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ABSTRACT

Tukey (1960) considered the problem of robust estimation of a location parameter 6

when the c.d.f. of the error is

F(z) = (1-¢)H(a) + eH(%)

where ¢ and s could be any fixed number such that 0 < ¢ < 7, and s > 1, and H(z)is
chosen to be the standard normal distribution. In Part I, we study a further problem of
finding the bounds on asympt.otic relative efficiencies of some robust estimators while the
c.d.f. of the error has the above form with ¢ and s to be random variables.

In Part II, the problem of finding optimal designs against the possible model violation
is considered. We confine ourself to the use of the least squares estimator, § = QT I (z), of

the true regression function y(z). When the real regression model is

yi = y(z:) =fT£ (i) + ¥(2:) + &,

then the mean squared error of § is
MSE(§) = Var(€) + Bias(%, €),

where £ is a design measure and 1 is a possible bias term. It was Box and Draper (1959) who
first pointed out that the usual optimal design which minimizes Var(§) only is no longer
optimal when the bias term is present. Several different approaches to the problem are
discussed separately. They are summarized in the following topics: 1. Restricted optimal
designs; 2. Bounded bias optimal designs; 3. Robust designs for some regression models

with random bias.
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PART 1
ROBUST ESTIMATION



Chapter 1

Introduction to Robust

Estimation

The idea of robustness and robust methods probably dates back to the prehistory
of statistics. Looking at the data and rechecking conspicuous observations is a step
towards robustness; excluding highly deviant values is an informal robust procedure.
However, the systematic study on the problem of robust estimation is a recent event.
It was Tukey (1960) who, in summarizing earlier work of his group in the 1940s and
1950s, demonstrated the drastic nonrobustness of the mean and also investigated some
useful robust alternatives. His work made robust estimation a general research area
and broke the isolation of the early pioneers. Among a growing flood of papers were
the first attempts at a manageable and rather realistic and comprehensive theory of
robustness by Huber (1964, 1965, 1968) and Hampel (1968).

Huber’s (1964) paper on “Robust estimation of a location parameter” formed the
first basis for a theory of robust estimation. In that paper, Huber introduced a flexible
class of estimators, called “M-estimators”, which became a very useful tool, and he
derived properties like consistency and asymptotic normality. Huber then introduced
the “gross-error model:” instead of believing in a strict parametric model of the
form H(z — ) for known H, he assumes that a known fraction ¢ (0 < e < 1) of the
data may consist of gross errors with an arbitrary unknown distribution J(z —6). The
distribution underlying the observations is thus F'(z—0) = (1—¢)H(z—0)+eJ(z —9).



This is the first time that a rather full kind of “neighborhood” for a strict parametric
model is considered. Huber’s aim is to optimize the worst that can happen over the
neighborhood of the model, as measured by the asymptotic variance of the estimator.
He uses the formalism of a two-person zero-sum game. Nature chooses an F from the
neighborhood of the model, the statistician chooses an M-estimator via its 1,and the
gain for Nature and loss for the statistician is the asymptotic variance V' (3, F) which
under the mild regularity conditions turns out to be [ ¢2dF/(y’' dF)?. Huber shows
that under very general conditions there exists a saddle point of the game; in the gross-
error model, it consists of what has been called Huber’s least favorable distribution,
which is normal in the middle and exponential in the tails, and of the famous Huber-
estimator with 9(2) = max{—k, min{k,z}}, as the maximum likelihood estimator
for the least favorable distribution and the minimax strategy of the statistician.
Another important approach to the robust estimation theory is called the “in-
finitesimal approach” which was introduced by Hampel (1968, 1974). The infinites-
imal approach is based on three central concepts : qualitative robustness, influence
function, and breakdown point. Qualitative robustness is defined as equicontinuity of
the distributions of the statistic as n changes; it is very closely related to continuity
of the statistic viewed as a functional in the weak topology. The quantitative robust-
ness information is provided by the influence function and derived quantities. The
breakdown point is a simple quantitative global robustness measure. It is the distance
from the model distribution beyond which the statistic becomes totally unreliable.
We are now going to discuss these concepts in detail. Let Xj, ..., X,, be indepen-
dent and identically distributed (i.i.d.) random variables with distribution function
F((z — 0)/0), where 8 is the unknown location parameter and o is a known scale
parameter. We identify the sample 4, ..., z, with its empirical distribution F,,. For-
mally F, is given by (;1;) *1 Ay , where A, is the point mass 1 at 2. As estimators
of § we consider real-valued statistics T, = Tn(21,...,2x) = Tn(F). Moreover, we
consider estimators which are functionals (i.e. Th(F,) = T(F,) for all n and F,) or

can asymptotically be replaced by functionals. This means that we assume that there



exists a functional T : domain (T") =R, such that
T (X, .., Xp) n =8 T(F)

in probability when the observations are i.i.d. according to the true distribution F
in domain (7). We say that T'(F) is the asymptotic value of {Ty; n > 1} at F. We

often assume asymptotic normality, that is,

weakly
n — oo
where L means “the distribution of ... under F” and V(T F) is called the asymptotic
variance of {T,;n > 1} at F.
We are now going to define an important concept, the so-called influence function,

as the following:

Definition 1.1 The influence function (IF) of T at F is given by

T((1 = )F +tA,) — T(F)
t

IF(z; T, F) = %irré
in those x € X where this limit exists and X is the sample space.

There is a relation between the IF' and the asymptotic variance V(T, F). Under

some regularity conditions, we have
V(T,F) = / IF(z;T,F? dF(z). (1.2)

For a detailed discussion, see Hampel (1986), Reeds (1976), Boos and Serfling (1980),
and Fernholz (1983).
Apart from the asymptotic variance, there are some other important quantities

related to the JF. We define the gross-error sensitivity of 7" at F' by
7 =7"(T,F)=sup | IF(z;T,F)|, (1.3)

the supremum being taken over all @ where I F(z;T, F) exists. The gross-error

sensitivity measures the worst influence which a small amount of contamination of



fixed size can have on the value of the estimator. Therefore, it may be regarded as an’
upper bound on the (standardized) asymptotic bias of the estimator. It is a desirable
feature that v* be finite, in which case we say that T is B-robust.

The local-shift sensitivity is defined by

X = X(T,F) = sup | IF(; T, F)~ IF@T,F) | [ [y x|,  (14)
Yy
the smallest Lipschitz constant the I F obeys.

Moreover, we define the rejection point as the following:
p*=p"(T,F)=inf{y > 0; IF(2;T,F)=0 when |z| > v}. (1.5)

(If there exists no such -y, then p* = co by definition of the infimum). All observations
farther away than p* are rejected completely. Therefore, it is desirable that p* is finite.

The gross-error sensitivity v* is an important robustness measure. But there is one
limitation: it is an entirely local concept. Therefore, it must be complemented by a
measure of the global reliability of the estimator, which describes up to what distance
from the model distribution the estimator still gives some relevant information. First,
we need a metric to measure the distance of two probability distributions. One choice
is the Prohorov distance (Prohorov (1956)), of two probability distributions F' and
G, which is given by

7(F,G) : = inf{e: F(A) < G(A®) + € for all events A},

where A€ is the set of all points whose distance from A is less than e.
The important global robustness measure, the so-called breakdown point can be

defined as follows.

Definition 1.2 The breakdown point €* of the sequence of estimators {T,; n > 1} at
F is defined by

e*: = sup{e < 1;there is a compact set K, Cy © such that 7(F,G) < ¢ 16)
implies G({T, € K})n — oo 1} . .



If © = R, we obtain

e : = sup{e<1:there exists vy, such that
n—00 (1.7)

T(F, Q) < € implies G({| Tn |< 7¢}) — 1}.

Note that one can also consider the gross-error breakdown point where 7 (F,G) < €
is replaced by G € {(1 —¢) F' + eH where H is arbitrary}. Loosely speaking, this is
the largest fraction of gross errors that never can carry the estimate over all bounds.
This notion often leads to the same value of ¢*. Hampel (1971) also introduced some

qualitative notions.

Definition 1.3 We say that a sequence of estimators {T,; n > 1} is qualitatively
robust at F if for every e > 0 there exists 6 > 0 such that for all G in F(X) and for
all n :

7T(F, G) <é= W(,CF(Tn), ﬁG(Tn)) < €,

where 7 is the Prohorov distance, L means “the distribution of ... under F”, and

F(X) is the set of all the possible probability distributions on X.

Thus this definition describes equicontinuity of the distributions of T}, with respect
to n.

We now discuss some examples of location estimators. Let Xi,..., X,, be the i.i.d.
random variables with distribution function F', where F' has density function f, and
f is symmetric. Let us consider the sample mean X, a—trimmed mean X,,and
median M. Note that the a—trimmed mean is obtained by removing both the [an]
smallest and the [an] largest observations and calculates the mean of the remaining

ones. It is easy to see that X, X,, and M can be represented as functionals by

l-«
T(F)= / zdF, T(F)= 1 _120 /a F~1(t)dt, and T(F) = F-1 (%) respectively.

According to Definition 1.1, one can find the influence functions of X, X,, and M at

F which are the following:



(i) IF(e; X,F) = g

1 . —Fa)  w<Fi(a)

(i) TP %o F) = 4 _12a:1: F-1(a) < 2 < F-1(1 - a);
1_12 Fll—a) o> F(1-a)

i 2 sign(z)

i) 1P M) = S

Based on the influence functions, one can find the following conclusions:

(i) The arithmetic mean X is nowhere qualitatively robust, with
=0, v =00, A*=1, and p* = 0.
(i) The o — trimmed mean X, is qualitatively robust, with

1 .1
T—aal (1—a) &= 1—n,

1
(iii) The median M is qualitatively robust, with e* = 3 7=

e =aq, y*= and p* = oo.

1
=270

w,
and p* = oo.

As we mentioned earlier, Huber (1964) introduced the important concept of M-

estimator. We have
Definition 1.4 Any estimator T,, defined by a minimum problem of the form

Z P(Xi; Tn) = min!a (18)

or by an implicit equation
> (X Tn) =0, (1.9)
where p is an arbitrary function, ¥(z;0) = (0/09) p(z;0), is called an M -estimator.

Note that the choice of p(z;8) = —log f(z;0) gives the Maximum Likelihood
estimator. Hence sometimes we call M —estimator an M L type estimator or general-
ized M L estimator.

Another type of estimator often considered in robust estimation theory is the

so-called L-estimator.



Definition 1.5 L-estimators are of the form
Tn(Xl, ...,Xn) = Z a; X(,-), (1.10)
i=1 .
where X(1y, ..., X(n) are the ordered samples and the a;’s are some coefficients.

The name “L-estimators” comes from “linear combinations of order statistics.”

The famous Huber estimator which is defined by ¥u(z) = min{b, max{z,—b}}
is an example of M—estimator, and a—trimmed mean X, is an example of L-
estimator. The sample mean X and median M may serve as examples for both
M~ and L—estimators.

There are some other types of estimators being considered in robust estimation
theory. For details, see Hampel (1986), and Andrews, Bickel, Hampel, Rogers and
Tukey (1972).

There is an important topic in robust estimation theory, the problem of finding
maximum asymptotic variances of different estimators. Collins (1976, 1977, 1986, and
1991) sufficiently studied the asymptotic variances of many robust estimators under
symmetric or asymmetric contaminations. For instance, Collins (1986) considered the
following problem arising in robust estimation theory: Find the maximum asymp-
totic variance of a-trimmed mean used to estimate an unknown location parameter
when the error distribution is subject to asymmetric contamination. The model for
the error distribution is F' = (1 — €) Fp + ¢ G, where Fj is a known distribution
symmetric about 0, € is fixed proportion of contamination, and G is an unknown
and asymmetric distribution. Under some assumptions, he found that the maximal
asymptotic variance is obtained when G places mass 1 at either +00 or —oo.

The problems that are relevant to the asymptotic variance have been studied not
only for the location estimators but also for the scale estimators as well. Moreover,
the problems have also been discussed under some contamination models other than
the gross-error neighbourhoods. Some examples are the Kolmogorov neighbourhood
which is defined by K (G) = {F: sup | F(z)— G(z)|<L €} in which € and @ are
known and fixed, and the Lévy ngigﬁgg;o1'hood which is defined by Ls(G) = {F :
Gz —8) — e < F(z) < G(x + 6) + ¢ for all z}. Some discussions can be found, for
example in Wiens (1986), Collins and Wiens (1989), and Wiens and Wu (1991).



Portnoy (1977 and 1979) studied the problem of robust estimation in dependent
situations.

Instead of studying the problem of finding the maximum asymptotic variance
for each individual estimator, DasGupta (1990) discussed the bounds of asymptotic
relative efficiencies (ARE) for a pair of estimators under some contamination models.

There are many papers about robust estimation theory. Most of the topics can be
found in Huber (1981), Hampel (1986), and the references cited therein. Here we only
present some basic concepts and the minimum amount of material which is relevant
to the problem we are interested in, the problem of finding the bounds on asymptotic
relative efficiencies of some robust estimators under random contaminations. The

problem is an extension of the work of DasGupta (1990).
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Chapter 2

Bounds on Asymptotic Relative

Efficiencies of some Robust

Estimators under Random

Contaminations

2.1 Introduction

Tukey (1960) considered the problem of robust estimation of a location parameter

9 where the cumulative distribution function (cdf) of the error is the following

F(z) = (1 - €)®(a) + b (%) ,

where € and s could be any fixed numbers such that 0< € < 3 and s > 1, and ®(z)
is the standard normal distribution function.
The idea has been developed in many different ways by many authors, especially

by Huber (1964). DasGupta (1990) proposed the generalized model as follows:

F(z) = / / [(1 — &) H(z) +eH (—\%)] dGi(€) dGals),
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where €, s are taken to be random, but with known expectations E(e) = ¢ and
E(s) = so. Moreover, he assumed that ¢ and s are independent. He discussed the
upper and lower bounds of Asymptotic Relative Efficiencies (ARE) of the Hodges-
Lehmann estimator W, the median M, and the a—trimmed mean X, with respect
to the sample mean X over the class of distributions

A

Fo = {F(z): F(z)=[f[(1 —¢€) H(z)+ eH (\/5)] dGi(e) ng(s)}

A

(2.1.1)
= {F(z): F(m):(l—eo)H(w)-i-éofH(\/g) dGz(s)},

where ¢o = [edG(¢) and Gqls;,00) = 1 with known constants s; > 1 and s =
[ sdG1(s).

In this chapter, we discuss a problem similar to that of DasGupta (1990) but with
a different consideration for F. We are looking for the bounds of ARE among the
location estimators sample mean X, a—trimmed mean X,, and median M over the
scale mixing random contaminated class

F = {F(m) : F(z)=(1-¢€)H(z) + 6/ H(%) dG(s)} , (2.1.2)
where s is random with distribution function G(s) such that G[s1, s2] = 1 for some
fixed numbers s3, s, and 1 < 81 < 83 < co. Here ¢ is any fixed number such that
0 < € < 3, and H(z) is absolutely continuous.

In (2.1.1), DasGupta assumed that € and s are independent and [ edGy(€) = € is
known. In this situation, € plays no role in finding the bounds of ARE among X, X,
and M. The bounds only depend on the value ¢p and G(s). Hence, in (2.1.2), we treat
¢ as any fixed number between 0 and % rather than a random variable. On the other
hand, it seems more reasonable to assume that G[sq, so] = 1 for some 1 < 8; < s < 00
rather than Gs[s1,00) = 1 with known constant so = [ sdG2(s). Therefore, we suggest
the scale mixing random contaminated class as we indicated in (2.1.2). From (1.2),
we know that V(T, F) = [IF(z; T, F)? dF(x). Hence (T, S, F) = V(S, F)/V(T, F)
is the asymptotic relative efficiency of a pair of estimators {T, : n > 1} and {S, :
n>1}.

Let F' be the cumulative distribution function (cdf) of the error, where F' € F. The
main purpose of this chapter is looking for the bounds on e(M, X, F), e(X,, X, F),
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and e(M, X,, F') over the class of distributions F. i.e. we are looking for the following

quantities:
ex(M,X) = inof e(M,X,F), e*(M,X) = supe(M,X,F);
FeF FeF
e(Xoy X) = inf e(Xo, X, F), e (XayX) = supe(Xq, X, F);
FeF FeF
ex(M,X,) = inf e(M,X,,F), e (MX,) = sup e(M,X,, F).
FeF FeF
We define
G={G(s): Gls1,s2] =1 1 <1< s2 < oo} (2.1.3)

It is clear that the asymptotic relative efficiencies eventually depend on G, since
Flz)=(1-¢)H(z)+ef H (\/_> dG(s) where H(z) is a known function. Therefore,
we have

e(M,X) = inf e(M,X,G), e*(M,X) = supe(M,X,QG);
Geg

e(Xe, X) = 1nf e(Xa, X,G), e (Xa,X) = sup e(X,, X, G);
Ge Geg

ex(M,X,) = inf e(M,X,,G), e(M, Xs) = sup e(M,X,,G).
Geg Geg

In section 2.3, we find the explicit solutions to e.(M,X) and e*(M,X). Let
E={As:51<s< s} and H={Msy+ (1 —A)As;: 0 < A < 1}. We find that

en(M,X) = Cl,»%fc e(M,X,G) = (M, X, As;)

and
ex(M,X) = sup e(M,X,G) = e(M, X,G")
GeH

where G* = Asy or G* = AAsy + (1 — A)As, for some X € (0,1).
In section 2.4, we study the bounds on e(X,, X, G) and e(M, X,, G). We indicate

that the bounds are located within certain ranges. Let F~}(1 — @) = 1, i.e.,
Fly)=(1-¢)H +€/H )dG(s) =1 - a.

We define G, = {G: G € G, F'(1-a)=7},G,={G: G € g, Cardo(G) < n}, and
T = {My + (1= NAy, : b, 8 € [51,59],0 < A < 1},
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We find that

sup e(X4, X,G) < e* (X4, X) = max sup e(Xa, X,G) < max supe(X,, X,G),
G€EGn N2 Gely Mn<T<" GeT

where v; and v, are the lower and upper bounds of 7.

The situations of e.(X,, X), e*(M, X,), and e.(M, X,) are similar to the case of
e*(Xa, X). A general result is given by Theorem 2.4.3. some special results are also
found when A(z) = \/——12=1re'% and h(z) = 1e7kl. These results are presented through
Theorem 2.4.4 to Theorem 2.4.7.

In section 2.2, we proved some preliminary results which will be used to find these

bounds. Some numerical results and comments are presented in Section 2.5.
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2.2 Preliminaries

In this section, we are going to present some preliminaries which will be used in
later sections to find the bounds of ARE among the sample mean X, a—trimmed
mean X, and median M.

Let T' be the functional defined on G, T': ¢ —R2, by

T(G) = / ha(s) dG(s), / ha(s) dG(s)),

where /1(s) and ho(s) are bounded and continuous functions on [s1,82]-

Note that the extreme points of G is the set
€ ={A,: 351 <s< sy},

where A, is the distribution function that put all its mass at s. The image of € under

T is the following:

= {(f h1(s)dA;, Jha(s)dAg) : 51 < s < s2}
{(/ll(b ha(s)) i s1 < s < 55}

Let S be the convex hull of S, i.e., the smallest convex set containing S or the set
of all convex combinations of S. Furthermore, let us define P to be the set of convex

combinations of any two points of § , le.,
P={/\p1+(1—/\)p2 . pl,pZES, OS)\S].}, (221)

and let
T = {/\At] + (1 - /\)Aiz : f.l,tg € [31,32], 0 S A S ].} . (2.2.2)
Under the notations and the assumptions we made above, we have

A

Theorem 2.2.1 P=T(T)=T(g) = S.
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Some well known results are needed to prove Theorem 2.2.1. We state them as the

following two Lemmas.

Lemma 2.2.2 For every distribution function G' in G, there exists a sequence of step
distribution functions G, in G such that G, =—> G, where “ = ” refers to weak

convergence.

Proof: For given G € G, let

Gn = Z Pn,-AS,,,-,

=1

where Sy, = s; + Z(—S'Z—n—i) and pp; = G(Sy;) — G(Snji-1). -
It is obvious that G,, = G. ]

Lemma 2.2.3 (Billingsley 1986). The following two conditions are equivalent:
(1) G, = G.
(%) [ hdGn — [ hdG for every bounded, continuous function h.

The proof of Theorem 2.2.1:

We prove the theorem by showing the following four steps:
(i) P=T(T)

For any G € T, we have G = A, + (1 — M)A, for some t,,t; € [$1,82] and
0< A<, and

T(G) = (fh(s)dG, [ hs(s)dG)

= (Aa(t1) + (1= A)ha(ta), Mha(ty) + (1 — A)ha(t2)

= M (), ha(t1)) + (1 = \)(ha(ta), ha(ts))

= Ap1 + (1 — N)p,,
where p; = (h1(t1), ho(t1)) and py = (h1(t2), h2(t2)). Hence, we have P1,p2 € S and
T(G) = Ap1 + (1 = N)py € P. Therefore, we have T(T)CP

On the other hand, for any Ap; + (1 — A)p, € P, there exist ;,¢, € [s1, s3] such

that
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P1 = ([ ha(s)dAy, [ ha(s)dAy,) = (hi(t1), ha(t))

and

P2 = ([ h(s)dAy, [ ha(s)dAy,) = (hi(t2), ha(ts)).
Let G = AAy; + (1~ A)As,. Then G € T and T(G) = Ap; + (1 — A)p2 € T(T). Hence,
we have P C T(T).
Combining the above two results we get P = T'(T).
(i) T(T) C T(G).

This is obvious since 7 C @.

(iii) T(¢) € S.
For any G € G, Lemma 2.2.2 implies that there exists {G,}, such that G, € G
and G == G where G = L pn;As,, with T p, = 1 and Sy, € [s1, s9).
Especially, we can choose S, = s;+ 2(32—;;31—) and pn; = G(Sn;) —G(Snji1) t =
1,..,n.
Let
¢ = ([ ha(s)dG(s), [ ha(s)dG(s))

and

J h(8)dGr(s), [ ha(s)dGa(s))

Pn; h1(Sni), él Pri h2(Sni))

Pr; 1(Sni)y Priha(Sn;)

Pr; (h1(Sni), ha(Sni)).

Since gy is the convex combination of (hy(Sn:), h2(Sui)), where (h1(Sni), ha(Swi)) € S.

s
I Il o
§ﬁ :..,_A ~—~
aigiet

.
Il
-

Therefore, ¢, € S for all n.
We assume that hi(s) and he(s) are the bounded and continuous functions on

[51,82]. The implication of Lemma 2.2.3 gives us
tn = ([ h1(s)dGn(s), [ ha(s)dGn(s))
— ([ h1(s)dG(s), [ ha(s)dG(s)) = q as n — 0.

Note that 5 is a closed set. Hence ¢n € S and ¢n — ¢ implies ¢ € S. We have proved
T(G)=q € § for any G € G. Therefore, we get T(G) C S.
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(iv) SCP.

The assumption that hi(s) and hy(s) are the bounded and continuous functions
implies that S is a bounded continuous curve on R2. Hence, there exist real numbers

a,b, ¢, and d such that the set
U={(z,y) : a<2<b c<y<d}

is the smallest rectangle containing S as well as S.
For any po € U\S, let I, be the straight line that goes through the point po and

p, where p € S. Varying p within .S, we get a family of straight line denoted as
L={l: p€S, I, is the line going through p and po}.

If po € S\.S, we claim that the following statement is true.
S1: There exists a point p; € S, such that [, intersect S at another point P2 €S
with po in between.
The proof of Si:

Let py € ';\_H and py = (o, y0). We draw a vertical line ly going through po, i.e.,
lo: & = ay. I S1 does not hold, Iy must intersect S either above or below po. Without

loss of generality, we assume that ly intersect & above py.

- /s

\

/4 Xo

Figure 2.2.1
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For the sake of argument, let us color the “upper half” (above py) of Iy to be red
and the “lower half” (below po) to be blue. We turn around Iy clockwise with Do
fixed. Stop turning when the blue half first hit S. Because S1 does not hold, the red
half must stay away from S. If we slightly turn back Iy, there must be a position of
lo such that the whole Iy stay away from S i.e. [yN S = ¢. It is easy to see that there
exists a convex set C' containing .S such that CNly = ¢. Hence SNip = ¢, and po ¢ 3.
This contradicts the fact that po € $\S. Therefore S1 is a true statement.

51 indicates that, for any po € S5\ S there exist p;and p2 € S such that pg is on the
segment of straight line connecting p; to p;. Therefore py is the convex combination
of py and pa, i.e., po = A p; + (1 — A)p; for some 0 < A < 1. On the other hand, for any
p € 5, there exist p; and p; € S and with A = 0 or A = 1 such that p = Ap; +(1=\)p,
belong to P. This implies S CP

Combining (i), (ii), (iii), and (iv), we have proved Theorem 2.2.1. (i

Under the assumption we made before, S is a continuous curve. If S is a convex

curve, we will have a result which is simpler than Theorem 2.2.1. Let
PO = Dp® 4 (1= N)p : pV = (h1(s1), ha(s1)), p € 5, 0 <A <1} (2.2.3)
and
TW =My, +(1=XA, : s€[s1,5), 0< A< (2.24)

We have:

Theorem 2.2.4 Let us maintain the same notations and assumptions as we made
in Theorem 2.2.1. Let PM) and TM) be defined as in (2.2.8) and (2.2.4). If S is a

convez curve, then we have
PO =TT =T(G) = 3.

Proof: It is obvious that T(7(") C T(G). The proof of P1) = T(T™) is similar
to the proof of P = T(7) in Theorem 2.2.1. Moreover, in Theorem 2.2.1, we have
shown T(G) C . Hence it is sufficient to show that § C P(M and this is obviously
true by the convexity of S. 0O
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Remark 1. Theorem 2.2.4 remains true if S is a concave curve.

Remark 2. It is obvious that
PO =T(TW)=T(G) = 8,
when S is either convex or concave, where
PO = p® 4 (1= Np :p® = (ha(sa), ho(s2)), pES, 0SAST)  (225)

and
TE = {MA,, + (1 =XN)A; : s€[s1,8), 0< A< 1} (2.2.6)

We are not sure whether the natural extension of Theorem 2.2.1 to the m-dimensional

case is true or not. Let

T (G) = ( [ m()dG(s), -, [ hm(s)dG(s)> ,

where hy($), ..., km(s) are bounded and continuous functions on [s;, s2]. Let S, be the

image of £ under T,,,, i.e.,

Sm = Tn(E)
= {(J h1(8)dAs, ey [ hm(38)dAs) 1 81 <5< 89}
= {(h1(8)y s hm(8)) : 51 <5< 53}

Let .§’m be the convex hull of S,,. Let P, be the set of convex combinations of any m

points of S, i.e.,
m m
sz{z/\ipi : piesm)og/\islaZ.:l,""rn’z/\izl}
i=1 =1
and

T = {Z,\,-At,. Dt €s1,8, 0SSN <L i=1,.,m, D N = 1}.

i=1 =1

We make the following conjecture:

Conjecture 2.2.5 P, = T (T5) = Tin(G) = S
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Some general results similar to Theorem 2.2.1 and Conjecture 2.2.5 can be found
for example, in Rockafellar (1970) and some implications and applications to robust
estimation can be found in Collins and Portnoy (1981). Comparing with those re-
sults, both the conditions and conclusions of Theorem 2.2.1 and Conjecture 2.2.5 are

stronger.
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2.3 Bounds on e(M, X, F)

In this section, we are going to find the bounds on e(M, X, F), the bounds of
the asymptotic relative eficiency of the pair of estimators X and M. We start from
the concept of influence function. As we mentioned in Chapter 1, the IF of X
and M are IF(z; X,F) = x and IF(x; M, F) = sign(z)/2f(0) respectively. These
are well-known results, but for completeness, we provide the detailed proof here.
Let Xi,..,.X,, ~ F(2) and X;’s are i.i.d. It is clear that the sample mean can be
represented as a functional of F' by T(F) = [ zdF (z). The influence function of T at
F' can be calculated according to (1.1). We have

IF(;T, F) = lim L= F +14:) — T(F)
t—0 Jud[(1 - t)Ft_I. tAL)(u) ~ JudF(u)

= lim
t—0

(1 =1) fudF(u) %t- tfudAg(u) — [udF(u)

trx—t- fudF(u) t

= lim
t—0

= lim
t—0

t
=z~ [udF(u) ==z
if fudF(u)=0.
In the case we discussed in Section 2.1, F(z) is symmetric. Hence, we have
IF(z; X,F) = . Let us denote the asymptotic variance of X under F as V(X,F).
By (1.2), we have

V(X,F) = [IF(z; X,F)2dF(2)
= [23dF(x)
= (1—¢) [ 2?h(z)dz + e{[wth(%) - 715-
= (1= ¢)fa*h(z)dv + ¢ [ s[ | 42h(y)dy]dG(s)
= (1 = €)o} + eo? [ sdG(s),

dG(s)]dz

where F' € F and of = [22h(2)dz.
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Similarly, the median M can be represented as a functional of F by T(F) =
F~1(3). The influence function of T under F is the following limit:
[(I-)F +tA])(3) = F1(3)

IF(z;T,F)= Png " .

Case (i) « < F71(})

In this case, [(1—1) F+tA,]7(2) is that value of y for which (1=t)F(y)+tA(y) =
5- This solution will either be a value of y < & for which (1—1t)F(y) =}, or a value
of y > @ for which (1 = )F(y) +t = L. If y < 2, we have F(y) < F(z) < 1.
Hence (1 —t)F(y) = } is impossible for small ¢ > 0. Therefore, we have y > z, and
(1 =t)F(y)+t = }. Take the derivative with respect to ¢ at both sides and evaluate

at 1 =0, we get

dF
(-0 LWy py). (1= o1
and
: d , o d 1 .
(1= £(w) 5 lieo =F(y) leco= ~1 = f(0) limo ~5 = —1.
‘ : _wy 1
Hence, we get [F(z; M, F) = 7 l=0= 37(0)"

Case (ii) z > F~(3)
In this case, we have IF(z; M, F) = O The proof is similar to case (1).
We finally get

IF(z; M,F) = %.

Denote the asymptotic variance of M under F as V(M, F). According to (1.2), we

have

V(M,F) = [IF(z; M, F)*dF(z)
1
42(0)
=90 e T RICET?

TAR(O)(I-c) +eJS FdG(s)]*




Hence, the asymptotic relative efficiency of the pair of estimators X and M is

. F)
e(M,X,F) = V((M )

= 4h*(0) - of - [(1 — €) + ¢ [ sdG(s)] - [(l —€)+ef %dG(s)

2

(2.3.1)
We are now going to find the bounds on e(M, X, F) where F € F or G € G. In light

of Theorem 2.2.1, we consider the functional 7" from G to R2? as follows:

T(G) = </sdG /——dG )

1.e., we choose hi(s) = s and hy(s) = —=. We defne

Dl

(&) ={(s,

Then S is a convex curve on R? and the convex hull of S, S, is the shaded region in

Figure 2.3.1.

%
'

‘p(')

>

S _ P(Z)

%—-S

Figure 2.3.1

Because § is a convex curve, Theorem 2.2.4 can be used to solve our problem.
Furthermore, it is clear that e*(M, X') can be achieved on the upper boundary of §

and e, (M, X) can be achieved on the lower boundary of 5. Let

H={G:G =X, +(1—-NA,, 0<A<1}).
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Then the upper boundary of § is the image of H under T, i.e., T(H) = L, where
L={p:p=xp@+(1-X)pM,0< A <1} and the lower boundary of S is S which

is the image of £ under T. Hence, we have

ex(M,X) =inf e(M,X,F)
}'
=ié}f e(M,X,Q)

=inf e(M, X, G) (2.3.2)
= inf 4h2(0)o?[(1—€) + e fsdG(S)][(1 —€) + € f %dG(s)]2
=, L, O -+ sl - +

and
e(M,X) = sup e(M,X,F)
= sgp e(M,X,G)
= 3111{p e(M,X,G)

3.
= sup 4h2(0)o[(1 —€) + € [ sdG(s)[(1 —€) + ¢ f 71;-dG(s)]2 (2:3.3)
= sup 4h?(0)oF[(1 — €) + e(Asz + (1 — A)s;)]
.‘"_6 AL A=
[(1-¢)+ (\/3_2-1- 7 2.
In order to find e.(M, X), we define L(s) = [(1 =€) + es] - [(1 — ¢) \/_]2 Then we

get

dL(s) _ ¢ ~ .53 —€ 2.
- =l1-9+es]-2[(1-e) 4 + 7 (— s72)+[(1—e) + f]

[(1~6)+7] {(1-¢) +$—S (1 =€)+ es]}

= ¢(1 —-e)[(l—e)+-—\/§]-(1—s“%) > 0,

since 1< s; < 5 < s5. Therefore, L(s) obtains its minimum value at s = 81, and we

have

ex(M, X) = 4h*(0)02[(1 — €) + es1][(1 — € Lz’
(M, X) = 4h*(0)o3[(1 — €) + esa][(1 )+\/§]

which is realized by the distribution function G = A,,.
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In order to find e*(M, X), let
UA) =[1—e)+e(hsz + (1 - N)s1)] - [(1 _6)+€(\/As_2+ (1\/—3_?))]2
1 1 )/\]2

:[(1_€)+631+€(32—31)/\]'[(1—6)+\/€~§Y+€(\/~§_\/a
and let A be any real number. We have
dUd—g/\) ={(1—¢€)+ es1 + €(s2 — 81))]
€ 1 1 1 1

2[(1—¢) + \/8—1+€(\/15*\/1§)/\] 6(_32__5
+[(l—6)+\/5+6(\/§-\/§)/\]2'6(82—31)
= (1~ )+ —=+e(—=— —=)A

1 1

€) + €51 + €(s2 — s1)A]

+(sg —s1)[(1—€) + 31-}-6(\/5 NG
= (1 - ) + —= 4 (= — =)
2= — —=)(1— ¢ + cs1)
Ve Ve 1 1
+(32 - 31)(1 — e+ ﬁ) -+ 36(32 — 81)(ﬁ —_ ﬁ)/\]
Setting dl{ig\)\) =0, we get
L. €
A = ( 1e)+\1/a
6(\/_5'—\/?2)
and . . ]
e (ﬁ~ﬁ)(l_€+631)+(32—81)(1_6+ﬁ)_
3e(s3 = 1) = = =)

We are going to show that (i) A; > 1 and (ii) A2 > 0 by the following calculation:



=1+ 1 1
6("\/5_\/5)
1—e+——-‘:
=1+—7 132
(7~ 7)
> 1,
1 1

since (1 — €+ ¢

)/ € - ) > 0.
VLAY
(ii) Note that the denominator of A, is positive and the numerator of A, is linear

in €. Let

N(e) = 2(—1;; - '{/l"sf)(l et est) + (52— s1)(1— e+ ﬁ).

Then we have

N(O) =2(ﬁ—%)+32—31 )

=(¢5+ﬁ>(¢5—¢§)~@@(¢5—\/§)
(V32 — Va2 + /o1 —

I

VoW

and



N(1) =2(*1———L)-31+(32—sl)-——l—

_ 2a(VEi = &) |, (Vr+ Va)(/E — o/50)
NN Ve

- ‘/;—;-\/‘[[\/_(\/_h/_) —2s]>0.

