate sGnRH 

and cGnRH-II treatment was not significantly different from 

the horizontal line (slope=O). The slope of other groups, 

however, were significantly (P<O.05) different from 

horizontal line indicating a gradual decline in GtH-II 

release (Fig.2.6). In these experiments, total of ten pulses 

were administered and fractions were collected every five 

minutes for the full course of the experiment. 

2.3.2 Continuous treatments with sGnRH and cGnRH-ZX: 

Experiments were also carried out to compare homologous 

and heterologous desensitization induced by continuous 

treatments with sGnRH and cGnRH-II. For homologous 

treatment, goldfish pituitary fragments were exposed 

continuously for three hours to increasing concentrations of 

sGnRH or cGnRH-II (i.e. 60 min of 108 M, followed by 60 mm 

of i0 M, and finally 60 min of 106 M), while in 

heterologous treatments the peptides were alternated (i.e. 

sGnRH/cGnRH-II/sGnRH or cGnRH-II/sGnRH/cGnRH-II) each 
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Figure 2.4 Gonadatropin (GtH-II) release from 
superfused goldfish pituitary fragments following 
homologous pulsatile treatment at 10-8 M (3 min pulses 
every 30 minutes). At the end of the experiment, 
pituitary fragments were exposed to 3 min pulse of 0.1 
mm calcium ionophore (A23187). Fractions were 
collected every five minutes for the first 20 minutes 
of each treatment and thereafter every 10 minutes. 
GtF1-II concentration was measured by radioimmunoassay. 
Each value represents mean ± S.E. of 4 observations (4 
different columns). 
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Figure 2.5 Gonadatropin (GtH-II) release from 
superfused goldfish pituitary fragments following 
heterologous pulsatile treatment at 10-8 M (3 mm 
pulses every 30 minutes). Heterologous treatments 
included a combination of peptides ( both peptides in 
the same treatment; s+cGnRH) or alternation of 
peptides (s/cGnRH) during the puistaile treatment. At 
the end of the experiment, pituitary fragments were 
exposed to 3 min pulse of 0.1 inN calcium ionophore 
(A23187) . Fractions were collected every five minutes 
for the first 20 minutes of each treatment and 
thereafter every 10 minutes. GtH-II concentration was 
measured by radioimmunoassay. Each value represents 
mean ± S.E. of 4 observations (4 different columns). 
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Figure 2.6 GtH-II response to sGnRH and cGnRH-II 
pulses at 10-8 every 30 minutes was quantified for 
each treatment by determination of area under the 
curve. Values were expressed in terms of percentage 
control, taking the initial treatment as 100%. Values 
displaying (*) are significantly different from the 
initial 100% value. The slope values and 95% 
confidence intervalls were estimated by regression 
analysis. 
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administered for 60 minutes at a given concentration. The 

heterologous treatments were carried out at three different 

concentrations of 1ü 8, and l0 M. It should be noted 

that switching the media during continuous treatments did 

not effect the GtH-II release; see experiments involving 

several changes of media (different doses or change back to 

normal media) (Figures 2.7-2.9). 

Homologous continuous treatments with increasing doses of 

either sGnRH or cGnRH-II resulted in significant 

desensitization of GtH-II release as shown in Fig. 2.7. 

However, heterologous continuous treatments resulted in 

lower degrees of desensitization compared to homologous 

treatments (at the same concentrations i0, 10-8, or io 

M) (Figs. 2.8, 2.9) . It should be noted that for 

heterologous treatments, the degree of desensitization was 

reduced at lower concentrations of the peptides. For all 

continuous treatments, a biphasic GtH-II release was 

observed involving initial rapid increase in GtH-II 

secretion (phase 1) followed by sustained plateau release 

above the baseline (phase 2) as described previously 

(Habibi, 199 la,b). For all continuous treatments, fractions 

were collected every 2 minutes for the initial 20 minutes of 

a treatment followed by 10 minute fraction until the next 
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Figure 2.7 Gonadotropin (GtH-II) release from superfused 
pituitary fragments following homologous continuous 
treatment with increasing concentrations of sGnRH or 
cGnP.H-II. The duration of the treatments are indicated by 
the bars. At the end of the experiment, a 3-minute pulse 
of 0.1 mm calcium ionophore (A23187) was delivered. 
Fractions were collected every 2 or 10 minutes as shown, 
and GtH-II concentration was measured by 
radio immunoas say. Each profile represents the mean ± of 
S.E. 4 observations (4 different columns). 
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Figure 2.8 Gonadotropin (GtH-II) release from superfused 
pituitary fragments following continuous treatment with 
alternate administration of sGnRH and cGnRH-II 
(sGnRH/cGnRH-II/sGnRH) at various doses. The duration of the 
treatments is indicated by the bar. At the end of the 
experiment, a 3-minute pulse of 0.1 mM calcium ionophore 
(A23187) was administered. Fractions were collected every 2 or 
10 minutes as shown, and the GtH-II concentration was measured 
by radio immunoassay. Each value in the profile represents the 
mean ± of S.E. 4 observations (4 different columns'). 
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Figure 2.9 Gonadotropin (GtH-II) release from superfused 
pituitary fragments following continuous treatment with 
alternate administration of sGnRH and cGnRH-II 
(cGnRH-II/sGnRH/cGnRH-II) at various doses. The duration of the 
treatments is indicated by the bar. At the end of the 
experiment, a 3-minute pulse of 0.1 mm calcium ionophore 
(A23187) was administered. Fractions were collected every 2 or 
10 minutes as shown, and the GtH-II concentration was measured 
by radioimmunoassay. Each value in the profile represents the 
mean ± of S.E. 4 observations (4 different columns). 
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treatment. In this regard, the results of homologous 

continuous treatment shown in Fig.2.7 provide a control for 

the heterologous continuous treatments. 

At the end of all pulsatile and continuous experiments, 

calcium ionophore (A23187) at 0.1 mm, was administered as a 

three minute pulse to ensure that desensitization of GtH-II 

release was not due to depletion of GtH stores in the 

gonadotropes. 

