
UNIVERSITY OF CALGARY

A GMRES Solver with ILU(k) Preconditioner for Large-Scale Sparse Linear Systems on

Multiple GPUs

by

Bo Yang

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN CHEMICAL AND PETROLEUM ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 2015

c© Bo Yang 2015

Abstract

Most time of reservoir simulation is spent on the solution of large-scale sparse linear systems.

The Krylov subspace solvers and the ILU preconditioners are the most commonly used methods

for solving such systems. Based on excellent parallel computing performance, GPUs have been a

promising hardware architecture. The work of developing preconditioned Krylov solvers on GPUs

is necessary and challengeable. We devote our efforts into the development of the GMRES and

the ILU(k) preconditioner on a multiple-GPU architecture and achieve favorable speedup effects.

Our GPU computation includes the algorithms such as SPMV, nested RAS, decoupled ILU(k) and

parallel triangular solver, etc. The numerical experiments prove that our preconditioned GMRES

algorithm is feasible and works well on a multiple-GPU workstation.

i

Acknowledgements

I would like to show my sincerest gratitude to my supervisor Dr. Zhangxing (John) Chen. He has

rigorous attitude of scholarship and kind manner to all his students. I am very lucky to be one of

his students and obtain the attractive research opportunity. Under my impression, he is always full

of energy and eager to work with his full heart. With his detailed concern, direction and guidance,

I made much progress in my study and research in the past two and a half years. He sets such a

good example for me to follow in the future academic career.

My deepest thanks go to my academic collaborator and good friend Dr. Hui Liu. He is a

talent scholar with outstanding academic knowledge. In my research process, I acquired a lot of

direction and suggestion from him. He not only specializes in academic research fields but also

has an aptitude for computer programming. It is one of the most comfortable things to study his

state of the art codes. He is always kind and patient to answer my questions. It is very happy and

lucky to work with him.

I am very grateful to my examining committee members, Drs. S.M. Farouq Ali, Hossein

Hejazi, and Wenyuan Liao for their time, attention and comments.

I owe a lot to my wife. Without her comprehension, support and care, I would not have given

my heart and soul into my study and research. She is also a positive and diligent person. I hope

she will be success in pursuing her academic degree. I am indebted beyond hope of repayment to

my family back home.

I also want to express my great thanks to all members of the Department of Chemical and

Petroleum Engineering, NSERC/AIEE/Foundation CMG and AITF Chairs, and our Reservoir

Simulation Group.

Finally, I deeply appreciate all my friends who have assisted me in my study, research and life.

ii

Table of Contents

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . v
List of Figures . vi
List of Symbols . vii
1 OVERVIEW . 1
1.1 Introduction . 1
1.2 Literature Review . 7
2 BACKGROUND . 12
2.1 Reservoir Simulation and Large-Scale Sparse Linear Systems 12

2.1.1 The Procedure of Reservoir Simulation 12
2.1.2 PDEs for Reservoir Simulation . 13
2.1.3 Discretization of PDEs . 15
2.1.4 Characteristics of Large-Scale Sparse Linear Systems 18

2.2 Linear Solvers . 21
2.2.1 Krylov Subspace Method . 21
2.2.2 ILU Preconditioner . 22

2.3 Hardware Platform . 24
2.3.1 CPU . 24
2.3.2 Parallel Computing . 24
2.3.3 GPU . 25
2.3.4 Multiple GPUs in a Single Node . 25

2.4 Development Environment . 27
2.4.1 C Language . 27
2.4.2 OpenMP . 28
2.4.3 CUDA . 28

3 GMRES METHOD . 30
3.1 Gram-Schmidt Process . 30

3.1.1 Inner Product, Euclidean Norm and Orthogonality 30
3.1.2 Projection . 30
3.1.3 Gram-Schmidt Process . 31

3.2 Arnoldi Iteration . 34
3.2.1 Cayley-Hamilton Theorem . 34
3.2.2 Krylov Subspace . 35
3.2.3 Arnoldi’s Method . 36

3.3 GMRES . 39
3.3.1 GMRES Algorithm . 39
3.3.2 Preconditioned GMRES . 43

3.4 Basic Operations . 44
4 GPU COMPUTATION . 47
4.1 Sparse Matrix-Vector Multiplication Mechanism 47

iii

4.1.1 Domain Decomposition . 47
4.1.2 Data Structure . 50
4.1.3 Reordering-Compact Method for Domain Matrices 52
4.1.4 Communication Mechanism for Domain Vectors 53

4.2 Nested Restricted Additive Schwarz Framework 56
4.2.1 Theory Review . 56
4.2.2 Data Structure . 57
4.2.3 Domain Decomposition . 57
4.2.4 Overlapped Diagonal Block Matrices . 59
4.2.5 Row Tracing Mappings . 60
4.2.6 Outer RAS and Inner RAS (Nested RAS) 61
4.2.7 Right-Hand Side Vector Overlap and Solution Vector Recovery 64

4.3 Decoupled ILU(k) and Parallel Triangular Solver 65
4.3.1 Data Structure . 65
4.3.2 Decoupled ILU(k) Algorithm . 66
4.3.3 Parallel Triangular Solver and Level Schedule Method 71

5 NUMERICAL EXPERIMENTS . 74
5.1 SPMV . 74

5.1.1 SPMV Algorithm Performance . 75
5.1.2 Comparison with HYB Format . 78

5.2 Nested RAS . 82
5.3 GMRES with ILU(k) . 89
6 CONCLUSIONS . 107
REFERENCE . 109
A MATRIX PROPERTIES . 118

iv

List of Tables

5.1 Matrices used for testing SPMV . 75
5.2 SPMV algorithm running time for HEC format 78
5.3 SPMV algorithm speedup for HEC format . 79
5.4 SPMV algorithm running time for HYB format 81
5.5 SPMV algorithm speedup for HYB format . 82
5.6 Nested RAS performance for 3D Poisson equation 84
5.7 Nested RAS performance for atmosmodd . 85
5.8 Nested RAS performance for atmosmodl . 87
5.9 Nested RAS performance for SPE10 . 88
5.10 ILU(k) performance for 3D Poisson equation . 92
5.11 ILU(k) performance for atmosmodd . 96
5.12 ILU(k) performance for atmosmodl . 100
5.13 ILU(k) performance for SPE10 . 104

A.1 Matrix description . 118
A.2 Properties and information for BenElechi1 . 119
A.3 Properties and information for a f shell8 . 120
A.4 Properties and information for parabolic f em . 121
A.5 Properties and information for tmt sym . 122
A.6 Properties and information for ecology2 . 123
A.7 Properties and information for thermal2 . 124
A.8 Properties and information for atmosmodd . 125
A.9 Properties and information for atmosmodl . 126
A.10 Properties and information for Hook 1498 . 127
A.11 Properties and information for G3 circuit . 128
A.12 Properties and information for kkt power . 129
A.13 Properties and information for memchip . 130

v

List of Figures and Illustrations

2.1 Reservoir simulation stages . 12
2.2 Finite difference method . 16
2.3 Matrix parallelization comparison . 18
2.4 Architecture comparison of CPU and GPU . 26
2.5 Multiple GPUs platform architecture . 27
2.6 Example of simple CUDA C program . 29
2.7 Example of CUDA processing flow . 29

3.1 Projection triangle . 31
3.2 Orthonormal basis extension . 32
3.3 Two-dimensional example for using orthonormal basis 36

4.1 Matrix and vector domain decomposition . 48
4.2 Schematic of regular and irregular matrix . 49
4.3 Data structure . 51
4.4 HEC matrix format . 52
4.5 Example for reorder-compact method . 52
4.6 Data structure for communication mechanism . 54
4.7 Communication chart . 55
4.8 Extended vector . 55
4.9 Domain decomposition and RAS . 58
4.10 Overlap example . 59
4.11 Row tracing mappings . 60
4.12 Nested RAS . 62
4.13 ILU for inner overlapped blocks . 64
4.14 Right-hand side vector overlap and solution vector recovery 64
4.15 Data structure for nonzero pattern . 66
4.16 ILU factorization . 67
4.17 Inner RAS for level schedule method . 72

5.1 SPMV algorithm speedup vs. GPU number. for HEC format 80
5.2 SPMV algorithm speedup vs. GPU number. for HYB format 83
5.3 Speedup for matrix 3D Poission . 94
5.4 Iteration for matrix 3D Poission . 94
5.5 Speedup for matrix atmosmodd . 98
5.6 Iteration for matrix atmosmodd . 98
5.7 Speedup for matrix atmosmodl . 102
5.8 Iteration for matrix atmosmodl . 102
5.9 Speedup for matrix SPE10 . 106
5.10 Iteration for matrix SPE10 . 106

vi

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

AMG Algebraic Multigrid

API Application Programming Interface

BiCG Biconjugate Gradient

BiCGSTAB Biconjugate Gradient Stabilized

BLAS Basic Linear Algebra Subprograms

CPR Constrained Pressure Residual

CPU Central Processing Unit

CSR Compressed Sparse Row

cuBLAS The NVIDIA CUDA Basic Linear Algebra Subroutines

CUDA Compute Unified Device Architecture

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

GFlops One billion (109) floating point operations per second

GMRES Generalized Minimal Residual Method

GPU Graphical Processing Unit

GS Gram-Schmidt

HEC Hybrid of ELL and CSR

HYB Hybrid of ELL and COO

ILU Incomplete LU factorization

MGS Modified Gram-Schmidt

nvcc NVIDIA CUDA Compiler

OpenMP Open Multi-Processing

vii

PCIe Peripheral Component Interface Express

PDE Partial Differential Equation

RAS Restricted Additive Schwarz

SPMV Sparse Matrix-Vector Multiplication

TFlops One Trillion (1012) floating point operations per second

viii

Chapter 1

OVERVIEW

1.1 Introduction

In the petroleum industry, reservoir simulation has a wide application. A piece of simulation soft-

ware can be used for running reservoir development and production cases under various operation

conditions. A classical reservoir simulation process can be divided into four parts which are phys-

ical modeling, nonlinear partial differential equations, nonlinear equations and linear algebraic

equations [1]. Eventually, we need to solve the linear algebraic equations which form a linear

system. Generally, a case of reservoir simulation runs for hours, days or even longer, which is a

time-consuming process. In addition, over 70% of time is spent on the solution of linear systems

derived from the Newton methods for the black oil model [2]. For some large and highly heteroge-

neous geological models [3, 4, 5, 6], their linear systems are even harder to solve and require more

simulation time [2].

The coefficient matrices of linear systems in petroleum simulation are generally square and

nonsingular. Moreover, they have two distinctive characteristics. One characteristic is their large

scale. The number of their rows can be over one million. Fox example, a three-dimensional

Poisson equation on a grid of 200×200×200 has 8,000,000 rows and columns. If it is stored into

a computer in a CSR (Compressed Sparse Row) format, it may occupy 668 Mega Bytes in hard

disk storage or in memory space. The other characteristic is their sparseness. This means that only

a few nonzero elements exist in each row and most elements are zero. For the same example, the

Poisson equation has seven nonzero elements in a row on average.