We conclude that N(e) > 0 for € € [0,1]. Hence we have )y > 0.
Combining the results (i) and (ii) along with the fact that U()) is a polynomial in A
of degree three with positive leading coefficient, U(\) will achieve its maximum value
on interval [0,1] at A* = A if 0 < A3 < 1 and at A\* =1 if Ay > 1. Hence we have
4h%(0) ah{ I —¢) 4+ e[Aasa + (1= A2)s1]} i0< A <1
/\ 2 1 )\2 2

6*(/\/1,_):’)= {1 =) \/— NG
102(0)a?[(1 = ¢) + esol[(1 — ¢) +

¢

Ve

12 i >1,
where

(\/— \/—)(1_€+6*51)+(‘52_31)(1_6+¢%‘)
3e(s2 — s s — )
and e*(M, X) can be realized by the distribution functions G = Ay, 4 (1= A2)Ag,

A2 =

or G = A, accordingly.

~_/

/ 0 Az / M ’—7\ /0 I Mfora)  Adorx) A

Figure 2.3.2 Figure 2.3.3
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Note that A, > 1 if and only if
i(e) = (s —s)(1—6+L)+2(—1——L>(1—e+es)
e NE \/3—2 V51 !
1

—3¢(sy — 1) [ == — ——

s Ve)

Note also I(¢) is linear in € with negative slope. Hence we have

10219 = (=) (34 57z) + (- =) +e0)

o) T\VE Ve
_.2.(32—31)( \/—s_:-ﬁ

= —(s3 — 81) +T
_(_;:——\/1?_2-) + ——31)

=-2-(32—31)+% 2—31)\/5

Do

=-;-(32—~31)— %—%)(1‘*32)
+%(32—31)’—“

~

NS
_ (2= s)(vsa+ 1)vE — 21+ s2)(v52 — V51)

2\/511/52
For 0 < e < %, it is clear that (\/s3 + /51)(\/s2 + 1)y/s1—2(1+s3) > 0is a

sufficient condition to guarantee that Ay > 1. We have proved the following:

Theorem 2.3.1 Given 0 < e < % and 1 < 31 < 89 < 00, we have
(i) ex(M, X) = 4h*(0)a2[(1 — €) + es1][(1 — €) + —6—]2 and e.(M, X) is achieved
by the distribution function G = A,,. va
4h*(0)or{(1 —€) + e[hos2 + (1 — Ag)s1]} f0< A <1

(ii) e*(M, X ) = WL —e) + ¢ \j"’_ \/_Az)]
4h*(0)oE[(1 — €) + eso)[(1 — €) + ﬁ]z if A2 > 1,
where
\ 2(71_———\/1=)(1—e+esl)+(s —31)(1—6+\/Ls—1)
T 3e(s2 ~ 51)(Js ~ &)
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and e*(M, X) can be achieved by the distribution functions G = XA, + (1= X)A,,
or G = A, accordingly.
(i) A sufficient condition for Ay > 1, hence
e (M, X) = 4h*(0)o2[(1—¢) + €s2)[(1 —¢€) + %}2,
15 (v/32 + /51) (/52 + 1)y/31 — 2(1 + 85) > 0.



30

2.4 Bounds on e¢(X,, X, F) and e(M, X,, F)

We start this section by finding the influence function of X,. Let X1, ..., X, ~ F(z)
and X!s are ii.d. The a-trimmed mean X, is the estimator that one obtains by
removing the a% largest and a% smallest observations, and computing the mean
of the rest. It is clear that @ = 0 corresponding to the usual mean X and o = :
corresponding to the median M. X, can be represented as a functional of F by

1 1-a

=1—201 o

T(F) F~1(s)ds,

and the influence function of T' under F is the following limit:

[F(@;T, F) = lim QA= DF 18] = T(F)

t—0 t

oz o U1 = ) F + 1A (s)ds — 2z Ja T F M (s)ds

— hm 1-2a
t—0 {
1 o A=) F +1tA;]7Y(s) — F~i(s
— 1____2__0_[_12 {%9}3 [( ) t] ( ) ( )}ds

Case (i) z < F7Y(a) (i.e. F(z) < )
Let y = [(1 — t)F 4+ tAz]"1(s). Then we have s = (1 — t)F(y) + tAx(y).

(1) If y < 2, then s = (1 — ¢)F(y). But this is impossible, since s € [a,1 — @] and
Fy) < F(z) < e
(2) If y 2 @, then we have s = (1 — ¢)F(y) + t. Take the derivative at both sides

with respect to ¢, we get

0=(1-07)F + Plo)(-1)+ 1

Evaluate the above at ¢ = 0 and note that ¢ = 0 if and only if F(y) = s. We

have
. d
0= fIF ()] Flimo — s+ 1.



Hence,

dy

s—1 . Q= OF +tA)71(s) — F1(s) .

lt=0= ———=—— :=lim

TIF1(s)] 7~ :

For 2 < F~!(a), we conclude

dt

1 -  g—1
IF(z;T,F) = /a fIF-1(s)] 1(3)]

1 F-l(1-a) F(y)-1 '
1-2a /F-l(a) f(y) fy)y

1] —c F_l(l_a)
=yF(y) lp ) )~/F_l(a) yf(y)dy —y |

——{[(1- @)F~(1 - &) — aF (@)

= [ e)ds = [F 1 - @) - PTa))

= 1_2a[F_l(a) - C]?

where
l1-«
C = / FY(s)ds + aF~1(a) + «F (1 - a).

Case (ii) F-Y(a) <2< F Y (l1-a) (le.a<Fla)<1l-a)
Let y = [(1 — t)F + tA]71(s). Then s = (1 — t)F(y) + tAx(y).
dy s
(1) Fory < z, we have s = (1 —{)F(y) and — % |t=0= FF]

s—1

(2) Fory >z, wehave s = (1 —t)F(y)+1¢ and = |t_0 P

31
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Hence, for F'~!(a) < & < F-1(1 — a), we have

. _ 1 F(z)___s_ s 1—0_3:-_]"_ S
IF(z;T,F) = 1_20[{/a f[F-l(s)]d +/F‘(z) f[F—l(s)]d }

_ 1 z M F-1(1-a) F(y) -1
S 1- ‘Za{/F-l(a) fy) flu)dy +/w f(y) )

1 . 2 - -
= T o0 WEWE-10) = JF-100) S (y)dy + yF (y)|E ' 1=

F-1(1-q)
- Wy - P - o) o)

= ——{aF(2) — aF(a) - / " Pl (6)ds + (1 — )P (1 — o)
~aP(e) = [~ P (s)ds = P71~ a) 4 2)

- - _12a o [ T P (s)ds — aF(a) — (1 — o)

= : _12a[a: ~ql.

.

Case (iii) @ > F"Y (1 — @) (ie. F(z)>1— o)
Let y = [(1 —t)F 4+ tA,]7(s). Then s = (1 — ¢)F(y) + Ax(y).
(1) If y <z, then we have s = (1 — ¢)F(y) and & P —
dt fIF=2(s)]
(2) 'y > 2, we have (1 —¢)F(y) + ¢ = s. But this is impossible, since s € [a, 1~ q]
and F(y) > F(z)>1-a.
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For 2 > F~1(1 — a), we get

l-o F1(1-0)
[F(x;T,F) = —2 s 1 / (

=2k fIFAEICTT =2 lr)

=1 : [y (v) [Foafy®) - 1 /_ o yf)dy]

1—2a[ -1(1 —a)—/; F™Y(s)ds — aF(a) — aF~Y(1 — )]
[F-1(1 - &) - C].

F(y)dy

T 1 -2«

Combining the above three cases, we get

() =C] o< F(a)
IF(@T,F)={ ——[z~C] FYa) < e < FY(1—-a)
1__2a[1'7"1(1—a')——C] x> F (1 - ),

-«
where C = / F™\(s)ds + aF~Y(a) + aF Y1 - a).
“ l—o
Note that C = / F~Y(s)ds + aF ' (a) + aF~Y(1 - a) = 0 if F is symmetric,

which is the case we are interested in. Denote the asymptotic variance of X, under

F as V(X,, F). By (1.2), we have
V(X.,,F) = fIF(:v T, F)dF
(T_T {0 P (@) + [P = )] [y dF ()}
= Ty U3 2P (@) + )

S 2
1 —¢) fg 2%h(z)da

"y

Y 22 [ b= L (s))dz + ay?
i [f’(\/g) \/gdG( )Jdz + ay }
- Rl

teJ s[Jg(—=)2h(=)d(—=)dG(s) + ar?)
; AW AL

= m{( — €) J§ 2%h(z)dx
+e [ s[s"Y* y?h(y)dyldG(s) + ar?}
—€) o a?h(z)dz + € [ sk(s 5)dG(s) + av?},

T (1= 2a)2{(

where k(s) = fé’/ﬁyzh(y)dy, and vy = F~1(1 - ).
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Therefore, we get

_ V(X F)

T V(X.,F

_ (=% (1— €)o7 + eol - [ sdG(s) (2.4.1)
- 2 (1 =€) [§ 22h(z)dz + ay? + ¢ [ sk(s)dG(s)

e(X,, X, F)

and
_ V(X’a,F)
- V(M, F)

L C) IS (2.4.2)
sl - 0+ ef =)

(1 = €) Jy a?h(x)da + ar® + ¢ [ sk(s)dG(s)].

Note that v = F~!(1—a), i.e., F(y) = 1 —a. We have (1 -—e)H('y)+6fH(:};)dG’(s) =
I — a. For any given 0 < a < %, and 0 < e < %, 7 is different in F(or G). We need

e(M, X’O,,F)

to know the range of v for F over F (or G over G). For any G € G, we define
Ha(y) = (1 = OH() +¢ [ H(TdG(s).
Moreover, let

1 =min{y: Ho(y) =1 -a} and 7, = max {7 : Ha(’v) =1-a}.
Then, we have the following:

Lemma 2.4.1 For given 0 < o < »0<e<l andl < s <s, < oo, we have that
i is the solution of Hy(7) = 1 — o, where Hy(y) = (1 — ) H(v)+ eH(l—), =12

\/Si
Proof: Note that
dHNG( ) _
b (1 —e)h(y) + e/h (\/_)dC(s) > 0.

Hence H(7) is monotone i increasing in . On the other hand, we have
v 2 2
H(~E) < [ H(Z5)dG(s) < H(-L)
V2 \/— e

for any fixed . Hence, we have Hy(y) < He(y) < H; (7). Consequently, we have
H'(1-a) < H3'(1-a) < H; Y1 -a),ie, 71 <7< 72, where v is the solution
of Hz(¥)=1—-a, and G € G. O
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For any v € [y1,72], let G, = {G': G € G and Hg(y) =1 — a}. Then we have

e (X, X) = max Cs:ggr e(Xo, X, G),

e(Xe,X) = min inf e(X,,X,Q);

NSy Gegr

and
e(M,X,) = max sup e(M,X,,Q),

nv<e Ggeg,

el(M,X,) = min inf e(M,X,,Q).

m1<v<2 GEGr
Unfortunately, we are unable to find the exact bounds on e(Xq, X,G) and
e(M, X4, G). We can only indicate that the bounds are located within certain ranges.
Let
Gn={G:G€G Cardo(G)=n}.

Then we have the following:

Theorem 2.4.2 Let F € F as we defined in (2.1.2), where H(z) is known and
absolutely continuous. For given 0 < a < 5, 0<e< 3 and 1 < s < 83 < 00, we
have
(i) sup e(Xe, X,G) < e*(Xo, X) < max sup e(X,, X,G), and
GEGn Nn<Y<2 GeT

min inf e(X,,X,G) < (X4, X) < mf e(Xo, X, G);
Nn<yLre GeT

(it) sup e(M, X,,G) < e*(M, X,,G) < max sup e(M,X,,@3), and

Nnv<e GeT

min inf e(M,X,,G) < e.(M, X,) SGlélg e(M, X,,G),

n<v<r GeT

where T is defined by (2.2.2) and n > 1.

Proof: We have G, C G, hence sup e(X,, X,G) <sup e(X.,X,G) = e*(X,, X).

G€EGn Geg
Similarly, G, C G implies that
¢ (Xa, X) = max sup e(X,, X,G) < max sup e(X,, X,Q).
Nn<r< Geg, 7N <2 Geg

On the other hand, for any fixed v, we have that (s,sk(s)) is a continuous curve
where k(s) = f(?/ Ve y*h(y)dy depends on 4. The application of Theorem 2.2.1 gives
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us

sup e(X,,X,G) = sup e(Xa, X, G).
Geg GeT
Hence, we have

sup e(}:’a,X’,G") <e(Xa, X) < max sup e(X,,X,Q).

Geln MnLv<? ger

The proof for other cases is similar. a

Let us define
e
¢ = {<u 0 u=s=sk(a) ko) = [ yFhu)dy, 5 < s 332}
and

1 Vs,
Cy = {(u,v) Tu= ﬁ,v = sk(s), k(s) = /0 y*h(y)dy, s1 < s < 32} .

Usually, C; and C; are the continuous curves. If we have some more properties of
C: and Oy, for example the convexity, we will have some results about the bounds of

e(Xy, X,G) and e(M, X,,G) which are simpler than the results in Theorem 2.4.2 in

the sense of numerical calculation. Denote

D={G: Ge€G,G=2A;, + (1 = NA,,,s1 <s<s3} and
E={G:GeG,G=A;s <s<s).

Then we have the following:

Theorem 2.4.3 For any fized v € [11,72], let us make the same assumptions as we
did in Theorem 2.4.2.

(i) If C1,C; are the convex or concave curves, then we have

(i,a) sup (X, X,G) = sup e(X,,X,Q),
GeT GeDUE

(Z)b) Guelf]“ B(AQ,A,G) = Gé%{J" e(}‘aa/\ )

(t,c) sup e(M,X,,G) = sup e(M,X.,G),
GeT GeDue

(i,d) Cl;le}fq_ e(M,X,,G) = 1ni . e(M, X,,Q).
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(i1) If C1,Cy are the convex (concave) and monotone increasing curves, then we

have
(ii,a) sup e(X,,X,G) =sup e(Xq X,G)
GeT Get
(13 (% 2,6) = sup (% 2,61,
GeT GeD

(zz,l?) Cl;Ielg_ e(Xs X, G) =Gg£1f) e(Xq, X, G)
(inf (X, X,G) = inf e(X’o,,X’,G)) ,
GeT GeE
(ii,c) sup e(M,X,,G) = e(M,X,,As),
GeT
(i1,d) Cl;ggr e(M, X,,G) =e(M, X,,As,).
(iit) If Cy,Cs are the convex (concave) and monotone decreasing curves, then we

have

(ii,a) sup e(X,, X,G) = e(X., X, As,),
GeT

(%ii,b) éléff e(Xa, X, G) = e(Xq, X, Ay),

(iii,c) sup e(M,X,,G) = sup e(M,X,,G)
GeT GeD

(sup e(M, X4, G) = sup e(]\/f,)_(a,G)) ,
GeT Ge€

(ii,d) inf e(M,X,,G) = inf e(M,X,,G)
GeT Gee&
(inf e(M, X, G) = inf (M, XQ,G)> .
GeT GeD

Proof: The results are followed easily by looking at the forms of e(X,, X,G) and
e(M, X,,G), and the regions of § in each case. O

We are now going to find the bounds on e(X,, X, @) when H(z) is specified. For

H(z) = ®(z), the standard normal distribution, we have

Theorem 2.4.4 Let H(z) = ®(z) in (2.1.2),0<e<,0<a< 3, andl <8 <

sy < 00. If 12 < /51, then we have
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(i) sup e(Xs X,G) < (X4, X)
Geg

<(ri—2a)2. (1—¢€)+esy
2 (1= e)¥(1, 1) + €¥(s2,11) + e’
(ii) (1-2a)® (1 —€)+esy
2 (1= €)1, 12) + €¥(s1,72) + a1}

(ﬁ) - %w z/\g_—e 2w, and 7; is the solution of (1—€)®(y)+
w

ed <\/Ls_,) =]l-a =12

l-a-—ze
Moreover, we have that a sufficient condition for v, < /sy is -1 (~T-—2> <
—¢
VA

Proof: When H(z) = ®(x), we have

ex(Xoy X) < 1ni e(Xa, X, G),
wd

where ¥(w,v) =

Vs
Cy = {(u,v) P u=s, v=sk(s)k(s) = /Al y>p(y)dy,s1 < s < 32} )
0

where ¢(y) is the probability density function of the standard normal distribution,
12

ie., o(y) = \/—2_7:6 7.

Let v(s) = sk(s) = sf(;’/‘/;ych(y)dy = sf(;'/\/;yze"yzzdy. Then we get

1
2w

dv(s) -t f"/‘/_yze‘zdy+s—e 2(—5)7-3‘%]
J

ds V2r
1

= | IV e gy — S Y3 T
o= yle T dy 2(\/5) e"% |,
and o ) ) ,
v(s v o_2, 1 5
G = iy E(=51s7)
2
—173[3‘%8‘% 7 + e~ 23(——§)s"%]}
.2 252 2
- ————L L 35-3e-F _1 53‘%6‘%’3>
= 27r 4’)/ 4’)’ s
Yoy 2 ~?
= s"ze 23( —-—) > 0,

since ¥ < 12 < /31
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The second derivative of v(s) with respect to s is positive, which implies that C\is

a convex curve. On the other hand, if we let

z 2 22
16) = 7= ([ e Fay -5 ),
then we have
1 - ol it o)
2
-z?(zz -1)<0,

~ 2
if 0 < z < 1. Note that L(0) = 0; hence we have L(z) < 0,z € (0,1). Note also,
L(%) = dtlf)’ and 0 < % < 1 (since 72 < /51 and v > 0. 1, = 0 if and only if
dv(s)

= ). We conclude that 5
S
According to Theorem 2.4.3 (iii,a) and (iii,b) we have

< 0. This implies that C; is monotone decreasing.

sup e(Xa, X,G) = e(Xo, X,Ay,)
GeT
(1 -2a)? (1 —€)+ esq

2 . (1 —¢) i 22p(z)dz + €szk(s2) + ay?
(1 —20)?

=S5 -9 kel {1 - )~} - e

+e[s2@( k) — 352 — FVV/S2e” 2’2]+a7 }
_ (1—-2a)* (1 —€) +esq
- 2 (1 —e)\Il(l,fy)+e\Il(52,'y)+a72’

(2.4.3)

and similarly

inf C(XQ,X,G) =6(XQ,X,AS])

GeT
B (1 - 2a)2 . (1 — 6) -+ €51 (2.4.4)
=T 3 (1—€)T(1,7) + €¥(s1,7) + ay?’

where ¥(w,v) = zv@(ﬁ)—§ ——7\’/\/__

and 1ni e(X4, X, G) are given by (2.4.3) and (2.4.4). By Theorem 2.4. 2 we know that

(Xa,X) max = sup e(Xa, X,G), and min mf e(Xay X, G) < en(Xo, X).
NnLv<e GeT M <y<Y2

Hence, we choose max sup e(X,,X,G) as an upper bound for e*(X,,X) and
n<v<2 GeT

min  inf e(X4, X,G) as a lower bound for e.(Xy, X). Let

7M1<v<y2 GET

e~3%. For any giveny € [y1,72), sup e(Xa, X,G)

Ki(v) = (1 — €)¥(1,7) + €¥(s1,7) + o’
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and
Ka(y) = (1 = €)(1,7) + €¥(s3,7) + ar>.

Then we have

df_illv(l) =2a7+( e){\/_ \/_[e +76“323('“’)’)]}

=2a7+( )'72e 3'52‘+—6——'y2e‘2 > 0,

and similarly

dK,(7) (1-€) , _2 € .2
dy Vor e \/27r327 ¢

Hence, both Ki(y) and K3(y) are increasing in 7. It is clear that

(1=2a)* (1—¢€)+esy
x e(Xa, X, A,
vy © (X 2) = 2 (1 —€)U(1,11) + €U(sg,11) + a?

2
T >0.

= 20y +

and
. 5 o _ (1 -2a)? (1—€)+esy
TN (X X, Aoy ) = 2 (1-e)¥(1,72) + €¥(s1,72) + a7 °
We have proved part (i) and (ii) of Theorem 2.4.4.
Finally, note that (1 — €)®(y) + ef@(—k)dG(s) =1-—a, and

1—a—ef®(%)dG(s)

— &-1
7 =0 1—¢
l1—a—ef®(0)dG (s)
-1
<® T
1—a-—1Lc
— &1 2
e )
l—a— e

Therefore ¢! ( ) < /1 implies that v, < /5. a

1—e¢

We can also discuss the problem of finding the bounds of e(X,, X, G) for the other
choices of H(z). For example, we can choose H(z) = [*  le~ltldt. In this case, we
will get a result which is similar to Theorem 2.4.4, the case when H(z) = ®(z). We

state the result as follows.
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Theorem 2.4.5 Let H(z) = [*_ %e"ltldt in (2.1.2),0 < e < é—, 0<ac< % and
1<s1<so<o0. Ifyp < V31, then we have
(i) sup e(X., X,G) < e*(Xa, X)
Gegn
(1 —2a)?(1 — e+ €sy)
( v (- 6)‘1)’0(1a’>’1) + €¥o(s2,m1) + i’
1 —2a)*(1 — ¢+ €5 -
< e Xa, X
(= OVo(L,7) + eBoor, 1) T g~ Ko X)
< inf e(X,,X,0),
GEGn

(i)

where Yo(w,y) = w— (-;-72 +vVw + w) eV and 7: 1 the solution of (1—€)H(vy)+

eH<—]—s_i> =l—a,i=1,2

l1—a-—1le
Moreover, we have that a sufficient condition for v, < V1 is H1 (——ﬁ—z—)
< o
_ ()

Proof: For H(z) = [* 1e7Mdt, we have h(z) = ——L = tell and o} =

dz
[ 2?h(z)dz = [§° 2%e~*dx = 2. We define
/5
Cr = {{u,v):u=s,v=sk(s), k(s)= /07 1y’ Vdy,s; < s < 5o

Let v(s) = sk(s) = %s JV5 y2e=vdy. Then we get

2

dls) %[fg/‘/;yze‘ydy+sls-e"%(—';—8‘%'7)]

ds

(f&’/ Vo y2evdy — ;12-’)’33_%6—7/ ﬁ) ;

SR
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and

Lt i(Lst) 4 VA= 2oty

_ 1 13—— -7 14—3~'v/\/5 33-"7/\/;]
-2[278 € 473 ¢ +4’Y$26

o =

S

- g
y3s~%e 7/f(1———)>0,
Vs

since v < 2 < /31

The second derivative di;;(;) > 0 implies that Cj is convex. On the other hand,
let
L(z) = L (/z yle Vdy — lz:"e"") ,
2 \Jo 2
we have

dL Z 1 — 1 —z _— ]' —z
d(z ) — 5 {zze z _ §[z3e (-1)+e 332]} = Zzze (z—1)<0

if 0 < z < 1. Note that L(0) = 0, hence we have L(z) < 0, 2z € (0,1). Note also
L( ) = dv( ) ,and 0 < L < 1. We conclude that do(s) < 0. Hence, C) is
Vs Vs o ds ' >

monotone decreasing.
By Theorem 2.4.3 (iii,a) and (iii,b), we have

SUPger G(X’omx, G) =€ (Xon XaAsg)

_ (1 = 20)%(1 — €+ €s2)
(1 =€) f§ 2a2e~=dz + esak(ss) + ay?

_ (1-2a)*(1 — e+ esy)
(1= 9L = (372 + 7+ Ve +elsy = (392 +7y/51 + s2)]e” 77 + a2

_ (1 —2a)*(1 — €+ esy)
(l - 6)\110(1,’)’) + 6@0(3277) + 0’72,
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and similarly,

(1 —2a)%(1 — €+ €sq)
(1 - 6)\1’0(1’7) + G‘PO('SI,'Y) + a72,

cl:rel’ff e():ra, XaG') = G(XOI’X’ASI) =

where ¥o(w,q) =w — (%72 F V@ +w)e B,

Similar to the proof of Theorem 2.4.4, we define

Ki(v) = (1—¢€)Po(1,7)+ e¥o(s,v) + a?

and
Ka(v) = (1—€)To(1,7) + ePo(sz,7) + av*.

Then we have

df"c;y) = (1= (37" + 7+ Ve (=1) + (=7 = 1]
e e D
+e VAT (—y — /57)] + 20y
= (1_56)726—“/ + %726_7% + 20y >0
and
dio(y) _ (1—¢) ¢

2™ + ")’26_7}—; + 2ay > 0.

v 2 2,/52

Hence, both K7 () and K,(7y) are increasing in . This yields the following conclusion:

- S (1 —2a)%(1 — e+ esq)
. 7 7 As =
W25, e Xo B) = TG T+ eBosn, 1) + 2

and

. 5 o (1 —2a)’(1 —e+es1)
’on ’s As = .
WL, oo X Ba) = oy T alsr, 1) + o2

The problem of finding the bounds of e(M, X, G) is very similar to the situation
of e(X4, X,G). When H(z) = ®(x), we have the following:

Theorem 2.4.6 Let H(z) = ®(z) in (2.1.2),0<e< i, 0<a<j,andl <5 <
83 < 0. If va < \/s1, then we have
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(i) sup e(M,X,,G) <e(M,X,)
GeGn
4(1 —e+ ﬁy
7(l — 2)?
[(1 - 6)\11(1,72) + 6\1’(31,72) + a’)’%]’

4(1 —e+ '\;-5‘2:)2
(1l — 2a)?

(%) [(1—€)O(1,m1) + e¥(s2,11) + 1] < en(M, X,)
< inf e(M,X,,G),
G€Gn

where U(w,vy) = wd (7%)) - —;—w— z/\'g_:r_ve“gé, and v; is the solution of (1 —¢€)®(v)+

e@( 7 ) =1—aq,i=1,2. Moreover, we have that a sufficient condition for

VSi
o fl-a—ie
T2 < /51 15 @ e < V1
Proof: For H(z) = ®(z), we define

X

NG
Cs = {(w,) u=—=,0=sk(s), k(s) = [ y*()dy, 1 <5 < sa).

Consider v as a function of u, v = v(u), and s as a parameter. We find

dv(u)zdv(s)/ds _ 1 [ s
du du(s)/ds Vor [7° s

and
do(u) _ 4 (%) [ds
du? du(s)/ds
Y I SN B PR E NI IR S WA
- \2/82% (21:;5-2-6_ 5 - 3s7 [ yle~Tdy + 1;6‘32’%
g ot () F -2 (F) ]
We conclude that C; is a concave and increasing curve by showing Fo(u) < 0, and

du?
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d_t:l(u_u_)_ > 0. For this purpose, let us define
L(z) = PeF — 2 oz yie T dy
and
Ly(z) =6 oz yle ; dy — Be~F — 28 F
We find
ch;ze) =% [za(-—z) + 3z2] — 2% T = zze’%(l -2 >0

if 2 € (0,1). Note that L;(0) = 0. Hence Li(2) > 0 for z € (0,1). On the other hand,

we know that Ly (%) = do(w) and 0 < L < 1, since we have v, < /s7. This
s

du Vs
yields dv d( u) > 0. We also find

ch;z(z) = 6225 — % [2°(—2) + 52%] — 2% [2°(—2) + 327

2

= 2%~ 7 (22 - 3) <0,

at least for z € (0,1). We have Ly(z) < 0 for z € (0,1), since L3(0) = 0. The fact

7 dPo(u) 7 o dPu(u)
\/g) = and 0 < ~ < 1 implies Tz

concave and increasing curve. By Theorem 2.4.3 (ii,c) and (ii,d), we have

that Lo( < 0. Therefore, C; is a

sup e(M, X, G) = e(M,X,,A,,)
GeT .
41— e+ %)
7(1 — 20)2

1 2
|(1—¢) Jyz\/é—;e 2dy+681 Ty \/—e “Tdy + ay?

4(1-e+ ﬁ)z
(1l = 2a)?

[(1 - €)T(L,7) + €¥(s1,7) + 77

and

Cly'lélf']' 8(1‘/[, Xa, G) M -Xa, 32)

4(1—e+ =)
7(l — 2a)2

[(1 = €)¥(1,7) + e¥(s2,7) + ?],
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Y TVW _ 2
— e~ 2w. Furthermore, let
vw \ 27 ’

Ki(y) =1 -¢¥(l,7)+e¥(s1,7) + ay®
— =
(1—€) oy o _ €31 W yze“"i?‘dy-{-afy?

e
Var Y NeT:

where ¥(w,y) = wd(—=) — %w -

”zzdy +
and
Ka(v) = (1—€)¥(1,7) + e¥(sq,7) + av?
— Pille 2N
e YRy v Wy

ver Vo

Then we have

dEy(y)  (1—¢€) , 2 €1 4% _2 1

) —e 29 2 >0
dry Vor ¢ T s Ve e
and 2
_ 2
dI$a () _ (1—¢) , —323+ sy 1 - 1 + 2ay > 0.

e
dvy Verm 7 V2 $2 V2

Since K;(7v) and K>() are increasing in v, we then have

_ 4(1 -e+ —-=)?
max e(M,X,,A,) = ( ‘/s_’)

N<Y<N 7(1 —2a)?

[(1 —e)U(1,72) + e¥(s1,72) + aﬁ]

and

} 4(1 — e+ —=)?
min e(M, Xa,A,) = ( 7z)

7L< 7{.(1 — 26!)2 [(1 - 6)\1’(1,’)’1) + 6\11(32,71) + afylZ] .

Theorem 2.4.6 follows by Theorem 2.4.2 and the above results. O

The situation when H(z) = [%_, %e‘ltldt is very similar to the case of H(z) = ®(z).

We simply state the result without proof.

Theorem 2.4.7 Let H(z) = [* %e“"dt in (21.2),0<e< 3, 0<a< %, and
1 <81 <83 <00, If v2 < /51, then we have
(i) sup e(M,X.,G) <e(M,X.)
Gegn 9
L2 (1-e+ =)
- (1-2a)
‘ [(1 - 6)\110(1,72) + 6\110(31,’72) + a’Y%] ’




47

2(1-c+ %)
(ii) N
(1 —2a)?
: [(1 - 6)\110(1571) + 6@0(82, 71) + a712] S 6*(M, XO()
<inf e(M,X,,G),
Gegn

where Yo(w,v) = w— (%’)’2 +v/w + w) e” 7% andy; is the solution of (1 —e)H(v)+

eH (L> =1—-qa t =1,2. Moreover, we have that a sufficient condition for

\/Si
o (1=
v2 < /51 18 H < < V51
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2.5 Some Numerical Results and Comments

In the last two sections, we discussed the bounds on the asymptotic relative effi-

ciencies among the median M, a-trimmed mean X,, and the sample mean X. We
found the explicit solutions for e, (M, X) and e*(M, X). When H(z) = ®(z), we have

= 2
el(M,X) = ;(1——e+esl)(1 ——e+7€—§)2,

and 5
—{(1 =€)+ €[Aas2 + (1 — Ap)s1]}
" e 1-=X\1?
~ 2 — A2 .
e"(M,X) =« .[(1—e)+e<\/5+ \/572)] if0< A<l
2 €
—_— — — —_ . >
\ W(l €+ €sg) (1 6+\/s_2) if Ay >1,
where

o A ) Umer e —on) (1- et )
2 = 3e(sz — s1) (ﬁ“#)

Hence, e.(M,X) and e*(M, X) can be easily calculated. For some different values

of s1, sy and ¢, the corresponding results of e.(M, X) and e*(M, X) are presented
in Table 2.5.1. Note that we have two numbers for each cell inside the table. The
top one is e.(M,X) and the bottom one is e*(M,X). With the results in Table
2.5.1 and some further calculation, we are able to answer a general version of a
question raised by Tukey (1960): given s; and s;, how large an ¢ > 0 is required
for the infimum of the asymptotic relative efficiency of M with respect to X over
F to exceed 17 In this case, one understands that even in the sense of asymptotic
relative efficiency, the median M is still preferable than the sample mean X. There
are some other features have been observed from Table 2.5.1. Firstly, we note that,
for given s; and s,, e.(M, X) and e*(M, X) are monotone nondecreasing (monotone
increasing in most of the cases) in €. Intuitively, it also makes sense as we know that

€ is the proportion of contaminations. Secondly, we find that e.(M, X) is monotone
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increasing in s; when € and s, are given. This is obvious since we have the fact that
L(s):=(l—e+es)(l1 —€e+ —%)2 is a function increasing in s, when s > 1. In the
cases we considered in Table 2.5.1, we also have e*(M, X) is monotone increasing in s,
when ¢ and s; are given. In these cases, we always get e*(M, X, A,,). In general, this
may not always happen. For example, when s; = 1, s; = 36, and € = 0.4, we have
A2 = 0.952 and e*(M, X) = ¢(M, X,G*) = 4.2509 where G* = AA,, + (1 — A2)Asy.
On the other hand, we have e(M, X, A,,) = 4.2441. We also note that the differences
between e*(M, X) and e.(M,X) are small when s, sg, €, or s — s; are relatively
small. This reflects the fact that the asymptotic relative efliciencies are stable over
the corresponding class of distribution functions F.

The situations are more complicated for the asymptotic relative efficiencies of X,
with respect to X, and M with respect to X,. As we mentioned before, we are unable
to find the exact values of e,(X,, X), e*(Xa, X), e.(M, X,), and e*(M, X,,). Instead,

we can only find a range for each of them. For the sake of argument, we define

5 o (1-2a) 1 —e+es
LL(X,,X) = . )
(Xar X) o 2y TR )+
- = — 2x — €+ €89
UU(X,,X) := . ,
(K X) 5 = W) + Fsam) + o
T o (1_ea S )2
LL(M, Xo) = (1 — 2a)2 (1-et NE)
' [(1 - 6)\11(1771) + 6\11(327’71) + a712] ’
and
_ 4 €
UU(M,X,) €+ —)>°

7(1 - 2a)? (1= N
(1= €)¥(L,72) + e¥(s1,72) + @3],

; ’:/\gi;v-e 5’%, and ~; is the solution of (1 — €)®(vy) +

UL, (Xs, X) =Ggggf e(Xa X, G)
_ g =20 1 —e+ ey, pivi
GeGn 2 (1-6%¥(1,7) + e Tk pi¥(2i,7) + ?’
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GEGn
= sup (1—20)? 1 —et ey, pivi
GEGn 2 (1—e)U(l,7) + e, p¥(zi,y) + ay?’

UL.(M,X,) =C§g§ e(M, X,,G)

s o s 2
—nggfn 7(1 — 2a)? \/113_2)

: [(1 - 6)\11(17 7) + 62?:1 p{\II(:ZZ,', 7) + C(’72] ’

'(1_€+€Z?=1

and

LU, (M, X,) :=ggg e(M, X,,G)

Di
= e o (] — no 2
nggn 7('(1 _ 2&)2 ( € + 621.—1 \/J?,)

(1= )U(L,7) + e Ty pi¥(2i7) + v,
where G = Y0 pilAs; with 81 < 2; < 89,0 < p; <1, 5%, p; = 1, and v is the
solution of (1 —€)®(y) + e %, p,@(\/—%) =1-a.