2.3.3 Gonadotropizi Subunit mRNA Production 

Experiments were carried out to study the accumulation of 

GtH-II-0 and GtH-II-a mRNA levels following in vivo 

treatments with sGnRH and cGnRH-II. Treatment of sexually 

regressed goldfish with sGnRH (at 1 and 4 j.ig/fish) 

significantly (P<0.05) increased levels of pituitary GtH-II-

and GtH-II-a mRNA levels, while similar treatment with 

cGnRH-II was without effect (Fig. 2.10); difference between 

sGnRH- and cGnRH-II-induced GtH-IIa levels at 4 p.g/fish 

treatment was not statistically significant. This experiment 

was repeated four times and total RNA for each treatment 

group in each experiment was obtained from 7-10 regressed 

goldfish pituitaries. The quantified data as shown in the 

Fig. 2.10 represents mean ± S.E. of 4 observations (relative 
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Figure 2.10 GtH-II cx and 0 mRNA levels following treatments with 
sGnRH and cGnRH-II at 1 and 4 pg/fish in sexually regressed 
goldfish. In this experiment, 7-10 animals were used per 
treatment. a) Total RNA was extracted 12 hours post-injection 
and 5 .ig was loaded per lane for Northern analysis. Data were 
quantified using a computerized densitometer with respect to cx-

tubulin. The quantified data represent mean ± S.E. of 4 
observations. For each dose group, values displaying § and * are 
significantly (P<0.05) different from one another. b) 
Circulating levels of GtH-II were determined in the same fish 
used to estimate mRNA levels. The values in terms of ng/ml 
represent mean ± of 7-10 animals per experimental group. Values 
displaying § and * are significantly (P<0.05) different from one 
another. 
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mRNA levels with respect to a-tubulin). Circulating levels 

of GtH-II were also measured in two of the above experiments 

(the same fish used to determine mRNA levels). The results 

indicate a significantly (P<0.05) greater level of 

circulating GtH-II in regressed goldfish injected with 1 jig 

of sGnRH than those injected with cGnRH-II (Fig. 2.10). No 

stimulation of GtH-II release was apparent in the groups 

injected with 4 jig of sGnRH or cGnRH-II. 

Experiments were also carried out to study the effects of 

sGnRH and cGnRH-II on GtH-II mRNA levels in sexually mature 

fish (containing gonads at late stages of recrudescence). In 

these experiments, goldfish (7-10 fish per treatment group) 

were injected with 4pg/fish of sGnRH, cGnRH-II, or vehicle 

(control) and sacrificed 6, 12 and 24 hours after treatment. 

Both sGnRH and cGnRH-II treatments significantly (P<0.05) 

increased GtH II-P and GtH II-a mRNA levels in a time-

related manner compared to control (Fig. 2.11). However, in 

the sexually mature animals, cGnRH-II was significantly 

(P<0.05) more effective than sGnRH in stimulating 

accumulation of GtH-II a and P mRNA levels after 12 and 24 

hours of injection (Fig. 2.11). The experiment was repeated 

three times in the same manner, and the quantified mRNA 

level shown in Fig. 2.11 represents mean ± S.E. of 3 
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Figure 2.11 Autoraiogram of GtH-II 0 and GtH-II a mRNA 
levels in sexually mature goldfish in response to 4 
jig/fish injection (i.p.) of sGnRH or cGnRH-II. Total RNA 
was extracted 6, 12, and 24 hours post-injection. 5 jig 
RNA was loaded per lane on a formaldehyde gel 
electrophoresis for Northern analysis. Data was 
quantified using computerized densitometer with respect 
to a-tubulin as shown. The quantified data represents 
mean ± S. E. of 3 observations. For each time group, 
sGnRH-treated values displaying (*) are significantly 
different from cGnRH-II-treated group. Furthermore, the 
control values displaying () are significantly 
different from all other values shown. 
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observations (relative mRNA level with respect to (X-

tubulin). It should be noted that we determined a-tubulin 

level for all treatment groups as an internal marker for 

correcting variations due to RNA loading error (results not 

shown). In all cases, within each experiment a-tubulin 

levels were not significantly different within treatment 

groups. 
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2.4 Discussion 

In this study we used GnRH desensitization as an 

experimental tool to study possible existence of receptor-

effector mechanisms coupled to GtH-II release with 

specificity for sGnRH or cGnRH-II in the goldfish pituitary. 

The experimental approach was to study the differences 

between desensitization induced by sGnRH and cGnRH-II 

administered in homologous and heterologous fashion. 

Pulsatile alternate treatments with sGnRH and cGnRH-II (i.e. 

sGnRH/cGnRH-II or cGnRH-II/sGnRH) at i0 8 M (administered 

every 30 minutes), resulted in a significantly lower degree 

of desensitization compared to homologous treatments with 

either sGnRH or cGnRH-II (sGnRH/sGnRH or cGnRH-II/ cGnRH-II), 

or when combined together (sGnRH+cGnRH-II) . These 

observations suggest the presence of two receptor-effector 

mechanisms coupled to the GtH-II release with preferential 

specificity for sGnRH and cGnRH-II. It should be noted that 

a difference between homologous and heterologous 

desensitization could only be obtained when sGnRH and cGnRH-

II are present at concentrations close to their respective 

E]J50 values (sGnRH: 14.6±4.3 nM and cGnRH-II: 3.5±1.5) 

(Habibi, 1991a), and there appear to be a spillover of 
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specificity at concentration of lO M or greater. In this 

context, at l0 M the observed differences between 

homologous and heterologous desensitizations were reduced 

significantly. It should also be noted that experiments 

involving administration of the peptides at 5 x and 10 -

8 M (every 60 mm) were found to be ineffective, since 

combination of low concentration and low frequency failed to 

desensitize pituitary GtH-II release to a sufficient degree 

to reveal any differences between homologous and 

heterologous desensitizations. Further support for this 

postulate is provided by the results of the experiments 

involving continuous treatments with sGnRH and cGnRH-II. 

These differences are also apparent to a greater extent at 

lower concentrations, providing additional support for 

possible cross-reactivity between sGnRH and cGnRH-II 

receptor-effector systems when administered at higher 

concentrations. 

The present study also demonstrates that sGnRH and 

cGnRH-II differentially regulate GtH-II-and GtH-II-a mRNA 

levels, depending upon the stage of gonadal recrudescence in 

goldfish. In sexually regressed animals, sGnRH alone was 

able to increase accumulation of GtH-II-P and GtH-II-amRNA; 

cGnRH-II receptor-effector system coupled to production of 
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GtH-II subunit mRNA in regressed goldfish was either silent 

or absent. In sexually mature animals, however, both sGnRH 

and cGnRH-II were able to increase the GtH-II-3 and GtH-II--a 

mRNA levels. Furthermore, in the sexually mature goldfish 

cGnRH-II exerted a significantly greater stimulatory effect 

than sGnRH on the mRNA levels of GtH-II subunits which is in 

accord with previous observations on GnRH-induced GtH-II 

release in the sexually mature goldfish (Habibi, 1991a; 

Chang et al., 1990; Habibi et al., 1991). The observed 

increase in GtH-II subunit mRNA levels could either be 

explained in terms of increased transcription induced by 

sGnRH or cGnRH--II, or increased stabilizing effect on the 

mRNA by these peptides. 

