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ABSTRACT 

Tukey (1960) considered the problem of robust estimation of a location parameter 9 

when the c.d.f. of the error is 

F(x) = (1 - €)H(x) + 

where c and s could be any fixed number such that 0 < € < ., and s > 1, and H(x) is 

chosen to be the standard normal distribution. In Part I, we study a further problem of 

finding the bounds on asymptotic relative efficiencies of some robust estimators while the 

c.d.f. of the error has the above form with € and .s to be random variables. 

In Part II, the problem of finding optimal designs against the possible model violation 

is considered. We confine ourself to the use of the least squares estimator, = OJ (i), of 

the true regression function y(x). When the real regression model is 

= y(j) = oTj (xi) + b(x) + €j, 

then the mean squared error of is 

MSE() = Vai'() + Bias(,), 

where is a design measure and 0 is a possible bias term. It was Box and Draper ( 1959) who 

first pointed out that the usual optimal design which minimizes Var() only is no longer 

optimal when the bias term is present. Several different approaches to the problem are 

discussed separately. They are summarized in the following topics: 1. Restricted optimal 

designs; 2. Bounded bias optimal designs; 3. Robust designs for some regression models 

with random bias. 

111 
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PART I 

ROBUST ESTIMATION 



2 

Chapter 1 

Introduction to Robust 

Estimation 

The idea of robustness and robust methods probably dates back to the prehistory 

of statistics. Looking at the data and rechecking conspicuous observations is a step 

towards robustness; excluding highly deviant values is an informal robust procedure. 

However, the systematic study on the problem of robust estimation is a recent event. 

It was Tukey (1960) who, in summarizing earlier work of his group in the 1940s and 

1950s, demonstrated the drastic nonrobustness of the mean and also investigated some 

useful robust alternatives. His work made robust estimation a general research area 

and broke the isolation of the early pioneers. Among a growing flood of papers were 

the first attempts at a manageable and rather realistic and comprehensive theory of 

robustness by Huber (1964, 1965, 1968) and Hampel (1968). 

Huber's ( 1964) paper on "Robust estimation of a location parameter" formed the 

first basis for a theory of robust estimation. In that paper, Huber introduced a flexible 

class of estimators, called "M-estimators", which became a very useful tool, and he 

derived properties like consistency and asymptotic normality. Huber then introduced 

the "gross-error model:" instead of believing in a strict parametric model of the 

form H(x - 0) for known H, he assumes that a known fraction € (0 ≤ e < 1) of the 

data may consist of gross errors with an arbitrary unknown distribution J(x - 0). The 

distribution underlying the observations is thus F(x — 0) = (1— €)H(x — 0) + eJ(x - 0). 



3 

This is the first time that a rather full kind of "neighborhood" for a strict parametric 

model is considered. Huber's aim is to optimize the worst that can happen over the 

neighborhood of the model, as measured by the asymptotic variance of the estimator. 

He uses the formalism of a two-person zero-sum game. Nature chooses an F from the 

neighborhood of the model, the statistician chooses an M-estimator via its O,and the 

gain for Nature and loss for the statistician is the asymptotic variance V('/', F) which 

under the mild regularity conditions turns out to be f 2dF/(' dF)2. Huber shows 
that under very general conditions there exists a saddle point of the game; in the gross-

error model, it consists of what has been called Huber's least favorable distribution, 

which is normal in the middle and exponential in the tails, and of the famous Huber-

estimator with 'b(x) = max{—k,min{k,x}}, as the maximum likelihood estimator 

for the least favorable distribution and the minimax strategy of the statistician. 

Another important approach to the robust estimation theory is called the "in-

finitesimal approach" which was introduced by Hampel ( 1968, 1974). The infinites-

imal approach is based on three central concepts qualitative robustness, influence 

function, and breakdown point. Qualitative robustness is defined as equicontinuity of 

the distributions of the statistic as 72 changes; it is very closely related to continuity 

of the statistic viewed as a functional in the weak topology. The quantitative robust-

ness information is provided by the influence function and derived quantities. The 

breakdown point is a simple quantitative global robustness measure. It is the distance 

from the model distribution beyond which the statistic becomes totally unreliable. 

We are now going to discuss these concepts in detail. Let X1, ..., X, be indepen-

dent and identically distributed ( i.i.d.) random variables with distribution function 

F((x - O)/u), where 9 is the unknown location parameter and o is a known scale 

parameter. We identify the sample x1, ..., x, with its empirical distribution F. For-

mally F is given by () A ,where Lx is the point mass 1 at x. As estimators 

of 0 we consider real-valued statistics T = T(x1, ..., x) = T(F). Moreover, we 

consider estimators which are functionals (i.e. T(F) = T(F) for all n and F) or 

can asymptotically he replaced by functionals. This means that we assume that there 
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exists a functional T : domain (T) —*R, such that 

n - f oc T(F) 

in probability when the observations are i.i.d. according to the true distribution F 

in domain (T). We say that T(F) is the asymptotic value of IT,,; n ≥ 1} at F. We 

often assume asymptotic normality, that is, 

weakly 
£F(\/ [T - T(F)]) N(O, V(T, F)), 

Ii -4 00 

where ,CF means "the distribution of ... under F" and V(T, F) is called the asymptotic 

variance of {T;n ≥ I  at F. 

We are now going to define an important concept, the so-called influence function, 

as the following: 

Definition 1.1 The influence function (IF) of T at F is given by 

IF(x; T, F) = urn T((1 -  i)F + t/) - T(F)  
t--+O it 

in those x E X where this limit exists and X is the sample space. 

There is a relation between the IF and the asymptotic variance V(T, F). Under 

some regularity conditions, we have 

V(T, F) = f IF(x;T,F)2dF(x). (1.2) 

For a detailed discussion, see Hampel ( 1986), Reeds ( 1976), Boos and Serfling ( 1980), 

and Fernholz ( 1983). 

Apart from the asymptotic variance, there are some other important quantities 

related to the IF. We define the gross-error sensitivity of T at F by 

7* 7*(T F) = sup I IF(x; T, F) I, (1.3) 

the supremum being taken over all x where IF(x; T, F) exists. The gross-error 

sensitivity measures the worst influence which a small amount of contamination of 
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fixed size can have on the value of the estimator. Therefore, it may be regarded as an 

upper bound on the (standardized) asymptotic bias of the estimator. It is a desirable 

feature that y be finite, in which case we say that T is B-robust. 

The local-shift sensitivity is defined by 

)* = ,\*(TF) = sup I IF(y;T,F)— IF(x;T,F) l/ly — x J, (1.4) 
x/y 

the smallest Lipschitz constant the IF obeys. 

Moreover, we define the rejection point as the following: 

= *() = inf{-y > 0; IF(x;T,F) = 0 when Ix  > 'y}. (1.5) 

(If there exists no such 7, then p$ = oo by definition of the infimum). All observations 

farther away than p are rejected completely. Therefore, it is desirable that p' is finite. 

The gross-error sensitivity -y is an important robustness measure. But thei'e is one 

limitation: it is an entirely local concept. Therefore, it must be complemented by a 

measure of the global reliability of the estimator, which describes up to what distance 

from the model distribution the estimator still gives some relevant information. First, 

we need a metric to measure the distance of two probability distributions. One choice 

is the Prohorov distance ( Prohorov ( 1956)), of two probability distributions F and 

G, which is given by 

7r (F, G) : = inf{e: F(A) < G(A6) + e for all events A}, 

where A6 is the set of all points whose distance from A is less than €. 

The important global robustness measure, the so-called breakdown point can be 

defined as follows. 

Definition 1.2 The breakdown point e of the sequence of estimators {T; n ≥ I  at 

F is defined by 

= sup{ e < 1; there is a compact set K 0 such that ii-(F, G) < e 

implies G({T E K6 })n -+ co I  
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If® = R, we obtain 

= sup { e ≤ 1 there exists -y such that 
n—*oc, 

7r(F,G) < e implies G({I T I≤ 'y}) 1). 
(1.7) 

Note that one can also consider the gross-error breakdown point where ir(F, G) < 6 

is replaced by G E {(1 - e) F + eH where H is arbitrary}. Loosely speaking, this is 

the largest fraction of gross errors that never can carry the estimate over all bounds. 

This notion often leads to the same value of 6*. Hampel ( 197 1) also introduced some 

qualitative notions. 

Definition 1.3 We say that a sequence of estimators {T; n ≥ 1} is qualitatively 

robust at F if for every e> 0 there exists 5> 0 such that for all G in F(X) and for 

all n 

7r (F, G) <5 = 7r(.CF(T), £rj(Tn)) < 6, 

where 7r is the Prohorov distance, £p means "the distribution of ... under F", and 

.F(X) is the set of all the possible probability distributions on X. 

Thus this definition describes equicontinuity of the distributions of Tn with respect 

ton. 

We now discuss some examples of location estimators. Let X1, ..., X, be the i.i.d. 

random variables with distribution function F, where F has density function f, and 
f is symmetric. Let us consider the sample mean k, cr—trimmed mean and 

median M. Note that the of—trimmed mean is obtained by removing both the [an] 

smallest and the [an] largest observations and calculates the mean of the remaining 

ones. It is easy to see that 9, , and M can be represented as functionals by 
1  

T(F) = f xdF, T(F) = 1 — 2a f F'(t)dt, and T(F) = F_1()respectively. 
According to Definition 1.1, one can find the influence functions of X, X, and M at 

F which are the following: 
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(i) IF(x; X,F) = 

1-2a 

(ii) IF(x; F) = 12aX F 1 (a) ≤ x ≤ F 1(1— a); 

1 ' 2 F_1(1— a) x > F 1(1 - a) 

(iii) IF(x; M, F) = '9i)  

Based on the influence functions, one can find the following conclusions: 

(i) The arithmetic mean .9 is nowhere qualitatively robust, with 
y=oo, )* 1, and p*=c,o. 

(ii) The a - trimmed mean . is qualitatively robust, with 

 2a F_1(1 - a), A* = 1 — 2a' and p = 

(iii) The median M is qualitatively robust, with e = ' " = 2f (0) 

and P* = 00. 

F 1(a) x < F'(a) 

= 00, 

As we mentioned earlier, Huber ( 1964) introduced the important concept of M-

estimator. We have 

Definition 1.4 Any estimator T defined by a minimum problem of the form 

p(X1; T) = mm!, 

or by an implicit equation 

(1.8) 

E O(Xi; T) = 0, (1.9) 

where p is an ar&itrary function, b(x; 0) = (8/80) p(x; 0), is called an M-estimator. 

Note that the choice of p(x; 0) = - log f(x; 0) gives the Maximum Likelihood 

estimator. Hence sometimes we call M—estimator an ML type estimator or general-

ized ML estimator. 

Another type of estimator often considered in robust estimation theory is the 

so-called L-estimator. 
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Definition 1.5 L,- estimators are of the form 

T(Xl,...,X)=aIX(), (1.10) 
1=1 

where X(1),..., X(n) are the ordered samples and the a 's are some coefficients. 

The name "L-estimators" comes from "linear combinations of order statistics." 

The famous Huber estimator which is defined by bb(x) = min{b, max{ x, —b}} 

is an example of M—estimator, and a—trimmed mean . is an example of L-

estimator. The sample mean and median M may serve as examples for both 

M— and L—estimators. 

There are some other types of estimators being considered in robust estimation 

theory. For details, see Hampel (1986), and Andrews, Bickel, Hampel, Rogers and 

Tukey ( 1972). 

There is an important topic in robust estimation theory, the problem of finding 

maximum asymptotic variances of different estimators. Collins ( 1976, 1977, 1986, and 

1991) sufficiently studied the asymptotic variances of many robust estimators under 

symmetric or asymmetric contaminations. For instance, Collins (1986) considered the 

following problem arising in robust estimation theory: Find the maximum asymp-

totic variance of a-trimmed mean used to estimate an unknown location parameter 

when the error distribution is subject to asymmetric contamination. The model for 

the error distribution is F = (1 - ) Fo + e G, where F0 is a known distribution 
symmetric about 0, c is fixed proportion of contamination, and G is an unknown 

and asymmetric distribution. Under some assumptions, he found that the maximal 

asymptotic variance is obtained when G places mass I at either + 00 or —oo. 

The problems that are relevant to the asymptotic variance have been studied not 

only for the location estimators but also for the scale estimators as well. Moreover, 

the problems have also been discussed under some contamination models other than 

the gross-error neighbourhoods. Some examples are the Kolmogorov neighbourhood 

which is defined by K(G) = IF: sup I F(x) - G(x) I≤ e} in which e and G are 
—oO<z<oo 

known and fixed, and the Levy neighbourhood which is defined by L,6(G) = IF 

G(x - 8) - e ≤ F(x) ≤ C(x + 8) + e for all x}. Some discussions can be found, for 

example in Wiens ( 1986), Collins and Wiens (1989), and Wiens and Wu (1991). 
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Portnoy ( 1977 and 1979) studied the problem of robust estimation in dependent 

situations. 

Instead of studying the problem of finding the maximum asymptotic variance 

for each individual estimator, DasGupta ( 1990) discussed the bounds of asymptotic 

relative efficiencies (ARE) for a pair of estimators under some contamination models. 

There are many papers about robust estimation theory. Most of the topics can be 

found in Huber ( 1981), Hampel ( 1986), and the references cited therein. Here we only 

present some basic concepts and the minimum amount of material which is relevant 

to the problem we are interested in, the problem of finding the bounds on asymptotic 

relative efficiencies of some robust estimators under random contaminations. The 

problem is an extension of the work of DasGupta ( 1990). 
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Chapter 2 

Bounds on Asymptotic Relative 

Efficiencies of some Robust 

Estimators under Random 

Contaminations 

2.1 Introduction 

Tukey ( 1960) considered the problem of robust estimation of a location parameter 

0 where the cumulative distribution function (cdf) of the error is the following 

F(x) = (1 - )(x) + ,E-0 ( \X/S—) I 

where e and s could be any fixed numbers such that 0< < - and s > 1, and (x) 

is the standard norma.l distribution function. 

The idea has been developed in many different ways by many authors, especially 

by Huber ( 1964). DasGupta ( 1990) l)I'ol)oSed the generalized model as follows: 

F(x) =11 [(1 —) H(x)+eH ()] dGi() dG2(s), 



11 

where e, s are taken to be random, but with known expectations E() = f0 and 

E(s) = so. Moreover, he assumed that e and s are independent. He discussed the 

upper and lower hounds of Asymptotic Relative Efficiencies (ARE) of the Hodges-

Lehmann estimator W, the median M, and the a—trimmed mean X with respect 

to the sample mean 9 over the class of distributions 

Jro = {flx) : F(s) = ff[(1 - €) H(s) + cH ( • s: )i dG1(€) dG2(s)} 

= {F(x): F(s) = (1— €o) H(s) + eofH () dG2(s)} (2.1.1) 

where co = fdG1(e) and G2[si,00) = I with known constants si > 1 and so 

f sc1G2(s). 
In this chapter, we discuss a problem similar to that of DasGupta ( 1990) but with 

a different consideration for F. We are looking for the bounds of ARE among the 

location estimators sample mean ', a—trimmed mean X, and median M over the 

scale mixing random contaminated class 

= { x: F(s) = (1— )H(x) + e.  J H() dG(s)} (2.1.2) 

where a is random with distribution function G(s) such that G[si, 3 2] = 1 for some 

fixed numbers 3i, s, and 1 si < S2 < 00. Here e is any fixed number such that 

0 < C < 1 , and H(s) is absolutely continuous. 

In ( 2.1.1), DasGupta assumed that e and .s are independent and f dG1() = o is 
known. In this situation, e plays no role in finding the bounds of ARE among X, , 

and M. The bounds only depend on the value co and G2(s). Hence, in (2.1.2), we treat 

as any fixed number between 0 and rather than a random variable. On the other 

hand, it seems more reasonable to assume that G[si, .52] = 1 for some 1 ≤ 3i < S2 < 00 

rather than G2 [s1, 00) = 1 with known constant so = f .sdG2(s). Therefore, we suggest 
the scale mixing random contaminated class as we indicated in ( 2.1.2). From ( 1.2), 

we know that V(T, F) = j' IF(x; T, F)2 dF(x). Hence e(T, S, F) = V(S, F)/V(T, F) 

is the asymptotic relative efficiency of a pair of estimators {T : n > 1) and IS,, 

n ≥ 1). 

Let F be the cumulative distribution function ( cdf) of the error, where F E F. The 

main purpose of this chapter is looking for the hounds on e(M, X, F), e(,, , F), 



12 

and e(M, , F) over the class of distributions .F. i.e. we are looking for the following 

quantities: 

We define 

inf e(M,..,F), 
FE 

inf e(,T,F), 
FE 

inf e(M X,, F), 
FE 

e*(M, X) = sup e(M, X , F); 
FE 

e*(Ta,) = sup 
FEY 

e*(M,J() = sup e(M,X,F). 
FE 

= {G(s) : G[81, S21 = 1 1 s1 < s2 < 001- (2.1.3) 

It is clear that the asymptotic relative efficiencies eventually depend on G, since 

F(x) = (1— 6)H(x) + €f H ( VXS- ) dG(s) where H(x) is a known function. Therefore, 

we have 

= inf e(M,X',G), e*(M,iP) = sup 
GEc GEc 

= inf e*(,) = sup e(. S , '-•) 
GEQ GEc 

= liii e*(A/J,&) = sup e(M,X',G). 
GEc o€c 

In section 2.3, we find the explicit solutions to e(M,.) and e*(M,JP). Let 

e= JA, :si<s<s2} and n={s2+(1.-)s1:O<x<1}. We find that 

e(M,) = inf e(M,,G) = 
GEe 

and 

= sup e(M,X',c) e(M,XT,GT*) 
GEfl 

where G* = A S2 or = )t82 + (1 - A)s1 for some ). E ( 0, 1). 

In section 2.4, we study the bounds on e(X, X , G) and e(M, , G). We indicate 

that the bounds are located within certain ranges. Let F 1(1 - a) = y, i.e., 

F(y) = (1 - €)H(7) + €f H( 3 )dG(s) = 1 - a. 

We define = {G: CE c,F'(l—a) = '}, 9,, = {G: CE 9, Cardu(G) ≤ n}, and 

T = {.\Lt1 + (1 - ))L 2 : L1,t2 E [si,s2],0 < A < t}. 
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We find that 

sup  max sup e(X '  , , G) ≤ max sup e( , I a 
GEG. -11≤1≤12 GEg. Y1≤7≤'Y2 GET 

where -yj and '12 are the lower and upper bounds of 'y. 

The situations of e*(M)), and e(Mj) are similar to the case of 

e*(, X). A general result is given by Theorem 2.4.3. some special results are also 

found when h(x) = e4 and h(x) = These results are presented through 

Theorem 2.4.4 to Theorem 2.4.7. 

In section 2.2, we proved some preliminary results which will be used to find these 

bounds. Some numerical results and comments are presented in Section 2.5. 
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2.2 Preliminaries 

In this section, we are going to present some preliminaries which will be used in 

later sections to find the hounds of ARE among the sample mean X, a—trimmed 

mean Xç, and median M. 

Let T be the functional defined on 9, T: g —*1R2, by 

T(G) = (J h, (s) dG(s), f h2(s) dC(s)), 
where h, (s) and h2(s) are bounded and continuous functions on [Si, 3 2]. 

Note that the extreme points of g is the set 

= {/: si ≤ s 

where L is the distribution function that put all its mass at s. The image of E under 

T is the following: 

T(E) = {(fhi(s)dz. 3, fh2(s)dz≥ 3) : i s 82} 

{(/ii(s), /12(3)) : Si ≤ S 32) 

S. 

Let § be the convex hull of S, i.e., the smallest convex set containing S or the set 

of all convex combinations of S. Furthermore, let us define P to be the set of convex 

combinations of any two points of S, i.e., 

P = {Ap1 + (1 - )P2 : P1, P2 E 5, 0 ≤ A ≤ 1}, (2.2.1) 

and let 

= f AAt, + (1 - : t1, t2 E [31,32], 0 ≤ 1). (2.2.2) 

Under the notations and the assumptions we made above, we have 

Theorem 2.2.1 P = T(T) = T() = 
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Some well known results are needed to prove Theorem 2.2.1. We state them as the 

following two Lemmas. 

Lemma 2.2.2 For every distribution function G in g, there exists a sequence of step 

distribution functions G in G such that Gn ===> G, where " " refers to weak 

convergence. 

Proof: For given G E 9, let 

n 

C'n = >12 Pn1s,1 , 
i=I 

where S 1(32 - .s1) = i + and pni = G(S 1) - G(S,_1). 
n 

It is obvious that G,, G. 

Lemma 2.2.3 (Billingsley 1986). The following two conditions are equivalent: 

(i) G = G. 

(ii) f h dGn - f h dG for every bounded, continuous function h. 

The proof of Theorem 2.2.1: 

We prove the theorem by showing the following four steps: 

(i) P=T(T) 

0 

For any G E T, we have G = .A&, + (1 - \) 2 for some t1, t2 E [3 1, 8 2] and 

0 ≤ ..\ < 1, and 

T(G) = (f h1(s)dG, fh2(s)dG) 
= (.Ah1(t1) + (1 - .A)h1(t2), ) h2(t1) + (1 - 

= A(h1(t1),h2(t1)) + (I-  ))(h1(t2), h2 (t2)) 

= )tpi + (1 - 

where Pi = (1i1(t1), h2(t1)) and P2 = (h1(t2), h2 (t2)). Hence, we have P1,P2 E S and 

T(G) = )p + (1 - .\)p2 e P. Therefore, we have T(T) C P. 
On the other hand, for any )pi + (1 - ) )p2 E P, there exist 4, t2 E [3 1, 3 2] such 

that 
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PI = (f h (s)dz, , f h2(s)dz.1) = (h1(t1), 1i2(t1)) 

and 

P2 = (f h1(s)d 2, f Ii2(s)dL 2) = (h1(t2), h2(t2)). 

Let G= AAt, + (1 - ))z2. Then G E T and T(G) = Ap1 + (1 - A)p2 E T(T). Hence, 

we have P C T(T). 

Combining the above two results we get P = T(T). 

(ii) T(T) c T(G). 
This is obvious since T C G. 

(iii) T() ç 

For any G E G, Lemma 2.2.2 implies that there exists {G}, such that G € g 

and G G where G with Pni = 1 and Snj E [Si, 3 2] . 

Especially, we can choose 8 flj = 3i + Si) and Pni = G(S) - G(S,_1) i = 

Let 

and 

q = (f hi(.$)dG'(.$), fh2(s)dG(s)) 

qn = (f h1(s)dG(.$), fh2(s)dG(s)) 

= ( pfl h1(8), Z: Pnj h2(S)) 

= (p h1 (S), p1h2(S 1) 

=p,,i (h1 (S,), h2(S)). 

Since qn is the convex combination of (h1(S), h2 (S)), where (h1 (S), h2 (S)) E S. 

Therefore, qn E ' for all n. 

We assume that hi(s) and h2(s) are the bounded and continuous functions on 

[Si, 82]. The implication of Lemma 2.2.3 gives us 

qn = (fh1(s)dG(s), fh2(s)dG(s)) 

-* (f hi(s)dG(s), f h2(s)dG(s)) = q as n - oo. 

Note that ' is a closed set. Hence q E ' and qn - q iinl)hes q E k We have proved 

T(G) = q E for any C E 9. Therefore, we get T() c k 
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(iv) SCP. 

The assumption that hi(s) and /12(5) are the bounded and continuous functions 

implies that S is a bounded continuous curve on B2 Hence, there exist real numbers 

a, b, c, and d such that the set 

U={(x,y):a<x<b,c<y<d} 

is the smallest rectangle containing .5' as well as 

For any po E U\S, let 17.) be the straight line that goes through the point po and 

p, where p E S. Varying p within .9, we get a. family of straight line denoted as 

£ = { : p E S, l is the line going through p and po}. 

If Po E S\S, we claim that the following statement is true. 

Si : There exists a. point m E 8, such that i intersect S at another point P2 E S 
with p() ii) between. 

The proof of Si: 

Let p0 E '\S and p0 = (x0, I/o). We draw a vertical line lo going through po, i.e., 

= a. If .91 does not hold, jo must intersect S either above or below pd. Without 

loss of generality, we assume that 10 intersect S above po. 

Figure 2.2.1 
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For the sake of argument, let us color the "upper half" (above P0) of lo to be red 

and the "lower half" (below pa) to be blue. We turn around lo clockwise with pa 

fixed. Stop turning when the blue half first hit S. Because Si does not hold, the red 

half must stay away from S. If we slightly turn back lo, there must be a position of 

10 such that the whole lo stay away from S i.e. 10 fl S = . It is easy to see that there 

exists a convex set C containing S such that Cfl10 = . Hence fl lo = , and pa 

This contradicts the fact that Po E ,\S. Therefore Si is a true statement. 

Si indicates that, for any pa E .\S there exist p1 and P2 E S such that pa is on the 

segment of straight line connecting pi to P2. Therefore Pa is the convex combination 

of pi and p2,i.e.,p0 = )pi+(i—.\)p2 for some O < ,\ < 1. On the other hand, for any 

P E S, there exist p' and P2 E S and with ..\ = 0 or A = 1 such that p = \p +(1 - 

belong to P. This implies ' P. 

Combining ( i), ( ii), ( iii), and (iv), we have proved Theorem 2.2.1. 0 

Under the assumption we made before, S is a continuous curve. If S is a convex 

curve, we will have a result which is simpler than Theorem 2.2.1. Let 

P(1) = {)(l) + (1— A)p : = (hi(si),h2(.si)), p E S, 0 ≤ ). ≤ 1} 

and 

We have: 

(2.2.3) 

y(i) = { s + (1 - )z : s E [51,52], 0 < A < i}. (2.2.4) 

Theorem 2.2.4 Let us maintain the same notations and assumptions as we made 

in Theorem 2.2.1. Let p(1) and y(1) be defined as in (2.2.3) and (2.2.4). If  is a 

convex curve, then we have 

P (l) = T(T(1) ) = T() = 

Proof: It is obvious that T(T(')) 9 T(). The proof of p(1) = T('T(1)) is similar 

to the proof of P = T(T) in Theorem 2.2.1. Moreover, in Theorem 2.2.1, we have 

shown T() C S. Hence it is sufficient to show that C p(') and this is obviously 

true by the convexity of S. 11 
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Remark 1. Theorem 2.2.4 remains true if S is a concave curve. 

Remark 2. It is obvious that 

p(2) = T(T(2)) = T() 

when S is either convex or concave, where 

p(2) = {Ap2 + (1 - A)p : = (hl(-S2), h2(s2)), p E S, 0 < A < i} (2.2.5) 

and 

= {A 32 + (1 - A)L : s E [31, $21, 0 A 1}. (2.2.6) 

We are not sure whether the natural extension of Theorem 2.2.1 to the in-dimensional 

case is true or not. Let 

T. (G)= Y  hi(s)dG(s),..., I h.(s)dG(s)), 

where h, (s), ..., h,,, (s) are bounded and continuous functions on [Si, 82]. Let Sm be the 

image of E under Tm, i.e., 

Sm 

{(jhi(S)dL.s,...,J'hm (S)dL s) : Si ≤ s ≤ s2} 

= {(h1(s), ..., h., (,q)) : Si ≤ s ≤ 82}. 

Let m be the convex hull of Sm. Let Pm be the set of convex combinations of any m 

points of 5m, i.e., 

{Prn =AiPi 

and 

m m 

m 
tE[si,s2], O≤A≤1, i=1...m,Ai=1}. 

We make the following conjecture: 

Conjecture 2.2.5 Pm Tm (Tm ) = TM(P) = Sm. 
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Some general results similar to Theorem 2.2.1 and Conjecture 2.2.5 can be found 

for example, in Rockafellar ( 1970) and some implications and applications to robust 

estimation can be found in Collins and Portnoy (1981). Comparing with those re-

sults, both the conditions and conclusions of Theorem 2.2.1 and Conjecture 2.2.5 are 

stronger. 
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2.3 Bounds on e(M, X, F) 

In this section, we are going to find the bounds on e(M, X, F), the bounds of 
the asymptotic relative efficiency of the pair of estimators 9 and M. We start from 

the concept of influence function. As we mentioned in Chapter 1, the IF of 

and M are IF(x; X', F) = x and IF(x; M, F) = .sign(x)/2f(0) respectively. These 
are well-known results, but for completeness, we provide the detailed proof here. 

Let X1........ F(x) and Xi is are i.i.d. It is clear that the sample mean can he 

represented as a functional of F by T(F) = f xdF(x). The influence function of  at 

F can be calculated according to ( 1.1). We have 

IF(x; T, F) = lim T((1 -  t)F + tL) -  T(F) 

- urn fud[(1 -  t)F + t&,](u) - fudF(u) 
_t- o 
- . (1 - t)fudF(u) + if udi(u) - fudF(u)  

= i1 tt .fu'(u)  
t-_o j 

=x—fudF(u)=x 

if f udF('u) = 0. 

In the case we discussed in Section 2.1, F(x) is symmetric. Hence, we have 

IF(x; X, F) = x. Let us denote the asymptotic variance of 9 under F as V(X, F). 
By ( 1.2), we have 

V', F) = f IF(x; X, F)2dF(x) 
= fx2dF(x) 

e) f x2h(x)dx + f[x2 f h() =dG(s)Jdx 

x2h(x)dx + Z   y2h(j)dy]dG(s) 

= (1 - E)cr + ecrfsdG(s), 

where FE .F and o. = fx2h(x)dx. 
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Similarly, the median M can be represented as a functional of F by T(F) = 

F-1 (). The influence function of  under F is the following limit: 

IF(x; T, F) urn [(1 - t)F + tzJ-1( 16) -  

t 

Case ( i) x < 

In this case, [( 1—t)F+tz]'() is that value of y for which ( 1—t)F(y) +t(y) = 

. This solution will either be a value of y < x for which (1 - t)F(y) = , or a value 

of y > x for which (1 - t)F(y) + i = . If y < x, we have F(y) F(x) < 

Hence (1 - t)F(y) = is impossible for small t > 0. Therefore, we have y > x, and 

(1 - t)F(y) + t = . Take the derivative with respect to t at both sides and evaluate 

at t = 0, we get 

and 

(1—t). dF(Y)+Fdt ( l) l 

(1— t) . f'(ii)• LY It=o — F(y) !=o= — i i'(0) It=o  

Hence, we get IF(x; M, F) = dy-- == 2f ( 0) 

Case (ii) x > F-'() 

In this case, we have IF(x; M, F) =   2f(o The proof is similar to case (i). 

We finally get 

IF(x; M, F) = sign(x)  
2f(0) 

Denote the asymptotic variance of M under F as V(M, F). According to ( 1.2), we 

have 

V(M, F) = f IF(x; M, F)2dF(x) 
1  

- 4f2(0) 
1  

4[(1 - )h(0) + 

1  

4/2(0)[(1 - ) + e I 
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Hence, the asymptotic relative efficiency of the pair of estimators X and M is 

MF V(,F) 
- 

= 4/2(0) 0,2   dG(s)]. 

(2.3.1) 

We are now going to find the bounds on e(M, , F) where F E T or G E g. In light 

of Theorem 2.2.1, we consider the functional T from 9 to R2 as follows: 

T(G) = (I sdG(s), JdG(s)) 

i.e., we choose h1($) = s and h2(S) = . We defne 

) : ql ≤ .s2} : = S. 
VS 

Then .9 is a. COnVeX curve on 112 and the convex hull of .9, .5', is the shaded region in 

Figure 2.3.1. 

Figure 2.3.1 

Because S is a convex curve, Theorem 2.2.4 can be used to solve our problem. 

Furthermore, it is clear that e(J1'I, ) can be achieved on the upper boundary of .' 
and e(iVI, ) can be achieved on the lower boundary of .'. Let 



get 
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Then the upper boundary of is the image of 7-( under T, i.e., T(h) = L, where 

L = {p p = Ap(2) + (1 - A)p('),O ≤ A < 1} and the lower boundary of S is S which 

is the image of E under T. Hence, we have 

e(M,X) = inf e(M,X',F) 
.7:. 

=inf e(M,..,G) 
0 

=inf e(M,,G) 
& 

= inf4h2(0)[(1 - ) + ef sdG(s)][(1 - €) + €f ---dG(s)} 16 h 
VO 

inf 4h2(0)o 2[(1 - ) + g][( - ) + 12 
S1<S<$2 

and 

e*(M,) = sup e(M,J,F) 

=sup e(M,S',G) 

=sup e(M,X',G) 
71 

= sup 4h 2(0)0,2 [(l - ) + efsdG(s)][(1 - ) + ff 

= sup 4h2(0)o'[(1 - ) + (As2 + (1 - A)si)] 
O<,\ <1 

A (1—A)  
)}2 

(2.3.2) 

(2.3.3) 

In order to find e(M, X'), we define L(s) = [(1 - ) + s] [(1 - €) + Then we 
IV 3 

dL(s)  

ds +Es].2{(1—f)+_] (_. s1)+[(1_)+_....] 2. € 

+ )+--s[(i —f)+sJ} 

=(1—E)[(1—)+—} (1—s)>O, 

since 1≤ s1 ≤ s —< S2.  Therefore, L(s) obtains its minimum value at .s = si, and we 

have 

e(M,.) = 4h2(0)o[(1 — 6) + €si][(1 — 6) + 

which is realized by the distribution function G = 
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In order to find e* (M, X), let 

U\) = [( 1 - ) + ( X$2 + (1-
[( 1 - ) + (- + (1—A)2 

) + 681+c(s2 — Si)] [( 1— ) + - + E( 1  )AJ2 

and let ) be any real number. We have 

dU(.\)  

d) 
= 

1 
- ) + -+( 

)j 2 .(s2 _s 1) 

1 
=4(1—)+—+(-- 1 

V/5-2  
- )[(1 - ) + ci + €(S2 - 

1 

1 
+€(  

•€ E2().._—_32 . )( 1—-i- esi) 

- si)(1 - + + 3c(s2 - .Si)( - 

dU(\)  
Setting d\ = 0, we get 

and 

A1 - 
1 

€(;- \/ 

= 2(). - )( 1—€+ CSI) + (52  sl)(l - + -) 

1 1 
3€(s2 - Si)( —  - -) 

We are going to show that (i) Al > 1 and (ii) A2> 0 by the following calculation: 



26 

(i) 

A1 (1 
- 

6(-L- 1-) €(1 — 1 \ 
-   +(1--)+ 

i 1 \ 

1 

— 1+ '/ j- ;; 7) 
- 6(-L-- 1 ) ' 

;?7 

1— C + ---
=1+  

-i--- I 

>1, 

1 1 
since (1 - + - > 0. 

(ii) Note that the denominator of A2 is positive and the numerator of A2 is linear 

in e. Let 

Then we have 

and 

1 1 
N(0) = 9(-  - - )+ s2 — s1 

2 
= (\/ + /:i;:) ( /; -  VSD - 

2 
= (' - ':-) ( \/ +   > 0 
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N(1) =2(—) SI+(82—S1)   

- 2s 1 (' - /) +(,,ls2 + j) ( -  

- 

= + ) - 2s l] > 0. 