According to Theorem 2.4.4 and Theorem 2.4.6, we know that LL(X,,X) and
UL,(X,, X) are lower and upper bounds of e.(X,, X). Similarly, LU, (X4, X) and
UU(Xa, X), LL(M, X,) and UL,(M,X,), LU,(M, X,) and UU(M,X,) are lower
and upper bounds of e*(X,, X), e.(M, X,) and e*(M, X,) respectively. It is clear
that UL,(X,, X) and UL,(M, X,) are monotone nonincreasing and bounded below
by LL(X4, X) and LL(M,X,); LUn(X4, X) and LU,(M,X,) are monotone non-
decreasing and bounded above by UU(X,,X) and UU(M, X,). Hence these four
sequences have limits and the limits when n goes to infinity will be the exact values
of ex(Xa, X), ea(M, X), (X4, X), and e*(M, X,). In practice, we can only do the
numerical search when n is small. For n = 1, and for some different values of a, ¢,
s1 and s, we present the corresponding bounds of e.(X,, X) and e*(X,, X) through
Table 2.5.2 to Table 2.5.6. Note that each cell of these tables has four numbers.
The first one is LL(X,, X), the second UL;(X,, X); the third LU(X,,X) and the
fourth UU(X,, X). Similarly, the bounds of e.(M, X,) and e*(M, X,) are presented
in Table 2.5.7 through Table 2.5.11. There are some missing values inside the tables.
These are the cases when v, > /s1; hence, Theorem 2.4.4 and Theorem 2.4.6 do not
apply to the calculation of LL(X,, X), UU(X,, X), LL(M, X,), and UU(M, X,).
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In many cases we note that the differences between LL(X,, X) and UL,(X,, X);
LU; (X4, X) and UU (X4, X); LL(M, X,) and ULy (M, X,); LU (M, X,,) and
UU(M,X,) are very small. Hence, the bounds we provided there are very accurate.
In some cases, even the differences between LL(X,, X) and UU(X4, X); LL(M, X,,)
and UU(M, X,) are small. This fact reflects the stability of the asymptotic relative
efficiencies, since we always have e*(X,, X) — e«(Xo, X) < UU(X4, X) — LL( X4, X),
and e*(M, X )—e.(M,X,) < UU(M,X,)—LL(M,X,). In the cases when the bounds
on e (X, X), e( X4, X), ex(M, X,), and e*(M, X,,) are not too close, we can always
get more precise results by increasing n in UL, (X, X), LU,(X4, X), UL, (M, X,),
and LU,(M,X,). We did some calculations of the above quantities when n = 2.
The results are either the same or very close to the results when n = 1. Hence
the exact values of e.(Xq,X), (X4, X), eu(M, X,), and e*(M, X,,) will be closer
to ULn(Xa, X), LUA(Xsy X), ULn(M,X,), and LU,(M, X,) than to LL(X,,X),
UU(Xa, X), LL(M, X,,), and UU(M, X,). We know that the sample mean X and
the median M are the extreme cases of a-trimmed mean X, corresponding to @ = 0
and o = 1 respectively. Hence the topics we discussed in this chapter and the tables
we presented in this section will provide a guideline to choose a suitable value of
a, hence X,., in the sense of the asymptotic relative efficiency when we have the

assessment of the values of sy, s9, and e.



Table 2.5.1 Values of e.(M, X) and e*(M, X) when H (z) = &(z)

S

€

0.01

0.05

0.1

0.15

0.25

0.375

0.6366
0.6492

0.6366
0.6960

0.6366
0.7469

0.6366
0.7898

0.6366
0.8530

0.6366
0.8931

0.6366
0.6784

0.6366
0.8328

0.6366
0.9982

0.6366
1.1345

0.6366
1.3263

0.6366
1.4324

16

0.6366
0.7212

0.6366
1.0321

0.6366
1.3618

0.6366
1.6297

0.6366
1.9963

0.6366
2.1788

0.6492
0.6784

0.6960
0.8328

0.7469
0.9982

0.7898
1.1345

0.8530
1.3263

0.8931
1.4324

16

0.6492
0.7212

0.6960
1.0321

0.7469
1.3618

0.7898
1.6297

0.8530
1.9963

0.8931
2.1788

25

0.6492
0.7768

0.6960
1.2908

0.7469
1.8320

0.7898
2.2678

0.8530
2.8521

0.8931
3.1194

16

0.6784
0.7212

0.8328
1.0321

0.9982
1.3618

1.1345
1.6297

1.3263
1.9963

1.4324
2.1788

0.6784
0.7768

0.8328
1.2908

0.9982
1.8320

1.1345
2.2678

1.3263
2.8521

1.4324
3.1194

36

0.6784
0.8452

0.8328
1.6079

0.9982
2.4072

1.1345
3.0463

1.3263
3.8902

1.4324
4.2502

16

25

0.7212
0.7768

1.0321
1.2908

1.3618
1.8320

1.6297
2.2678

1.9963
2.8521

2.1788
3.1194

36

0.7212
0.8452

1.0321
1.6079

1.3618
2.4072

1.6297
3.0463

1.9963
3.8902

2.1788
4.2502

49

0.7212
0.9261

1.0321
1.9830

1.3618
3.0865

1.6297
3.9642

1.9963
5.1092

2.1788
5.5696

52



Table 2.5.2 Bounds of e.(X,,X) and e*(X,, X) when H(z) = &(2)

e =0.01

$1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.9960
1.0059

0.9744
0.9885

0.9430
0.9586

0.9092
0.9251

0.8267
0.8367
0.8524
0.8627

0.7318
0.7397
0.7541
0.7622

0.9960
1.0410

0.9744
1.0286

0.9430
0.9993

0.9092
0.9653

0.8231
0.8367
0.8903
0.9050

0.7291
0.7397
0.7880
0.7994

1.0059
1.0410

0.9795
0.9885
1.0286
1.0380

0.9520
0.9586
0.9993
1.0061

0.9199
0.9251
0.9653
0.9708

0.8487
0.8524
0.8903
0.8942

0.7514
0.7541
0.7880
0.7909

16

1.0059
1.0994

0.9745
0.9885
1.0907
1.1064

0.9485
0.9586
1.0608
1.0720

0.9172
0.9251
1.0253
1.0342

0.8468
0.8524
0.9460
0.9524

0.7500
0.7541
0.8376
0.8422

16

1.0305
1.0410
1.0994
1.1106

1.0233
1.0286
1.0907
1.0964

0.9956
0.9993
1.0608
1.0647

0.9625
0.9653
1.0253
1.0283

0.8883
0.8903
0.9460
0.9482

0.7865
0.7880
0.8376
0.8391

25

1.0233
1.0410
1.1789
1.1992

1.0200
1.0286
1.1730
1.1829

0.9934
0.9993
1.1417
1.1485

0.9607
0.9653
1.1038
1.1091

0.8870
0.8903
1.0188
1.0225

0.7857
0.7880
0.9022
0.9048

16

25

1.0917
1.0994
1.1789
1.1871

1.0871
1.0907
1.1730
1.1768

1.0584
1.0608
1.1417
1.1443

1.0234
1.0253
1.1038
1.10568

0.9447
0.9460
1.0188
1.0202

0.8366
0.8376
0.9022
0.9032

36

1.0862
1.0994
1.2784
1.2938

1.0847
1.0907
1.2747
1.2818

1.0567
1.0608
1.2413

1.2461

1.0222
1.0253
1.2005
1.2041

0.9439
0.9460
1.1083
1.1108

0.8360
0.8376
0.9815
0.9833

53



Table 2.5.3 Bounds of e.(X,, X) and e*(X,, X) when H(z) = &(z)

e =0.05

51

52

0.01

0.05

0.1

0.15

0.25

0.375

0.9960
1.0347

0.9744
1.0373

0.9430
1.0142

0.9092
0.9833

0.7875
0.8367
0.9105
0.9674

0.7007
0.7397
0.8078
0.8527

0.9960
1.1516

0.9744
1.2117

0.9430
1.1978

0.9092
1.1670

0.7698
0.8367
1.0859
1.1802

0.6877
0.7397
0.9660
1.0389

1.0347
1.1517

0.9878
1.0373
1.2117
1.2724

0.9786
1.0142
1.1978
1.2414

0.9548
0.9833
1.1670
1.2018

0.8901
0.9105
1.0859
1.1108

0.7928
0.8078
0.9660
0.9843

16

1.0347
1.3037

0.9589
1.0373
1.4781
1.5986

0.9593
1.0142
1.4725
1.5566

0.9399
0.9833
1.4392
1.5055

0.8797
0.9105
1.3432
1.3901

0.7853
0.8078
1.1966
1.2308

16

1.1518
1.3038

1.1764
1.2117
1.4781
1.5224

1.1742
0.1978
1.4725
1.5052

1.1488
1.1670
1.4392
1.4620

1.0733
1.0859
1.3432
1.3590

0.9568
0.9660
1.1966
1.2080

25

1.1518
1.4416

1.1535
1.2117
1.8287
1.9205

1.1595
1.1978
1.8318
1.8920

1.1377
1.1670
1.7942
1.8405

1.0657
1.0859
1.6777
1.7096

0.9514
0.9660
1.4960
1.5190

16

25

1.3038
1.4415

1.4495
1.4781
1.8287
1.8648

1.4541
1.4725
1.8318
1.8549

1.4253
1.4392
1.7942
1.8118

1.3336
1.3432
1.6777
1.6897

1.1897
1.1966
1.4960
1.5046

36

1.3038
1.5612

1.4297
1.4781
2.2604
2.3367

1.4417
1.4725
2.2734

2.3219

1.4159
1.4392
2.2302
2.2669

1.3273
1.3432
2.0881
2.1132

1.1852
1.1968
1.8632
1.8811

94



Table 2.5.4 Bounds of e.(X,, X) and e*(X,,X) when H(z) = &(z)

¢=0.1

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.9960
1.0501

0.9744
1.0825

0.9430
1.0702

0.9092
1.0436

0.7400
0.8367
0.9725
1.0994

0.6628
0.7397
0.8660
0.9663

0.9960
1.1434

0.9744
1.3664

0.9430
1.3885

0.9092
1.3698

0.7059
0.8367
1.2904
1.5288

0.6376
0.7397
1.1556
1.3401

1.0502
1.1434

0.9718
1.0825
1.3664
1.5220

0.9918
1.0702
1.3885
1.4981

0.9812
1.0436
1.3698
1.4567

0.9278
0.9725
1.2904
1.3526

0.8331
0.8660
1.1556
1.2012

16

1.0502
1.2089

1.0825
1.7852

0.9489
1.0702
1.8579
2.0944

0.9485
1.0436
1.8477
2.0324

0.9052
0.9725
1.7528
1.8830

0.8168
0.8660
1.5750
1.6698

16

1.1434
1.2091

1.2706
1.3664
1.7852
1.9190

1.3286
1.3885
1.8579
1.9414

1.3242
1.3698
1.8477
1.9112

1.2590
1.2904
1.7528
1.7965

1.1329
1.1556
1.5750
1.6064

25

1.1434
1.2575

1.2025
1.3664
2.3226
2.6299

1.2912
1.3885
2.4666
2.6518

1.2963
1.3698
2.4673
2.6068

1.2402
1.2904
2.3516
2.4468

1.1194
1.1556
2.1176
2.1859

16

25

1.2092
1.2575

1.6935
1.7852
2.3225
2.4474

1.8056
1.8579
2.4666
2.5380

1.8088
1.8477
2.4673
2.5203

1.7266
1.7528
2.3516
2.3874

1.5562
1.5750
2.1176
2.1431

36

1.2090
1.2927

1.6258
1.7852
2.9702
3.2580

1.7699
1.8579
3.2102
3.3693

1.7827
1.8477
3.2248
3.3423

1.7090
1.7528
3.0839
3.1679

1.5437
1.5750
2.7813
2.8375

%)



Table 2.5.5 Bounds of e.(X,, X) and e*(X,, X) when H(z) = &(z)

e =0.15

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.9960
1.0512

0.9744
1.1120

0.9430
1.1121

0.9092
1.0911

0.6943
0.8367
1.0234
1.2329

0.6260
0.7397
0.9147
1.0804

0.9960
1.1111

0.9744
1.4424

0.9430
1.5195

0.9092
1.5211

0.6450
0.8367
1.4529
1.8828

0.5894
0.7397
1.3106
1.6433

1.0512
1.1111

1.1120
1.4424

0.9846
1.1121
1.5195
1.7158

0.9899
1.0911
1.5211
1.6761

0.9509
1.0234
1.4529
1.5635

0.8614
0.9147
1.3106
1.3917

16

1.0512
1.1477

1.1120
1.8856

0.9140
1.1121
2.1070
2.5607

0.9369
1.0911
2.1425
2.4934

0.9145
1.0234
2.0721
2.3180

0.8351
0.9147
1.8798
2.0587

16

1.1111
1.1478

1.2523
1.4424
1.8858
2.1697

1.4108
1.5195
2.1070
2.2687

1.4397
1.5211
2.1425
2.2633

1.3974
1.4529
2.0721
2.1543

1.2706
1.3106
1.8798
1.9388

25

1.1111
1.1716

1.1036
1.4424
2.3912
3.1107

1.3416
1.5195
2.8574
3.2335

1.3898
1.5211
2.9414
3.2181

1.3641
1.4529
2.8696
3.0561

1.2469
1.3106
2.6132
2.7465

16

25

1.1478
1.1716

1.6633
1.8858
2.3913
2.7073

2.0041
2.1070
2.8574
3.0036

2.0684
2.1425
2.9414
3.0467

2.0227
2.0721
2.8696
2.9395

1.8447
1.8798
2.6132
2.6629

36

1.1478
1.1872

1.4676
1.8858
2.9084
3.7173

1.9327
2.1070
3.7642

4.1015

2.0184
2.1425
3.9128
4.1527

1.9899
2.0721
3.8416
4.0001

1.8214
1.8798
3.5079
3.6201

56



Table 2.5.6 Bounds of e,(X,,X) and ¢*(X,, X) when H(z) = ®(z)

e =0.25

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.9960
1.0407

0.9744
1.1332

0.9430
1.1588

0.9092
1.1511

0.6081
0.8367
1.0943
1.5044

0.5557
0.7397
0.9857
1.3103

0.9960
1.0700

0.9744
1.4033

0.9430
1.6225

0.9092
1.6850

0.5323
0.8367
1.6631
2.6072

0.4988
0.7397
1.5251
2.2557

1.0407
1.0700

1.1332
1.4034

0.9193
1.1588
1.6225
2.0449

0.9612
1.1511
1.6850
2.0164

0.9581
1.0943
1.6631
1.8987

0.8852
0.9857
1.5251
1.6978

16

1.0407
1.0852

1.1332
1.5980

0.7811
1.1588
2.2279
3.2977

0.8611
1.1511
2.4238
3.2330

0.8904
1.0943
2.4649
3.0256

0.8366
0.9857
2.2883
2.6947

16

1.0700
1.0852

1.4034
1.5980

1.3780
1.6225
2.2279
2.6204

1.5099
1.6850
2.4238
2.7035

1.5461
1.6631
2.4648
2.6510

1.4415
1.5251
2.2883
2.4209

25

1.0700
1.0937

1.4034
1.7047

1.2110
1.6225
2.9326
3.9138

1.4010
1.6850
3.3458
4.0182

1.4762
1.6631
3.4837
3.9228

1.3922
1.5251
3.2623
3.5732

16

25

1.0852
1.0937

1.5980
1.7047

1.9596
2.2279
2.9326
3.3310

2.2496
2.4238
3.3458
3.6038

2.3537
2.4649
3.4837
3.6479

2.2101
2.2883
3.2623
3.3775

36

1.0852
1.0989

1.5980
1.7712

1.7562
2.2279
3.7072

4.6879

2.1302
2.4238
4.4424
5.0506

2.2799
2.4649
4.7143
5.0956

2.1586
2.2883
4.4428
4.7094

37



Table 2.5.7 Bounds of e,(M, X,) and e*(M, X,) when H(z) = &(z)

€= 0.01

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.6392
0.6454

0.6533
0.6567

0.6751
0.6772

0.7002
0.7017

0.7525
0.7609
0.7616
0.7701

0.8517
0.8607
0.8608
0.8699

0.6392
0.6517

0.6533
0.6595

0.6751
0.6789

0.7002
0.7028

0.7496
0.7609
0.7620
0.7735

0.8487
0.8607
0.8610
0.8731

0.6454
0.6517

0.6536
0.6567
0.6595
0.6627

0.6743
0.6772
0.6789
0.6819

0.6988
0.7017
0.7028
0.7057

0.7587
0.7616
0.7620
0.7649

0.8578
0.8608
0.8610
0.8640

16

0.6454
0.6560

0.6518
0.6567
0.6612
0.6662

0.6727
0.6772
0.6798
0.6844

0.6974
0.7017
0.7034
0.7078

0.7573
0.7616
0.7623
0.7667

0.8563
0.8608
0.8610
0.8656

16

0.6494
0.6517
0.6560
0.6583

0.6578
0.6595
0.6612
0.6629

0.6773
0.6789
0.6798
0.6814

0.7013
0.7028
0.7034
0.7049

0.7606
0.7620
0.7623
0.7638

0.8594
0.8610
0.8610
0.8625

0.6478
0.6517
0.6590
0.6630

0.6567
0.6595
0.6623
0.6651

0.6764
0.6789
0.6804
0.6830

0.7004
0.7028
0.7038
0.7062

0.7597

0.7620

0.7625
0.7648

0.8585
0.8610
0.8611
0.8635

16

25

0.6544
0.6560
0.6590
0.6606

0.6601
0.6612
0.6623
0.6634

0.6789
0.6798
0.6804
0.6814

0.7025
0.7034
0.7038
0.7047

0.7614
0.7623
0.7625
0.7634

0.8601
0.8610
0.8611
0.8620

36

0.6532
0.6560
0.6611
0.6640

0.6594
0.6612
0.6630
0.6649

0.6783
0.6798
0.6809

0.6825

0.7019
0.7034
0.7040
0.7055

0.7609
0.7623
0.7626
0.7640

0.8595
0.8610
0.8611
0.8626

58



Table 2.5.8 Bounds of e.(M, X,) and e*(M, X,) when H(z) = &(z)

€ =0.05

$1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.6392
0.6726

0.6533
0.6709

0.6751
0.6862

0.7002
0.7078

0.7194
0.7609
0.7644
0.8084

0.8162
0.8607
0.8616
0.9085

0.6392
0.7232

0.6533
0.6873

0.6751
0.6953

0.7002
0.7136

0.7057
0.7609
0.7669
0.8270

0.8016
0.8607
0.8622
0.9258

0.6726
0.7231

0.6545
0.6709
0.6873
0.7046

0.6709
0.6862
0.6953
0.7112

0.6930
0.7078
0.7136
0.7289

0.7497
0.7644
0.7669
0.7819

0.8462
0.8616
0.8622
0.8779

16

0.6726
0.7917

0.6456
0.6709
0.6982
0.7258

0.6631
0.6862
0.7009
0.7255

0.6855
0.7078
0.7171
0.7404

0.7425
0.7644
0.7684
0.7911

0.8385
0.8616
0.8626
0.8863

16

0.7231
0.7917

0.6779
0.6873
0.6982
0.7080

0.6872
0.6953
0.7009
0.7093

0.7059
0.7136
0.7171
0.7249

0.7595
0.7669
0.7684
0.7760

0.8544
0.8622

- 0.8626

0.8704

25

0.7231
0.8954

0.6721
0.6873
0.7058
0.7220

0.6822
0.6953
0.7047
0.7182

0.7013
0.7136
0.7194
0.7320

0.7550
0.7669
0.7693
0.7815

0.8497
0.8622
0.8628
0.8754

16

25

0.7916
0.8955

0.6922
0.6982
0.7058
0.7120

0.6959
0.7009
0.7047
0.7098

0.7124
0.7171
0.7194
0.7241

0.7639
0.7684
0.7693
0.7739

0.8579
0.8626
0.8628
0.8675

36

0.7916
1.0299

0.6881
0.6982
0.7113
0.7219

0.6925
0.7009
0.7073

0.7159

0.7093
0.7171
0.7209
0.7289

0.7609
0.7684
0.7700
0.7776

0.8547
0.8626
0.8629
0.8708

59



Table 2.5.9 Bounds of e.(M, X,) and ¢*(M, X,,) when H(z) = &(z)

e =10.1

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.6392
0.7113

0.6533
0.6900

0.6751
0.6979

0.7002
0.7157

0.6794
0.7609
0.7680
0.8603

0.7730
0.8607
0.8625
0.9605

0.6392
0.8731

0.6533
0.7305

0.6751
0.7189

0.7002
0.7288

0.6529
0.7609
0.7736
0.9019

0.7449
0.8607
0.8638
0.9985

0.7112
0.8731

0.6559
0.6900
0.7306
0.7686

0.6663
0.6979
0.7189
0.7531

0.6852
0.7157
0.7288
0.7612

0.7380
0.7680
0.7736
0.8051

0.8310
0.8625
0.8638
0.8966

16

0.7112
1.1264

0.6900
0.7628

0.6502
0.6979
0.7329
0.7871

0.6700
0.7157
0.7370
0.7874

0.7232
0.7680
0.7769
0.8252

0.8155
0.8625
0.8646
0.9145

16

0.8730
1.1263

0.7096
0.7305
0.7628
0.7856

0.7014
0.7189
0.7329
0.7513

0.7125
0.7288
0.7370
0.7538

0.7580
0.7736
0.7769
0.7928

0.8477
0.8638
0.8646
0.8811

25

0.8730
1.4568

0.6966
0.7305
0.7888
0.8284

0.6909
0.7189
0.7427
0.7731

0.7028
0.7288
0.7425
0.7701

0.7487
0.7736
0.7791
0.8049

0.8381
0.8638
0.8652
0.8917

16

25

1.1264
1.4569

0.7486
0.7628
0.7888
0.8041

0.7219
0.7329
0.7427
0.7542

0.7269
0.7370
0.7425
0.7528

0.7674
0.7769
0.7791
0.7887

0.8548
0.8646
0.8652
0.8751

36

1.1264
1.8622

0.7389
0.7628
0.8105
0.8376

0.7145
0.7329
0.7499
0.7694

0.7202
0.7370
0.7465
0.7639

0.7611
0.7769
0.7806
0.7968

0.8484
0.8646
0.8655
0.8821
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Table 2.5.10 Bounds of e.(M, X,) and e*(M, X,) when H(z) = ®(z)

e=0.15

S1

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.6392
0.7513

0.6533
0.7103

0.6751
0.7102

0.7002
0.7239

0.6406
0.7609
0.7717
0.9170

0.7311
0.8607
0.8634
1.0170

0.6392
1.0210

0.6533
0.7865

0.6751
0.7466

0.7002
0.7458

0.6025
0.7609
0.7808
0.9870

0.6903
0.8607
0.8656
1.0802

0.7514
1.0210

0.7103
0.7865

0.6612
0.7102
0.7466
0.8022

0.6769
0.7239
0.7458
0.7979

0.7256
0.7717
0.7808
0.8306

0.8152
0.8634
0.8656
0.9169

16

0.7514
1.4199

0.7103
0.8643

0.6364
0.7102
0.7735
0.8641

0.6536
0.7239
0.7606
0.8431

0.7030
0.7717
0.7865
0.8637

0.7916
0.8634
0.8670
0.9458

16

1.0210
1.4198

0.7511
0.7865
0.8642
0.9059

0.7183
0.7466
0.7735
0.8041

0.7200
0.7458
0.7606
0.7880

0.7565
0.7808
0.7865
0.8118

0.8406
0.8656
0.8670
0.8928

25

1.0210

1.9357

0.7290
0.7865
0.9484
1.0280

0.7013
0.7466
0.7936
0.8456

0.7047
0.7458
0.7710
0.8163

0.7421
0.7808
0.7903
0.8317

0.8257
0.8656
0.8678
0.9098

16

25

1.4198
1.9357

0.8377
0.8642
0.9483
0.9798

0.7550
0.7735
0.7936
0.8132

0.7444
0.7606
0.7710
0.7879

0.7715
0.7865
0.7903
0.8057

0.8516
0.8670
0.8678
0.8834

36

1.4198
2.5657

0.8195
0.8642
1.0474
1.1108

0.7427
0.7735
0.8093

0.8432

0.7336
0.7606
0.7786
0.8074

0.7616
0.7865
0.7930
0.8190

0.8415
0.8670
0.8684
0.8947

61



Table 2.5.11 Bounds of e.(M, X,) and e*(M, X,,) when H(z) = ®(z)

€ =0.25

81

S2

0.01

0.05

0.1

0.15

0.25

0.375

0.6392
0.8196

0.6533
0.7527

0.6751
0.7361

0.7002
0.7410

0.5670
0.7609
0.7795
1.0470

0.6510
0.8607
0.8654
1.1457

0.6392
1.2395

0.6533
0.9451

0.6751
0.8174

0.7002
0.7871

0.5087
0.7609
0.7975
1.1960

0.5880
0.8607
0.8696
1.2763

0.8196
1.2395

0.7527
0.9451

0.6486
0.7361
0.8174
0.9278

0.6577
0.7410
0.7871
0.8874

0.6985
0.7795
0.7975
0.8903

0.7812
0.8654
0.8696
0.9636

16

0.8196
1.8396

0.7527
1.2492

0.6053
0.7361
0.8960
1.0921

0.6175
0.7410
0.8236
0.9906

0.6598
0.7795
0.8099
0.9579

0.7408
0.8654
0.8724
1.0196

16

1.2396
1.8396

0.9451
1.2492

0.7618
0.8174
0.8960
0.9625

0.7384
0.7871
0.8236
0.8784

0.7530
0.7975
0.8099
0.8578

0.8246
0.8696
0.8724
0.9201

25

1.2396
2.6077

0.9451
1.6730

0.7287
0.8174
0.9725
1.0952

0.7098
0.7871
0.8524
0.9467

0.7270
0.7975
0.8187
0.8984

0.7982
0.8696
0.8743
0.9527

16

25

1.8396
2.0677

1.2492
1.6730

0.8562
0.8960
0.9725
1.0187

0.7914
0.8236
0.8524
0.8874

0.7818
0.8099
0.8187
0.8481

0.8444
0.8724
0.8743
0.9032

36

1.8396
3.5400

1.2492
2.1964

0.8298
0.8960
1.0493

1.1367

0.7702
0.8236
0.8757
0.9371

0.7634
0.8099
0.8252
0.8756

0.8260
0.8724
0.8756
0.9248
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PART I1
ROBUST EXPERIMENTAL DESIGN
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Chapter 3

Introduction to Robust

Experimental Design

3.1 Some Basic Concepts of Optimal Design

Before we study the problem of robust experimental design, we would like to
present some basic concepts of optimal design as our starting point. These concepts
will be used frequently in the later chapters.

Let us consider the following regression model:

Blyle) =6"1(z), i=1,..n, (31.1)
or alternatively
yi=y(@)=0"f(z)+e, i=1,.,n, (3.1.2)

where £T= (6o, ..., 0,), T (z) = (fo(z), -, fo(2)) and z € SCRY i=1,.,n S

denotes the design space we are interested in. Particularly, we may choose § =

{(x1,.y2) + =1 < 2; <1, j=1,...,¢}. We assume that z's are subject to no error
~e

and €/s are independent and identically distributed with mean 0 and variance o > 0.



65

Furthermore, we define

hz) flz) « flz)
Flz) = fo(z) filz) - folz) ,

folz ) filz) - frlz)

B(z) = 2 F(2)F(2) = 2 Xkt f(2) T (2), ¥7= (y1,-,9n), and 7= (&1, ..., €0).

~ "~

Then, we can write (3.1.2) as the following form:

y(z)=F(z)o+e¢ . (3.1.3)

~ T~ ~

It is well known that the least squares estimator of § under (3.1.3) is
é: (FTF)—IFT v,
and the covariance matrix of é is

cou(d) = Bl(d - 0)(d - ) = T B (g).

We confine ourself to the use of the least squares estimator é . It is clear that
the covariance matrix cov( é) depends on the observations z,t=1,...,n. The design
problem which we shall be concerned with is the following:z How should the values
Tl of the independent variable be chosen in order to give the “best” experiment?
The question of best design depends on the meaning of “best”. Many optimality
criteria have been posed and studied in the past. See for example, Kiefer (1959), Box
and Draper (1959, 1963) and also Fedorov (1972). Before we present some of the
optimal criteria commonly used, we first give a precise definition of an experimental

design.

Definition 3.1.1 A design of an ezperiment is the collection of quantities
T, T, e, T
~T~2 ~n (3.1.4)
Niy Noyeey Ny

where € S, and n; is the numbers of repetition at point z , t=1,...,n.
~

.~y
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For the theoretical study, the concepts of normalized design and continuous nor-

malized design are more useful.

Definition 3.1.2 A normalized design is the collection of quantities

T, T,., I
U R (3.1.5)
P1, DP2y+ey Pn

where p; = n;/ Y7 nj, @ = 1,...,n. Moreover, we call a design to be a continuous
normalized experiment, if in (3.1.5) we allow p; to be any real number between 0 and
1.

The concept of experimental design can be further extended by allowing design
measure to be any probability measure ¢ (z) supported on some design space S. With

this extension, we define

B(e) = [ 1 @) 7 ()de(g).
Then we have
b=879) [ @) v@la), (3.1.6)
and the least squares estimator of 97 () is § =4 f (). We use M(¢) to denote

the mean squared error matrix of § as estimator of § which depends on the design
measure {(z). Under (3.1.3), we know that é is an unbiased estimator of § . Hence

M(¢) is simply the covariance matrix of é, ie.,

M(€) = El(§ - 0)(§ - 0)") = cov(§) = Z-B(¢).

Also, we denote
d(z,€) =f" (2)M(E) | (2)

which is the mean squared error of 0 f () as estimator of 0T f ().

The goal of optimal design is to seek design measures such that some loss functions
of M(£) or d(z,¢) is minimized. Here are some of the loss functions used by many
authors: (i) £p(€) =| M(€) |, (i) L4(§) = tr M(€), (iii) Lo(€) = fs d(z,€)d z, and

(iv) Lg(¢) = max d(z,¢). The minimization of these loss functions over some class
T ~

of design measures yields different kinds of optimality.
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Definition 3.1.3 Let F to be a set of design measures we are interested in. We call

design measure €o € F to be D—, A—, Q—, or G—optimal over F, if

[M&)| = pin | ME),
wM(&) = min M),
Jsd(z,bo)dz = min [sd(z,¢)d z,
or
Ter o b) = pax dnd)
respectively.

It is clear that the D-optimal design minimizes the generalized variance of the least
squares estimator Q, while A-optimal design minimizes the mean of the normalized
dispersion 1 - ¢rM(€). These two designs are the optimal designs in the space of
parameters. On the other hand, the @ and G—optimal designs are the optimal designs
in the space of control variables. The Q—optimal design minimizes the average of
d(z,£) over the design space S, while the G—optimal design minimizes the maximum
value of d(z, ) over S. Hence, G—optimal design is also known as minimax design in
the space of control variables.

The problem of optimal design has been studied extensively by many authors,
especially by Kiefer. The famous theorem about the equivalence of D—optimal and
minimax designs is also due to Kiefer and Wolfowitz (1960). Many topics about
optimal design theory can also be found in Fedorov (1972). We are not going to
discuss the usual theory of optimal design in depth. Instead, we confine ourself to
the robust considerations of experimental design which we are going to discuss in the

next section and to study some different aspects in the next three chapters.
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3.2 Historical Review of Robust

Experimental Design

There is a major consideration in robust experimental design problems, namely
the possible violation of the assumed regression model.

Consider the regression model (3.1.2). The regression problem is to make inference
about Q in some “optimal” way. In particular, an optimal estimator of g has to be
chosen and in connection with this estimator the design problem is to choose the
experimental points, z’s in an optimal manner. When we choose the least squares
method of estimation, tf,hen a variety of optimality criteria could be considered in the
associated design problem as we have discussed in Section 3.1. Unfortunately, as was
noticed by Box and Draper (1959), the strict formulation of the regression function
becomes dangerous in the situations when the “true” regression function y(z) is only
approximated by QT f (g ) thereby introducing a bias term which may be considerable.

The corresponding model can be given now by
Yi = ?/(3) =0Tf (fi) + ’(,b(%z) + €, i=1,..,mn, (3.2.1)
where 1(z) is an unknown “contamination function” defined on S. P(z) belongs to
some set ¥ with some specified properties.
Let é be the least squares estimator of § as we defined in (3.1.6), and
AT A
§ =0 f (z) be the least squares estimator of 47 f (z). We know that § is no longer

an unbiased estimator of § . In fact, we have the following:

Lemma 3.2.1 Under the regression model (3.2.1), we have

(1) El§— 0] =B7¢) b (%,¢) (3.22)

(%) M($,6) = E[(§-0)I(§ -0

= = B+ B b (#,) b (4,6)B7 ()

n

(3.2.3)
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(i) MSE(@) = — f7(2)B7(6) f (2)
T

n )~ (3.2.4)
+ 7 (@)B7HE) b ($,8) 87 (¥, £)B7(¢) | (2)

where B(€) = Js [ (2) /7 (2)de(z) and b (,€) = Js f (2)%(2)dé(z) and £ is the

design measure on S.

Proof:
(i) By (3.1.6) and (3.2.1), we have
6 = BO s f (@(2)it)
= B7H&)Js [ @) (2) 0 +¥(2) + )dé(z)
= B7E)8 Js [ (2) fT (@)dé(z) + Js f (2)v(z)dé() + € 5 f (2)dé(2))
= g+BE) b (1) +e BO s £ (2)de(e).

Hence, we have E(8) =0 +B7*(€) b (¥,¢),ie, E(§ —0) = B7(€) b (4,¢).

(ii) A direct calculation yields the following:

M($,&) = E[(§—0)(0 - 97

= E[(f E(0)+E(g) 80)(6 —E(8) + E(9)- 0)7]

~

-
)]+ El(§ ~E()(E(8)- 6)7)

= El(§-E(9)(§-E(@

+E|(E(9)- 0)(0 —E(9)"1 + E[(E(§)— 0)(E(9)~ 0)7]
= COV( )+ (E(G - 0))-(E@G - 0)"
= ;B N6+ (B7HE) b (#,€)) - (B71(€) b (,€))T

ol

= TB )+ B b (4,6 VT (5,0B7)
Note that the last second equality followed by (i) and the last equality by the fact -

that B~1(£) is a symmetric matrix.

(iii) We know that the mean squared error of §, MSE(§), is d(z,%,§)
=fT (@)M(4,€) f (z). Hence (iii) is followed by (ii) immediately. o
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It is clear that the usual optimal designs are no longer optimal under the model
(3.2.1) since they minimize some scale valued functions of B~1(¢) only. There are
some disadvantages of the usual optimal designs. They are dependent on the assumed
model and very sensitive to the possible model violation. They provide no opportunity
for a check of the model’s adequacy etc. One attempt to meet these objections has
been made by Box and Draper (1959). They use j(x) =€Tf (z) to be the least squares
estimator of the true regression function y(z), calculated~under the assumption that
¥(z) = 0, while in fact the real model is (3.2.1). They considered the case when

f(z)=(Q,z,.., z™) and suggested that the design should minimize

1

L BE"f @) - v@d = [ verlilds + [ (Bloe) - y(a)da = v + B

within the class of symmetric design measures supported on [—1,1], where they re-
ferred to V as variance error and B as bias error. The major difficulty with adopting
the criterion “minimize V + B” is that the optimal design depends on the function
y(z), which is unknown. Even if it is assumed that y(z) is a polynomial of degree
m + 1, the optimal design still cannot be found, as it will depend on the unknown
coefficient of x™*1. To avoid this difficulty, Box and Draper (1959) recommended
that one choose the design to minimize B alone. As they noted that “The somewhat
unexpected conclusion is reached that, at least in the case considered, the optimal
design in typical situations in which both variance and bias occur is very nearly the
same as would be obtained if variance were ignored completely and the experiment
designed so as to minimize bias alone.” .