The Krylov subspace solvers and ILU (Incomplete LU factorization) preconditioners have been

studied for decades. They are the most commonly used methods for solving large-scale spare lin-

ear systems [17, 7, 28, 37]. The Krylov subspace methods are iterative methods and have been

1

successfully used in numerical computation fields. The GMRES (Generalized Minimal Residu-

al) method is developed by Saad et al. and used for unsymmetric linear systems [17, 7]. The

BiCGSTAB (Biconjugate Gradient Stabilized) method is also a widely used solver in reservoir

simulations. The ORTHOMIN (Orthogonal Minimum Residual) solver is originally designed by

Vinsome for reservor simulations [18]. Both the robustness and efficiency of iterative solvers can

be optimized by using preconditioners. Many advanced preconditioners are also developed, such

as domain decomposition methods [18], multi-stage preconditioners [2, 20, 8], a residual (CPR)

preconditioner [21, 22, 49] and a fast auxiliary space preconditioning method (FASP) [20]. The

ILU preconditioner is one of the most commonly used preconditioners [17, 7, 26, 28, 37]. In

our study, the solver is developed on the base of the GMRES algorithm. The preconditioner is

developed on the base of ILU(0) and ILU(k).

Nowadays, GPU (Graphical Processing Unit) computing has been popular in various scientif-

ic computing applications due to its superiority over conventional CPU (Central Processing Unit)

computing. For example, NVIDIA Tesla K80 GPU Accelerator has a peak performance of 2910

GFlops in double precision while a high performance CPU, Intel Core i7-5960X Processor Ex-

treme Edition, has only a typical peak performance of 385 GFlops [57, 58]. In addition, the

memory speed of a GPU architecture is also faster than that of a CPU architecture. Using the same

example, NVIDIA Tesla K80 GPU Accelerator has 480 GB/s but the Intel Core i7-5960X Proces-

sor Extreme Edition has only 68 GB/s [57, 59]. Therefore, it is possible to design a program that

is much faster on a GPU architecture than on a CPU carchitecture.

A typical large-scale sparse matrix may contain millions of rows and occupies much storage

and memory. Although a single GPU can accelerate SPMV, its floating performance and memory

space are still limited. A multiple-GPU architecture in a single node includes a CPU and several

GPUs which are installed on the same motherboard. If a multiple-GPU architecture is employed,

better performance and shorter calculation time can be expected. However, a multiple-GPU archi-

tecture is very different from a single GPU architecture. Because it is not just a simple addition of

2

several GPUs but has specified communicating mechanism, an algorithm for a single GPU cannot

be transplanted into multiple GPUs directly. Therefore, specific algorithms must be investigated

and written for multiple-GPU architecture. In our study, we devote our efforts to design the algo-

rithm and implementation of a GMRES solver and an ILU(k) preconditioner on multiple GPUs.

The GMRES was developed by Saad and Schultz in 1986 [55]. It belongs to the Krylov sub-

space family, and is an iterative method for solving nonsymmetric linear systems. Its solution is

approximated by a minimal residual vector which can be found by the Arnoldi iteration in a Krylov

subsapce. A GMRES algorithm can be divided into five types of basic operations to implemen-

t, which are: (1) Preconditioner setup; (2) Matrix-vector multiplications; (3) Vector updates; (4)

Dot products; and (5) Preconditioning operations [7]. The vector updates and dot products are

relatively easy to implement. The rest three operations are the crucial parts of the preconditioned

GMRES solver. The implementation of these parts on multiple-GPU architecture, which is our

major contribution, is described in detail in this thesis.

In our study, the SPMV and corresponding communication mechanism are designed according

the characteristics of a multiple-GPU architecture. A multiple-GPU architecture needs the GPUs

and the CPU to cooperate mutually. It imports much communication loading caused by GPUs

receiving tasks from the CPU and then sending results back to it. These communications pass

through a PCIe interface. Though the communication speed of PCIe is always high, the latency of

PCIe is the virtual bottleneck of the transmission speed. Therefore, unnecessary communications

between GPUs and the CPU must be avoided. This leads to that each GPU must store enough data

on its memory space and try to reduce the communication with the CPU. However, based on the

limited memory space of a GPU, it is hard for each GPU to possess an entire copy of a matrix and

a vector to compute a SPMV. A partition should be a feasible scheme to break through dilemma.

In our study, we partition a SPMV into entirely parallel subtasks. Both a matrix and a vector are

divided into sub-parts and distributed onto multiple GPUs. We design a local compact method to

give each submatrix a set of local column indices and obtain a compact effect which can reduce

3

GPU memory usage. We design a special communication mechanism for subvectors to share data

among multiple GPUs through a buffer on the CPU. The data transmission between the GPUs

and the CPU are avoided as much as possible at the running time and only slight communication

is needed. A series of numerical experiments are carried out to test the efficiency of the SPMV

algorithm. These experimental results show that the SPMV implementation mechanism is efficient

and suitable for general sparse matrices on multiple-GPU architecture. The results also indicate

that the algorithm has favorable scalability with the number of GPUs.

In order to use an ILU preconditioner on a multiple-GPU architecture, we implement a nest-

ed RAS framework by domain decomposition. Multiple GPUs architecture can provide coarse-

grained parallelization at multiple-GPU level and fine-grained parallelization at GPU-thread level.

It consists of a two-level nested RAS which is composed of an outer RAS and an inner RAS.

In the outer RAS, the original coefficient matrix of a linear system is divided into outer domain

matrices by domain decomposition. Because most nonzero elements are concentrated on the di-

agonal blocks of outer domain matrices, other nonzero elements outside the diagonal blocks are

sparse and can be discarded according to the RAS theory [24]. The degree of parallelization is

improved by RAS because the diagonal blocks are independent and the relationship between them

is cut by discarding the nonzero elements outside them. However, the solution accuracy of solving

each block may decrease due to the loss of elements. In order to compensate for the calculation

accuracy reduction, a multi-layer overlap technique is employed on these adjusted blocks. Each

overlapped block carries enough data for calculation without communication with others. These

outer overlapped blocks are distributed on multiple GPUs and can be solved simultaneously on

them.

Each GPU owns an outer overlapped block. The block can be solved at fine-grained GPU-

thread level. If some rows of the block contain a portion of the same unknowns, they have a tight

relationship and cannot be solved simultaneously. The purpose of using GPUs is to maximize

parallel computing capability. In order to enhance the parallel performance of solving an outer

4

overlapped block on a single GPU, an inner RAS is necessary. First, domain decomposition is

applied to divide an outer overlapped block into inner domain matrices. The nonzero elements

outside the inner diagonal blocks represent the relationship among these inner domain matrices

and they can also be removed because they are sparse. The remaining diagonal blocks are all

square matrices and can be solved concurrently. The accuracy of solving preconditioned systems

at each iteration decreases again because some nonzero elements are removed. The multi-layer

overlap technique can also be used to recover the accuracy. Therefore, each overlapped inner

block carries enough data for calculation and can be calculated simultaneously with other inner

overlapped blocks at GPU-thread level. This procedure is called the inner RAS.

The nested RAS framework performance can be configured by four parameters. They are the

number of outer RAS (the number of outer blocks or the number of GPUs), the number of inner

RAS (the number of inner blocks), the number of outer overlap layers and the number of inner

overlap layers. A nested RAS framework is established only once when solving a linear system.

The whole framework is deployed on multiple GPUs. Sub-tasks carry proper data and each GPU

does not need to communicate with the CPU or other GPUs during the running time. Therefore,

the data traffic loads are reduced to the minimum.

The ILU preconditioner is one of the most commonly used preconditioners. We use a decou-

pled ILU(k) mechanism to implement the ILU(k) preconditioner for a GMRES solver. Assuming

that A represents the coefficient matrix of a linear system, a preconditioner system M~x =~b is sup-

posed to be solved at least once in each iteration of a Krylov solver. The preconditioner matrix

can be expressed as M = LU by ILU, where L and U are a lower and an upper triangular matrix,

respectively. Then the preconditioner system can be easily decomposed into L~y =~b and U~x =~y

which will be solved by a triangular solver. L and U can be obtained through an incomplete factor-

ization from the matrix A. The ILU factorization algorithm derives from Gaussian elimination by

applying a nonzero pattern P as a factorization filter, which is rather inexpensive to compute when

P is sparse. If P has the same nonzero pattern as A, the factorization is called ILU(0). Because A is

5

a sparse matrix, sometimes the nonzero pattern cannot provide enough nonzero positions for L and

U , which will decrease the rate of convergence. An improved method is ILU(k) that allows addi-

tional fill-in positions added to P and more accurate factorizations can be acquired. The variable

level k is designed to control the extent of fill-in. A higher k allows more fill-in.

The ILU(k) algorithm consists of two tasks. One is the creation of a fill-in nonzero pattern

P. The other is the ILU factorization using the pattern P. We call the first task a symbolic phase

and the second task a factorization phase. Because the procedure of establishing P has nothing to

do with the concrete data values of the original matrix A, a better way is to separate the symbolic

phase from the ILU(k) algorithm and design it solely. After extracting the symbolic phase, the

rest of the algorithm looks like ILU(0), which uses the fill-in nonzero pattern P to make an ILU

factorization on the original matrix A. The ILU(0) algorithm requires the nonzero pattern comes

from A. In our algorithm, matrix A is saved by data structure CSR format which only contains the

nonzero data and positions of them. If we use zero values to fill the fill-in positions in the matrix A,

it will have the same non-zero pattern as P without any essential value changes. Thus the ILU(0)

algorithm can be applied to the modified A directly.

Each GPU owns a set of ILU outcomes of the nested RAS and a set of corresponding over-

lapped right-hand side domain vectors. They form the preconditioner systems to be solved. We use

a parallel triangular solver to solve it [51]. The principle of the parallel triangular solver is the level

schedule method [7, 28]. Its idea is to group unknowns xi (ith unknown) into different levels so

that all the unknowns within the same level can be computed simultaneously [7, 28]. Because the

parallel triangular solver utilizes the fine-grained parallelism on a single GPU, we need to combine

all the inner overlapped lower triangular matrices head to tail together to form an entire lower tri-

angular matrix for the single GPU. The same procedure is also done for the inner overlapped upper

triangular matrices. Thus these preconditioner systems can be solved on each GPU in parallel.

As stated above, the preconditioned GMRES solver is completed after all the basic operations

are implemented. In our test experiments, the preconditioned GMRES solver on multiple-GPU

6

architecture shows high speedup performance against a single GPU or a CPU.

The layout of the thesis is as follows: In Chapter 2, the background about this research is

presented. In Chapter 3, the GMRES method is described in detail and the basic operations of its

implementation is analyzed. In Chapter 4, the GPU computation and corresponding algorithms of

the GMRES with ILU(k) are described. In Chapter 5, numerical experiments and result analysis

are presented. In Chapter 6, conclusions and future work are provided.