We conclude that N() > 0 for e E [0, 1J. Hence we have A2 > 0. 

Combining the results ( i) and ( ii) along with the fact that U(A) is a polynomial in A 

of degree three with positive leading coefficient, U)) will achieve its maximum value 

on interval [0, 1] at ) = )'2 if 0 < A2 < 1 and at A = 1 if A2 I. Hence we have 

= 

where 

4/?2(0)a2{(i - c) + €[A2s2 + ( 1 - A2)si}} if 0 < A2 < 1 
A2 1A2)}2 

4h2(0)cr[(1 - t) + (-'1' 21 [( 1 - ) + .. J2 if A2 ≥ 1, 

I 

3 (s2 — i)( ---- I 

and e* (-44, ) can be realized by the distribution functions C = A2L32 + 0 -  

or C = A,2 accordingly. 

Figure 2.3.2 Figure 2.3.3 
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Note that A2 ≥ 1 if and only if 

1(e) := (82-31) (1_e+) + 2()_ ) (1-6+631) 

-36(52 - Si) ( -   ≥ . 

Note also 1(e) is linear in e with negative slope. Hence we have 

1  
1(e) ≥ l() = (32 - Si) + 2/T) + ( - (1+ sj) 

fi  
3 

(-%/Sl VS 2 

— 1 ) (i+) 
2(32 Si 

3 1 
- - ? + - Si) 

= (62 - s) + ( 2 - 1 

- ( -  ) [( I+S2)+(S2-S1)] 

1 ( 1 
= (S2 - S1) -  - )(1+s2) 

1 
+(S2— Si) - 

(82 -  S1)(\/ + 1)/T - 2(1 + S2)(/ - fiT)  
2 

For 0 < e < , it is clear that (J+ vT)( b/+ 1)/-2(1+s2) ≥ 0 is a 

sufficient condition to guarantee that A2 ≥ 1. We have proved the following: 

Theorem 2.3.1 Given 0 ≤ e < and 1 < 31 < 52 < oo, we have 

(i) e(M,X) = 4h 2(0)0,2 [(l - e) + es][(1 - e) + ..........] 2 and e(M,X') is achieved 

by the distribution function G = 

I4h2(0){(1 - e) + e[A2s2 + (1 - A2)si]} if 0 < A2 < 1 
A2 1—A2 

.[(1 — e) -l-e— -I-  )12 
\/ V 92 VS I  

(ii) e*(M,X) = 

where 

4h2(0)i2[(i - e) + 632][(1 - e) + __]2 if A2 ≥ 1, 

2(1 fl 
A2=  

-1-i' 
36(82 Si)(, - 7) 
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and e*(M, X') can be achieved by the distribution functions G = A232 + (1 
or G = z2 accordingly. 

(iii) A sufficient condition for A2 ≥ 1, hence 

e* (M, ) = 4/z2(0)o[(1 - e) + es2][(1 - c) + ____] 2, 

is (/ + /T)(ft' + 1)/ - 2(1 + .92) ≥ 0. 
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2.4 Bounds on e(Xa,X,F) and e(M,Xa,F) 

We start this section by finding the influence function of. Let X1, ..., X F(x) 

and Xs are i.i.d. The a-trimmed mean is the estimator that one obtains by 

removing the a% largest and a% smallest observations, and computing the mean 

of the rest. It is clear that a = 0 corresponding to the usual mean X and a = 

corresponding to the median M. X', can be represented as a functional of F by 
1-c 

T(F) = 1 J F(s)ds, — 1 2a  

and the influence function of T under F is the following limit: 

IF(x; T, F) = lim T[(1 -  t)F +u] - T(F) 

(s)ds - 

=lim  
t-_o 

j- 2a f" F'(s)ds 

_1 
-  J'{lim [( 1 - )F + L]'(s) -  }ds. 
1 - 2a  

Case (i) x < F-1 (a) (i.e. F(x) < a) 

Let y = [(1 - )F + t&] 1(s). Then we have .s = (1 - t)F(y) + tz(y). 

1 
2 

(1) If y < x, then .s = (1 - t)F(y). But this is impossible, since s E [a, 1 - a] and 

F(y) < F(x) < a. 

(2) If y ≥ x, then we have .s = (1 - t)F(y) + t. Take the derivative at both sides 

with respect to t, we get 

0 = (1— t)f(y) dy + F(y)(-1) + 1. 
dt 

Evaluate the above at t = 0 and note that i = 0 if and only if F(y) = s. We 

have 

0 = f[F'(s)]. dy It=o - S + 1. 
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Hence, 

dy s - 1 urn [(1 -  i)F + t] 1 (s) - F 1 (s)  
f[F'(s)] tO t 

For x < F 1 (a), we conclude 

IF(x; T, F) 

where 

1 1-a 

1-2a I 

1 1F -'(1-a) F(y) - 1 

1 - 2a 1F 1 (a) 1(y) 
f(y)dy 

F 1(1-a) 
F 1(1-a) F 1(1-a) 

= yF(y)IF-I(a) JF-I(a) yf(y)dy - Y IF-1(a) 

= 1 _2a1 - a)F 1(1 - a) - aF'(a)] 

- j1-a F'(s)ds - [F'(i - a) - F 1(a)]} 

1 
-  [F 1(a)—C], 
- 1 - 2a 

C =j F1(s)ds+aF1(a)+aF'(l—a). 
Case (ii) F 1 (c) ≤ x < F'(l - a) (i.e. a ≤ F(a) ≤ 1 - a) 

Let y = [( 1 - t)F + ttX]'(s). Then s = (1 - t)F(y) + tL(y). 

(1) For y < x, we have s = (1 - t)F(y) and dy lt=o= dt f[F51(SA 

dy s — i  
(2) For y ≥ x, we have s = (1 - t)F(y) + t and f[F_1(s)] 
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Hence, for F-1 (a) ≤ a; ≤ F'(l - a), we have 

1 F(x) s 1-cr s—i  
 ds + / IF(x; T, F) = 1-2a  f [F 1(s)] iF(s) f [F-I(s)] ds} 

= 1 — 2afF-1() F(Y)fd + F'(l-a) F(y) - 1dy} L 
_1  - 1 - 2a"'() - f-l() yf(y)dy + yF(y)I'(') 

-L F 1(1—c) 
yf(y)dy — [F 1(i — a) — x]} 

1 F(s) 

 {xF(x) - aF 1(a) -! F'(s)ds + (1 - a)F 1(1 - a) 
= 1 - 2a 

1— cr 

—sF(s) - J F 1(s)ds - F'(l - a) + x} 

1 1—cr 

=  [a; I F 1(s)ds - aF'(a) - F 1(1 - a)} 
1-2a J0 

= 112[x— C]. 

Case ( iii) 5> F'(l - a) ( i.e. F(s)> 1 - a) 

Let y = [( 1 - t)F + L] 1(s) Then s = (1 - )F(y) + Ax ( y). 

(1) If y < a;, then we have s = (1 - t)F(y) and 

(2) If y ≥ a;, we have (1 - i)F(y) + i = s. But this is impossible, since s e [a, 1 - a] 

and F(y)≥F(x)> 1—a. 
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For x > F'(l - a), we get 

1 1-cr s - 1 F 1(1-c) 

IF(x; T, F) f  cis - I F-, F(y)dy 
1 - 2a f[F-l(s)] 1 - 2a (c) 

1 1F'(1-c) F'(l-a) 
 [yF(y) 1 - 2a F- l() IF-,() yf(y)dy] 

1  {F-1(i - a) - / F'(s)ds - aF'(a) - aF'(l - a)] 
1-2a 
1  

[F-1(i - a) - C]. 
1-2a 

Combining the above three cases, we get 

1   1 2a [F'(a) - C] x < F 1(a) 
-  
1 

IF(x; T, F) = i 1- 2a  [i. C] F 1(a) :5 F'(l - a) 

1 [F-1(i - a) Cl x> F'(l - a), 
1 - 2a 

where C = j F 1(s)ds + aF'(a) + aF1(1 - a). 

Note that C = f  F 1(s)ds + aF'(a) + aF'(l - a) = 0 if F is symmetric, 

which is the case we are interested in. Denote the asymptotic variance of £ under 
F as V(, F). By ( 1.2), we have 

V(&,,F) = f IF(x; T, F)2 dF 
2  

12 
(1 - 2a)2 xdF(x) + [F'(1 - a)j JF-1 dFx)} 

2  
= (1 - 2a)2 {2 x2dF(x) + a-/') 

2  
= (1 - 2a)21 - e)fx2h(x)dx 

+ dG(s)]dx + a 2} fx2 [fh( 7 ) ,,,.. 

2  
)fx2h(x)dx 

(1 - 2a)2 

\,r \[ + a-/21 

2 
 {(i - )f1x2h(x)dx 

= (1 - 2a)2 

+fs[f/\/y2h(y)dy]dG(s) + a72} 
2 

(J — 2a)2  ) f x2h(x)dx + e f sk(s)dG(s) + a'y2}, 

where k(s) - y - -y// 2h(y)dy,and"y=F4(1_a). 
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and 

Therefore, we get 

V(, F)  

V(X', F2) 
(1 -  2a) (1 -  e)o + eo fsdG(.$) 

9, F) 

e(M, Xa, F) 

2 (1 - e) Jx2h(x)dx + a')'2 + cfsk(s)dG(s) 

- V(J,F)  

V(M,F) 
8h2(0) 1 2 

= (1 - 2a)2R' - E) + 6  7  dG(s)] 

• {(1 - e) 2x2h(x)dx + a'y2 + efsk(s)dG(s)]. 

Note that 7 = F'(l—a), i.e., F(7) = 1—a. We have (1—e)H(y)+cfH()dG(s) 

1 - a. For any given 0 < a < , and 0 < < , -y is different in F(or G). We need 

to know the range of 'y for F over (or G over ). For any G E 9, we define 

+ efH( 3 )dG(s). 

(2.4.1) 

Moreover, let 

71 = min {'y : &('y) = 1— a} and 72 = max{ a). 
GEQ GEg 

Then, we have the following: 

(2.4.2) 

Lemma 2.4.1 For given 0 < a < 1 , 0 < E < , and 1 i < 32 < 00, we have that 

-yj is the solution of Hi (-y) = 1 - a, where Hi (-y) = (1 - E)H() + eH(), i = 1, 2. 

Vsi 
Proof: Note that 

dft0 (.-) 
= (1—  d7 E)h() + €fh(p) ()dG(s) > 0. 

Hence .ft(-y) is monotone increasing in -y. On the other hand, we have 

H(J) < fH()dG(s) ≤ H() 

for any fixed . Hence, we have H2 ( 1̂) ≤ HG(7) Hi(-y). Consequently, we have 

Hj 1(1 - a) ≤ J1(1 - a) ≤ H'(1 - a), i.e., 'y1 -y ≤ 72, where 'y is the solution 

ofJQ(7)=1_a, and Gg. 0 
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For any 'y E [2'i, y2], let 9.y= {G: G E and ñ(y) = 1 - }. Then we have 

= max sup 
Y1≤Y≤Y2 GEr 

= min inf 
1YY2 GEg 

and 

e*(M, X) = max sup e(M, , G), 
Y1Y≤1'2 GEc 

= min inf e(M,Xa,G). 
Y1≤1'≤12 GEcr 

Unfortunately, we are unable to find the exact bounds on e(, g, G) and 
e(M, Xc,, G). We can only indicate that the bounds are located within certain ranges. 

Let 

g={G:GEg Card o(G)_—n}. 

Then we have the following: 

Theorem 2.4.2 Let F E ' as we defined in (2.1.2), where H(x) is known and 

absolutely continuous. For given 0 < ce < , 0 < e < , and 1 ≤ 81 < 82 < co, we 

have 

(i) sup e(J,,G) e(5,X') ≤ max sup and 
GEg Y1≤'Y≤'Y2 GET 

min inf e(. a,X',G) ≤ e,') ≤ inf e('a, . ,G); 
Y1≤1Y2 GET GEgU 

(ii) sup e(M,.Ca,G) ≤ e*(M,X,G) ≤ max sup e(M,J(,,G), and 
GEc 1≤'Y≤Y2 GET 

min inf e(M,.,G) ≤ e(M,) < inf e(M,JC G) , 
11≤Y≤12 GET GEc '  

where 7 is defined by (2.2.2) and n ≥ 1. 

Proof: We have gn C G, hence sup e( a, 9, G) <sup e(, , G) = ). 
Similarly, G,. ç ç implies that GEGn GEQ 

= max sup e(,,G) ≤ max sup 
1:5Y 72 GEg., 1'1≤Y≤12 GE 

On the other hand, for any fixed 'y, we have that (s,sk(s)) is a continuous curve 

where k(s) = f" y2h(y)dy depends on 'y. The application of Theorem 2.2.1 gives 
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us 

sup e(,, G) = sup 
GEc GET 

Hence, we have 

sup e(X' ), / G' <e* (,,X) < max sup , 

GEc - Y1 ≤ Y≤Y2 GET 

The proof for other cases is similar. 0 

Let us define 

= •(u,v): u = s,v = sk(s),k(s) = JO -Y/VS- Y'h(y)dy, s s < 32} 

and 

1 
C2 = (11, V) : u = 7 ,v = sk(s),k(s) = j y2h(y)dy, i :53 ≤ 3 

Usually, C1 and C2 are the continuous curves. If we have some more properties of 

C1 and C2, for example the convexity, we will have some results about the bounds of 

e(., .', G) and e(M, 9,, G) which are simpler than the results in Theorem 2.4.2 in 

the sense of numerical calculation. Denote 

V={G: Gcc,G=Ai 31 +(1—A)i s2 ,s1<s<s2} and 

E = {G: GE g,G = L3,s1 S 3}. 

Then we have the following: 

Theorem 2.4.3 For any fixed -y E [71,72], let its make the same assumptions as we 

did in Theorem 2..2. 

'i) If Ci, C2 are the convex or concave curves, then we have 

(i,a) sup e(. a,X',G) = sup 
GET GEDU6 

(i,b) inf = inf e(J,J,G), 
GET GEVU-6 

(i,c) sup e(M,,G) = sup 
GET GEVUe 

(i,d) ml e(M,..,G) = inf e(M,X,,,G). 
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(ii) If C1, C2 are the convex (concave) and monotone increasing curves, then we 

have 

a) sup e(,),G)= sup 
GET GEC 

(sup e(,, G) = sup 
\GET GEV 

(ii, b) inf e(J,,G) = inf e( G) c, 
GET GED 

(jf e(,X',G) = inf 
\GET GEe 

(ii,c) sup e(M, G) = 
GET 

(ii, d) inf e(M, Xc,, C) = e(M, X, A,,). 
GET 

(iii) If C1, G2 are the convex (concave) and monotone decreasing curves, then we 

have 

(iii, a) sup e(X,X,G) = e(J?,X,L 32 ), 
GET 

(iii, b) inf e(.N,.,G) = e(X,X,L 81 ), 
GET 

(iii, c) sup e(M,.X',G) = SUl) e(M,X,G) 
GET GED 

(sup e(M,,,,, G) = SUI) e(MXG)) 
\GET GEe 

(iii, d) inf e(M,X',G) = inf e(M,,G) 
GET Gee 

(GET e(M,5C,G) inf e(M,&,G)) 
GED 

Proof: The results are followed easily by looking at the forms of e(.L, ., G) and 

e(M, ., G), and the regions of in each case. D 

We are now going to find the bounds on e(',, ., G) when H(x) is specified. For 

H(x) = (x), the standard normal distribution, we have 

Theorem 2.4.4 Let H(x) = (x) in (2.1.2), 0 < e < ,0 < a < , and 1 ≤ i < 

2 < 00. If ̂12 then we have 
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sup  

(1—)+s2  

- 2 (1 - )W(1,'y1) + 4 (s2,'y1) + cry12  
(1 — 2a)2 (1  —e)+esi  

2 (1 — e)W(1,72) + c'P(si,72) + a-y 

inf 
GEc 

where (w, -y) w (=) — —  and is the solution of (I — e) 4) (7) + 

64D ( ) = 1—a, i=1,2. 

Moreover, we have that a sufficient condition for 72 < V S-1 is 

Proof: When H(x) = we have 

(1_a_e'\ < 

1—c )-

= f (u, v) : u = s, v = sk(s),k(s) = f'y2w(y)dy i ≤ S ≤ S2} 

where p(y) is the probability density function of the standard normal distribution, 

i.e., (y) = )=ir =e4. 

Let v(s) = sic(s) sf/\' i2y(y)dy = _Lsf1y2e4dy. Then we get 

and 

since -1 ≤ -y2 < 

dy(s) — 1 

ds —\/; 
1 

fOh/\/y2e2dy+ 7 2 1 s—e 2s  

:z•1 e 1 2dy--(----7 ) e—  2,,  

2/ 

d2v(s)  a. 
 {—e ds2 — (- 7s— ) 

1 3 a 2 7 2 3 5 

— 7 [szes + e2 (-- )sJ} 

3 - _ 4 1 L —   47 S 2 23 --7 5_2 2s) 

7 2 = 3 
 S2e23(1 — -) > 0, 

3 
S2 
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The second derivative of v(s) with respect to s is positive, which implies that C1is 

a convex curve. On the other hand, if we let 

1 ( PZ 2 1L. 1 3 
L(z) = e 2dy—z e 2 ), 

then we have 

dL(z) 1 a2 1 Z2 2 

dz = v' - .[ 6c(1 - z) + e 2 3z2]1 22  

= - 1) < 0, 

if 0 < z < 1. Note that L(0) = 0; hence we have L(z) < 0,z E (0, 1). Note also, 

=   and 0 < < 1 (since 'Y2 < v'T and ≥ 0. yi = 0 if and only if 

= dy(s) ). We conclude that d' < 0. This implies that C1 is monotone decreasing. 
According to Theorem 2.4.3 (iii,a) and (iii,b) we have 

sup e(,,G) = e(,..,L 32 ) 
GET 

(1 - 2a)2 (1 - ) + 
2 (1 - ) j;; x2 (x)dx + 82k(s2) + cr72 

1 = (1 - 2c)2  
2 [(1 - ) + 8 2] /{(1 - f)[(7) - 2 727; - 2 

132 - —/ e 2s2} + o'y2} 

= (1 - 2c)2  (1 - ) + €s2  

2 (1 
(2.4.3) 

and similarly 

inf e('a,,G) = e() s 
GET 

(1_2c)2 (1-)+€si  

2 (1- )'( l,'y) + eIQ (si,'y) + cry2' 

where (w,') = w(-) w e-2- 2 97r 12-. For E [-/1, 72 1, sup e(,X,G) 
GET 

and ml 'Yce  X, G) are given by (2.4.3) and (2.4.4). By Theorem 2.4.2, we know that 
GET 

e(X',) ≤ max sup e(X'a,,G), and min inf e(X',,G) ≤ e(X,'). 
Y1≤Y<)'2 GET i'1≤'Y<12 GET 

Hence, we choose max sup e(Xa,,G) as an upper bound for e*(.,) and 
-Y1≤1<-r2 GET 

min inf as a lower bound for Let 
Y1≤Y<12 GET 

Ki('y) = (1 - c)W(1,y) + cW(si,y) + cry2 

(2.4.4) 
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and 

It2(y) = (1— 6)W(1,-y) + &J!(s2,'y) + cry2. 

Then we have 

dK1(7) 1 1 
d7 [e  =2cry+(1—c){----e 2_I_. 2 + '7C 2 

S2 1 L -y +c{ e 23j -- .[g 2s1 +..y 231(_...)]} 

(1—c) 2 2 
=2cry+ - 72   >0, 27r 

and similarly 

dlt'2('y) = 2cry + (1 -Vr 'X  2 +  2 
7e 2 7 2 > 0. 

d^tHence, both K1() and K2 (7) are increasing in -y. It is clear that 

max ',' 82) = (1— 2)2 (1— ) + CS2  
<-<- 2 (1 - c)(1,y1) + CXP(s2, -y') + cry12 

and 

mm e( . = (1 -  2a)2  (1 - ) + es  
2 (1 - ) IF (l,y2) + 6W(.sj,y2) + a-122 

We have proved part (i) and ( ii) of Theorem 2.4.4. 

Finally, note that (1 - ) y) + ef()dG(s) = 1— c, and 

(1_&_f()dG(s)) 

1_c_cf(0)dG(s)) 

1—c 
_c _c) 

1—f 

Therefore implies that 72 < 0 

We can also discuss the problem of finding the bounds of e(, , G) for the other 

choices of H(s). For example, we can choose H(s) = f. .eHIdt. In this case, we 

will get a result which is similar to Theorem 2.4.4, the case when H(s) = (s). We 

state the result as follows. 
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Theorem 2.4.5 Let H(x) = f eHtIdt in (2.1.2), 0 < e < 0 < a < 

1 < Sl < S2 < 00. '172 < then we have 

(i) sup  
GeQ 

<  (1-2a)2(1—e+es2)  

a^/12  
(1-2a)2(1—e+CSI) 

(1 - e)Wo(1,'y2) + & o(s1,y2) + a'y 
<e(X,X) 

< inf 
- GEg 

1 
and 

where Wo(w,7) = ( 2 +7+w) e and ^/i is the solution of(1—e)H(7)+ 

=1—a, i=1,2. 

Moreover, we have that a sufficient condition for 72 < \/T is H-' 

Proof: For H(x) = f eH1dt, we have h(x) -- dH(x) - 1e'' and o 
dx 2 

f x2h(x)dx = f°° x2edx = 2. We define 

C1 = {( u,v) : U = s,v = sk(s), k(s) = j y2edy,s1 ≤ s 52). 

Let v(s) = sk(s) = sfc?11 y2e_Ydy. Then we get 

dv(.$) 

ds 

1 7 2 _ 

[Jo y2edy + s—e (— s 7)] 
S 

- 1 1 
- Jo - 7 s2e/), 
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and 
d2v(s) - 1 1 
ds2 2 . •(— ys) 

1 35 
---[se/(ysi) + e/v' (_s)J} 

3 3 . 

1 r 1 e - 4 s3eY//+ 'y =L-.ys-2 

1 3 
= S2e' 7V S- ) > 0 1 

since 7 ≤ 72 < VISI-

The second derivative d2v(s)  > 0 implies that C1 is 
ds2 

let 

we have 

dL(z)  

dz 

convex. On the other hand, 

(10 zL(z) = y2&'dy - z 3 e_ 2 , 

fz 2 e— z - [ze(-1) + e_Z3z2]} = z2e_2 (z - 1) < 

if 0 < z < 1. Note that L(0) 0, hence we have L(z) < 0, z E (0, 1). Note also 

= dy(s) and 0 < < 1. We conclude that dv(.$) < 0. Hence, C1 is 

monotone decreasing. 

By Theorem 2.4.3 (iii,a) and (iii,b), we have 

sUpG€re(X,X,G) = e (k., T As') 

(1 - 2a)2(1 - + S2) 

(1 c) f? x2edx + €s2k(s2) + cry2 

(1- 2c)2(1—+€s2) 

(L.,2 
21 +7 1 +1)e'']+[s2— (!72 +7/+s2)}e +cr72 

(1 — 2c)2(1 — + s2) 

(1 - )'P0(1,7) + Wo(s2,-y) + cry2' 
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and similarly, 

(1-2a)2(1— 6+681) 
inf X, G) = e(,), 31 ) = GET (1— 6) o(1,7) + o(si,) + a72' 

where To (w, -y) = w - ( 2 + y/ + 

Similar to the proof of Theorem 2.4.4, we define 

and 

K2 (-J) = (1 - 6)o(1,7) + €Wo(s2,-y) + cry2. 

Then we have 

dK1(7) = (1 _ e)[_(!2+7+1)e_1(_1) + e(-7— 1)] 
dy 

+ 'y/T+ 

- /: T)] + 2cr)' 

- (1 - ) 2e_ +  6 72e + 2> 0 
2 1̂ 2/ ce 

and 

dK2(1) - (1 6)_ + 2 7e + 2a > 0. 
d7 - 2 1̂ e 

Hence, both K, (-y) and K2('y) are increasing in y. This yields the following conclusion: 

and 

max e(,,$2) = Y1 :51 :572 (1 - c)o(1,7i) + € o(S2,7i) + 7? 
(1— 2a)2(1— 6+682) 

(1-2c)2(1—e+CSI) 
mm e(Xa,X,si) = 

'Yl :5'Y:5-Y2 (1 - e) Q(1,72) + 6Wo(si,72) + a7 
0 

The problem of finding the bounds of e(M, ., G) is very similar to the situation 
of e(X, , G). When H(x) = (x), we have the following: 

Theorem 2.4.6 Let H (x) = (x) in 0 < 6 < , 0 < a < , and 1 < s < 
82 < 00. If '12 < then we have 
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(i) SU1) e(M,Xa,G) < 

< 4(1 - € + 

- 7r(1 - 2a)2 

• [(1 - €)'P(1,'y2) + €(s1,72) + cryJ, 

4(1 - 6 + c_)2 

(ii)  [(1 - €)( 1,7i) + €W(s2,'yi) + cry] ≤ e(M,X) 
7r(1 - 2a)2 

where 'I'(w,y) = 

64) ( -VIT-i ) 

< inf e(M,,G), 
— GEcn 

e2w, and -1i is the solution of (1 - €)('y) + 

= 1 - a, i = 1, 2. Moreover, we have that a sufficient condition for 

1-6 

Proof: For H(x) = (x), we define 

1 
C2 = (u, v) : u = 7 =, v = sk(s), k(s) = f y2ço(y)dy, i ≤ s —< s}. 

Consider v as a function of u, v = v(u), and s as a parameter. We find 

and 

dv(u) - dv(.$)/d.s - 

du - du(s)/d.s - 

1 ff7\3 
I I - I e2 2f0 Y2e_ - dY] 

\/ L'vi 

Irv/iy2€_1.dy+SL_( 1 \] 
_8T2)j (-2s) s \. 2 

d2v(u) - d (±jl) Ids 

du2 - du(s)/ds 
1 j ( 2 2 2 2 2 1 

2s fy5 " 
2 

73 

2s I - — e23 - 3s2 J y2e_dy+ — e 

(7 \\ . " 3 a1 
  6f0" Y2 e- 2 dy - e 22s - 2 e — V -  

We conclude that C2 is a concave and increasing curve by showing d2v(u)  du2 < 0, and 
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dv(u' 
/ > 0. For this purpose, let us define 

du 

42 

Li(z) z3 6-  - 21 y2e 2 dy 
Jo 

and 

5 L2(z) = 6 I y2& - 2z3e. 
Jo 

We find 

dLi(z) 2 [3 + 3z2} - 2z2eT = z 2 e 4.2 
2 (1 - Z2) > 0 = 

dz 

if z E ( 0, 1). Note that L1(0) = 0. Hence L, (z) > 0 for z E ( 0,1). On the other hand, 

we know that L1 () - dv(u) and 0 < < 1, since we have < This 
VS-

yields dv(u) > 0. We also find 
du 

dL2(z)  

dz 
= 6 2 z 2 - 2 [z5(—z) + 5z4] - 2eT [z3(—z) + 3 z2] 

=Z4e2(Z —3)<0, 

at least for z E ( 0, 1). We have L2(z) < 0 for z E (0, 1), since L2(0) = 0. The fact 
-y d2v(u) y d2v(u)  

that L2(7 du) 2 = and 0 < i du2 < 1 implies   < 0. Therefore, C'2 is a 

concave and increasing curve. By Theorem 2.4.3 (ii,c) and (ii,d), we have 

sup e(M,.,G) 
GET 

and 

e(M) s1) 

4(1_ iE +)2 

7r(1 - 2a)2 [ (1 6)fy2 1 2 1 + 
- _ e_2dy+ es, foy2 v/2-7r e dy a72 ] 

- 4(1—e+ )2 

- ir(i - 2a)2 

inf e(M,X',G) = e(M, a,Z s2) 

GET 4(1 - c+ )2[(  + fW(82, It) + a 2}, 
= 7r(1 - 2a)2 
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where W(w,-y)=w(_L) 1 ___ €2w. Furthermore, let 
\/ 

681 v'T2e_cdy+a72  ç y2 4 dy+ y f0 

and 

K2("f) = (1 - C)@ -/) + cW(s2,'y) + cry2 

y2e_cdy+a72 = ( 6 f y2e4dy+ 682 0• 02 

Then we have 

dKit'y) (1 -  2 681 7 2 - 1 
23 - + 2cry > 0 

dy 7 + 27r S1 V IS I 

and 
dK2(7) - (1 - ) 2 S2 7 2 ...... 1 

— e 252__.+2a7>0 
d-y 82 

Since K1 (y) and K2 (,y) are increasing in , we then have 

4(1 
max e ( M, X, L) =  '  

7r(1 — 2a)2 

and 

4(1_)2 [(1 
- 

1YY2 ir(1 - 2c)2 e)W(1 + 6 + y ,-yi) (s2,71) cr]. min e(M, ) 

Theorem 2.4.6 follows by Theorem 2.4.2 and the above results. 0 

The situation when H(x) = ff. eH1dt is very similar to the case of H(x) = 

We simply state the result without proof. 

Theorem 2.4.7 Let H(x) = fxoo eHt1dt in (2.1.2), 0 <€ < 

1≤S1<82<OO. If y2 </i7, then we have 

(i) sup €(M,JC,G) ≤ e(M,X) 
GEc 

1 
2' 0 < Ce < , and 

2(1—€+ 2 =) 
<   
- (1-2a)2 

[(1 - 6)1110(1,72) + €Wo(si,12) + cry] 
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(1 - 2c)2 

[(1 - e)o(l,'yi) + ec'0(s2,11) + cry fl :5 €(M, 

< inf e(M,X,G), 

where To(w,7) = w— (1-12 ++) e andyj is the solution of(1—e)H()+ 

eH ( -VIli-i ) = 1 - a, i = 17 2. Moreover, we have that a sufficient condition for 

2 < s H-1 ( a F-1 2 ) < 
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2.5 Some Numerical Results and Comments 

In the last two sections, we discussed the bounds on the asymptotic relative effi-

ciencies among the median M, a-trimmed mean , and the sample mean X. We 

found the explicit solutions for e(M,) and e*(M,XP). When H(x) = (x), we have 

and 

where 

eK(M,X) = 

{(1 - ) + €[A2s2 + (1— A2)si]} 
'ir [ / ) 2 1-A2\1 

(1-€)+d —+ )] \/S2 T 
2 

if 0< A2 < 1 

if A2 ≥ 1, 

1 i 1 \ 11 , \ , /32  \ ( 
A2 12 05-1  

')1 \( 1 1 
')6!82 — S11 - 

Hence, e(M, ) and e* (M, X) can be easily calculated. For some different values 

of .s1, S2 and c, the corresponding results of e(M,.) and e*(M,g) are presented 

in Table 2.5.1. Note that we have two numbers for each cell inside the table. The 

top one is e(iVI,X) and the bottom one is e(M,X'). With the results in Table 

2.5.1 and some further calculation, we are able to answer a general version of a 

question raised by Tukey ( 1960): given s, and 52, how large an € > 0 is required 

for the infimum of the asymptotic relative efficiency of M with respect to k over 

T to exceed 1? In this case, one understands that even in the sense of asymptotic 

relative efficiency, the median M is still preferable than the sample mean 9 . There 

are some other features have been observed from Table 2.5.1. Firstly, we note that, 

for given s and e(M, .,) and e*(M, ) are monotone nondecreasing (monotone 
increasing in most of the cases) in e. Intuitively, it also makes sense as we know that 

€ is the proportion of contaminations. Secondly, we find that e(M, ) is monotone 
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increasing in s when e and S2 are given. This is obvious since we have the fact that 

L(s) : (1 - e + s)(1 - c + is a function increasing in s, when .s ≥ 1. In the 
VS-

cases we considered in Table 2.5.1, we also have e* (M, .) is monotone increasing in 82 
when e and s are given. In these cases, we always get e*(M, X, L). In general, this 
may not always happen. For example, when s1 = 1, S2 = 36, and = 0.4, we have 

= 0.952 and e*(M,) = e(M,k,G*) = 4.2509 where G* = 2s2 + (1 - )2)Lsi. 
On the other hand, we have e(M,, / S2) = 4.2441. We also note that the differences 

between e*(M,) and e(M,X') are small when s, S2, e, or s2 - .91 are relatively 

small. This reflects the fact that the asymptotic relative efficiencies are stable over 

the corresponding class of distribution functions J. 

The situations are more complicated for the asymptotic relative efficiencies of 

with respect to , and M with respect to . As we mentioned before, we are unable 

to find the exact values of ), e*(Z,, ), e(M, and e*(M, Instead, 

we can only find a range for each of them. For the sake of argument, we define 

(1— 2a) 1— + €si  

2 (1 - 6)(1,72) + €W(si,72) + ay2 
TTTTIc- c-\ (1-2c) 1— f+ 682 21 

2 (1 - )W(1,-yi) + 6W(82,71) + cry1 

7r(1 - 2a)2 (1 - c + 
V 92 

f)W(1,-yi) + e(s2,-y1) + cryfl, 

and 

UU(M,Y) :=   
7r(1- 2a)2 (1— 

[(1— 72) + eW(s1,-y2) + cry], 

where (w,'y) = w (---) 1 y/;j; 'I'  e2w, and 'yj is the solution of (1 - )(-y) + 
V/ 

= 1 - c, i = 1, 2. We also define 

UL,, (X,,, ) := inf 
GEc 

=inf (1-2a)2 i— €+i::1=1px  
GEQn 2 (1 
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:=sup 
GEcfl 

sup (1 _ 2a)2 1 —+>i::1=1pxi  

2 (1- )'P(1,'y) + f> 1pW(x, -y) + cry2' 

and 

UL.,, (M, )?a ) := inf e(M,.)a,G) 
GEc 

GEQ ir(1-2a)2+  c >j1 pjllf(xj, -y) + a72], 

LU(M,) := sup e(M,,G) 
G€c 

GeQ 141 -_2a)2 (1 - + Xi 
= Sup   

+ 6 1pW(x,'y) + a')'2], 

where G = pjL with .si ≤ x ≤ s2, 0 ≤ p ≤ 1, E- 1r = 1, and 'y is the 

solution of (1 - €) y) + e 1pi(=) = 1 a. 
VXi 

According to Theorem 2.4.4 and Theorem 2.4.6, we know that LL(, ) and 
) are lower and upper bounds of e. (9 ,,, ). Similarly, LUn(.J, ) and 

UU(,'), LL(M,) and UL(M,), LU(M,) and UU(M,5) are lower 

and upper bounds of e(M,X) and e*(M,.) respectively. It is clear 

that UL(&, ) and UL(M, ) are monotone nonincreasing and bounded below 
by LL(&,,X') and LL(M,X'a); LU(&,) and LU(M,J?) are monotone non-

decreasing and bounded above by UU(Xj) and UU(M,J J). Hence these four 

sequences have limits and the limits when n goes to infinity will be the exact values 

of e*( a, ), e(M, •), e*(a, ), and e* (M, £.). In practice, we can only do the 

numerical search when n is small. For n = 1, and for some different values of a, €, 

Si and 82 we present the corresponding bounds of and e*(,) through 

Table 2.5.2 to Table 2.5.6. Note that each cell of these tables has four numbers. 