Beginning with Box and Draper (1959), the problem of finding robust design
against the model violation has been further studied by many authors in different
aspects. Designs for versions of (3.2.1) have been constructed in a series of papers.
These differ in the class of ¥, the design space, the regressors, and in the loss functions
used.

Note that the least squares estimator, which disregards the presence of 3(z),

may no longer be optimal among linear estimators for §, and therefore the search
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for new estimators is of special interest. Marcus and Sacks (1977) considered the

one-dimensional regression model
y(z;) = a+bai + ¢(z:), i=1,..,n,

where | ¢(z) |< ¢(z), ¢(0) = 0, with ¢ a given function. They restricted the estima-
tors to be linear, but not necessarily the standard least squares estimator, and look

for designs and estimators to minimize the mean squared error
sup E[(& — a)? + N2 (b - b)?),
v

where &, b denote the estimators and ) is specified.
Pesotchinsky (1982), posed the similar problem for the multiple linear

regression model

y(z)=0"f (z) +4(z)+e, i=1,..n.

He confined himself to the use of the standard least squares estimator because in the
case of small deviations, the performance of least squares estimator is nearly the same
as of the best linear estimator as was shown by Marcus and Sacks (1977).

Li (1984) also considered the similar problem when ¥ = {¢(z) :
| ¥(z) |< @(z)} where ¢(z) is a known function. But for the class of design measures,
he focused on the case that o(¢) = {%\7 —s k= 1,...,N} for a fixed natural
number M.

In a related direction, Huber (1975) formulated a problem that

y(zi) =a+ba; +¥(z) + &, i=1..,n,

where ¢(z) € ¥ = {I/)(.'IJ) : f_%l P(z)dz < nz}. Huber also confined himself to the
use of the standard least square; estimator based on the above model with ¥ (z) = 0,
and found the design which minimizes the loss

SI;p E/_i (& + bz — y(:z:))2 dz.
An unfortunate consequence of this formulation is that it leads to the restriction

that the designs must be absolutely continuous, otherwise the above loss is infinite.
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This means that no implementable designs can have finite loss. However, it is to be
understood that the continuous designs will be approximated by discrete designs in
practice. Wiens (1992) mentioned the comment that “Our attitude is that an approx-
imation to a design which is robust against more realistic alternatives is preferable to
an exact solution in a neighbourhood which is unrealistically sparse.” Wiens (1990
and 1992) extended the Huber’s (1975) result to the multiple linear regression model
and to some other loss functions.

Stigler (1971) suggested the so-called C-restricted D-optimal design for the one

dimensional polynomial regression model
m .
P y(z:) =) 02 + e, i=1,..,n.
—

Instead of minimizing |B;!(£)| over the class of whole design measures supported
on [~1,1], which is the usual D—optimal design, he suggested the design measure
minimizing |B;!(£)| among all designs € satisfying |Bn,(€) |< ¢|Bm+1(€)|- The justi-
fication for this choice is based on the fact that if f,,4; is the least squares estimator of

041 for the model Py ¢ y(2:) = bl 0;at +¢;, and € corresponds to an experiment

-

run at @1, .., T, then nvar(@ny1) = |Bm(€)]-|Bms1 (€)™ - 02 Thus this criterion says

“minimize the generalized variance of the least squares estimators (éo, ves ém) for the

A

model P, subject to the constraint that var(f,4+1) < c- . Similarly, he introduced
the C—restricted G—optimal design for the model P, : gla,t is, the design & which
minimizes _max dm(z,€) among all designs ¢ satisfying |Bn(€)] < ¢|Bm+1(é)],
where dp,(2,€) =f7 (2)Mn(€) f (2) and fT (2) = (1,2,...,2™).

The choice 01? C reflects a~comp1'omi;e between two conflicting goals: precise
inferences about 6,,4, and precise inferences about the model P,,. On the one hand,
C should be chosen sufficiently small so that it will be possible to detect practically
significant departures from the model with a specified precision (this requirement
could be phrased in terms of the power of the test: H : 8,41 = 0); while on the other
hand, large values of C will yield more efficient designs for the model P,,. Stigler
(1971) found the C-restricted D— and G—optimal designs for the model P, i.e., the

one dimentional linear regression model.
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Some previous papers, for example Marcus and Sacks (1977), Pesotchinsky (1982),
Li (1984), Huber (1975), Wiens (1990 and 1992), have assumed that a class of pos-
sible bias functions exists but that all functions in the class are equally likely to be
the actual bias presented in the model. In some cases it would seem that certain
bias functions would be more likely than the others, and perhaps the experimenter
can specify a prior probability distribution on the form of the possible bias in the
model. Hence, Notz (1989) attempted to take into account prior information about

the possible bias and suggested the following model:
y(zi,w) =07 f (2;) + ¥(@i,w) + e(w), i=1,..,n, (3.2.5)

where w is a random variable on some probability space 2 with probability measure
T(w).

Let é (w) be the least squares estimator of ¢ in model (3.2.5) pretending ¥ is 0.
Notz (1989) found the optimal design £ which minimizes

fg ® {E [(2 (w)~ Q) (é (w)- g)T] } dT](w)

where ®@-is a scale valued function of E[(é (w)— Q)(é (w)— Q)T]

Apart from the “model robustness”, there is another direction concerning the
dependence of random errors. The design problems against the dependence of ran-
dom errors had its beginning in 1940-50’s. Some important work has been done by
Ylvisaker (1964), Sacks and Ylvisaker (1966 and 1968), Bickel and Herzberg (1979
and 1981).

Recently, Wiens (1991) studied robust designs against simultaneously the model
violation and the contaminated data by using an M-estimator of the
parameters instead of the least squares estimator.

In the next three chapters, we focus on the problem of robust experimental design
against model violation. We are going to make some extentions of the results of
Stigler (1971) and Notz (1989). We are also going to propose a new consideration,
called “bounded bias optimal design”, which was suggested by Wiens in 1992. Details
will be presented in Chapter 4, Chapter 5, and Chapter 6 respectively.
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Chapter 4

Restricted Optimal Designs for
Approximately Linear and

Quadratic Polynomial Regressions

4.1 Introduction
Consider the following regression model:
yi=y(z) =¢"f (z:) +e&, i=1,...,n, (4.1.1)

where §7= (6o,01,...,0n), fT (z) = (1,2,...2™), €’s are ii.d. with mean 0 and
variance 0® > 0, and z; € §:=[-1,1], i =1,...,n. Let 7= (31,...,¥a),

eT= (e, ... €,), and

1 Ty v w?‘

LR ) m

o 1 = zj
1 Ty v x?

Then we can write (4.1.1) in the following form, which we call model P,

Pn: y =Fg+¢, (4.1.2)
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where ¢ has mean  and covariance matrix o®I. Define B (¢) = [5 f () fT (z)dé(z),

where {(z) is a design measure defined on S. The least squares estimator of § is then
2

6= B-1(¢) fs [ (z)y(z)dé(z) which has mean § and covariance matrix a—B“l(ﬁ)
which depends on £(z). "

Some of the most frequently required properties of a comparison of designs are the
following: We say that £, is preferred to & if (i) |[M(&)| < |M(&)| or |M~1(&)] >
|M~ (&), (i) trM(&) < trM(&), (i) [s [l &)z < s d(z,&)de, or (iv)
max d(z,&) < max d(z,&2), where M(¢) = %B‘l(f) and d(z, §)
=fT (z)M(¢) f (z). The design measure ¢, which minimizes each of the four cases
over some class of design measures is called D-, A-, @-, or G-optimal design respec-
tively.

As we mentioned in Chapter 3, Box and Draper (1959) pointed out the danger of
assuming the regression model to be exact, since the violation of the regréssion model
is very possible in practice and the usual optimal designs as we mentioned here are
very sensitive to the possible model violation. The usual optimal designs also have
some other serious shortcomings. For example, D-optimal design (as well as some of
the others) permit no check of the adequacy of the model etc. It is therefore desirable
to find a criterion and designs which meet the following considerations:

(i) The design should allow for a check of whether or not the assumed model
provides an adequate fit to the true regression function.

(ii) If it is concluded that the model is adequate, it should be possible to make
reasonably efficient inferences concerning that model.

(iii) The optimal design should not depend on unknown parameters.

In order to find designs to meet the above requirements , S. M. Stigler (1971)
proposed some new criteria, so-called C-restricted D- and G-optimal designs. In this
chapter, we are going to extend the C-restricted optimal design to A- and Q-optimal
criteria and also to a general situation which we call C*-restricted optimal designs,

where C*= (cy,...,c:)T. Here are the precise definitions:
< 3 3 p

Definition 4.1.1 We shall call { a C*-restricted D-optimal design for the model
P, if & mazimizes |Bn(€)| (or minimizes |B;1(€)|) among all designs € satisfying
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| Brti-1(E)| < ¢ |Bmai (E)] for j =1,... k.

The justification for this choice of definition is based on the fact that if Opmy; is
the least squares estimator of 0,,,; for the model P+;, and € corresponds to an
experiment run at zi,...,%,, then nvar(fpny;) = |Bnyj-1(6)| |Brni(6) 1 0?, j =
1,...,k. Thus this criterion says “minimize the generalized variance of the least

AT A ~ A
squares estimators § = (o, 6,...,0,) for the model P,, subject to the constraints

that var(ém_,.j) <c¢-—, j=1,...,k. Similarly, we have:

3|9,

Definition 4.1.2 We shall call £, a C*-restricted A-optimal design for the model P,,
if §o minimizes trB1(£) among all designs ¢ satisfying |Bmyi-1(€)| < ¢; |Bms;i(€)|
forj=1,...,k.

The motivation of A-optimality is that the minimization of trB;!(£) is equiva-
lent to the minimization of the mean dispersion of the estimates of the parameters
m A
T = m~* ¥ var(;), since T is proportional to ¢7B;;1(¢). The meaning of Q- and G-
t=1

optimality are clear. We simply state them as the following two definitions.

Definition 4.1.3 We shall call { a C*-restricted Q-optimal design for the model
P if {o minimizes [g dn(z,£)dz among all designs ¢ satisfying |Bpyi_1(€)] <
G |Bm+.7(€)‘ fO?"j =1,.. wk'

Definition 4.1.4 We shall call £y a C*-restricted G-optimal design for the model
P, if & minimizes max din(z,€) among all designs & satisfying | Brti-1(8)] <
&5 | Brss (©)] for j = 1,00, k.

According to the definitions of C**-restricted optimal designs , Stigler (1971) solved
the C*-restricted D- and G- optimal designs for the case of m = 1 and k = 1. In this
chapter, we are going to find the Q*-restricted D-, A-, Q-, and G- optimal designs
for(i)m=1k=1@{)m=1,k=2and (i) m=2, k=1.

Case (i) is studied in Section 4.3. We use different methods to find the same result
as in Stigler(1970). Moreover, we point out that the C-restricted D-, A-, Q-, and G-

optimal designs are all the same in this case.



77

In Section 4.5, we discuss the case when m = 2 and k = 1. We simplify the problem
to a non-linear programming problem with three variables. Numerical searching for
the C?-restricted optimal design is needed.

Some interesting results are found in case (ii). When m = 1 and k = 2, the

problem becomes the following:
. 1
max fig subject to — < py—p2 and p, < co(pope — /‘Z),
feF Cy

where F = {¢ : 0(£) C S}.

With the aid of preliminaries in Section 4.2, we have proved that the restricted
maximization of uz over F is equivalent to that over F, and furthermore is equivalent
to that over Fi, where F, = {£ : £ € F,{(—z) = &(z)} and Fy = {¢ : € € F,
§=%A:ﬂ+§Aiﬁ+(1—a—ﬂ)Ao,0§a§1,0SﬂSl,a,ndOS:vSl}.

There are two limiting cases: (1) ¢; = oo and (2) ¢; = co. When ¢, = 0o, we
know that this is the case of m = 1 and k = 1. For the case when ¢; = 00, we find
the explicit solution to the problem. In general, the solution can only be found by
numerical search. However, when ¢; and c; have some special relationship, we are
still able to find the solution explicitly. These are the main results in Section 4.4

which are presented by Theorem 4.4.3 and Theorem 4.4.5.
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4.2 Preliminaries

The search for (*-restricted D-optimal designs with k¥ = 1 can be simplified by
searching for the optimal design within the class of symmetric design measures. This
fact was proved by Stigler (1971). In this section, we first indicate that the fact is
also true for restricted A- and Q- optimal designs and for k¥ > 1. In order to prove

this fact, we need the following two lemmas:

Lemma 4.2.1 Let A = (ai;)nxn and B = (bi;)nxn be two matrices. Ifb; = (—1)*iay;,
then |A| = |B)|.
Proof: We know that
|A| = Z (_1)T(j1,-.-,jn)a1j1, el and |B| = Z (_1)7(1'1,...,1'1;)[,11_1,. . "bﬂjn’
(jlo'"vjn) (.71 vﬂvjn)

where 7(j1,...,Ja) is the number of inverse order of the permutation (1, ..., j»), and
the summation is over all the possible permutations of (1,...,n). We claim that
Q1 ye ey @nj, = b,y by, forall (1,0, 4n)

Followed by the assumption b;; = (—1)*7a,;, it is sufficient to show that there

are even number of pairs (¢, ;) such that 7 + j; is odd. This must be true since
i(i+j,-)= f:z'+ ij;:n(n-l—l) which is even. 0
: =1 i=1

=1
Lemma 4.2.2 Let A = (aij)nxn and B = (bij)nxn be two non-degenerate matrices.
Denote A™! = (a}})uxn and B™' = (b)xn. If bij = (—1)*a;;, then b = (—=1)+ay.

Proof: Let

P = (pij)nxn = G A

\ 0 (=1 )

(-1) ifi=3j
0 ifisj

1.e., pi; =
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Then, we have P~! = P, and B = PAP. Hence, we get B~} = P-1A-1p-1 =
PA™'P. This implies that b} = (—1)"*/a};. o

Let V(c;) be the class of des1gns § satisfying the constraint |Bpt;_1(€)| < ¢; |Bm+;(€)],
J=1,...,k and V(C*) = ﬂ V(c;). We claim that the following lemma, is true.

Lemma 4.2.3 (i) V(C*) is conves. (%) &(z) € V(CF) if and only if ((—z) €
V(cHh).

Proof: (i) The convexity of each V(c;) was proved by Stigler (1971). Hence V(C*)
is convex.

(i) £(z) € V(C*) implies that ¢&(z) € V(c;) for j = 1,...,k Hence we have
|Brti-1()| < ¢;|Bm4j(€)] for j = 1,...,k. Let by be the #* row and # column
element of B({(z)) and b}; be the #* row and  column element of B(¢(—z)). It is
clear that by = (—1)"+by, since we have By, (£) = [ f(z) fT (z)dé(z) with
fT (z) = (1,z,...,2™). By Lemma4.2.1, wehave |Bp1j-1(£(—2))| < ¢; | Bmi(E(—2))|
for j = 1,...,k. This implies that {(—z) € V(c;) for j = 1,...,k. Hence we have
{(—z) € V(C*F).

Similarly, we can show that £(—z) € V(C*) implies £(z) € V(CF). 0

We denote D(C*), A(C*), Q(CF) to be the sets of C*-restricted D-, A-, Q-

optimal designs respectively, i.e., D(C*) = {& : |B~1(&)| = fI{,l(lgk) |B-1(¢)|},
A(C*) = {& : trB7'(&) = B, rB" ()}, and Q(C*) = {&o : 11 d(z, &) dz =
min [, d(z,£) dz}. Then we have:

eeV(C")

Lemma 4.2.4 (i) D(C’“), A(CF), and Q(CF) are the convez subsets of V().
(i) £(2) € D(CY), A(C*), or Q(C*) if and only if £(—z) € D(C*), A(C*), or
Q(C*) respectively.

Proof: (i) The following fact was noticed by Kiefer (1959):
-“If A and B are any symmetric positive definite matrices, then

A+ (1 = N)B]T <AA™ + (11— N)B,



80

where we write A < B to mean B — A is semipositive definite.”

Let &,& € A(C*) and &* = M + (1= A)€;, where 0 < X < 1. By the convexit;y of
V(C*), we have £* € V(C*). It is obvious that B, (£*) = ABp(£1) + (1 — A) B (£2).
Taking A = Bi(é1) and B = By, (€;), we have B1(¢*) < AB;1(6)+ (1 — A) BZY(&,).
Hence,

trB1(€*) < MrBRl(é1) + (1 — MtrB; (&) = trB;M (&)

Note that the second equality followed by the A-optimality of ¢; and &. Since
& € A(CH), & € V(C*), and trB;X(¢*) < trB;(£1), we must have trB;1(£*) =
trB;1(£1), and hence £* € A(CF).

Similarly, let &1,& € Q(C*) and ¢* = \& + (1- A€z, where 0 < A < 1. We know
that B;1(€*) < AB;1(&) + (1 — M) B (£2). Hence we have dp,(z,£*) < A (z, &) +
(1 = A)dm(z, &) and

/Sdm(a:,f*) dz < /\/Sdm(a:,ﬁl) dz + (1 — /\)/Sdm(m,fg) dz = /Sdm(m,&) dz.

Again, the second equality followed by the @Q-optimality of & and &. The fact that
& € Q(C*), & € V(C*), and [gdm(x,£*) dz < [5dm(z,&1) dz implies [ dm(z, £*) dz =
Jsdm(z,&) dz and &* € Q(CF).

The convexity of D(C*) has been proved by Stigler (1971).

(i) Let
1
Bie@) = [ @) fF @)= [ | T e, de(a)
.’Bl
I m i
Hi o f2 o i

2O 1 N R 177 ’
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where p; = [1, z* d¢(z). Then we have

1 — 1 (_1)’”'1
— vee (1)1
(D" (D24 -0 (=1)py

By Lemma 4.2.1, we have [Bi({(z))| = |Bi(¢é(—z))| for any natural number I, espe-
cially for l =m,...,m + k.

Let B ({(2)) = (5)(m+1)x(m+1) and BR1(E(—2)) = (b5)(ms1)x(m+1). By Lemma
4.2.2, we have bj; = (—1)"9b%. Hence we get trB~1(¢(z)) = trB-1(£(—z)).

Note that

1
dn(@,6(@)) = (L2, e B | T | =) bt
and
1
dn(2,6(=2)) = (1,3, .., a™) BN (E(~2)) m =if{:)bi—j$i+j.
.

Although dn(z,¢(2)) and dp(z,£(—z)) are different for the terms when 4 + j is
odd, but they are the same for the terms when i + j is even. Hence we have
S dn(2,€(=2)) do = Tito Do [14(=1)*85a™ do = $5° [ b5a™ do
= f11 dm(z,€(2)) dz.
Part (ii) of Lemma 4.2.4 follows by the above results. ]

The consequence of Lemma 4.2.4 is that there is a symmetrical optimal design.
In fact, let & be a C*-restricted optimal design and define €2(z) = &(—z); then it

follows that (£1 + £2)/2 is a symmetrical C*-restricted optimal design. Hence, for
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C*-restricted D-, A-, and Q- optimal designs, we only need search optimal solutions
within the class of symmetrical designs.

The problem of search for C*-restricted optimal designs can be further simplified
by some well-known results (see Karlin and Shapley(1953), Shohat and Tamarkin(1943),
and also Stigler(1971)) which will reduce the problem to a non-linear programming
problem with [ variables ( I 4+ 1 if I is even). These variables are the (I —1)/2 points
(I/2 of lis even). @;, i=1,...,(I=1)/2in [0,1] such that the optimal ¢ is supported
by {+z;} together with £1 and 0; and the (I + 1)/2 weights ((! + 2)/2 if I is even)
£(z:), i =1,...,(I-1)/2 and £(0). However, we are not going to use this result,
since it may not sufficiently reduce the problem. Instead, we would like to provide a
direct approach to simplify the problem of finding (*-restricted optimal designs. But

first, we introduce some necessary notations. Let
Fo={€:6€F, 6= F0uzt(1-0)As, 0Sa<1, 02 <1}
and
Fi= {66 € F, 6= 30u+ 50, st (1-a-P)Ay, 0<a <1, 0SB <1,
0<z<1, a+B<1},
where F is the class of all design measures supported on [—1, 1], and let
8={§:£e]—', §=%Aﬁ+%A_ x, OSmgl}.

We define a functional Tj as

T(E): F — R by Ty) = (| de(o), [ a*de(a)

and a functional T as
1 1 1
Ti(): F = R by Tie) = ([ s"de(a), [ ade(a), [ o%de()).
It is clear that

To(5)={(w,y)=m=$,y=$2,OS$S1}==50
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and

N(&) ={(z,9,2): e =2,y =2" 2=2° 0<2 <1} := 5.

Furthermore, we denote 3, to be the convex hull of So and 5y to be the convex

hull of S; . Then we can prove that the next two theorems are true.
Theorem 4.2.5 To(fo) = To(j:) = So.

Proof: Theorem 4.2.5 is a special case of Theorem 2.2.4. a

Theorem 4.2.6 Tj(F) = Ty(F) = 5.
We would like to present a lemma before we prove Theorem 4.2.6. Let py =
(0,0,0), p» =(1,1,1), px = (k, k2, k), where 0 < k < 1, and

P = {Ay : Ay is the interior and boundary of the triangle
with vertices po, p1,pr, 0 < k < 1}.

The following lemma plays an important role to the proof of Theorem 4.2.6.
Lemma 4.2.7 P = §,.

Proof: (i) It is obvious that P C 3, since Do, P1, Pk € S1, and any point p € Ay is a
convex combination of pg, p;, and py.

(ii) We are going to show that “if p ¢ Ay for any k € [0,1], then p ¢ 5;.”

Let L = {(z,y,2) :z=t,y=1t, 2=t 0<¢t<1},and I = {m : 2 = —kz +
(1+ k)y, k €R'}. It is obvious that ) goes through pp and p;, and | Tk =R3,
Moreover, we have 7 N Sy = {pg, p1} for £ <0 or k > 1, since the folll:)f)vli{ng system

of equations

{ z=—kr+(1+k)y
3

z=z,y=1z% z=2
has solutions z; =0, 2, = 1, and 23 = k.
For any point p € m;\L, where k < 0 or k > 1, it is easy to see that there is a iy
such that p € 7}, and 7, N S; = 0. Hence 74N S, = 0 and p ¢ 5.
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We are now going to show that for any point p € m;\Ax yields p ¢ S; when
0<k<l.

Let S; and A} be the projections of $; and Ay onto the plane zQOy, i.e., z = 0.
We have

Si={(=y):0<2<1, 2" <y<a}

and
Ai={(z,y):0<z<k kz<y<zjand k <z <1, Q+kz—-k<y<z}.

We define B, = {(z,y) : 0 <z <k, 22 <y < kz},and B, = {(z,9): k < z <
1, 22 <y < (1 + k)z — k}. It is clear that S} = AL U B; U B,.

Let p* be the projection of p onto zOy. For any point p € m\L, p* ¢ S; implies
pé 5. Hence, we only need to consider the point p € m\ L, such that p* € B; U B,.

3
Fyoo |3
l *
‘ Fl I P‘
]
! *“‘Bz
0
o ST 7
° |
[ " L * —
Ah A“
x ! &
Figure 4.2.1 Figure 4.2.2
Case 1 prE B
For p = (zo, Yo, 20) € 7k such that p* € B, we have
Yo < kao. (421)

Let m1(a) be a plane going through py and p. Then 7, (a) satisfies the following:

z Y.,
= +3+2=0 (4.2.2)

24 84z5=0 . (4.2.3)
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Since p € g, we also have

2o = —kzo + (1 + k)yo. (4.2.4)
Put (4.2.4) into (4.2.3) to get

Zo Yo _ _ 1 [kzo — (14 k)yola — o
p + b k:L'o + (1 + k)yo =0 and b = Yol . (425)
Put (4.2.5) into (4.2.2) to get
z. {[kzo — (1 + k)yola — zo}y tz=0
a Yol
and hence we have
Yoz + {[kzo — (1 + k)yola — zo}y + yoaz = 0. (4.2.6)

Thus (4.2.6) is the equation of m1(a). Varying a within R! we get the family of all
the planes going through py and p. We denote this family as II,, i.e., II; = {m1(a) :
a €R'}.

We are now seeking a plane my(a*) such that m1(a*) N S; = {po}. Solving the

following system of equations

{ Yoz + {[kzo — (1 + k)yola — o}y + yoaz = 0

z=2, y==zx% z2=2° ,

we get
Yoo + {[kzo — (1 + k)yola — zo}2? + yoaz®

(4.2.7)
= z{yoaz® + [(kzo — (1 + k)yo)a — zo]z — 5o} =0 .

We know that z = 0 is a solution of (4.2.7), and we hope that there exists a real

number a such that
yoaz? + {[kzo — (1 + k)yola — zo}z + yo = 0 (4.2.8)

has no solution. (What we really need is that (4.2.8) has no solution in [0,1].)

The necessary and sufficient condition for (4.2.8) to have no solution is

61 = {[kzo — (1+ K)yola — 20}” — 4ya < 0. (429)
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(1) For kzo — (1 + k)yo # 0, we have

61 = [kxo— (1 + k)yo)?a? + 23 — 2xo[kzo — (1 + k)yola — 4yda
= [kzo — (1 + k)yo]2a® — 2{mo[kzo — (1 + k)yo] + 2y2}a + 3

— 2 ) 2 ozolkzo — (1 4 k)yo] + 2y
= fhaa = (-4 B {220 =G Bl

¥ Trao— (ﬁ k)yolz}
= o= 1+ Bl { (o

_ Zolkzo — (1 + k)yo] + 23/3) ’
[kzo — (1 + k)yo]?

_ {®o[kzo — (1 + k)yo] + 243}° 3
(kzo — (1 + k)yol* [kzo — (1 + k)yo]? .
Note that
_ {=zolkzo — (1 + K)yo] + 2y3}* 3
[kzo — (1 + k)yo]* [kzo — (1 + k)yo)?

zg[kzo — (1 + k)yo]* — {wo[kzo — (1 + k)yo] + 2y3}*
) [kzo — (1 + E)yo]*

B [kzo — (1 + k)yol* {§[kzo — (1 + K)yo]® — zd[kzo — (1 + K)yo]®

—4ys — 4zoyd[kzo — (1 + k)yo]}
—4y2

= Thmo = (1 + Fgopt Y0 T @olkzo = (14 F)yol}
—dy2
= e (g R 8 + ke = (L+ b))
—4y?
= Thao= (1 + B ("0 ~ 0){keo —30) <0
For (zo,y0) € By, we have z¢ > yo and yo < kzo (4.2.1). Hence, we get 8, < 0 if

we choose

o = Zolkzo — (1 + K)yo] + 2y
[kzo — (1 + k)yo]?
(2) For kxzo — (1 + k)yo = 0, we have 6; = 22 — 4y2a. Hence §; < 0 if we choose

a* > z2/4y2.
The conclusion of the above argument is that there exists a real number a¢* such that
(4.2.8) has no solution. Hence, there is a 1 (a*) € II;, such that m(a*) N S; = {po}.
Note that po is an end point of Sy, and S, is located at one side of m;(a*). It is easy

to see that there is a plane 7} such that p € 7} and 7¥ N'S; = §. This implies that
7N S = 0, and hence we conclude that pé¢ S
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Case 2 p* € By
For p = (w0, y0, 20) € 71 such that p* € By, we have

Vo< (14+k)zo—Fk. (4.2.10)

Let m3(a) be a plane going through p; and p. Then 7,(a) satisfies the following;:

m;1+£%i+wm—n=0 (4.2.11)

%_1+%;yua—n=o. (4.2.12)

a

Put (4.2.4) into (4.2.12) to get

-1 -1
an +yOb —k$0+(1+k)y0—1=0,

and

l _ [kwg—-(1+k)y0+ 1](1— (:120—1)
7= e T (4.2.13)

Put (4.2.13) into (4.2.11) to get

2=1 (= 1){lkzo = (14 k)yo + LJa — (20 —

) ST
- (o= 1 +(z—1)=0

and hence, we have

(vo—1)(2—1)+{[kzo— (1+K)yo+1]a—(so—1)}(y 1)+ (yo—1)a(z—1) = 0. (4.2.14)

Thus (4.2.14) is the equation of m5(a). Varying ¢ within R we get the family of all
the planes going through p; and p. We denote this family as II, i.e., IIy = {m(a) :
a €R'}.

We are now seeking a plane m;(a*) € II, such that m2(a*) N Sy = {p1}. Solving

the following system of equations

(¥o — 1)(z — 1) + {[kzo — (1 + k)yo + 1]a — (z0 — 1)}(y — 1)
+(yo —1)a(z —1) =0

r=z, y==z? z=2° ,



88

we get

(%o = 1)(@ = 1) + {[kzo — (1 + k)yo + 1]a — (w0 — 1)}(2? — 1)
+(¥0 — Da(2® - 1)
= (z=1{(y0 = 1)+ [(kzo — (1 + k)yo + L)a — (w0 — 1)](z + 1)
+(yo — l)a(z?+z+1)} =0. (4.2.15)

We know that & = 1 is a solution of (4.2.15), and we hope that there exists a real
number a such that
(%o = 1) + {[kzo — (1 + k)yo + 1]a — (mo — 1)}z + 1)
+(yo — 1)a(z® + z +1)
= (y0 —1)az® + {(y0 — 1)a + [kzo — (1 + k)yo + 1]a — (2o — 1)}z
+(yo — 1) + (30 — 1)a + {[kzo — (1 + k)yo + 1]a — (zo — 1)}
= (yo—1)aa? + (kzoa — kyoa — zo + 1)z
+(yo + kzoa — kyoa — z0) = 0 (4.2.16)

has no solution. (Again, what we really want is that (4.2.16) has no solution in [0,1].)
The necessary and sufficient condition for (4.2.16) to have no solution is 6, < 0,
where
b2 = (kzoa — kyoa — zo+1)% — 4(yo — 1)a(yo + kzoa — kyoa — zo)
= [ka(zo - o) + (1 = 20)]* — 4(y0 — 1)a[ka(o — yo) — (z0 — y0)]
= k*(z0 — y0)a® + (1 — zo)? + 2k(zo — yo)(1 — 2o )a
—4k(yo — 1)(z0 — yo)a® + 4(yo — 1)(zo — yo)a
= [F*(20 — 30)? — 4k(yo — 1)(0 ~ yo)}a® + 2[k(zo — yo)(1 — o)
+2(y0 — 1)(zo — yo)la + (1 — zo)?
= k(2o — yo)[k(zo — yo) + 4(1 — yo)]
{so. =m0 =20 =)

k[k(zo — yo) + 4(1 — yo)]
1- $0)2

" kw0~ yo (w0 — vo) + 401 ~ o]
= k(zo — yo)[k(zo — yo) + 4(1 — yo)] 2 |
_ {(a 4+ k(= 20) —2(1 — y0) ) [£(1 - z0) — 2(1 — yo)P?

k[k(zo - Y0) J324(1 —y0)l) _ Ek(zo — yo) + 4(1 — go)J?

+ k(zo — yo)[k(zo — o) + 4(1 — yo)] f °
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Note that k(zo — yo) + 4(1 — yo) # 0 when p* € B,, and

_ (k{1 = z0) —2(1 — yo)]? (1 — =zo)?
k2[k(zg —yo) +4(1 = 90)]2 k(2o — yo)[k(zo — yo) + 4(1 — yo)]
(1 — 20)® - k[k(z0 — yo) + 4(1 — y0)] — (w0 — yo)[k(1 — z0) — 2(1 = yo)]?
k% (zg — yo)[k(zo — yo) + 4(1 — yo)]?

—4(1 — yo) i1 o _ R
k2(x0 - yo)[k(xo - yo) + 4(1 - yo)]2 [(1 yo)(zo yo) k(1 0)
—k(1 = 2o)(z0 — yo)]
—4(1 = yo)[(1 + k)zo — k — yo]

= F2(z0 — y0)[k(zo —30) + 41— o)

since for (zo,y0) € Bz we have yo < (1 + k)zo — k (4.2.10) and yo < zo. Hence we

have 6, < 0 if we choose
o = —_F(l=@0) = 2(1 —g0)
k[k(zo — yo) +4(1 — yo)]
The conclusion of the above argument is that there exists a real number a* such
that (4.2.16) has no solution. Hence, there is a 73 (¢*) € ], such that m2(a*) N S; =
{p1}. Note that p; is an end point of S;, and S; is located at one side of ma(a*). It

is easy to see that there is a plane 7} such that p € 7} and 73 N S; = 0. This implies
that 73 N S, =0, and hence we conclude that p g S O

With the aid of Lemma 4.2.7, we are now able to prove Theorem 4.2.6.
' The proof of Theorem 4.2.6:

We are going to prove Theorem 4.2.6 by showing (i) T1(F1) C Ta(F) , (ii) Ty (F) C
81, and (iii) 8y € Ty (F,) .

(i) It is obvious that Ty(Fy) C Ty(F), since F; C F.

(ii) By Lemma 2.2.2, we know that for any £ € F there exists ¢, = Zn: ——;Aixn‘,
such that &, = ¢£.

Let p, = (f1, 22 d&,, 1, 2% d¢,, [2, 28 d¢E,,), and

p= (S22 d¢, 1, a* d¢, [*, 28 dE). According to Lemma 2.2.3, we have p, — p.

Note that p, = (f1; 2% d&,, [2, 2 d&,, J2, 28 dE,)

= (3 pueto 5 puahs 3. puiat)

n A
= Z:l Pni(wﬁb mii? .'Bﬁ,') € 51,
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since (z2;,z2;,28,) € 51,4 = 1,...,n. Note also p is a limit point of p, and S is a

closed set. This implies that p € S;. Hence we have Ti(F) C 5.

(iii) By Lemma 4.2.7, we have P = S, . Hence, for any p € .§’1, there exists a
number k € [0,1] such that p € Ax. This implies that p = ap; + Bpi + (1 —a— B)po
forsome 0 < a<1,0<8<1,and a+ B <1, where p. € 5.

Let & = g—A:ﬂ + gAi\/,; + (1 — a — B)A¢. Then & € F1, and

Tibo) = ([hadéola), [hatdéole), 1 a%do(x))

= (a+ fk,a+ pk a+ BE3)
a(1,1,1) + B(k, k2, k3) + (1 — e — $)(0,0,0)

= api+Bp+ (1 — o= B)po.
Hence we have p = T1(&) € Ti(F1), and §; C Ty (F). O
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4.3 Approximately Linear Regression Model:
Case I

We are now going to find the C*-restricted optimal designs for different optimality
criteria. In this section, we only consider the case when m =1 and k = 1. We simply
write “C-restricted” rather than “C-restricted”, since in this case there is only one
component in the “vector” Q.