1.2 Literature Review

There have been a number of previous studies related to investigating the numerical solutions of

large-scale sparse systems, which include various topics such as solver algorithms, precondition-

ers, matrix formats and their implementations on different hardware architectures. The Krylov

iterative linear solvers and different preconditioners have been studied for decades. The GMRES

and BiCGSTAB are the two commonly used Krylov subspace methods. Many advanced precon-

ditioners are also developed, such as domain decomposition methods, multi-stage preconditioners,

a residual (CPR) preconditioner and a fast auxiliary space preconditioning method (FASP). The

Incomplete LU factorization (ILU) preconditioner is one of the most commonly used precondi-

tioners. As GPUs have more superiority over CPUs, some solvers, preconditioners and matrix

formats for solving large-scale linear systems have been developed on GPUs. This section gives a

review of them.

The Lanczos algorithm is an iterative algorithm designed by Lanczos [68] in 1950. There are

many variations of the Lanczos algorithm widely used. The minimal residual method (MINRES)

is a variant of the Lanczos method, which can be applied to symmetric indefinite systems. It is

developed by Paige and Saunders in 1975 [67]. Saad and Schultz generalized the MINRES method

to the GMRES method in 1986 [55]. The GMRES can be applied to a nonsymmetric system. It

is one of the most common iterative methods in industry nowadays. The detailed GMRES can be

found in [7, 17].

7

In 1952, Hestenes et al. proposed the conjugate gradient method (CG) [64] which can be

derived from the Lanczos algorithm. It is often implemented as an iterative method and suitable for

solving a large-scale sparse symmetric and positive-definite matrix. Fletcher generalized the CG

to BiCG for non-symmetric matrices in 1976 [65]. Then van der Vorst developed the BiCGSTAB

method for nonsymmetric linear systems in 1992 [66]. As a variant of the BiCG, the BiCGSTAB

has faster and smoother convergence than the original BiCG and other variants of BiCG, such as

the Conjugate Gradient Squared method (CGS). The BiCGSTAB is also a sort of Krylov subsapce

method and widely used solver in reservoir simulations.

Multigrid methods are effectively used for systems which have positive definite coefficient

matrices. They are categorized into Algebraic Multigrid methods (AMG) and Geometric Multigrid

methods. They can provide optimal convergence rates for such matrices [71, 72, 73, 74]. Ruge and

Stüben developed a classical AMG solver [71, 72, 73, 74, 75]. Their RS (Ruge-Stüben) coarsening

strategy established the foundation for the development of many other AMG solvers.

Iterative solvers can be optimized by applying preconditioners. The domain decomposition

preconditioners were developed in 1999, which are cheaper and faster than the classical Addi-

tive Schwarz preconditioners for general sparse linear systems. Both iteration and CPU time can

be saved [24]. Constraint Pressure Residual (CPR) preconditioners (multistage preconditioners)

also have a broad application [2, 20, 21, 49]. Cao et al. described a multistage parallel linear

solver framework for reservoir simulation with a two-stage CPR scheme [21]. The first stage is

a highly efficient Parallel Algebraic Multigrid (PAMG) preconditioner and the second stage is

a parallel ILU-type preconditioner. Hu et al. devised the Fast Auxiliary Space Preconditioning

(FASP) method which is a general framework for constructing effective preconditioners [20]. The

FASP can transform a complicated problem into a sequence of simpler solver-friendly systems by

constructing appropriate auxiliary spaces. This method can be easily generalized to complicat-

ed models in reservoir simulation, such as the modified black oil model for simulating polymer

flooding.

8

The ILU preconditioner is one of the most commonly used preconditioners [17, 7, 38, 37].

On a platform composed of NVIDIA TESLA C1060 and a CPU Intel Xeon E5504 Processor,

Li et al. implemented a GPU-accelerated ILU factorization preconditioned GMRES method and

achieved a speedup of nearly 4 with respect to a CPU. They also implemented a GPU-accelerated

Incomplete Cholesky (IC) factorization preconditioned CG method which is faster than its CPU

counterpart up to 3 times. Chen et al. implemented a block-wise ILU preconditioner on a single

GPU platform which shows a faster acceleration effect on a GPU against a CPU [9]. Klie et al.

proposed a novel poly-algorithmic solver for realistic black oil and compositional flow scenarios on

a multicore CPU and GPU platform. They exploited the data parallelism of a GPU to implement

preconditioner options such as BILU(k), BILUT and multicoloring SSOR. Their computational

experiments revealed that a preconditioned solver yields significant speedups against conventional

CPU multicore solver implementations [37].

Nowadays, parallel computing has been more and more important and a lot of work has been

done in a variety of scientific fields, such as the reservoir simulation [10, 11]. In the study of AMG

solvers, Luby et al. designed a parallel coarsening strategy CLJP for parallel computers [76, 77].

Henson and Yang proposed parallel coarsening strategies PMIS and HMIS [78, 79]. Besides, Yang

and her collaborators developed a famous parallel AMG solver BoomerAMG [76, 78, 80, 79],

which is the most famous parallel AMG solver/preconditioner for parallel computers.

As GPUs become a popular parallel hardware architecture, some solvers for solving linear sys-

tems have been developed on GPUs, such as Krylov linear solvers [49, 37, 38, 40]. Naumov [52]

and Chen et al. [39] studied parallel triangular solvers for GPUs which focus on solving lower or

upper triangular matrices derived from linear solvers or preconditioners in parallel. Haase et al.

developed a parallel AMG solver using a GPU cluster [36]. That is a multi-GPU implementation

of the Preconditioned Conjugate Gradient algorithm with an Algebraic Multigrid preconditioner

(PCG-AMG) for an elliptic model problem on a 3D unstructured grid. They also developed an

efficient parallel SPMV scheme underlying the PCG-AMG algorithm. With eight GPUs, about

9

100 speedup is obtained against a typical server CPU core [36]. AMG solvers are one of the most

effective solvers in reservoir simulation. Chen et al. designed classical AMG solvers on a single G-

PU [42]. Their solvers are based on NVIDIA Tesla GPUs and up to 12.5 times speedup is obtained

compared to the corresponding CPU-based AMG solver. Bell et al. investigated fine-grained par-

allelism of AMG solvers on a single GPU [50]. They developed a parallel AMG method which

employs substantial fine-grained parallelism in both the construction of the multigrid hierarchy as

well as the cycling or solution stage. The resulting solver achieves an average speedup of 1.8 in the

setup phase and 5.7 in the cycling phase when compared to a representative CPU implementation

[50]. Bolz, Buatois, Goddeke, Bell, Wang, Brannick, Stone and their collaborators also stud-

ied GPU-based parallel Algebraic Multigrid solvers, and details can be acquired in the references

[43, 44, 45, 46, 53].

NVIDIA developed a hybrid matrix format HYB (Hybrid of ELL and COO) and sparse Krylov

subspace solvers [49], which are used for general sparse matrices [31, 32]. The HYB sparse storage

format is composed of a regular part, usually stored in ELL format, and an irregular part, usually

stored in COO format. The HYB requires the use of a conversion operation to store a matrix in it,

which partitions the original matrix into the regular part and the irregular part [69].

Chen et al. designed a hybrid matrix format named HEC (Hybrid of ELL and CSR). An HEC

matrix consists of two parts which are an ELL matrix and a CSR matrix. The ELL matrix is

regular and each row has the same length. The matrix is in column-major order when being stored

on GPUs. The CSR matrix stores the irregular part of a given matrix. The advantages of the HEC

matrix is that it is convenient to design SPMV algorithms and implement ILU preconditioners.

Based on the HEC format, Chen et al. designed the SPMV algorithm on GPUs [33] and Krylov

solvers [34, 35, 39, 40, 47, 41].

Saad et al. developed a JAD (jagged diagonal) matrix format for GPU architecture. They

also developed the corresponding SPMV algorithm [28, 37]. The JAD format can be viewed as

a generalization of the Ellpack-Itpack format which removes the assumption on fixed-length rows

10

[7]. First, it requires sorting the rows by a non-increasing order according to the number of non-

zero elements per row. Then all the first element of each row constitutes the first JAD; all the

second element of each row constitutes the second JAD, and so on. Thus the number of JADs is

the largest number of non-zero elements per row. The JAD format has performance superiority over

the CSR format. In the JAD format, consecutive threads can access contiguous memory address,

which follows the suggested memory access pattern of GPU. The usage of memory bandwidth is

improved by coalescing memory access [38].

The Fast Fourier Transform is an efficient algorithm for computing discrete Fourier transforms

and their inverses and is widely used in numerical computational areas. NVIDIA implemented the

scientific computing library cuFFT (CUDA Fast Fourier Transform) which provides a simple inter-

face for computing FFTs up to 10x faster [29]. NVIDIA also developed some other mathematical

calculation libraries for GPUs, such as the CUDA Basic Linear Algebra Subroutines (cuBLAS)

library which is a GPU-accelerated version of the complete standard BLAS library [31, 32, 29],

the CUDA Sparse Matrix (cuSPARSE) library which is a collection of basic linear algebra subrou-

tines used for sparse matrices, and the CUDA Math library which provides a collection of standard

mathematical functions [70]. All these CUDA libraries can be used on GPUs directly.

In summary, the investigation of preconditioned solvers for large-scale linear systems on GPU

achitecture and related subjects have been a specialized research area. With the hardware tech-

niques advancing rapidly, high performance parallel computing must have more and more real

applications. In our research, we focus on the implementation of the GMRES solver with the

ILU(k) preconditioner on multiple GPU architecture, which will benefit the computation speed of

a reservoir simulator and other numerical calculation demands in industry.

11

Chapter 2

BACKGROUND

2.1 Reservoir Simulation and Large-Scale Sparse Linear Systems

2.1.1 The Procedure of Reservoir Simulation

A petroleum reservoir is a porous medium in which the fluids (typically, oil, water, and gas) can

flow. The procedure of a reservoir simulation can be divided into four stages [1]; see Figure 2.1.

physical model mathematical model numerical model computer algorithm

Figure 2.1: Reservoir simulation stages

At the first stage, a physical model is established according to the physical characteristics of a

field reservoir. These characteristics include the size of the reservoir, the properties of rock, and

the properties of fluids. Sometimes, a series of chemical reactions are also contained, for example,

in a combustion process.

Physical phenomena of a reservoir can be modeled by a set of equations at the second stage.

These equations can be categorized into three major categories, a set of mass conservation equa-

tions for fluid components, a set of Darcy equations for fluid phases and a set of state equations.

The mass conservation and Darcy equations are partial differential equations. All these equations

form a complete mathematical system and can be solved under certain boundary conditions and

initial conditions. An energy equation is included when temperature varies.

The PDEs (Partial Differential Equations) are often nonlinear equations which cannot be solved

by analytical methods. Their solution can be acquired by numerical methods (approximate meth-

ods). The third stage is the process of generating numerical models by discretizations of PDEs.