The first one is LL(,), the second UL, the the third LU1(,.) and the 

fourth UU(Jk'a, ). Similarly, the bounds of e(M, X) and e*(M, ) are presented 
in Table 2.5.7 through Table 2.5.11. There are some missing values inside the tables. 

These are the cases when -t2 > '; hence, Theorem 2.4.4 and Theorem 2.4.6 do not 

apply to the calculation of LL(,,,,), UU(,), LL(M,), and UU(M,.a). 
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In many cases we note that the differences between LL(,) and UL1(X,X'); 

LU1(J(,X') and UU(,X); LL(M,) and UL1(M,X'a); LUi(M,'a) and 

UU(M, X) are very small. Hence, the bounds we provided there are very accurate. 

In some cases, even the differences between LL(f,J() and UU(X'a,JT); LL(M,Xo) 

and UU(M, J) are small. This fact reflects the stability of the asymptotic relative 

efficiencies, since we always have e*(.,) - e(X,) UU(JCor ,.) - LL(J(c( ,J), 

and e*(M, a)—e*(M, &) ≤ UU(M, .5)—LL(M, In the cases when the bounds 

on •), e*(, ), e(M, and e*(M, X) are not too close, we can always 

get more precise results by increasing ii in UL(,X'), UL(M,X), 

and LU(M,.k,). We did some calculations of the above quantities when n = 2. 

The results are either the same or very close to the results when n = 1. Hence 

the exact values of e*(',), e*(P,t), e(M,JC), and e*(M,) will be closer 

to UL Th(M, a), and LU(M,Z) than to 

UU(,), LL(M,), and UU(M,X'a). We know that the sample mean 9 and 

the median M are the extreme cases of a-trimmed mean . corresponding to a = 0 

and a = I respectively. Hence the topics we discussed in this chapter and the tables 

we presented in this section will provide a guideline to choose a suitable value of 

a, hence 9,, in the sense of the asymptotic relative efficiency when we have the 

assessment of the values of sl, 2, and e. 
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Table 2.5.1 Values of e(M,) and e*(M,JC) when H(x) = (x) 

S1 S2 0.01 0.05 0.1 0.15 0.25 0.375 
4 0.6366 0.6366 0.6366 0.6366 0.6366 0.6366 

0.6492 0.6960 0.7469 0.7898 0.8530 0.8931 
9 0.6366 0.6366 0.6366 0.6366 0.6366 0.6366 

0.6784 0.8328 0.9982 1.1345 1.3263 1.4324 
16 0.6366 0.6366 0.6366 0.6366 0.6366 0.6366 

0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 
9 0.6492 0.6960 0.7469 0.7898 0.8530 0.8931 

0.6784 0.8328 0.9982 1.1345 1.3263 1.4324 
4 16 0.6492 0.6960 0.7469 0.7898 0.8530 0.8931 

0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 
25 0.6492 0.6960 0.7469 0.7898 0.8530 0.8931 

0.7768 1.2908 1.8320 2.2678 2.8521 3.1194 
16 0.6784 0.8328 0.9982 1.1345 1.3263 1.4324 

0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 
9 25 0.6784 0.8328 0.9982 1.1345 1.3263 1.4324 

0.7768 1.2908 1.8320 2.2678 2.8521 3.1194 
36 0.6784 0.8328 0.9982 1.1345 1.3263 1.4324 

0.8452 1.6079 2.4072 3.0463 3.8902 4.2502 
25 0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 

0.7768 1.2908 1.8320 2.2678 2.8521 3.1194 
16 36 0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 

0.8452 1.6079 2.4072 3.0463 3.8902 4.2502 
49 0.7212 1.0321 1.3618 1.6297 1.9963 2.1788 

0.9261 1.9830 3.0865 3.9642 5.1092 5.5696 
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Table 2.5.2 Bounds of e(,X') and e*(Xa,) when H(x) = (x) 

:=O.01 

S1 S2 0.01 0.05 0.1 0.15 0.25 0.375 
0.8267 0.7318 

4 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.0059 0.9885 0.9586 0.9251 0.8524 0.7541 

0.8627 0.7622 

0.8231 0.7291 
9 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 

1.0410 1.0286 0.9993 0.9653 0.8903 0.7880 

0.9050 0.7994 

0.9795 0.9520 0.9199 0.8487 0.7514 

9 1.0059 0.9885 0.9586 0.9251 0.8524 0.7541 
1.0410 1.0286 0.9993 0.9653 0.8903 0.7880 

4 1.0380 1.0061 0.9708 0.8942 0.7909 
0.9745 0.9485 0.9172 0.8468 0.7500 

16 1.0059 0.9885 0.9586 0.9251 0.8524 0.7541 
1.0994 1.0907 1.0608 1.0253 0.9460 08376 

1.1064 1.0720 1.0342 0.9524 0.8422 

1.0305 1.0233 0.9956 0.9625 0.8883 0.7865 

16 1.0410 1.0286 0.9993 0.9653 0.8903 0.7880 
1.0994 1.0907 1.0608 1.0253 0.9460 0.8376 

9 1.1106 1.0964 1.0647 1.0283 0.9482 0.8391 
1.0233 1.0200 0.9934 0.9607 0.8870 0.7857 

25 1.0410 1.0286 0.9993 0.9653 0.8903 0.7880 
1.1789 1.1730 1.1417 1.1038 1.0188 0.9022 
1.1992 1.1829 1.1485 1.1091 1.0225 0.9048 

1.0917 1.0871 1.0584 1.0234 0.9447 0.8366 
25 1.0994 1.0907 1.0608 1.0253 0.9460 0.8376 

1.1789 1.1730 1.1417 1.1038 1.0188 0.9022 

16 1.1871 1.1768 1.1443 1.1058 1.0202 0.9032 
1.0862 1.0847 1.0567 1.0222 0.9439 0.8360 

36 1.0994 1.0907 1.0608 1.0253 0.9460 0.8376 
1.2784 1.2747 1.2413 1.2005 1.1083 0.9815 
1.2938 1.2818 1.2461 1.2041 1.1108 0.9833 
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Table 2.5.3 Bounds of e()') and e*(,) when H(x) = (x) 

6 = 0.05 

i 82 
a 

0.01 0.05 0.1 0.15 0.25 0.375 
0.7875 0.7007 

4 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.0347 1.0373 1.0142 0.9833 0.9105 0.8078 

0.9674 0.8527 
0.7698 0.6877 

9 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.1516 1.2117 1.1978 1.1670 1.0859 0.9660 

1.1802 1.0389 
0.9878 0.9786 0.9548 0.8901 0.7928 

9 1.0347 1.0373 1.0142 0.9833 0.9105 0.8078 
1.1517 1.2117 1.1978 1.1670 1.0859 0.9660 

4 1.2724 1.2414 1.2018 1.1108 0.9843 
0.9589 0.9593 0.9399 0.8797 0.7853 

16 1.0347 1.0373 1.0142 0.9833 0.9105 0.8078 
1.3037 1.4781 1.4725 1.4392 1.3432 1.1966 

1.5986 1.5566 1.5055 1.3901 1.2308 
1.1764 1.1742 1.1488 1.0733 0.9568 

16 1.1518 1.2117 0.1978 1.1670 1.0859 0.9660 
1.3038 1.4781 1.4725 1.4392 1.3432 1.1966 

9 1.5224 1.5052 1.4620 1.3590 1.2080 
1.1535 1.1595 1.1377 1.0657 0.9514 

25 1.1518 1.2117 1.1978 1.1670 1.0859 0.9660 
1.4416 1.8287 1.8318 1.7942 1.6777 1.4960 

1.9205 1.8920 1.8405 1.7096 1.5190 
1.4495 1.4541 1.4253 1.3336 1.1897 

25 1.3038 1.4781 1.4725 1.4392 1.3432 1.1966 
1.4415 1.8287 1.8318 1.7942 1.6777 1.4960 

16 1.8648 1.8549 1.8118 1.6897 1.5046 
1.4297 1.4417 1.4159 1.3273 1.1852 

36 1.3038 1.4781 1.4725 1.4392 1.3432 1.1968 
1.5612 2.2604 2.2734 2.2302 2.0881 1.8632 

2.3367 2.3219 2.2669 2.1132 1.8811 
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Table 2.5.4 Bounds of and e*(JC,Xr) when H(x) (x) 

= 0.1 

51 52 

a 
0.01 0.05 0.1 0.15 0.25 0.375 

0.7400 0.6628 
4 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 

1.0501 1.0825 1.0702 1.0436 0.9725 0.8660 

1.0994 0.9663 

0.7059 0.6376 

9 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.1434 1.3664 1.3885 1.3698 1.2904 1.1556 

1.5288 1.3401 

0.9718 0.9918 0.9812 0.9278 0.8331 

9 1.0502 1.0825 1.0702 1.0436 0.9725 0.8660 
1.1434 1.3664 1.3885 1.3698 1.2904 1.1556 

4 1.5220 1.4981 1.4567 1.3526 1.2012 

0.9489 0.9485 0.9052 0.8168 

16 1.0502 1.0825 1.0702 1.0436 0.9725 0.8660 

1.2089 1.7852 1.8579 1.8477 1.7528 1.5750 

2.0944 2.0324 1.8830 1.6698 

1.2706 1.3286 1.3242 1.2590 1.1329 

16 1.1434 1.3664 1.3885 1.3698 1.2904 1.1556 
1.2091 1.7852 1.8579 1.8477 1.7528 1.5750 

9 1.9190 1.9414 1.9112 1.7965 1.6064 

1.2025 1.2912 1.2963 1.2402 1.1194 

25 1.1434 1.3664 1.3885 1.3698 1.2904 1.1556 

1.2575 2.3226 2.4666 2.4673 2.3516 2.1176 

2.6299 2.6518 2.6068 2.4468 2.1859 

1.6935 1.8056 1.8088 1.7266 1.5562 

25 1.2092 1.7852 1.8579 1.8477 1.7528 1.5750 
1.2575 2.3225 2.4666 2.4673 2.3516 2.1176 

16 2.4474 2.5380 2.5203 2.3874 2.1431 
1.6258 1.7699 1.7827 1.7090 1.5437 

36 1.2090 1.7852 1.8579 1.8477 1.7528 1.5750 
1.2927 2.9702 3.2102 3.2248 3.0839 2.7813 

3.2580 3.3693 3.3423 3.1679 2.8375 
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Table 2.5.5 Bounds of and e*,) when H(x) = (x) 

= 0.15 

S1 S2 

c 
0.01 0.05 0.1 0.15 0.25 0.375 

0.6943 0.6260 
4 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 

1.0512 1.1120 1.1121 1.0911 1.0234 0.9147 
1.2329 1.0804 
0.6450 0.5894 

9 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.1111 1.4424 1.5195 1.5211 1.4529 1.3106 

1.8828 1.6433 
0.9846 0.9899 0.9509 0.8614 

9 1.0512 1.1120 1.1121 1.0911 1.0234 0.9147 
1.1111 1.4424 1.5195 1.5211 1.4529 1.3106 

4 1.7158 1.6761 1.5635 1.3917 
0.9140 0.9369 0.9145 0.8351 

16 1.0512 1.1120 1.1121 1.0911 1.0234 0.9147 
1.1477 1.8856 2.1070 2.1425 2.0721 1.8798 

2.5607 2.4934 2.3180 2.0587 
1.2523 1.4108 1.4397 1.3974 1.2706 

16 1.1111 1.4424 1.5195 1.5211 1.4529 1.3106 
1.1478 1.8858 2.1070 2.1425 2.0721 1.8798 

9 2.1697 2.2687 2.2633 2.1543 1.9388 
1.1036 1.3416 1.3898 1.3641 1.2469 

25 1.1111 1.4424 1.5195 1.5211 1.4529 1.3106 
1.1716 2.3912 2.8574 2.9414 2.8696 2.6132 

3.1107 3.2335 3.2181 3.0561 2.7465 
1.6633 2.0041 2.0684 2.0227 1.8447 

25 1.1478 1.8858 2.1070 2.1425 2.0721 1.8798 
1.1716 2.3913 2.8574 2.9414 2.8696 2.6132 

16 2.7073 3.0036 3.0467 2.9395 2.6629 
1.4676 1.9327 2.0184 1.9899 1.8214 

36 1.1478 1.8858 2.1070 2.1425 2.0721 1.8798 
1.1872 2.9084 3.7642 3.9128 3.8416 3.5079 

3.7173 4.1015 4.1527 4.0001 3.6201 
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Table 2.5.6 Bounds of e(,.X') and e*(X,X) when H(x) = (x) 

= 0.25 

S1 S2 

a 
0.01 0.05 0.1 0.15 0.25 0.375 

0.6081 0.5557 
4 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 

1.0407 1.1332 1.1588 1.1511 1.0943 0.9857 
1.5044 1.3103 
0.5323 0.4988 

9 0.9960 0.9744 0.9430 0.9092 0.8367 0.7397 
1.0700 1.4033 1.6225 1.6850 1.6631 1.5251 

2.6072 2.2557 

0.9193 0.9612 0.9581 0.8852 

9 1.0407 1.1332 1.1588 1.1511 1.0943 0.9857 
1.0700 1.4034 1.6225 1.6850 1.6631 1.5251 

4 2.0449 2.0164 1.8987 1.6978 
0.7811 0.8611 0.8904 0.8366 

16 1.0407 1.1332 1.1588 1,1511 1.0943 0.9857 
1.0852 1.5980 2.2279 2.4238 2.4649 2.2883 

3.2977 3.2330 3.0256 2.6947 

1.3780 1.5099 1.5461 1.4415 
16 1.0700 1.4034 1.6225 1.6850 1.6631 1.5251 

1.0852 1.5980 2.2279 2.4238 2.4648 2.2883 
9 2.6204 2.7035 2.6510 2.4209 

1.2110 1.4010 1.4762 1.3922 
25 1.0700 1.4034 1.6225 1.6850 1.6631 1.5251 

1.0937 1.7047 2.9326 3.3458 3.4837 3.2623 
3.9138 4.0182 3.9228 3.5732 
1.9596 2.2496 2.3537 2.2101 

25 1.0852 1.5980 2.2279 2.4238 2.4649 2.2883 
1.0937 1.7047 2.9326 3.3458 3.4837 3.2623 

16 3.3310 3.6038 3.6479 3.3775 
1.7562 2.1302 2.2799 2.1586 

36 1.0852 1.5980 2.2279 2.4238 2.4649 2.2883 
1.0989 1.7712 3.7072 4.4424 4.7143 4.4428 

4.6879 5.0506 5.0956 4.7094 
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Table 2.5.7 Bounds of e(M,J) and e*(M,XCa) when H(x) (x) 

= 0.01 

Si S2 0.01 0.05 0.1 0.15 0.25 0.375 
0.7525 0.8517 

4 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
0.6454 0.6567 0.6772 0.7017 0.7616 0.8608 

0.7701 0.8699 
0.7496 0.8487 

9 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
0.6517 0.6595 0.6789 0.7028 0.7620 0.8610 

0.7735 0.8731 
0.6536 0.6743 0.6988 0.7587 0.8578 

9 0.6454 0.6567 0.6772 0.7017 0.7616 0.8608 
0.6517 0.6595 0.6789 0.7028 0.7620 0.8610 

4 0.6627 0.6819 0.7057 0.7649 0.8640 
0.6518 0.6727 0.6974 0.7573 0.8563 

16 0.6454 0.6567 0.6772 0.7017 0.7616 0.8608 
0.6560 0.6612 0.6798 0.7034 0.7623 0.8610 

0.6662 0.6844 0.7078 0.7667 0.8656 
0.6494 0.6578 0.6773 0.7013 0.7606 0.8594 

16 0.6517 0.6595 0.6789 0.7028 0.7620 0.8610 
0.6560 0.6612 0.6798 0.7034 0.7623 0.8610 

9 0.6583 0.6629 0.6814 0.7049 0.7638 0.8625 
0.6478 0.6567 0.6764 0.7004 0.7597 0.8585 

25 0.6517 0.6595 0.6789 0.7028 0.7620 0.8610 
0.6590 0.6623 0.6804 0.7038 0.7625 0.8611 
0.6630 0.6651 0.6830 0.7062 0.7648 0.8635 
0.6544 0.6601 0.6789 0.7025 0.7614 0.8601 

25 0.6560 0.6612 0.6798 0.7034 0.7623 0.8610 
0.6590 0.6623 0.6804 0.7038 0.7625 0.8611 

16 0.6606 0.6634 0.6814 0.7047 0.7634 0.8620 
0.6532 0.6594 0.6783 0.7019 0.7609 0.8595 

36 0.6560 0.6612 0.6798 0.7034 0.7623 0.8610 
0.6611 0.6630 0.6809 0.7040 0.7626 0.8611 
0.6640 0.6649 0.6825 0.7055 0.7640 0.8626 
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Table 2.5.8 Bounds of e(M,) and e*(M,J) when H(x) 

€ = 0.05 

.Si s2 0.01 0.05 0.1 0.15 0.25 0.375 
0.7194 0.8162 

4 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
0.6726 0.6709 0.6862 0.7078 0.7644 0.8616 

0.8084 0.9085 
0.7057 0.8016 

9 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
0.7232 0.6873 0.6953 0.7136 0.7669 0.8622 

0.8270 0.9258 
0.6545 0.6709 0.6930 0.7497 0.8462 

9 0.6726 0.6709 0.6862 0.7078 0.7644 0.8616 
0.7231 0.6873 0.6953 0.7136 0.7669 0.8622 

4 0.7046 0.7112 0.7289 0.7819 0.8779 
0.6456 0.6631 0.6855 0.7425 0.8385 

16 0.6726 0.6709 0.6862 0.7078 0.7644 0.8616 
0.7917 0.6982 0.7009 0.7171 0.7684 0.8626 

0.7258 0.7255 0.7404 0.7911 0.8863 
0.6779 0.6872 0.7059 0.7595 0.8544 

16 0.7231 0.6873 0.6953 0.7136 0.7669 0.8622 
0.7917 0.6982 0.7009 0.7171 0.7684 0.8626 

9 0.7080 0.7093 0.7249 0.7760 0.8704 
0.6721 0.6822 0.7013 0.7550 0.8497 

25 0.7231 0.6873 0.6953 0.7136 0.7669 0,8622 
0.8954 0.7058 0.7047 0.7194 0.7693 0.8628 

0.7220 0.7182 0.7320 0.7815 0.8754 
0.6922 0.6959 0.7124 0.7639 0.8579 

25 0.7916 0.6982 0.7009 0.7171 0.7684 0.8626 
0.8955 0.7058 0.7047 0.7194 0.7693 0.8628 

16 0.7120 0.7098 0.7241 0.7739 0.8675 
0.6881 0.6925 0.7093 0.7609 0.8547 

36 0.7916 0.6982 0.7009 0.7171 0.7684 0.8626 
1.0299 0.7113 0.7073 0.7209 0.7700 0.8629 

0.7219 0.7159 0.7289 0.7776 0.8708 
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Table 2.5.9 Bounds of e(M,J) and e*(M,fCt) when H(x) = (x) 

= 0.1 

31 '2 

a 
0.01 0.05 0.1 0.15 0.25 0.375 

0.6794 0.7730 
4 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 

0.7113 0.6900 0.6979 0.7157 0.7680 0.8625 
0.8603 0.9605 
0.6529 0.7449 

9 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
0,8731 0.7305 0.7189 0.7288 0.7736 0.8638 

0.9019 0.9985 
0.6559 0.6663 0.6852 0.7380 0.8310 

9 0.7112 0.6900 0.6979 0.7157 0.7680 0.8625 
0.8731 0.7306 0.7189 0.7288 0.7736 0.8638 

4 0.7686 0.7531 0.7612 0.8051 0.8966 
0.6502 0.6700 0.7232 0.8155 

16 0.7112 0.6900 0.6979 0.7157 0.7680 0.8625 
1.1264 0.7628 0.7329 0.7370 0.7769 0.8646 

0.7871 0.7874 0.8252 0.9145 
0.7096 0.7014 0.7125 0.7580 0.8477 

16 0.8730 0.7305 0.7189 0.7288 0.7736 0.8638 
1.1263 0.7628 0.7329 0.7370 0.7769 0.8646 

9 0.7856 0.7513 0.7538 0.7928 0.8811 
0.6966 0.6909 0.7028 0.7487 0.8381 

25 0.8730 0.7305 0.7189 0.7288 0.7736 0.8638 
1.4568 0.7888 0.7427 0.7425 0.7791 0.8652 

0.8284 0.7731 0.7701 0.8049 0.8917 
0.7486 0.7219 0.7269 0.7674 0.8548 

25 1.1264 0.7628 0.7329 0.7370 0.7769 0.8646 
1.4569 0.7888 0.7427 0.7425 0.7791 0.8652 

16 0.8041 0.7542 0.7528 0.7887 0.8751 
0.7389 0.7145 0.7202 0.7611 0.8484 

36 1.1264 0.7628 0.7329 0.7370 0.7769 0.8646 
1.8622 0.8105 0.7499 0.7465 0.7806 0.8655 

0.8376 0.7694 0.7639 0.7968 0.8821 
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Table 2.5.10 Bounds of e(M,X',) and e*(M,J) when H(x) = (x) 

0.15 

S1 s2 0.01 0.05 0.1 0.15 0.25 0.375 

0.6406 0.7311 
4 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 

0.7513 0.7103 0.7102 0.7239 0.7717 0.8634 
0.9170 1.0170 
0.6025 0.6903 

9 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
1.0210 0.7865 0.7466 0.7458 0.7808 0.8656 

0.9870 1.0802 
0.6612 0.6769 0.7256 0.8152 

9 0.7514 0.7103 0.7102 0.7239 0.7717 0.8634 
1.0210 0.7865 0.7466 0.7458 0.7808 0.8656 

4 0.8022 0.7979 0.8306 0.9169 
0.6364 0.6536 0.7030 0.7916 

16 0.7514 0.7103 0.7102 0.7239 0.7717 0.8634 
1.4199 0.8643 0.7735 0.7606 0.7865 0.8670 

0.8641 0.8431 0.8637 0.9458 
0.7511 0.7183 0.7200 0.7565 0.8406 

16 1.0210 0.7865 0.7466 0.7458 0.7808 0.8656 
1.4198 0.8642 0.7735 0.7606 0.7865 0.8670 

9 0.9059 0.8041 0.7880 0.8118 0.8928 
0.7290 0.7013 0.7047 0.7421 0.8257 

25 1.0210 0.7865 0.7466 0.7458 0.7808 0.8656 
1.9357 0.9484 0.7936 0.7710 0.7903 0.8678 

1.0280 0.8456 0.8163 0.8317 0.9098 
0.8377 0.7550 0.7444 0.7715 0.8516 

25 1.4198 0.8642 0.7735 0.7606 0.7865 0.8670 
1.9357 0.9483 0.7936 0.7710 0.7903 0.8678 

16 0.9798 0.8132 0.7879 0.8057 0.8834 
0.8195 0.7427 0.7336 0.7616 0.8415 

36 1.4198 0.8642 0.7735 0.7606 0.7865 0.8670 
2.5657 1.0474 0.8093 0.7786 0.7930 0.8684 

1.1105 0.8432 0.8074 0.8190 0.8947 
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Table 2.5.11 Bounds of e(M,JC,) and e*(M,J() when H(x) = (x) 

= 0.25 

S1 82 0.01 0.05 0.1 0.15 0.25 0.375 

0.5670 0.6510 
4 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 

0.8196 0.7527 0.7361 0.7410 0.7795 0.8654 
1.0470 1.1457 
0.5087 0.5880 

9 0.6392 0.6533 0.6751 0.7002 0.7609 0.8607 
1.2395 0.9451 0.8174 0.7871 0.7975 0.8696 

1.1960 1.2763 

0.6486 0.6577 0.6985 0.7812 

9 0.8196 0.7527 0.7361 0.7410 0.7795 0,8654 
1.2395 0.9451 0.8174 0.7871 0.7975 0.8696 

4 0.9278 0.8874 0.8903 0.9636 
0.6053 0.6175 0.6598 0.7408 

16 0.8196 0.7527 0.7361 0.7410 0.7795 0.8654 
1.8396 1.2492 0.8960 0.8236 0.8099 0.8724 

1.0921 0.9906 0.9579 1.0196 

0.7618 0.7384 0.7530 0.8246 
16 1.2396 0.9451 0.8174 0.7871 0.7975 0.8696 

1.8396 1.2492 0.8960 0.8236 0.8099 0.8724 

9 0.9625 0.8784 0.8578 0.9201 
0.7287 0.7098 0.7270 0.7982 

25 1.2396 0.9451 0.8174 0.7871 0.7975 0.8696 
2.6077 1.6730 0.9725 0.8524 0.8187 0.8743 

1.0952 0.9467 0.8984 0.9527 

0.8562 0.7914 0.7818 0.8444 
25 1.8396 1.2492 0.8960 0.8236 0.8099 0.8724 

2.0677 1.6730 0.9725 0.8524 0.8187 0.8743 
16 1.0187 0.8874 0.8481 0.9032 

0.8298 0.7702 0.7634 0.8260 
36 1.8396 1.2492 0.8960 0.8236 0.8099 0.8724 

3.5400 2.1964 1.0493 0.8757 0.8252 0.8756 
1.1367 0.9371 0.8756 0.9248 
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Chapter 3 

Introduction to Robust 

Experimental Design 

3.1 Some Basic Concepts of Optimal Design 

Before we study the problem of robust experimental design, we would like to 

present some basic concepts of optimal design as our starting point. These concepts 

will be used frequently in the later chapters. 

Let us consider the following regression model: 

or alternatively 

E(y I.) =07,f (X.), i = 1, ..., n, (3.1.1) 

yi = I/(.) OTf(x)+61, i = 1,...,n, (3.1.2) 

where 0T=  fT (x) = (f0(x),...,f(x)) and XE S CRq, i = 1,...,n. S 

denotes the design space we are interested in. Particularly, we may choose S = 

{ (xi,...,xq) : —i ≤ xj q}. We assume that x's are subject to no error 

and s are independent and identically distributed with mean 0 and variance a2 > o 
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Furthermore, we define 

/ fo(x) fi( 1) ... f,,( 1) 

F(x) fo(x2) 1i(X2) J(X2) 

fo(x) fi(x) ... f(x) / 

B(x) = FT(x)F(x) = =i f(.). P (f.), YT- (Yi)".,yn), and T_ 

Then, we can write (3.1.2) as the following form: 

(3.1.3) 

It is well known that the least squares estimator of 0 under (3.1.3) is 

= (F"F) 1F" 

and the covariance matrix of d is 
-Q 

cov(Ô) = E[(O - - = 

We confine ourself to the use of the least squares estimator . It is clear that 

the covariance matrix cov(Ô) depends on the observations x, i = 1, ..., n. The design 

problem which we shall be concerned with is the following: How should the values 

X1 1  of the independent variable be chosen in order to give the "best" experiment? 
'Q1 •Q 

The question of best design depends on the meaning of "best". Many optimality 

criteria have been posed and studied in the past. See for example, Kiefer ( 1959), Box 

and Draper ( 1959, 1963) and also Fedorov ( 1972). Before we present some of the 

optimal criteria commonly used, we first give a precise definition of an experimental 

design. 

Definition 3.1.1 A design of an experiment is the collection of quantities 

x i 2 , x ,..., x 
I '  
n1, n2,..., n71 

where XE S, and n is the numbers of repetition at point x, i = 1, ..., n. 

(3.1.4) 
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For the theoretical study, the concepts of normalized design and continuous nor-

malized design are more useful. 

Definition 3.1.2 A normalized design is the collection of quantities 

2' ' 

Pi, Pn ) (3.1.5) 

where p n/ nj,  n. Moreover, we call a design to be a continuous 

normalized experiment, if in (3.1.5) we allow p to be any real number between 0 and 

1. 

The concept of experimental design can be further extended by allowing design 

measure to be any probability measure c(X) supported on some design space S. With 

this extension, we define 

Then we have 

B() = 
I  (x). fT (x)d(x). 

f (x) . y(x)d(x), 
s,.,.. 

(3.1.6) 

and the least squares estimator of 0Tf () is . Tf (x). We use M() to denote 

the mean squared error matrix of as estimator of 0 which depends on the design 

measure (x). Under (3.1.3), we know that Ô is an unbiased estimator of 0 . Hence 
M() is simply the covariance matrix of Ô, i.e., 

Also, we denote 

M() = E[(ö  O)T] = cov() = 

d(x,) . T (x)M() () 
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Definition 3.1.3 Let .F to be a set of design measures we are interested in. We call 

design measure 6o E .F to be D—, A—, Q-, or G—optimal over ', if 

I M() J = mm I M() , 

trM( o) = min trM(e), 

= min fd(x,e)dx, 

or 

max d(x, o) = min max d(x ) 
xES ' ES 

respectively. 

It is clear that the D-optimal design minimizes the generalized variance of the least 

squares estimator O, while A-optimal design minimizes the mean of the normalized 
dispersion . trM(c). These two designs are the optimal designs in the space of 

parameters. On the other hand, the Q and G—optimal designs are the optimal designs 

in the space of control variables. The Q—optimal design minimizes the average of 

d(x, ) over the design space 8, while the G—optimal design minimizes the maximum 

value of d(x, ) over S. Hence, G—optimal design is also known as minimax design in 

the space of control variables. 

The problem of optimal design has been studied extensively by many authors, 

especially by Kiefer. The famous theorem about the equivalence of D—optimal and 

minimax designs is also due to Kiefer and Wolfowitz ( 1960). Many topics about 

optimal design theory can also be found in Fedorov ( 1972). We are not going to 

discuss the usual theory of optimal design in depth. Instead, we confine ourself to 

the robust considerations of experimental design which we are going to discuss in the 

next section and to study some different aspects in the next three chapters. 
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3.2 Historical Review of Robust 

Experimental Design 

There is a major consideration in robust experimental design problems, namely 

the possible violation of the assumed regression model. 

Consider the regression model (3.1.2). The regression problem is to make inference 

about 0 in some "optimal" way. In particular, an optimal estimator of 0 has to be 

chosen and in connection with this estimator the design problem is to choose the 

experimental points, x's in an optimal manner. When we choose the least squares 

method of estimation, then a variety of optimality criteria could be considered in the 

associated design problem as we have discussed in Section 3.1. Unfortunately, as was 

noticed by Box and Draper ( 1959), the strict formulation of the regression function 

becomes dangerous in the situations when the "true" regression function y(x) is only 

approximated by 0Tf (x) thereby introducing a bias term which may be considerable. 

The corresponding model can be given now by 

yj=y(x )=9Tf(x )./,(x ) q, i= 1,...,n, (3.2.1) 

where (x) is an unknown "contamination function" defined on S. &(x) belongs to 

some set *11 with some specified properties. 

Let Ô be the least squares estimator of 0 as we defined in ( 3.1.6), and 

'.2'  y 0 f (x) be the least squares estimator of 0T f (x). We know that 0 is no longer 

an unbiased estimator of 0 . In fact, we have the following: 

Lemma 3.2.1 Under the regression model ".9.2.i), we have 

(i) E[O - o] = B-'( e) b (0, 6) (3.2.2) 

(ii) M(tj.',) = E[(O - o)][(Ô - 0)2'] 

or 2 - 

- - B-'(e) + B-1(e) (' e) bT (,)B-1 () 
71 

(3.2.3) 
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(iii) MSE() = °. f' (x)B'() f (x) 
71 

+ IT (x)B'() b bT (i/,)B-'(e) I () 

where B() = f f (x) T (x)de(x) and j, (b,e) = fS f (x)b(x)de(x) and 6 is the 
design measure on S. 

Proof: 

(i) By (3.1.6) and (3.2.1), we have 

0 

(3.2.4) 

= B 1() f8 f (x)y(x)d(x) 

= B-1 () fS L' (.v)(fT (& 0 +() + e)de(x) 
= B-1 (6)(0 fS L (& fT (x)d(x) +ff (x)i,b(x)d(x) + ef f (x)de(x)) 
= 0 +B-1(e) + e B-1 () Is! (x)de(x). 

Hence, we have E(Ô) =0 +B-'(C) b i.e.,  

(ii) A direct calculation yields the following: 

Ü)(Ô - O)T] 

= E[(Ô —E(Ô) + E()— 0)(0 —E() + E(ö)— O)T] 

= E[(ö —E(ö))(O —E(ö))T] + E[(ö —E(0))(E(Ô)— 0)T] 

+E[(.E(Ô)— O)( _E(0))T] + E[(E(0)— o)(E(0)— O)T] 

= cov(Ô) + (E(Ô 9)) . (E( - 

= -B-'() + (B-1(e) b (), e))• (B-1() 

—B-'() + B-'() b (&,) bT ( b,e)B-'(). 

Note that the last second equality followed by ( i) and the last equality by the fact 

that B'() is a symmetric matrix. 

(iii) We know that the mean squared error of g, MSE(), is d(x, L', ) 

fT (x)M(?I', ) f (x). Hence (iii) is followed by (ii) immediately. 
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It is clear that the usual optimal designs are no longer optimal under the model 

(3.2.1) since they minimize some scale valued functions of B 1() only. There are 

some disadvantages of the usual optimal designs. They are dependent on the assumed 

model and very sensitive to the possible model violation. They provide no opportunity 

for a check of the model's adequacy etc. One attempt to meet these objections has 

been made by Box and Draper ( 1959). They use (x) = Tf (x) to be the least squares 

estimator of the true regression function y(x), calculated under the assumption that 

O(x) = 0, while in fact the real model is ( 3.2.1). They considered the case when 

fT (x) = (1, x, ..., Xm) and suggested that the design should minimize 

f1 11 

I E[OT f (x) - y(x)]2dx = I var[Jdx + I (E[(x)} - y(x))2dx := V + B 
i-i J-1 J-1 

within the class of symmetric design measures supported on [- 1, 1], where they re-

ferred to V as variance error and B as bias error. The major difficulty with adopting 

the criterion "minimize V + B" is that the optimal design depends on the function 

i(x), which is unknown. Even if it is assumed that y(x) is a polynomial of degree 

M + 1, the optimal design still cannot be found, as it will depend on the unknown 

coefficient of Xm+l. To avoid this difficulty, Box and Draper ( 1959) recommended 

that one choose the design to minimize B alone. As they noted that "The somewhat 

unexpected conclusion is reached that, at least in the case considered, the optimal 

design in typical situations in which both variance and bias occur is very nearly the 

same as would be obtained if variance were ignored completely and the experiment 

designed so as to minimize bias alone." 

Beginning with Box and Draper (1959), the problem of finding robust design 

against the model violation has been further studied by many authors in different 

aspects. Designs for versions of (3.2.1) have been constructed in a series of papers. 

These differ in the class of 1P, the design space, the regressors, and in the loss functions 

used. 

Note that the least squares estimator, which disregards the presence of (x), 

may no longer be optimal among linear estimators for 0, and therefore the search 
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for new estimators is of special interest. Marcus and Sacks ( 1977) considered the 

one-dimensional regression model 

y(xi) = a+bx+(x), i = 1, ... ,n, 

where I b(x) I≤ (x), (0) = 0, with p a given function. They restricted the estima-
tors to be linear, but not necessarily the standard least squares estimator, and look 

for designs and estimators to minimize the mean squared error 

Sup E[(ã - a)2 + - b)2J, 
'l' 

where a, denote the estimators and A is specified. 