According to Lemma 4.2.4, we only need search C-restricted optimal designs

within the class of symmetric design measures supported on [—1,1]. We define

Fs={t:£€F &(—z)=¢(x)). For any £ € F,, we have

10 L0
By(¢) = (0 p ) and By(&)={ 0 pu; 0 |,
2
pe 0 py

where pp = [, 22d¢ and py = [, z*d¢. Consequently, wefind |By(¢)| = p2, |B2(€)| =
2

/"2(#4 - /"%)’ trBl_l(é‘) =1+ —l—a dl(maé) = (17$)Bi—1(£) ( 1 ) =1+ ED_Z Hence
K2 z 2

we have [}, di(z,¢)dz = 2 + —2—-, and max di(z,§) = 1 + —1— Consider the
32 -1<a< 2

loss functions Lp(¢) = B, L4(6) = trB(), La€) = [ dn(, €)dz, and

Le(é) = _max dm(z,€). Form =1 and L(¢) € {Lp(£), La(£), Lg(§), La(é)}, it is

obvious that

min L(¢) subject to  |By(§)] < ¢|Bo(¢)

is equivalent to
. 1
max fi subject to p < pg— pl.
The solution of this problem has been presented in Stigler (1971). Stigler claimed
that the restricted optimal designs can be obtained by searching within the class of

symmetric designs supported at three points —1,0,1. This conclusion is based on

the well known results we mentioned in Section 4.2. But here we are going to solve
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the problem based on the theorems we provided in Section 4.2 which will lead to the

following theorem, the same result as Stigler’s (1971).

Theorem 4.3.1 For ¢ > 4, the C-restricted D-, A-, Q-optimal designs over F, and
G-optimal design over F, for the model P, is given by

1 171 1 1 1
f(-1) =) =7 +51/7- 2 6O)=5-/7-1.

Proof: (Method 1)

According to Theorem 4.2.5, we have To(Fo) = So, where Fo = {£ : £ = gAi\/g-{-
(1 —a)Ag,0 < a £ 1,0 <z <1}, To(€) = (J2,2%de, [1) 2%dE) = (p2, pa), and
So = {(p2,pa) ¢ pta = p2,0 < py < 1}. S is the convex hull of So. On the “plane”
of uy O pa (imagine p, and py could be any real numbers), the regions of Sy and
|B1(€)| < ¢|B5(¢)| can be shown by the following Fiéures:

_,“q""/':"'?‘:' ‘/“q jl;,-'ﬂzz?z"] /“‘l

N N

0 N 0
;

Figure 4.3.1 Figure 4.3.2 Figure 4.3.3

It is easy: to see that the minimum value of ¢, such that the problem has feasible
solutions, corresponds to the unique solution of the system equations of us = u2 +
—, ft4 = W2, and 2/)2 = 1. In this case, we get py = pp = % and ¢ = 4.

c

For any 4 < ¢ < o0, the C-restricted optimal design corresponds to the solution

2, 1
I ”2+Z :
be = H2

of
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. . 1 1 1 1 /1 1 .
which yields pg—-p4—-2-:1: i Wechoose;tg—p4—§+ 1~ 5 since we

want o maximize y,.
On the other hand, any point on the “line” py = p, can be realized by a design
a4 = p g

measure o of the form &, = %Ail + (1 — a)Ao for some 0 < @ < 1. This implies

1 1 1 ' 1 11 1
thata:filw2d§0=u2=§+ Z—-c' Henceweget§o=(z+§ Z—"c‘ Ai1+
1 1 1 . 1 1 /1 1
(5— Z_Z) Ag, or we can write 50(—1)—50(1)——1-!—5 i3 and &(0) =
1_/i_1 O
2 4 ¢

"Proof: (Method 2)
Again, by Theorem 4.2.5, we know that

1
bject to = < py — u?
max pa subject to = < pg — pi3

is eqﬁivalent to

1
bject to = < py — pZ.
Max iz subject to — < g — g

For any £ € Fp, we have ¢ = %Ai\/g + (1 — a)Ap for some 0 < o < 1 and
0 < z < 1. Hence, we get p; = [, 2%d¢ = az and pg = [}, 2%dé = az?. The

problem now becomes
max {az} subject to 1 <az?-o?z? for0<a<land0<z<1. (4.3.1)
c
It is easy to see that (4.3.1) is equivalent to

max {az} subject to % =az?—a’zs? for0<a<land0<z<l. (4.3.2)

Let L(a,z,)) = az + A[(a — o?)z? — -}:—], and set

[ 0L(a,z,)\)

o =z +A[(1 —2a)2?] =0 (4.3.3)
< @% = o+ A2za(l — )] =0 (4.3.4)
‘ aL(aa’T””_’_\l = ol — a)a? — % =0 | (4.3.5)
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We find that the system of equations (4.3.3), (4.3.4), and (4.3.5) has no solution,
since (4.3.3) and (4.3.4) contradict each other.

Consider the boundary cases (i) a = 0, (i) a = 1, (iii) z = 0, and (iv)z=1. We
find that the maximum value will occur in the case when z = 1. In this case, we have

L(a,1,)) = a+ Ao —ao? — -l—] Solving

oL
3 = 14A(1-2a) = 0
oL 1
5}' = a(l—a)—z = 0 ;
we get .
1 1 1 1
2 _ - = = — ———
«a a+c 0 and « 2:}: i
. 1 1 1 . .

Again, we choose a = 3 + 1~ o since we wnat to maximize az. Therefore, we get
1 1/1 1 1 1 1 ) 1 1/1 1
fo= (z+§ Z"Z)A*I’L(E‘\/Z‘Z)A“"'e‘ o =7+3y5 ¢

1 1 1
= i 0
£0(0) 2 4 ¢

Remark 1. The design measure £, which we found in Theorem 4.3.1 is the C-restricted
D-, A-, and Q- optimal design over F. This fact follows by Lemma 4.2.4. But the
design measure & may not be the C-restricted G- optimal design over F, although
Stigler (1971) showed the convexity of G(C*), where G(CF) = {¢: _max d(z,&) =

. ~EN 17 ¢
661%/133,;) R d(z,&)}. But we do not know whether ¢(z) € G(C*) will imply

¢(—=z) € G(C*) or not. To be safe, we only consider £ to be the C-restricted G-
optimal design over Fgs.
Remark 2. For ¢ = oo, the design becomes o(—1) = &(1) = 1 which is the usual
optimal design for the model P;. When ¢ = 4, we get bo(—1) = &(1) = + and
£0(0) = 1, which is the best design for estimating f; in the model P;. For4 < ¢ < 00,
we get a compromise between these two extreme cases.

The question remains: how should ¢ be chosen? As we mentioned in Chapter 3,

the choice of ¢ should reflect both the desire for efficiency of the model P, and the
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wish to check the fit of this model. Stigler (1971) considered the following measures

of the efficiency of a design for a model.

Definition 4.3.2 The model P,, D-efficiency of a design ¢ is given by

B 1/(m+1)
B2 () = (—'Lf)'—-) .

max | By ()]

The model Py, G-efficiency of a design ¢ is given by

m+1

_ax dm(z, &)

E;(¢) =

Stigler (1971) provided some tables and pictures to show the relationship between
the choice of c and the efficiencies ED(¢) and ES(¢). It is easy to extend this definition
to the A- and @- optimal situations.

Definition 4.8.3 The model P,, A-efficiency of a design ¢ is given by

min trB;t(n)

-1
=

The model P,, Q-efficiency of a design ¢ is given by
min [, dn.(2,7) dz

Qrpy _ nEF
B = e
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4.4 Approximately Linear Regression Model:
Case 11

The C-restricted optimal design we discussed in Section 4.3 is useful for deter-
mining the presence of a quadratic term in the regression function, but it is no good
at all for estimating cubic or higher-order coefficients. The C*-restricted optimal de-
sign is proposed to deal with this situation. In this section, we are going to find the
C*-restricted optimal designs for the model P,, with m =1 and k = 2.

As we noted in Section 4.3, for m = 1 and L(¢) € {Lp(¢),La(£), Lo(€), Le(E)},

we have that

min L(¢) subject to |Bi(¢)| < e1|B2(€)] and |By(€)] < 2] Bs(¢)]

is equivalent to
] 1
max pg subject to = < pg— pf and pg < co(paps — p2).
EeF C1
According to Theorem 4.2.6, the above problem is equivalent to

. 1
max pg subject to — < py — p2 and pg < cp(pape — £3),
§EF C1

SN+ 80 st (1—a—P)An 0Sa<1,0<B<T,a48<

where}'1={§:§=2 5

1,0<z <1}
For any ¢ € 77, we have

_/12d_ __14d_ 2 _16d__ 3
pa= | @ §=a+fz, ps= .z §=a+pz’, pe = @ £ =a+ pz’.

Hence, the problem can be further transformed to the following form:

max {a + Bz} subject to 1 < a+ Bz — (a+ Bz)? and a + Bz < c;afz(l — z)?
(&1
for0<a<1,0<f<1, a+f<1,0<z<l.
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The problem may not have feasible solutions for some values of ¢; and ¢;. If we
consider the restriction ¢, alone, we know that the lower bound for ¢; is c; = 4. Now
the question is: What is the lower bound for ¢;? The following lemma answers the

question.

Lemma 4.4.1 The lower bound for c; is ¢ = 16, and the corresponding design

measure is £ = §As1 + §A41.

Proof: It is easy to see that the lower bound of ¢; ,denoted by c3, should satisfy the

following;: . Ba(l - o)
afz(l—2z

c3 T (auBiz)EA a4 pz
where A = {(o,8,2):0<a<1,0< <1, a+ <1, 0<z<1}. We denote

b

Ry
L(aaﬂ,x) = %‘ajv_),

and we should exclude the case when « =0 and # =0, or « = 0 and z = 0 in which

our objective function L(«,8,z) will approach zero and the corresponding ¢; = oo.

Solving
(0L _ Pa(l—zf o o B2 —2)
%a = (a(-{—ﬂw);z[( +he) el = (c;-tlﬂx)?);()
ar\y — & a‘rll —x
|58 = Tt = gy =

af

et
\ = m(a —3ar —202%) = 0

we find that there is no solution inside A. Hence, the extremum points must occur
on the boundary of A. It is obvious that the boundary cases (i) @ = 0, (ii) 8 = 0,
(iii) z = 0, and (iv) £ = 1 are corresponding to the minimum values of L(a, 3, ).
We only need to consider the situation when « + 8 = 1. In this case, we have

Bl = B)z(1 — z)?
(1-8+ pe) ’

LO(]- —ﬁ’ﬂ7$) =
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and
([ OL 1 2
T T gl -84 Be)(1 = 28) ~ B B)(1 4 )
2
| - %(1—2[3%2—%)
oLy _ _BO-B) .. et 3a7) — a(1 — 212
= ﬁ((ll:glflﬂ;)‘:)(l — 3z — B+ 3Bz — 2B2?)
We exclude the cases of § =0, 8 =1, £ =0, or z = 1 which will cause @ = 0. By
solving
1-28+ 32~ B2z =0 (4.4.1)
1-3z—B—3Bz—20s =0 |, (4.4.2)
we find =1,z =0,0r 8 =2, . We choose the solution 4 = 2, z = 1 which
yields o = § and
121 1
U3 D =16~ 33 Unha) =5

Hence, we get ¢; = 16 and the corresponding design measure is { = -—A,u + 'BA:E\/—+

(1—a-pB)A= —Ad:1+ A:hl O

Remark 1. It is interesting to note that the design measure ¢ corresponding to ¢; = 4
(the lower bound of ¢;) corresponds to ¢; = co (the upper bound of ¢2). But the
design measure ¢ corresponding to ¢; = 16 (the lower bound of ¢;) corresponds to
c¢1 = 8 (not the upper bound of ¢;). This fact implies that the design measure ¢ which
provides the largest opportunity for determining the presence of a quadratic term in
the regression function is no good for estimating cubic coefficients. But on the other
hand, the design measure ¢ which provides the largest opportunity for determining
the presence of a cubic term still allows us to estimate the quadratic term with some
degree of precision.

There are two special cases linked with the original problem. One considers the

restriction ¢; only and the other c; only, i.e.

(i) max 2 subject to  |By(¢)| < 1 |B2()],
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and

(f)  max p; subject to |By(€)] < ¢z |Ba(é)].

Case (i) has already been studied in Section 4.3. For case (ii), we first point out

the following fact:

Lemma 4.4.2 The problem ofl?é?-( p2  subjectto |By(€)| < co|Ba(€)| is equivalent
to the problem ofreneaé_)_( p2  subject to | By(€)| = cp | Bs(€)] .

Proof: The constraint |By(€)| < ¢ |Bs(€)| is the same as pp < co(papte — p2) or
U > ;;L +1 o+ if we exclude the case y2 = 0. For convenience, we use (z,y, #) instead
of (g2, 4, pe). For any fixed = € [0, 1], we denote D(c;) = {(z,y,2): 2 > 9—+ +}and
E(c:) ={(z,y,2): 2 = zL+ o Letm:z=—kz+(1+k)yand § = P = {A;c A
is the interior and boundary of the triangle with vertices po, p1,p, 0 < k < 1}, where
po = (0,0,0), p1 = (1,1,1), and pi = (k, k2, k3) (See Section 4. 2). It is obvious that
S C {mk :0 < k < 1}. In order to get D(c;) N 81 #0, it is necessary that

v, 61—2 < ko +(1+ )y (4.4.3)

ke

for some 0 < k < 1 and some (z,y) € §* = {(z,9) : 0 < 2 <1, 22 < y < z}. The

inequality (4.4.3) can also be written as
v® — (1 + k)ay + (kz? + cﬁ) <. (4.4.4)
2

Solving
~ (1 +R)oy+ (ke + 2) =0, (4.4.5)
2

we get

Uthjot J1+EP—ake? +2) (14 R)et /1P — =
2 2 ’

Hence, (4.4.3) will hold if (1 — k)?? — 22 > (. In this case we have

y:

(1+k):v—-\/(21'—k)2:1:2—:—;’ <y< (1+k):v+\/(21—k)2a:2———




100

cAtke+yA-k?2?  (14+k)z+(l-ke
= 2 B 2 B
It is not hard to see that D(c;) NS, # § implies E(c2)n 8; # 0, since we have y < z.

|
;fl//// g ded
L N

Qs
v
N ‘Q
+
Sk

NS \l\\\\ AN

£
e T

Figure 4.4.1

Note also our objective function is simply u,. Hence, it is sufficient for us to search

for the maximum g, on the boundary of the constraint which is |B2(€)] = 2| Bs(€)|.0

According to Lemma 4.4.2, we can use Lagrange’s method of multipliers to solve

"the following problem:

max pp subject to pz = cx(papts — 45),

or

WX {a+ Bz} subject to a+ Bz = c;afz(l — z)2.

We define L(a, B,2,)) = @ + fz + Ao + Bz — c;afz(1 — 2)?]. By solving



' g_i = 14+l -cfe(l—2)]
oL
= = z + Az — cpaz(l — 2)?]
2 |
3 = B+ AB —craf(l —z)(1 - 3z))
% = a+ Bz — cafz(l —z)?
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= 0

= 0 ,

we find that the above system of equations has no solution inside A. There are five

boundary cases to be considered. They are (i) & =0, (ii) # = 0, (iii) £ = 0, (iv) z = 1

“and (v) a+ B =1. We find that the extremum points should occur on the boundary
a+p=1. Fora+f =1, wedefine Lo(1—B,8,2,A) =1~ + Bc+ Al — B+ Bz —

c2(1 — B)z(1 — )?], and let

( %%l = 142+ A1+l - 28)a(1 —2)?]

{90 = Bt M~ esB(1 - B)(1 - 2)(1 — 30)]

| 20 =1 B4 o — (1 - Ba(l — o7
Combining (4.4.6) and (4.4.7) gives us

-1 1—12

=0 (4.4.6)
=0 (4.4.7)
=0 . (4.4.8)

1—c(1-B)(1—2)1—382) —1+z—c(l—28)z(l—2)

and hence we have

_1-5
T = m
Put (4.4.9) into (4.4.8), we get
(=B e gy (=B)
(=948 (=5 ~e-8) =2

which can be simplified as the following
(2+Cg)ﬂ2—(8+62)ﬂ+8=0 .

Solving (4.4.10), we find

(4.4.9)

=0

(4.4.10)

. 8+ eyt /(84 c2)? —32(2 + ) _ 8+ ek /c} —16¢c

22 + ) 2(2+ cz)
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8 \/2—16
For ,31= + e+ /e C2

@+ 207) , we get
8+CZ+\/C%_16C2 4+202—(8+02+\/C%—1602)
a=1-p=1- =
4 + 2¢, 4+ 2¢,
62'—4—\/63—1602
- 4+262 ’

and

8+c2+4/cZ-16¢
I = 1-p _ 1 - 2(4-;-2cc22) : . c2—4 —1/c} — 16¢c,
1 —

2—B 8+ca+y/B-16c; Sz
1 2__2# 3c, \/c2 16co

_ (e2—4—/c3 —16¢;)(3cs + 1/} — 16¢;)

9¢c2 — (¢ — 16¢y)

2c2 +4c; — (2¢c; + 4)y /3 — 1602 — 1/ — 16¢;
402 )

8¢2 + 16¢,

Hence, we have

oy 4 Broy = ¢ —4 —1/ck — 16¢, 8+cz+\/ — 16¢, c2 \/ —16c2
=0 121 =

4 4 2¢, 4 + 2¢,
4cz(c2 —4 — /et —16¢c3) + (8 4¢3 + v ¢3 — 16¢2)(c; — /€3 — 16¢,)
462(4+2Cz)
4c} + 8cy — (4co + 8)4 /2 — 1662 — /3 — 16¢,
- 8c2(2 + ¢3) 2¢, ’
8 —4/ct —16
Similarly, for 8; = e 2 62, we get
4 + 262
8+c;—1/c5—16c; 4+2c;—(8+c; — V¢ — 16¢,)
ap=1—f,=1- ; =
+2Cg 4 +262
cg — 4 ++/c2 — 16¢c,
- 44 2¢, ’

and

1-4, 1—% _ -4+ /4165
2—06 _ 8ta=\/d-16c 3cz +4/ck — 16¢,

442c,

Tg =
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_ (62 -4 -+ \/Cg - 1662)(362 - \/C% - 1662)
- 9¢% — (¢} — 16¢,)

202 +4co + (2¢c2 4+ 4)y/c2 — 16¢, _o + \/ — 1602

8c2 + 16¢,

Hence, we have

() o +IB$ Cy — 4+\/ —'1662 8+62 \/ —1662 Cz+\/ —1602
= Q2 242 =—

4+262 4+202
4cz(cz 44 4/c} — 16¢;) + (84 ¢y — /2 — 16c3)(co + 1/} — 16¢;)
462(4+262)
462+862+ 462+8 \/62—1602 Cg-f-\/ —1662
862(02 + 2)

For ¢, > 16, we always have ugz) > u$). Hence we choose
c2 —4+4/c3 —16¢, . 8 4¢3 — /% —16cz c2 + /3 — 16¢,
“= 442, 4+ 2, = 4,

Therefore, the restricted optimal design is given by

£o(1) c2—4++/c —16¢, \/C2+\/ — 16c; 8+ cy — /et — 16¢c,
0 = = '

4c;+8 and fo 2./c = 4c, + 8

When ¢; = 16, we have a =

:—13'-, ﬂ = -g-, T = %, a,nd 60 = %A:t]._*-%A:E%' When
=oo,wehavea=1,8=0,z =

=3 and & = JA,, + 1A
We have proved the following:

Theorem 4.4.3 For any 16 < ¢; < o0, the optimal design for

max - subect to | Ba(6)] < ca | Bo(¢)]

is given by

f(:l:l) cg—4+/c3 — 16¢, d¢ \/62+\/ — 16¢c, 8+ ¢z — y/c — 16¢,
0 = an o = .

4ey + 8 2,/c; - 4e; + 8
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Remark 2. According to Theorem 4.4.3, the lower bound of ¢, can be spotted right
away from the form of £. It seems as if Lemma 4.4.1 is not necessary. However,
the restricted optimal designs sometime cannot be solved explicitly. In this case, the
proof of Lemma 4.4.1 provides an alternative way to find the lower bounds for ¢;’s
without solving the restricted optimal designs.

In general, we can only find the C?-restricted optimal designs numerically by

( Igaﬁm {a+pBz} subject to L < a+pBz?—(a+pz)? and a+ Pz < cefz(l—z)?
0% (5]

for any ¢, € [4,00) and ¢, € [16,00). However, when ¢;and ¢z have some special rela-
tionship, we are still able to solve the problem explicitly. Forany4 < ¢; < ooand 16 <
¢z < 00, we define F(ey, ¢;) = {¢ : £ € Fo, |Bi(€)| < |B2(E)| 5 |1B2(€)] < 2| Ba(€)|},
and let &o(c1,c;) be the design measure such that pa(éo(cr,c2)) = EGI}}Z{{Q) pa(§).
Then we have the following:

Lemma 4.4.4 Let c1 and c; be any real numbers such that 4 < cg L0 and 16 <

c2 L 00. Ife; > > , then 60(00 62) S .7:(61,62)

Proof: We know that £o(oo,cp) is the design measure such that pg(f(oo c2)) =
pg({) According to Theorem 4.4.3, we have £(co, c2) = _A:}:I + —Ai\/;,

66}'(
where
—4+44/c2—~16 8 -4/ — 16 v e3 — 16¢
a=cz + /¢35 Co f= + c2 2 62,anda:=cz+ 2 2.

4+ 2¢, e 4 + 2¢, 4c,

In order to prove (oo, c;) € F(e1,¢), it is sufficient to show |B, (bo(00,¢2))| <
¢1 [Bz(€o(00, ¢3))|. We find

c2—4++/c2 ~16¢
/Lg(fo(OO,Cg))=a+ﬂ$= 2 2 2

4+262
8+ co— /3 —16c; cp ++/cE — 16¢, _ c2 + /3 — 16¢,
+ 4+202 462 - 202 ’

and

-4 c2 — 16¢
palEo(00,02)) = o 4 B2 = 22TV G~ 16

4+262
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4 + 202 462

2
+8+cz—\/c%—-16C2 (cz+\/c§—16q) _62—4-{-\/63—1662
- 262 )

Hence, we get

2 __ 2 __ 2
pa(€o(00, ¢3)) — ,ug(fo(oo,cz)) _ c—4 +2\/C2 16¢, B (62 +/¢3 1602) _ z,
C2 202 Cy
and
1Ba(eo)] _ 1 .,
|Ba(€0) — pa(éo(0,c2)) — k3(6o(00,e2)) ~ 2 =
Therefore, we have proved (o0, c2) € F(c1, c2)- ]

Lemma 4.4.4 plays an important role in the proof of the next theorem.

Theorem 4.4.5 Let c;and c; be any real numbers such that 4 < ¢; < 00 and 16 <
C2 S 0.

(i) If e1 > -623, then we have pa(€o(o0,c2)) = ceBax p2(§)-

(ii) If 1 < 62—2, then we have

l+ l_i if2¢1 < c2 < 4¢
1 1 2 2 4 ¢
— 44/~ ——< max #z(f) <
2 4 o 7 ¢eF(ac) 1 + 1_1 if c2 > 4c

2 1 e 2 1

Proof: (i) For any ¢; € [523, 00), it is clear that .7"('62—2,62) C F(er,¢2) € F(oo.c2). By
Lemma 4.4.4, we have {o(00,¢3) € F (22-,(:2). Combining these facts along with the

definition of (oo, c2), we have

max () S max pa(€) < max pa(€) = pa(bo(00,¢)) £ max  pa(é).

§€F (% .c2) ¢ (c1c2) ¢E€F(00102) €7 (Foe2)
Hence we have shown pi2(€o(00,¢2)) = max  pa(€).
EG-T(Cx,Cz)

(ii) For any ¢; € [4, %%), we have 2¢; < ¢; and F(e1,2¢1) C F(ey, ¢2) which implies

that ce X pa(é) < ccTRX p2(€). According to part (i) of Theorem 4.4.5 and

Theorem 4.4.3, we have

2¢1 + 1/(2¢1)? — 16(2
¢eF(or 261) p2(§) = p2(fo(00, 2¢1)) = “ \/(2?1211) (2¢1)
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_1, 2
T2 V4 o
Hence, we get 1 + 1.2 < max €3
’ g 2 4 <1 - £€.7-'(c1,cz) H2 )

On the other hand, we have (1) F(c1,¢2) C F(oo,¢2), and (2) F(ei,c2) C
F(e1,00). By (1), we have

(©5_max le) = mltfoo, o) = 210

fegq(z)fcz) He T EeF(cosc2) - 2¢c;
_1, [ %
- 2 4 Ca )
By (2), we have
1 1

1
< —-— w — + —_————
£eg%g),ccz) k() < ¢ (erio0) #al(8) = pa(Co(er, 0)) 2 4 ¢

1 1 4 1 1 .1 1
i cHfr-—< = N < o
It is clear that 5 + 17553 + 1 o when 2¢; < ¢ < 4¢; and 5 4
}- — i > l+ l — i when ¢; > 4¢;. Hence, we have shown
4 Cy 2 4 (&}

+ if 2¢; < 3 < 4¢
2

+,/ if ¢; > 4 : O
1

Remark 3. In fact, part (i) of Theorem 4.4.5 tells us p2(éo(00,¢2)) = pa(éo(er, c2))
for any ¢; > 52-2- When ¢; < %3, part (ii) of Theorem 4.4.5 gives us a range for
p2(€o(c1, c2)).
Again, the choice of ¢; in the *-restricted optimal designs should reflect both the
_desire for efliciency for the model P, and the wish to check the fit of this model.
Let ¢p(c;) be a design such that

p2(é) <

| —]S | w

max
EEF(c1,¢2)

N[ = DN =
| ] ]

o

Lp(€p(c;)) = minger Lp(€) subject to  [Bpyi-1(€)| < ¢i|Bmti(€)|
for some i € {1,...,k},

where P € {D, A,Q,G}.
We propose the following:
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Definition 4.4.6 The ith-relative D-efficiency of the model P,, is given by

1/(m+1)
REP(¢p(c)) = ('—‘3”‘“”—()—)—') ;

max | B ()|
The ith-relative A-efficiency of the model P, is given by

) Inrél}’l tTB;ll(fl)
RECa()) = 3 By’

The ith-relative Q-efficiency of the model P, is given by
min [}, dn(z,9) dz
RE,,?‘ ¢ — neEF ;
(€Q( )) f-ll dm(w,é.Q(ci)) d.'l,'

The ith-relative G-efficiency of the model P, is given by

m+1

_ax  dm (2, ¢o(ei)’

RES (ée(c:)) =

wheret=1,...,k.

For the C*-restricted optimal designs, the efficiency defined by Definition 4.4.6
should serve the same purpose as Definition 4.3.2 and Definition 4.3.3 did for the

C-restricted optimal designs.
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4.5 Approximately Quadratic Regression Model

In this section, we briefly discuss the optimal designs for the approximately

quadratic polynomial regression model. We consider the following problem:

mip £(§) sublectto  [Ba(6)] < clBs(€)], (45.)

where L() € {Lp(£), La(£), Lo(6)}-
For any ¢ € F;, we have

4 0 —H2

10 pe pa — $3 ) fa — p3
By(&)=| 0 p 0 |, B7Y (O = 0 i 0 :
pr 0 pa —# o, 1
pa — p3 pa — 3
1 0 pg 0
0 p2 0 py
B3(£)= ’
p2 0 ps O
0 12 0 He
and
: 1 2 1
d(z,8) = (1,z,22)B; (¢ z =—&—+(——L)m2+ zt,
(=8 =( B0 | maem e p—id fta — 3
T

According to Lemma 4.4.1, we know that the lower bound for ¢ is ¢* = 16. Hence
(4.5.1) has feasible solutions when ¢ € [16, 00).
For D-optimality, (4.5.1) becomes

max |Bu(€)| (or min |B;*(¢)]) subject to |Ba(£)] < | Ba(€)l,
which is the same as

max {pa(ue — )} subject to  pa < elpapie — 113). (4.5.2)
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For A-optimality, (4.5.1) becomes

min trB;'(£) subject to |By(€)| < ¢|Bs(€)]| .

EEF,
ie.
. 1+ pg 1 . )
el o T biect t < — 4.5.
mip {/m = + ”2} subject to  pp < c(pzpe — pl) (4.5.3)

For Q-optimality, we have

1 1
-1 =1 | fa — I3 K2 M4 — 3 Ha — 2

[ 1/(1 2;@) 1 1 ]
2 .__+-(__ +1.
[/m—#% 3\pe pa—p3) 5 pa—4d
_ 30pg —20u; + 6 2

+ .
15(pq — #3) 3pz

Hence, (4.5.1) becomes

. [30uy —20u+6 2 } . 2
min + subject to <ec — 7). 4.5.4
eef,{ 15(pq — p3) £ ) #2 < clpzpts = p3) (4.5.4)

In light of Lemma 4.2.4, we know that the optimal designs over F are the same as
those over F,. Moreover, followed by Theorem 4.2.6, we can change (4.5.2), (4.5.3),
and (4.5.4) into the following forms respectively:

@22 {(a+Bz)[a+pz?~(a+pBz)?} subject to a+Bz < cafz(l—z)?, (4.5.5)

. 1+ a+ Bz 1 ] .
< -
(@Bi)es {a ¥ B2~ (atfzf T axt ,Ba:} subject to  a+ fz < cafe(l - z)’,
(4.5.6)
and : - : 5o
: 30(c + p2?) — 20(cx + Bz) + 6 2
(a,rﬁlgr)leA { 15[a + fz? — (a + ﬂ$)2] 3(a + ,3:17)} (4.5.7)

subject to a+ Bz < cafz(l —z)?.

The C-restricted D-, A-, and Q- optimal designs can be solved numerically by
searching for optimal solutions according to (4.5.5), (4.5.6), and (4.5.7) respectively
for any c € [16, c0).
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4.6 Some Numerical Results

In Section 4.3, we found the C-restricted optimal designs for model P;. We noted
that the D-, A-, and Q-optimal designs are the same. But the efficiencies of these
designs are different. For different values of ¢;, we present the optimal designs and
their efficiencies in Table 4.6.1. The calculations are based on Definition 4.3.2, Def-
initiorll 4.3.3 and Theorem 4.3.1. When ¢; = oo, the “restricted” optimal design is

o = 3 Ax; which is the usual optimal design (without the restriction).

In Section 4.4, we discussed the (*-restricted optimal designs for model P,, where

C?%= (c1,¢2)T. We found that the optimal design ¢ has the form of & = % Ay +

—'g-Ai\/;+(1-—a-—ﬁ)Aoforsome0$aS1, 0<f<1,a+PB<1l,and0<z<1.

In Table 4.6.2, we provide the C?-restricted optimal designs for model P;. Note that,
in Table 4.6.2, there are three numbers in each cell. The first one is the value of
a; the second fB; the third z. We provide the efficiencies of (%-restricted optimal
designs for model P, in Table 4.6.3. The calculations are based on Definition 4.3.2
and Definition 4.3.3 rather than Definition 4.4.6. Again there are three numbers
in each cell of Table 4.6.3. The first one is the model P, D-efficiency of design &o;
the second A-efficiency; the third Q-efficiency. There are some missing values in
Table 4.6.2 and Table 4.6.3 which are the cases when ¢; = 4 and ¢, < oo. This is
simply because when ¢; = 4, there is only one design measure & = % Ay + -;— Ag
satisfying |By(£)| < ¢1|B2(€)| and also satisfying |B2(€)| < ¢z |Bs(€)] only if ¢; = oo
(see Remark 1 in Section 4.4). Some results in Table 4.6.2 and Table 4.6.3 are the same
due to the fact that pa(éo(00,c2)) = (B p2(€) when 2¢; > c; (see Theorem 4.4.5
Part (i)). In Table 4.6.2, there are two “x” values for z, which means = can be any
number between 0 and 1. The reason is, in these two cases, we have § = 0. When
¢1 =4 and ¢; = o0, we have §p = i Ay +-;— Ao which coincides with the ¢;-restricted
optimal design for model P, with ¢; = 4. When ¢; = oo and ¢; = oo, we have

1
o = 3 JAVER
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Based on the formulas in Section 4.5, C-restricted D-, A-, and Q-optimal designs
and their efficiencies for model P, are calculated in Table 4.6.4 and Table 4.6.5. In
this case, we again find the fact that the optimal design & has the form of o =
%A;t1+-'g-Ai\/;-f-(l—a—ﬂ)AoforsomeOSaS 1,0<B8<1, a+p<1,and
0 < z < 1. For some different c,, the corresponding «, 8, and = values are presented.
When ¢; = o0, we get ¢ = %— A+ 3 Ao for D-optimality and ¢ = i Ay +% Ay for
A- and Q-optimality. (In this case, A- and Q-optimal designs are the same). These
are the usual D-, A- and Q-optimal designs for the quadratic polynomial regression

model.
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Table 4.6.1
C-restricted Optimal Designs and Their Efficiencies for Model P,
a ] &(=1),&(+1) | &(0) EP(&) | Bf (L), EE (L) | EP(&)
4.0 0.2500 0.5000 0.7071 0.6667 0.8000
4.5 0.3333 0.3333 0.8165 0.8000 0.8889
5.0 0.3618 0.2764 0.8507 0.8396 0.9128
5.5 0.3816 0.2389 0.8724 0.8644 0.9272
6.0 0.3943 0.2113 0.8881 0.8819 0.9372
7.0 0.4137 0.1727 0.9096 0.9055 0.9504
8.0 0.4268 0.1464 0.9239 0.9210 0.9589 .
9.0 0.4363 0.1273 0.9342 0.9320 0.9648
10.0 0.4436 0.1127 0.9420 0.9403 0.9692
15.0 0.4641 0.0718 0.9634 0.9627 0.9810
20.0 0.4736 0.0528 0.9732 0.9729 0.9863
50.0 0.4898 0.0204 0.9897 0.9897 0.9948
100.0 0.4949 0.0101 0.9949 0.9949 0.9975
oo 0.5000 - 0.0000 1.0000 1.0000 1.0000




Table 4.6.2
g"'-restricted Optimal Designs for Model P,

(51
Co

10

20

50

100

200

16

0.3333
0.6667
0.2500

0.3333
0.6667
0.2500

0.3333
0.6667
0.2500

0.3333
0.6667
0.2500

0.3333
0.6667
0.2500

0.3333
0.6667
0.2500

20

0.5669
0.4331
0.3618

0.5669
0.4331
0.3618

0.5669
0.4331
0.3618

0.5669
0.4331
0.3618

0.5669
0.4331
0.3618

0.5669
0.4331
0.3618

30

0.7400
0.2600
0.2700

0.7265
0.2735
0.4208

0.7265
0.2735
0.4208

0.7265
0.2735
0.4208

0.7265
0.2735
0.4208

0.7265
0.2735
0.4208

50

0.8200
0.1800
0.1700

0.8500
0.1500
0.3700

0.8388
0.1612
0.4562

0.8388
0.1612
0.4562

0.8388
0.1612
0.4562

0.8388
0.1612
0.4562

100

0.8500
0.0800
0.2300

0.9100
0.0700
0.2900

0.9199
0.0801
0.4791

0.9199
0.0801
0.4791

0.9199
0.0801
0.4791

0.9199
0.0801
0.4791

200

0.8700
0.0400
0.2100

0.9300
0.0400
0.2300

0.9600
0.0400
0.2700

0.9600
0.0400
0.4898

0.9600
0.0400
0.4898

0.9600
0.0400
0.4898

500

0.8800
0.0200
0.1700

0.9400
0.0300
0.1200

0.9700
0.0200
0.2700

0.9800
0.0200
0.2800

0.9300
0.0200
0.4900

0.9840
0.0160
0.4960

0.5000
0.0000
*

0.8850
0.0050
0.2300

0.9450
0.0050
0.2350

0.9750
0.0050
0.6950

0.9850
0.0050
0.8450

0.9900
0.0050
0.8450

1.0000
0.0000
%

113



Table 4.6.3
The Efficiencies of C'?-restricted Optimal Designs for Model P,

141
C2

10

20

50

100

200

16

0.7071
0.6667
0.8000

0.7071
0.6667
0.8000

0.7071
0.6667
0.8000

0.7071
0.6667
0.8000

0.7071
0.6667
0.8000

0.7071
0.6667
0.8000

20

0.8507
0.8396
0.9128

0.8507
0.8396
0.9128

0.8507
0.8396
0.9128

0.8507
0.8396
0.9128

0.8507
0.8396
0.9128

0.8507
0.8396
0.9128

30

0.9001
0.8951
0.9447

0.9174
0.9140
0.9550

0.9174
0.9140
0.9550

0.9174
0.9140
0.9550

0.9174
0.9140
0.9550

0.9174
0.9140
0.9550

50

0.9223
0.9193
0.9579

0.9516
0.9504
0.9746

0.9551
0.9541
0.9765

0.9551
0.9541
0.9765

0.9551
0.9541
0.9765

0.9551
0.9541
0.9765

100

0.9319
0.9296
0.9635

0.9645
0.9639
0.9816

0.9789
0.9787
0.9892

0.9789
0.9787
0.9892

0.9789
0.9787
0.9892

0.9789
0.9787
0.9892

200

0.9372
0.9353
0.9665

0.9691
0.9686
0.9841

0.9853
0.9852
0.9925

0.9897
0.9897
0.9948

0.9897
0.9897
0.9948

0.9897
0.9897
0.9948

500

0.9399
0.9381
0.9681

0.9714
0.9710
0.9853

0.9876
0.9875
0.9937

0.9928
0.9927
0.9964

0.9949
0.9949
0.9974

0.9960
0.9960
0.9980

0.7071
0.6667
0.8000

0.9414
0.9396
0.9689

0.9727
0.9723
0.9860

0.9892
0.9891
0.9945

0.9946
0.9946
0.9973

0.9971
0.9971
0.9985

1.0000
1.0000
1.0000
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C-restricted D-Optimal Design and its Efficiency for Model P;

Table 4.6.4

C2

o

B

z | EP(&)

16.1
20
25
30
50
75

100

200

500

0.37
0.53
0.57
0.60
0.63
0.64
0.65
0.66
0.66
0.67

0.63
0.47
0.43
0.39
0.35
0.26
0.28
0.18
0.21
0.33

0.25 | 0.7758
0.19 | 0.8807
0.14 { 0.9170
0.12 | 0.9351
0.07 | 0.9649
0.06 | 0.9776
0.04 | 0.9837
0.03 | 0.9921
0.01 | 0.9968
0.00 | 1.0000

Table 4.6.5
C-restricted A- and Q-optimal Design and Their Efficiencies for Model P,

C2

«

B

Z

E§(6)

EZ (&)

16.1
20
25
30
50
75

100

200

500

0.34
0.41
0.43
0.45
0.47
0.48
0.49
0.49
0.50
0.50

0.66
0.58
0.56
0.54
0.47
0.49
0.28
0.18
0.21
0.00

0.23
0.14
0.10
0.08
0.05
0.03
0.04
0.03
0.01
0.00

0.6469
0.8058
0.8642
0.8947
0.9424
0.9636
0.9726
0.9868
0.9948
1.0000

0.8417
0.9233
0.9488
0.9608
0.9792
0.9870
0.9902
0.9953
0.9981
1.0000
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Chapter 5

Bounded Bias Optimal Designs for

Approximately Linear Regression

Models

5.1 Introduction and Preliminaries

In 1992, Douglas Wiens suggested a problem that considers the optimal design
minimizing the variance of the estimator of the parameters of the regression function
when the fitted model is correct, subject to a bound on the bias term which occurs
when the true model is different from the assumed one. The corresponding optimal
designs can be called bounded bias optimal designs. We are now going to formulate
the problem in detail.