It appears from the present and former studies that GtH-

II subunit synthesis is correlated to some extent with GtH-

II release in the goldfish pituitary-. In mature goldfish, 

cGnRH-II has a greater stimulatory effect on GtH-II subunit 

synthesis than sGnRH which correlates with its greater GtH-

II release potency in vitro and greater affinity for high 

affinity GnRH receptors in the goldfish pituitary (Habibi, 

1991a). In sexually regressed goldfish, however, the 

circulating levels of GtH-II was found to be higher in the 

sGnRH-injected group (1Ig/fish) compared to those injected 
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with cGnRH-II (1 or 4.tg/fish) (present study) . No 

significant increase in GtH-II level was observed following 

sGnRH treatment at 4 jtg, and at present we are uncertain 

about the reason for this effect. However, it should be 

noted that GtH-II release in goldfish is negatively 

controlled by dopamine (Peter et al., 1986), and as a result 

a study of temporal relationship between in vivo GtH-II 

release and synthesis is difficult in goldfish in the 

absence of dopamine antagonists. 

The present results are also consistent with recent 

findings indicating that sGnRH and cGnRH-II stimulate GtH-II 

release through different post-receptor signalling 

mechanisms in the goldfish pituitary (Chang et al., 1994; 

Jobin and Chang, 1992a,b; Chang et al., 1991). Incubation of 

goldfish pituitary cells in Ca2 -deficient media revealed 

that sGnRH-induced GtH-II release was independent of 

extracellular Ca2+ concentration while cGnRH-II-induced 

release was not (Jobin and Chang, 1992a,b). Furthermore, 

blockade of arachidonic acid (AA) metabolism reduced sGnRH-

induced GtH-II release, but had no effect on cGnRH-II-

induced release (Chang et al., 1991); the lack of AA 

involvement in cGnRH-II-induced GtH-II release was suggested 

to account for the greater sensitivity of cGnRH-II treatment 
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to DA agonists and changes in extracellular Ca2+. In 

addition to these studies, there is evidence that cGnRH-II 

down regulates GnRH receptors to a greater extent and is 

more desensitizing than sGnRH (Habibi, 1991a). Moreover, 

with respect to biphasic GtH-II secretion in goldfish 

pituitary, the second phase of GtH-II release was found to 

be more pronounced for the sGnRH- treated group than the 

cGnRH-II-treated group (Habibi, 1991b). Significant 

differences were also observed between GtH-II release 

induced by sGnRH and cGnRH-II in terms of extracellular Ca2 

concentration, pulse frequency, and dose response (Habibi, 

1991b; Habibi et al., 1991). 

In summary, the observations based on 1) lower degree of 

desensitization following heterologous treatments 

(sGnRH/cGnRH-II or cGnRH-II/sGnRH) compared to homologous 

treatments (sGnRH/sGnRH. or cGnRH-II/cGnRH-II), 2) 

differential regulation of GtH-II-0 and GtH II-a mRNA levels 

by sGnRH and cGnRH-II in the sexually mature and regressed 

animals, 3) previously observed differences between sGnRH 

and cGnRH-II induced desensitization (Habibi, 1991a,b; 

Habibi et al., 1991), and 4) differences observed between 

post-receptor mechanisms for sGnRH and cGnRH-II in terms of 

GtH-II release (Jobin and Chang, 1992a,b; Chang et al., 



57 

1991) collectively provide strong support for the existence 

of two receptor-effector systems with preferential 

specificity for sGnRH and cGnRH-II coupled to GtH-II 

synthesis and release in the goldfish pituitary. However, we 

are not able at this stage to specify if the observed 

differences between sGnRH and cGnRH-II is resulted from 

interaction with different receptor molecules or receptor-

effector coupling systems for the two native peptides. It is 

interesting to note that a recent study in rat luteal cells 

provides evidence for the existence of GnRH receptor 

subtypes coupled independently to phospholipase C or A2 

(Watanabe et al.,1990). In this regard, most vertebrates 

possess more than one form of GnRH in the brain. However, it 

is not known if these GnRH forms work through the same or 

different receptor-effector systems. Hence these findings 

provide a framework for future studies in other vertebrate 

systems and may have a widespread implications. 
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Chapter 3 

The Effects of Gonada]. Steroids on the Maturational 

Gonadotropin-II (GtH-II) Subunit Gene Expression in 

the Goldfish Pituitary. 
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3.1 Introduction 

Gonadotropins are glycoprotein horones and include the 

follicle-stimulating hormone (FSH) and the luteinizing 

hormone (LH). In fish, gonadotropins are referred to as the 

vitellogenic GtH (FSH-like; GtH-I) and maturational GtH (LH-

like; GtH-II). All members of this family are heterodimers 

consisting of two different subunits, a and 1, that are non-

covalently associated. Within a given species, the a-subunit 

is identical in all pituitary glycoprotein hormones (LH, 

FSH, and thyroid-stimulating hormone), while the n-subunit 

is unique and confers the biological activity (Pierce and 

Parsons, 1981). 

In vertebrates, gonadotropin-releasing hormone (GnRH) is 

an important regulator of LH synthesis and release 

(Papavasiliou et al., 1986; Haisenleder et al., 1990, 1991,; 

Weiss et al., 1990). In addition, gonadal steroids are known 

to regulate LH synthesis and secretion from the pituitary. 

However, the effects of steroid on LH synthesis were found 

to be different depending on the experimental condtions. 

This may be attributed to difficulty in dissociating direct 

effects of steroids on the pituitary from those mediated 

through other factors. A number of investigators have 

demonstrated supressive effects of steroids through 
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castration studies. Removal of gonads was shown to result in 

increased serum LH and FSH concentrations as well as LH and 

FSH subunit mRNA levels (Papavasiliou et al., 1986; Corbani 

et al.,1984; Abbot et al., 1985; Gharib et al., 1986, 1990). 

There is also a report on the stimulatory effect of E-2 on 

LH-mRNA production in isolated pituitaries of 

ovariectomized rats with no effect on the FSH-P and the a-

subunit mRNA levels (Shupnik et al., 1989b). In anestrous 

ewes, in vivo studies demonstrated differential regulation 

of the LH and FSH subunits in response to E-2 treatment. It 

was observed that a-subunit mRNA levels increased, while the 

FSH-13 mRNA levels decreased and LH-P mRNA levels only 

slightly increased (Landefeld et al., 1989). Treatment of 

orchidectomized rats with T increased FSH content of 

pituitary, while decreasing the LH content and the LH-I3 and 

a-subunit mRNA levels. The FSH-P mRNA levels were unchanged 

(Kitahara et al., 1991; Wierman et al., 1988). From the 

above studies, it appears that steroids differentially 

regulate the gonadotropin secretion and synthesis in 

mammals. 