Pesotchinsky ( 1982), posed the similar problem for the multiple linear 

regression model 

y(x) = Tf (x) + 5(x) + j, 

He confined himself to the use of the standard least squares estimator because in the 

case of small deviations, the performance of least squares estimator is nearly the same 

as of the best linear estimator as was shown by Marcus and Sacks ( 1977). 

Li ( 1984) also considered the similar problem when IF = {?I'(x) 

I 1'(x) I≤ (x)} where (x) is a known function. But for the class of design measures, 
he focused on the case that o) = {-L k, - : k 1, ..., N} for a fixed natural 

number N. 

In a related direction, Huber ( 1975) formulated a problem that 

y(xi) = a + b x + ;(x) + e, i = 1, ... , n, 

where (x) E T = {(x) : f, b2(x)dx ≤ 2} Huber also confined himself to the 

use of the standard least squares estimator based on the above model with (x) = 0, 

and found the design which minimizes the loss 

sup  1 (a+bx—y(x))2dx. 
', J-. 

An unfortunate consequence of this formulation is that it leads to the restriction 

that the designs must be absolutely continuous, otherwise the above loss is infinite. 
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This means that no implernentable designs can have finite loss. However, it is to be 

understood that the continuous designs will be approximated by discrete designs in 

practice. Wiens ( 1992) mentioned the comment that "Our attitude is that an approx-

imation to a design which is robust against more realistic alternatives is preferable to 

an exact solution in a neighbourhood which is unrealistically sparse." Wiens (1990 

and 1992) extended the Huber's (1975) result to the multiple linear regression model 

and to some other loss functions. 

Stigler ( 1971) suggested the so-called C-restricted D-optimal design for the one 

dimensional polynomial regression model 

m 

Pm : Y(Xi) - i = 1,...,n. 

Instead of minimizing JB;1(')J over the class of whole design measures supported 

on [- 1, 1], which is the usual D—optimal design, he suggested the design measure 

minimizing IB;1(e)I among all designs 6 satisfying IBm() 1:5C IBm+i (e)I. The justi-
fication for this choice is based on the fact that if Ôm+1 is the least squares estimator of 

O,, for the model Pm+1 : y(xi) = E' Ox + ei , and e corresponds to an experiment 
run at X1,.., X,,, then n.var(Ôm+i) = .Bm()IIBm+i (e)I 1 Thus this criterion says 

"minimize the generalized variance of the least squares estimators (Ô0, ..., Ôm) for the 
01 2 

model Pm subject to the constraint that var(&+i) ≤ c• -. Similarly, he introduced 

the C—restricted C—optimal design for the model Pm : that is, the design o which 

minimizes max dm (x,) among all designs 6 satisfying I9m(e)I ≤ CIBm+i()I, 
-1<x<1 

where drn(x,e)=fT (x)Mm()f(x) and fT (x)(1,x,...,xm). 

The choice of C reflects a compromise between two conflicting goals: precise 

inferences about 0m+1 and precise inferences about the model Pm. On the one hand, 

C should be chosen sufficiently small so that it will be possible to detect practically 

significant departures from the model with a specified precision ( this requirement 

could be phrased in terms of the power of the test: H : 0m+1 = 0); while on the other 

hand, large values of C will yield more efficient designs for the model Pm. Stigler 

(1971) found the C-restricted D— and C—optimal designs for the model F1, i.e., the 

one dimentional linear regression model. 
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Some previous papers, for example Marcus and Sacks ( 1977), Pesotchinsky ( 1982), 

Li ( 1984), Huber ( 1975), Wiens ( 1990 and 1992), have assumed that a class of pos-

sible bias functions exists but that all functions in the class are equally likely to be 

the actual bias presented in the model. In some cases it would seem that certain 

bias functions would be more likely than the others, and perhaps the experimenter 

can specify a prior probability distribution on the form of the possible bias in the 

model. Hence, Notz ( 1989) attempted to take into account prior information about 

the possible bias and suggested the following model: 

y(xj,w) _ 0Tj (xi) + 0 (X,, W) + 6,(w), i = 1, ... ,n, (3,2.5) 

where w is a random variable on some probability space 1 with probability measure 

fl(w). 

Let Ô (w) be the least squares estimator of 0 in model (3.2.5) pretending 0 is 0. 
Notz ( 1989) found the optimal design e which minimizes 

j {E [( (w)— o) (o (w)— )T] } dfl(w) 

where ' is a scale valued function of E[( (w)— 0)(Ô (w)— 0)T} 

Apart from the "model robustness", there is another direction concerning the 

dependence of random errors. The design problems against the dependence of ran-

dom errors had its beginning in 1940-50's. Some important work has been done by 

Ylvisaker ( 1964), Sacks and Ylvisaker ( 1966 and 1968), Bickel and Herzberg ( 1979 

and 1981). 

Recently, Wiens ( 1991) studied robust designs against simultaneously the model 

violation and the contaminated data by using an M-estimator of the 

parameters instead of the least squares estimator. 

In the next three chapters, we focus on the problem of robust experimental design 

against model violation. We are going to make some extentions of the results of 

Stigler ( 1971) and Notz ( 1989). We are also going to propose a new consideration, 

called "bounded bias optimal design", which was suggested by Wiens in 1992. Details 

will be presented in Chapter 4, Chapter 5, and Chapter 6 respectively. 
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Chapter 4 

Restricted Optimal Designs for 

Approximately Linear and 

Quadratic Polynomial Regressions 

4.1 Introduction 

Consider the following regression model: 

Yi = y(x) =f I (xi) + (4.1.1) 

where 0T__ (os, 01, . . . , 0m), fT (x) = (I, X,.. 

. X), cj's are i.i.d. with mean 0 and 

variance o,2 >0, and Xi E S:=[-1,1], i 1,...,n. Let yT(1) 

6T (ti,. . . and 

'l xi 

1 X2 

\1 X"Xm j 

Then we can write (4.1.1) in the following form, which we call model Pm, 

Pm : Y = F- O+§ , (4.1.2) 
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where e has mean 0 and covariance matrix 0.21. Define B () = f5 f (a;) fT (x)d(x), 
where (x) is a design measure defined on S. The least squares estimator of 0 is then 

= B-1() f f (x)y(x)de(x) which has mean 0 and covariance matrix 
which depends on 

Some of the most frequently required properties of a comparison of designs are the 

following: We say that is preferred to 62 if (i) IM(61)1 ≤ IM(62)1 or IM 1(e1)I ≥ 

IM-1(e2)I, (ii) trM(ei) ≤ trM( 2), (iii) fS d(x, ei)dx ≤ Is d(x, e2)dx, or (iv) 

max d(x, 61) ≤ max d(x, 62), where M() = _B_1() and d(x, 6) 

fT (x)M(6) I (a;). The design measure eo which minimizes each of the four cases 

over some class of design measures is called D-, A-, Q-, or C-optimal design respec-
tively. 

As we mentioned in Chapter 3, Box and Draper ( 1959) pointed out the danger of 

assuming the regression model to be exact, since the violation of the regression model 

is very possible in practice and the usual optimal designs as we mentioned here are 

very sensitive to the possible model violation. The usual optimal designs also have 

some other serious shortcomings. For example, D-optimal design (as well as some of 

the others) permit no check of the adequacy of the model etc. It is therefore desirable 

to find a criterion and designs which meet the following considerations: 

(i) The design should allow for a check of whether or not the assumed model 

provides an adequate fit to the true regression function. 

(ii) If it is concluded that the model is adequate, it should be possible to make 

reasonably efficient inferences concerning that model. 

(iii) The optimal design should not depend on unknown parameters. 

In order to find designs to meet the above requirements , S. M. Stigler ( 1971) 

proposed some new criteria, so-called C-restricted D- and C-optimal designs. In this 

chapter, we are going to extend the C-restricted optimal design to A- and Q-optimal 

criteria and also to a general situation which we call C/crestricted optimal designs, 

where C= (ci,. . . , ck)T. Here are the precise definitions: 

Definition 4.1.1 We shall call a ck_restricted D-optimal design for the model 

Pm if o maximizes IBm()I (or minimizes IB;1()I) among all designs 6 satisfying 
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I8m+j—i()I ≤ Ci IBm+j (i)J for  = 1,... ,k. 

The justification for this choice of definition is based on the fact that if &,,+j is 

the least squares estimator of 9m+j for the model Pm+j, and e corresponds to an 
experiment run at x1,... ,x,, then nvar(m+j) = IBm+i_i(e)I IBm+j ()J 1 o.2, j = 
1,. .. 1 k. Thus this criterion says "minimize the generalized variance of the least 

squares estimators OT= (to, ,.. . , &) for the model Pm subject to the constraints 

that var( m+j) ≤ cj. , j = 1,. . . , k. Similarly, we have: 

Definition 4.1.2 We shall call o a Ck..restrjcted A-optimal design for the model Pm 

if eo minimizes trB;'() among all designs satisfying IBm+ji ()I cj I.8m+j()I 
for j=1,...,k. 

The motivation of A-optimality is. that the minimization of trB;'(e) is equiva-

lent to the minimization of the mean dispersion of the estimates of the parameters 

T = m 1 var(Ô), since T is proportional to trB;1(e). The meaning of Q- and C-
optimality are clear. We simply state them as the following two definitions. 

Definition 4.1.3 We shall call o a Ck restricted Q-optimal design for the model 

Pm if Co minimizes f3 d,,(x, e)dx among all designs C satisfying IBmij_i()I ≤ 
cj JB +3( for j = 1,...,k. 

Definition 4.1.4 We shall call 6 a ck restricted G-optimal design for the model 

Pm if o minimizes max dm(, ) among all designs satisfying IBm+a_i(e)I ≤ 
XES 

cj IBm+j ()I for  = 1,...,lc. 

According to the definitions of c"-restricted optimal designs , Stigler (1971) solved 

the CIc restricted D- and G- optimal designs for the case of m = 1 and k = 1. In this 

chapter, we are going to find the c"-restricted D-, A-, Q-, and G- optimal designs 
for (i) m = 1, ic = 1; (ii) m = 1, k = 2; and (iii) m = 2, k = 1. 

Case (i) is studied in Section 4.3. We use different methods to find the same result 

as in Stigler(1970). Moreover, we point out that the C-restricted D-, A-, Q-, and C-
optimal designs are all the same in this case. 
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In Section 4.5, we discuss the case when m = 2 and k = 1. We simplify the problem 

to a non-linear programming problem with three variables. Numerical searching for 

the C2-restricted optimal design is needed. 

Some interesting results are found in case (ii). When in = 1 and k = 2, the 

problem becomes the following: 

Max /2 subject to .- ≤ 114 -  it 2  and 
Cl 

where 

With the aid of preliminaries in Section 4.2, we have proved that the restricted 

maximization of i2 over F is equivalent to that over F3 and furthermore is equivalent 

to that over .F1, where .F3 = { : E .,(—x) = e(x)} and J { :6 E .T8, 
±i+j+(1—a—/3)o,O≤a≤1,O≤/<1, and O<x<1}. 

There are two limiting cases: ( 1) c2 = oo and (2) c1 = oo. When c2 = oo, we 

know that this is the case of m = 1 and k = 1. For the case when c1 = oo, we find 

the explicit solution to the problem. In general, the solution can only be found by 

numerical search. However, when c1 and c2 have some special relationship, we are 

still able to find the solution explicitly. These are the main results in Section 4.4 

which are presented by Theorem 4.4.3 and Theorem 4.4.5. 

/2 :5c2(2p6 - 
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4.2 Preliminaries 

The search for Ckrestricted D-optimal designs with k = 1 can be simplified by 

searching for the optimal design within the class of symmetric design measures. This 

fact was proved by Stigler ( 1971). In this section, we first indicate that the fact is 

also true for restricted A- and Q- optimal designs and for k > 1. In order to prove 

this fact, we need the following two lemmas: 

Lemma 4.2.1 Let  = and  = (b1) be two matrices. If b5 = (—l)ia 1, 

then JAI = IBI. 

Proof: We know that 

IAI = (__ 1)T(uhti4aiji , . . and IBI (_ 1)T(u1.mn)bi11,. . . , 

where 'r(ji,... ,j,) is the number of inverse order of the permutation (ii,. . . ,j,), and 
the summation is over all the possible permutations of ( 1,.. . , n). We claim that 

a111 ,... , a,1, = b111,. .. , b, 1 for all (ii,. . . 'in). 

Followed by the assumption bij = (-1)a 1, it is sufficient to show that there 

are even number of pairs (i, i) such that i + ji is odd. This must be true since 

(i+jj)=i+fj=n(n+1)whichiseven. o 

Lemma 4.2.2 Let A = and B = be two non-degenerate matrices. 

Denote A 1 and B-1 = If b3 = ( 1)ia 1, then b = (-1)a. 

Proof: Let 

'-1 0 

P = (Pij)nxn = 

0 

f (_ 1)i ifi = j 
Pu = S 

0 ifij 

(__1)n 
I 
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Then, we have P' = F, and B = PAP. Hence, we get B-1 = P'A'P' = 

PA-'P. This implies that b = (-1)+ia. 0 

Let V(c1) be the class of designs satisfying the constraint Bm+ j-1 ('s) I ≤ C3 IBm+j () I, 
Ic 

k, and V(Cc) = fl V(c). We claim that the following lemma is true. 
71 

Lemma 4.2.3 (i) V((7c) is convex. (ii) e(x) E V((gk) if and only if e(—x) E 

V((7c). 

Proof: (i) The convexity of each V(c1) was proved by Stigler ( 1971). Hence V((2 k) 

is convex. 

(ii) (x) E V((2c) implies that (x) E V(c3) for j = 1,.. . , lc. Hence we have 

IBm+j_i () < qj Bn j () J for j = 1,. . . , k. Let b1 be the ith row and 1h column 

element of B((x)) and b be the ith row and ph column element of B((—x)). It is 

clear that b1 = (— l)+'b 1, since we have Bm () = f5 I (x) 1T (x)de(x) with 

fT (x) = (1,x,.. . ,x'). By Lemma4.2.1, wehave IBm+j_i((_))I ≤ C1 IBm+j (4(X))I 
for j = 1,. . . , Ic. This implies that e(—x) E V(c1) for j = 1,... , Ic. Hence we have 
(—x) E V((7lc). 

Similarly, we can show that e(—x) E V((IIc) implies e(x) € V((7k). 0 

We denote D((2ic), A(Ck), Q((7k) to be the sets of ck restricted D-, A-, Q-

optimal designs respectively, i.e., D((2Ic) = jCo : IB-'(e0)I min IB-'()I}, 

A(c") = {eo : trB1(o) = min k ()}' and Q(çk) = {o : fl, d(x,. o)dx = 

min j1 d(x, ) dx}. Then we have: 
eeV(ck) - 

Lemma 4.2.4 (i) D((7c), A((7;), and Q((7c) are the convex subsets of V((7c). 

(ii) (x) € D(Ck), A(çk), or Q((7k) if and only if (—x) E D((!c), A((7k), or 

Q(çk) respectively. 

Proof: (i) The following fact was noticed by Kiefer (1959): 

If A and B are any symmetric positive definite matrices, then 

[AA + (1 - ))B]' ≤ AA + (1 - 
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where we write A ≤ B to mean B - A is semipositive definite." 

Let e1,2 E A(cc) and* = A1+(1— A) 2, where 0< A < 1. By the convexity of 

V(c' ), we have E V(Ck). It is obvious that Bm (*) = ABm(i) + (1 - A)Bm(2). 

Taking A = Bm (i) and B = B.. (62), we have B;l(*) ≤ AB;;' (61) + (1 - A) B;1(2). 

Hence, 

trB l(e*) ≤ AtrB;'(ei) + (1 - A)trB;1(2) = trB;1(1). 

Note that the second equality followed by the A-optimality of 61 and 2• Since 

i E A((!c), c" E V((!c), and trB;l(*) ≤ trB;'(e1), we must have trB;l(e*) = 
trB;1(1), and hence E A(ç'). 

Similarly, let 61,62 E Q((Ik) and = ) i + (1 - A) 2, where 0 < A < 1. We know 

that B;l(*) ≤ AB;1(1) + (1— A)B;'(e2). Hence we have dm (x,e*) ≤ Adm (x,ei) + 

(1 - A)dm(x,2) and 

jdm(X,*) dx ≤ Ajdm(X,i) dx +(1 A)jdm(x,e2) dx = jdm (X, i)dx. 

Again, the second equality followed by the Q-optimality of 61 and 62. The fact that 

ei E Q(ck), E V(çc), and f5 dm(, *) dx < fS dm(, j) dx implies Is d", (x, *) dx = 

f5dm(x,i) dx and E Q((!k)• 

The convexity of D((2') has been proved by Stigler ( 1971). 

(ii) Let 

fi 

Bi(e(x)) = f (x). fT (x)de(x) J X (1, x, . . . , x') d(x) 

x1 ,/ 

/ 
1 i1 ... /21 

\ /11 111+1 1121 1 
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where ti = fil x d6 (x). Then we have 

I 

Bi(e(— x)) = 

1 

1L1 

— 1 ••• (- 1)'pi 

/22  

(-1)'+' + (- 1)'+2z1+2 (-1)21p j 

By Lemma 4.2.1, we have IBi((x))I = IBz((-x))l for any natural number 1, espe-
cially for l=m,...,m+k. 

Let B;1((x)) (b)(m+l)x(m+l) and B;1(e(— x)) = (bij )(m+l)x(m+l). By Lemma 

4.2.2, we have b,-.j (-1)1+ib. Hence we get trB 1((x)) = trB-1 (e(—x)). 

Note that 

and 

dm(x,e(x)) = (1,x,. . ., xm)B;l((x)) 

dm (X,()) = (1,x). .. ,xm)B;1((—x)) 
S 

in m 
= 

i=Oj=O 

In m 

= 
i=Oj=O 

Although dm(x,e(x)) and dm (x,(—x)) are different for the terms when i + j is 
odd, but they are the same for the terms when i + j is even. Hence we have 

m fl, d(x,(—x)) dx = m dx = II f dx 
even 

= f.i dm (x, e(x)) dx. 

Part (ii) of Lemma 4.2.4 follows by the above results. 0 

The consequence of Lemma 4.2.4 is that there is a symmetrical optimal design. 

In fact, let i be a ck.restrjcted optimal design and define e2(x) = i(—x); then it 

follows that + 2)/2 is a symmetrical Clc restricted optimal design. Hence, for 
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Ck...restricted D-, A-, and Q- optimal designs, we only need search optimal solutions 
within the class of symmetrical designs. 

The problem of search for c'-restricted optimal designs can be further simplified 

by some well-known results (see Karlin and Shapley(1953), Shohat and Tamarkin(1943), 

and also Stigler(1971)) which will reduce the problem to a non-linear programming 

problem with 1 variables (1 + 1 if l is even). These variables are the (1 - 1)/2 points 

(1/2 of 1 is even). x, i = 1,. .. , (1— 1)/2 in [0,1] such that the optimal e is supported 

by {±x} together with ±1 and 0; and the (1 + 1)/2 weights ((1 + 2)/2 if l is even) 

(x), i = 1,.., , (l - 1)/2 and (0). However, we are not going to use this result, 

since it may not sufficiently reduce the problem. Instead, we would like to provide a 

direct approach to simplify the problem of finding (7k-restricted optimal designs. But 

first, we introduce some necessary notations. Let 

and 

O≤x≤1, o+i9≤1}, 

where F is the class of all design measures supported on [- 1, 1], and let 

0≤x≤1}. 

We define a functional To as 

1 1 

To : It2 by To() = (J_ x2de(x), J_ x4de(x)) 
and a functional T1 as 

T1(e) : - R3 by T1 (e) = (J x2de(x), J x4d(x), J x6de(x)). 
It is clear that 

To(e){(x,y):xx,yx2,0<x<1}:S0 
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and 

T1() = {(x,y,z) : x = X, y = X" z = X" 0 ≤ x ≤ 1} := S. 

Furthermore, we denote & to be the convex hull of S0 and to be the convex 

hull of S1. Then we can prove that the next two theorems are true. 

Theorem 4.2.5 T0( 0) = TO(F) = 

Proof: Theorem 4.2.5 is a special case of Theorem 2.2.4. 

Theorem 4.2.6 T1(F1) = T1(F) = 

We would like to present a lemma before we prove Theorem 4.2.6. Let 

(0,0,0), p' = (1,1,1), = (k,k2,k3), where 0 < k < 1, and 

P = {Ak : Ak is the interior and boundary of the triangle 

with vertices Po, pi, pl, 0 ≤ k ≤ 1} - 

The following lemma plays an important role to the proof of Theorem 4.2.6. 

Lemma 4.2.7 P= 1. 

0 

P0 

Proof: (i) It is obvious that P C Ŝj, since Po, pi, PA: E S, and any point p E Ak is a 

convex combination of Po, p1, and ph. 

(ii) We are going to show that "if p Ak for any k E [0, 1], then p 

Let  = {(x,y,z): x=t, y = t, z=t, 0 ≤ t≤ 1}, and fl={ir,, :z= 

(1 + k)y, k ER'}. It is obvious that irk goes through po and pi, and U irk =R3. 
k€ R1 

Moreover, we have irk fl S = {po, pi} for k ≤ 0 or 1 ≥ 1, since the following system 

of equations 

z = —ka;+(1+k)y 

a; = a;, y = a;2, Z= a;3 

has solutions x, = 0, a;2 = 1, and a;3 = k. 

For any point p E lrk\L, where ic ≤ 0 or ic ≥ 1, it is easy to see that there is a 

such that p E ir and ir fl S = 0. Hence ir fl = 0 and p 
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We are now going to show that for any point p E 7rk\Ak yields p i when 

O<k<1. 

Let S and A be the projections of and Ak onto the plane xOy, i.e., z = 0. 

We have 

S={(x,):0≤x≤1,x2<y<x} 

and 

A={(x,y):0≤x≤Ic, kx≤y≤x;andk≤x1,(l+k)x—k<y<x}. 

We define Bi={(x,,):O<x<k,x2 <y<kx}, and Bi ={(x,y):k<x< 

1, x2 < y < (1 + k)x - k}. It is clear that S A U B1 U B2. 

Let p be the projection of p onto xOy. For any point p E 'Jrk\L, S' implies 

p i. Hence, we only need to consider the point p E irk\L, such that p € B1 U B2. 

Figure 4.2.1 Figure 4.2.2 

Case  p*EB 

For p = (x0, yo, z0) E Irk such that p* E B1, we have 

Yo < kx0. (4.2.1) 

Let iri(a) be a plane going through P0 and p. Then ir1 (a) satisfies the following: 

a b 
a:0 I/o 
—+—+zo=0 
a b 

(4.2.2) 

(4.2.3) 
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Since P E irk, we also have 

zo = —kxo + (1 + k)yo. (4.2.4) 

Put (4.2.4) into (4.2.3) to get 

+ LO - kxo + (1 + k)yo 0 and 1 [kxo -  (1 + k)yo]a -  x0 (4.2.5) 
a b b y0a 

Put (4.2.5) into (4.2.2) to get 

+ {[kxo _(1+k)Yo]a_xo}y+=0, 
a yoa 

and hence we have 

yox + {[kxo - (1 + k)yo]a - x0}y + yoaz = 0. (4.2.6) 

Thus (4.2.6) is the equation of iri(a). Varying a within R1 we get the family of all 

the planes going through Po and p. We denote this family as ll, i.e., III = {iri(a) 

a ER'}. 

We are now seeking a plane iri(a*) such that iri(a*) fl Si = {po}. Solving the 

following system of equations 

Iyox +{ [kxo — (1 +Jc)yo]a — xo}y+yoaz=O 

I x=x, y=x2, z=x3 

we get 

yox + {[kxo —(1+ k)yo]a - x0}x2 + y0ax3 (427) 

=x{y0ax2+[(kxo—(1+k)yo)a—xo}x— yo} 0 . 

We know that x = 0 is a solution of (4.2.7), and we hope that there exists a real 

number a such that 

y0ax2 + {[kxo - (1 + k)yo]a - x0}x + Yo = 0 (4.2.8) 

has no solution. (What we really need is that (4.2.8) has no solution in [0,1].) 

The necessary and sufficient condition for (4.2.8) to have no solution is 

{[kxo - (1 + k)yo]a - x0}2 - 4ya < 0. (4.2.9) 
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(1) For kxo —(1+ k)yo O,wehave 

51 =  

Note that 
{xo[kxo -  (1 + k)yo] + 2y}2 +  

[kxo - (1 + k)yo]4 [kxo - (1 + k)yo]2 
zr[kxo - (1 + k)yo]2 - {xo[kxo - (1 + k)yo] + 2y}2  

[kxo - (1 + k)yo]2a2 + x - 2x0[kxo - (1 + k)yo]a - 4ya 

[kxo - (1 + k)io]2a2 - 2{xolkxo - (1 + k)yo] + 2y}a + x 

[kxo - (1 + k)yo]2 I a2 2x0[lcxo -  (1 + k)yo] + 2z  a 
[kxo - (1 + k)yo]2 

+ [k(1+k)]2f 

[kxo - (1 + k)yo]2 a 
xo[kxo -  (1 + k)yo] + 2y02  2 { ( fkxo - (1+ k)yo]2 

{xo[kxo -  (1 + k)yo] + 2yg}2 + X0 } 
[kxo - (1+ k)yo]4 [kxo - (1+ k)yo]2 

1  
[kxo - (1 + k)yo]4 {x[kxo - (1 + k)yo]2 - x[kxo - (1 + k)yo]2 

=  

—4y - 4xoy[kxo - (1 + k)yo]} 

—4y  
{y + co[kxo - (1 + k)yo}} 

= [kxo - (1 + k)yo]4 
—4y  

{+kx—(1+k)xoyo} 
= [kxo - (1 + k)yo]4 

—4y  (xo—io)(kxo—yo)<O. 
= [kxo - (1 + k)yo]4 
For (x0, y0) E B1, we have x0 > yo and I/o < kxo (4.2.1). Hence, we get Si <0 if 

we choose 

[kxo - (1 + k)yo]4 

= [kxo - (1+ k)yo]2 

(2) For lcx0 - (1 + k)110 = 0, we have Si = A - 4y2 a. Hence Si <0 if we choose 

a* > x/4y. 

The conclusion of the above argument is that there exists a real number a* such that 

(4.2.8) has no solution. Hence, there is a 7r,(a*) E Hi, such that lri(a*) fl Si = {po}. 

Note that Po is an end point of S1, and S1 is located at one side of lri(a*). It is easy 

to see that there is a plane ir such that p E ir and ir fl S = 0. This implies that 

ir fl S = 0, and hence we conclude that p 

xo[kxo -  (1 + k)yo] + 2ii  
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Case 2 P* E B2 

For p = (x0) Yo, zo) E Irk such that P* E B2, we have 

yo < (1 + k)xo — k . (4.2.10) 

Let 71-2(a) be a plane going through pi and p. Then ir2(a) satisfies the following: 

XO 

X - a b + y — 1 + (z —1) = 0 

a b 

Put (4.2.4) into (4.2.12) to get 

xo a _1+Yo b _1 kxo + (1 + k)yo — 1 = 0, 

and 
1 [kxo—(1+k)yo+1]a—(xo_1)  

T=  

Put (4.2.13) into (4.2.11) to get 

x _ 1 + (y—l){[kxo—(1+k)yo+l]a—(xo-1)} +(z-1)=0 
a (yo —1)a 

and hence, we have 

(4.2.11) 

(4.2.12) 

(4.2.13) 

(yo_ 1)(x_ 1)+{[kxo_(1+k)yo+1]a_(xo_1)}(y_1)(yo_1)a(z_1) = 0. (4.2.14) 

Thus (4.2.14) is the equation of 7r2(a). Varying a within R1 we get the family of all 

the planes going through p, and p. We denote this family as 112, i.e., 112 = {ir2(a) 

a ER'}. 

We are now seeking a plane 7r2(a*) e 112 such that 1r2(a*) fl S1 = {pi}. Solving 

the following system of equations 

(yo 1)(x - 1)+{[kxo—(1+k)yo+1]a_(xo_1)}(y_1) 

+(yo-1)a(z-1)0 

x=x, y=x2, z=x3 
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we get 

(yo — 1)(x - 1)+ {[kxo — (1-i-k)yo -i-1]a— (x0 -.- 1)}(x2— 1) 

+(yo-1)a(x3-1) 

= (x— i){(yo — 1) + [(kxo — (1 + k)yo + 1)a — (xo-1)](x+1) 

+(yo - 1)a(x2 + 2 + 1)} = 0. (4.2.15) 

We know that x = 1 is a solution of (4.2.15), and we hope that there exists a real 

number a such that 

(yo — 1)+{[kxo -- (1+k)yo+l]a_ (xo .... 1)}(x+1) 

+(yo-1)a(x2-j-x-i-1) 

= (yo —1)ax2+{(yo-1)a+[kxo_(1+k)yo+1]a_ (xo _ 1)}x 

+(yo1)+ (yo -1)a+{[kxo—(1+k)yo+1]a_ (xo _1)} 

= (yo - 1)av2 + (kxoa - kyoa - xo + 1)x 

+(yo + kxoa - kyoa - x0) = 0 (4.2.16) 

has no solution. (Again, what we really want is that (4.2.16) has no solution in [0,1].) 

The necessary and sufficient condition for (4.2.16) to have no solution is 82 < 0, 

where 

52 = (kxoa - kyoa - xo+ 1)2 - 4(yo - 1)a(yo + kxoa - kyoa - x0) 

= [lca(xo - yo) + (1 - xo)]2 - 4(yo - 1)a[ka(xo - yo) - (xo - yo)] 

= k2(ro - yo)a2 + (1— xo)2 + 2k(xo - yo)(1 xo)a 

—4k(yo - 1)(xo - yo)a2 + 4(yo - 1)(xo - yo)a 

[k2(xo - yo)2 - 4k(yo - 1)(xo - yo)]a2 + 2[k(xo - yo)(l - x0) 

+2(yo - 1)(xo - yo)]a + (1 - xo)2 

= k(xo - yo)[k(xo - yo) + 4(1 - yo)] 

.f(2+2 [k(1—xo)--2(1—yo)]  
k[k(xo — yo) + 4(1 — yo)] 

(1 - ao)2  

k(xo - yo)[k(xo - yo) + 4(1 - Yo)} 

= k(xo - yo) [k(xo - yo) + 4(1 - yo)] 

• 1('a + k(1— x0) - 2(1 - yo) ' 2 [k(1 -  x0) - 2(1 - Yo)]2 
k[k(xo - yo) +4(1— yo)]) k2[k(xo — yo) + 4(1— yo)]2 

+ (1—xo)2  
k(xo - yo)[k(xo - yo) + 4(1 - yo)] 
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Note that k(xo - yo) + 4(1 - yo) 54 0 when p E B2, and 

[k(1 - x0) - 2(1 - yo)]2 +   
k2[k(xo - yo) + 4(1 - yo)]2 k(xo 

(1 - xo) 2 k[k(xo - yo) + 4(1 - yo)] 

k2(xo - yo)[Ic(xo - 
—4(1 - yo)  

k2(xo - yo)[k(xo - yo) + 4(1 - yo)]2 

—k(1 - x0)(x0 - yo)} 

—4(1 - yo) [( I + k)xo - k - yo]  

k2(xo - yo) [k(xo - yo) + 4(1 - yo)]2 

(1 - x0)2 

- yo)[k(xo - yo) + 4(1 - yo)} 
—(xo—yo)[k(1—xo)-2(1—yo)]2 

Yo) +4(l — y)]2 

[(1 - y0)(x0 - yo) - k(1 - x0)2 

<0, 

since for (x0, y0) E B2 we have Yo < (1 + k)xo - Ic (4.2.10) and Yo < x0. Hence we 

have 62< 0 if we choose 

a* -  k(1—xo)-2(1—yo)  

- k[k(xo — yo) + 4(1 — yo)] 

The conclusion of the above argument is that there exists a real number a* such 

that (4.2.16) has no solution. Hence, there is a ir2 (a*) E 112 such that 7r2(a*) fl Si = 

{pi}. Note that pi is an end point of S1, and S1 is located at one side of 1r2(a*). It 

is easy to see that there is a plane such that p E ir and ir fl S1 = 0. This implies 

0 that ir fl S, = 0, and hence we conclude that p 

With the aid of Lemma 4.2.7, we are now able to prove Theorem 4.2.6. 

The proof of Theorem 4.2.6: 

We are going to prove Theorem 4.2.6 by showing (i) T, (.Fl) C T(.F) , (ii) T1(Y) c 
, and (iii) 1 C T1(F1). 

(i) It is obvious that T1(F1) g Ti(s), since 2i 

(ii) By Lemma 2.2.2, we know that for any E .F there exists = I 

such that 6n = . 

Let p = x2 den, f.i x4 d6n, f_ x6 and 

= (A x2 d, f1 x4 d, A x6 de). According to Lemma 2.2.3, we have p - P. 

Note that p, = (f1 x2 J1 x4 den, i: 1 x6 d) 

= pnixi, i1 pnj, f pniXj) 
= E 
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since E 51, i = 1,... ,n. Note also p is a limit point of pn and S is a 

closed set. This implies that p E . Hence we have T1(.'F) 

(iii) By Lemma 4.2.7, we have P = . Hence, for any p E Si, there exists a 

number k E [0,1] such that p E Ak. This implies that p = ap1 + /3Pk + (1 - a - 13)po 

for some 0 ≤ a ≤ 1,0 ≤ P:5 1, and a+13 ≤ 1, where Pk € S. 

Let o = ±i++(1— a—/3)o. Then oEF, and 

= (f.1x2deo(x), f. 1x4deo(x), f. 1z6do(x)) 

= (a+,8k,a+flk2,a+flk3) 

= a(1,1,1)+13(k,k2,k3)+(1—a—/3)(0,o,o) 

= apl+/3Pk+(1—a---fi)po. 

Hence we have p = T1(0) E T1 (F1), and j T1 (F1). 0 
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4.3 Approximately Linear Regression Model: 

Case I 

We are now going to find the C"-restricted optimal designs for different optimality 

criteria. In this section, we only consider the case when m = 1 and k = 1. We simply 

write "C-restricted" rather than "C1-restricted", since in this case there is only one 

component in the "vector" ç1. 

According to Lemma 4.2.4, we only need search C-restricted optimal designs 

within the class of symmetric design measures supported on [- 1, 1]. We define 

.F={:EF e(—x)=e(x)}. For any EF,wehave 

0 

/22 

/1 0 

and B2() = I 0 /22 
112 0 /-

/22 

where /22 = f.il x2d and /24 = f.1 x4 d. Consequently, we find IB1(e)I = /22, IB2()( = 
1 2 

/22(124 - /4), irBj 1() = 1 + —, di(x,) = (1,x)Br1() ( ) = 1 + . Hence 
/22 /2 

we have f.1 di(x,)dx = 2 + ----, and max d, (x,  = 1 + --. Consider the 
3/22 —1<x<1 /22 

loss functions £D() = IB;1(e)I, £A (e) = frB;1(e), £Q(e) f.1 dm(x,e)dx, and 
= max dm (x,). Form = 1 and £() E {CD (), CA(C), £Q(), £ G(e)}, it is 

obvious that 

mm £() subject to lBi()I ≤ clB2(e)I 

is equivalent to 
1 2 

max / 2 subject to - </24 

The solution of this problem has been presented in Stigler ( 1971). Stigler claimed 

that the restricted optimal designs can be obtained by searching within the class of 

symmetric designs supported at three points — 1,0, 1. This conclusion is based on 

the well known results we mentioned in Section 4.2. But here we are going to solve 
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the problem based on the theorems we provided in Section 4.2 which will lead to the 

following theorem, the same result as Stigler's ( 1971). 