Consider the following regression model:
¥ = y(z:) =QTf (z:))+e, t=1,..,n, (5.1.1)

where ¢;’s are independent and identically distributed with mean 0 and some common
variance g2 > 0. §7= (6o, 01, ..., 0;) and fT (z) = (folz), fi(z), ..., fi(z)), z € S CR.

Let § be the least squares estimator of g. For a given design measure ¢, we have

M(E) = E[(d - 00 - 07 = ZB(6), (5.12)
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where B(£) = [5 f () f ()dE(2).
Suppose that (5.1.1) is only an approximation of the real situation. Instead of
(5.1.1), the real model is

yi=y(z:) =" f (z:) + (e:) + &, i=1,..,n, (5.1.3)

where t(z) is the bias factor, departure from (5.1.1).
Under (5.1.3), we know that

Elf — 6] = B7(¢) b (#,¢) (5.14)

and
M(,€) = E[(§ —0)( — )T
2 (5.1.5)
= —B7H )+ B7&) b (%, &7 (4,6)B7(¢),
where b (v,€) = [5 f (2)p()dé(2).

B7H(¢), and bias(,£) = B7(€) b (¥,€) b7 (4,€)B7*(€). For some

)

Let v(¢) =

3|

loss function £, our objective is the following:
. -1 . A _
min L[B~(€)] subject to 1Ean>’(IIE'[9 6ll] < e, (5.1.6)
where || - || is the norm of vector E[§ — g]. As we noted, B~1(£) is proportional to

v(€) and E[§ — g] is closely related to bias(¢,€). (In fact, bias(e, &) = (E [é - QD .

. T
(E [Q - 0]) ). There are many different ways to choose £, F, and 0.

First, we consider the following situation. Let
F = {&(z) : £(z) is a design measure such that o(£) C S C R'}

and

U(¢) ={o(z): [¢(z)] < é(z), where ¢(z) is a known function such that
¢(—z) = ¢(z) and ¢(z) > 0 on S}.

For the loss function, we choose £ € {Lp,L4,Lq,Lc}. We understand that £p &)=
|B=(&)], La(§) = trB71(€), Lo(€) = [s d(z,€)dw and Lo(¢) = maxyesd(z,¢), where
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d(z,¢) =fT ()B~Y(&) f (x). It is clear that d(x,&) is proportional to the MSE of

éTf (z) as an estimator of ¢7 f (=) under the model (5.1.1).

In general, it is hard to find a solution of (6.1.6). In Section 5.2 and Section 5.3,
we further restrict our attention to the one dimensional linear regression case, i.e.,
fT (z) = (1,z). For the set of ¥, we consider two cases:
(1) Ts(d) = {¢ : 9(0) = #'(0) = 0, ¥(—2) = (=), [$(z)| < (=) on [~1,1] and
¢(z) = i, aziz® > 0 on [—1,1]} and
(i) Wa(4) = {8 : $(0) = ¥(0) = 0, ¥(~2) = —(z), [b(x)| < [#(z)] on [~1,1] and
¢(z) = Tk azip12®*1 > 0 on [0,1]}.
The condition of 4(0) = %’(0) = 0 is to insure the identifiability of the parameters
to be estimated. We refer to W (¢) as the set of “symmetric contamination” and
W.(¢) “antisymmetric contamination”. These two cases are treated in Section 5.2
and Section 5.3, respectively. For some choices of the “upper bound” function é(z),
we find the solution to the problem (5.1.6). It is possible to extend the problem to
the higher dimensional case and high order polynomial case. But the details will
be very tedious. Similar to the problem of O*-restricted optimal designs, we have
that the bounded bias optimal designs over F is equivalent to that over Fs, where
Fs = {&(z) : {(2) € F and {(—2) = &(z) on [—1,1]}. The problem can be further
reduced to a non-linear programming problem with a finite number of variables or
a search for optimal solutions within the subclass of Fs that have design measures
supported on a finite number of points. Some relevant results will be provided later
in this section.

Second, we consider the choice of F and ¥ as the following. Let

F = {{a): d—f};—) = 772.(:1,'),/5771(:1:)d.'v = 1,m(z) > 0 and m(—z) = m(z) on S},

and
— +) . 20, < 2 . —
U= {9(2): [ ¥2e)de <o, [ f (@)p(z)ds =0},
where 7 is a preassigned constant and the side condition Js [ (2)¥(z)dz =0 is to

insure the identifiability of the parameters to be estimated.
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Let g =@Tf (z) be the estimator of QTf (z). Under (5.1.3), we have

MSE(§) = = 7 (2)B™() [ (2)+ J7 (2)B7E) b (%, &) & (,))B7(E) { (=),
and

[ MSB@)ds = TirABE)+ I (5, )BHOAB(E) b (5,),
where A = 5 f () fT (z)dz.

Let V(§) = ZtrAB-(¢) and Bias(p,£) =57 ($,)BHOAB () b (4,6). We

consider the following problem:
min V (€) subject to max Bias(y,€) < ¢, (5.1.7)

where ¢ is a preassigned positive number.

The maximization of Bias(v,£) over the class ¥ was done by Huber (1975). The
solution to the problem (5.1.7) is the main result in Section 5.4. The problem (5.1.7)
can be easily extended to multiple linear regression case, since the maximization of
Bias(v,€) in multiple linear regression case was solved by Wiens (1990).

We are now going to provide some results which can be used to reduce the problem
(5.1.6). For the cases we will consider in Section 5.2 and Section 5.3, we always have

P
max | B({ - 9)]| = ;}Ciﬂzi» (5.1.8)
where c;’s are some coefficients and pg; = [, 2%d¢(2).

Let V(4,c) be the set of all design measures satisfying the constraint 3°7_g c;po: <
¢, where ¢ is a preassigned positive number and the range of ¢ will be specified case

by case. We claim the following:
Lemma 5.1.1 (i) V(¢,c) is convez.
(i1) £&(z) € V(d,¢) if and only if E(—z) € V (&, ¢).
Proof: (i) Let £1,& € V(@,¢) and £* = A& + (1 — A)é; where 0 < A < 1. We have
YiooCittai = Theo & J1; 2%dE"(2)
= Thoci [22%d(Aa + (1 - V)é)

= AT oq J1 2%dE 4+ (1 = X) Thop i fL, 2%dés
<Ae+(l=Ae=c.
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Hence, £* € V(4,c).
(ii) Note that

,Z::Cl/ z¥d¢(—z) = éc; _/_11 z¥dE(z).
Hence, {(z) € V(¢,¢) if and only if £(—2) € V(4,¢c). ]

Let D = {§o: [B~1(&)] = mineevm,c) 1B}, A = {& : trB~*(&) = mingey(s,
trB~Y(¢€)}, and Q = {& : [, d(z,&0)dn = MiNgev (s [11 d(z,€)dz}, that is, D, A,
and @ are the sets of bounded bias D-, A-, and Q-optimal designs respectively. We
state the following lemma without proof, since the proof is very similar to the proof
of Lemma 4.2.4.

Lemma 5.1.2 (i) D, A,Q are conves sets.
(ii) é&(z) € D, A, Q if and only if E(—z) € D, A,Q respectively.

Assume that £; is a bounded bius D-, A-, or @-optimal design measure and we
define & by &(2) = &(—=2). The consequence of Lemma 5.1.2 is that there is a
symmetrical optimal design, namely (¢ + £)/2. The problem (5.1.6) can be further
simplified by using Theorem 4.2.5 and Theorem 4.2.6 as we will see in Section 5.2
and Section 5.3.



121

5.2 Approximately Linear Regression Model with
Norm 1 Bounded and Symmetric

Contamination Functions

In this section, we consider the one dimensional linear regression model and the
class of symmetric design measures on [—1,1]. Let j_"T (z) = (1,z), §7= (6o, 61), and
Fs={¢: € € F,&(—z) = &(z)}. For any £ € Fs we have

B<s)=/_11f(w>fT<w>df("’)=(; 0 ) B_l(£)=(; O)

a ™
and
d(2,6) =fT ()B7) { () = (1,2) ( . ) ( 1 ) —14 2,
0 - z H2
where po = [1, 2%d€é(z). We know that Lp(£) = i, La(§)=1+ i,
Lo(€) =2+ 2 and Lg(é) =1+ L Hence, for £ € {Lp,L4,L0o,Lc},

3#2 ’ 2%)

. - ” ~ _ <
min £(¢) subject to max[|E( — 9)l| < ¢

is equivalent to

max gy subject to max ||E(§ — <ec
max iz subject to max|[E(0 ~ )il <
For the class of contamination functions ¥, we choose

Vo(d) = {¢:94(0) = ¢'(0) = 0,%(-z) = ¥(z),
[¥(z)] < ¢(z) on [—1,1], and ¢(z) = 37—, azz® > 0 on [0, 1]}.
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In this case, we have

E[§ — ]

fl

= B-
and ||E[d — ]| = | [ ¥(x)d€(z)]. Tt is clear that

maxyew, ||E[0 — g]l| = maxyew, | [ $(z)dé(z)|
< maxyews [ |(x)|dé(z)
< [ o(x)dé()
= [(Th1 aniz®)dé(2)
= Yteq Q2ifiai-

On the other hand, ¢(z) € ¥ (4). Hence we have
max EG — 6| = /(;5 Jdé(z Zag,ugz
In the case considered here, the problem (5.1.6) becomes

max g2 subject to Zaz,pz, <c (5.2.1)
i=1

for some ay;’s such that ¢(z) = T8, az;z® > 0 on [—1,1].
It is necessary to specify the range of ¢ so that the problem (5.2.1) has feasible

solutions. Let

Cx = Erg;p{z aziflei }, and ¢* = gnax{z agifbai}-

Then (5.2.1) has solutions for any ¢. < ¢ < ¢*. (5.2.1) has no solution for ¢ < ¢,. For
¢ > ¢*, (5.2.1) has the same solution as the unconditional optimal design problem.

Hence c¢* is not the “real upper bound”.
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We are now secking the solution of the problem (5.2.1) for some specific choices

of ¢(2).

Case I: ¢(z) = az2?, a3 > 0
When ¢(z) = as2?, the problem (5.2.1) becomes

bject t <ec 5.2.2
max iz subject to azuz < ( )

Denote y3 to be the maximum value of p; in (5.2.1) and é* to be the corresponding

design measure. The following result is trivial.

Theorem 5.2.1 In (5.2.1), let ¢(z) = aza? and a; > 0. Then we have
) & =LA duy =7, where r = —, if 0
(i) & = 324 7 and p3 = 7, where 7 a2,zf <c<ay
(i) & = 1Ay and p3 =1, if ¢ > as.

Remark 1. The usual optimal design is o = 3A4; which is supported at &1. For Case
I, the violation occurs at +1. Hence the bounded bias optimal design ¢* supported

at £./7, somehow stays away from =+1.

Case II: ¢(2) = aza® + asx*, ay # 0

In order to make ¢(x) > 0 on [—1,1], we must have (i) as > 0, az > 0 or (ii)
as <0, a3+ a4 2 0. In Case II, the side condition of (5.2.1) is aguy + aqus < c. It is
clear that ¢, = 0. We have ¢* = a3 + a4 if a4 > 0, a3 > 0. For the case that a4 < 0,

C* = IMaxqao il + a ﬂ = max aqgit + a /,L
€7__{lﬁ2 44} 5-7'-0{ 2/~2 44})

where Fo = {£ : € = gAiﬁ—{-(l—a)Ao, 0 <a<1, 0<L 2 <1}, Thesecond equality

is followed by Theorem 4.2.5. For any ¢ € Fo, we have uy = az and py = az?. Hence

2
max{agps + agpe} = max {ayaz + asaz }
§€Fo (CEILT
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where Ap = {(e,2): 0 < a <1, 0 < a <1} Wedefine L(o, 2) = azaz + agaz?, and

let
9L

L
o7°
— = q@qa + 2a4az := 0.
Oz

= ayx + ag2? :=0

We find that there is no solution in the interior of Ag. There are four boundary

cases. They are (i) o = 0, (ii) = 0, (iii) « = 1, and (iv) £ = 1. For case (i)

and (ii), we have L(0,z) = L(a,0) = 0. Case (iii) gives us L(1,2) = asz + a4z
L

Let T = ay + 2a42 = 0, we get @ = -—-;;;l. Under the condition that a4 < 0,
: 2aq

az + a4 > 0, we always have ¢ = _ & > 0. If i <1, ie ap+ 2a4 <0,
2&4 2(1,4

then L(1, -—~al) = ag(—-a—z) + a‘;(-—ffz-)2 =2 For case (iv), we have L(e, 1) =

2&4 2a4 2(14 4a4 ’ ’

aza+ago = (az +ag)a. The fact ay+ay > 0 implies max L, 1) = L(1,1) = a2 + a4.

2

2
Note that L(1, _ﬁ_z_) - L(1,1) = — 2 gy = (a2 +2a4)° > 0. Hence, we have
24 4ay —4ay

2

a e
c*=—£—1—?—11a4<0,a2+a420,and az+2a4 <0
.y

and

C*=CL2+CL4 ifa4<0,a2+2a4>0.

We summarize these results as the following lemma.:

Lemma 5.2.2 (i) ¢(z) = apz®+aqz* > 0 on [—1,1] if and only if one of the following
s true:.
(a) ay >0, and ag > 0; (b) ay <0, and ay + a4 > 0.
(1)) When ¢(z) > 0 on [—1,1], we have c. =0 and
as+ay ifag>0,a>0, oray <0,aq +2a4 >0
C* = 2

—:—;- if ag < 0,az +as > 0, and ay + 2a4 < 0.
4

In the case of ¢(z) = asz?® + a4a?, the problem (5.2.1) becomes

?felz}_x 2 subject to asug + aguy < c, (5.2.3)
S . P
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which is equivalent to

max gt subject to agpe + agus < c. (5.2.4)
EeFy :

Let So = { (2, pta) : 3 < pia < 12,0 < p2 < 1} and So = {(pz, pa) : (i2, 1) € So,
and aspg + asps < c}. Let (a9, a4) satisfy one of the conditions (a), (b) in Lemma
5.2.2,and 0 < ¢ < ¢*. It is clear that “agus + asps = ¢” divides S’o into Sp and 30\50
where S, # ¢. Moreover, we have

Ky = max _ pa, (5.2.5)

(12,14)E€So

and the design measure £* will be the solution to the problem (5.2.3), where p} =
Jz*d¢ ().
The values of p} and the corresponding design measures £* are summarized in the

next theorem.

Theorem 5.2.3 In (5.2.1), let ¢(z) = azz® + asz?, where (az,a4) satisfies one of the
conditions (a) and (b) in Lemma 5.2.2. Given 0 < ¢ < ¢*, we have
, 1 .
(i) & = §Ail and p5 =1, ifas + a4 < ¢;

—ag + 1/a% + dayc

2&4

i {*:lAi - and p5 = z, where z = ,ifastag >c, a4 >0,
2 \/_ #2
and a; > 0;
1) & = ZAir*- 1—7)Ap and p = 7, where r =
9

and as + ay ZHO.

,ifastag>c a4 <0,
az T U4

Proof: It is obvious that (uq,p4) = (1,1) € S, if and only if a; + a4 < ¢. In this
case, we have yj = max,, ,.)e3, #2 = 1 which can be achieved by £* = 3A4;. This
gives us case (i). Next, we consider the situation that (1,1) & S, i.e. ag + ag > c.

. . c a .
Assume a4 > 0, a; > 0. Then the side condition becomes uy < — — —guz, and p3 is
ay aq

the solution of the system equations u4 = < - -Z—z-ug, and pq = p2 (see Figure 5.2.1).
a4 4

—ag + y/a} + daye
We find that uj = 2 ’)a2 T = z, which can be achieved by ¢* = %Ai\/;.
2a.,

This is case (ii). For case (iii), i.e. a3+ a4 > ¢, a4 < 0, and ay + a4 > 0, the side
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ces c az . . .
condition becomes gy > — — —pu,, and pj is the solution of the system equations
ay ay

e = i - gi-ug and p4 = o, (see Figure 5.2.2). We find u} = . _T_ @ = 7 and y;
can be realized by £* = %A:H + (1 = 7). O
My Ay c a
‘ ‘ ﬂ# = 'Z; - ’af'ﬂﬂ
6\ ~ ~
7 |\ P 3
L _ & |
/al[ - aq- ‘Z;'/“i l
l
0 -/u: \ /’x ¢ / -'a: /“z
a4y
Figure 5.2.1 Figure 5.2.2

Case IIL: ¢(z) = aa? + aqa? + aga®, ag # 0

In the case that ¢(a) = wpa® + aqa? + aa®, the problem (5.2.1) becomes
?é}\ f2 subject to aspr + agpty + agpe < c, (5.2.6)
which is equivalent to

?éaj-\ f2 subject to agps + agpy + asps < c, (5.2.7)
1

where Fy = {€: £ € Fs, € = %Ail+§Ai\/g+(l—a—ﬂ)Ag, 0<a<1,0£6<1,
a+p <1,0 <a <1}. The equivalence of (5.2.6) and (5.2.7) follows by Theorem
4.2.6.

Before we solve the problem (5.2.7), we would like to provide a necessary and
sufficient condition for ¢(2) > 0 on [—1,1} in terms of the coefficients of ¢(z), namely

as, a4, and ag. We state the result as below.

Lemma 5.2.4 Let ¢(x) = aza? + ayz? + ¢62®. Then ¢(z) > 0 on [~1,1] if and only

if one of the following is true:
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(i) ag <0, ay > 0, and az + a4 + as > 0;
(7i) ag > 0, ay > 0, and az > 0;
(i) ag > 0, ay < 0, az > 0, ay + 2a6 > 0, and 4azas — a2 > 0;

(tv) ag > 0, ay <0, ag > 0, ag + 2a6 < 0, and ag + a4 + ag > 0.

Proof: Let ¢o(x) = az+aqa®+asz?. Then ¢(x) > 0on [—1,1]if and only if ¢go(z) > 0

on [—1,1]. We discuss different cases according to the signs of the coefficients of ¢o(z).

1)

ag <0

In this case, it is necessary that a; > 0. Note that ¢o(z) = 0 has only one pair

—a4 — \/CL‘% - 4“2“6
Tp = + .

2&6

of solutions

It is easy to see that the necessary and sufficient condition for ¢o(z) > 0 on
[—1,1] is |zo| > 1 which is equivalent to as + a4+ ag > 0. In fact, we can simply
require ¢o(1) > 0. Again, we get az + a4 + a6 > 0. This gives us case (i)
ag>0,ay2>0

It is obvious that the necessary and sufficient condition for ¢o(z) > 0 on [—1,1]
is a2 > 0 which is case (ii).

ag>0,a4<0

In this case, it is necessary that a; > 0. Let ¢)(z) = 2a42 + 4asz® := 0. We get
z=0,and ¢ = =, /———%—. If | /——ﬂ- <1,ie., ay+ 2a¢ > 0, then we need

2&6 2a6

ay ay a4 2 az
——— ] = o —_——— = _— >
¢0 (V 2a6 J 4 + = ( 2(16) +ds ( 2“6) % 4CL6 - 0,

l.e. dazas — a? > 0, which gives us case (iii).

If w/—;—" > 1, i.e. ay + 2a6 < 0, then we need ¢o(l) = a2 + a4 + ag > 0. This is
dg

- case (iv). 0

We are now going to find the range of ¢ such that (5.2.7) has feasible solution.

The range of ¢ is indicated by the following:
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Lemma 5.2.5 Let (ay,a4,a5) satisfy one of the four conditions (1)-(iv) in Lemma

2 v
—ag —\/a§ — 3aqgag
. Then we have

524 Let Lo =
3ag
(i) cx =0

1
5—7a—(25(2au?1 + 2a%\/a2 — 3azas
(u} ¢t = —9aqa4a6 — 6a2a6\/a§ — 3(1,2616) ZfO <xp <1

as + ag + ag otherwise
Proof: For any £ € Fy, we have pi; = o + Bz, uy = o + 22, and pg = a + Bz3. Let

Lla, B,2) = az(a+ B2) + as(e + B2?) + ag(a + fa)
= (a2 + a4 + ) + (@22 + a42? + asz3)B.

It is clear that ¢, = min(,ge)ea L(a, B,2) and ¢* = maX(a,g,z)e4 L, B, ), where
A={(,3,2):0<a<1,0<B8<,a+p<1,0<z<1}. Solving

oL

%=02+a4+a6 =0

g_g = 2(az + a4z + a2?) := 0
e B(as + 2a42 + 3aga?) := 0,

we find that the system of equations has no solution in the interior of A. We now
consider the boundary cases (i) a = 0, (ii) 8 = 0, (ili) ¢ = 0, (iv) 2 = 1, and (v)
at+pB=1.

(i) For o = 0, we have L(0, 8, ) = (a2x + a42? + agz®)B. Let

g_/]; = (ay + a4z + a2?) ;=0
% = f(az + 2a42 + 3agz?) := 0.

The above equations have no solution for 0 < 2 < 1and 0 < f < 1. For § = 1,

we have L(0,1,2) = a2z + a42? + as2®. Solving d—L = ag + 2a4¢ + 3agz? = 0,
x

—ay + \/(l% - 3a2a6 4 — \/aﬁ - 3Cl2(16

we get ¢ = We denote z¢ = and z; =
3ag 3ag
/2
—ay4 + \/ai — 3azae ) ) .
3 . We have to discuss the maximum and minimum values of
ag

L(0,1,2) in each of the four cases of Lemma 5.2.4. We assume that al — 3azae > 0.
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(1) a6 <0,a; >0, and a3 + ay + ag > 0

In this case, we have 29 > 0 and z; < 0. It is clear that

min L(0,1,2) = L(0,1,0) = 0

0<z<1
and

orélfgxl L(0,1,z) =

L(0, 1, o) if 7o < 1
L(O,l,l) =a2+a4+a6 1f$0 2 1.

(2) a6 >0,a4 >0, and a; >0

. dL
In this case, we have 29,27 < 0. Hence we have — > 0 for z > 0, and

da —
JJn, L(0,1,2) = L(0,1,0) = 0

and

Jnax L(0,1,z) = L(0,1,1) = a3 + as + ae.

In Case (3) and (4) of Lemma 5.2.4, we always have ag > 0, ag <0, and ay > 0.

This implies that 2; > xg > 0. It is clear that
oD, L(0,1,2z) = L(0,1,0) =0

and
L(O,l,wo) f0<zo<l

max L(0,1,z) =
0<z<1 L(0,1,1) = as + as + ag if 2o > 1.

We find that

1
L(0,1,z¢) = e (2a3 + 2a2\/a2 — 3aza6 — 9asasag — 6azas\/a — 3aqae).
6

If a3 — 3azas < 0, then L(0,1,2) = asx + as2z? + aez® is monotone increasing

when ag > 0 and monotone decreasing when ag < 0. When L(0,1,2) is monotone
increasing, we have Minp<q<1 L(0,1,2) = 0 and maXo<z<1 L(0,1,2) = ag + a4 + ag.
When L(0,1,z) is monotone decreasing, we have L(0, 1, 1) < L(0,1,0) = 0. This is
not possible since ¢(z) > 0 on [-1,1] implies that ¢(1) = ay + ay + ag > 0.
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(ii) For 8 = 0, we have L(«,0,z) = (aq + a4 + ag)a. It is obvious that Mminp<z<1
L(e,0,z) = L(0,0,z) = 0 and maxo<z<1 L(a,0, %) = az+ay+as, since az+as+ag > 0
implies that L(«,0,2) is non-decreasing in c.

(iii) For z = 0, we have L(e, 8,0) = (a2 + a4 + ag)a which is the same as case (ii).

(iv) For z = 1, we have L(e, 8,1) = (az+as+as)(a+fB) := (az +as+ag)y, where
v=a+f#,0 <y < 1. This is similar to the case (ii).

(v) When o + 8 =1, we have

L(1—=B,B8,2) = (az+ a4+ ag)(l — B) + (az2 + asa® + as2®)B
= az + aq + ag + [az(x — 1) + aq(x? — 1) + ag(2® — 1))8.

Let
oL
% (—=1as +as(z+1)+as(z®?+2+1)]:=0
L
%; = Blaz + 2a42 + 3asz?] := 0,
and let (8*,2*) € (0,1) x (0,1) be a solution of the above equations. Then we always
have L(1 — g, f*,2) = a2+ a4 + as. Summarizing the above results, we have proved

Lemma 5.2.5. O

In order to solve the problem (5.2.7), the next lemma is needed. It indicates that

the optimal solution of (5.2.7) is achieved on the boundary of the side condition.

Lemma 5.2.6 Let (ag, a4,a6) satisfy one of the four conditions in Lemma 5.2.4 and
0 <c < ¢, where ¢ is indicated in Lemma 5.2.5. If as + a4 + as > ¢, then (5.2.7) is
equivalent to

leréz}_x o subject to agpe + agpy + aspe = c. (5.2.8)
1

Proof: By Lemma 4.2.7, we have
S’l = P = {Ay : Ay is the interior and boundary of the triangle with vertices
Po, P1y Pk nggl},
where po = (0,0,0), p; = (1,1,1), and p, = (k, k2, k%).

Let $; = {(2,9,2) : (2,9,2) € 8 and ag2 + auy +agz < c} ={(z,y,2) : (z,y,2) €
A and gz +agy+asz < ¢, 0 <k <1} Let m iz = —ka+(1+k)y, k € (0,1). Then
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Ay C mp. Using (2,y, z) instead of (uo, p14, i), the side condition of (5.2.8) becomes

aoT + a4y + agz = c. Projecting

ax + aqy + agz = ¢

{z=——km+(1+k)y
I :

onto the plane zOy, i.e., z = 0, we have —kasz + (1 + k)asy = ¢ — asx — aqy, and
hence (az — kag)e + [ag + (1 + k)agly = ¢. Let a := a3 — kag and b:= ay + (1 + k)as.
Then we have ax 4 by = ¢. We make the following statement:
S1: ¢ Inax {z} subject to (z,y) € P[S; N A (or (z,y,2) € 51 N Ay)
is equivalent to

[ax {z} subject to (z,y) € Pls N Ay (or (z,y,2) € I N Ag)”.

Note P[S] refers to the projection of set .S onto xOy. Note also that, for any possible
values of az, a4, ag, and 0 < k < 1, the possible signs of « and b are (i) a > 0, b > 0,
(i) a<0,6>0,(ii) e <0,06<0,(iv)e>0,b<0,(v)a=0orb=0, and (vi)
a=0and b=0.

It is obvious that S1 is true in case (i) and case (i1) (see Figure 5.2.3 and Figure
5.2.4). Under the assumption of Lemma 5.2.6, we have $; N B # ¢, where B =
{(z,y,2) : a2 + aqy + a¢z = c}. Hence « < 0 and b < 0 is not possible. In case (iv),
we solve

(a2 — kag)z + [ag + (1 + k)agly = ¢
L

and get
c c

- as — kag + as + (1 + k)as - az+ a4+ ag
Hence 51 is also true in this case. (See Figure 5.2.5). For case (v), we have y =

c when ¢ = 0, and 2 = — %  when b=0. Tt is clear that in both
ay + (1 + k‘)a(; ay — kae
cases S1 is true. (See Figure 5.2.6 and Figure 5.2.7). In case (vi) we have a = 0

T < 1.

and b = 0. Note that ¢« = 0 implies a2 = kag, and b = 0 implies a4 = —(1 + k)as.
Consequently, we have a; + a4 + ag = kag — (1 + k)as + ag = 0. This contradicts the

assumption that as + a4+ ag > ¢ > 0.
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We have shown that S1 is true for any k& € [0,1] and all the (@, a4, ag) values that

satisfy the conditions of Lemma 5.2.4 and 0 < ¢ < ¢*. Hence Lemma 5.2.6 is true. O

|y piAd 4 ¥ (1,1)

Ck. k)
) N 5 o/ "
/
Figure 5.2.3 Figure 5.2.4 Figure 5.2.5
PISinAl
Lo
0 i’ 0 2
Figure 5.2.6 Figure 5.2.7

The consequence of Lemma 5.2.6 is that the inequality constraint in(5.2.7) be-
comes an equality constraint. Hence, the method of Lagrange multiplier can be used
to solve the problem (5.2.7).

For any ¢ € Fi, we have yy = a + Bz, py = a + B2?, and g = a + P23, where
0<a<l,0<B8<,a+f<,and0 <2 <1 Let A= {(a,0,2):0< a <
1,0<B<lL,a+B<1l,and0 <2< 1}, and A = {(o,8,2) : (o, B,2) € A, and
az(a + Bz) + as(a + f2?) + as(a + fa®) < ¢}, where (aq, aq,a6) satisfies one of the
four conditions in Lemma 5.2.4 and 0 < ¢ < ¢~, where ¢* is indicated in Lemma 5.2.5.
It is obvious that (5.2.7) is equivalent to

( 15134;(64{0' + Bz} subject to az(a + Bz) + as(a + Bz?) + ag(a + B2®) < c. (5.2.9)

Let u; = o™ 4+ B*2* to be the maximum value of (5.2.9). We have p} = MaX(, 5.1)eA
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{a + Bz}. Note that (uo,p4,p6) = (1,1,1) can be attained by design measure ¢ =
EA:H which corresponds to (o, 8o, 1) for any ag, fo such that ag+ 8o = 1. Moreover,
(o0, Bo,1) € A if and only if as + a4 + ag < ¢, and in this case we have p3 = 1 and
the corresponding design measure is £* = -;-A:H.

From now on, we assume that a; + a4 + ag > ¢. In this situation, the application
of Lemma 5.2.6 will simplify (5.2.9) to be the following:

( rga,;feA{a + Bz} subject to az(a + Bz) + as(a + fz?) + as(a + B2°) = ¢. (5.2.10)

The method of Lagrange multipliers now can be used to solve (5.2.10). Let
L(e, Byz,A) = a + B+ M(ag + as + ag)a + (az2x + ay2® + ae2®)f — ¢,

and oL
———-—1+/\a2+a4+a6) 0
2

0B
dL
— = A+ Ab(az + 2a4z + 3agz?) ;=0
5
SN
We find that the above equations have no solution in the interior of A. We now
consider the five boundary cases (i) a =0, (ii) # =0, (iii) ¢ = 0, (iv) 2 = 1, and (v)
a+ B =1.

=z + Mz(as + a4z + a2?) 1= 0

.

= (az + ay + ag)a + (az2 + a42® + ag2®)f — ¢ := 0.

(i) a=0

In this case, we have L(0, 8, x,)) = Bz + A(a2z + ayx? + a¢z®)B ~ c]. Let
gg &+ Az(ag + a4z + agz?) := 0 (i-1)
;—; = f + AB(az + 2a4x + 3as2?) :=0 (i-2)
= (22 + as2? + ag2®)f—c:=0. (i-3)

For z # 0, and 8 # 0, we can rewrite (i-1) and (i-2) as

1+ Maz + a4 + ag2?) = (i-4)
1+ Mag + 2¢42 + 3a6m2) 0 (i-5)
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Solving (i-4) and (i-5), we find that 2* = —:—4. Put 2* into (i-3) and (i-4), we have

ZUg
2
B = c _ c _ 8age
a*(ag + agx* + agz*?) ay ( a’ al aq(a? — 4azae)
gy — A 4
2“6 2(16 4a6
and
. ~1 _ -1 _ dag
ag + asz* + agx*? al al a? — 4aqag
g — —A 4
2a6 4&6
iy

If 2* = ~5 € (0.1),1.e. (1) ag <0, ay>0,and ay+2as <0,o0r(2)ag >0, a4 <
6
0, and a4 + 2ag > 0, then we always have f* > 0 (see Lemma 5.2.4 case (i) and case

2
8cls <1, then L(0, B, 2", \¥) =

iii)). Moreover, if w me that f* =
(iii)) reover e assume that j3 (@ — dana)

4 . . . . .
4—6%—2 is a possible maximum value of L(a, f,z,A). The corresponding design
Q206 — Ay

measure is {* = %Ai\/; + (1 = B*)A..
(i) B=0
When 8 =0, we have L(e,0,2,)) = a + A[(a2 + a4 + ag)a — ¢]. Let

oL _ . Maz + ay +ag) :=0 (ii-1)
7
7))

= (ag + a4 + ag)a —c:=0 (ii-2).