In teleosts, gonadectomy increases circulating GtH-II 

levels in rainbow trout (Bommelaer et al., 1981), African 

catfish (Habibi et al., 1989), and goldfish (Kobayashi and 
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Stacey, 1990). The observed increase in GtH-II levels were 

suppressed by treatment with E-2 and/or T. In sexually 

immature teleosts, however, sex steroids appear to 

predominately exert a positive feedback effect. In juvenile 

rainbow trout, T treatment resulted in increased pituitary 

GtH-II content (Crirn and Evans, 1979). In addition, 

prolonged T treatment of immature trout also resulted in 

initiation of gonadal development (Crim and Evans, 1983). In 

European silver eels, E-2 was found to increase pituitary 

GtH-II (Dufour et al., 1983) and brain GnRH (Dufour et al., 

1985). In Japanese silver eels, both E-2 and T stimulated 

pituitary GtH-II content and serum GtH-II levels (Lin et 

al., 1990). In common carp and Chinese bach, T treatment 

increased responsiveness to L,HRH-A (Trudeau et al., 1991). 

More recently, in goldfish, it has been demonstrated that 

in vivo treatment with E-2 and T increases responsiveness 

to GnRH-induced GtH-II release in vitro. In addition, T has 

been shown to have a direct effect at the level of pituitary 

to increase GnRH responsiveness (Trudeau et al., 1993b). 

However, our information on the steroidal regulation of GtH 

subunit gene expression in teleosts and lower vertebrates, 

in general, is rather limited. To this end, both T and E-2 

have been shown to stimulate GtH-II 5gene expression in 
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pituitary cells from juvenile rainbow trout (Trinh et al., 

1986). T and E-2 have also exerted strong stimulatory effect 

on the GtH-II 0 mRNA levels in the European eel at the 

silver stage (Querat et al,. 1991). 

The present study investigates the effects of E-2 and T 

on GtH-II subunit gene expression in the goldfish pituitary. 

In this study, in 

and estrogens were 

mRNA production. 

vitro and in vivo effects of androgens 

investigated in terms of GtH-II subunit 

in addition, the effect of a non-

aromatizable androgen, 11-n hydroxyandrosterone, was tested 

to determine if aromatization of androgens to estrogens is a 

factor for the observed effects. 
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3.2 Materials and Methods 

3.2.1 Animals 

Goldfish, Carassius auratus, of mixed sex (ranging from 

8-10 cm in length), were purchased from aquatic imports 

(Calgary, Alberta). They were maintained in a semi-

recirculating aquarium (1500 L) at 17 C on a 16-h light and 

8-h dark photoperiod. They were fed a commercial fish diet. 

3.2.2 Hormones and chemicals 

Steroids (17f3-estradiol, testosterone, and 1113-

hydroxyandrosterone) were obtained from Sigma (St. Louis, 

MO). The carp GtH-II-13 cDNA fragment (0.7-0.8 kB in length) 

and GtH-II- cDNA fragment (0.8-0.9 kB in length) were 

provided by Dr. F. L. Huang (Institute of Biological 

Chemistry, Academia Sinica, Taipei, Taiwan). The trout a-

tubulin cDNA fragment (1.5 kB) was provided by Dr. 'G. Dixon 

(Department of Medical Biochemistry, University of Calgary, 

Calgary, Alberta, Canada). 

3.2.3 Zn vivo steroid treament 

Goldfish, (mixed sex; -30 g each) most of them inlate 

gonadal recrudescent stage, were treated with various doses 
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of l7-estradiol (E-2), testosterone (T), or 11D-

hydroxyandrosterone (11D-HA) through intraperitoneal Up) 

injections (6-8 goldfish per group). At various time 

intervals after treatment, fish were anesthesized and 

sacrificed. The pituitaries were removed and total RNA was 

extracted. 

3.2.4 in vitro steroid treatment 

Pituitary GtH-II subunit gene expression was determined 

in response to treatment with (E-2), (T), and (11f3-HA) using 

a superfusion system as described previously (Khakoo et al., 

1994). Briefly, pituitary fragments (8 pituitaries per 

column) were equilibriated in M199 for 2 hours before 

treatment. The fragments were then treated continuously for 

15 hours (as indicated) with steroids. The pituitary 

fragments were removed from the columns after treatment and 

total RNA was extracted. 

3.2.5 Determination of GtH-IZ subunit mRNA 

RNA extraction and Northern analysis were performed as 

described previously by Khakoo et al. (1994). Briefly, total 

RNA was extracted from pituitaries using guanidine 

thiocyanate -phenol -chioroform extraction method (Chomczyski 
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and Sacchi, 1987). Sample purity was determined from ratio 

of sample absorbance at 260:280 nm. The ratio ranged between 

1.7-2.0. RNA was separated and resolved on a 1.2% 

agarose/formaldehyde gel and transferred onto a Hybond_N+ 

membrane (Amersham, Arlington Heights, IL) in 20X SSPE 

transfer buffer using capillary transfer method. Purified 

cDNA fragments were labeled using random primer method with 

[a- 32 P] deoxycytidine 5'-triphosphate (dCTP) (-3000 Ci/mmol, 

Amersham, Arlington Heights, IL). The membranes were 

prehybridized and hybridized for 2 hours in 10 ml of Rapid 

Hybridization Buffer (Amersham, Arlington Heights, IL). The 

membranes were subsequently washed in a series of high 

stringency washes up to 0.1X SSPE in the presence of 0.1% 

sodium dodecyl sulfate (SDS). The membranes were initially 

hybridized with cGtH-II-0, stripped, and subsequently 

hybridized with cGtH-II-a and a-tubulin. The a-tubulin was 

used as an internal control for expression. In addition, the 

gel was stained with ethidium bromide to verify equal 

loading of total RNA in all lanes. 

The autoradiograms were scanned using a computerized 

densitometer scanner, gelscan, and quantified using the 

Image program provided by NIH (Bethesda, MD). The program 

computes the area and average density of given selection. 



66 

The values were transferred to a spreadsheet and statistical 

analysis program for further analysis of the data. The 

quantified GtH-II-f3 and -a mRNA levels were expressed with 

respect to a-tubulin levels of the corresponding lanes. The 

quantified values were analyzed statistically by one-way 

ANOVA followed by multiple comparison of the means using the 

Tukey's test with P<O.05 degree of significance. 
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3.3 Results 

3.3.1 Time-related effects of gonadal steroids in 

vivo 

Time-course studies involved i.p. treatment with E-2, T, 

or 1113-HA (20 pjg/fish), followed by RNA extraction after 12, 

24, 48, 72, and 96 hours of treatment. 