Theorem 4.3.1 For c ≥ 4, the C-restricted D-, A-, Q-optimal designs over .F, and 

C-optimal design over .F., for the model .P1 is given by 

1 1/1 1 1 Ii 1 
eo(—l)o(l)+V__, o(0)— V ---. 

Proof: (Method 1) 

According to Theorem 4.2.5, we have T0(.17) = S0, where = { : = 

(1 - a) o,O < a < 1,0 < x < 1}, T0() = (f. 1x2d, f1x4d) = (z2,4), and 

So = {( t2, 94) : = 4, 0-< u2 1}. is the convex hull of S0. On the "plane" 

of t12 0 z4 (imagine it2 and 144 could be any real numbers), the regions of & and 
cB2( can be shown by the following Figures: 

j)(q )'4-A .A4 

S, 
Figure 4.3.1 

1144 
14 'Ai 

Figure 4.3.2 Figure 4.3.3 

I1 is easy, to see that the minimum value of c, such that the problem has feasible 

solutions, corresponds to the unique solution of the system equations of 94 = j4 + 

/14 = i2, and 2it2 = 1. In this case, we get = = and c= 4. 

For any 4 ≤ c < oo, the C-restricted optimal design corresponds to the solution 

of 
1 { Y4 - 14+ 

14  = /22 
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1 '4 c ii 1 i 1. which yields /22 /14 - 2 ± - -. We choose /22 = P4 = - + - 4 c -, since we 
2  

want to maximize /22. 

On the other hand, any point on the "line" /24 = /22 can be realized by a design 

measure o of the form eo = a A±1 + (1 - a)L o for some 0 ≤ a ≤ 1. This implies 

1 Ii i. fi i/i i\ 
that a=flx2deo=p2=+V__. 

L1o, 
I — Vil — 1 1 1 

or we can write o(-1) = o(1) = + - - and o(0) 
2 4i  = 

0 

Proof: (Method 2) 

Again, by Theorem 4.2.5, we know that 

max /22 subject to ≤ 94 -  92 

max /22 subject to ≤ - /4 

For any E F0, we have = + (1 - a)z o for some 0 ≤ a ≤ 1 and 

0 ≤ x ≤ 1. Hence, we get /22 = f.1 X2  = ax and pj = f1 X4  = ax2. The 
problem now becomes 

is equivalent to 

max {ax} subject to ≤ ax  - a2x2 for 0 ≤ a ≤ 1 and 0 ≤ x ≤ 1. (4.3.1) 

It is easy to see that (4.3.1) is equivalent to 

max {ax} subject to = ax  - a2x2 for 0 ≤ a 1 and 0 ≤ x ≤ 1. (4.3.2) 

Let L(a, x, ) ax + \[(a - a2)x2 - ], and set 
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We find that the system of equations (4.3.3), (4.3.4), and (4.3.5) has no solution, 

since (4.3.3) and (4.3.4) contradict each other. 

Consider the boundary cases (i) a = 0, (ii) a = 1, (iii) x = 0, and (iv) x = 1. We 

find that the maximum value will occur in the case when x = 1. In this case, we have 

L(a, 1, )) = a + )t[a - a2 - -1. Solving 

we get 

= l+A(1-2a) = 0 

= a(1— a)_! = 0 

a2_a + = 0 and ce 
c 2 V4 c 

1 Ii 1. 
Again, we choose a = + - -, since we wnat to maximize ax. Therefore, we get 

eo= (4 W4 c 2 V4 c 4 2 4 c 
+ A±1 + 1 — 1 — 1) A0, i.e. eo±1=+ I V1 — !and 

Remark 1. The design measure 6o which we found in Theorem 4.3.1 is the C-restricted 

D-, A-, and Q- optimal design over F. This fact follows by Lemma 4.2.4. But the 
design measure 6o may not be the C-restricted C- optimal design over F, although 

Stigler (1971) showed the convexity of G((!k), where G((7k) = {: max d(x, eo) = 

eEmin max v(ck) d(x, o)}. But we do not know whether e(x) E G(Ck) w ill im ply 

(—x) E G((7') or not. To be safe, we only consider o to be the C-restricted C-

optimal design over Fs. 

Remark 2. For c = oc, the design becomes (-1) = CO(J) = which is the usual 

optimal design for the model P1. When c = 4, we get (- 1) = 60(1) = and 

o(0) = , which is the best design for estimating /32 in the model P2. For 4 < c < oo, 

we get a compromise between these two extreme cases. 

The question remains: how should c be chosen? As we mentioned in Chapter 3, 

the choice of c should reflect both the desire for efficiency of the model P1 and the 
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wish to check the fit of this model. Stigler (1971) considered the following measures 

of the efficiency of a design for a model. 

Definition 4.3.2 The model Pm D-efficiency of a design is given by 

(  IBm()I  
E) = max IBm()I) 

77E-'F 

1/(m+1) 

The model Pm G-efficiency of a design is given by 

m+1  

max dm(X,j 

Stigler (1971) provided some tables and pictures to show the relationship between 

the choice of c and the efficiencies E() and E(). It is easy to extend this definition 

to the A- and Q optimal situations. 

Definition 4.3.3 The model Pm A-efficiency of a design e is given by 
min trB'(i7) 

- 'iE m 
m/ - trB;1() 

The model Pm Q-efficiency of a design is given by 

min fl, dm(x,)dx 
E)_ flEldm(x,e)dx 
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4.4 Approximately Linear Regression Model: 

Case II 

The C-restricted optimal design we discussed in Section 4.3 is useful for deter-

mining the presence of a quadratic term in the regression function, but it is no good 

at all for estimating cubic or higher-order coefficients. The C1-restricted optimal de-

sign is proposed to deal with this situation. In this section, we are going to find the 

Ck. restrjcted optimal designs for the model Pm with m = 1 and k= 2. 

As we noted in Section 4.3, form = 1 and £() E {/ D(e),CA(),Lq(),LG(e)}, 
we have that 

inip £() subject to IBi()I ≤ c IB2()J and B2()1 :5C2 JB3()I 

is equivalent to 

max It2 subject to -- ≤ /.L - /1 and /22 ≤ c2(/22/16 - 

E1  Cl 

According to Theorem 4.2.6, the above problem is equivalent to 

max /12 subject to --- ≤ /L - p and /22 :5 c2(p2ji6 - 

eEFi Cl 

1,0 ≤ x < 1}. 

For any C E F, we have 

Fl Fl Fl 

/22=] x2dt=a+fix,4=j x4de=a+/3x26=J x6d=a+f3x3. 

Hence, the problem can be further transformed to the following form: 

max {c + /3x} subject to -- a + 9x2 - (a + fix)2 and a +)3x ≤ c2afix(1 - x)2 
cl 

for 0≤a≤1,0≤fi<1,a+fi<1,O<x<1. 



-= max 
C2 (aj3,a)EA a+fix 

where A={(a,fi,x):O<a<1,O<fi<1,a+/3<1,O<x<1}.Wedenote 

L(a,/3,x) = a/3x(1_ x)2 

and we should exclude the case when a = 0 and 9 = 0, or a = 0 and x = 0 in which 

our objective function L(a, 68, x) will approach zero and the corresponding c2 = oo. 

Solving 
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The problem may not have feasible solutions for some values of c1 and c2. If we 

consider the restriction c1 alone, we know that the lower bound for c1 is cl = 4. Now 

the question is: What is the lower bound for c2? The following lemma answers the 

question. 

Lemma 4.4.1 The lower bound for c2 is c = 16, and the corresponding design 

measure is e = z 1 + 

Proof: It is easy to see that the lower bound of c2 ,denoted by c, should satisfy the 

following: 
1 a/3x(1—x) 2 

0  - fix(1—x)2 [(a+fix)—a]= fix(1—x)  = 0 
- (a+ /3x)2 (a + ,19x)2 

9L - ax(1—x)2  
[(a+ fix) — fix] = a2x(1 _ x)2  =0 

- (a + fix)2 (a + fix)2 

Ox = (a + fix)2[(° +,8x)(1  - 4x + 3x2) - x(i - x)268] 

a/3(1— x)  
= (a-3ax-2/9x2) = 0 

(a + ,6X)2 

we find that there is no solution inside A. Hence, the extremum points must occur 

on the boundary of A. It is obvious that the boundary cases (i) a = 0, (ii) fi = 0, 

(iii) x = 0, and (iv) x = 1 are corresponding to the minimum values of L(a, 0, x). 

We only need to consider the situation when a + /3 = 1. In this case, we have 

L fJ -_ /3(1 - fi)x(1 - x)2 
o —fi,fi,x) (1—fi+ fix) 
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and 
I. ÔL0 = x(1_ x)2 

x(1 - x)2 

(1_/9+/3x)2 

8L0 -  /9(1—  [(1 - /3 +,8x)(1 - 4x + 3x2) - x(1 - x) 2/3] 

Ox - (1_/3+/3x)2 
- /3(1-8)(1—x)  

1- 3x—,8+3/3x- 2/3x2) 
(1 _fi+flx)2 

We exclude the cases of /3 0, ,8 = 1, x = 0, or x = 1 which will cause a = 0. By 

solving 

(1_2fl+/32 _/92x) 

5 1-2/3+fi2-132x =0 (4.4.1) 

1. 1 - 3x - /3 - 3/3x - 2f3x2 = 0 , (4.4.2) 

we find /3 = 1, x = 0, or P= , x = . We choose the solution /3 = , x = which 

yields a = and 

121_i 1 
max L(a,/9,x)=—. 

16 (c,f3,v)EA C 

Hence, we get c = 16 and the corresponding design measure is = 

(i—a—fl) o= ±i+. j. 

6 3Remark 1. It is interesting to note that the design measure corresponding to c1 = 4 

(the lower bound of c1) corresponds to c2 = 00 (the upper bound of c2). But the 

design measure 6 corresponding to c2 = 16 (the lower bound of c2) corresponds to 

c1 = 8 (not the upper bound of ci). This fact implies that the design measure 6 which 

provides the largest opportunity for determining the presence of a quadratic term in 

the regression function is no good for estimating cubic coefficients. But on the other 

hand, the design measure e which provides the largest opportunity for determining 
the presence of a cubic term still allows us to estimate the quadratic term with some 

degree of precision. 

There are two special cases linked with the original problem. One considers the 

restriction c1 only and the other c2 only, i.e. 

(i) max /12 subject to IBi()l cl IB2()I, 

a 
L±i+ ±j+ 

0 
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and 

iia• x 112 subject to 1B2(e)I ≤ C2 JB3tE ()J. 

Case (i) has already been studied in Section 4.3. For case (ii), we first point out 

the following fact: 

Lemma 4.4.2 The problem of max P2 subject to 1B2(e)I ≤ c2 I83()I is equivalent 

to the problem of max 112 subject to 1B2(e)1 = C2 IB3(e)I 

Proof: The constraint IB2(e)I < c2 JB3(e)I is the same as 112 ≤ c2(p2p6 - p) or 
P6 ≥ + i-, if we exclude the case 92 = 0. For convenience, we use (x, y, z) instead 

of(p2,p4,p6). For any fixed x € [0,1],we denote D(c2)= {(x,y,z) : and 

E(c2)={(x,y,z):z2!.+i}. Let 7rk:z=—kx+(1+k)y and 'lp{Ak:Ak 
X C2 

is the interior and boundary of the triangle with vertices Po, P1, Pk, 0 ≤ k ≤ 1), where 

Po = (0,0,0), p' = (1, 1, 1), and Pk = (k, k2, k3) (See Section 4.2). It is obvious that 

& 17r : 0 ≤ k < 1}. In order to get D(c2) fl §io 0, it is necessary that 

x c2 (4.4.3) 

for some O< k < 1 and some (x,y)ES*={(x,y):O<x< 1, x2 < y x}. The 

inequality (4.4.3) can also be written as 

Solving 

we get 

C2 
(4.4.4) 

- (1 + lc)xy + (kx2 + -f-) = 0, (4.4.5) 
C2 

(1 + k)x ± \/( 1 + k)2x2 - 4(kx2 + fl - (1 + k)x ± J(i - k)2x2 - 
2 - 2 

Hence, (4.4.3) will hold if (1 - k)2x2 -4x > 0. In this case we have 
C2 

(1 + k)x - V ( C2 - k) 2X2- (1 + k)x + /(1 - k)2x2 - 
C C2 2  

2 2 

4x 

C2 
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≤ (1+k)x+/(1_k)2x2 = (1+k)x+(l—k)x = x. 

It is not hard to see that D(c2) fl 0 implies E(c2) fl 0, since we have y < x. 

2 

Figure 4.4.1 

Note also our objective function is simply P2 Hence, it is sufficient for us to search 

for the maximum P2 on the boundary of the constraint which is IB2(e)I = c2 1B3(e)J .0 

According to Lemma 4.4.2, we can use Lagrange's method of multipliers to solve 

the following problem: 

or 

max 02 subject to P2 = c2(p2p6 -. 
.EY 

max { + 8x} subject to a + /3x = c2aflx(1 - x)2. 
(3,x)EA 

We define L(c, ,8, x, A) = o + 13x + A[a + fix - c2afix(1 - x)2]. By solving 
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= l+\[1—c2/3x(1—x)2] =0 

= x+)t[x—c2ax(1—x)2] = 0 

= /3+ )[8 - C2a/3(1 - x)(i - 3x)] = 0 

= a+/3x—c2a/3x(1—x)2 = 0 

we find that the above system of equations has no solution inside A. There are five 

boundary cases to be considered. They are (i) a = 0, (ii) /3 = 0, (iii) x = 0, (iv) x = 1 
and (v) a + ,8 = 1. We find that the extremum points should occur on the boundary 

a+/3= 1. For cx+,8= 1,we define Lo(1— /3,fl,x,))=1_fi+/3x+[1_/3+/3x_ 

c2/3(1 - /3)x(1 - x)2}, and let 

( 0L0 

I
Tfl
-

-1 + x + \[- 1 + x - c2(1 - 2/3)x(1 - x)2] = 0 (4.4.6) 

0L0 
/3 + A[/3 - C2/3(1 - /3)(1 - x)(1 - 3x)] = 0 (4.4.7) 

OLo 
l— /3+/3x — c23(1—/3)x(1— x)2 =0 . (4.4.8) 

Combining (4.4.6) and (4.4.7) gives us 

—1  -  1—x  

1 c2(1 - /3)(1— x)(1 - 3x) - —1+ x - c2(1 - 29)x(1— x) 2 ' 

and hence we have 
1—/3 

--
2 — fl 

Put (4.4.9) into (4.4.8), we get 

+/3.  C2/3(1-/3)   

which can be simplified as the following 

(2 -i-c2)/32—(8+c2)/3--8=O. 

Solving (4.4.10), we find 

8+c2±J(8+c2)2_32(2+c2) 8+c2±Jc-16c2 

2(2+c2) = 2(2+c2) 

(4.4.9) 

(4.4.10) 
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For 8+c2+J4-16c2  
(4+2c2) we get 

and 

8+c2+/4 - 16c2 4+2c2 — (8+c2+,/4 - 16c2)  a1 = 1- 01  = I 
4+2c2 - 4+2c2 

= C2_4/4_16C2 

4+2c2 

8+C2 +/4 —16c2  

1 - th 1 (4+2c2)  C2 - 4 - - 16c2 
= 

' I9i 2 8+c2+/4_16e2 - 3c2 - - 16c2 
(4+2c2) 

= (c2-4—J4-16c2)(3c2+Jc16c2)  

94 - (4 — 16c2) 

= 24 + 4c2 - (2c2 + 4)/4 - — 16c2 — /4 - 16c2 

84 + 16c2 - 4c2 
Hence, we have 

,41) a+ C2_4_/C-16C2 + 8+c2+/4— 16c2 c2 /4_ 16c2 

4+2c2 4+2c2 4c2 

and 

4c2(c2 — 4— J4 -- —16c2)(8+c2+ ,/4_16c2)(c2 - /c- 16c2) 

- 4c2(4+2c2) 

= 44 + 8c2 - (4c2 + 8)14 - 16c2 - 

8c2(2+c2) - 

Si1ar1y, for fi2 - 8 + c2 - - 16c2  ,weget 
4+2c2  

a2 = 1 - /32 = 1 
4+2c2 4+2c2 

C2 - /4 - 16c2 

2c2 

8 +c2 — /4 -16c2 - 4+2c2—(8+c2 —/4_16c2) 

= c2 - 4+V'4 - 16c2  

4+2c2 

1 - /32 1 - 8+c2—\/4-16c2 C2 —4+ \/4 - 16c2 
4+2c2  - 

2- 02   = 2 8+c2 — /4_16c2 - 3c2 + /4 - 16c2 
4+2c2 
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- (c2 —4+Vc-16C2)(3c2 - \/C —16c2) 

- 9c - (c - 16c2) 

- 2c + 4c2 + (2c2 + 4)/c - 16c2 - C2 + VC - 16c2 

- 8c + 16c2 - 4c2 

Hence, we have 

C2 -4+J_ 16c28+c2_/_l6c2 c2+V/cF 4 4 - 16c2  (2) = a2 + fi2x2 = 
4+2c2 4+2c2 4c2 

= 4c2(c2 — 4+ 1— 16c2)+(8+c2 -  /c-16c2)(c2+ Jc— 16c2) 

4c2(4+2c2) 

4c + Sc2 + (4c2 + 8)/c — 16c2 = c2 + Jc - 16c2 

8c2(c2 + 2) 2c2 

For c2 ≥ 16, we always have Q) ≥ ,. Hence we choose 

16c2 = 8+C2_C_16C2 ,andx _ c2+c-16c2 a— c2-4+ Vc 
4 +2c2 4+2c2 4c2 

Therefore, the restricted optimal design is given by 

o(±1) — 
C2 -4 +/cF 16c2 (± VC2 J + V/c16c2'\ = 8+c2—Jc-16c2 

4c2 + 8 and Eo 4c2 + 8 

When c2 = 16, we have a = , j3 = , x = , and o ±1 + When 

c2=oo,we have a1,o,x , and eo!z+i+i 

We have proved the following: 

Theorem 4.4.3 For any 16 ≤ c2 :5 oo, the optimal design for 

max / 2 subject to 

is given by 

IB2()I ≤ C2 IB3(e)J 

eo(±1) = 
C2 —4+ /c - 16c2 and0 (± 1c2 + \/c - 16c2\ 8+c2 - Jc22 — 16c2 

4c2--8 ) = 4c2--8 
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Remark 2. According to Theorem 4.4.3, the lower bound of c2 can be spotted right 

away from the form of eo. It seems as if Lemma 4.4.1 is not necessary. However, 

the restricted optimal designs sometime cannot be solved explicitly. In this case, the 

proof of Lemma 4.4.1 provides an alternative way to find the lower bounds for ci's 

without solving the restricted optimal designs. 

In general, we can only find the C2-restricted optimal designs numerically by 

max {a+/3x} subject to -- a+fix2— (a -i-/3x)2 and a+flx ≤ c2cf3x(1—x)2 
(cx,f3,v)EA Cl 

for any c1 E [4, oo) and c2 E [16, oo). However, when c1 and c2 have some special rela-

tionship, we are still able to solve the problem explicitly. For any 4 < c1 00 and 16 ≤ 

C2 ≤ 00 , we define 2(cj,c2) = { : € ., IB1()I 'ci IB2(e)I, 1B2(e)J ≤ 
and let eo(c1, c2) be the design measure such that p2(0(c1, C2)) = Max 

Then we have the following: EF(ci,c2) 

Lemma 4.4.4 Let c1 and c2 be any real numbers such that 4 ≤ c1 ≤ oo and 16 ≤ 
C 

C2 :5 oo. If c1 ≥ - 2- , then o(oo,c2) E .F(ci,c2). 

Proof: We know that 6(00, c2) is the design measure such that 1L2((oo, c2)) = 

max z2(). According to Theorem 4.4.3, we have o(oo, c2) = C A±l + 
EF(oo,c2) 

where 

c2 - 4 +\/4 -16c2 8+c2 — J4 - 16c2 and x = C2+/C16C2 /3= 
4+2c2 4+2c2 4c2 

In order to prove G(oo,c2) E .(ci,c2), it is sufficient to show IBi(o(oo,c2))I ≤ 

ciIB2(o(oo,c2))I. We find 

IL2(O(00,C2)) =a+ fix— C2-4+C16C2 
4+ 2c2 

2 2+ 8+ C2__ 16C2 c2+/c-16c2 - c2+V'c_16c2 

4+2c2 4c2 - 2c2 
and 

4(O(00,C2))a+fix2 c2-4+Vc_16c2 
4+ 2c2 
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+ 
8+c2 —/c-16c2 (c2+c-16c2 2 c2-4+Vc— 16c2 

4+2c2 4c2 ) — 2c2 

Hence, we get 

/.L4(O(00 ,C2)) — fL(O(OO,C2)) = 

and 

c2-4+Jc-16c2 (c2+/c-16c2'\ 2 2 
—, 

' I 
2c2 2c2 I c2 

1  

IB2(e0)I — 94(60(00, C2)) /4(o(oo, C2)) - 2 

Therefore, we have proved 6 (OO, C2) E F(ci, c2). 

Lemma 4.4.4 plays an important role in the proof of the next theorem. 

Theorem 4.4.5 Let c1 and c2 be any real numbers such that 4 ≤ c1 

C2 00. 

(i) If c1 ≥ then we have /L2(O(00, c2)) = Max 
EF(ci,c2) 

(ii) If c1 < then we have 

C2  
+_ 4 

'1 2 max /L2 

Ci — E(ci,c) 
(e)≤ 

Cl 

0 

00 and 16 ≤ 

if2c1 <c2 < 4c1 

if c2 > 4c1 

Proof: (i) For any c1 E oo), it is clear that ..1'(., c2) c .T(ci, c2) .7(oo.c2). By 
Lemma 4.4.4, we have o(0o, c2) E c2). Combining these facts along with the 

definition of o(0o, c2), we have 

max max P2 max p2()=1L2(o(oo,c2))≤ max 
E( -2 1c2) EF(ci ,c2) EF(oo,c2) --,c2) 

Hence we have shown ,a2(eo(oo,c2)) = max 
E.(ci ,c2) 

(ii) For any c1 E [4, L2 ), we have 2c1 < c2 and '(ci, 2c1) .F(ci, c2) which implies 

that max max ji2(). According to part (i) of Theorem 4.4.5 and 
EF(cj,2c1) EF(ci ,c2) 

Theorem 4.4.3, we have 

2c1 + J(2ci)2 — 16(2c1) 
max p2(e) = P2(CO(0°, 2c1)) = 

E(c, ,2ci) 2(2c1) 
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1 /i 2 
2+V4 Cl 

1 i 2 
< max Iz2(C). Hence, we get + 2 V4 C1 - EF(ci,c2) 

On the other hand, we have (1) .T(ci, c2) 

(ci, oo). By ( 1), we have 

max Y2(6) :5 max P2(C) = 92(60(M) C2)) = C2 + - 16c2 
eEF(ci ,c2) E.(-,c2) 2c2 

1 /1 4 
=—+il•------. 
2 4 c2 

By (2), we have 

.F(oo, c2), and (2) (ci,c2) 

Max P2(C) Max p2(C)=p2(Co(ci,00))=+1j'— 1 
EF(ci ,C2) EF(c, ,00)  Cl 

C 

It is clear that + - + - when 2c1 < c2 4c1 and + 

Ii 4 
— —> 1 + — when c2> 4c1. Hence, we have shown 
4 C2 2 4  Cl 

max 
eEF(ci ,C2) 

if2ci<c2≤4c1 
2 V4 C2  

—+ v -- - ifc2>4c1 
2 4 c1 

0 

Remark 3. In fact, part (i) of Theorem 4.4.5 tells us p2(Co(oo, c2)) = p2(Co(ci, c2)) 
C 

for any c1 ≥ -2 -. When c1 < - C2-, part (ii) of Theorem 4.4.5 gives us a range for 

p2(Co(cl, c2)). 

Again, the choice of ci in the Ckrestricted optimal designs should reflect both the 

desire for efficiency for the model Pm and the wish to check the fit of this model. 

Let p(c) be a design such that 

£p(Cp(c)) = min6- £ p(C) subject to IBmii_i(C)I ≤ C 
for some iE { 1,...,k}, 

where FE {D,A,Q,G}. 

We propose the following: 
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Definition 4.4.6 The ith-relative D-efficiency of the model Fm is given by 

RE ( D(cI)) = 
IBm (eD (ci))I  

max IBm(71)I) 
I7EF 

The ith-relative A-efficiency of the model Pm is given by 

min trB;'(i1) 
REg(eA(CI)) = 

The ith-relative Q-efficiency of the model Pm is given by 

mm f.idm(x,ii)dx 

RE(Q(cI)) = dm (x,q(cj)) dx 

The ith-relative C-efficiency of the model Pm is given by 

RE(eG(C)) - 

where i=1,...,h. 

m+1 

max dm(x,eo(ci)) ' 
-1≤:v≤1 

For the CIcrestricted optimal designs, the efficiency defined by Definition 4.4.6 

should serve the same purpose as Definition 4.3.2 and Definition 4.3.3 did for the 

C-restricted optimal designs. 
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4.5 Approximately Quadratic Regression Model 

In this section, we briefly discuss the optimal designs for the approximately 

quadratic polynomial regression model. We consider the following problem: 

mm £() subject to 

where C() E {rD(),LA(),CQ()}. 

For any e € F, , we have 

0 

/22 

0 

and 

x2 

/24 

/22 

0 ), B 1()= 0 

IB2(e)I < cIB3()I, 

B3() = 

1 
1 2/22 2   

2 + X /2414 ( /-12 /24 - 142) 

/24  

/24 - 14 

—/12 

/24 

'1 0 /12 0' 

0 /22 0 /24 

/12 0 /24 0 

0 /24 0 /26J 

0 

1 

/22 

0 
/24 - 14 / 

 (4.5.1)94 

According to Lemma 4.4.1, we know that the lower bound for c is c = 16. Hence 

(4.5.1) has feasible solutions when c e [16, oo). 
For D.optimality, (4.5.1) becomes 

max IB2()I (or mm IB1()I) subject to 
E.F3 

which is the same as 

IB2(e)I ≤ cIB3()I, 

M ax {pz - j4)} subject to /2 :5c(p2p6 - p). (4.5.2) 
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For A-optimality, (4.5.1) becomes 

i.e. 

mill trB'() subject to 

min  u1+L4 1' — 
E28 l/14—/4 + jz2J 

For Q-optimality, we have 

IB2(e)I ≤ cJB3()J 

subject to /12 <c(p2/16 — z) 

1 1 114  (1 2/12 2') x2  1  41 Jd(x,e) dx =j + xldx 
- -i[t4-4 + \122 /14 /1I /14P J 

— /24 1(1 2/12  

2] 124-122 3 \p /14/12) 5 /L—/2 

30u4- 20u9+6 2 

15(124-122) 3 122 

(4.5.3) 

Hence, (4.5.1) becomes 

min {30P4_20iz2+ 6 + subject to /12 ≤ c(/12/16 - p). (4.5.4) 

In light of Lemma 4.2.4, we know that the optimal designs over are the same as 

those over .7. Moreover, followed by Theorem 4.2.6, we can change (4.5.2), (4.5.3), 

and (4.5.4) into the following forms respectively: 

max {(a+/3x)[a+/3x2—(a+13x)2]} subject to a+flx ≤ ca/3x(1—x)2, (4.5.5) 
(o,P,v)EA 

mm J  1+a+/3x2  
(,Ø)EA a + x2 — (a + x)2 + a subject to a + x cax(1 — x)2, 

(4.5.6) 

and 

min 5 30(a + fix2) — 20(a + fix) + 6 + 2 4 5 7 
(a, 1 )EA 15[a + fix2 — (a + fix)2] 3(a + fix) 

subject to a + fix ≤ cafix(1 — x)2. 

The C-restricted D-, A-, and Q- optimal designs can be solved numerically by 
searching for optimal solutions according to (4.5.5), (4.5.6), and (4.5.7) respectively 

for any c E [16, oo). 
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4.6 Some Numerical Results 

In Section 4.3, we found the arestricted optimal designs for model P1. We noted 

that the D-, A-, and Q-optimal designs are the same. But the efficiencies of these 

designs are different. For different values of c1, we present the optimal designs and 

their efficiencies in Table 4.6.1. The calculations are based on Definition 4.3.2, Def-

inition 4.3.3 and Theorem 4.3.1. When c1 = cc, the "restricted" optimal design is 

=A±1 which is the usual optimal design (without the restriction). 

In Section 4.4, we discussed the C2-restricted optimal designs for model F'1, where 

C2= (Cl, c2)T. We found that the optimal design o has the form of o = ±i + 

±+(1—a—fl)oforsome0≤a≤ 1, 0≤fi≤ 1, a+18≤1,ando≤x≤ 1. 

In Table 4.6.2, we provide the C2-restricted optimal designs for model P1. Note that, 

in Table 4.6.2, there are three numbers in each cell. The first one is the value of 

a; the second 8; the third x. We provide the efficiencies of ç2-restricted optimal 

designs for model P1 in Table 4.6.3. The calculations are based on Definition 4.3.2 

and Definition 4.3.3 rather than Definition 4.4.6. Again there are three numbers 

in each cell of Table 4.6.3. The first one is the model P1 D-efficiency of design eo; 

the second A-efficiency; the third Q-efficiency. There are some missing values in 

Table 4.6.2 and Table 4.6.3 which are the cases when c1 = 4 and c2 < cc. This is 

simply because when c1 = 4, there is only one design measure Co = & i + Lo 

satisfying IB1(e)I ≤ c1 IB2()I and also satisfying IB2()I ≤ c2 B3()J only if e2 = cc 

(see Remark 1 in Section 4.4). Some results in Table 4.6.2 and Table 4.6.3 are the same 

due to the fact that p2 (CO (oo, c2)) = max 112 (C) when 2c1 ≥ c2 (see Theorem 4.4.5 
€.F(cj ,c2) 

Part (i)). In Table 4.6.2, there are two "*" values for x, which means x can be any 

number between 0 and 1. The reason is, in these two cases, we have j3 = 0. When 

c1 = 4 and c2 = cc, we have CO = /.±i + L0 which coincides with the c1-restricted 

optimal design for model P1 with c1 = 4. When c1 = cc and c2 = cc, we have 

CO = 
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Based on the formulas in Section 4.5, restricted D-, A-, and Q-optimal designs 

and their efficiencies for model P2 are calculated in Table 4.6.4 and Table 4.6.5. In 

this case, we again find the fact that the optimal design has the form of o = 

O≤≤1, a+≤1,and 

o ≤ x ≤ 1. For some different c2, the corresponding a, /3, and x values are presented. 
When c2 = oo, we get o = 1 1 L1 + Lo for D-optimality and eo = 1 1 & i + i for 

3 3A- and Q-optimality. (In this case, A- and Q-optimal designs are the same). These 

are the usual D-, A- and Q-optimal designs for the quadratic polynomial regression 

model. 
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Table 4.6.1 

C-restricted Optimal Designs and Their Efficiencies for Model P1 

Cl o(- 1),.eo(+1) eo(0) E( 0) Ej't(eo),E(eo) E( 0) 
4.0 0.2500 0.5000 0.7071 0.6667 0.8000 

4.5 0.3333 0.3333 0.8165 0.8000 0.8889 

5.0 0.3618 0.2764 0.8507 0.8396 0.9128 

5.5 0.3816 0.2389 0.8724 0.8644 0.9272 

6.0 0.3943 0.2113 0.8881 0.8819 0.9372 

7.0 0.4137 0.1727 0.9096 0.9055 0.9504 

8.0 0.4268 0.1464 0.9239 0.9210 0.9589 

9.0 0.4363 0.1273 0.9342 0.9320 0.9648 

10.0 0.4436 0.1127 0.9420 0.9403 0.9692 

15.0 0.4641 0.0718 0.9634 0.9627 0.9810 

20.0 0.4736 0.0528 0.9732 0.9729 0.9863 

50.0 0.4898 0.0204 0.9897 0.9897 0.9948 

100.0 0.4949 0.0101 0.9949 0.9949 0.9975 

00 0.5000 0.0000 1.0000 1.0000 1.0000 
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Table 4.6.2 

C2-restricted Optimal Designs for Model P1 

Cl 

4 10 20 50 100 200 00 

0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 
16 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
0.5669 0.5669 0.5669 0.5669 0.5669 0.5669 

20 0.4331 0.4331 0.4331 0.4331 0.4331 0.4331 
0.3618 0.3618 0.3618 0.3618 0.3618 0.3618 
0.7400 0.7265 0.7265 0.7265 0.7265 0.7265 

30 0.2600 0.2735 0.2735 0.2735 0.2735 0.2735 
0.2700 0.4208 0.4208 0.4208 0.4208 0.4208 
0.8200 0.8500 0.8388 0.8388 0.8388 0.8388 

50 0.1800 0.1500 0.1612 0.1612 0.1612 0.1612 
0.1700 0.3700 0.4562 0.4562 0.4562 0.4562 
0.8500 0.9100 0.9199 0.9199 0.9199 0.9199 

100 0.0800 0.0700 0.0801 0.0801 0.0801 0.0801 
0.2300 0.2900 0.4791 0.4791 0.4791 0.4791 
0.8700 0.9300 0.9600 0.9600 0.9600 0.9600 

200 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 
0.2100 0.2300 0.2700 0.4898 0.4898 0.4898 
0.8800 0.9400 0.9700 0.9800 0.9800 0.9840 

500 0.0200 0.0300 0.0200 0.0200 0.0200 0.0160 
0.1700 0.1200 0.2700 0.2800 0.4900 0.4960 

0.5000 0.8850 0.9450 0.9750 0.9850 0.9900 1.0000 
00 0.0000 0.0050 0.0050 0.0050 0.0050 0.0050 0.0000 

* 0.2300 0.2350 0.6950 0.8450 0.8450 * 



114 

Table 4.6.3 

The Efficiencies of C2-restricted Optimal Designs for Model Pi 

Cl 

C2 4 10 20 50 100 200 00 

16 
0.7071 
0.6667 
0.8000 

0.7071 
0.6667 
0.8000 

0.7071 
0.6667 
0.8000 

0.7071 
0.6667 
0.8000 

0.7071 
0.6667 
0.8000 

0.7071 
0.6667 
0.8000 

20 
0.8507 
0.8396 
0.9128 

0.8507 
0.8396 
0.9128 

0.8507 
0.8396 
0.9128 

0.8507 
0.8396 
0.9128 

0.8507 
0.8396 
0.9128 

0.8507 
0.8396 
0.9128 

30 
0.9001 
0.8951 
0.9447 

0.9174 
0.9140 
0.9550 

0.9174 
0.9140 
0.9550 

0.9174 
0.9140 
0.9550 

0.9174 
0.9140 
0.9550 

0.9174 
0.9140 
0.9550 

50 
0.9223 
0.9193 
0.9579 

0.9516 
0.9504 
0.9746 

0.9551 
0.9541 
0.9765 

0.9551 
0.9541 
0.9765 

0.9551 
0.9541 
0.9765 

0.9551 
0.9541 
0.9765 

100 
0.9319 
0.9296 
0.9635 

0.9645 
0.9639 
0.9816 

0.9789 
0.9787 
0.9892 

0.9789 
0.9787 
0.9892 

0.9789 
0.9787 
0.9892 

0.9789 
0.9787 
0.9892 

200 
0.9372 
0.9353 
0.9665 

0.9691 
0.9686 
0.9841 

0.9853 
0.9852 
0.9925 

0.9897 
0.9897 
0.9948 

0.9897 
0.9897 
0.9948 

0.9897 
0.9897 
0.9948 

500 
0.9399 
0.9381 
0.9681 

0.9714 
0.9710 
0.9853 

0.9876 
0.9875 
0.9937 

0.9928 
0.9927 
0.9964 

0.9949 
0.9949 
0.9974 

0.9960 
0.9960 
0.9980 

00 

0.7071 
0.6667 
0.8000 

0.9414 
0.9396 
0.9689 

0.9727 
0.9723 
0.9860 

0.9892 
0.9891 
0.9945 

0.9946 
0.9946 
0.9973 

0.9971 
0.9971 
0.9985 

1.0000 
1.0000 
1.0000 
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Table 4.6.4 

C-restricted D-Optimal Design and its Efficiency for Model P2 

C2 a /3 x Ef(e0) 

16.1 0.37 0.63 0.25 0.7758 

20 0.53 0.47 0.19 0.8807 

25 0.57 0.43 0.14 0.9170 

30 0.60 0.39 0.12 0.9351 

50 0.63 0.35 0.07 0.9649 

75 0.64 0.26 0.06 0.9776 

100 0.65 0.28 0.04 0.9837 

200 0.66 0.18 0.03 0.9921 

500 0.66 0.21 0.01 0.9968 

0° 0.67 0.33 0.00 1.0000 

Table 4.6.5 

C-restricted A- and Q-optimal Design and Their Efficiencies for Model P2 

C2 a /3 x E' (o) E(e0) 

16.1 0.34 0.66 0.23 0.6469 0.8417 

20 0.41 0.58 0.14 0.8058 0.9233 

25 0.43 0.56 0.10 0.8642 0.9488 

30 0.45 0.54 0.08 0.8947 0.9608 

50 0.47 0.47 0.05 0.9424 0.9792 

75 0.48 0.49 0.03 0.9636 0.9870 

100 0.49 0.28 0.04 0.9726 0.9902 

200 0.49 0.18 0.03 0.9868 0.9953 

500 0.50 0.21 0.01 0.9948 0.9981 

00 0.50 0.00 0.00 1.0000 1.0000 
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Chapter 5 

Bounded Bias Optimal Designs for 

Approximately Linear Regression 

Models 

5.1 Introduction and Preliminaries 

In 1992, Douglas Wiens suggested a problem that considers the optimal design 

minimizing the variance of the estimator of the parameters of the regression function 

when the fitted model is correct, subject to a bound on the bias term which occurs 

when the true model is different from the assumed one. The corresponding optimal 

designs can be called bounded bias optimal designs. We are now going to formulate 

the problem in detail. 