12

The approaches of discretization include the Finite Difference Method (FDM), the Finite Element

Method (FEM) and the Finite Volume Method (FVM). Eventually, the numerical models are all

linear systems, and the coefficient matrices of such systems are large and sparse.

Because a large-scale sparse linear system often contains millions of rows and unknowns, com-

puter algorithms must be used for solving such a system. Most simulation time is spent on solving

linear systems when running a simulator. For example, over 70% of time is consumed on the so-

lution of these systems for the black oil model [2]. The algorithms can be basic iterative methods,

Krylov subspace methods, and AMG methods. How to develop the algorithms and implement

them on modern computer hardware is critical and challenging work for speeding up the solution

process. It is the study area of this thesis.

2.1.2 PDEs for Reservoir Simulation

According to the physical characteristics of a reservoir and the concrete demands of a simulation,

different physical and mathematical models are designed, such as a classical black oil model, an

extended black oil model, a compositional flow model, and a thermal recovery model. These mod-

els must obey the mass conservation law, Darcy’s law and other physical laws. In this subsection,

a classical black oil model is presented as an example of PDEs. It contains three phases (the water,

oil, and gas phases) and three components (the water, oil, and gas components). The components

are defined at the standard conditions (60 F and 14.7 psia). There is no component exchange be-

tween any pair of phases except that the gas component is allowed to dissolve in the oil phase. The

mathematical model is described by the following equations where the lowercase subscripts w, o,

and g represent the water phase, oil phase, gas phase, respectively, and the uppercase subscripts

W , O, and G represent the water component, oil component, gas component, respectively.

Component mass conservation

∂

∂t
(øρwSw) =−5·(ρwuuuwww)+qW (2.1)

13

∂

∂t
(øρOoSo) =−5·(ρOouuuooo)+qO (2.2)

∂

∂t
(ø[ρGoSo +ρgSg]) =−5·(ρGouuuooo +ρguuuggg)+qG (2.3)

where

• ø: porosity; uuuwww, uuuooo, uuuggg : Darcy velocity

• ρw: water density; ρg: gas density

• ρOo: partial densities of the oil components in oil phase

• ρGo: partial densities of the gas components in oil phase

• qW , qO , qG: source/sink of component

Darcy’s law

uuuα =−kkkα

µα

(5pα−ραg5 z) (2.4)

where

• α = w, o, g

• p: pressure of fluid phase; kkk: effective permeability of fluid phase

• z: value of depth; g: gravitational acceleration

Fluid saturation

Sw +So +Sg = 1 (2.5)

where

• Sw: water saturation; So: oil saturation; Sg: gas saturation

Capillary pressure

14

pcow = po− pw (2.6)

pcgo = pg− po (2.7)

where

• pcow: capillary pressure between oil phase and water phase for water-wet rock

• pcgo: capillary pressure between gas phase and oil phase

There are nine equations from (2.1) to (2.7). The fluid effective permeability and capillary

pressure can be obtained by experiments. The fluid density can be expressed as functions of pres-

sure. Therefore, a complete system is formed with nine unknowns (Sw, So, Sg, pw, po, pg, uuuw, uuuo,

uuug), which can be solved under given boundary conditions and initial conditions.

2.1.3 Discretization of PDEs

Generally, there are three methods to discretize a Partial Differential Equation, which are Finite

Difference Methods (FDM), Finite Element Methods (FEM), and Finite Volume Methods (FVM).

Because the FDM is most commonly used in reservoir simulation, this subsection describes the

main principle of the FDM. The FDM uses finite difference equations to approximate derivatives.

The partial derivatives in a Partial Differential Equation are derived by low order Taylor series

expansions. The FDM requires that a physical domain is divided into subregions, for example,

rectangles. The coefficient matrix of a finite difference equation is often regularly structured and

composed of nonzero diagonals.

Since different-dimensional FDMs have a similar principle, the one-dimensional FDM is ana-

lyzed and a simple example is given in the following part. For a function u, Taylor’s formulas can

be expressed as in (2.8) and (2.9) where h represents a positive spatial step4x.

u(x+h) = u(x)+h
du
dx

+
h2

2
d2u
dx2 +O(h2) (2.8)

15

i -1 i +1 i (i -1,j) (i ,j)

(i ,j + 1)

(i ,j - 1)

(i-1,j,k) (i+1,j,k) (i, j, k)

(i,j,k+1)

(i,j,k-1)

(i,j+1,k)

(i,j-1,k)

.. ...

.

.

(i +1,j)
...

.

. .

.

(1) three-point stencil for 1-D problem (2) five-point stencil for 2-D problem (3) seven-point stencil for 3-D problem

.

Figure 2.2: Finite difference method

u(x−h) = u(x)−h
du
dx

+
h2

2
d2u
dx2 +O(h2) (2.9)

Based on Taylor’s formulas, the following approximations can be acquired. The structure of

the stencil can be represented by Figure 2.2-(1).

Forward difference
du(x)

dx
≈ u(x+h)−u(x)

h
(2.10)

Backward difference
du(x)

dx
≈ u(x)−u(x−h)

h
(2.11)

Centered difference
du(x)

dx
≈ u(x+h)−u(x−h)

2h
(2.12)

Centered difference of second derivative

d2u(x)
dx2 ≈ u(x+h)−2u(x)−u(x−h)

h2 (2.13)

Centered difference of second order operator

d
dx

[
a(x)

du
dx

]
≈

ai+1/2(ui+1−ui)−ai−1/2(ui−ui−1)

h2 (2.14)

16

Consider a simple one-dimensional equation example [7]:

− ∂2(x)
∂x2 = f (x) f or x ∈ (0,1) (2.15)

u(0) = u(1) = 0 (2.16)

If the interval (0,1) is discretized into n+ 1 equal parts by setting h = 1/(n+ 1), n+ 2 points

of xi can be created:

xi = ih, i = 0,1, ...,n+1 (2.17)

By applying the centered difference approximation (2.12) to equation (2.15), the discretized

equation can be obatined; see equation (2.18).

1
h2 (−ui−1 +2ui−ui+1) = fi (2.18)

For n = 6, a linear system (2.19) is obtained.

A~x = ~f (2.19)

where

A =



2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2


(2.20)

Obviously, matrix (2.20) has three diagonals. By analogy, a matrix of five diagonals can be ob-

tained for a two-dimensional problem because the stencil contains five unknowns; see Figure 2.2-

(2). A matrix of seven diagonals can be obtained for a three-dimensional problem, which has a

stencil of seven unknowns; see Figure 2.2-(3).

In practice, a mathematical model and equations of a reservoir are more complicated than the

above example. The detailed knowledge about the use of the FDM in reservoir simulation can

17

be referenced to the books written by Peaceman (1977A), Aziz and Settari(1979), Ertekin et al.

(2001), Chen et al. (2005) and Chen (2007) [12, 13, 14, 2, 1].

2.1.4 Characteristics of Large-Scale Sparse Linear Systems

A reservoir can be divided into many grid blocks. Each block contains one or several unknowns.

For example, a 120× 120× 120 grid has 1,728,000 grid blocks. If each grid block contains one

unknown, such as the oil pressure, and a stencil like Figure 2.2-(3) is employed, a linear system will

have 1,728,000 unknowns and equations. Because its coefficient matrix is quare, it also contains

the same number of columns. Therefore, each row contains 1,728,000 elements and only at most

seven of them are nonzero elements. Apparently, the matrix is a large-scale sparse matrix. A

large-scale spare matrix has some properties which benefit its solution.

First, a parallel algorithm can be applied to a large-scale sparse matrix. An extreme instance

for a sparse matrix is a diagonal matrix; see Figure 2.3-(3). Each row contains only one unknown

and can be solved independently. Thus all these equations can be solved simultaneously. The

other extreme instance is a dense matrix; see Figure 2.3-(1). The equations have tight relations

and they cannot be computed at the same time. Generally, a sparse matrix is situated between the

two extreme cases. Figure 2.3-(2) gives a schematic of a common sparse matrix which has three

diagonals. Some rows of it can be computed simultaneously. Therefore, based on the characteristic

of its sparseness, parallel algorithms can be designed for solving such a sparse matrix.

(2)(1) (3)

Figure 2.3: Matrix parallelization comparison

18

Second, a partition is necessary to a matrix in parallel computing. The original matrix is

separated into some partitions and each partition has a set of rows. The rows in the same partition

have a tight relation but the rows in different partitions should have relations as little as possible.

In order to partition a matrix, its rows must be reordered. The rows in the same partition should be

put together and then each partition can be cut out as a whole. The reorder of rows is called a row

permutation operation. For example [7], a linear system is given; see equation (2.21).



A11 0 A13 0

0 A22 A23 A24

A31 A32 A33 0

0 A42 0 A44





x1

x2

x3

x4


=



b1

b2

b3

b4


(2.21)

If the second row and the third row are switched, the corresponding elements in the right-hand

side vector~b should also be permutated. The linear system will keep the solution unchanged; see

(2.22). The diagonal elements A22 and A33 are removed from the main diagonal. Based the process

of the FDM, the matrix is nonsingular and the main diagonal is dense. The elements on the main

diagonal of the original matrix are all pivot elements. According to a linear algebra theory, pivot

elements are kept on the main diagonal and help solve the linear system conveniently. Therefore,

it is necessary to keep all the pivot elements staying on the main diagonal. In addition to a row

permutation, a similar column permutation is executed on the matrix and the elements A22 and A33

come back to the main diagonal; see (2.23). Due to the columns sequence change, the unknown

vector is also reordered to keep the linear system having the same solution as in (2.21). After

permutation operations, the nonzero elements lie closely along the main diagonal and the matrix is

more suitable for partition operations.

19



A11 0 A13 0

A31 A32 A33 0

0 A22 A23 A24

0 A42 0 A44





x1

x2

x3

x4


=



b1

b3

b2

b4


(2.22)



A11 A13 0 0

A31 A33 A32 0

0 A23 A22 A24

0 0 A42 A44





x1

x3

x2

x4


=



b1

b3

b2

b4


(2.23)

Third, as a large-scale sparse matrix will be solved on a computer, the sparse characteristic can

be utilized to save the storage space and memory space. Because most of the elements are zero,

it is not necessary to store all the elements in a computer. A popular approach is to store only the

nonzero elements and their positions. The other positions are considered as zero spontaneously. A

good approach is the Compressed Sparse Row (CSR) format. The equation (2.24) gives a simple

example of a sparse matrix. The CSR format contains three one-dimensional arrays; see (2.25).

The array Ax is used to store all the nonzero elements row by row. The array A j is used to store

the corresponding column indices of each element in Ax. The array Ap stores the start index of

each row in arrays A j and Ax. One thing to note is that the number of nonzero elements is stored

as the last element in Ap. In order to facilitate the coding implementation by the C language, all

the indices start from zero.