Treatment with T resulted in a biphasic change in GtH-II 

subunit mRNA levels (Fig. 3.1). The GtH-II a and GtH-II 13 

mRNA levels were reduced initially during shorter time 

intervals (12-48 hours), followed by increased mRNA levels 

after 72 and 96 hours of treatment. A similar experiment was 

carried out to study the effect of a non-aromatizable 

androgen, 1113-HA, on GtH-II subunit gene expression in vivo 

(Fig. 3.2). Treatment with 1113-HA also resulted in an 

initial (12-24 hours) reduction in GtH-II a nd 13 mRNA 

levels, followed by significant increase in GtH-II subunit 

mRNA levels after 48-96 hours. 

Treatment with E-2 resulted in a time-related increase in 

GtH-II a and GtH-II 13mRNA levels, with the maximum effect 

after 72 hours of treatment (Fig. 3.3). At 96 hours 

following treatment, GtH-II a and GtH-II 13mRNA levels 

decreased to the control levels (Fig. 3.3). 
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Figure 3.1 GtH-II a and 13 mRNA levels following testosterone 

time-course treatment (20 JIg/fish) in vivo. Most of the 
goldfish were in late gonadal recrudescence. Total 1A was 

extracted 12, 24, 48, 72, and 96 hours after treatment and 5 Ig 
RNA was loaded per lane for Northern analysis. Data was 

quantified using computerized densitometer. The values were 
corrected relative to a-tubulin and are expressed as percent 

increase with respect to control. Bars with dissimilar letters 
are signficantly different (P<0.05) from eachother. Quantified 
data represents mean ± S.E. of 2 observations. Each 
experimental group represented 5-8 animals. 
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Figure 3.2 GtH-II a and 13 mRNA levels following 1113-
hydroxyandrosterone time-course treatment (20 jig/fish) in vivo. 
Most of the goldfish were in late gonadal recrudescence. Total 
RNA was extracted 12, 24, 48, 72, and 96 hours after treatment 
and 5 jig RNA was loaded per lane for Northern analysis. Data 
was quantified using computerized densitometer. The values were 
corrected relative to a-tubulin and are expressed as percent 
increase with respect to control. Quantified data represents 
mean ± S.E. of 2 observations. Bars with dissimilar letters are 
significantly different (P<0.05). Each experimental group 
represented 5-8 animals. 
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Figure 3.3 GtH-II a and 13 mRNA levels following estradiol time-
course treatment (20 jIg/fish) in vivo. Most of the goldfish 
were in late gonadal recrudescence. Total RNA was extracted 12, 
24, 48, 72, and 96 hours after treatment and 5 jig RNA was 
loaded per lane for Northern analysis. Data was quantified 
using computerized densitometer. The values were corrected 
relative to a-tubulin and are expressed as percent increase 
with respect to control. Bars with dissimilar letters are 
significantly different from eachother. Quantified data 
represents mean ± S.E. of 2 observations. Each experimental 
group represented 5-8 animals. 
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3.3.2 Dose-related effects of gonadal steroids in 

vivo 

Goldfish were injected i.p. for 24 hours with T, 11-HA, 

or E-2 at three separate doses of 0.2, 2, and 20 jig/fish. 

Treatment with T resulted in a biphasic change in GtH-II 

subunit mRNA levels (Fig. 3.4). At lower doses (0.2 and 2 

jig/fish), T injection significantly stimulated GtH-II a and 

GtH-II P subunit mRNA levels after 24 hours. At the highest 

dose (20 jig/fish), however, T treatment was without effect 

on GtH-II a and GtH-II 0 mRNA levels. Similarly, treatment 

with the the lowest concentration (0.2 jig/fish), of 110-HA 

significantly increased GtH-II-f and GtH-II-a subunit mRNA 

levels. However, at the higher doses (2 and 20 jig/fish) the 

GtH-II a and GtH-II 0 subunit mRNA levels decreased below 

the control levels (Fig. 3.5). 

Treatment with E-2 for 24 hours resulted in a dose-

related increase in GtH-II a and GtH-II P mRNA levels, 

reaching maximum levels at 2 jig/fish (Fig. 3.6). At 20 

jig/fish, E-2 injection was found to be less stimulatory 

compared to lower doses, but did not cause inibition 

observed following androgen treatment. 
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Figure 3.4 GtH-II a and b mRNA levels in response to 
various doses of testosterone (T) . Goldfish were 

treated (i.p.) with 0.2, 2, and 20 ig/fish of T for 15 

hours. Most of the goldfish were in the late gonadal 
recrudescence. Total RNA was extracted and 5 jig was 

loaded per lane for Northern analysis. Data was 
quantified using a computerized densitometer. The 

values are expressed with respect to a-tubulin and are 
percent increase relative to control. Bars with 
dissimilar letters are significantly different (P<0.05) 

from eachother. Quantified data represents mean ± S.E. 
of two observations. Each experimental group had 5-8 
animals. 
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Figure 3.5 GtH-II a and 0 mRNA levels in response to 
dose-dependent studies with ll3-hydroxyandrosterone. 
Goldfish were treated (i.p.) with 0.2, 2, and 20 
jig/fish of 11-HA for 15 hours. Most of the goldfish 
were in late gonadal recrudescence. Total RNA was 
extracted and 5 jig was loaded per lane for Northern 
analysis. Data was quantified using a computerized 
densitometer. The values are expressed with respect to 
a-tubulin and are percent increase relative to control. 
Bars with dissimilar letters are significantly 
different (P<0.05) from eachother. Quantified data 
represents mean ± S.E. of two observations. Each 
experimental group had 5-8 animals. 
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Figure 3.6 Autoradiogram of GtH-II a and fi rnRNA levels 

in response to various doses of estradiol. Goldfish 
were treated (i.p.) with 0.2, 2, and 20 jig/fish of E-2 

for 15 hours. Most of the goldfish were late gonadal 

recrudescence. Total RNA was extracted and 5 jig was 

loaded per lane for Northern analysis. Data was 
quantified using a computerized densitometer. The 
values are expressed with respect to a-tubulin and are 

percent increase relative to control. Bars with 
dissimilar letters are significantly different (P<0.05) 
from eachother. Quantified data represents mean ± S.E. 
of two observations. Each experimental group had 5-8 
animals. 
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3.3.3. The effects of gonadal steroids in vitro 