. -1
From equations (ii-1) and (ii-2), we find that o* = —  andN=——
c az -+ aq+ ag az + a4+ ae

Hence, L(a*,0,2*, \*) = o = ———— is a possible maximum value of L{a, 3, z, A),
ag + a4 + ag

and the corresponding design measure is £* = %*Ail + (1 — a*)Ao.

For case (iii), we have @ = 0, and L(«, 3,0,A) = a + A[(¢2 + a4 + as)a — ¢] which
is the same as case (ii). Similarly, for case (iv), we have @ = 1, and L(e, $,1,A) =
a+ B+ A(az + as + ag)(a+ B) —c] = v+ A[(az + as + ag)y — ¢}, where v = a + S.
This yields the same maximum value as case (ii).

(Vya+p=1

In this case, we have L(1 — §,8,2,A) =1 — f+ Bz + A[(as + as + a6)(1 — B) +
(a2 + aqa® + ae2®)B — ] = 1 + (@ — 1)B + AM(a2 + a4 + ag) + [az(z — 1) + as(2?® —
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1)+ ag(2® — 1)]B — c}. Let

_g% = (@=1)+Me = 1)ar + asle +1) + ag(a? + 2 +1)] := 0 (ii-1)
oL _ B+ AB(az + 2a4z + 3aez?) := 0 (iii-2)

g

e (a2 + as + a6) + (2 — 1)[az + as(z + 1) + ag(2? + 2 + DB —c:=0. (iii-3)
For z # 1 and 8 # 0, (iii-1) and (iii-2) can be rewritten as

1+ M(az + aq + ag) + (a4 + ag)z + ag2?] = 0 (iii-4)
1+ Maz + 2a42 + 3agz?) = 0. (iii-5)

Solving (iii-4)\ and (iii-5), we find that z* = _a42-: ae,
6

-1
as + 2a42* + 3a61x*2

A=

@ — 2a4(aq + ag) 4 3(aq + ag)?

2a 4ag
—4dag

3ag + 2a4a6 + 4azas — a2’

¢~ (az + a4 + ag)

o= (z* = D)[ag + as(z* + 1) + ag(z*2 + z* + 1)]

_ ¢ — (a2 + a4 + ae)
(2* — 1)(a2 + 2a42* + 3asa*?)

_ ¢ — (az + ay + ag)

T G+ ag 2a4(aqs + ag) | Bag(aq + ag)?
( Qg Dlaz 2a¢ + 4ad )

8af(az + ag + as — ¢)
(as + 3as)(3a2 + 2a4a6 + 4azae — a2)’
and
& =1 = (a4 + a6)(ad + 4aza6 ~ a3) + 8alc

(a4 + 3a6)(3a + 20406 + 4azag — a2)’

If we have 2* € (0,1) and 8" ¢ (0,1), then L(1 — B*,* z*,\*) = 1 + (z* —
dagc — (aq + ag)?

N = 342 + 2aras + dagag — 22 is a possible maximum value of L(a,B,2,)) and
the corresponding design measure is ¢* = %"Ail + %Ai S

We now list some conditions:
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Cl: ag+as+ag<c

ay 8alc
2: 2*=—~-—¢€(0,1) and B*
C2: a Sag € (0,1) and g* = (@ — ) S
a4 + ag 8ag(az + a4 + ag — c)
C3: z2* = — 0.1 d — 6
v 2a6 < ( ’ ) an ﬂ (a4 + 3a6)(3a§ + 2a4a6 + 4&206 — a:‘;) <

(0,1).

Furthermore, we define some notations:

c c
N1: *:——, *=‘*=0, *:————, *=_1.A
)A . az + a4 + ag bi = e az + a4+ ag and & 2 41+
a’{ 0 '
8a2c ay dage
N2: y = = 6 Ty = e —_ ¥y = e— d & =
=05 aq(a? — dazag)’ *2 245" 2 T dagag — a?’ and &
Zn, 1= B3,
N3: of — (aq + ag)(ad + dasas — a2) + 8ac
"% (aq + 3a6) (302 + 2a4a6 + dagag — a?)’
. 8ag(as + as + ag — c) pr o Gatae
8 (a4 + 3a6)(3a§ + 2a4a6 + 4a2a6 —a ), 8= 2a6 ’
4a6c - (a4 + ae) 3 ,6
3= and £ = —=A A
Vs = 3ak + 2a4a6 + dasags — al &= g T SVE

We have proved the next theorem whlch provides the solutlon to the problem (5.2.7).

Theorem 5.2.7 Let (a,, a4, as) satisfy one of the four conditions in Lemma 5.2.4,
and 0 < ¢ < c¢*, where ¢ is indicated in Lemma 5.2.5. The solution to the problem
(5.2.7) is provided as follows:

(1) If C1 is true, then £* = %A:{:l and p5 = 1.

(1) If C1 is not true, but C2 and C3 are true, then uj = max{v},v},v}} = v},
and the corresponding design measure is £, 1 € {1,2,3}.

(iti) If C1 and C2 are not true, but C3 is true, then p3 = max{v}, v} := v}, and
the corresponding design measure is £, 5 € {1,3}.

(iv) If C1 and C3 are not true, but C2 is true, then pj = max{v},v}} := v}, and
the corresponding design measure is £, k € {1,2}.

(v) If C1, 02 and C38 are not true, then p; = vi, and the corresponding design

measure is {f = 2

The following corollary is obvious.
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Corollary 5.2.8 Let ¢(2) = aga? + aqa? + ag2® > 0 on [-1,1], and a3 + a4+ ag = 0.

Then the solution of the problem (5.2.7) is £* = %Ai], and pu3 = 1.

Remark 2. Note that as + a4 + ag = 0 if and only if (1) = 0, i.e. there is no

violation at *1. Note also that the usual optimal design is supported at 1. The

implication of Corollary 5.2.8 is that the bounded bias optimal design will be the

same as usual optimal design if the regression model is not violated at =+1.

Remark 3. For D-, A-, and Q-optimality, the optimal design we get in Theorem 5.2.7

is not only the optimal design over F, but also the optimal design over F as well.

This fact follows by Lemma 5.1.2. For G-optimality we can only say that the result

in Theorem 5.2.7 is only the optimal design over F,.

Let us define the efficiency of bounded bias optimal design £* as the following
_ L)
L(¢)

where £° is the usual optimal design and £ € {Lp, L4, Lq,Lg}. It is clear that e(€*)

S Forfixed ¢, e(€”)

o ag -+ a4 + ag
is decreasing when ¢(1) = as + a4 + ag is increasing; for fixed #(1) = az + a4 + ag,

e(£")

is “increasing in p3”. Consider the situation that u% =
e(£*) is decreasing when c is decreasing. This implies that we lose efficiency (smaller
e(£*)) to gain more protection on the possible bias (smaller ¢) when the amount of

model violations at £1 are fixed.
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5.3 Approximately Linear Regression Model with
Norm 1 Bounded and Antisymmetric
Contamination Functions

In this section, we consider again the one dimensional linear regression model and
the class of symmetric design measures on [~1,1]. But for the class of contamination

functions ¥ we choose

Ta(4) = {9 :9(0) = 9'(0) = 0,%(~2) = —¢p(2), ()| < |(z)]

on [~1,1], and ¢(z) = T, apip12%+1 > 0 on [0, 1]}.
In the case of antisymmetric contamination, we have

Elf — 9] =B'(&)b(%,€)
(10 Jpdé
(o2 ) i)
(10 0

(2 ) (o)

(o )
o J g

and

1B - gl =1 f ep(e)ela)]
< — [ lev(e)l(o)
< ﬂizflqu(xnde(w)
= = Jed(a)de(a)
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On the other hand, we have ¢(z) € ¥,(¢). Hence

\ 1
max [|E[¢ ~ gll| = ;Ll-;fW(fb)df(w)
= = S g ()
ﬁiz

P
— Yoio1 G2ig1f2i42-
M2

Under the case of antisymmetric contamination, the original problem (5.1.6) now

becomes
P

) 1
glsé}rx u2 subject to — Za2i+1p2i+2 <eg, (5.3.1)

i=1
for some ag;i41’s such that ¢(z) = ¥, agip12%+* > 0 on [0,1].
We are seeking the solution to the problem (5.3.1) for some specific choice of ¢(z).
The situation is very similar to Section 5.2. Hence, we only consider one case, namely

when ¢(2) = aza® + as2®. In this case, the problem (5.3.1) becomes
?é%rx Ko subject to azpg + aspe < cuo. (5.3.2)

It is clear that ¢(z) > 0 on [0,1] if and only if ¢;(z) := a3 + asz? > 0 on [0,1]
if and only if (i) as > 0, a3 > 0; or (ii) as < 0, a3 + a5 > 0. Again we define
. 1
e = infeer {—(aspq + aspe)} and ¢* = max5€fs{;—(a3u4 + aspe)}. It follows by
2

Theorem 4.2.6 that we have

as(a + Ba?) + as(a + Ba7)

= int
¢ (a,bl,;)eA{ a+ fz J
and , .
= max {a3(a+ﬁx )+05(Ol+,3:17 )},
(a,B,z)€A o+ pz

where A = {(o,0,2):0<a<1,0£8<,a+ 8 <1,and 0 <z <1}. Forec,, we

use “inf” instead of “min”, because c, is not achievable. We define

ag(e + Ba?) + as(a+ B2®)  (as + as)a + (aza?® + as2®)
o+ Bz - a+ Bz '

L(CY,,B,.’L‘) =

We exclude the cases when o« = 0, 8 = 0, or @ = 0,2 = 0, where L(e, 3,%) is
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undefined. Let

| aL(C(;,aﬂ, 2 - (a +1ﬂm)2 {(a + Bz)(as + as) — [(as + as)er + (as2® + as52°)B]}
B (&—+1ﬂ—x)2[ﬂ:c(a3 + as) — fz*(a3 + ase)]
= Z-CT";:L:—)E-(CQ + a5 — dzT — a5:z:2)
= %mi;(ag + a5 + asz)
=0 (i-1)
aL(Cgﬂﬂ’ %) = (a +1ﬂrc)2 {(a + Bz)(asz® + asz®)
) ——[(a3‘+ as)a + (azz? + asa®) B}
= (—a—fw[a(agw + asz?) — (a3 + as)q]
az(x —1)
= m(a.‘j + as + (L5$)
=0 (-2)
8L(ngﬂ, ) — G +1ﬂ$)2 {(a + Bz)B(2¢sz + 3a5:1;2)
—[(as + as)e + (a32? + as52°) B8}
= (a—ﬁ-@ﬁ—z‘—);(?aaaw + 3asaz? + azfa? + 2a502% — aza — asa)
{ = 0. (-3)

From (i-1) and (i-2), we find z* = _a;;;l— %
5

and a3 + 2a5 < 0. Put z* into (i-3), we have

. Let z* € (0,1)?we get as < 0, az+as > 0,

2asa(— B%) ¢ (Busar + agB) (LB 4 2458~ LELN _ (4g + a5)a
as as as
= g%zas)(—%gasa + 3azasa + 3aa + aif + azasf — 223 — dazasf — 2P — aia)
5
_ (a3 + as)

22 [as(as + 2as)a — (@2 + 3aszas + 242) ]

= ;Ll?(as + as)(as + 2as)[asa — (as + as5)B] # 0,

since az + as > 0, a3 + 2a5 < 0, and asa — (a3 + a5)B < 0 (Note that as < 0).
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Therefore the system of equations (i-1), (i-2), and (i-3) has no solution in the interior

of A. There are five boundary cases to be considered.

(i)a=0
In this case, we have L(0,5,z) = (a3 + asz)z. Let Ccll—f: = a3 + 2asz = 0; then we
P x . 3B ) — L9893 _
have z* = San If « s € (0,1), then L(0,3,2*) = (as + as Sas I Sas
2

—:T‘: is a possible maximum value of L(e, §, z).

For the cases (ii) # = 0, (ili) z = 0, and (iv) z = 1, we have L(e,0,z) =
L(a,B,0) = L(a, B,1) = a3 + as.

(Vya+p=1

In this case, we have

(a3 + as)(1 = B) + (asz? + asz®)B

L(1-B,B,2) = Bt
_ (asz + as) + [as(z? — 1) + as(z® — 1)]B
- 1+ B(z —1) :
. Let
gL 1 . e
B [1+ﬂ(m—1)]2{[1'*—'3(:"_1)][“3(‘” 1) + as( 1)]
—(Kas +)as) + (as(a? - )1) + as(2® = 1))B)(= — 1)}
mw—l(a’3+a5+(15$ o .
i+8G-DF " (ii-1)
and
oL 1

9z [1+B-1)P {[1 + Bz — 1))B[2asz + 3as2]
~[(as + as) + (as(2? — 1) + as(2® — 1))618}

= [1+ ﬂ(ﬂw — 1)) [(1 ~ B)(2aaz + 3asa® ~ a3 — as) + B(as + 2asz)2?] == 0. (ii-2)

az + as
as

From (ii-1), we find z* = . Let 2" € (0,1); then we get as < 0, ag + a5 > 0,



142

and a3 + 2as < 0. Putting 2™ into (ii-2), we have

asz + as a3+ as

(1 = B)[2as(— ) + 3as(— )? — (az + as)]

5 5
+,B[a3 + 2a5(_a3 + aS)](_a3 + a5)2
asy as

_ (- ﬁ)a(Lsaa +95)1 94,1 3(as + as) — as] + _ﬂﬁtgﬂ(% — 2a3 — 2as)
== '3)25“3 95) (44 + 2a5) — &:éisﬁ(as + 2a5)

= a—lg(a3 + as)(as + 2as)[as(1 — B) — (a3 + as)B]

_ aiz(a3 + as)(as + 2as)[as — (as + 2a5)B] := 0. (i-3)

5

From (ii-3), we find g* = o
3 5

a3 + as < 0, which is a contradiction. Note that the case of #* = 1 corresponds to

. Let B* < 1; then we get as > a3 + 2as, i.e.,

¢* = 0 and o* = 0 which has been excluded. Hence, there is no extreme value in case
(v).
Note that

_a_g"’_) _ dasas + da? + a? _ (a3 + 2a5)° <

0
4&5 4&5 4“5

(az + as) — (—

if as < 0. Hence, we have the conclusion,

2
S if:v*=——a—3—€(0,1] ie. a5 <0 and a3+ 2a5 <0
¢ = dag 2as

a3+ as otherwise.
Note also, we have L(«, 8,2) > 0, and lim,_g L(0,1,z) = limy_o(as + asz)r = 0.

Hence ¢, = 0. We have proved the next lemma.

Lemma 5.3.1 (i) () = a3a®+as52® > 0 on [0,1] if and only if one of the following
is true: (a) as > 0, and az > 0; (b) as <0, and az + as > 0.
(i1) When o(x) > 0 on [0,1], we have ¢, = 0, and

az+as ifas>0,a3 >0, oras < 0,a3 + 2a5 > 0

2

a :
—4—-3— if as < 0,a3 + as > 0, and az + 2a5 < 0.
as
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Similar to Lemma 5.2.6, we indicate that the optimal solution to the problem
(5.3.2) is achieved on the boundary of the side condition of (5.3.2). We formally state

this fact as the next Lemma.

Lemma 5.3.2 Let (as,as) satisfy one of the two conditions (a) and (b) in Lemma
5.8.1, and 0 < ¢ < ¢* where c* is indicated in Lemma 5.8.1 (ii). If az + as > ¢, then
(5.8.2) is equivalent to

Max iz subject to agpy + aspe = cps. (5.3.3)
1

Proof: By Lemma 4.2.7, we have

S =P= { Ak : Ax is the interior and boundary of the triangle
with vertices po, p1,pr, 0 < k < 1},

where po = (0,0,0), p1 = (1,1,1), and px = (k, k%, k). Let S; = {(z,9,2) : (z,y,2) €
S, and azy +asz < ca} = {(2,9,2) : (,9,2) € Ax and azy + a5z < cz, 0 < k < 1},
Let m, : z = —kz+(1+k)y, k € (0,1). Then we have A;, C 7. Using (z,y, z) instead
of (a2, fta, ps), the side condition of (5.3.3) becomes azy + asz = cz. Projecting

l z=—kz+(1+k)y
k.
azy + a5z = czx

onto the plane 20y, i.e., z = 0, we have agy + as[—kz + (1 + k)y] = cz and hence
[as + as(1 + k)]ly = (c+ ask)z. Let a = ¢+ ask, b = az + as(1 + k). Then we have
P[li]) : az = by, where P[S] refers to the projection of set S onto the plane zOy. We

make a statement as follows:

S2: ¢ or?a,<>c1{x} subject to (z,y) € P[S; N Ay] (or (2,9,2) € 5 N Ay)

is equivalent to

01112}2\']{3:} subject to (z,y) € P[lp N Ag] (or (z,y,2) € [, N Ap)”.

If for some k € [0,1], we have one of the following: (i) a = 0, (ii) b = 0, (iii)
ab < 0, or (iv) @b > 0 but the slope of P[] is greater than 1 or less than k. Then
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P[] N P[Ax) = {(0,0)}. Hence S; N Ax = {(0,0,0)}. In this case, it is trivial that
S2 is true. If for some £ € [0,1], we have (v) ab > 0 and the slope of P[l;] is greater
or equal to k and less than 1, again 52 is obviously true (see Figure 5.3.1). Note that
¢+ ask = az + as(1 + k) implies that ¢ = a3z + as which contradicts to as + a5 > c.
Hence a = b will not occur, i.e. the slop of P[l;] will never be 1. Also, ¢ = b = 0 will
never occur.

We have shown that S2 is true for any £ € [0,1]. Therefore, we have proved

Lemma 5.3.2. ]
4 PLARY ¢, 1)
PLL]
(k. k)
’ pt ‘SN./l Al j
Figure 5.3.1

We are now going to find the solution to the problem (5.3.2). Similar to the proof
of Theorem 5.2.7, we have u3 = 1 if and only if az+as < c¢. The corresponding design
measure is £* = %Ail.

From now on, we assume that as+as > 0. In this case, the application of Theorem
4.2.6 and Lemma 5.3.2 will simplify the problem (5.3.2) to be the following;:

(a%l,gfe/l{a + Bz} subject to c(a + Bz) — az(a + B2?) — as(a + B2®) = 0. (5.3.4)

The method of Lagrange multipliers now can be used to solve (5.3.4). Let

L(e,B,2,0) = a+ Bz + Mc(a + Bz) — as(a + B2?) — as(a + B2°)]
=a+ fz+ M(c— a3 — a5)a + (cz — az2? — as2®)B],
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and ‘oL
-g— =1+/\(c-—-a3——a5):=0
—§ = a + Az(c — a3z — as2?) =0
R
g_ =+ A\B(c — 2azz — 3asz?) :=0
\ a—f\% = (¢ — a3 — a5)a + (cz — azz? — a52®) := 0.

We find that the above system of equations has no solution in the interior of A. There
are five boundary cases to be considered. They are (i) o = 0, (ii) # =0, (iii) z = 0,
(iv)z=1,and (v) a+ =1

(i)a=0

In this case, we have L(0,8,z,)) = fz + A\B(cz — azz? — asz®). Let
% =z + Az(c — aaz — asz?) :=0 (i-1)
g—; = B+ MB(c — 2azx — 3as2?) ;=0 (i-2)
= Bz(c — azz — asz?) := 0. (i-3)

Note that (i-1) and (i-3) contradict each other when f # 0 or z # 0. For the special

case when o = 0 and B = 1, we have L(0,1,2,)) = z + Mcz — a3z? — asz®), and

—gﬁ‘ =1+ Mc— 2a3z — 3as2?) :=0 (i-4)
0_%\/ = z(c — azz — asz?) := 0. (i-5)
—as — 1/a2 + dasc —as + 1/a? + dasc
Solving (i-4) and (i-5), we find z; = a3 2‘a3 " and T9 = 3 \2/a3 5
5 5

When (as, as) and c satisfy the restriction in Lemma 5.3.1, we always have z, € [0,1],
and z; < 0, or ; > 1. Let 2* = 2. Then L(0,1,2*,A) = 2* is a possible maximum
value of L(a, 8,2, ).

For the cases: (ii) § = 0, (iii) 2 = 0, and (iv) 2 = 1, we have L(¢,0,2,)) =
L(e, B,0,A) = o+ Mc— a3 — as)a and L(a, B,1,X) = a4+ B+ A(c — as — as)(a + ).
We find no maximum values in these cases.

Vya+p=1

In this case, we have L(1 -8, 8,2,\) =1— B+ Bz + M(c—azs—as)(1 = B) + (cx —
azr?—as2®)B] = 1+ B(x—1)+ A {(c—az—as)+B(z—1)[c—as(z+1)—as(z*+z+1)]}.
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Let
oL

2%
3
0

N (c—az—as)+ Bz~ 1)c—az(z+1) —as(z® +z + 1)] :=0. (ii-3)

=(z—-1)+Me—-Dc—as(z+1)~as(z?+2+1)]:=0 (ii-1)

= B+ MB(c — 2azz — 3asz?) := 0 (ii-2)

From (ii-1) and (ii-2), we get ¢ — 2a3z — 3asz? = ¢ — az(z + 1) — as(z* + z + 1), and

hence (x — 1)(z + g - as) = 0. Let 2> = _6632'2 % e (0,1). Then we have a5 < 0
Uy 5

and ag + 3as < 0. Putting 2* into (ii-3), we find

B = as+as — ¢
(* — 1)[c — as(z* + 1) — as(z*? + 2* + 1)]
_ a3+a5—c
(z* — 1)[c — 2asz* — 3asz*?]
_ az + as — ¢
—, aztas az + as _aztas,,
( % 1)[e — 2as( e ) — 3as( s )]

_ 8aZ(c — a3 — as)
"~ (a3 + 3as)(a? — 2azas — 32 + 4asc)”

It is easy to see that #* > 0. If we also have §* < 1, then

L(l - ﬂ*aﬂ*7m*a/\*) =1 '—,B* + ﬂ*m*
(as + as)®

a3 — 2azas — 3a2 + 4asc’

is also a possible maximum value of L(a, 3,z, A).
We introduce the following conditions:

Cl: as+ a5 <ec. ( )
as + us 8aZ(c—az — as
2: = — 1 dpg*=
C2: @ 2as €(0,1) and 57 = (aa + 3as)(a3 — 2azas — 3af + 4asc)
Furthermore, we define the following notations:

NL o 0, g i —a3 + +/ak + 4dasc X —agz + 1/a2 + 4asc
=0 0= =

<1

1, 21 = Sas , V= e , an
61 = 2A:h\/::;
N9: of = (a3 + as)(a3 — af + 4asc) Br = 8a2(c — a3 — as)
L (a3 + 3(15)(6&3 26630,5 3a§ + 4a5c)’ 2 (CL3 + 3&5)(&3 - 2a3a5 - 30% + 4&56),
as + as (a3 + as)? o
—_—— * e d — A
$2 2a y Uy a3 — 9&3([,5 _ 3a5 n 4a5c, an 62 - 9 A:hl E i\/_

We have p10ved the next theorem which provides the solution to the problem (5.3.2).
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Theorem 5.3.3 Let (a3, as) satisfy one of the two conditions (a) and (b) in Lemma
5.8.1 (i), and 0 < ¢ < ¢*, where ¢* is indicated in Lemma 5.3.1 (ii). The solution to
the problem (5.8.2) is the following:

(i) If C1 is true, then & = 1Ay, and pj3 = 1.

() If C1 is not true, but C2 is true, then pj = max{v},vi} := v}, and the
corresponding design measure is &;, 1 € {1,2}.

(i) If both C1 and C2 are not true, then u} = v}, and the corresponding design

NP |
measure is £ = §Ai\/x—;.
The following corollary is obviously true.

Corollary 5.3.4 Let o(z) = aza® + asz® > 0 on [0,1] and az + as = 0. Then the
solution of the problem (5.8.2) is &* = %Ail, and p3 = 1.
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5.4 Approximately Linear Regression Models
with Norm 2 bounded Contamination

Functions

In this section, we consider the problem of bounded bias optimal designs of ap-
proximately linear and multiple linear regression models with different class of F and

U as we discussed in Section 5.2 and Section 5.3. We define

¥ = {4(z): /S X (z)dz < 7’ /5 f (2)9(z)dz =0},

where 7 is a preassigned constant and the side condition fg f (z)¥(z)dz =0 is to
insure the identifiability of the parameters to be estimated. Also, we define
F = {{(z): dﬁT_(;l = m(m),/sm(x)d:z: = 1,m(z) > 0, and m(—=z) = m(z) on S}.
1
T 2 T A A
Let § =@ f (z) to be the estimator of 97 f (), where §7= (6,61), § = (0o,61),
and fT (z) = (1,z). Under the model (5.1.3), we know that

In this section, we choose S = [—%,

2

MSE(j) =

3|9

[T @)B7(€) f (@)+ 7 (2)B7HE) b (4,€) &7 (%, €)B7(¢) f (2),

where B(€) = [s f (z) fT (z)dé(z), b (¥,€) = [s [ (z)b(z)dé(z), and

[ MSB@)dz = ZurAB e+ FF (5, BHOABE) b (3,8,

with A = [5 f (z) fT (z)dz.

For the approximately linear regression model, we have

1 0 1 0 1 0
B(¢) = ( 0 u )a B-(¢) = 0 1 |, A= 0 1 |,and
’ 12

fa
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o' ($,€) = (Js ¥(z)dé(x), fs v(2)d()). Denote

and

Bias(,€) =" (,)B1(€)AB(€) b (%,¢)
= ([ (x)dé(z), [ ap(z)dé(z))

(o)(2) (e ) (o)
AR AU ARECLI

= ([ 4(2)dé(2))* + 5= (J zp(z)dE(2))%

1243

We consider the following problem:

min V(&) subject to max Bias(v,€) < ¢, (5.4.1)

where ¢ is a preassigned positive constant.
The maximization of Bias(¢, ) over the class ¥ has been done by Huber in 1975.
The result can also be found in Huber (1981). We state the result in the next lemma.
1

Lemma 5.4.1 (Huber 1975) Let F; = {€ : £ € F and py = [ga?dé(z) > T

any & € Fi, we have

}. For

max Bias(h,€) = 1° [ (m(z) - 1)%dz,

dé(z)
dz

where m(z) =

2
The fact V(¢) = g—(1 + 7 21,u ) implies that minimizing V(£) is equivalent to
n 2
maximizing po. By Lemma 5.4.1, we conclude that, within the class 7, (5.4.1) is
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Furthermore, we can write pp = [522dé(z) = [ z*m(z)dz, and fs(m(z) — 1)%dz =
Js(m*(z) — 2m(z) + 1)dz = [y m2(z)dz — 1. Hence (5.4.2) becomes

maxsznz(m)dm subject to /

— 2(y £
ma Sm(m)da: =1 and /sm (z)dz < 7 +1. (54.3)

We first consider the subproblem

2 : 2 ¢
ax [ z*m(a)dz subject t / x)de =1 nd/m z)de = — + 1. 5.4.4
?(1-:}‘,/51 1(a)dz subj osm() and | (z) 772+ ( )
For some multipliers a, b, we maximize

/[xzm(m) + gm(m) - %mz(x)]d:c

by maximizing the integrand pointwise. We find that

m(z) = [az® + b]*,

with a, b determined by [sm(z)dx = 1 and [y m2(a)dz = =yl

2
Before we solve the problem (5.4.3), we are going to show that the problem (5.4.3)
and the problem (5.4.4) are equivalent.

Lemma 5.4.2

max/ z*m(z)dz subject to /m(w)dw =1 and / m?(z)dz < =41
EeF Js s s n?

15 equivalent to

?éaj%:[ngm(w)dx subject to /Sm(a;)da; =1 and L??tz(x)dm = 71%+ 1.

Proof: Let pj be the maximum value of (5.4.3). We are going to prove Lemma 5.4.2

by showing that p} is a function of A and increasing in A where 0 < A < <.
N2
1 T
For any ¢ € Fi, we have p, = [522dé(z) > 3 which implies ¢ > 0. Hence, we
consider two cases.
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(i)e>0,6>0
In this case, we have m(z) = [az? + b]* = aa® + b. Hence, we get
Jsm(z)dz = [%, (ag? + b)da = E b= 1, (i-1)
2

fsm¥(z)dz = fé(a + 2abz? + b?)dz = glﬁa + 6ab+ b =14 X, (i-2)

and
. L . a b .
po = [gx*m(z)de = ff%(aa)" +bz?)de = — + —. (i-3)

Put (i-1) into (i-2) to obtain

1
a4 2a(l — & _ %y _ _
30 +6a(1 )+(1 12) 1+ ); and hence a 180A. (i-4)
Put (i-1) and (i-4) into (1-3) to obtain
11 1 1 1 \/_
s = =it ——\/10—
R T TR A R T LA TR T A tovs 09
Note b =1 — -1—2 =1- 11820/\ > 0 implies that A < i;- Hence p% is a function of A

and increasing in A when A € (0, %]

(ii)a>0,b<0

In this case, there exists a o € (0, =

2) such that

m(x):{ az® +b z € [-},—o) or T € (7o, 1] '

0 & € [—xo, Zo)

Hence, we get

azd+b=0, (ii-1)
Js m(@)ds = 2 [} (as? + b)dz = 2(52° + bal, = 2[5 —d) + b(% —ao) =1, (ii-2)
femP(z)dz = 2[2 (az? 4 b)%dz = 2f5 (a®z* + 2aba? + b?)dz
= 2[-—2:10 + ?g—bw + bZ(IJ]xo
= 20 (5~ 28) + 2L - o) + (3 — w0)

=14, (ii-3)



and

pe = [gaim(z)de = ijo z?(az? + b)dz

= 2f_,c%o(aa:4 + bz?)dz
= 2[%:1:5 + 5:1:3];?0
a,l b, 1 ..
=2l (55 — 20) + 3(5 ~ #)]. (ii-4)
gy . a,l 1 1
Put (ii-1) into (ii-2) to get §(§ —23) + (-—aw%)(-z— — @) = 55 and hence we find
0 = 1
2(3(5 — =8) ] z§(3 — o))
" 23 ~ zo)( + 3wo — 3a)
1 5
> (ii-5)

" 2(eo - 12(Zeo+ 1)
)

Putting (ii-2) and (ii-5) into (ii-3), we get

@l 5, 2 Loy a (maa2y2(l oy = LEA
5 (32 ‘1’0) + 3 ( a’a’O)( a’O) +( aa’O) (2 ‘1’0) - 2
which can be simplified as the following:
.2 .
= =1+ 11-
3 (3223 + 1829 + 3) \ o6

5(—3223 + 620 + 1)

Finally, putting (ii-1) and (ii-5) into (ii-4), we find

_ 2(51»0 1)2(1251384-3:1:0—{-;6;1;0_}_41_0)
2 (20— 1) (320 + )

— 16"1"8 + 16:1:(2) + 1220 + 3

- 20(4z0 + 1)

(ii-7)
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From (ii-6) and (ii-7), we know that u3 is a function of z¢, and zg is a function of .

Hence 1 is a function of A through 2¢. For the sake of argument, we write z instead
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of 2o hereafter. Taking the derivative on both sides of (ii-6) with respect to A, we get

3 dz,
5(—3243 + 6z + 1) X

[(—322° + 6z + 1)(64z + 18)% — (3222 + 18z + 3)(—962? + 6)

_ 96x(322° 4 362 + 15¢ 4 2) dz
T 5(—323+6z+1)2 dh

1.