A =



1 2 0 0

0 3 4 0

0 0 5 6

0 0 0 7


(2.24)

20

Ap {0,2,4,6,7}

A j {0,1,1,2,2,3,3}

Ax {1,2,3,4,5,6,7} (2.25)

As stated above, the characteristics of a large-scale sparse matrix show that it is suitable to be

solved by a parallel algorithm. The permutation operations can be employed to partition a matrix

for parallel computing. Furthermore, the CSR format is designed for storing the matrix by saving

much space resources of a computer.

2.2 Linear Solvers

2.2.1 Krylov Subspace Method

The Krylov subspace method is one of the most popular iteration methods in solving large-scale

sparse linear systems. For a linear system as equation (2.26)

A~x =~b (2.26)

obviously the solution can be expressed as A−1~b. The principle for the Krylov subspace is derived

from the Cayley-Hamilton theorem which says that the inverse of a matrix can be found in terms

of a linear combination of its powers [15, 16]. That is, A−1~b can be expressed by p(A)~b, where p

is an appropriate polynomial [7].

A Krylov subspace is defined as (2.27)

κ(A,~r0) = span{~r0, A~r0, A2~r0, ..., Am−1~r0} (2.27)

where~r0 =~b−A~x0 and~x0 is an arbitrary initial guess to the solution.

Let qm−1(A) be a polynomial of order m−1 generated by the Krylov subspace. According to

an approximation theory, A−1~b can be approximated as (2.28).

21

A−1~b≈~xm =~x0 +qm−1(A)~r0 (2.28)

To calculate~xm, only a series of matrix-vector multiplications are required, which is easier than

calculating A−1 directly.

Another kind of the Krylov subspace method can be designed based on AT . That is, the Krylov

subspace is defined as (2.29)

κ(AT ,~r0) = span{~r0, (AT)~r0, (AT)2~r0, ..., (AT)m−1~r0} (2.29)

Based on various concrete Krylov subspaces, different iterative methods can be designed.

There are some mature Krylove subsapce methods that are widely used, such as the Arnoldi, Lanc-

zos, GMRES (Generalized Minimum Residual), CG (Conjugate Gradient), BiCGSTAB (Biconju-

gate Gradient Stabilized), and QMR (Quasi Minimal Residual).

2.2.2 ILU Preconditioner

As mentioned, the performance of iterative solution techniques can be improved by precondition-

ers. Equation (2.30) has the same solution as the original equation (2.26), where matrix M is called

a preconditioner. Matrix M has the same dimension as matrix A and it is also nonsingular. For a

proper M, equation (2.30) is easier to solve than equation (2.26) because M−1A has a smaller con-

dition number than A. The function of M can be explained by the following two extreme situations.

If M is an identity matrix I, equation (2.31) is obtained and it is the same as equation (2.26). The

matrix M has no effect in this situation. The other situation is that M equals A−1. Equation (2.32)

is obtained and the solution can be calculated directly by A−1~b. However, acquiring A−1 has the

same difficulty as solving the original system directly. Therefore, a compromise situation is to find

a M−1 which is similar to A−1.

M−1A~x = M−1~b (2.30)

22

I−1A~x = I−1~b (2.31)

A−1A~x = A−1~b (2.32)

Fortunately, there is no need to look for M−1. All the preconditioned Krylov subspace algo-

rithms only need to solve linear systems like equation (2.33) at each step[7].

M~y = ~f (2.33)

A common situation is that the preconditioner M is available in the factorized form (2.34) where

L and U are a lower triangular matrix and an upper triangular matrix, respectively [7]. Apparently,

equation (2.34) can be separated into two triangular matrix equations to solve; see equations (2.35)

and (2.36), which have very low complexity.

M = LU (2.34)

L~z = ~f (2.35)

U~y =~z (2.36)

As mentioned above, M needs to be close to A. That is, LU is close to A. If A can be factorized

into L and U approximately, the preconditioner M is obtained. This process is called an incomplete

LU factorization (ILU); see equation (2.37). The matrix M is called an ILU preconditioner.

A≈ LU (2.37)

In practice, the ILU preconditioners, such as ILU(0), ILU(k), and ILU(T), are popularly used.

23

2.3 Hardware Platform

2.3.1 CPU

A CPU (Central Processing Unit) plays an important role in a computer. From the aspect of

its function, it looks like the brain of a computer. The instructions, such as computation, logic,

control and I/O (Input/Output), are all performed by a CPU. Modern CPUs have a strong ability

of computing. For example, an Intel Core i7-5960X Processor Extreme Edition, which is the

latest CPU by April 2015, can provide 3 GHz Processor Base Frequency (3.5 GHz with Turbo

Boost turned on) and 68 GB/s Max Memory Bandwidth. It can even reach 384 GFlops in double

precision [59, 58].

A CPU supports multiple threads. An i7-5960X Extreme Edition CPU has 8 cores and it can

support 16 threads under the Intel Hyper-Threading Technology. However, traditionally, a CPU is

designed as a central controller for a computer. Its multiple threads function is limited.

2.3.2 Parallel Computing

Nowadays, parallel computing has been supported by most hardware platforms. It provides com-

putation models which allow many calculation tasks to be carried out simultaneously. Parallel

algorithms have also been studied for many years, especially in the field of high performance com-

puting. The queue of instructions used to execute an individual task is called a thread. Multiple

threads can run concurrently to complete multiple tasks.

Most hardware supports parallelism, which can be categorized into two categories roughly.

One is a single machine (a single node), such as a CPU with multiple cores, a CPU plus a GPU,

and a CPU plus multiple GPUs. Each core runs as an individual thread to execute a task. The other

one is a multiple-machine (multiple nodes) platform, such as clusters, MPPs, and grids. All the

nodes perform tasks by coordinating computations in parallel.

Parallel computer programs have some characteristics and are harder to develop than sequen-

tial ones [63]. First, a synchronization mechanism of threads is necessary because the common

24

resources are always limited and all the threads need to compete the resources at the same time.

Second, a communication mechanism is also unavoidable. Threads need to share data or trans-

mit data at running time but the interface latency, banwidth of memory and network are often a

bottleneck. Last but not the least, the design of parallel algorithms for a specific problem is dif-

ficult. Sometimes only parts of a problem can be designed as parallelization. Though there are

many challenging problems for parallel computing, its superiority over sequential computing still

attracts much attention.

2.3.3 GPU

Originally, a GPU is designed to accelerate the creation of images for displaying on a screen. It

can be found in a video card in a personal computer. It is also widely used in mobile phones and

workstations. A GPU plays a critical role for a video card just like the importance of a CPU for

a computer. It specializes in enormous parallel computing. Nowadays, applications of a GPU

have been more and more popular in scientific computing areas due to its outstanding floating-

point calculation performance in parallel. For example, a NVIDIA Tesla K40 GPU Accelerator

contains 2880 CUDA cores and has a peak performance of 1.43 TFlops (Base Clocks) and 1.66

TFlops (GPU Boost Clocks) in double precision. Its memory bandwith is 288 G/sec [56]. These

performance parameters are much better than those of a CPU. The 2880 CUDA cores mean that

Tesla K40 can provide 2880 threads to run simultaneously, which is a very strong parallel ability.

The architecture difference between a GPU an a CPU can be schematically shown in Figure 2.4.

2.3.4 Multiple GPUs in a Single Node

In a single node, multiple GPUs can be installed on the same motherboard, which form a multiple-

GPU platform. This architecture can provide higher parallel performance than a single GPU. For

example, a NVIDIA Tesla K80 GPU Accelerator, which has two GPUs, contains 4992 CUDA

cores. The peak performance is 1.87 TFlops (Base Clocks) and 2.91 TFlops (GPU Boost Clocks)

in double precision. The memory bandwith is 480 GB/sec. Obviously, more GPUs provide high-

25

Figure 2.4: Architecture comparison of CPU and GPU

er performance in parallel. In our study, NVIDIA multiple-GPU architecture is selected as the

hardware platform. A detailed analysis of it is introduced below.

A multiple GPUs architecture has a host (CPU) and several devices (GPUs). It consists of two

parallel levels. The first level is formed by GPUs. Each GPU can be controlled by an OpenMP

(Open Multi-Processing) thread which lies on the host. The original task is divided by the host into

coarse-grained subtasks. Each device acquires a subtask from the host. Because OpenMP threads

run simultaneously on the host, devices can receive tasks and perform them simultaneously; see

Figure 2.5.

The processor of a typical NVIDIA GPU is categorized into two levels: a streaming multipro-

cessor (SM) and a streaming processor (SP or CUDA core). A GPU may have a different number

of SMs. According to the architecture of a GPU, the SM may have 32, 128 and 192 SPs (CUDA

cores). The Tesla C2070 has 14 SMs and a total of 448 CUDA cores. The Tesla K20X has 14 SMs

(or SMXs) and each SM has 192 SPs, which has 2688 CUDA cores in total. The Tesla K40 has 15

SMs (or SMXs) and 2880 CUDA cores in all.

The NVIDIA GPUs have hierarchical memory architecture which includes a register, L1 cache,

26

CPU(Host)

OpenMP thread 1

OpenMP thread 2

OpenMP thread n

... ...

GPU (device) 1

Threads on GPU

GPU (device) 1

Threads on GPU

Threads on GPU

... ...

GPU (device) 2

GPU (device) n

Figure 2.5: Multiple GPUs platform architecture

L2 cache, shared memory and global memory. The size of the shared memory is small, and each

multiprocessor owns a small fraction of the shared memory, such as 48 KB. It is used to commu-

nicate among threads in a block. The global memory has a large size and fast speed. In our study,

the global memory is employed to store the input data, such as matrices and vectors, and it is also

used for data transfer between the host and the devices.

2.4 Development Environment

2.4.1 C Language

C is a popular known and widely used advanced programming language. Flexible pointer func-

tionality is one of its grammar characteristics. Pointers are convenient for controlling memory,

which leads to high-efficiency program practice. In our study, pointers are employed to manipu-

late matrices and vectors in a form of dynamic arrays. The other grammar characteristics, such as

structure and enumeration, are also used in our codes. By means of portability of the C language,

27

our program can be compiled and run on different operating systems.

2.4.2 OpenMP

OpenMP (Open Multi-Processing) is an API (Application Programming Interface) which can be

used in languages, such as C, C++, and Fortran. It provides a portable, scalable model with simple

and flexible API for developing parallel applications. Multiple threads can be created by OpenMP

and performed simultaneously. In our study, we employ mutiple OpenMP threads on the host to

control each device; see Figure 2.5. We also use the OpenMP programs on a loop structure to

change it into a parallel form in the algorithms which run on the host.

2.4.3 CUDA

CUDA is a programming model invented by NVIDIA. It is also a parallel computing platform [60].

The purpose of designing CUDA is for coding on NVIDIA GPUs. Since its introduction in 2006,

CUDA has been widely used on thousands of applications [62].

A CUDA program consists of several phases that are executed on either the host or a device.