In order to study the effect of steroids at the level of 

pituitary, pituitary fragments were treated with 20 ng/ml of 

E-2 or T for 15 hours (Fig. 3.7). Treatments with either T 

or E-2 increased GtH-II a and GtH-II 13 mRNA levels above the 

control levels. Overall, T was found to be more potent than 

E-2 in stimulating GtH-II subunit synthesis at this dose 

level. 
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Figure 3.7 GtH-II subunit mRNA levels in response 
to in vitro steroid treatment. Pituitary fragments 
were treated with 20 ng/ml of T or E-2 for 15 hours. 
Total RNA was extracted and 5 g was loaded per lane 
for Northern analysis. Data was quantified using 
computerized densitometer. The values are expressed 
with respect to a-tubulin and are percent increase 
relative to control. Bars with dissimilar letters 
are significantly different (P<0.05) from eachother. 
Quantified data represents mean ± S.E. of 2 
observations. Each experimental group represented 8-
10 animals. Values dissimilar letters are 
significantly (P<0.05) different from eachother. 
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3.4 Discussion 

The present findings demonstrate that androgens exert a 

biphasic effect on the GtH-II subunit gene expression in the 

goldfish pituitary depending on the concentration. Time-

course experiments with T and 11P-HA demonstrated an initial 

decrease in GtH-II subunit mRNA production followed by 

increases at longer time intervals (72 and 96 h) . Dose-

response studies indicate that the observed biphasic 

response is the result of differences in concentration of 

the steroids. At the earlier time intervals, the circulating 

concentration of the steroids was high (20 pjg/fish), but at 

longer time intervals the hormone concentrations were 

reduced due to physiological degradation and clearance. The 

dose-response studies clearly supported this hypothesis. 

During the period that inhibitory effect was observed in the 

time-course studies, lower doses of both T and 11P-HA were 

highly stimulatory, whereas higher doses inhibited GtH-II 

subunit gene expression. 

The effect of E-2 was found to be different from T and 

llf-HA. Treatment with E-2 resulted in a dose-related 

increase in GtH-II rnRNA levels, with only a slight reduction 

in expression at the highest dose. This indicates that the 
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observed inhibition at high doses is predominately 

androgenic. This postulate is supported by the results 

obtained following treatment with a non-aromatizable 

androgen, 11P-HA, which is not converted to estrogens. 

The observed biphasic regulation by androgenic 

may have physiological significance. Goldfish is a 

spawner and undergoes annual reproductive cycles in 

steroids 

seasonal 

response 

to environmental cues (Lam and Monro, 1987). In teleosts, 

the concentration of gonadal steroids fluctuate in close 

correlation with the circulating concentrations of GtH 

throughout the year with higher levels during the 

reproductive seasons (Kobayashi et al.,1986; Schoonen, 1987; 

Breton et al., 1983). Previous studies in goldfish have 

demonstrated that circulating concentration of T reaches 

approximately 20 ng/ml shortly before the ovulatory surge of 

GtH-II (Kobayashi et al., 1987). These findings indicate 

that T may be an important factor in stimulating circulating 

GtH-II surge in goldfish. Concentration of E-2 also 

increases progressively during the period of vitellogenesis 

presumably in response to higher levels of GtH (Kobayashi 

al., 1987). The rising levels of E-2 which remain below 

ng/ml may help to sustain basal synthesis of GtH subunits 

et 

20 

in 

the goldfish pituitary. The effects of E-2 and T are likely 
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to result in the ovulatory surge of GtH-II release which is 

required for stimulation of gametogenesis and 

steroidogenesis. The increased steroid levels, however, 

could act negatively to bring GtH-II levels back to basal 

levels through inhibition of GtH-II subunit rnRNA synthesis. 

This pattern of GtH and steroid change occurs in a number of 

teleosts. In sexually immature and regressing salmonids, the 

pituitary GtH content is low and reaches its peak during 

spawning (Billard et al., 1978). In sexually mature 

salmonids, the sex steroids levels are high and a negative 

feedback effect on the hypothalamo-hypophysial axis was 

shown in response to T treatment (Billard, 1978). 

Pituitaries from sexually regressed and recrudescent 

goldfish demonstrated increased sGnRH-induced and cGnRH-II-

induced GtH release following treatment with T and E-2 

(Trudeau et al., 1993b). However, pituitaries from post-

spawning goldfish treated with T demonstrated positive 

effect for cGnRH-II-induced but not sGnRH-induced GtH 

release. E-2 had no effect on GnRH responsiveness in these 

fish (Trudeau et al.,1993b). 

Studies were carried out to investigate direct action of 

E-2 and T at the level of pituitary. Treatment with both E-2 

and T, in vitro, resulted in increased GtH-II subunit mRNA 
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levels. A number of other studies also investigated the role 

of steroids in vitro at the level of pituitary and 

demonstrated stimulatory effects in terms of GtH release and 

synthesis. For example, treatment of pituitary cells from 

female rats with E-2 was found to stimulate basal FSH and LH 

secretion (Lagace et al., 1981; Miller and Wu, 1981). 

Treatment of pituitary cells from intact male and female 

rats with T was also found to increase FSH 0 mRNA levels 

(Gharib et al., 1990). A number of studies, in rats have 

demonstrated that in vivo treatments with steroids result 

in both stimulatory and inhibitory effect in terms of LH 

subunit synthesis, whereas in vitro treatment by E-2 is 

always stimulatory (Shupnik et al., 1989; Shupnik and 

Rosenzweig, 1991). Studies in juvenile trout demonstrated an 

increase in GtH-II 0 mRNA levels in response to steroid 

treatment in vivo (Trinh et al., 1986) and in vitro (Xiong 

et al., 1994). Pituitary cells from sexually mature (pre-

spawning) trout which actively synthesize GtH-II 0 mRNA, 

responded positively to steroid treatments. However steroid 

treatment of pituitary cells from the spawning fish was 

without effect on GtH-II 3 rnRNA levels (Xiong et al., 1994). 

In goldfish, direct in vitro treatment with T was shown to 

increase responsiveness to sGnRH (Trudeau et al., 1993). In 
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the present study, the effects of T and E-2 were studied, 

in vitro, at a single dose, time point and stage of sexual 

maturation (late gonadal recrudescence). The results 

demonstrate a clear stimulation of both a and P GtH-II 

subunit gene expression by T and E-2. However, we cannot 

rule out a negative effect of steroids at the level of 

pituitary in goldfish at other doses or time points. It 

would be desirable in future studies, to study the dose-

related, time-related, and seasonal effects of steroids on 

GtH-II subunit gene expression to obtain a more clear 

picture of the role of gonadal steroids in regulation of 

reproduction in goldfish. 