It is easy to see that

dae _ 5(—3223 + 6z + 1)?
I\~ 962(322° + 3622 + 152 + 2)

> 0,

when z € (0, %) On the other hand, = € (0, %) if and only if X € (%,oo). Hence, we

conclude that ;l—il\c >0, for A € (%,oo). Taking the derivative on both sides of (ii-7)

with respect to x, we get
W = ol
dx 20(4x +1)2

-~ (32¢° + 282 + 8z
5(dz § 1) 20 T 287 +82)
_ 4x(822 4+ Tz 4 2)

5(4x +1)2

4 + 1)(482% + 32z + 12) — 4(162% + 1622 4 12z + 3)]

> 0 for z € (0, %)

By the chain rule for derivatives, we have

Hence p3 is a function of A and increasing in A. 0O

Remark 1. There are two limiting cases:
(i) A — 0 which corresponds to a = 0, and b = 1. In this case, we get m(z) = 1
1 . . .
on [—5, —2-] which is the uniform density function and u} = s
(i) A — oo which corresponds to zp — -;— In this case, we have uj = i and

1 . . .
* = =A_1 which is the same as the usual optimal design.
9 %3 g

The next theorem follows by Lemma 5.4.2, which provides the solution to the
problem (5.4.3).
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Theorem 5.4.3 Let us maintain the same notations as we used in this section. The

solution to the problem (5.4.8) depends on the value of ) = .
U

(i) If X € (0, g], then m(2) = aa® + b with a,b determined by
. — 2 —
/Sm(a,)d:v = 1,/Sm (z)dz =1+ A,

1 )
6\/~
(it) If)\ € (g,oo), then

and p} =

1 1
az®+b z€[-=,20) orz € (xg, =
m(:c):{ [ 2 o) ( »9

0 T2 € ['—'$07 3)0]

with a, b, determined by

/ m(z)dz = 1,/ m¥(z)dz =1+ ),
s s
and
. 1623 4+ 1622 + 1220 + 3
M2 = 0(dzo +1)
where x¢ is determined by

3(3222% + 18z¢ + 3)
5(—3223 + 6z + 1)

It is possible to extend the problem (5.4.3) to the higher dimensional case. Here

=1+A

we only discuss the multiple linear regression case.
Let fT (z) = (1,21,...,%p), 6T= (80,61, ..., 0,), and éT= (éo,él,...,ép) where § is

the least squares estimator of §. Define

U= /z,bza,)da:<77 and/f z)d z=0},
where R= {z: ||z || L 7 := ﬂ—\;-—_—l—-]——} and
dé(z)
F = {&(2): = m(z), [pm(z)d 2= 1,m(z) > 0, and m(zy, ..., —2i, ..., )

= m(2y, ..., Zi,...,Tp) on R, i =1,...,p}.
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Then we have

B(¢(z)) =Jrf (2) {7 (z)dé(z)

1 o) e zy
T 2 212
=fa| | dé(a)
T, TpTy 2
(1 0 0
0 fpaim(z)dz 0
0 0 Jrim(z)d 2
10 0
0~ - 0
00 - 4
where v = [paim(z)d z,7=1,...,,p, and
A =g f(z) M(2)de
1 & - =,
Ty 2 T
=Jr . 1. " lde
Tp Tply 2
1 0 0
0 [raidz 0
0 0 - fpaldz
1 0 0
0 Yo 0
0 0 Yo
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T
Let =4 f (z) be the estimator of g7 f (z). Under the model

where v = [p2%d o=

yi=y(@) =6"f (z) +¥(z)+e i=12..n, (5.4.5)
we have
MSEG) =7 [T @B (E(e) f (o) .
+ T (2)B1(é(2)) b ($(2),€(2)) o (#(2),£(2))B1(E()) £ (=),
where
8" ($(2),4(2)) = fr [ (2)¥(2)de(2)
= (Jr¥(2)m(2)d 2, [ 219 (2z)m(2)d 2, ..., [r2pP(z)m(2)d 2),

and
[ MSE(§)d a= V(€(2)) + Bias((2), £(2),
where \
g -1
V() = ZirdB(E(@)
1 0 -~ 0 10 -0
=z-2-tr 0 v -+ 0 0% 0
n o : Do :
0 0 --- % 0 0 - }1
2
=U_[1+@],
n v
and

Bias(s(2), £(2)) =b" (¥(2),£(2)) B~ (£(2))AB™ (£(2)) b ((2), £(2))-
We consider the following problem:

min V(¢(z)) subject to max Bias(y(z),{(z)) <, (5.4.6)

where c is a preassigned positive constant.
The maximization of Bias(¢(z),£(z)) over the class ¥ has been done by Wiens
(1990). Let H = B(E(2)) A~ B(é(2)), and K = [ f () /7 (2)m(z)d 2, and v be

the largest solution to the equation |K — vH| = 0. Then we have:
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2
Lemma 5.4.4 (Wiens 1990) Let Fr, = {€ : £ € F, and v = [pa?dé(z) > p’:fZ}'
For any ¢ € Fo, we have

max Bias($(z),¢(z)) = 7%( /R m*(z)d ¢ —1),

dé(z)
dz

where m(z) =

Similar to the one dimensional case, within the class of F,,, we only need to

consider the problem:

. 0'_2 P : 2 / 2 —
min — [1+ " ] subject to p*( ™ (z)dz —1) =, (5.4.7)

which is equivalent to

max [paim(z)d z subject to [rm(z)d z=1

¢ (5.4.8)
and [pm?(z)d z= FHl=A+1L

For some multipliers a, b we maximize
/ [a:Zm(:c) + —bm(:z:) — —1 mz(a:)]d T
R 1 - a - 2a - -

by maximizing the integrand pointwise. We find m(z) = [a|| z ||? + b]F, with a,b
determined by
/Rm(q;)d z=1 and /Rmz(:g)d z= A+ 1.
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Chapter 6

Robust Designs for some
Regression Models with Random

Bias

6.1 Introduction and Preliminaries

In Chapter 4 and Chapter 5, we have assumed that a class of possible bias functions
exists but that all functions in the class are equally likely to be the actual bias present
in the regression model. In practice, it is possible that certain bias functions would
be more likely than the others, and perhaps the experimenter can specify a prior
probability distribution on the form of the possible bias functions in the model. In

this chapter, we consider the following regression model:

y(':fi,w) =QTI (21) + ¢(§i,w) + €;(w), i=1,..,n. (6.1.1)

The €;(w)’s, for a given w, are uncorrelated random variables with mean 0 and variance

02>0. €S :={(z1,.,2g): —1<2;<1,7=1,...,q} CRY, i=1,..,n.
~

£T= (60,04, ...,0,), and fT (z) = (fo(f),fl(g),...,fp(g)) . w is a random variable
defined on Q with distribution [J(w). For A € Fq, Fq is a o—finite field defined on
2, TI(A) represents the probability that ¢(-,w) falls in the set {¥(-,w), w € A}. [I(w)

represents our prior knowledge or opinion about the distribution of possible functions
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P(-,w). We additionally assume that Efy(z,w)] = [¢(z,w)d[[(w) = 0 and E[p*(z
,w)] < oo for all z€ S. The assumption E[(z,w)] = 0 reflects the notion that the

model
y(z,w) =§Tf (z) +eilw), i=1,..,n,

is correct on the average, but any particular realization (choice of w) may induce the
bias 1 (z ,w). Note that if co > IE[Qp(g,w)]‘ # 0, and one can write E[p(z,w)] =47
+ g (z) where / is a vector of unknown constants, and ¢ (z) a known function. One

can then define ¢(z,w) = ¥(z,w) — E[p(z,w)] and write

f(z
4(z,) =07, 47) ( ~ ) +d(z0) + elz,0),

g (z

which is in the form of (6.1.1) with E[¢(z,w)] = 0. Note also that the condition
E[¢(z,w)] = 0 insures the identifiability of the parameters § .
Let ¢(z) be a design measure defined on S. We define B(¢(z)) = [s f (2)

7 ()de(z) and 17 ((g,e)s E@)) = (s Sol2 bl )E(2), o s o2 2, )dE(D))
The least squares estimator of § is then 0 B (&(z)) Js f s f (z)y(z)d z with bias vector

and mean squared error matrix as follows:

E[§ — 6] = BT (£(2)) b (¥(z,w), &()) (6.1.2)

and

(2)) + B~(¢(2)) b ($(zw), £(2)) (6.1.3)

~

MSE(§) = E[(Q - )(§ — 0)"]

(¢
b" ($(z,w), £(z))B(E(z))-

~

AT
Let § =6 f (z) be the estimator of 0T f (z). Then the mean squared error of § is

MSE@) = BI(§ | (@)~ 6"f @)
1 (@)B (@) f @+ [T (2)B7(E(z) (6.1.4)
+ b (B(z,w), £(2)) b7 ($(z,w), £(2))B7H(E()) £ (2).

~ ~ ~

Q

n
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We consider the loss functions (i) Lp(¢) = [fq

MSE(@)|d11w), (i) £a(6) =
Jatr MSE(§)dTI(w), and (iii) Lo(€) = fy < fs MSE(§)d g) dT1(w). It is clear that
these loss functions correspond to the classical notions of D—, A—, and Q-optimality
if y(z,w) = 0. For convenience, we call a design measure { D—, A—, or Q-optimal

if £ minimizes Lp(€), L4(€), or Lg(€) respectively. In this chapter, we are going to
find:

(i) @ — optimal design for one dimensional polynomial regression model;
(i) D-, A—, and Q-optimal designs for multiple linear regression model;
(i) D—, A—, and Q-optimal designs for two dimensional linear regression

with interaction term.

The solutions are provided in Section 6.2, Section 6.3 and Section 6.4 respectively.
The problem discussed here was posed by Notz in 1989. In his paper, he found
optimal designs for one dimensional polynomial regression model with respect to D—
and A—optimal criteria. Hence this chapter extends Notz’s results to some other loss
function and to the high dimensional situations.

Before we start to solve the optimal design problems, we first provide some results
2

. . . . [ . .
which are useful in the later sections. For convenience, we set v = —. We maintain
n
the same notations as we made earlier in this section. We present some useful results

in the next four lemmas.

Lemma 6.1.1 £5(¢) = [vB~(¢(@)| - {1+ 7 fo b7 (h(z,0), (@)
BE(R)) b ((z,0),E(2)ATI)).

Proof: Let G be a nondegenerate m x m matrix and let F' be an m x k matrix. Then

we have

|G + FFT| = |G| |l + FTG™'F|
(See Fedorov (1972)). Let G = vB~!({(z)) and F = B~'({(z)) b (¥(z,w),¢(z)) (In

this case, we have k£ = 1). Then we have
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"

| MSE@) | = |0B-(E(@) + BER) b (9(zw),€@))
I ($lz,0), 6B (E@)|
= [oB(E@) Il i+ (B(E@)) b (b(z,), €))7
B (@) (B (E(E)) b (h(z,0),€(2)) |
= 1B (E) | {1+ BT ($(z.w), £2)B ) - TBEE)
BE() b ($(z0),6(z)
= 0B (E@) | L+ b7 (b(z,0), @) B (E()) b (b(z,0), @)}

~

Hence, we get

Lp(€) = (é) (w)
= | @) | {1+ v fp 0T (P(z,w), €(2))
BE()) b (b(z,), E@)ATI)). o

Lemma 6.1.2 L4(£) = v-trB7Y({(z)) + Jo ’QT ($(z,w),&(z))B~2(¢(2))

~

Proof: Let G be an m X m matrix and u be a m-dimensional column vector. We

are going to show that the following equation is true:
trGuu’ G =u" G*u. (6.1.5)

Let gi; be the ¢* row and j** column element of G, and uT= (u,...,un). The
7t row and k** column element of wuT is uju;. Hence, the 1** row and k* column
element of G wuT is 371, giju;jux, and the i** row and I* column element of G uu” G

is Y iy (Z;-n:l gijUj'lLk) gki- Therefore, we have

trG ggT G = Z Z (Z GijUiUg | Gri| = Z Z Uj (Z gkzgu) U
i=1 | k=1 \j=1 k=1 | j=1 i=1
On the other hand, the k** row and j** column element of G? is "™, gr:g:;. Hence

ul GPu=3 [Z uj (E gkiﬂij) uk] =trG uwu’ G.

k=1 | j=1 i=]1
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We have proved that (6.1.5) is true.
Let G = B~'({(z)) and u=b (4(z,w),{(z)). By (6.1.5), we have

trMSE(6) = trlvB-1(é(z)) + B~ (£(2)) b (b(z,w),&(z))
- b7 ($(z,w), &(2)) B (¢(2))]
= v-trBE(2))+ b7 (¥(z,w),€(2))B~2(E(2)) b ($(z,w), &(2))-

Hence, we get

La(€) = JotrMSE(Q)dII(w)
= v-trB7({(z)) + fo QT (¥(z,w),&(z))
B72(£(2)) b (¥(z,w), €(z))dTT(w). o

Lemma 6.1.3 Let fT (2) = (fo(), ., fo(z)) and B be a (p + 1) x (p + 1) matriz.
Then
|7 @B f (z)dz=trAB,

where A= [ f (z) f7 (z)dz

Proof: Let a;; = [5 fi(z)f;(2)d 2 be the i** row and j* column element of A4, bj
be the j** row and k** column element of B and ¢;; be the ¢** row and k** column

element of AB. We have
P P
cik = ) aijbik = ) / fi(z) fi(z)bird < .
=0 =075
Consequently, we get

trAB = ch
= i{,(i/ filz)bjifi(z)d :c)
= / (Zp:zfl bjif; :1:)) dm

1=0 j=0

= [T @B f(@)ds. 0
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Suppose ¢ is a probability measure supported on [~1,1] and y; = f1, zid¢(z) for
integers ¢ > 0. If 1 > j > 0 and ¢, j are even integers, then Notz (1989) showed

Piti 2 pi - e (6.1.6)
The application of (6.1.6) will give us the next lemma.

Lemma 6.1.4 p& < pop < g fork > 1.

Proof: (i) For k =1, we have u; < s.
Assume that g5~ < por_s. Then we have pf = pk= - py < pop—s - pto < pigg-
Note that the first inequality follows by the assumption and the second inequality

follows by (6.1.6). By mathematical induction, we have
L < gy for all k > 1.

(i) por = J1;2%%dE(2) < [2; 27dE(2) = pa.
We have proved ub < por < g for k > 1. 0
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6.2 Q-optimal Design for One Dimensional
Polynomial Regression

We first consider the one dimensional linear regression model. Let f7 (z) =
(1,z), P(z,w) = Sioci(w)a’, where z € S := [—1,1]. ¢;(w)'s are integ;able real
valued function on Q satisfying v; = [, c}(w)dJ(w) < o0, and [, ¢;(w)e;(w)d[[(w) = 0
for ¢ # j and ¢ + j even. Let Fg be the set of all the symmetric design measures

defined on S. For any ¢ € Fg, we have

B(¢(z)) —_—/Sif(x) IT ()dé(z) =/S ( i ;; ) d¢(z) = ( (1) /?2 )

and

W (blaw)€0) = ([d(e,0)dela), [op(s,0)de@))

r T
= Z ci(w)ps, Z ci(w)piva |
1=0 i=0
i even i odd

where y; = /s &' dé(z). We also have

A= [ f7 (@) f (2)do =

D)
TN
t] —
E%N 8
SN————
.

8
I
TN
wivy O
SN————

and
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: (2 0)[1 0 2
/ MSE@§)dz = Zir +tr
n \o2z)\o L 0

W O
~———

r 1 T T
Y. cilw)p — 1 > ami| | X clwpin
=0 H2 | =0 =0
1 even i even 7 odd
1 T T 1 T
— | > @l | X i = | 2 clwpin
M2\ =o i=0 M2 | i=o
i even 7 odd 2 ¢ odd
202 1 T 2 T
= —([l+—]+2 i(w)pi 3 i(w) i
" ( +3#2> + ;0 ci(w)p +3#% ;, ci(w)piv
1 even t odd

Therefore, we find

Lo€) = /(/MSE dm)dH

1 2
= 1+—>+2§ﬁ%ﬂ,+——- Vittders
( 3:“2 1=0 3#2 1=0 +

i even 1 odd

2

o e . . e
where v = —. Our objective is to find a symmetric design measure {o minimizing
n

Lg(€) over Fs. This is equivalent to minimizing

i — i 6.2.1
3/14 + ; 7,’61 +3# Zd:d’yluz+1 ( )

over Fs.

In light of Lemma 6.1.4, (6.2.1) can be minimized when £ is such that u; = ,ué for
even 7 > 2. This occurs when ¢ is of the form £(z) = §{(—2) = —;— forsome 0 < 2 <1
or £(0) = 1. We exclude the case £(0) = 1 since then gy = 0 and Lg(¢) is not defined.

For any £ of the form £(2) = {(—2) = }, we have y; = 2* when i is even. For such ¢,
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(6.2.1) becomes
§ : 21 § : 21+2
322 + ’ytz 3 ’Y‘l

Z i=0
i even i odd
2+ Z ,‘/zzZz_l_ Z Yiz ‘21,—
"3z i=0 i=0
i even z odd
='3”‘+Z71$+ Z'I’zzl'_L( ),
=0 1=0
i even i odd
where z = 2?2 and 0 < 2 < 1. Let
dL(.’I)) A z 1
iz 3:v2+ E vz + Z = 0.
i even i odd
We get '
v=3 Y ipe™+ 3 (1 - 1)yal. (6.2.2)
ize:-:/gn izfc?d

Thus we have proved the following theorem.

Theorem 6.2.1 Assume 7 (z) = (1,z) and ¢(z,w) = i, ci(w)zt for some inte-
gerr > 0, where the c,-(w)’sNa're integrable real valued functions defined on Q0 satisfying

= fo E(w)d[](w) < o0 fori=0,...,7 and [y ci(w)c;(w)d[I(w) = 0 for all i # j and
¢+ 7 even. Then there exists a design measure £y € Fg that minimizes Lo(€) and is
of the form £(z) = €(—z) = 3, where z = min{l, /z} and 0 < z < 1 satisfies (6.2.2).

Probably, the most useful special case is ¥(z,w) = 1.2, c;(w)z?. In this case, the

more explicit result can be found. We state it as a corollary.

Corollary 6.2.2 Suppose the assumptions of Theorem 6.2.1 are hold with r = 2.

Then Lq(€) is minimized by &y of the form £(z) = €(—z) = 1 where z = min {1, 6 61’; } .
. 2

Proof: In (6.2.2), we put » = 2. Then we have v = 6v,2% and hence z = 2 % The
V 672

corollary follows by Theorem 6.2.1. 0
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Now we consider the one dimensional quadratic regression model. Let
T (=) = (1,z,2?). For 1(z,w), we consider a special case when P(z,w) = co(w) +
c1(w)z + ca(w)z? + cz(w)zl. For € € Fg, we find

1 0 H2
BE@) = [ /()T @)= | 0 pm 0
B2 0 pg
and
Hq 0 —H2
fa — U3 1 [a — 13
B Y(¢(z)) = o 4 0
2
— it 0 1
fha — {3 fa — p3
We also find
2
2 0 =
5 3
A= [ @ T @d=]0 20 |,
5~ ~ 3
24 2
3 5

~

b7 ($(2,0),6(2)) = ([ $(,0)d(e), [ o(@)de(a), [ a%(e,0)de(z))
= (co(w) + c2(w)p2, cr(w)pz + ca(w)ps, co(w)ps + ca(w)pa),

and

_ 214 282 2 29 2
tr AB71(£(z)) = - + - +
(&=)) pa—p5 3(pa—pd)  3pe 3(ka—43)  5(pa— i)

_ 30uy —20p2+6 2
15(pa = p3)  3pe




168

Note that

f7 ()BT (E(2)) b (b(z,w), (=)

N4 0 —He2
Ha — 43 L 13 co(w) + ca(w)pe
= (1,z,2?) 0 - 0 c1(w)ps + c3(w)pq
—H2 0 1

B2
co(w)pz + co(w)pa
Ha — p3 fa — p3

Cg(w) p
c1(w) + c:».(w);;2
ca(w)

= co(w) + c1{w)z + er(w)z? + c;;(w)—gi:z:.
2

Hence, we have

tr AB=1(£(2)) b ($(2,w),£()) b7 ($(2,0),€()) B~} (€(=))
= [T @B (@) b (b(a,0), 6@ (2)B7(E(=)) b ((a;w), (@) Tde
— 2 Ba 19 -

- /S [co(w)-; er(w)z 4;2 er(w)z -i2—c (w)ﬂ22x] ;z 2

= 2¢3(w) + gc%(w) + 502( w) + c3(w) 2 + 300(w)02(w) + §c1(w)03(w)—z—i—.

Finally, we get

L) = [ ([ MSE@)dz)d]Iw)
= v-trABE(@)) + [ trABTE(z)) b (b(e,w),E(2))
B ((2,), () B-1(E(2))d TT(w)

(3044 — 200, +6 2 I 2, . 2,
—— 2 —_ -
i 15(#4 _ 'u%) 3#2- + Q[ CO(w) + 3cl(w) + 5C2(LU)

2, 2 2 fiq
+3c3(w) + 3 Co(w)ea(w) + 34 (W)CS(W)EWHE“’)

[30us — 202 +6 2 ] 2 2 2 p?
|+ 2%+ tm + o + 2vss,
| 15(pa — 43) 3pa | Yo gM T e 373#%

if- / co(w)er(w)d [J(w) = /c1 (w)es(w)d[[(w) = 0 and v = /Qc?(w)d]:[(w) <

oo, t=10,1,2,3.

= v
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It is clear that a symmetric design measure & which minimizes Lg(¢) over Fs is

equivalent to minimizing

15p4 — 10p2 + 3 1 1l
+ — 6.2.3
15(ms— #3)  3ua) " 3°u2 (6:23)

over Fs. Lo(pi2, tt4) depends on ¢ only through (u2, s4). The application of Theorem
4.2.5 yields

Lo(pa, pa) :=v

foin Lo(pz, pa) = min Lo(pz, pa),

where Fo = {£ : ¢ € Fg, §=%Ai\/§+(1——a)Ag, 0<a<l, 0Lz 1} For

any ¢ € Fo, we have yy = /Saczdﬁ(:v) = az,and y4 = /Sm‘*df(a:) = az®. Put yy = az,
and p4 = oz’ into (6.2.3), we find

2 _ 2
15az® — 10z + 3 1 l + 3T (6.2.4)

Lo(ua, ) := Li(a,z) = v { 15a(1 — a)2? 3oz 3

Hence, we have

Lo(psa, i) = L
fin Lo(pz, pa) = min  In(e, ),

where A = {(o,2): 0< a <1, 0<z <1}. This yields the next theorem.

Theorem 6.2.3 Assume IT (z) = (1,z,2?%) and ¢¥(z,w) = 3, ci(w)z?, where the
¢i(w)’s are integrable real valued functions defined on Q satisfying v; = /Q E(w)d][(w) <
oo fori=0,1,2,3, and/Qco(w)cz(w)dH(w) = /ch(w)cs(w)dﬂ(w) = 0. Then there
exists a design measure o € Fs that minimizes Lo(€) over Fs and is of the form
bo = %EA:E\/;C;+ (1 — ap)Do, where 0 < ap <1 and 0 < 2o < 1 minimize Li(a,2) in
(6.2.4).

Remark 1. The assumptions /CO(W)C2(W)dH(W) = /c1 (w)es(w)d[J(w) = 0 in
Theorem 6.2.3 are not necessar{;f. The similar result can be found without these
assumptions. However, when we consider the case 9(z,w) = 27_g ci(w)zt for r > 3,
the assumptions /Q ci(w)ej(w)d [J(w) = 0 for i # j and i+ 5 even will greatly simplify

the problem.
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Remark 2. The solutions in Theorem 6.2.1 and Theorem 6.2.3 are not unique. For

example, (6.2.4) can also be minimized by a design measure £ of the form £ = %A:}:l +

(1;a)Ai\/§forsomeOSa§1a,ndOS:vSl.
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6.3 Optimal Designs for Approximately

Multiple Linear Regression

The results in Section 6.2 and in Notz (1989) can be extended to the high di-
mensional case. In this section, we only consider the approximately linear regression
situation. In this case, the problem of finding optimal designs can be easily solved.
Let

Yi = y,-(:'gi,w) =~9TI (Ez) + 1/)(§i,w) + € (w), 1=1,..,n,

where ¢;(w) are independent and identically distributed with mean 0 and finite vari-
ance 0% > 0. We also assume &= (21,...,%) € § 1= {(21,..,%p) : -1 S 2; < 1,7 =
1,...,p} € R?, IT () = (fo(z), s fil2)) = (1,21, ey Tp)s €T= (6o, 61,...,0,) with
p > 2, and

P P
z/)(g,w) = aow) + Z ai(w)e; + Z bi(w)z? + Z Cij TiT;.
' i=1 i#j

=1

We again restrict ourself to consider the symmetric design measures defined on
S. We denote F, to be the set of all the symmetric design measures on S. For any

&€ € Fp, we have

BE@) = [f@f@aw=[|" 7 7T @

~

(Bp $p5L'1 Ssee xz
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where A = /S'Lfdﬁ(g) t=1,...,p, and

W (20 E@) = ([ 9law)d), b o), - [ o)
= (ao(w) + /\éb;(w), al(w)/\,...,a,,(w)/\) .
According to Lemma 6.1.1, we have
£o§) = B E@)| {1407 [ 5 iz, 6)
B(E() b (), E(@)dTIw) |

= %{1 _}_v—l/Q (ao(w) +/\iZ:;bi(w), ar(w)A, ... ,ap(w)/\)

0 ag(w) + A Zp: bi(w)

10

=1
N a@h )
00 X ap(w)A

= :\%{1+v‘1/0[(ao(w)+’\ibi(w))2
+a(w)A + ... + a(w)AJd[T(w)}

= )\—(u+ao+/\22ﬂ,+,\2az>,

=1

(6.3.1)

if /9 ap(w)bi(w)d[J(w) =0, i=1,..,p,and /Qbi(w)bj(w)dﬂ(w) = 0 for all
t#£ 7 o= /Qa?(w)dH(w) <00, 1=0,..,p,and f; = /Qb?(w)dH(w) <oo, t=
1,...,p.

It is clear that the range of A is between 0 and 1, and any value of A within its
range can be achieved by choosing a design measure £ of the form é(zy,...,z,) = 21—p
where z; = *++/z for some 0 < 2 <1, ¢ = 1,...,p. Putting A = /sxfd(f(g)) = z into
(6.3.1), we get

Lp(é) = 1(v+ao+z22ﬂ,+z2a,)

=1
P

= (v+a0 Zﬂ, — Za,- := Lp(z).

i=1
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We find

N YRS LES)

dz zpt1

since we assume p > 2. Hence Lp(¢) is decreasing in z, and
14 p

min Lp(z) = Lp(l)=v+> o+ 06,
0<z<1 paard pt

. . . .
and the corresponding optimal design measure is &y, where &o(z1, ..., 2p) = 2 with
z;==x1,1=1,..,p.

According to Lemma 6.1.2, we have
Lale) = [ tr MSE(S H
= v-trBTE(@) + [ 8T (2w, ()
2(6( )) (%(z, w) ¢(2))dI1(w)
= o(l+ )+/ (ao(w) + /\Zb )y ar(w)A, ..., ap(w)A)

10 .. 0 aow+/\_2b,-(w)\
e (@) dTI(w)
00 .. & o))

= o1+ 2) 4 fllan(w) +Az;b )+ 3 adw)dII)

= v(l+ )+a0+)‘22ﬂz+za1

=1 =1

= (v+2a,) —+X"Zﬂi,

1=0 =1
(6.3.2)
if / ao(w)bi(w dH(w =0, i=1,.,p and /Qb,-(w)bj(w)dH(w) = 0 for all ¢ 5
.7) Qi "'/ < 0, ¢ =0,...,p, and :32' = ‘/(; bf(w)dH(w) <o00,1=1,..,p.

Similar to D optlmal case, (6.3.2) can be minimized by a design measure ¢ of

the form ¢(zy,...,2p) = 5; with 2; = +/z for some 0 < z < 1, 4 = 1,...,p. Put
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A= /S 22df(z) = z into (6.3.2), we have

P .
La€)={v+D a +—+z > Bii=La(2).
=0 =1
. P P
Solving La(z) = —-gg +22) Bi:=0,wefind22) B = 2123 and hence
i=]1 =1

dz z

P
z = ¢up/2 ;1 Bi.
Note that

7 @BER) b (b(z,0),62)

=

P
10 0) [ @@+ b )
i=1
0 1 0
= (1,21,...,2p) ’\ . ar(w)A
I ¥ A R
P P
= ao(w) + A bi(w) + Y ai(w)z;
i=1 i=1
and
1 =z Ty
2
A= [ f@) [T (e)de —/ oo R P
sy ™A WA T s W
Tp TpT 2
2?0 0
0 l2” 0
— 3

1
e 2P
0 0 3
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Hence, for Q—optimality, we have

JMSE@dg = o [ f7 (@B ER) f @)z

=1

1 P ?
= U|:2p+"?—)‘('x+ X)]+27’<ao +/\szw>

=1

+/SZ(L 2dm+2/ZZa, w)a;(w a:,’cjdx

=1 z<.7

= 2Pv (1 + ﬁ) + 27 (ag(w) + A ; b,-(w)) + 3 ga?(w).

= v-trAB71({(z)) + / o(w) + A Zb )+ Zp: a,-(w):c,-) dz
+

Therefore, we get

Lo() = /(]MSE dm)dH
= 2Pv(1+3—)\>+2p (ao+>\2i=zlﬂi>+2§;iiz;ai>

if / ao(w)bi(w)d[[(w) =0, 7 =1,..,p, and /Qb,-(w)bj(w)d]:[(w) = 0 for all ¢ #
J; —-/Q a}(w)d][(w) < o0, 1 =0,...,p,and §; = /Qb?(w)d]:[(w) <oo,i=1,..,p.

It is clear that the minimization of Lo(€) is equivalent to the minimization of the

following;:
vp 2 -
=+ A Zﬁ;, (6.3.3)
3/\ i=1

which can be minimized by a design measure ¢ of the form &(z4,...,2,) = 515 with

x; = +/zforsome 0 <z <1, ¢=1,..,p. Putting A = /S:vfd(f(f)) = z into (6.3.3),
we have
P 2y
+ z Zﬂ, = Lg(z).
dLo(2)

T 32+2 Zﬂ,_o weﬁndz—f‘/vp/ﬁzﬂz

We summarize the above 1esults as the next theorem.

Solving ———+
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14
Theorem 6.3.1 Assume that f7 (z) = (1,21, .y 2p), and Pp(2,w) = ao(w)+) _ ai(w)z;

i=1
P
+ > bi(w)a?+ T3 cijziz; where o = /Qa?(w)dH(w) <o0,1=0,1,..,p,
=1 1%
B; = /Qb?(w)dl__[(w) < oo, t=1,..p, and Lao(w)bi(w)dﬂ(w) =0,:=1,..,p,
/Qb,-(w)bj(w)dH(w) =0 for all i # j. Within the class of F,, we have that

(i) Lp(€) is minimized by &o(z1, ..., Tp) = -él;, where z; =1 1= 1,...,p, and

min £o(E) = £(6) = v+ 3 e+ 3 fi

1=0 =1
(it) La(€) is minimized by &o(z1, ..., Tp) = o with x; = +/z © = 1,...,p, where

z = min {1, vp/2 éﬁi} .

1 .
(iit) Lo(€) is minimized by &o(zq, ..., Tp) = % with &; = £/z 1 = 1,...,p, where

z = min {l, &vp/6 éﬂ,} .
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6.4 Optimal Designs for Two Dimensional Linear

Regression with Interaction Term

Linear regression with an interaction term is a very common and useful model
in regression analysis. There is an advantage to considering this model. For any
symmetric design measure, we have that B~*({(z)) is a diagonal matrix. In this case,
the problem of finding optimal designs is very easy. The approach to the problem in
this section is very similar to Section 6.3.

Let fT () = (1,21, %2, 11%2), P(T,w) = ao(w) + ar(w)z1 + az(w)z2 + by (w)z? +
bz((,())(l)%’jf- c12%122, S = {(z1,22): =1 <2; <1, =12} CR* and Fo = {€: ¢ s

symmetric design measure defined on S}. We find

B({(z) = | f(2) [" (2)d(z)

Ty T2 122

=/ T 2 mzy iz dE(2)
s T, XTy TX 223 ~
21Ty Tiry mal zial
1 0 0 0
o /S 2de(z) 0 0
0 0 _/ngdﬁ(g) 0
0 0 0 /S:vfxgdé(g)
1 00 O
oo o
S loo o |
0 0 0 A
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where \ = /S'z,fdf(g) i1=1,2 and Ay = / 1$2df( ), and

b <¢(§7w)’€(£)> = ([, ¥l@w)d(e), [ ap(z,w)de(z),

JLonb(@ w)de(@), [ erzap(z,0)de(z)
= (ao(w) + (b1(w) + bo(w))A, a1(w)A, az(w)A, crz(w)Asz).

For D—optimality, we have

Lp(£)

/Q | SE@)|d](w)
det B(E(2)) - [o+ | 87 (b(z,w),€(2))
By (¢( ) £(2))dTI(w)]

~ ~ ~

0 [ (00(0) + (B0) + b)), (), ax()ern(w)he)
0 % 0 0 ay(w)A AT (w
00Lo az(w)A ()}
000 % C12(w)/\12

i 0+ [ [(000) + () + b))
+( 2(w) + a3(w))A + 2y (w)M2)d [T(w)}

/\2/\ 1V + o+ (Q1 + a2) A + (b1 4 B2) A + v12A12}),

(6.4.1)

if o —/ 2(w)d[[(w) < oo, i = 0,1,2, §; = /bzw)dH(w) < o0, i = 1,2
e = [ )W) < oo and [ ao(w)brw)d[[() = [ ao(@)ta(w)d T[(w) =
/61 Yba(w)d [[(w) = 0.

It is clear that Theorem 4.2.5 can be extended to the high dimensional case. For

any £(z) € Fa, let T'(€) = (/S eidé(z), /wlwﬁdﬁ( )) and & = {€: &(£V/z, £2) =
%, 0 < z < 1} which is the set of extreme points of F,. Then we have TE) =

{(,v) :

0 <u<l v=1u?}:=5 and T(F,) = S, where S, is the convex

hull of S,. It is easy to see that any point p € S, is the image of ¢ under T where
§(£vz, £/2) = a, £(0,0) = 1 —4aforsome 0 < o < L and 0 < 2 < 1. If we
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denote F* to be the set containing all these design measures, i.e. F*={£: { € F,
{7z, £v2) =@, £(0,0)=1-4e, 0 < a < }and 0 <z <1}, then we know that
the minimization of (6.4.1) over JF; is equivalent to the minimization of (6.4.1) over

F*. For any ¢ € F*, we have
A= /S:Lfdﬁ(z) = 4az and Az = /sa,f:vgdf(g) = 4az2?. (6.4.2)
Putting (6.4.2) into (6.4.1), we find

1
Lp(€) = Lp(a,z)= W[v + ap + 4{a1 + a)az
+16(,31 + ﬁg)a22’2 + 4712022].

(6.4.3)

For A—optimality, we have

£a§) = [ tr MSE@)T(w)
= v trB7UE(@) + [ 87 (blzw),E(2))
“2(E(z)) b ((z, w) £<x>)dn<w)
= W+ 34100+ / (a0(w) + (b1(w) + ba(w))A, ar(w)A, az(w)),
00 ) [ ao(w) + (ba(w) + baw))A
le 0 0 ar(w)A
0 0 (

C12(w))\12) dIT(w)

az(w)A

=

0

0

0 0 O 2 c12(w) Ao
12

2 1 (a

= v(1+x+:\;)+/9[ o(w) + (b1(w) + ba(w))A)?

+af(w) + aj(w) + y(w))d [T(w)
= v(1+g+~1—)+ao+(,31+,32)/\2+al Tzt 72

2/\ A2
1
= v+2a,+')’12+'v( + )+(:81+:B2)’\2

=0
(6.4.4)
Similar to the case of D—optimality, we only need to search for the optimal result

within F*. Putting (6.4.2) into (6.4.4) we find

La() := LA(a,z)
= v+Za1+'m+—(2+ )+16(ﬂ1+ﬂ2)oﬂz2

=0

(6.4.5)
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It is obvious that the minimization of (6.4.5) is equivalent to the minimization of the

following:
T2+ 1) + 16(5: + Br)ats?. (6.46)
For Q—optimality, we have
JMSE@dz = o [ 17 @B Ew) f @)z

+ /S £ (2)B- ‘( £2) b (B(z,), £(z))
87 ($(2,0),€(2) B (E(2)) f (2)d &

.2 2 202
<o (e R ),
12
+ [ Ja0() + (51() + ba(w))

+a1(w)z1 + az(w)zy + c12(w)zyz4)d z
1

= av (14 g5+ g ) + 4lloo(e) + (5, ) + o)A

1 1 1
+§a?(w) + gaz( w) + §C§z(w)}-

Hence, we get

Lo(€) = //MSE (§)d 2)d [[(w)

1
= 4o (1 + 3—/\ + '9/\—12‘> 1 1 1
+4 (o + (B + B2) A% + 3 + 3 + §’)’12}
) 1 1 1
= 4(UF+05‘(;+§6¥11+§012+§’)’12
—_ 2
+4 {v <3/\ + on ) + (81 + B2)A ]
(6.4.7)
Again, put (6.4.2) into (6.4.7), we find
1 1 1
Lo(€) = Lg(a,z)=4 (v +oao+ o+ oo+ —712>
37 379 (6.4.8)

+4[ (i+ ! >+16(ﬂ1 +ﬂz)azzz],

baz = 36az?
and the minimization of LQ(£ ) is equivalent to the minimization of the following:

1
6os (1 + 5 ) + 16(B1 + B2)a?22. (6.4.9)

We summarize these results as the next theorem.
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Theorem 6.4.1 Assume that [T (%) = (1, 21, %2, 2129), z/)(g,w) = ag(w) + a1(w)z; +
as(w)zz + bi(w)af + by(w)z] + crz(w)ar2a, where a; = /Qa?(w)dH(w) < o0, i =
01,2 4 = /ﬂbf(w)dﬂ(w) <00, i=12 y = /Qcﬂ(w)dH(w) < oo and
/an(w)bl(w)dH(w) =/Qa0(w)bg(w)dH(w) = /Q bi(w)ba(w)d [[(w) = 0. Let & be a
design measure of the form &(++/z,£1/7) = a, £0(0,0) = 1 — 4a. Within the class
of F2, we have Lp(€), La(€), or Lo(€) is minimized by & for some 0 < a < % and
0 < z <1 which minimize (6.4.3), (6.4.6), or (6.4.9) respectively.

Remark. The above result can be easily extended to the case when p > 2, where p

is the dimension of the design space.
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