The phases that exhibit little or no data parallelism are implemented in the host code. The phases

that exhibit rich data parallelism are implemented in the device code [19]. The host code is written

by ANSI C language. It is compiled with a standard C compiler and executed on the host. The

device code is written by extended ANSI C (CUDA C) which has keywords for labeling parallel

functions to perform on devices. The parallel functions are called kernel functions. The device

code in kernel functions is compiled by the nvcc (NVIDIA CUDA Compiler) and executed on the

devices. Figure 2.6 gives a simple example of a CUDA C program where the kernel function is

labeled by the keyword ” global ”.

Figure 2.7 shows an example of a CUDA processing flow [61], which includes four steps. First,

data from the host memory is copied to the device memory. Second, the host instructs a process to

the devices. Third, the devices execute in parallel in each core. Fourth, the results from the device

memory are copied to the host memory. The processing flow is used in our programs. The original

28

__global__ void kernel (void){

 //device codes

}

int main (void){

 //host codes

 kernel<<<1,1>>>();

 //host codes

 return 0;

}

Figure 2.6: Example of simple CUDA C program

coefficient matrix and the right-hand side vector of a large-scale linear system is divided into

subparts on the host. The data of each set of parts are copied from the host memory to the device

memory. Then calculations are performed on each device in parallel following the instructions of

the host. After all the sub-results are completed, the result data is copied from the devices to the

host to constitute a final solution. More development about CUDA can be found in the references

[29, 30]

Figure 2.7: Example of CUDA processing flow

29

Chapter 3

GMRES METHOD

The GMRES solver is an iterative solution method for nonsymmetric linear systems developed by

Saad and Schultz [7]. This method approximates a solution by a vector in a Krylov subspace with

a minimal residual. In practice, the preconditioned restarted GMRES(m) is used commonly. By

reference to iterative methods f or sparse linear systems (2nd edition) [7], a summary deriva-

tion of the preconditioned restarted GMRES(m) is explained in this chapter. An analysis of basic

operations about how to implement this algorithm is introduced in the last part.

3.1 Gram-Schmidt Process

3.1.1 Inner Product, Euclidean Norm and Orthogonality

Given two column vectors~v and ~w, the inner product is defined as

(~v,~w) =~vT~w = [v1,v2, . . . ,vn]


w1

...

wn

= v1w1 + v2w2 + · · ·+ vnwn. (3.1)

The length of a vector can be measured by many ways. The Euclidean norm is the most

commonly used, which is defined as

‖~v‖2 = (~v,~v) =
√

v2
1 + v2

2 + · · ·+ v2
n. (3.2)

The orthogonality of two vectors~v and ~w are defined as (~v,~w) = 0.

3.1.2 Projection

Given two vectors ~v and~i where~i is a unit vector, the projection of ~v onto~i can be calculated by

(3.3); see Figure 3.1:

30

~q = (~i,~v)~i (3.3)

v

q

e

i

Figure 3.1: Projection triangle

3.1.3 Gram-Schmidt Process

Assume that we have a subspace S spanned by an orthonormal basis {~q1,~q2, . . . ,~qr} and a vector~v

which lies outside of the subspace. To construct a new subspace extended from S by including an

additional linearly independent vector~v, there are two solutions explained below.

Solution 1: From Figure 3.2-(1), {~q1,~q2} is an orthonormal basis which forms a subspace

represented by the plane EFGH. ~v is a vector outside of the plane.

−→
EF = (~q1,~v)~q1

−→
EH = (~q2,~v)~q2

−→
EG =

−→
EF +

−→
EH = (~q1,~v)~q1 +(~q2,~v)~q2 =

2

∑
i=1

(~qi,~v)qi

−→
GC =~v−−→EG =~v−

2

∑
i=1

(~qi,~v)qi

~q3 =
−→
GC/‖−→GC‖2

Therefore, the orthonormal basis {~q1,~q2,~q3} forms a new subspace and the vector ~v lies in

this subspace. The Gram-Schmidt process can be constructed by the idea of solution 1. Given a

31

vector set {~x1,~x2, . . . ,~xr} where all the vectors are linearly independent, the first vector ~q1 of the

orthonormal basis can be obtained by normalizing ~x1. Then the other orthonomal vectors can be

acquired by the mathematical induction; see Algorithm 1. However, there is a drawback of this

algorithm because of finite-precision on computers. Line 8 to Line 11 introduces a cumulative

error. Thus some modifications must be applied to correct this problem.

q

q

v

A B

D C

E F

GH

q

v

A B

D C

E F

GH

(1) (2)

1

2

3

q
1

q
2

q 3

Figure 3.2: Orthonormal basis extension

Solution 2: From Figure 3.2-(2), {~q1,~q2} is an orthonormal basis which forms a subspace

represented by the plane EFGH. ~v is a vector outside of the plane.

Let~q =~v

−→
EF = (~q1,~q)~q1

−→
FC =~q−−→EF =~q− (~q1,~q)~q1

−→
ED =

−→
FC =~q− (~q1,~q)~q1 (3.4)

Let~q =
−→
ED

−→
EH = (~q2,~q)~q2

−→
HD =~q−−→EH =~q− (~q2,~q)~q2

~q3 =
−→
HD/‖−→HD‖2 (3.5)

32

Algorithm 1 Gram-Schmidt
1: r11 := ‖~x1‖2

2: if r11 = 0 then

3: Stop

4: else

5: ~q1 :=~x1/r11

6: end if

7: for j = 2: r do

8: for i = 1: j - 1 do

9: ri j := (~x j,~qi)

10: end for

11: ~q :=~x j−
j−1
∑

i=1
ri j~qi

12: r j j := ‖~q‖2

13: if r j j = 0 then

14: Stop

15: else

16: ~q j :=~q/r j j

17: end if

18: end for

Therefore, the orthonormal basis {~q1,~q2,~q3} forms a new subspace and the vector ~v lies in

this subspace. In general, given a vector set {~x1,~x2, . . . ,~xr} where all the vectors are linearly

independent, the first vector~q1 of the orthonormal basis can be obtained by normalizing~x1 and the

other orthonomal vectors can be acquired by the mathematical induction; see Algorithm 2. Based

on solution 2, this algorithm gives the same result as the Algorithm 1 but introduces smaller errors

in finite-precision arithmetic. It is known as the Modified Gram-Schmidt (MGS).

33

Algorithm 2 Modified Gram-Schmidt
1: r11 = ‖x1‖2

2: if r11 = 0 then

3: Stop

4: else

5: ~q1 =~x1/r11

6: end if

7: for j = 2: r do

8: ~q =~x j

9: for i = 1: j - 1 do

10: ri j = (~q,~qi)

11: ~q =~q− ri j~qi

12: end for

13: r j j = ‖~q‖2

14: if r j j = 0 then

15: Stop

16: else

17: ~q j =~q/r j j

18: end if

19: end for

3.2 Arnoldi Iteration

3.2.1 Cayley-Hamilton Theorem

In linear algebra, for a n×n nonsingular matrix A, the Cayley-Hamilton theorem is represented by

the identity (3.6). The coefficients ck can be expressed in terms of traces of powers of the matrix

A. However, the calculations of coefficients become increasingly complicated and impossible

34

practically for large-scale matrices.

p(A) = An + cn−1An−1 + · · ·+ c1A+(−1)ndet(A)In = 0 (3.6)

Rewrite (3.6) as (3.7),

− (−1)ndet(A)In = A(An−1 + cn−1An−2 + · · ·+ c1In). (3.7)

Multiply both sides by A−1,

A−1 =
(−1)n−1

detA
(An−1 + cn−1An−2 + · · ·+ c1In). (3.8)

Therefore, A−1 must belong to the subspace (3.9),

κn(A) = span{1,A,A2, · · · ,An−1}. (3.9)

3.2.2 Krylov Subspace

A~x =~b (3.10)

In linear algebra, given a n×n matrix A and a n-dimensional vector~v, the order n Krylov subspace

is defined as κn(A,~v) ≡ span{~v,A2~v, · · · ,An−1~v}. The system to solve is expressed by (3.10). An

initial guess is given as~x0. The following deduction shows that the exact solution~x∗ can be found

through a Krylov subspace.

A~x0 =~b

~r0 =~b−A~x0

A−1~r0 = A−1~b−A−1A~x0

A−1~r0 =~x∗−~x0

~x∗ =~x0 +A−1~r0 (3.11)

Obviously, A−1~r0 is in the Krylov subspace (3.12).

κn(A,~r0) = span{~r0,A~r0,A2~r0, · · · ,An−1~r0}. (3.12)

35

Because the dimension n is very large for a large-scale matrix, it is impossible to search for the

accurate A−1~r0 from such a subspace in practice. The reasonable way is to shrink this subspace

to m dimension where m is much smaller than n, for example, m = 20. Thus, in the objective

subspace (3.13), we search for an nearest solution under the required conditions.

κm(A,~r0) = span{~r0,A~r0,A2~r0, · · · ,Am−1~r0}. (3.13)

3.2.3 Arnoldi’s Method

Though the vectors in a Krylov subspace are actually linearly independent, the extent of linear

dependence becomes more and more serious with an increase in the power of a matrix. Based

on this, the coordinate values of a vector will only have a slight difference; see Figure 3.3-(1).

Because the digital numbers in computers are limited, an orthonormal basis is a better way for the

vectors in the subspace, which expresses the coordinates in an efficient way; see Figure 3.3-(2).

v1

Av1

v v

v1

Av1

(1) (2)

Figure 3.3: Two-dimensional example for using orthonormal basis

Given a vector ~v1 =~r0/‖~r0‖2, the corresponding m-order Krylov subspace is κm(A,~v1); see

(3.14). Vm represents the orthogonal matrix composed by the orthonormal basis vectors which

span the same subspace κm(A,~v1); see (3.15).

36

κm(A,~v1) = span{~v1,A~v1,A2~v1, · · · ,Am−1~v1} (3.14)

Vm = [~v1,~v2, · · · ,~vm] (3.15)

The procedure of generating an orthonormal basis Vm for the subspace κm(A,~v1) can be imple-

mented by the Gram-Schmidt process, which is called the Arnoldi iteration. Algorithm 3 gives an

Arnoldi iteration by using the standard Gram-Schmidt algorithm 1.

Algorithm 3 Arnoldi
1: v1 = r0/‖r0‖2

2: for j = 1: m do

3: for i = 1: j do

4: hi j := (Av j,vi)

5: end for

6: ~w = Av j−
j

∑
i=1

hi j~vi

7: h j+1, j = ‖~w‖2

8: if h j+1, j = 0 then

9: Stop

10: else

11: v j+1 = ~w/h j+1, j

12: end if

13: end for

From line 11 and line 6 of Algorithm 3, equations (3.16) and (3.17) can be obtained.

~w =~v j+1h j+1, j (3.16)

~w = A~v j−
j

∑
i=1

hi j~vi (3.17)

37

Apparently, (3.18) is obtained.