From the present findings it appears that gonadal 

steroids, administered in vitro at physiological 

concentrations, exert a predominately positive effect on 

GtH-II synthesis at the level of pituitary. This may be 

through modulation of GnRH receptor number, post-receptor 

mechanisms, or a direct effect at the gene level. Recently, 

Sealfon et al., (1990) and Wu et al., (1994) demonstrated 

that E-2 increased GnRH receptor mRNA levels in ovine 

pituitary cells. In addition, estrogen regulatory elements 

have been mapped in the rat LH 0 gene (Shupnik et al., 1989) 

and salmon GtH-II 0 gene (Xiong et al., 1993, 1994). These 
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elements have been demonstrated as the site of action for 

stimulatory steroid effect (Shupnik and Rosenzweig , 1991; 

Xiong et al., 1994). With respect to modulation at the post-

receptor level, Liu and Jackson (1988,1990) have 

demonstrated E-2 enhances LH release from rat pituitary 

cells via interaction with Ca2 and phospholipase C mediated 

secretory mechanisms but not arachadonic acid pathway. 

Estradiol has also been shown to modulate protein kinase C 

activity (Audy et al., 1990). 

The in vivo effects of steroids observed in this study 

may be occurring at multiple sites such as influencing GnRH 

secretion and pulsatility. It has been demonstrated that 

during the breeding season in ewes, E-2 inhibits the LH 

pulse amplitude by decreasing the GnRH pulse amplitude and 

pituitary response to GnRH. It however does not exert any 

inhibition on the LH and GnRH pulse frequency (Goodman and 

Karsh, 1980; Evans et al.,1992). Steroids may also exert 

their effect indirectly through modulation of neuronal 

factors, such as GABA and dopamine (DA), known to effect GtH 

synthesis and release. GABA stimulates GtH-II release in 

goldfish during early stages of gonadal recrudescence but 

not from sexually regressed or mature fish (Kah et al., 

1992). It appears that during early stages of gonadal 
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recrudescence, goldfish respond to GABA and this response is 

potentiated by T (Trudeau et al., 1993). However, as the 

gonads develop, E-2 levels rise and this seems to reduce 

GABA responsiveness (Kah et al., 1992; Trudeau et al., 

1993). In accordance with this, sex steroids have been 

demonstrated to modulate GABA receptor number in neural 

tissues (Lasaga et al., 1988; Schummacher et al., 1989). 

Trudeau et al. (1993) also demonstrated that sex steroids 

exert a negative feedback effect by increasing the DA 

turnover in the dopaminergic nerve terminals in the goldfish 

brain. Interestingly, a recent study in ewes demonstrated 

seasonal shifts in DA neurons activity in response to E-2 

modulation which may be in response to steroidal regulation 

of the hypothalamo-hypophysial responsiveness (Havern et 

al.,1994) 

with respect to in vivo GnRH receptor regulation, Habibi 

et al. (1989) demonstrated seasonal variation of GnRH binding 

capacity in goldfish. The number of binding sites 

significantly increased during the time of maximal gonadal 

recrudescence. However, in a recent study it was 

demonstrated that the stimulatory effect of T in goldfish 

GtH-II release is not mediated through changes in GnRH 

receptor number (Trudeau at al., 1993). Therefore, GtH-II 
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subunit mRNA production may be a very important factor in 

steroidogenic regulation of goldfish release and synthesis. 

Hence, it appears that the observed steroid effect may be 

occuring at multiple sites ranging from a direct effect at 

the level of pituitary to indirect regulation through 

neuronal factors within the brain. 

In summary, the present findings demonstrate that gonadal 

steroids, in particular androgens, exert dose-dependent 

biphasic regulation of GtH-II subunit mRNA levels in the 

goldfish pituitary. At physiological concentrations, direct 

effect of these steroids at the level of pituitary is 

stimulatory in nature. 
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Chapter 4. 

Construction of cDNA Librabries from Goldfish 

Pitutary, Brain, and Ovary. 
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4.1 Introduction 

Gonadotropin-releasing hormone receptor (GnRH-R) plays a 

pivotal role in linking the neural and endocrine systems. 

GnRH stimulates the release and synthesis of gonadotropins 

through high affinity membrane receptors on the 

gonadotrophs. Until recently, most known characteristics of 

GnRH receptors came from GnRH binding studies, photoaffinity 

labeling and SDS-PAGE gel electrophoresis (for review see 

Habibi and Peter., 1991). Characterization of GnRH receptors 

in the goldfish pituitary has demonstrated the presence of 

two classes of binding sites, a high affinity/low capacity 

site and a low affinity/high capacity site (Habibi et al., 

1987). Photoaffinity labeling and SDS-PAGE electrophoresis 

showed presence of two major bands with molecular weight of 

71 and 51 kna. Ligand displacement studies demonstrated 51 

kiJa band to be consistent with the high affinity binding 

sites involved in the GTH release (Habibi et al., 1989; 

1990). In addition to pituitary, specific GnRH binding sites 

have also been demonstrated in the brain and ovary of 

goldfish (Habibi and Pati, 1993). 

While a lot of progress has been made in the biochemistry 

and physiology of GnRH-R regulation and desensitization, 

study of GnRH-R gene has only recently become possible, 
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since it was cloned in mouse (Tsutsumi et al., 1992; 

Reinhart et al., 1992), rat (Reinhart et al., 1992; Perrin 

et al., 1993), and human pituitary (Kakar et al., 1992; Chi 

et al, 1993). It should now be possible to use information 

on mammalian GnRH-R sequence to clone GnRH receptor in the 

goldfish pituitary. Hence, the objective of the present 

study is to construct a cDNA library from the goldfish 

pituitary which will enable the cloning and characterization 

of GnRH receptor. Furthermore, cDNA libraries from the 

goldfish ovary and brain will also be constructed to allow 

cloning and characterization of receptors for GnRH in these 

tissues. In addition to GnRH-R, other neurohormones such as 

GnRH and GTH could also be cloned and characterized using 

the same cDNA libraries. 
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4.2 Materials and Methods 

4.2.1 Overview 

cDNA libraries represent genetic information present in 

the mRNA of a particular tissue. RNA is very susceptible to 

degradation and difficult to amplify, hence the information 

encoded by RNA needs to be transferred to a stable double-

stranded DNA molecule. This DNA, which is complementary to 

RNA (cDNA), is then inserted in a self-replicating lamda 

vector. Once a cDNA library is constructed in this way, 

individual segments of genetic information can be isolated 

and examined. The two major steps in construction of a cDNA 

library are, first the isolation of highly purified sample 

of RNA from the tissue of interest followed by the actual 

construction of the library. Commercially available kits 

were used to carry out these steps. A brief outline of the 

procedures is provided below. 

4.2.2 Animals 

Goldfish, Carassius auratus, of mixed sex were purchased 

from Aquatic Imports (Calgary, Alberta). They were 

maintained in a semi-recirculating aquarium (1500 L) at 17 C 

on a 16-h light and 8-h dark photoperiod. They were fed a 
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commercial fish diet. 