Consider the following regression model: 

yi = Y(xi) =('f (x)+ 6, i = 1,...,n, (5.1.1) 

where €j's are independent and identically distributed with mean 0 and some common 

variance a2 > 0. O''= (Oo, Oi, ..., Oh) and fT ( x) = (fo(s), fi(x), ..., fk(x)), x E S çR1. 

Let O be the least squares estimator of 0. For a given design measure , we have 

M() = E[(O - 0)(O - 0)T} = (5.1.2) 
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where B() = Js f (x). fl (x)de(x). 
Suppose that (5.1.1) is only an approximation of the real situation. Instead of 

(5.1.1), the real model is 

Yi = Y(xi) =9Tf (xi) + '(x) + ei, i = 1, ..., (5.1.3) 

where ?/'(x) is the bias factor, departure from (5.1.1). 

Under (5.1.3), we know that 

and 

Ele - = B(). ('',•) 

or 2 
= B 1() + B'() b() bT B'(), 

(5.1.4) 

(5.1.5) 

where b ('ç&,) = f5 f (x)(x)d(x). 

Let v() = -B 1(), and bias() = B 1(e) b (e) bT (z)B'(e) For some 

loss function C, our objective is the following: 

minC[B'(e)] subject to max - 0111 c, (5.1.6) 

where is the norm of vector E[ - 0]. As we noted, B 1() is proportional to 

v() and E[— 0] is closely related to bias ((In In fact, bias('4',) = (E Id — o]) 
(_E 

p - oj )  ). There are many different ways to choose C, , and IF. 

First, we consider the following situation. Let 

and 

= {e(x) : (x) is a design measure such that ) c S C— R'} 

= {(x): kl'(x)I ≤ O(x), where q(x) is a known function such that 
= q(x) and q(x) ≥ 0 on S}. 

For the loss function, we choose £ E {CD,.CA,CQ,CG}. We understand that £D(e) = 

IB1()j, £A() = trB'(e), £Q (e) = i'd(x,)dx and £() = max€sd(x,), where 
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d(x,) = fT (x)B-1 (6) f (x). It is clear that d(x,) is proportional to the MSE of 

OT  (x) as an estimator of 9Tf (x) under the model 

In general, it is hard to find a solution of (5.1.6). In Section 5.2 and Section 5.3, 

we further restrict our attention to the one dimensional linear regression case, i.e., 

fT (x) = (1,x). For the set of T, we consider two cases: 

(i) 'I's(c) = {?jl' : 1'(0) = 1'(0) = 0, &(—x) = O(x), J(x)I ≤ q(x) on [- 1,1] and 

O(x) = a2x2 ≥ 0 on [- 1, 1J} and 

(ii) 'a(c) = { 0 : 0(0) = /(0) = 0, ''(—x) = —'(x), kt'(x)I ≤ I(x)I on [- 1, 1] and 

O(x) = :'= a2j+1x2i+1 ≥ 0 on [0, 1]}. 

The condition of 1'(0) = 'Y(0) = 0 is to insure the identifiability of the parameters 

to be estimated. We refer to W() as the set of "symmetric contamination" and 

a() "antisymmetric contamination". These two cases are treated in Section 5.2 

and Section 5.3, respectively. For some choices of the "upper bound" function O(x), 

we find the solution to the problem (5.1.6). It is possible to extend the problem to 

the higher dimensional case and high order polynomial case. But the details will 

be very tedious. Similar to the problem of ck restricted optimal designs, we have 

that the bounded bias optimal designs over F is equivalent to that over FS, where 

= {(x) : e(x) E .T and (—x) = (x) on [- 1, 1]}. The problem can be further 

reduced to a non-linear programming problem with a finite number of variables or 

a search for optimal solutions within the subclass of .Ts that have design measures 

supported on a finite number of points. Some relevant results will be provided later 

in this section. 

Second, we consider the choice of F and W as the following. Let 

= {(x):  dx = 777.(X), is m(x)dx = 1,m(x) ≥ 0 and m(—x) = m(x) on S}, 

and 

= {(x) : is'(x)dx 2,j f (x)(x)ds =0), 

where 77 is a preassigned constant and the side condition fS f (x)(x)dx =0 is to 
insure the identifiability of the parameters to be estimated. 
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Let = ôTf (x) be the estimator of 0Tf (x). Under (5.1.3), we have 

MSE() = fT (x)B'() f (x)+ f  (x)B'() b () bT (, e)B-'() f (x), 

and 

Is 
0.2 

MSE()dx trAB'(e)+ bT B-1()AB-1 ()  
n 

where A = Is f (x) fT (x)dx. 

Let V() = trAB 1() and Bias() =bT B-'()AB-1() b (). We 
consider the following problem: 

min V() subject to max Bias(/',e)c,  

where c is a preassigned positive number. 

The maximization of Bias (0, ) over the class 111 was done by Huber ( 1975). The 
solution to the problem (5.1.7) is the main result in Section 5.4. The problem (5.1.7) 

can be easily extended to multiple linear regression case, since the maximization of 

Bias(, ) in multiple linear regression case was solved by Wiens ( 1990). 
We are now going to provide some results which can be used to reduce the problem 

(5.1.6). For the cases we will consider in Section 5.2 and Section 5.3, we always have 

maxIIE( — o)II = 
bE'I' 

p 

iO 

(5.1.8) 

where ci's are some coefficients and y2i = A x21d(x). 
Let V(q, c) be the set of all design measures satisfying the constraint >' cja2 

c, where c is a preassigned positive number and the range of e will be specified case 

by case. We claim the following: 

Lemma 5.1.1 (i) V(, c) is convex. 

(ii) e(x) E V(q,c) if and only if e(—x) E V(q,c). 

Proof: (i) Let 61 ,62 E V(5, c) and = A61 + (1 - ) ) 2 where 0 < A < 1. We have 

Ee = '=o c j'. x2ide*(x) 

= c f. x2d(A& + (1 - A)e2) 

= A .0cf'1 x2de1 + (1— A)t 0cfl, x21de2 

<Ac+ (1— A)c= c. 



120 

Hence, e* E 1"(0, c). 
(ii) Note that 

c f x2zde(_x) = c f x2d(x) 
Hence, (x) E V(q, c) if and only if e(—x) E V(çb, c). 0 

Let D = {o : I.B'(o)I = mrnEv(4,C) lB-1 ()I}, A = : trB'(o) = 
rB'()}, and Q = {eo : f± d(x,eo)dx = rnm Ev(,C)f....l d(x,e)dx}, that is, D, A, 

and Q are the sets of bounded bias D-, A-, and Q-optimal designs respectively. We 

state the following lemma without proof, since the proof is very similar to the proof 

of Lemma 4.2.4. 

Lemma 5.1.2 (i) D,A,Q are convex sets. 

(ii) (x) E D,A,Q if and only if e(—x) E D,A,Q respectively. 

Assume that is a bounded bias D-, A-, or Q-optimal design measure and we 

define e2 by 2(x) = 1(—x). The consequence of Lemma 5.1.2 is that there is a 

symmetrical optimal design, namely + e2)/2. The problem (5.1.6) can be further 

simplified by using Theorem 4.2.5 and Theorem 4.2.6 as we will see in Section 5.2 

and Section 5.3. 
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5.2 Approximately Linear Regression Model with 

Norm 1 Bounded and Symmetric 

Contamination Functions 

In this section, we consider the one dimensional linear regression model and the 

class of symmetric design measures on [- 1, 1]. Let 1T (x) = (1, x), 0T= (Os, 0), and 

s={e:eEF,(— x)=e(x)}. For any EFs we have 

and 

where 

i'l (1 
B()= / f(x)fT (x)d(x)= 

.1-I - - 
B 1()= 

d(x,e) = fT (x)B 1(e) 1(x) = (1,x) ( 1 0 ( 1) x2 
0 =1+—, 

/12 
/L2 / 

/22 = f±1 x2de(x). We know that 
2 1 

=2+—, andL G()= 1+—. 
3/12  P2 

is equivalent to 

1 1 
£A() = 1 + -, 

/22 /22 

Hence, for £ E {.CD, CA, £Q, £}, 

mm £() subject to max !IE(O - 0)11 c 
'EW 

max /12 subject to max IIE(O - 0)11 < c. 

For the class of contamination functions W, we choose 

'l(q) = 10 : &(0) = b'(0) = 0, 0(—X) = 
k1'(x)l ≤ q5(x) on [- 1, 1], and O(x) = II a2x2 ≥ 0 on [0, 1]}. 
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In this case, we have 

E[— o] = B-1(e) (0, 6) 

i o \ / fd \ 
H ) fxd) 

/22 / 

(1 0 \ 

= 0 
\ /22 1 

(fd 

and IIE[ - JII = II'(x)d(x)l. It is clear that 

max,E IIE[ - O]II = max,E 3 IJ'?I'(x)de(x)I 

≤ maxI f 10(x)Id(x) 
≤ fq(x)d(x) 

= f(....1 a2x2)d(x) 

= E=i a2 ,.12. 

On the other hand, q(x) E W3(q). Hence we have 

max IIE[ - = f(x)d(x) = 
i=1 

In the case considered here, the problem (5.1.6) becomes 

P 

max P2 subject to c (5.2.1) 
CEys i=1 

for some a2's such that (x) = EP=1 a2iX'i ≥ 0 on [- 1, 1]. 

It is necessary to specify the range of c so that the problem (5.2.1) has feasible 

solutions. Let 

c, = a2 /t2 }, and c = max{ 
tEYs 

Then (5.2.1) has solutions for any c c ≤ c. (5.2.1) has no solution for c < c. For 

c > c, (5.2.1) has the same solution as the unconditional optimal design problem. 

Hence c" is not the "real upper bound". 

a2j/L2j}. 
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We are now seeking the solution of the problem (5.2.1) for some specific choices 

of (x). 

Case I: q(x) = a2x2, a2 > 0 

When q5(x) = a2x2, the problem (5.2.1) becomes 

max P2 subject to a2ji2 ≤ c. (5.2.2) 
EFs 

Denote t4 to be the maximum value of /i2 in (5.2.1) and to be the corresponding 

design measure. The following result is trivial. 

Theorem 5.2.1 in ('5.2.1), let (x) = a2x2 and a2> 0. Then we have 

'i) = and = r, where r = -s2 2 -, if 0< c < a2 
412 

t±i and t2 = 1, if c ≥ a2. 

Remark 1. The usual optimal design is eo = which is supported at ± 1. For Case 

I, the violation occurs at ± 1. Hence the bounded bias optimal design supported 

at ±%/ somehow stays away from ± 1. 

Case II: (x) = a2x2 + a4x4, a4 54 0 

In order to make (x) ≥ 0 on [- 1,1], we must have (i) a4 > 0, a2 ≥ 0 or (ii) 

a4 < 0, a2 + a4 ≥ 0. In Case II, the side condition of ( 5.2.1) is a2p2 + a41a4 c. It is 

clear that c = 0. We have c = a2 + a4 if a4 > 0, a2 ≥ 0. For the case that a4 < 0, 

a2 + a4 > 0, we have 

c := max{a2[t2 + a4/i4} = max{a2p2 + a4p4}, 
EYo 

where P0 = { = , 0 ≤ a ≤ 1, 0 < x ≤ 1). The second equality 

is followed by Theorem 4.2.5. For any E . o, we have /22 = ax and /24 = ax2. Hence 

max{a2/22+a4/24}= max {a2ax+a4ax2}, 
Eo (a,x)EA0 
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where A0 = (a, x) : 0 < a< 1, 0 ≤ x < i}. We define L(a,x) = a2ax+a4ax2, and 

let 
OL 
r = a2x + a4x2 := 0 

O a  

Ox 
a2a+2a4ai 0 

We find that there is no solution in the interior of A0. There are four boundary 

cases. They are (i) a = 0, ( ii) x = 0, (iii) a = 1, and (iv) x = 1. For case (i) 

and (ii), we have L(0, x) = L(a,0) 0. Case (iii) gives us L(1, x) = a2x + a4x2. 
dL a2 

Let - = a2 + 2a4x = 0, we get x = --. Under the condition that a4 < 0, 
dx 2a4 

a2 + a4 ≥ 0, we always have x = - 2 - > 0. If - 2 - < 1, i.e. a2 + 2a4 < 0, 
2a4 2a4 

then Ri, - p-) = a2(—-) + a4(_)2 = _-. For case (iv), we have L(a, 1)4 2a4 2a4 4a4 = 

a2a+a4a=(a2-i-a4)a. The fact a2+a4 ≥ O implies max L(a,1)= L(1, 1) = a2+a4. 

2 4--a2—a4 = (a2+2a4)2  Note that L(1,_ _)_L(1,i)= — ≥ 0. Hence, we have 
2a4 4a4 —4a4 

a2 
c*= --s- if a4 <0, a2+a4 ≥ 0, and a2+2a4 ≤ 0 

4a4 

and 

= a2 + a4 if a4 <0, a2 + 2a4 > 0. 

We summarize these results as the following lemma: 

Lemma 5.2.2 (i) q(x) = a2x2+a4x4 ≥ 0 on [- 1,1] if and only if one of the following 

is true:. 

(a) a4 > 0, and a2 ≥ 0; (b) a4 <0, and a2 + a4 ≥ 0. 

(ii) When (x) ≥ 0 on [- 1, 1], we have c 0 and 

a2 + a4 if a4 > 0, a2 ≥ 0, or a4 < 0, a2 + 2a4 > 0 

a2 --a- if a4 < 0,a2 + a4 ≥ 0, and a2 + 2a4 ≤ 0-
4a4 

In the case of q(x) = a2x2 + a4x4, the problem (5.2.1) becomes 

max 112 subject to a2112 + a4 f14 < c, (5.2.3) 



125 

which is equivalent to 

Max 12 subject to a2 12 + a4 f4 ≤ c. (5.2.4) 
EYo 

Let o = 1(92, tt4): ≤ fL,O ≤ /2 ≤ 1} and So = {( t2,t4): (92) Y4) E So 

and a21u2 + a41a4 < c}. Let (a2, a4) satisfy one of the conditions (a), (b) in Lemma 

5.2.2, and 0 < c < c. It is clear that "a2p2 + a4jt4 = c" divides So into So and 

where o 54 0. Moreover, we have 

* 

= Max 142, 
(lL2,/L4)E.o 

(5.2.5) 

and the design measure will be the solution to the problem (5.2.3), where i4 = 

f x2d(x). 
The values of and the corresponding design measures are summarized in the 

next theorem. 

Theorem 5.2.3 In (5..1), let (a) = a2x2+a4x4, where (a2, a4) satisfies one of the 

conditions (a) and (b) in Lemma 5..2. Given 0 <c < c, we have 

(i) e* = A kl and = 1, if a2 + a4 ≤ c; 

(ii) * and = z, where z a2 + Va + 4a4c if a2+a4 > c, a4 > 0, 
2 2 2a4 

and a2 ≥ 0; 

(iii) L±l +( 1— r)/- o and 4 = r C, where r = , if a2+a4> c, a4 <0, 
a2 + a4 

and a2 + a4 ≥ 0. 

Proof: It is obvious that (12,/4) (1,1) E So if and only if a2 + a4 ≤ C. In this 

case, we have = max( 2,4)E. i2 1 which can be achieved by L±i. This 

gives us case (i). Next, we consider the situation that ( 1, 1) S, i.e. a2 + a4 > c. 
c a2 

Assume a4> 0, a2> 0. Then the side condition becomes J14≤ -- - — it2, and is 
a4 a4 

c a2 
the solution of the system equations p = - - — L2, and /t = i4 (see Figure 5.2.1). 

a4 a4 

—a2+Va+4a4c 1 
We find that A2=2a4 := z, which can be achieved by = 

This is case ( ii). For case (iii), i.e. a2+ a4 > c, a4 < 0, and a2+ a4 ≥ 0, the side 
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C a2 
condition becomes JL4 - - — /12, and t; is the solution of the system equations 

a4 a4 
c a2 c 

It4 = - - -/1 and /14 = 122, (see Figure 5.2.2). We find =  := r and 4 
a4 a4 a2+a4 

can be realized by = + (1 - T)o. 0 

Figure 5.2.2 Figure 5.2.1 

Case III: ( x) = a2x2 + O4 1 + (16X6,(16 0 0 

In the case that (x) = a2.v2 + ax' + a(x', the problem (5.2.1) becomes 

max /12 subject to a2;t2 + a4t4 + a6i6 ≤ c, (5.2.6) 

which is equivalent, to 

max /12 subject to a2t2 + a4/14 + a6/26 ≤ c, (5.2.7) 

Ce +,@ 1, 0 < x < 1}. The equivalence of ( 5.2.6) and (5.2.7) follows by Theorem 

4.2.6. 

Before we solve the problem (5.2.7), we would like to provide a necessary and 

sufficient condition for q5(x) ≥ 0 on [- 1, 1] in terms of the coefficients of (x), namely 

a2, a4, and a6. We state the result as below. 

Lemma 5.2.4 Let (x) = a2x2 + a4x4 + a6r6. Then (x) ≥ 0 on [- 1, 1] if and only 

if one of the following is true: 
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(i) a6 <0, a2 ≥ 0, and a2 + a4 + a6 ≥ 0; 

(ii) a6> 0, a4 ≥ 0, and a2 ≥ 0; 

(iii) a6> 0, a4 <0, a2 > 0, a4 + 2a6 ≥ 0, and 4a2a6 - a ≥ 0; 
(iv) a6 > 0, a4 <0, a2> 0, a4 + 2a6 < 0, and a2 + a4 + a6 ≥ 0. 

Proof: Let qo(x) = a2+a4x2+a6x4. Then (x) ≥ 0 on [- 1,1] if and only if O(X) ≥ 0 

on [- 1, 1]. We discuss different cases according to the signs of the coefficients of q.o(x). 

(1) a6 < 0 

In this case, it is necessary that a2 ≥ 0. Note that qo(x) = 0 has only one pair 

of solutions 

xo = ± 
2a6 

It is easy to see that the necessary and sufficient condition for 0(x) ≥ 0 on 

[-1, 1] is Ixol ≥ 1 which is equivalent to a2 + a4 + a6 0. In fact, we can simply 

require ç5o(l) ≥ 0. Again, we get a2 + a4 + a6 0. This gives us case (1) 

—a4 - Ja - 4a2a6 
N  

(2) a6 > 0, a4 ≥ 0 

It is obvious that the necessary and sufficient condition for q50(x) ≥ 0 on [- 1, 1] 

is a2 ≥ 0 which is case ( ii). 

(3) a6 > 0, a4 <0 

In this case, it is necessary that a2 > 0. Let ç4(x) = 2a4x + 4a6x3 := 0. We get 

x = 0, and x = If /- 1, i.e., a4 + 2a6 0, then we need 
V 2a v 2a6 

qo a4 a + a4 (— i.) + ao ( a4)2 = a2 - ≥ 0, 
2a6 2a6 2a6 4a6 

i.e. 4a2a6 - a ≥ 0, which gives us case (iii). 
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Lemma 5.2.5 Let (a2, a4, a6) satisfy one of the four conditions (i)-(iv) in Lemma 

—a4 - /a - 3a2a6 
5.2.4. Let so =   Then we have 

3a6 
(i) C. = 0 

27a (2a + 2ct/a - 3a2a6 

—9a2a4a6 - 6a2a6./a - 3a2a6) 

a2 + a4 + a6 

ifo<xo<1 

otherwise 

Proof: For any 6 E F1, we have 112 = c + /3x, 1u4 = a + )6X2, and /6 = a + /9x3. Let 

L(a, fi, x) = a2(a + fix) + a4(a + fix2) + a6(a + fix3) 

= (a2 + a4 + a6)a + (a2x + a4 X2 + a&x3)8. 

It is clear that c = min(,I)EAL(a,fi,x) and c* = max(,)eAL(a,fi,x), where 

A={(a,/355):0≤a≤1,0<fi<1,a+,8<1,o<x<1}.Solving 

aL - = a2 + a4 + a6 := 0 

= x(a2 + a4x + a6x2) 0 

ÔL 
TX = fi(a2 + 2a4x + 3a6x2) 0, 

we find that the system of equations has no solution in the interior of A. We now 

consider the boundary cases (i) a = 0, (ii) fi = 0, (iii) x = 0, (iv) x = 1, and (v) 

a+fi = I. 

(i) For a = 0, we have L(0, fl, x) = (a2x + a4x2 + a6x3)/9. Let 

x(a2 + a4x + a6x2) 0 

T = 13(a2 + 2a4x + 3a6x2) := 0. 
X 

The above equations have no solution for 0 < x < 1 and 0 < fi < 1. For ,8 = 1, 

we have L(0, 1, x) = a2x + a4x2 + a6x3. Solving dL = a2 + 2a4x + 3a6x2 = 0dx  

—a4 ± sJa - 3a2a6 
we get x =   

3a6 

—a4 + /a - 3a2a6 

3a6 
L(0, 1, x) in each of the four cases of Lemma 5.2.4. We assume that a 2 

- 3a2a6 ≥ 0. 

We denote xO = 
—a4 - \,/a - 3a2a6 

3a6 
and x, = 

We have to discuss the maximum and minimum values of 
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(1) a6<O,a2≥O, and a2+aI+aG>O 

In this case, we have x0 > 0 and x1 0. It is clear that 

mm L(0,1,x)=L(0,1,O)0 
O≤V≤ 1 

and 

5 L(O,1,xo) if x0 < 1 
maxL(O,1,x)= ifxo >1. 

(2) a6>0,a4 ≥0, and a2>0 

In this case, .we have xo, x 0. Hence we have dL ≥ 0 for x 0, and 
TV 

mm L(0,i,x) = L(0,1,0) = 0 

and 

max L(0,1,x)=L(0,1,1) = a2-i-a4+a6. 

In Case (3) and (4) of Lemma 5.2.4, we always have a6 > 0, a4 < 0, and a2 > 0. 

This implies that x1 > xo > 0. It is clear that 

mm L(0,1,x)=L(0,1,O)0 
o≤ 1 

and 

max L(0,l,-c) = 
O<x≤1 L(0 1 a2 + a4 + a6 

We find that 

f L(0,1,xo) 
I , , 1)  

if 0 < xo < 1 

if x0 ≥ 1. 

L(0, 1,xo) 2 4+ 2a ,/a - 3a2a6 - 9a2a4a6 - 6a2a6/a - 3a2a6). 

If a 2 
- 3a2a6 < 0, then .L(0, 1, x) = a2x + a4x2 + a6x3 is monotone increasing 

when a6 > 0 and monotone decreasing when a6 < 0. When L(0, 1, x) is monotone 

increasing, we have mino<<1 L(0, 1, x) = 0 and maxo<<1 L(0, 1, x) = a2+ a4+ a6. 

When L(0, 1, x) is monotone decreasing, we have L(0, 1, 1) < L(0, 1,0) = 0. This is 

not possible since O(x) ≥ 0 on [- 1, 1] implies that q5(l) = a2+ a4+ a6 ≥ 0. 
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(ii) For /3 = 0, we have L(a,0,x) = (a2 + a4 + a6)a. It is obvious that min0<<1 

L(a,0,x) = L(0,0,x) = 0 and maxo<<iL(a,0,x) = a2+a4+a6, sincea2+a4+a6 ≥ 0 

implies that L(a, 0, x) is non-decreasing in a. 

(iii) For x = 0, we have L(a, /9,0) = (a2+ a4 + a6)a which is the same as case (ii). 

(iv) For  = 1, we have L(a, /3, 1) = (a2+a4--a6)(a+,8) (a2+a4+a6)-y, where 

-y = a + I, 0 ≤ y < 1. This is similar to the case (ii). 

(v) When a +,8 = 1, we have 

L(1 —/3,/3,x) =(a2+a4+a6)(1— fl)+(a2x+a4v2+a6x3)/3 

=a2+a4+ao+[a2(x -1)+a4(x2-1 )+aG(x3  

Let 

aL =(x- 1)[a2+a4(x+1)+a6(x2+x+1)] := 0 

/3[a2 + 2a4x + 3a 6x2} := 0, 

and let (p8*, x*) E (0, 1) x (0, 1) be a solution of the above equations. Then we always 

have L(i - ,8*, /3*, x) = a2 + a4 + a6. Summarizing the above results, we have proved 

Lemma 5.2.5. 0 

In order to solve the problem (5.2.7), the next lemma is needed. It indicates that 

the optimal solution of (5.2.7) is achieved on the boundary of the side condition. 

Lemma 5.2.6 Let (a2, a4, a6) satisfy one of the four conditions in Lemma 5.2.4 and 

0 < c ≤ c*, where c* is indicated in Lemma 5.2.5. If a2 + a4 + a6 > c, then (5.2.7) is 

equivalent to 

max JZ2 subject to a2t2 + a4ji4 + a66 = c. (5.2.8) 

Proof: By Lemma 4.2.7, we have 

= P = {A. Ak is the interior and boundary of the triangle with vertices 

Po,PI,Pk, 0≤k≤1}, 

where po = (O,O,O),p = (1,1,1), and p= ( k,k2,k3). 

Let , = {(x,y,z) (x,y,z) E i and a2x+a4y+a6z < c} = {(x,y,z): (x)y,z) E 

Ak and a2x+a4y+a6z ≤ c,0 ≤ k ≤ 1). Let irk: z = —kx+(1+k)y,k E ( 0, 1). Then 
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Ak c Irk. Using (x,y,z) instead of (A2, 114, Y6), the side condition of (5.2.8) becomes 

a2x + a4y + a6z = c. Projecting 

f z=—kx+(i+k)y 
a2x + a4y + a6z = C 

onto the plane xOy, i.e., z = 0, we have —ka6x + (1 + k)a6y = c - a2x - a4y, and 

hence (a2 - kao)x + [a4 + ( 1 + k)a6]y = c. Let a := a2 - ka6 and b := a4 + (1 + k)a6. 

Then we have ax + by = c. We make the following statement: 

Si: "max {x} subject to (X, Y) E P['1 flAk] (or (x,y,z) E S1fl Ak) 

is equivalent to 

max {x} subject to (x,y) E P[lk flAk] (or (x,y,z) E lkflAk)". 
O<x<1 

Note P[S] refers to the projection of set S onto sOy. Note also that, for any possible 

values of a2, a4, a6, and 0 ≤ k ≤ 1, the possible signs of a and b are (i) a > 0, b > 0, 

(ii)a<0,b>0,(iii)a<O,b<0,(iv)a>O,b<0,(v)a0orb0, and (vi) 

a=Oand b=0. 

It is obvious that Si is true in case ( i) and case (ii) (see Figure 5.2.3 and Figure 

5.2.4). Under the assumption of Lemma 5.2.6, we have fl B 54 q, where B = 

{ (x, y, z) : a2x + a4y + a6z = c}. Hence a < 0 and b < 0 is not possible. In case (iv), 
we solve 

and get 

5= 

(a2 - ka6)x + [a4 + (1 + k)a6]y = 

y = 

C C 

a2— ka6 +a4+(i+k)a6 = a2+a4+a6 

Hence Si is also true in this case. (See Figure 5.2.5). For case (v), we have y = 

C  when a = 0, and s =  C when b = 0. It is clear that in both 
a4+(1+k)a6 a2—ka6 
cases Si is true. (See Figure 5.2.6 and Figure 5.2.7). In case ( vi) we have a = 0 

and b = 0. Note that a = 0 implies a2 = ka6, and b = 0 implies a4 = —( i + k)a6. 

Consequently, we have a2 + a4 + a6 = ka6 - (i + k)a6 + a6 = 0. This contradicts the 

assumption that a2 + a4 + a6 > c 0. 

<1. 
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We have shown that Si is true for any k E [0, 1] and all the (a2, a4, a6) values that 

satisfy the conditions of Lemma 5.2.4 and 0 < c ≤ c*. Hence Lemma 5.2.6 is true. 0 

fAJ 

Figure 5.2.3 Figure 5.2.5 Figure 5.2.4 

(k, h) 

pttj 

Figure 5.2.6 Figure 5.2.7 

The consequence of Lemma 5.2.6 is that the inequality constraint in(5.2.7) be-

comes an equality constraint. Hence, the method of Lagrange multiplier can be used 

to solve the problem (5.2.7). 

For any E , we have 112 = a + ,@x, a + 18x2, and [L6 = a + pX3,where 

0 ≤ a ≤ 1,0 ≤ fi < 1, a+,8 < 1, and 0 < x < 1. Let A ={(a,fl,x): 0 < a≤ 

1,0< 8 < i,a-i-,8 < 1, and 0< x < 1}, and A = {( a,,8,x) (a,,8,x) E A, and 

a2(a + 18x) + a4(a + /3x2) + a6(a + ,0x3) c}, where (a2, (14, a6) satisfies one of the 

four conditions in Lemma 5.2.4 and 0 < c ≤ c, where c* is indicated in Lemma 5.2.5. 

It is obvious that ( 5.2.7) is equivalent to 

max {a + fix} subject to a2(a + fix) + a4(a + OX 2) + a6(a + fix') ≤ c. (5.2.9) 
(j3,x)EA 

Let /4 = a* + /3x to be the maximum value of (5.2.9). We have /4 max(,X)EA 
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{a + ,8x}. Note that ( 2,i4,6) = (1,1,1) can be attained by design measure e = 
which corresponds to (ao, flu, 1) for any a0, fib such that a0 + ,80 = 1. Moreover, 

(ao, fib, 1) E A if and only if a2 + a4 + 06 < c, and in this case we have = 1 and 

the corresponding design measure is = 

From now on, we assume that a2 + a4 + a6 > c. In this situation, the application 

of Lemma 5.2.6 will simplify (5.2.9) to be the following: 

max {a + 3x} subject to a2(a + fix) + a4(a + fix2) + a6(a + fix3) = c. (5.2.10) 
(oj3,x)EA 

The method of Lagrange multipliers now can be used to solve (5.2.10). Let 

L(a, fi, a:, )) = a + fix + )t[(a2 + a4 + a6)a + (a2x + a4x2 + a6x3)/3 - C], 

and 

aL - = 1+)t(a2+a4+a6):=0 

92  
= x + x(a2 + a4x + a6x2) := 0 

ap 

F=fi+fi(a2+ 2a4x+3a6x2):=0 

T = (a2 + a4 + a6)a + (a2x + a4x2 + a6x3)fi - c := 0. 

We find that the above equations have no solution in the interior of A. We now 

consider the five boundary cases (i) a = 0, ( ii) fi = 0, (iii) x = 0, (iv) x = 1, and (v) 

a+fi= 1. 

(i) a = 0 

In this case, we have L(0, fi, s, )) = fix + )t[(a2x + a4x2 + a6x3 )fi - c]. Let 

ÔL 
= x + ,\x(a2 + a4x + a6x2) := 0 (i-i) 

= fi + fl(a2 + 2a4x + 3a6x2) := 0 (i-2) 

Ulf = (a2x + a4x2 + a6x3 )/3 - C:= 0. (i-3) 
OA 

For x 54 0, and fi 0, we can rewrite (i-i) and (i-2) as 

I 1+A(a2+a4x+a6x2)=0 (i-4) 

1 + )(a2 + 2a4x + 3a6x2) = 0 (i-5) 
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Solving ( i-4) and ( i-5), we find that x = --. Put x* into (i-3) and (i-4), we have 
.a6 

/3* 

and 

-  c  -  8ac  

x*(a2 + a4x* + a6x*2) - a4 a42 a - a4(a - 4a2a6) 
--(a2 - - + -) 
2a6 2a6 4a6 

—1 

a2 + a4x* + a6x*2 

—1 _ 4a6 

a2 - 
2a6 4a6 

If X* = ---- E ( 0. 1), i.e. ( 1) a6 < 0, a4 > 0, and a4+2a6 < 0, or (2) a6 > 0, a4 < 
2a6 

0, and a1 + 2a6 > 0, then we always have /3* > 0 (see Lemma 5.2.4 case (i) and case 

(iii)). Moreover, if we assume that 2 8C a6 1, then L(0,/3*,x*,A*) = 
a4(a4 - 4a2a6) 

4ca6 .  A 2 is a possible maximum value of L(a, 6, x, A). The corresponding design 
'*a2a6 - a4 

measure is e* = + (1 - 

(ii)fi=0 

a,2 a?, a— 4a2a6 

When 0, we have L(a, 0, x, A) = a + A[(a2 + a4 + a6)a — c]. Let 

0L 
1 + A(a2 + a4 + a6) := 0 (ii-1) 

r z 

TA = (a2+a4+a6)a — c:=0 (ii- 2). 