A~v j =
j+1

∑
i=1

hi j~vi, j = 1,2, . . . ,m (3.18)

Thus we have the following derivation process:

AVm = A[~v1,~v2, · · · ,~vm]

= [A~v1,A~v2, · · · ,A~vm]

= [~v1h1 1 +~v2h2 1,~v1h1 2 +~v2h2 2 +~v3h3 2, · · · ,~v1h1 m +~v2h2 m + · · ·+~vm+1hm+1 m]

=

(
~v1 ~v2 · · · ~vm+1

)


h1 1 · · · · · · h1 m

h2 1 h2 2 · · · ...
.

hm m−1 hm m

hm+1 m



Defining two Hessenberg matrices Hm as in (3.19) and H̄m as in (3.20), we get equation (3.21)

which will be used to deduce the GMRES.

Hm =



h1 1 · · · · · · h1 m

h2 1 h2 2 · · · ...
.

hm m−1 hm m


(3.19)

H̄m =

 Hm

hm+1 m

 (3.20)

AVm =Vm+1H̄m (3.21)

38

As stated in the Gram-Schmidt process section, the Arnoldi iteration process derived from the

Modified Gram-Schimidt process will be more practical than from the standard Modified Gram-

Schimidt process, which is listed by Algorithm 4.

Algorithm 4 Arnoldi-Modified Gram-Schmidt
1: ~v1 =~r0/‖~r0‖2

2: for j = 1: m do

3: ~w = A~v j

4: for i = 1: j do

5: hi j = (~w,~vi)

6: ~w = ~w−hi j~vi

7: end for

8: h j+1, j = ‖~w‖2

9: if h j+1, j = 0 then

10: Stop

11: else

12: ~v j+1 = ~w/h j+1, j

13: end if

14: end for

3.3 GMRES

3.3.1 GMRES Algorithm

Rewrite (3.11) in (3.22) by using the orthonormal basis.

~x =~x0 +Vm~y (3.22)

where ~y is a vector with m elements. Because Vm is only a m-dimensional subspace, only an

approximate solution ~x instead of the exact solution ~x∗ can be found in this subspace in general.

39

Assume that~rm is the least residual which can be obtained by solving a minimization problem; see

(3.23).

‖~rm‖2 = argmin~x‖~b−A~x‖2 = argmin~y‖~b−A(~x0 +Vm~y)‖2 (3.23)

β = ‖~r0‖2 (3.24)

~v1 =~r0/‖~r0‖2 (3.25)

~e1 = (1,0, · · · ,0)(m+1)×1 (3.26)

~v1 =Vm+1~e1 (3.27)

Using (3.24), (3.25), (3.26), (3.27) and (3.21), we have the deduction:

~b−A(~x0 +Vm~y) = ~b−A~x0−AVm~y

= ~r0−Vm+1H̄m~y

= β~v1−Vm+1H̄m~y

= βVm+1~e1−Vm+1H̄m~y

= Vm+1(β~e1− H̄m~y). (3.28)

.

Because Vm is an orthonormal basis,~rm is expressed by (3.29):

‖~rm‖2 = argmin~y‖Vm+1(β~e1− H̄m~y)‖2 = argmin~y‖β~e1− H̄m~y‖2 (3.29)

In order to solve this minimization problem, a reasonable approach is to transfer the Hessenberg

matrix H̄m to a matrix R̄m which is formed by an upper triangular matrix Rm with a zero row; see

(3.30).

40

R̄m =

 Rm

0

 (3.30)

A series of rotation matrices Ωi can be employed to implement the transformation; see (3.31).

R̄i = ΩiΩi−1 · · ·Ω1H̄m (3.31)

Ωi =



1
. . .

1

ci si

−si ci

1
. . .

1



← row i

← row i+1
(3.32)

si =
hi+1 i√

(h(i−1)
i i)2 +h2

i+1 i

(3.33)

ci =
h(i−1)

i i√
(h(i−1)

i i)2 +h2
i+1 i

(3.34)

where i = 1,2, · · · ,m. R̄m is obtained after m steps. The superscript (i−1) of an entry denotes its

value from R̄i−1.

Because each rotation matrix Ωi is unitary, it does not affect the Euclidean norm. We have the

following deduction:

‖β~e1− H̄m~y‖2
2 = ‖ΩmΩm−1 · · ·Ω1(βe1− H̄m~y)‖2

2

= ‖ΩmΩm−1 · · ·Ω1βe1− (ΩmΩm−1 · · ·Ω1H̄m)~y‖2
2

= ‖ΩmΩm−1 · · ·Ω1βe1− R̄m~y‖2
2.

41

.

Obviously, ΩmΩm−1 · · ·Ω1β~e1 is a (m+ 1)× 1 vector. Let ~gm represent this vector and ~g′m

represents the vector excluding the last element γm+1; see (3.35).

~gm = ΩmΩm−1 · · ·Ω1β~e1 =

 ~g′m

γm+1

 (3.35)

Thus,

‖β~e1− H̄m~y‖2
2 = ‖~gm− R̄m~y‖2

2

=

∥∥∥∥∥∥∥
 ~g′m

γm+1

−
 Rm

0

~y

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
 ~g′m−Rm~y

γm+1


∥∥∥∥∥∥∥

2

2

= |γm+1|2 +‖~g′m−Rm~y‖2
2. (3.36)

The minimum value of (3.36) can be obtained when the second part is zero which is an upper

triangular system and can be solved easily; see (3.37).

~ym = R−1
m ~g′m (3.37)

From (3.29) and (3.36), the norm of the minimization residual is obtained by (3.38). If it meets

the requirement, we can use (3.22) to get the solution vector~x.

‖~rm‖2 = |γm+1| (3.38)

In practice, m is often assigned with a small integer, such as 20 or 30. But the residual~rm may

not satisfy the requirement after the above calculations. If a larger m is employed, the accuracy of

the solution can be improved. However, the memory and computational resources would become

unacceptable quickly with m increasing. A suitable approach is to restart the process and use the

42

solution~xm as an initial vector~x0. The restarted process is repeated until a satisfactory solution is

arrived. Based on the ideas of this subsection, the GMRES algorithm with restarted number m is

given in Algorithm 5.

Algorithm 5 GMRES(m)

1: Given A,~b,~x0

2: for k = 1, 2, · · · do

3: ~r0 =~b−A~x0,β = ‖~r0‖2,~v1 =~r0/β

4: Generate Vm, H̄m by modified Arnoldi iteration with A,~r0; see Algorithm 4.

5: Compute ~rm and ~ym of the minimization problem ‖~rm‖2 = argmin~y‖β~e1 − H̄m~y‖2; see

(3.29).

6: Compute~xm =~x0 +Vm~ym; see (3.22).

7: if satisfied then

8: Stop

9: else

10: ~x0 =~xm

11: end if

12: end for

3.3.2 Preconditioned GMRES

As stated in subsection 2.2.2, a preconditoner can be used to improve the performance of iterative

solvers. A linear system with a left-preconditioner M is written as (3.39) which has the identical

solution to the original equation (3.10).

M−1A~x = M−1~b (3.39)

43

Obviously, the residual vector~r is given by (3.40).

~r = M−1~b−M−1A~x

~r = M−1(~b−A~x)

M~r = ~b−A~x (3.40)

Thus the Krylov subspace used for searching for an approximate solution is defined as (3.41).

κm(M−1A,~r0) = span{~r0,M−1A~r0,(M−1A)2~r0, · · · ,(M−1A)m−1~r0}. (3.41)

The complete algorithm for the restarted GMRES(m) solver with left-preconditioner M is given

in Algorithm 6 which is implemented in our research.

3.4 Basic Operations

From Algorithm 6, the most operations except the solution of a preconditioner system are matrix-

vector multiplication and vector operations as described below, where α , β ,γ and r represent

scalars.

~y = αA~x+β~y, (3.42)

~y = α~x+β~y, (3.43)

~z = α~x+β~y, (3.44)

γ = (~x,~y), (3.45)

r = ‖~x‖2 =
√
(~x,~x). (3.46)

44

The algorithms for vector operations, such as scalar multiplication, dot product and vector addi-

tion, are easy to implemented. The NVIDIA also provides BLAS operations through NVIDIA

cuBLAS library. However, the SPMV (Sparse Matrix-Vector Multiplication) operation is much

more complicated than other vector operations. It will be analyzed in the first section of Chapter 4.

The preconditioner systems need to be solved at least once at each iteration; for instance, see line

3 and line 6 in Algorithm 6. The second and third sections of Chapter 4 detail the mechanism of

establishing a preconditioner matrix on multiple-GPU architecture and the approach for solving it.

45

Algorithm 6 The preconditioned GMRES(m) algorithm

1: Given A,~b,~x0

2: for k = 1, 2, · · · do

3: Solve~r0 from M~r0 =~b−A~x0

4: β = ‖~r0‖2,~v1 =~r0/β

5: for j = 1: m do

6: M~w = A~v j

7: for i = 1: j do

8: hi j = (~w,~vi)

9: ~w = ~w−hi j~vi

10: end for

11: h j+1, j = ‖~w‖2

12: if h j+1, j = 0 then

13: Stop

14: else

15: ~v j+1 = ~w/h j+1, j

16: end if

17: end for

18: Define Vm, H̄m.

19: Compute ~rm and ~ym of the minimization problem ‖~rm‖2 = argmin~y‖β~e1 − H̄m~y‖2; see

(3.29).

20: Compute~xm =~x0 +Vm~ym; see (3.22).

21: if satisfied then

22: Stop

23: else

24: ~x0 =~xm

25: end if

26: end for
46

Chapter 4

GPU COMPUTATION

This chapter is made of three sections which concentrate on the major implementation mechanism

of GMRES with ILU(k). The first section explains the SPMV mechanism in which the domain

decomposition, the reordering-compact method and the communication mechanism are detailed.

The second section analyzes the nested parallel characteristic of a multiple-GPU platform, where

the RAS principle and then the nested RAS framework are presented. The last section describes the

decoupled algorithms about ILU(k). The principle of a parallel triangular solver is also introduced

in this section.

4.1 Sparse Matrix-Vector Multiplication Mechanism

4.1.1 Domain Decomposition

Generally, SPMV is expressed by equation (4.1),

~y = A~x. (4.1)

where~y is the result vector, A is the original matrix, and~x is the vector for multiplication.

In our study, we assume that A is nonsingular. Figure 4.1 uses four GPUs as a schematic

diagram. Figure 4.1 (1)-(3) explains the process of partitioning a matrix. Because each GPU owns

a domain matrix, the number of domain matrices equals the number of GPUs. As the SPMV

algorithm in linear algebra is based on the computation of rows, it is natural to divide matrix A by

rows into domain matrices. We assume that m GPUs are employed. For a given N×N matrix A,

its row indices form a set S = {1,2, · · · ,N}. Each GPU stores some rows of A and a corresponding

subset of S. Then we have m subsets of S, denoted by S1, S2, · · · , and Sm, which satisfy the

following two equations:

47

Si∩S j = /0, i 6= j, (4.2)

S1∪S2∪·· ·∪Sm = S. (4.3)

domain matrix 1

domain matrix 2

domain matrix 3

domain matrix 4

domain vector 1

domain vector 2

domain vector 3

domain vector 4

GPU 1

domain matrix 1 domain vector 1

domain vector 2domain matrix 2

domain matrix 3 domain vector 3

domain matrix 4 domain vector 4

GPU 2

GPU 3

GPU 4

(1) (2) (3)

(4) (5)

Figure 4.1: Matrix and vector domain decomposition

In Figure 4.1-(2), each horizontal rectangle stands for a domain matrix. The row indices form a

subset Si. According to the graph theory, the pivot element of each row can be looked at as a node.