4.2.3 mRNA Purification from pituitary, ovary, and 

brain 

QuickPrep Micro mRNA Purification kit from Pharmacia was 

used for mRNA isolation. Briefly, about 100 mg of tissue was 

homogenized in the extraction buffer provided. This buffer 

contained guanidinium thiocyanate (GTC) which protected RNA 

from degradation by inactivating endogenous RNases. The 

extract was then diluted three times with dilution buffer. 

This caused a number of proteins to precipitate thereby 

yeilding the intial purification. Following centrifugation, 

the supernatant was transferred to a tube containing 

Oligo(dT)-Cellulose. The mixture was allowed to stand for 10 

min in order to bind the poly(A) RNA to bind the Oligo(dT)-

Cellulose. The tube was centrifuged and supernatant 

decanted, and the cellulose pellet was washed with high-salt 

and low-salt buffer. After the last wash with low-salt 

buffer, it was transferred to a microspin column, washed 

with low-salt buffer, and the poly-adenylated material was 

eluted with elution buffer. The yield of mRNA varied from 5-

20 p.g depending on the tissue. Following gel electrophoresis 

and Northern bloting, the mRNA was found to be free of DNA 
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and protein contamination. 

4.2.4 cDNA Synthesis 

ZAP-cDNA synthesis kit and Gigapack II Gold Packaging 

Extract kit from Stratagene was used to construct the cDNA 

library. For a summary flowchart of the procedures please 

see Figure 4.1. 5-7 pg of rnRNA was used from each tissue to 

begin the first strand synthesis of cDNA, which served as a 

template. A 50 basepair oligo with a "GAGA" sequence to 

protect Xho I restriction enzyme site and 18 base of 

poly(dT) sequence was used as a primer. In this system, the 

Xho I restriction site enables the finished cDNA to be 

inserted into the Uni-ZAP XR vector in a sense orientation 

(EcoR I- Xho I). The poly(dT) region binds to the 3' poly 

(A) region of the mRNA and in the presence of Moloney-Murine 

leukemia virus reverse transcriptase (M-MuLVRT) and 

nucleotide mixture (dATP, dGTP, dTTP, and 5-methyl dCTP) the 

first strand of the cDNA is synthesized. The first strand 

has a methyl group on each cytosine base to protect it from 

degradation in subsequent steps. The second strand synthesis 

involved the presence of RNase H which nicked the RNA bound 

to the first strand into many fragments. These served as 

primers for DNA polymerase I to synthesize the second strand 
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Figure 4.1 cDNA synthesis summary flowchart. 
from Staragene ZAP-cDNA synthesis kit instruction manual, 1993. 
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of cDNA in presence of nucleotide mixture (dATP, dGTP, dTTP, 

and dCTP). The uneven ends of cDNA were nibbled or filled 

with Kienow and ECOR I adapters ligated to the blunt ends. 

The Xho I digest then released the EcoR I adaptor and 

residual linker-primer from the 3' end of the cDNA. These 

fragments were separated through a Sephacryl column. The 

size-fractionated cDNA was precipitated and ligated to Uni-

ZAP XR vector arms. The library was then packaged in a 

Gigapack II Gold packaging extract. The primary libraries 

are unstable and amplification is therefore necessary. To 

amplify, aliquots of the packaged mixture were mixed with 

the host cells (XL1 Blue MRF') to allow attachment of the 

phage to the host cells. The infected bacteria were left at 

37 C overnight to allow for plaque formation. Subsequently, 

the plates were overlayed with SM buffer allowing the phage 

to diffuse into the buffer. The bacteriophage suspension was 

recovered after 24 hours, chloroform was added to a final 

concentration of 5% and the cell debris was removed by 

centrifugation. The final supernant was stored in 0.3% 

chloroform at 4 C as well aliqotes were stored at -80 C in 

7% dimethylsulf oxide (DMSO). 
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4.3 Resu1s and Discussion 

The cDNA libraries for pituitary, brain, and ovary were 

successfully constructed. Color selection by a-

complementation with the Uni-ZAP vector in presence of IPTG 

(isopropyl -D-thiogalactopyranoside) and X-gal (5-bromo-4-

chloro-3-indolyl-D-galactopyranoside) was performed to 

determine the ratio of recombinants to nonrecombinants 

within a newly constructed library. The recombinant plaques 

are white and should be 10-100 fold above background (blue 

plaques). The plates for the primary cDNA libraries with 

IPTG-X-gal color selection from brain and pituitary are 

shown in Figure 4.2. Following the first round of 

amplification, the titre of the libraries amounted to: 

ovary cDNA library 5 X 10 9 * pfu/ml 

Brain cDNA library 6 X 109 pfu/ml 

Pituitary cDNA library 2 X 1012 pfu/ml 

*; plaque forming units (pfu) 
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Figure 4.2 Plates showing recombinant (white plaques) and non-

recornbinat plaques (blue plaques) following color 

selection by a-complementation. A) Brain cDNA 

library. B) Pituitary cDNA library 
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4.4 Future Studies 

The cIDNA libraries constructed in this study were found 

to have good titres (>lO pfu/ml) and reflect a good 

representation of both low and high trancription messages. 

Future studies on these libraries will likely provide 

valuable genomic and molecular information on the GnRH-R as 

well as other neurohormones in the goldfish pituitary. 

Future investigations may also focus on the regulation of 

GnRH-R gene transcription and synthesis. I anticipate that 

the cloning of GnRH-R will lead to a better understanding of 

the complex interaction between the hypothalamic, pituitary, 

and gonadal factors involved in the regulation of 

reproduction in goldfish. 
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S. Filial Concluding Remarks 

The findings provide a strong support for the existence 

of different receptor-effector mechanisms with preferential 

specificity for sGnRH and cGnRH-II in terms of GtH-II 

synthesis and release in the goldfish pituitary. 

Furthermore, the results indicate that GnRH receptor 

activity undergoes seasonal variation, with rnaxiaml activity 

during the reproductive period. In this regard, gonadal 

steroids were found to exert a dose-related biphasic effect 

on GtH-II mRNA levels in vivo. In addition, a direct 

stimulatory effect of these steroids was observed, at the 

level of pituitary, in vitro. 

Two important questions need to be addressed in the 

future studies: 

1) Is sGnRH- and cGnRH-II-induced GtH-II synthesis 

influenced by gonadal steroids ? 

2) What are the structures of the receptor molecules for 

sGnRH and cGnRH-II in the goldfish pituitary? 

Future studies should focus on the effects of gonadal 

steroids on GnRH-induced GtH-II synthesis in the goldfish 

pituitary. In addition, cDNA library constructed from 

goldfish pituitary should be screened with the objective to 
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characterize the molecular structure of sGnRH and cGnRH-II 

receptor molecules. 
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