From equations (ii- 1) and (ii-2), we find that a* = C and A* =  —1  
a2+a4+a6 a2+a4+ae 

Hence, L(&, 0, x, A*) = a - C is a possible maximum value of L(a, /3, x, A), 
a2 + a4 + a6 

and the corresponding design measure is = A±1 + (1 - a*) o. 

For case (iii), we have x = 0, and L(a, /3,0, A) = a + A[(a2 + a4 + a6)a - c] which 

is the same as case (ii). Similarly, for case (iv), we have x = 1, and L(a, /3, 1, A) = 

a+fi+A[(a2+a4+a6)(a+/3)—c]='y+A[(a2+a4+a6)'y—c], where 'y=a+,8. 

This yields the same maximum value as case (ii). 

(v) a + /3 = 1 
In this case, we have L(1 - /3, /3, x, A) = 1 - /3 + fix + A[(a2 + a4 + a6)(1 - /3) + 

((12x + a4x2 + a6x3)/3 - c] = 1 + (x - 1)fi + A{(a2 + a4 + a6) + [a2(x - 1) + a4 (X2 - 
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1) + a6(x3 - 1)J@ - c). Let 

OL 

aL 
= /3 + )fi(a2 + 2a4x + 3a6x2) := 0 (iii-2) 

TA = (a2 + a4 + a6) + (x - 1)[a2 + a4(x + 1) + a6 (X2 + x + C := 0. (iii- 3) 

For x 0 1 and ,8 0 0, (iii- 1) and (iii- 2) can be rewritten as 

Ji + [(a2 + a4 + a6) + (a4 + a6)x + a6x2] = 0 (iii-4) 

1 + A(a2 + 2a4x + 3a6x2) = 0. (iii-5) 

Solving (iii-4) and (iii- 5), we find that x a4 + 2a6a6 

=  —1 

a2 + 2a4x* + 3a *2 

a2 2a4(a4 + a6) + 3(a4 + a6)2 

2a6 4a6 
= —4a6 

3a + 2a4a6 + 4a2a6 - 

C -  (a2 + a4 + a6)  

(x*_1)[a2+a4(x*+i)+a6(x*2+x*+1)] 
c -  (a2 + a4 + a6)  

- 1)(a2 + 2a4x* + 3a6x*2) 
c (a2 + a4 + a6)  

a4+a6 2a4(a4+a6) 3a6(a4+a6)2  
(- 1)[a2 + 2 1 2a6 2a6 4a6 

8a(a2 + a4 + a6 -  c) 

(a4 + 3a6)(3a + 2a4a6 + 4a2a6 - a)' 
and 

(a4 + a6)(a + 4a2a6 - a ) + 8ac  
= 1 - /3* = 

(a4 + 3a6)(3a + 2a4a6 + 4a2a6 - a) 

If we have x E (0,1) and 9* E (0, 1), then L(1 - fi*,fl*,x*)*) 1 + (z* - 
1)/3* = 3 4a6c - (a4 + a6)2 

is a possible maximum value of L(,fl,x,A) and a + 2a4a6 + 4a2a6 - 
a. /3* 

the corresponding design measure is = + 

We now list some conditions: 
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Cl: a2+a4+aG<c. 

C2: x = --- E (0,1) and 8* =  8ac  
2a6 a4(a - 4a2a6) 

E C3: x* a4+a6 (0,1) and /3 =    
2a6 

(0,1). 

Furthermore, we define some notations: 
C N1:a*=   

1 a2+a4+a6' 
c)Lo. 

8ac  
N2: = 0, 92* = 

ai(a-4a2a6)' 

+ (1 - 1@flL 0. 

N3: c = 

<1. 

8a(a2 + a4+ a6 - c) 

(a4 + 3a6)(3a 2+ 2a4a6 + 4a2a6 a) 
E 

C  

and '; = ---L1 + (1 - 
a2+a4+a6 

- a4 4a6c 
- -, 4a2a6—a' and e = 

(a4 + a6)(a + 4a2a6 -  a) + 8ac  

(a4+ 3a6)(3a + 2a4a6 + 4a2a6 - a) ' 

= 8a(a2 + a4 + a6 - c) a4 + a6  

(a4 + 3a6)(3a + 2a4a6 + 4a2a6 - a) ' 2a6 
* - 4a6c - (a4 + a6)2 

V3 - 3a r2,  2a4a6 + 4a2a6 - a' and = + 
We have proved the next theorem which provides the solution to the problem (5.2.7). 

Theorem 5.2.7 Let (a2,64, a6) satisfy one of the four conditions in Lemma 5.2., 

and 0 < c ≤ c*, where c* is indicated in Lemma 5.2.5. The solution to the problem 

(5.2.7) is provided as follows: 

(i) If Cl is true, then e* = A±1 and = 1. 

(ii) If Cl is not true, but C2 and CS are true, then 4 = max{v,v,v}  

and the corresponding design measure is , i E { 1, 2, 3}. 

(iii) If Cl and G2 are not true, but 6'S is true, then = max{vjK, v} := vj, and 

the corresponding design measure is , j E { 1, 3}. 

('iv) If Cl and CS are not true, but C2 is true, then ,a = max{v',v} := vZ, and 

the corresponding design measure is , k E { 1, 2}. 

(v) If Cl, C2, and CS are not true, then u = vi', and the corresponding design 

measure is = A±1 + (1 - c4)Lo. 

The following corollary is obvious. 
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Corollary 5.2.8 Let q(x) = a2x2 + a,1x4 + a6x6 ≥ 0 on [- 1, 1], and a2 + a4 + a6 = 0. 

Then the solution of the problem (5.2.7) is = and i = 1. 

Remark 2. Note that a2 + a4 + a6 = 0 if and only if q5(±1) = 0, i.e. there is no 

violation at ± 1. Note also that the usual optimal design is supported at ± 1. The 

implication of Corollary 5.2.8 is that the bounded bias optimal design will be the 

same as usual optimal design if the regression model is not violated at ± 1. 

Remark 3. For D-, A-, and Q-optimality, the optimal design we get in Theorem 5.2.7 

i6 not only the optimal design over .T, but also the optimal design over F as well. 

This fact follows by Lemma 5.1.2. For G-optimality we can only say that the result 

in Theorem 5.2.7 is only the optimal design over .7. 

Let us define the efficiency of bounded bias optimal design as the following 

- 

where is the usual optimal design and £ E {,CD, LA, £Q, £}. It is clear that e(e*) 
is "increasing in p". Consider the situation that p =  C  . For fixed c, e(V) 

a2 + a4 + a6 
is decreasing when ( 1) = a2 + 414 + a6 is increasing; for fixed ( 1) = a2 + a4 + a6, 

c(e) is decreasing when c is decreasing. This implies that we lose efficiency (smaller 
e(e*)) to gain more protection on the possible bias (smaller c) when the amount of 

model violations at ±1 are fixed. 
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5.3 Approximately Linear Regression Model with 

Norm 1 Bounded and Antisymmetric 

Contamination Functions 

In this section, we consider again the one dimensional linear regression model and 

the class of symmetric design measures on [- 1, 1]. But for the class of contamination 

functions W we choose 

= {b : '(0) = O,(—x) = -(x), kb(x)I J(x)I 
on [- 1, 1], and (x) = EP 1 a2 +ix 2' ≥ 0 on [0, 1}}. 

In the case of antisymmetric contamination, we have 

- = B 1() (V,, e) 

and 

( 
( 
( 

IIE[ - = j--fx1'(x)(x)l 

≤ —f Ix(x)Id(x) 
112 

—I Jxq5(x)d(x) 
12 

= — fxqi(x)d(x). 
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On the other hand, we have (x) E Wa(). Hence 

max IIE[ - °] II = 1—fxcb(x)d(x) 
112 
1 

- - f i'= a2j+ix2i+2d(x) 

=: 
- > i a21112. 

112 

Under the case of antisymmetric contamination, the original problem (5.1.6) now 

becomes 
'p 

max 112 subject to — a2j+l1t2j+2 :5c, (5.3.1) 
112 

for some a2+i's such that q(x) = E PI a2j+1x2i+l ≥ 0 on [0, 1]. 

We are seeking the solution to the problem (5.3.1) for some specific choice of (x). 

The situation is very similar to Section 5.2. Hence, we only consider one case, namely 

when (x) = a3x3 + a5x5. In this case, the problem (5.3.1) becomes 

max /22 subject to a3j.z4 + a5u6 ≤ c,u2. (5.3.2) 

It is clear that q5(x) ≥ 0 on [0,1] if and only if q51(x) := a3 + a5x2 ≥ 0 on [0, 1] 

if and only if ( i) as > 0, (13 ≥ 0; or 
1 

C,  1nf E.S{—(a3/14 + a56 )} and c* 
112 

Theorem 4.2.6 that we have 

and 
C* 

= max { aa(a + fix2) + a5(a + fix3) 
(c,/3,)EA a + fix 

where A= {(a,,0,x): 0 < a < 1,0 < /3≤ 1,a+fi≤ 1, and 0 < x < 1}. For c*, we 

use "inf" instead of "mm", because c is not achievable. We define 

(ii) as < 0, a3 + as ≥ 0. Again we define 

= max 5{---(a3/24 + a5p6)}. It follows by 
/22 

c= mi {a3(a+fix)+as(a+8x)} 
(c,i3,r)EA a + fix 

= 
a3(a + fix2) + as(a +,6x') = (a3 + as)a + (a3x2 + a5x3)/3 

a+fix 

We exclude the cases when a = 0, /3 = 0, or a = 0, x = 0, where L(a, /3, x) is 
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undefined. Let 

ÔL(a,13,x) 1  
= (a + fix)2 {(a+ /3x)(a3 + as) - [(a3 + a5)a + (a3x2 + a5x3)i3]} 

1  
[fix(a3 + a5) - #X2 (a3 + a5x)} 

(a + fix)2  
- fix  

(a3 + as - a3x - a5x2) 
- (a+/3x)2 

- fix(1—x) 
- (a+fix )2 3+a5+5 

=0 

ÔL(a,/3,x) 1  
= (a + fix)2' + /3x)(a3x2 + a5x3) 

—[(a3 + as)a + (a3x2 + a5x3)/3]x} 
x 

- (a + fix)2 [a(a3x + a5x2) - (a3 + as)a} 

- ax(x - 1) 
- (a+ fix)2(a3 + a5 + a5 

:=0 (i-2) 

OL(a, fi, x) 1  + /3x)fi(2a3x + 3a5x2) 
ox (a+8x)2 

—[(a3 + a5)a + (a3x2 + a5x3)13]fi} 

=  (2a3ax + 3a5ax2 + a3 ,6x2 + 2a5fix3 - a3a - asa) 
(a +,6x)2 

:=0. (i-3) 

From (i-i) and (i-2), we find x =  as .a3 + as Let x E (0, 1)? we get as < 0, a3+a5 > 0, 

and a3 + 2a5 < 0. Put x into (i-3), we have 

a3+a5 )( a3+aS a3+a5 )a 
2a3a(— ) + (3a5a + a3/3 )2 + 2a5fi(— ) - (a + a5 

a5 as as 
- (a3 + as)  

2a3a5a + 3a3a5a + 3aa + af3 + a3a5fi - 2a/3 - 4a3a5/3 - 2a 2)3 - aa) 
- a 

(a3 + as)  
= [as(a3 + 2a5)a - (4 + 3a3a5 + 24)fi} 

a 

= -(a3 + a5)(a3 + 2a5)[asa - (a3 + as)fi] 0, 
a5 

since a3 + as > 0, a3 + 2a5 < 0, and a5a - (a3 + a5)fi < 0 (Note that as < 0). 
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Therefore the system of equations ( i-i), ( i-2), and ( i-3) has no solution in the interior 

of A. There are five boundary cases to be considered. 

(i) a = 0 
dL 

In this case, we have L(O, /3, x) = (a3 + asx)x. Let Tx = a3 + 2a5x = 0; then we 

have x* —a3 a3 a3 = --- E (0, 1), then L(0, /3, x') = (a3 + a5 
2a5 2a5 2a5 2a5 

a3 2 
--,--- is a possible maximum value of L(a,/3,x). 

'±a5 
For the cases ( ii) /3 = 0, ( iii) x = 0, and (iv) x = 1, we have L(a,O,x) 

L(a,/3,0) = L(a,,8,1) = a3+as. 

(v) a + /3 = 1 

In this case, we have 

Let 

L(1 —/9,/3,x) 
- (a3 + a5)(1 - /3) + (a3x2 + a5x3)/3 

- 1—/3+/3x 
- (as + as) + [a3 (X2 - 1) + as (X3 - 

- 1+8(x-1) 

1  
= [1 + /.9(x - i)J2 {[ 1 + fl(x - 1)][a3 (X2 - 1) + as(x - 1)1 

—[(a3 + a5) + (a3 (X2 - 1) + a5(X - 1))/3](x - 1)} 

x(x - 1)(a3+a5+a5x)  
:= 0 

[1+/3(z — 1)]2  

and 

aL 1  
Ox = [1 + /3(x - 1)]2 {[' + ,8(x - 1)]/3[2a3x + 3asx2] 

—[(a3 + as) + (a3 (X2 - 1) + as (X3  

/3  
- [1 + /3(x - 1)]2 [( 1 - /3)(2a3x + 3a5x2 - a3 - a5) + /3(a3 + 2a5x)x2] := 0. (ii-2) 

From (ii-1), we find x 13 + a5 = . Let x E (0,1); then we get as < 0, a3 + as > 0, 
as 
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and (13 + 2a5 < 0. Putting x into ( ii- 2), we have 

(1 - /3)[2a3(— (13 + 15) + 3a5(— a3 + (15)2 - ( + a5)] 
a5 a5 

a3 +a5 a3+a5  
+,8[a3 + 2a5(—  a5 a5 )2 

= (1—/3)(a3+a5)  
2a3 + 3(a3 + as) - a5] + /3(a3  

a5 a5 
= (1— /3)(aa+a5)  

a5 (a3 + 2a5)  a (a3 + 2a5) 

= (a3 + as)(a3 + 2a5)[a5(1 - /3) - (a + a5)/3] 

= (a3 + as)(a3 + 2a5)[a5 - (a3 + 2a5 )/3] 0. 
a5 

2 (a3 - 2a3 - 2a5) 

From (ii- 3), we find /3* = a5  . Let /9" < 1; then we get a5 > a3 + 2a5, i.e., 
a3 + 2a5 

a3+ a5 < 0, which is a contradiction. Note that the case of 8* = 1 corresponds to 

= 0 and a* = 0 which has been excluded. Hence, there is no extreme value in case 

(v). 

Note that 

(a3 + (15) - (--s-) = 4a3a5 + 4a + a  = (a3 + 2a5)2 0 
4a5 4a5 4a5 < 

if a5 < 0. Hence, we have the conclusion, { a if  -- a3 E (0,1] i.e. a5 < 0 and a3 + 2a5 ≤ 0 
C* = 4a5 2a5 

a3 + a5 otherwise. 

Note also, we have L(c, /3, x) ≥ 0, and lim o L(O, 1, x) = lim.o(a3 + asx)x = 0. 

Hence c, = 0. We have proved the next lemma. 

Lemma 5.3.1 (i) (x) = a3s3 + a5x5 ≥ 0 on [0, 1] if and only if one of the following 

is true: (a) a5 > 0, and a3 ≥ 0; (b) a5 < 0, and a3 + a5 ≥ 0. 

(ii) When w(x) ≥ 0 on [0, 1], we have c = 0, and 

a3 + a5 if a5 > 0, a3 ≥ 0, or a5 <0, a3 + 2a5 > 0 

2 a3 
-- ifa5 <0,a3+a5 ::f 0, and a3 2a5 ≤ 0. 4a5 
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Similar to Lemma 5.2.6, we indicate that the optimal solution to the problem 

(5.3.2) is achieved on the boundary of the side condition of (5.3.2). We formally state 

this fact as the next Lemma. 

Lemma 5.3.2 Let (a3, a5) satisfy one of the two conditions (a) and (b) in Lemma 

5.3.1, and 0 < c < c where c is indicated in Lemma 5.3.1 (ii). If a3 + a5 > c, then 

(5.3.2) is equivalent to 

max Y 2 subject to a3/-t4 + a56 = c,u2. (5.3.3) 

Proof: By Lemma 4.2.7, we have 

= P = {A,.: Ak is the interior and boundary of the triangle 

with vertices Po,Pi,Pk, 0 ≤ k ≤ 1}, 

wherepo = (O,O,O),pi = (1, 1, 1), and Pk = (k,k2,k3). Let = {(x,y,z) : (x,y,z) E 

and a3y+a5z < cx} = {(x,y,z): (x,y,z) E Ak and a3y+a5z ≤ cx, 0 ≤ k < 1). 

Let r: z = —kx+(1+k)y, k E ( 0, 1). Then we have Ak 9 7rk.. Using (x,y,z) instead 

of (Y2,,4 4, it6), the side condition of (5.3.3) becomes a3y + a5z = cx. Projecting 

f z = —kx + (1+ k)y 
a3y + a5z = cx 

onto the plane xOy, i.e., z = 0, we have a3y + as[—kx + (1 + k)y] = cx and hence 

[a3 + as(1 + k)]y = (c + ask)x. Let a = c + a5k, b = a3 + as(1 + Ic). Then we have 

P[l,ç.J : ax = by, where P[S] refers to the projection of set S onto the plane xOy. We 

make a statement as follows: 

S2: "max {x} subject to (x, Y) E P['1 fl Ak] (or (x,y,z) € S fl Ak) 

is equivalent to 

max {x} subject to (X, Y) € P[lkfl Ak] (or (x,y,z) E lkflAk)". 

If for some k € [0, 1], we have one of the following: (i) a = 0, ( ii) b = 0, ( iii) 

ab < 0, or (iv) ab> 0 but the slope of P[ik] is greater than 1 or less than k. Then 
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P[lk] fl P[Ak] = {(O,O)}. Hence flAk = {(O,O,O)}. In this case, it is trivial that 

S2 is true. If for some k E [0, 1], we have (v) ab> 0 and the slope of P[lk] is greater 

or equal to k and less than 1, again S2 is obviously true (see Figure 5.3.1). Note that 

c + a5k = a3 + a5(1 + k) implies that c = a3 + a5 which contradicts to a3 + a5 > c. 

Hence a = b will not occur, i.e. the slop of P[1k] will never be 1. Also, a = b = 0 will 

never occur. 

We have shown that S2 is true for any k E [0, 1]. Therefore, we have proved 

Lemma 5.3.2. 0 

1A) 

Figure 5.3.1 

We are now going to find the solution to the problem (5.3.2). Similar to the proof 

of Theorem 5.2.7, we have = 1 if and only if a3 + a5 ≤ c. The corresponding design 
1 

measure is = 

From now on, we assume that a3+a5 > 0. In this case, the application of Theorem 

4.2.6 and Lemma 5.3.2 will simplify the problem (5.3.2) to he the following: 

max {a + fix) subject to c(a + fix) - a3(a +,6X2) - as(a + fix) = 0. (5.3.4) 
(c,13,x)EA 

The method of Lagrange multipliers now can be used to solve (5.3.4). Let 

L(a,fi, x, )) = a + fix + )t[c(a + fix) - a3(a + fix2) - as(a + fix3)] 

= a + fix + .X[(c - a3 - as)a + (cx - a3x2 - a5x3)fij, 
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and 
0L 
- = 1+A(c—a3 ----as):=O 

- = x + Ax(c - a3x - a5x2) := 0 
5/3 
SL 

= ,8  + A13(c - 2a3x - 3a5x2) := 0 

SA 
We find that the above system of equations has no solution in the interior of A. There 

are 

f OL OP 

OL 91 

54  54 OL OA 

ve boundary cases to be considered. They are (i) a = 0, ( ii) 3 0, (iii) x = 0, 

(iv)x= 1, and (v)a+8= 1. 

(i) a = 0 

In this case, we have L(O, i8, x, A) = fix + A/3(cx - a3x2 - a5x3). Let 

= x + Ax(c - a3x - a5x2) := 0 (i_ 1) 

=13+ A/3(c - 2a3x - 3a5x2) := 0 (1-2) 

= /3x(c - a3x - a5x2) := 0. (i-3) 

Note that ( i-i) and (1-3) contradict each other when /3 0 or z 0. For the special 

case when a = 0 and 8 = 1, we have L(0, 1, x, A) = x + A(cx - a3x2 - a5x3), and 

= 1 + A(c - 2a3x - 3a5x2) := 0 (1-4) 

= x(c - a3x - a5x2) 0. (1-5) 
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Let 

Ia" (x-1)+(x—i)[e—a3(x+1)—as(x2+x+1)]:=O  
JaL 

/3 + ) 8(c - 2a3x - 3a5x2) := 0 (ii-2) 

li (c—a3—as)+/3(x---1){c—a3(x+1)—as(x2+x+1)J := 0. (ii-3) 

From (ii-1) and (ii- 2), we get c - 2a3x - 3a5x2 = c - a3(x + 1) - a5 (X2 + x + 1), and 

hence (x 1)(x + a3 + a5) = 0. Let = a3 + a5 E (0, 1). Then we have a5 < 0 
2a5 2a5 

and a3 + 3a5 < 0. Putting x into ( ii-3), we find 

/3* a3 + a5 - C 

(x* - 1)[c - a3(x* + 1) - as(x*2 + x" + 1)] 
a3 + a5 - C 

(x* - 1)[c - 2a3x* - 3a5x*2] 
a3 + a5 - c 

(-  a3+a5 a3+a5 1)[c- 2a3(— ) 3a( )2 ] 
2a5 2a5 2a5 

8a 2 (C - a3 -  a5) 

(a3 + 3as)(a - 2a3a5 - 3a + 4a5c) 

It is easy to see that /3* > 0. If we also have /3* < 1, then 

L(1_/3*,fi*, x*,)*) = 1_/3*+,8*x* 

(a3 + a5)2 

a - 2a3a5 - 3a + 4a5c' 

is also a possible maximum value of L(c, /3, x, A). 

We introduce the following conditions: 

Cl: a3 + a5 < c. 

C2: x* a3 +a5 E (01)andfl*_  8a(c—a3—as)  
2a5 (a3 + 3as)(a - 2a3a5 - 3a + 4a5c) < 1. 

Furthermore, we define the following notations: 

- —aa+Ja+4asc * —a3+Ja+4asc 
NI: c=0,/3=1,x— I V1 - 

2a5 

= 

and 

(a3 + as)(a - a + 4a5c) 8a(c - a3 -  as) 
N2: a*  = = 

(a3 + 3as)(a - 2a3a5 - 3a + 4a5c) (a3 + 3as)(a - 2a3a5 - 3a + 4a5c)' 
* - a3 + a5 *  (a3 + a5)2  

= a - 2a3a5 - 3a + 4a5c' and = 
X2 ,v2 + --  

We have proved the next theorem which provides the solution to the problem (5.3.2). 
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Theorem 5.3.3 Let (a3, as) satisfy one of the two conditions (a) and (b) in Lemma 

5.3.1 (i,), and 0 < c ≤ c*, where c is indicated in Lemma 5.3.1 (ii). The solution to 

the problem (5.3.2) is the following: 

(i) If Cl is true, then and = 1. 

(ii) If Cl is not true, but C2 is true, then = max{v,v} v, and the 1 2 

corresponding design measure is 6j , i E { 1,2}. 

('iii) If both Cl and C2 are not true, then = v, and the corresponding design 
1 

measure is = 

The following corollary is obviously true. 

Corollary 5.3.4 Let ço(x) = a3x3 + a5x5 > 0 on [0, 1] and a3 + a5 = 0. Then the 
1 

solution of the problem (5.3.2) is = and 4 = 1. 
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5.4 Approximately Linear Regression Models 

with Norm 2 bounded Contamination 

Functions 

In this section, we consider the problem of bounded bias optimal designs of ap-

proximately linear and multiple linear regression models with different class of ..T and 

IF as we discussed in Section 5.2 and Section 5.3. We define 

W = 10 (x) : is 02 (x)dx ≤ 2,f f (x)b(x)dx =Q}, 

where 77 is a preassigned constant and the side condition fg f (x)b(x)dx =0 is to 
insure the identifiability of the parameters to be estimated. Also, we define 

= {(x): d6 (x) = m(x),jm(x)dx = 1,m(x) ≥ 0, and m(—x) = m(x) on S}. 

In this section, we choose S = [- 1, 
Let y =0 f (x) to be the estimator of 0TJf (x), where 0T= (o,o), 0 = (O, O), 

and 1T (x) = (1, X). Under the model (5.1.3), we know that 

MSE() = 0,2  fT (x)B() f (x)+ P (x)B 1() b (0, 6) bT B 1() f (x), 

where B() fS f (x) fT (x)d(x), b (0, 6) = fS f (x)'b(x)d(x), and 

Is 
0,2 

MSE()dx = —trAB'(e)+ bT B'()AB 1() b (), 

with A = f(x) 1T (x)dx. 
For the approximately linear regression model, we have 

f 
B() = i 0 0JL2) B1() = ( 1 01 f 0 

0 ),A= i 0 1)and 
P2  
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bT ('/',) = (fS(x)de(x),fSXI(X)de(X)). Denote 

and 

Bias (0, ) 

2 / 1 0 \ 1 
=—tr 

n n 
0 12 

2 ( 1 0 
= 

n Q 122) 

1 
=fl + 12) 

—bT (,)B-1 (e)AB-'(e) (&,•) 

0 
1 

IL2 ) 

= (f/..(x)de(x),fxb(x)de(x)) ( 1 0 / 1 0 '\ Ii 0 " / fb(x)d(x) 

0 1 1( 0 
IL2 / \ - / - j fx(x)de(x)) 

1 

= (f (x)d(x))2 + (f x(x)de(x))2. 

We consider the following problem: 

min V() subject to max Bias (b,e)  

where c is a preassigned positive constant. 

The maximization of Bias(, ) over the class 'I' has been done by Huber in 1975. 
The result can also he found in Huber ( 1981). We state the result in the next lemma. 

Lemma 5.4.1 (Huber 1975) Let FI E F and t2 = fx2d(x) ≥ }. For 
any 6 E FI, we have 

mBias(b,) = 2f (rn(x) - 1)2dx, 

where in(x) = d(x)  
dx 

1  
The fact V() = —(1 + ) implies that minimizing V() is equivalent to 

n 1292 

maximizing IL2• By Lemma 5.4.1, we conclude that, within the class ., (5.4.1) is 
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equivalent to 

max f'2 subject to is 7-n(x)dT = 1, and 772 J,("?,(X) - 1)2dx ≤ c. (5.4.2) 

Furthermore, we can write ft2 = fx2d(x) = fsx2rn(x)dx, and fs(rn(x) - 1)2dx = 

J's(m2(x) - 2rn(x) + 1)dx = 1srn2(x)dx —1. Hence (5.4.2) becomes 

Max j4EXI  x2rn(x)dx subject to j m(x)dx = 1 and f rn2(x)dx ≤ + 1. (5.4.3) 

We first consider the subproblem 

max j 52n2(x)dx subject to Im(x)dx = 1 and J ?n2(x)dx = - + 1. (5.4.4) 

4EYtFor some multipliers a, b, we maximize 

fix  M(X) + —rn(s) - j-rn (x)]dx 

by maximizing the integrand pointwise. We find that 

m(x) = [ax2 + b]+, 

with a, b determined by fsrn(s)dx = I and f3m2(x)dx = -- + 1. 
772 

Before we solve the problem (5.4.3), we are going to show that the problem (5.4.3) 

and the problem (5.4.4) are equivalent. 

Lemma 5.4.2 

max f x2m (x)dx subject to Im(s)dx = 1 and I M2 (x) - + 1 

is equivalent to 

n.if x27ll(x)d% subject to is ?n(x)dx = 1 and is rn2(x)dx = + 1. 
Proof: Let 4 be the maximum value of (5.4.3). We are going to prove Lemma 5.4.2 

by showing that is a function of A and increasing in A where 0 ≤ A ≤ 
72 

For any E T, we have t2 = f3s2d(s) ≥ which implies a > 0. Hence, we 

consider two cases. 
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(i) a> 0, b ≥ 0 

In this case, we have rn(s) = [ax' + b]+ = ax2 + b. Hence, we get 

fs 7Th(X)dx = J1(ax2+b)dx = +b:= 1,2 12 

f rn2(x)dx = f 1 (a2x4 + 2abx2 + b2)dx = a2 + ab + b2 := 1 + A, (i-2) 

and 

112 = fsx2m(x)dx = f, (ax + bx2)dx = + (i-3) 
2 80 12 

Put (i-i) into (i-2) to obtain 

and hence a=v'iO. (i-4) 

Put (i-i) and (i-4) into (i-3) to obtain 

80 12 12 180 180 

a 
Note b=1— = 1  > 0 implies that A ≤ Hence is a function of A 

1 12 - 

and increasing in A when A € (0, 

(ii) a > 0, b < 0 

In this case, there exists a xo E (0, ) such that 

I ax  + b x € [- i, —so) 
rn(x)=ç 

1 0 X  [— X, X] 

Hence, we get 

or x E(Xo,) 

1 \/ 
(i-5) 

ax+b=0,  

fsm(x)cls = 2fj (ax2 + b)dx = 2[x + bx] 0 = 2[( - xg) + b( - Xe)] : 1, (ii- 2) 

fS rn2(x)dx = 2f(ax2 + b)2dx = 2f(a2x4 + 2abx2 + b2)dx 

2[a255 2ab = - + + b2x] 0 

1 2ab1 2( 1 
= 2[--( - x5 T2 g) + - xg) + 5 o)] 
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and 

= f5x2rn(x)dx = 2f x2(ax2 + b)dx 

= 21'J0(ax4 + bx2)dx 
b 

= 2[x + x3]0 

al 

Put (ii-1) into ( ii- 2) to get - x) + (—ax)( - X) = and hence we find 

1 
a = 2r1 (1x)_x(_xo)} 

138 

2( ' - xo)( + - 2 j 3o) 

2(xo - i)2(xo + 

2 3Putting (ii-2) and (ii-5) into ( ii- 3), we get 

a2 1 2a 2 1 - SO) = _____ --( - x) + -- (—axo)( - s ) + (_ax )( 2 1+ 
2 

which can be simplified as the following: 

3(324+18xo+3) — 1+ A. 
5(-32xg+6xo+1) - 

Finally, putting ( ii- 1) and (ii- 5) into (ii-4), we find 

* 

P2 = 2[(- 32-  - 4) + (—axg)( -:4)] 
2( 1  

= 21—(--- - x - xg 5 )]a 
1 32 ) -  

2 (X - 1)2 (jgxg + 15  + jXo + 40) 

= (2xo + 

- 165g+165+1250+3 (••11- 7) 
- 20(4x + 1) 

From ( ii-6) and ( ii- 7), we know that p is a function of and x0 is a function of A. 

Hence p is a function of A through For the sake of argument, we write x instead 
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of x0 hereafter. Taking the derivative on both sides of (ii- 6) with respect to A, we get 

5(-32x3 + 6x + 1)2 {( 32x3 + 6x + 1)(64x + 18) dx - (32x2 + 18x + 3)(-96x2 + 6) dx 

96x(32x3 + 36x2 + 15x + 2) dx - 1 
— 5(-32x3 + 6x + 1)2 d1\ - 

It is easy to see that 

dx -  5(-32x3 + 6x + 1)2  
>0, 

25 96x(32x3+36x2+15x+2) 

when x E (0, ). On the other hand, x E (0, if and only if A E (, oo). Hence, we 

conclude that dx > 0, for A E (, 00). Taking the derivative on both sides of (ii- 7) 

with respect to x, we get 

d 1  
dx — 20(4w + l)2R4' + 1)(48x2 + 32w + 12) - 4(16w3 + 16w2 + 12w + 3)] 

1  
= 5(4w + 1)2 (32w3 + 28w2 + 8w) 

— 4x(8x2 + 7w + 2) > 0 for x E (0, 
— 5(4x+1)2 

By the chain rule for derivatives, we have 

dx AE(,00). 
- dA - >0 for dx dA 

Hence t is a function of A and increasing in A. 0 

Remark 1. There are two limiting cases: 

(i) A —+ 0 which corresponds to a = 0, and b = 1. In this case, we get m(x) = 1 

on [- i, which is the uniform density function and p = 

(ii) A — oo which corresponds to x0 —+ . In this case, we have = and 

= which is the same as the usual optimal design. 

The next theorem follows by Lemma 5.4.2, which provides the solution to the 

problem (5.4.3). 
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Theorem 5.4.3 Let us maintain the same notations as we used in this section. The 

solution to the problem (5..3) depends on the value of A : 

(i) If A E ( 0, ], then rn(x) = ax2 + b with a, b determined by 

Is 
1N/A-and  

14 = 6/ 

(ii) If A E (, 00), then 

rn(x)dx = 1,1 m2(x)dx = 1 + A, 

= { ax+b x  [—, xo) orx (x0,] 

771 W 0 xE[—xo,xo] 

with a, b, determined by 

fS 
and 

where x0 is determined by 

m(x)dx = 1, is m2(x)dx = 1+ A, 

*- 16xg+16x+12xo+3  
P2 - 20(4x0 + 1) 

3(32x+18xo+3) - 1+A 
5(-32x+6xo+1) - 

It is possible to extend the problem (5.4.3) to the higher dimensional case. Here 

we only discuss the multiple linear regression case. 

Let fT (x) (1,x1,...,x), 0T= (OO,OI,...,Op), and T= (Ôo1 Ô) where d is 
the least squares estimator of 0. Define 

= {(x) : IR 2(x)d x≤ 2, and f (x)(x)d x=o}, 

[F( + 1)]  
whereR={x:IJxJJ≤-yp },and := 

d(x) 

d  
= rn(x), fR m(x)d x= 1, m(x) ≥ 0, and m(xi, ..., —xi, ..., x) 

= on R, i = l,...,p}. 
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Then we have 

B((x)) = fR() T (x)d(x) 

= fR 

x1 XP 
x1 x1xp 

\ Xp 

/1 

de(x) 

xpx1 x 2 I 

0 •.. 0 

0 fRxm()d x 0 

0 

i'i 0 •.. o 
07••• 0 

0 

where y = fR xm(v)d x, i = l,...,p, and 

7) 

fRxm()d x j 

A = fRf(x)fT(x)dx 

X1 x1, 

:z;i 

= JR 

\Xp XXi S / 

'1 0 0 

0 f RX2 ldx 0 

d 

fR X 2 x 

x 

/ 
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where o = fRxd=  

Let P =öTf (x) be the estimator of 0Tf (x). Under the model 

yi = _0Tf () + '(x) + i, i=1,2, ... ,n, (5.4.5) 

we have 

MSE() = - fT (x)B'((x)) f (x) 

+ .T (x)B 1((x)) b (/'(x),.(x)) bT (/(x),e(x))B'((x)) I (x), 

where 

fR fT (x)b(x)d(x) 

= (JR b(x)m(x)d x, JR xi'çb(x)m(x)d x, ..., fRxP?I'(:p)m(:)d x), 

and 

where 

and 

IR 
MSE(9)d x= V(6(-T)) + Bias(b(v), 

V(e(x)) = 012 
72 

o •.. o'i o •.. 
01 2 0 '10 0 0 1 ... 

=—tr -y 
n 

\ 0 0 •.. 7oJ \0 0 

=-[1+?2], 

We consider the following problem: 

riiV(e()) subject to max Bias(&(x),e(x)) ≤ c, (5.4.6) 

where c is a preassigned positive constant. 

The maximization of Bias(&(x), e(x)) over the class ' has been done by Wiens 

(1990). Let H = B(e(x))A 1B(e(x)), and K = JR f (x) fT (x)m2(x)d x, and vC be 
the largest solution to the equation IK - vHI = 0. Then we have: 
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Lemma 5.4.4 (Wiens 1990) Let F. { :6 E F, and = fRxd) ≥ p2L 

For any .• E 7'mj we have 

max Bias (?J(x),(x)) = 272(JR m2(x)d x — 1), 
Eq'  

d(x) 
where nn(x)   

dx 

Similar to the one dimensional case, within the class of .Fm, we only need to 

consider the problem: 

mm -[1 + P'YO] subject to j2(J () x —1) = C, 

which is equivalent to 

max fR xm(x)d x subject to JR rn()d x= 1 

and fRm2(x)dx=4+1:=A+1. 

(5.4.7) 

(5.4.8) 

For some multipliers a, b we maximize 

JR[1() + —m(x) - —m (x)]d x 

by maximizing the integrand pointwise. We find m(x) = [all 112 + b], with a,b 

determined by 

IR 
in(x)d x= 1 and IRU = A + 1. 
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Chapter 6 

Robust Designs for some 

Regression Models with Random 

Bias 

6.1 Introduction and Preliminaries 

In Chapter 4 and Chapter 5, we have assumed that a class of possible bias functions 

exists but that all functions in the class are equally likely to be the actual bias present 

in the regression model. In practice, it is possible that certain bias functions would 

be more likely than the others, and perhaps the experimenter can specify a prior 

probability distribution on the form of the possible bias functions in the model. In 

this chapter, we consider the following regression model: 

y(x,w) = 0T 1 (x) + &(x.,w) + ei (w), i=1,...,n. (6.1.1) 

The 6(w)'s, for a given w, are uncorrelated random variables with mean 0 and variance 

a2>O. xE S:= {(x1 ,..., xq): _1≤ x ≤1,j = 1,..., q}R ,i= 1, ... ,n. 

0T (Oo, O, ..., Or), and fT = (fo (x) f1 (X), ..., f(x)). w is a random variable 

defined on I with distribution fJ(w). For A E is a o--finite field defined on 

1, fl(A) represents the probability that b(.,w) falls in the set {(., w), w E Al. fl(w) 

represents our prior knowledge or opinion about the distribution of possible functions 
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We additionally assume that E[b(x,w)] = f1'(x,w)dfJ(w) = 0 and E[ 2(x 

)w)] < oo for all XE S. The assumption E[(x,w)] = 0 reflects the notion that the 

model 

y(x,w) = T! (x)+(w), 

is correct on the average, but any particular realization (choice of w) may induce the 

bias (x,w). Note that if 00> 0, and one can write E[b(x,w)] _pT 

g (x) where / is a vector of unknown constants, and g (x) a known function. One 

can then define q(x,w) = (x,w) — E[(x,w)] and write 

I \ 
=(OT ItT) (& f (& ) + cb(x,w) + 6(X, W), 

which is in the form of (6.1.1) with E[4(x,w)] = 0. Note also that the condition 

E[(x,w)] = 0 insures the identifiability of the parameters 0. 

Let (x) be a design measure defined on S. We define B(e(x)) = Is f (x) 

fT (x)d(x) and bT (, co), (&)  

The least squares estimator of 0 is then 9= B 1(e(x)) Is f (x)y(x)d x with bias vector 
and mean squared error matrix as follows: 

and 

- 0] = B- (()). b ( b(x,w), e(x)) 

MSE(0) = E[(Ô — o)(O - O)T] 

- 

— — B-'(e(x)) + B 1((x)) b ((x,w), (&) 
72 

T ((x,w), e(x))B-1((x)). 

(6.1.2) 

(6.1.3) 

Let g =OTf (x) be the estimator of 0T1 (x). Then the mean squared error of is 

MSE() = E[(öTf (&— oTf (x)) 2] 

01 2 = - fT (x)B1(e(x)) (x)+ T (x)B_1((x)) 

b ( b(x,w), e(x)) b  (/..'(x,w), (x))B 1((x)) f (&• 

(6.1.4) 
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We consider the loss functions (i) £D() = jç MSE(0) dfl(w), (ii) .CA(e) = 

f tr MSE(Ô)dfJ(w), and (iii) £Q(e) = f (f MS_E(•)d _ dfJ(w). It is clear that 

these loss functions correspond to the classical notions of D—, A—, and Q-optimality 

if (x,w) 0. For convenience, we call a design measure C D—, A—, or Q-optimal 

if C minimizes CD (C), LA(), or £ c2() respectively. In this chapter, we are going to 

find: 

(i) Q - optimal design for one dimensional polynomial regression model; 

(ii) D—, A—, and Q-optimal designs for multiple linear regression model; 

(iii) D—, A—, and Q-optimal designs for two dimensional linear regression 

with interaction term. 

The solutions are provided in Section 6.2, Section 6.3 and Section 6.4 respectively. 

The problem discussed here was posed by Notz in 1989. In his paper, he found 

optimal designs for one dimensional polynomial regression model with respect to D— 

and A—optimal criteria. Hence this chapter extends Notz's results to some other loss 

function and to the high dimensional situations. 

Before we start to solve the optimal design problems, we first provide some results 
01 2 

which are useful in the later sections. For convenience, we set v = -. We maintain 
n 

the same notations as we made earlier in this section. We present some useful results 

in the next four lemmas. 

Lemma 6.1.1 £D(e) = ivB-1(•(x))l . {1+ v f T (b(x,w),(x)) 
b (?b(x,w),(x))dfl(w)}. 

Proof: Let G be a nondegenerate m x m matrix and let F be an m x k matrix. Then 

we have 

C + FFTI = IGI Ilk + FTG 1FI 

(See Fedorov ( 1972)). Let G = vB 1(e(x)) and F = B 1(e(x)) b ('/'(x,w),(x)) (In 

this case, we have Ic = 1). Then we have 
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I MSE() I =  

bT-1 ((x)) I 
= I vB'((x)) 11 I, + (B((x)) b (b(x,w),(x)))T 

•(vB 1((x)))' (B 1((x)) b  

= I vB1((x)) I .{ 1+ b  ( b(x,w), (x))B 1((x)). 

•B-'(e(x)) b (t/'(x,w),(x))} 

= I vB 1((x)) 1 •{1 ±v b  B 1((x)) b 

Hence, we get 

,CD =  fç dfl(w) 

= I vB'((x)) I .{ 1+v 1J' l bT (&(x,w),e(x)) 

•B 1((x)) b (?/(x,w),(x))dfl(w)}. 0 

Lemma 6.1.2 £A() = v trB-1 (e(x)) + frz b  ( b(x,w), e(x))B-2((x)) 

•b (' b(x,),e(x))d11(w). 

Proof: Let G be an m x m matrix and u be a rn-dimensional column vector. We 

are going to show that the following equation is true: 

trG uuT G = UT G2 u. 
Sdt%l 

Let gij be the i1h row and j1h column element of G, and UT= (ui, ..., Urn). The 
ph row and kt1 column element of uuT is uJuk. Hence, the th row and kth column 

element of G uuT is gijujuk, and the ith row and ph column element of G uuT C 

is gujujuk) gkl. Therefore, we have 

rn rn/rn 

trG uT G = ( gijujuk) 9ki 

M m fm 

= >: 3 (> YkiYii) Uk 
k=1 j=1 i=1 

On the other hand, the kt1 row and jth column element of G2 is gkigij. Hence 

rn rn (1:gkiij=1 

rn 

UT G2 =  Uk = irG C. 
k=1 j=1 
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We have proved that (6.1.5) is true. 

Let G = B'(e(x)) and u=b (t.b(x,w),e(x)). By (6.1.5), we have 

trMSE(0) = tr[vB'(e(x)) + B'((x)) b ( b(x,w),(x)) 

b  (&(x,w),e(x))B-'(e(x))] 

= v t?B-'(e(x))+ b  ('b 2(e(x)) b  

Hence, we get 

= fQ trMSE()dfJ(w 
= v trB 1((x)) + fo b  W), 6(X)) 

•B 2((x)) b 

Lemma 6.1.3 Let fT (x) = (f0(x),...,f(x)) and B be 
1 

Then 

jf  (x)B I (x)d x= trAB, 
where A = fS f(x)fT(x)d x 

a (p + 1) x (p + 1) 

0 

matrix. 

Proof: Let aij = fS f(x)f(x)d x be the i1h row and j1h column element of A, bjk 

be thejth row and k1h column element of B and eu be the j1h row and ktI column 

element of AB. We have 

Cik =>jaljbjk = jfi(x)fa(x)bakdx. 

Consequently, we get 

trAB = 

i=O (j=O S 

= is d  

= is f T (x)B f (x)d x 0 



163 

Suppose 6 is a probability measure supported on [- 1, 1] and aj = A xd(x) for 
integers i ≥ 0. If i ≥ j ≥ 0 and i, j are even integers, then Notz ( 1989) showed 

[Liii ≥ 1i 

The application of ( 6.1.6) will give us the next lemma. 

Lemma 6.1.4 yk < /12k :5- P2 for k ≥ 1. 

(6.1.6) 

Proof: (i) For Ic = 1, we have 1u2 ≤ P2. 

Assume that i4' -< 92k-2. Then we have 4 = ut' u S /t2k. 

Note that the first inequality follows by the assumption and the second inequality 

follows by (6.1.6). By mathematical induction, we have 

14 5 1L2k for all k≥ 1. 

(ii) /12k = J'., x2'd(x) <f., x2de(x) = t12-
We have proved 4 p2k :5P2 for k ≥ 1. 0 
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6.2 Q-optimal Design for One Dimensional 

Polynomial Regression 

We first consider the one dimensional linear regression model. Let fT () = 
(1,x), ?J'(x,w) = c(w)x, where x E S := [- 1, 1]. c1(w)'s are integrable real 

valuedfunctiononsatisfying -y = fc(w)dfl(w) < oo, and f-c(w)cj(w)dfJ(w) = 0 

for i 0 j and i + j even. Let .'F5 be the set of all the symmetric design measures 

defined on S. For any E ,Fs, we have 

and 

B((x))=Jf(x)fT(x)d(x)= J( 1 x)de(x)=(1 0 
se.. S xx 2 0/22 

bT  (10(x, w)d•(x), f x0(x,w)d6(x)) 

r 

i—O i=O 
i even i odd 

where ij = is xd(x). We also have 

A = jfT( x)f(x)dx= f 

and 

I ( 1 2 \ 

: x2) \ 0 2 J 

) 
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is MSE()dx = 01 2 r (2 

Therefore, we find 

where 

/ 

\ 

(i0 
i even 

o(i 
2 
3 

/-2 
(i even 

2a2 ( 1 

n \ 3it 

(2 
L ) + tr 
U) 

c(w))  ( 7. 

0 2 03 

c(w)) ( ci(w)ILi+l 

)1 P2 
- c(w)+i 
i=O 
i odd ( E C'(W )1t'+1 

i=O 
i odd 

- 

i=O 
iodd 

h 

2 ( r i=O ) + 32 (w) +2 cjlij+i 

i even i odd 

= is, (IS MSE(g)dx) dfl(w) 

( 1 2 = 1+—+2 
3i2 j i=O 3/12 j0 

i even i odd 

2v 
7. 

v = -. Our objective is to find a symmetric design measure 
Ti 

over s• This is equivalent to minimizing 

V r 1 —+ v' l r z • -- 
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(6.2.1) becomes 

3z2+ o 7z2 

even i odd 

2i-2 = + > + 
i=O 3 i=O 
i even i odd 

V 
= —+ t yjx + yjx' := 

3x i=O i=O 
i even i odd 

'jZ22 

where x = z2 and 0 <x< 1. Let 

dL(x) v 

d  3x =--2 + 

We get 

i even 

+ r 

i odd 

11 r 

(i - l)yxi_2 := 0. 

= 3 E  i'y1x11+ E (i — 1)y1x. (6.2.2) 

i even i odd 

Thus we have proved the following theorem. 

Theorem 6.2.1 Assume fT (x) = (1,x) and &(x, w) = E7=0 ci(w)xi for some inte-

ger r ≥ 0, where the c(w)'s are integrable real valued functions defined on Q satisfying 

= f- c(w)dfl(w) < co for  = 0, ..., r and f- c(w)c(w)dfl() = 0 for all i 0 j and 

i + j even. Then there exists a design measure o E .s that minimizes £ Q(e) and is 

of the form (z) (—z) = , where z = min{1, /} and 0 <x < 1 satisfies (6.2.2). 

Probably, the most useful special case is b(x,w) = 0c(w)x. In this case, the 

more explicit result can be found. We state it as a. corollary. 

Corollary 6.2.2 Suppose the assumptions of Theorem 6.2.1 are hold with r = 2. 

Then £ Q(e) is minimized by Co of the forme(z) = (—z) = where  = min2 6^12 {i /-}. 
Proof: In (6.2.2), we put r = 2. Then we have v = 6^12 X3 and hence x = The 

4 ,y2 
corollary follows by Theorem 6.2.1. 0 
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Now we consider the one dimensional quadratic regression model. Let 

fl (x) = (1,x,x2). For i(x,w), we consider a special case when (x,w) = co(w) + 

c1(w)x + c2(w)x2 + c3(w)x3. For e E .Fs, we find 

/ 1 0 112 

B((x)) = I! (x) fT (x)de(x) = 0 /12 0 

\ /22 0 [14 

and 

We also find 

B 1((x)) = 0 

112  

\ 114 - 1L 

0 

1 

[12 

0 

/ 2\ 
20 3 

, A= fS f(x)fT (x)dx 0 = 

2 

bT (0 (X, w), e(x)) (1,0( X, w)d(x), is x(x, w)d(x), j x(x, w)d(x)) 
= (c0(w) + c2(w)ji2, ci(w)[12 + c3(w)/14, co(w)[12 + c2(w)/14), 

and 

ir AB-1(6(x)) = 
2/14 2/12  2  2/12 2  

114 — 14 3(114 - 2) + 3112 3([14 -14) + 5 ( - 14) 

30z&-2thL9-i-6 2 

15(114-112) 3/12 
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Note that 

fT (x)B-'((x)) b ( 1'(x,w),e(x)) 

/  /24  

it4 - 

= (1,x,x2) 0 

P2  

\ [L - /12 

0 

1 

/12 

0 
ft4 _f4 J 

/ Cçj(W) 

= (1,x,x2) ci(co)+c3(w)L± 

C2 (W) 

= CO (W) + c1(w)x + c2(w)x2 + c3(w)Lx. 
/22 

Hence, we have 

CO(W) + c2(w) 2 

C1(W)A2 + c3(w),a4 

co(w)/12 + C2(W)Y4 / 

ir AB 1((x)) b (tb(x,w),e(x)) b  (?'(x,w),(x))B-'(e(x)) 

= I(fT (x)B1(e(x)) b ( b(x,w),(x))][fT (x)B1((x)) b ((xw),(z))]Tdx 

= j[co(w) + c1(w)x + c2(w)x2 + 

2 2 2 /24 2 2 /24 
= 2c02 (w) + 4(w) + -c(w) + c(w)— + co(w)c2(w) + ei(w)c3(w)—. 

0 0 0 /12 o /12 

Finally, we get 

= in (fMsE(i')dx) d[J(w) 

= v trAB1(e(x)) + fro, trAB'(e(x)) b ( b(x,w),(x)) 

.17 (/.'(x,w),(x))B'((x))dfl(w) 

[30/14 -20/22+6 2 1 
+ - + j[2c(w) + + C2 (W ) 

= L  15(—[4) 31L2j 

/24 
C32  + 2 2CO(W)C2(W) + ci(w)c3(w)—]dfl(w) 
3 3 /1 2 

[30,U4 -  20/12+ 6 2 1 2 71 + Y2 + 2 /L= V 15(/14—[4) + +2io+ 3,t2j 
/12 

iff co(w)c2(w)dfl(w) = I ci(w)c3(w)dfl(w) = 0 and yj = J c?(w)dfl(w) < 
Jc 

00, i=0,1,2,3. 
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It is clear that a symmetric design measure o which minimizes .CQ () over Fs is 
equivalent to minimizing 

15/24 - 10/22 + 3 1 1 1 
+—I+ +15(/24—) 3 it2J 

over .F5. LO (/.12, i4) depends on 6 only through (122, it4). The application of Theorem 

4.2.5 yields 

min L(it2, 124) = min Lo(4u2, /24), 
CE-Fs 

(6.2.3) 

whereFo ={e: EFs, ±+(1—a)o,0a1,0≤x≤1}.For 

any 6 E F, we have 122 = j x2d(x) = ax, and /14 = is x4d(x) = ax2. Put 122 = ax, 
and Y4 = ax2 into (6.2.3), we find 

I  15ax2 -  lOax +  + 1 73X2 
---. L0(122,124) := (a, x) = v [ 15a(1 - a)x2 3ax + j 3 (6.2.4) 

Hence, we have 

min Lo (112, 124) = min L, (a, x), 
(cx,z)EA 

where A = {( a, x) : 0 ≤ a ≤ 1, 0 ≤ x < 1}. This yields the next theorem. 

Theorem 6.2.3 Assume fT (x) = (1,x,x2) and '/'(x, w) = E.0c(w)x, where the 

c(w) 'save integrable real valued functions defined on ) satisfying-yj = in c(w)dfl(w) < 
oo for i = 0, 1, 2,3, and J co(w)c2(w)dfl(w) = f ci(w)c3(w)dfl(w) = 0. Then there 

exists a design measure € Fs that minimizes () over Ts and is of the form 
eo = ±+(1—ao).o, where 0 < ao ≤ 1 and  < x0 ≤ 1 minimize Li(a,x) in 

(6.). 

Remark 1. The assumptions is, co(w)c2(w)dfl(w) = j ci(w)c3(w)dfj(w) = 0 in 
Theorem 6.2.3 are not necessary. The similar result can be found without these 

assumptions. However, when we consider the case '(x,w) = 0c(w)x for r > 3, 

the assumptions is, c(w)c(w)dfl(w) = 0 for i 54 j and i+j even will greatly simplify 
the problem. 
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Remark 2. The solutions in Theorem 6.2.1 and Theorem 6.2.3 are not unique. For 

example, (6.2.4) can also be minimized by a design measure 6 of the form = 

(1—a)  
2 L  for some 0<a≤1 and 0<x≤1. 
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6.3 Optimal Designs for Approximately 

Multiple Linear Regression 

The results in Section 6.2 and in Notz ( 1989) can be extended to the high di-

mensional case. In this section, we only consider the approximately linear regression 

situation. In this case, the problem of finding optimal designs can be easily solved. 

Let 

Yi = y1(x,w) 0T1 (x) + b(x,w) + (w), i = 1, ..., 

where (w) are independent and identically distributed with mean 0 and finite vari-

ance or2 > 0. We also assume x= (x1,...,x) E S := {(x1,...,x) : —1 ≤ x ≤ 1,j = 

c jpj, 1T () = (fo(),...f()) ( 1,x1,..., x), 0T= (Oo, 01' ...' Op) with 

p ≥ 2, and 

b(x,w) = ao(w) + a(w)x + b(w)x + 
i1 i=1 i0j 

We again restrict ourself to consider the symmetric design measures defined on 

S. We denote J to be the set of all the symmetric design measures on S. For any 

E Fp, we have 

B((x)) = IZ(x)fT (x)de(x)_f 

x1 

X1 

\ XP X,Xi 

xp 

x1xp 

I 

d(x) 

0 ... 0 " / 1 0... 0" 

0 fxdc(x) ... 0 = 0 ). ... 0 

0 0 ... fxd(x) j 0 0 ). 
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where A=jxd(x) i=1, ... ,p,and 

bT ( b(x, w), (x)) = j b(x, w)d(x), is Xi(X, w)de(x), ... , J•S xb(x, w)d(x)) 
= ao(w)+AEbj(w), ai(w)A,...a(w)A) 

According to Lemma 6.1.1, we have 

= vB1((x)). {i + v 1 J bT ((x,w),e(x)) 

•B'((x)) b ( b(;w),(x))dfl(w)} 

= {1 + v 1 if, (ao(w) + A b(w), ai(w)A, ... , a(w)A) 

fi 0 0 ' ao(w)+) Ep b1(w) 

0 ••.. ?ci a(w)A 

V V-1 I [(ao(w) + A b1(w))2 
Ap{ l+ j i=1 

+a(w)A + ... + a(w)A]dfl(w)} 

= 

i=I i=1 I 
(6.3.1) 

if j ao(w)bj(w)dll(w) = 0, i = 1,...,p, and f b(w)b(w)dfl(w) = 0 for all 
i 54 j; Cei = fS2 a(w)dfl() < oo, i = 0, ..., p, and fli 

= ff 2 bflw)dfl(w) < oo, i = 

1,...,p. 

It is clear that the range of A is between 0 and 1, and any value of A within its 

range can be achieved by choosing a design measure of the form (x1, ..., xi,) = 

where xi = ±v/z- for some 0 < z ≤ 1, i = 1,..., p. Putting A = is xd(e(x)) = z into 
(6.3.1), we get 

,CD (e) = 

I ( 2 p p 

Zp i=1 i=1 I 

= (v+ao)1+ 12 13+1 
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We find 

dLjj(z) - (v+ao) _ '+  p fii — (p — l) < 
dz - ZP+' 

i=1 

since we assume p ≥ 2. Hence LD(e) is decreasing in z, and 

p p 

mm LD(Z) = LD(1) = v + E &j +E /3i, 
O<z<1 

and the corresponding optimal design measure is 6o, where 0(x1, ..., x) = 

x2=±1, i=1, ... ,p. 

According to Lemma 6.1.2, we have 

ICA = f2 tr MSE(Ô)dfl(w) 
= v - trB'((x)) + j J ((x,w),)) 

•B-2 (e(x)) b (tb(x,w),e(x))dfl(w) 

= v(1 + + 4(ao(w) + A bw), al(w)A, ... , a(w)A) 

o " ao(w)+Ab1(w) 

1 

2 

dfl(w) 

0 ... a,(w)A / 

v(i + + f[(ao(w) + A b(w))2 + E a(w)]dfl(w) 
i=1 i=1 

v(1+ + ao + A2fl,+ >I:ai 
i=1 i=1 

P E P (+ ai ) ++ A2 A E fi, 

with 

(6.3.2) 

if j ao(w)b1(w)df[(w) = 0, i = 1,...,p, and j b(w)ba(w)dfl(w) = 0 for all i 
j; a2 = j a? (w) < 00, i = 0, p, = j b(w)dfl(w) < oc, i = 1, 

Similar to D-optimal case, (6.3.2) can be minimized by a design measure of 

the form = with xi = ±.\,Fz for some 0 < z < 1, i = l,...,p. Put 

...,p. 
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A = f xde(x) = z into ( 6.3.2), we have 
= 

£A() ( p \ p 
i=O J Z 

dLA (z) vp 
SolvingSolvg + 2zE/3j:=O,we find 2z,8j= and hence dz z2 i=1 i=1 

z = /Vp/2/3. 

Note that 

fT ()-1(()) b (/'(x,w),(x)) 

and 

= (1,xi. ... ..'cr) 

p p 
= ao(w) + A?bi(w) + 

A=jf(x)fT(x)d x = Is 

\ 

ao(w) + A b1(w) 

ai(w)A 

a(w)A 

\Xp XpX1 ... / 

0 ... 0 

0 2p ... 0 

0 0 ... 1 2P 

\ 

I 

d  
'V 
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Hence, for Q—optimality, we have 

is MSE()d 

Therefore, we get 

= v / IT (x)B -1 (e(x)) f (x)d x 
Js 

+1 fT (x)B 1((x)) b (b(x)w),(x)) 
s 

• bT ((x,w),(x))B-'(e(x)) f (x)d x 
p p \ 2 

v rAB'((x)) + is (ao(w) + b(w) + aj(w)xj) d x 
i=1 i=1 I 

21 11 ( p 
= v[2P+1(+...+ )j + 2 ao(w)+A E bj(w) 

i=1 

)2 

fS ci(w)xdx +2f a(w)a(w)x1xdx 
i=1 i<j 

= 2v (i + P + 2 (ao(w) + A bi(w)) + 

MSE(9)d a,) dfl(w) 
\ 

= 2Pv(1+) + 2 p 

i=1 I 

if J ao(w)bj(w)dfl(w) = 0, i = 1,...,p, and J b(w)b(w)dfJ(w) = 0 for all i 54 
j; ci=ja(w)dfl(w)<oo, i=0,...,p, and /3=Jb(w)dfl(w)<oo, i=1,...,p. 

It is clear that the minimization of £ Q(e) is equivalent to the minimization of the 

following: 

(6.3.3) 

which can he minimized by a design measure 6 of the form (x1, ..., x) = with 

= ±/ for some 0 ≤ z ≤ 1, i = I,—, p. Putting A = is xd((x)) = z into (6.3.3), 
we have 

Vp p 

+z2  :=LQ (z). 
3z 1=1 

Solving dLQ(z) = vp  p p 
dz - + 2z = 0, we find z = vp/6 f3j. 

i=1 

We summarize the above results as the next theorem. 
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Theorem 6.3.1 Assume thatfT (x) = (1,x1,...,x), and (x, w) = ao(w)+a(w)x 
i=1 

+ > b(w)x+ > cjjxx where aj = j a? (w) < OO, = 0, 1, ..., 

= j b(w)dfl(w) < 00, i = 1, ...,p, and j ao(w)b(w)dfl(w) = 0, i = 

b(w)b(w)dfl(w) = 0 for all i 0 j. Within the class of.T7,, we have that 

(i) CD (6) is 

1, ... ,p, 

minimized by 0(x1, ..., x,) = 1- , where xi = ±1 i = 1, ...,p, and 

p p 
min LD () = .CD(o) = v + 
eEp i=O i=i 

(ii) £ A(e) is 'minimized by 

z = min {i IVp/2 

(iii) £Q (e) is minimized by o(x1, ..., x,) 

= min {i ç/vv/68i} 

1 

2 

1 

2 

with xi = i = l,...,p, where 

with xi = ±-./ i = 1,...,p, where 
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6.4 Optimal Designs for Two Dimensional Linear 

Regression with Interaction Term 

Linear regression with an interaction term is a very common and useful model 

in regression analysis. There is an advantage to considering this model. For any 

symmetric design measure, we have that B' ((x)) is a diagonal matrix. In this case, 

the problem of finding optimal designs is very easy. The approach to the problem in 

this section is very similar to Section 6.3. 

Let fT (x) = (1,x1,x2,x1x2), b(x,w) = ao(w) + ai(w)xj + a2(w)x2 + b1(w)x + 

b2(w)v + c12x1x2, S = (XI, X2) : — 1 ≤ xj≤ 1, j = 1,2} 9R2, and J2 = { : is 

symmetric design measure defined on S}. We find 

B(e(x)) = 

Is 

L' () fT (x)de(x) 
/ 1 X1 W2 X1X2 

X1 x1x2 xx2 

x2 x1a2 x 2 x1x 

\ X1X2 XX2 X1X XX j 

'l 0 0 

o jxd(x) 0 

o o fS xdt(x) 

\ 0 0 0 

1 o 0 0" 
0)o 0 

00x 0 

0 0 

d(x) 

\ 
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where A = fSxd(x) i = 1,2 and Al2 = fS xxd(x), and 
= (f b(x, w)d(x), j  

f isx2b(x, w)de(x),  X1X2(X, w)de(x)) 
= (ao(w) + (bi(w) + bo(w))A, ai(w)A,a2(w)A,c12(w)A l2 ). 

For D—optimality, we have 

= j MSE(ö)jdfJ(w) 
= detB-1 (e(x))• [v+j bT (0 (X 

(.1,(xw),e(x)) 

•B-'(e(x)) b (?,b(x,w),(x))dfl(w)] 

1 
{v + (ao(w) + ( b, (w)+ b2(w))A, ai(w)A,a2(w)A,c12(w)Al2) 

= A2Al2 

'1 0 0 

0 * 0 

00* 

0 0 

1 {v + I [(ao(w) + (bi(w) + b2(w))A)2 
= A2 Al2 Jc 

+(a(w) + a(w))A + c?2(w)Ai2Jdfl(w)} 
1  

{v + c + (oil + c2)A + (i3 + ,82)A2 + 712Al2 }, 
= A2Al2 

/ 

0 

0 
1 

Al \ 

ao(w) + ( b, (w)+ b2(w))A \ 
ai(w)A 

a2(w)A 

C12(W)Al2 / 

dU(w)} 

(6.4.1) 

if crj isa? (w) d 11 (w) < oo, i = 0,1,2, /3j fb(w)dff(w) < oo, i = 1, 2, 

'Y12 = jc 2(w)dfl(w) < oo and f ao(w)bi(w)dfJ(w) = jao(w)b2(w)dfl(w) 
is b, (w) b2(w) d J1 (w) = 0. 

It is clear that Theorem 4.2.5 can be extended to the high dimensional case. For 

any (x) E F2, let T() = (IS xde(x), is xxde(x)) and e2  

, 0 ≤ z 1} which is the set of extreme points of . '2• Then we have T(2) = 

{ (u,v) 0 ≤ u < 1, v = u2} := 82 and T(2) = '2 where 82 is the convex 

hull of S2. It is easy to see that any point p E 82 is the image of under T where 

±./) = a, (0,0) = 1— 4a for some 0 ≤ a < 1 and 0 ≤ z < 1. If we 
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denote .F to be the set containing all these design measures, i.e. = { : E 2 

±/) = a, 6(0, 0) = 1-4a, 0 < a ≤ and 0 ≤ z < 1}, then we know that 

the minimization of ( 6.4.1) over is equivalent to the minimization of (6.4.1) over 

.T. For any 6 E T, we have 

A = f xd(x) = 4az and Al2 = is xxde(x) = 4az2. 

Putting ( 6.4.2) into ( 6.4.1), we find 

L 1D(e) := LD(a, z) =  [v + a0 + 4(ai + a2)az 
64a Z4 

+16(8i + 02)a 2Z2 + 4-/12 aZ2]. 

(6.4.2) 

(6.4.3) 

For A—optimality, we have 

,CA = is, tr MSE(0)dfl(w) 
= v trB1((x)) + j & 

•B-2 (e(x)) b (&(x,w),e(x))dfl(c.,) 
r 

= v(1 + 2 - + 1- A )¼ 12 ) + J (ao(w) + (b, (w) + b2(w))A, ai(w)A, a2(w )A, 

/ 1 0 0 0 "'o (w) + ( b, (w)+ b2(w))A 

o - 0 0 ai(w)A 
c12 (w)Al2) dfl(w) 

o 0 -- 0 a2(w)A A2 

0 0 0 1 c12(w)Al2 

= v(1 + + ) + f [(ao(w) + (b, (w)+ b2(w))A)2 
12 

+a(w) + a(w) + c2(w)JdfJ(w) 

2 2 1 
= v+aj+i2+v(+_)+(fii+2)A2. 

2=0 Al2 

(6.4.4) 

Similar to the case of D—optimality, we only need to search for the optimal result 

within . Putting (6.4.2) into (6.4.4) we find 

:= LA(a,z) 
2 

= v+ai+7l2+_(2+_)+16(fii+fi2)a2z2 
i=0 4az z 

(6.4.) 
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It is obvious that the minimization of (6.4.5) is equivalent to the minimization of the 

following: 

+ )+ 16(01 + fl2)a2z2. 
4az z 

For Q—optimality, we have 

is MSE(•)d x = vf fT (x)B1((x)) f (x)dx 

±1 P (x)B 1((x)) b (b(x)w),(x)) 

•bT ( b(x,w),e(x))B'(.(x)) f (x)d  
/ 2 2 2 2\ = vf (1+i+a+x1x21dx 

S\ ) )¼ ) 12J 

+j[ao(w) + (bi(w) + b2 (w)) 

+ai(w)xi + a2(W )X2 + c12(w)x1x2]2d x 

= 4v (i + TA 9Al2 + _L) + 4{[ao(w) + (b, (w)+ b2(w))J2 

+a(w)+ a(w) + 

Hence, we get 

= j(jMSE(?)dx)dll(w) 

= 4v(1++3A 9Al2 _-) 

+4[ao+ (Pi + 2)A2+i+a2+yi2] 

1 1 1 \ 

4 (v+ao+r1+_a2+_12) 

+4[v(+ 1TA  9Al2) + (Pi + 82)A 

(6.4.6) 

(6.4.7) 

Again, put ( 6.4.2) into (6.4.7), we find 

\ 
:= Lq(a,z) = 4 (v + a0 + 1 rl+ 1 a 1 2 +  7123 9 ) 

(6.4.8) 
+4 [ (-6a + 36az2) + 16 + 2)a2z2j, 

and the minimization of £ Q(e) is equivalent to the minimization of the following: 

V / 1\ 
6az (\1 + + 16(g, + 132)a2z2. 

We summarize these results as the next theorem. 

(6.4.9) 
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Theorem 6.4.1 Assume that f   (x) = (1,xj,x2,x1x2), (x,w) = ao(w)+ai(w)x1+ 

a2(w)x2 + bi(w)x ) + b2(wx + c12 (w)x1x2, where ai f a(w)dfl(w) < oo, i = 
0,1,2, 8i is, b(w)dfJ(w) < 00, i = 1,2, 712 = is, c2(w)dfl(w) < c'o and 

jao(w)bi(w)dfl(w) = j ao(w)b2(w)dfl(w) = j bi(w)b2(w)dfl(w) = 0. Let o be a 

design measure of the form e0(±/, ±,/) = c, eo(0, 0) = 1 - 4a. Within the class 

of F2, we have £D(6), £A (e), or £Q() is minimized by o for some 0 < a < 1 and 

0 < z < 1 which minimize (6.L3), (6.4.6), or (6.J.9) respectively. 

Remark. The above result can be easily extended to the case when p> 2, where p 

is the dimension of the design space. 
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