The nodes in the same domain matrix form a set. The other non-zero elements of a row are looked

at as communication lines. From Figure 4.1-(3), if an element is located in the pivot diagonal

block, the communication is within the same GPU. However, if an element is located outside of

the pivot diagonal block, there is a communication between two different GPUs. Because the cost

of data transmission within the same GPU is much less than that between two different GPUs, the

data transmission among GPUs should be reduced as much as possible. Thus the relation of rows

within the same domain matrix should be as tight as possible. We can explain this principle by

equation (4.4),

yi =
n

∑
j=1

Ai jx j. (4.4)

48

where Ai j is the i jth nonzero element of matrix A, x j is the jth element of vector~x and yi is the ith

element of the SPMV result vector.

Although matrix A is sparse, it is possible for a nonzero element Ai j to appear in any column

in row i. This means that x j, the corresponding element used for SPMV in vector ~x, may emerge

at any position of vector ~x. We establish the communication mechanism among rows according

to the nonzero structure of A. For element Ai j, if i and j both belong to the same subset Sk, the

vector element x j must locate in the domain vector related to the domain matrix. Obviously, there

is no communication because they are on the same GPU. On the other hand, if i and j belong

to different subsets Sq and Sp, respectively, a communication exists between two different GPUs.

This principle shows that the load of communication between different GPUs is determined by

the subsets S1, S2, . . ., Sm. Our aim is to reduce the communication load as much as possible by

employing a proper partition method.

If matrix A has a regular structure which is usually obtained from the FDM (Finite Difference

Method) or FVM (Finite Volume Method), we can use a sequence partition method as illustrated

in Figure 4.2-(1). For an unstructured matrix A which is derived from the FVM or FEM (Finite

Element Method), special partition methods should be applied to matrix A. There are some existing

methods available. In our study, METIS is selected as the partition method, which can provide

a quasi-optimal partition and minimize communication cost [48]. A schematic diagram of this

partition method is illustrated by Figure 4.2-(2).

(1) regular matrix A (2) irregular matrix

Figure 4.2: Schematic of regular and irregular matrix

49

After operations of partition, most elements of a domain matrix lie in the dense pivot diagonal

blocks; see Figure 4.1-(3). The row index for each row may change. The index for each element

of vector~x should also change in the same way for the SPMV to have a correct result. We create a

mapping pm to record the permutation expressed by equation (4.5). We also establish a mapping

pa to reflect the relation of each row and its partition expressed by equation (4.6).

i′ = pm(i) (4.5)

where i is the old row number and i′ is the new row number.

k = pa(i′) (4.6)

where i′ is the new row number and k is the domain number.

By equations (4.5) and (4.6), each row can be distributed to a domain matrix and the original

positions of row data can be recorded and traced. To implement a matrix-vector product, the data

of vector~x should be stored in GPUs. It is not reasonable to store a whole copy of vector~x in each

GPU because the memory of a GPU is always limited and vector ~x is dense in most cases. The

solution is to store only a segment of vector~x on each GPU. This means that a vector also needs to

be partitioned into domain vectors, which is shown in Figure 4.1-(5). Because the pivot diagonal

block of a domain matrix is its only dense part, the row indices of a domain vector stored in each

GPU should correspond to the column indices of the pivot diagonal block of the domain matrix.

Apparently, most calculations of SPMV for a domain matrix are guaranteed on its local GPU.

4.1.2 Data Structure

In the phase of domain decomposition, a domain matrix is stored by data structure mat csr t which

is the CSR (Compressed Sparse Row) format. The property Ax is used for storing the data of

nonzero elements row by row. The property A j is used for storing the column index corresponding

each element in A j. The property Ap is used for storing the starting indices of each row in A j and

50

mat_csr_t

 num_rows: integer

 num_cols: integer

 num_nonzeros: integer

 Ap: integer *

 Aj: integer *

 Ax: float *

mg_mat_csr_t

 num_mats: integer

 num_rows: integer

 num_cols: integer

 num_nonzeros: integer

 mat: mat_csr_t *

mg_vec_t

 num_vecs: integer

 v: float * *

(1) (2) (3)

* : one dimensional array

* * : two dimensional array

mat_ell_t

 num_rows: integer

 num_cols: integer

 num_nonzeros: integer

 stride: integer

 num_cols_per_row: integer

 Aj: integer *

 Ax: float *

mg_mat_hec_t

 num_mats: integer

 num_rows: integer

 num_cols: integer

 num_nonzeros: integer

 mat: mat_hec_t *

(4) (5) (6)

mat_hec_t

 num_rows: integer

 num_cols: integer

 num_nonzeros: integer

 ell: mat_ell_t

 csr: mat_csr_t

Figure 4.3: Data structure

Ax. The data structure of mg mat csr t is designed for managing all domain matrices. The property

mat is a array which contains pointers of all the domain matrices located in different GPUs. The

property num mats represents the number of the domain matrices which equals the number of the

GPUs. The data structure mg vec t is designed to store domain vectors. The property num vecs

is the number of the domain vectors which equals the number of the GPUs. A two-dimensional

pointer v is used to manage the set of the domain vectors. Each domain vector is stored in a

corresponding GPU. The first level of v points to vectors. The second level of v points to the

elements of each vector.

Before distributing the domain matrices onto different GPUs, we need to transform them into

the HEC format which is friendly to design a SPMV algorithm [33]; see Figure 4.3-(5). An original

domain matrix is cut into two parts. One part is regular by storing some necessary zero elements.

The other part is an irregular part. Figure 4.4 gives a schematic of the HEC matrix format. The

data structure mat ell t is designed for the regular part. The property stride represents the number

51

ELL CSR

Ap

Aj

Ax

Aj Ax

Figure 4.4: HEC matrix format

of the rows of the matrix. The property num cols per row is used for controlling the length of

each row. In this part, all the data are stored in a matrix transpose form. In other words, the data

stream read from the array Ax is stored by a column-major order in the ell part. Thus it is suitable

for fitting the data stream from the vector. In addition, GPU threads can process them batched. The

data structure mat csr t is used for the irregular part. The data structure mg mat hec t is designed

for managing the domain matrices.

4.1.3 Reordering-Compact Method for Domain Matrices

left zone pivot zone right zone

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14[]step 4

0 0[]step 1

1 1 1 1 1 1 1 1 1 10 0[]step 2

1 1 1 1 1 1 1 1 1 10 0[]step 3 1 1 1 1 1

Figure 4.5: Example for reorder-compact method

A domain matrix can be divided into three parts; see the upper part in Figure 4.5. The pivot

diagonal block is called the pivot zone which is the only dense part in a domain matrix. There are

52

sparse nonzero elements in the left and right zones. As stated above, a domain matrix is stored

in the HEC format which is composed of mat ell t and mat csr t. All the nonzero elements have

their original column indices which are discontinuous numbers. However, a vector uses a one-

dimensional array as the data structure with continuous indices, which has a consecutive memory

region and fast visiting speed. These two kinds of indices do not match. The solution is to use

a local order for domain matrices and make all columns reach a compact effect. The reordering-

compact method is described in Algorithm 7; also see the lower part in Figure 4.5. Because the

nonzero elements in the left and right zones are sparse, the reorder-compact process costs less

computing resources. It can be executed on the host after the domain decomposition phase.

Algorithm 7 Reordering-compact method
1: Establish an integer array with an initial value as zero. Its length is the same number of the

columns in a domain matrix.

2: All elements corresponding to the pivot zone are assigned with one because the pivot zone is

dense.

3: For the left or right zone, if a nonzero element appears in any rows, the corresponding array

element is updated to one.

4: All the array elements with value one are renumbered sequentially starting from zero.

4.1.4 Communication Mechanism for Domain Vectors

Each GPU owns a domain matrix and a domain vector. Though a domain matrix is dense in its

pivot block, it is possible for the domain matrix to have nonzero elements in any columns. Thus

the whole vector data should be prepared for multiplication according to the SPMV algorithm in

linear algebra. However, there is only one domain vector in each GPU, which is a segment and

only contains elements used for the pivot block. If there are some nonzero elements appearing

outside of the pivot block, extra vector elements must be fetched from other domain vectors which

are located on other GPUs. The challenge concentrates on how to fetch necessary vector data

53

from other GPUs with the least communication. We design a communication mechanism which is

described by the data structure and algorithm euqations. Through this mechanism, each GPU can

fetch the vector data it needs from other GPUs. Conversely, each GPU can provide vector data for

other GPUs to fetch.

mg_commu_t

 num_vecs: integer

 node: mg_commu_node_t *

 v: float *

mg_commu_node_t

 hr_data: mg_commu_data_t

 hs_data: mg_commu_data_t

 dr_data: mg_commu_data_t

 ds_data: mg_commu_data_t

 local: integer

 x: float *

mg_commu_data_t

 len: integer

 data: float *

Figure 4.6: Data structure for communication mechanism

4.1.4.1 Data Structure

The data structure used for communication is shown in Figure 4.6. Each GPU owns a mg commu node t.

The properties hr data and hs data are the data receiving and data sending proxies on the host.

The properties dr data and ds data are the data receiving and data sending proxies on the device.

All data packages are designed as mg commu data t and transmitted by a share cache on the CPU.

The property x is the extended vector which is a local domain vector plus extra parts fetched from

other GPUs. mg commu t is designed for managing the communication nodes. The property v acts

as the share cache.

4.1.4.2 Assembling Communication Mechanism on Multiple GPU Architecture

The assembling chart of the communication mechanism is shown in Figure 4.7. An extended

vector is combined by two parts; see figure 4.8. The first part comes from a local domain vector

which lies in the middle of the extended vector. The start position is identified by property local

in mg commu node t. The second part contains the two sides of the extended vector, which are

fetched from other domain vectors. The extended vector will be used for SPMV calculation on

each GPU. We assume that m GPUs are employed. The extended vectors can be assembled by the

54

GPU 1 GPU 2CPU

ds_data

dr_data

hr_data

hs_data

hr_data

hs_data

ds_data

dr_data

share cache

Figure 4.7: Communication chart

following equations:

Dri = Sli∪Sri (4.7)

∪m
i=1 Dri = ∪m

i=1Dsi (4.8)

x = Sli∪Spi∪Sri (4.9)

where

• m: the number of GPUs

• Spi : the domain vector on ith GPU

• Sli : the left-hand side of the extended vector on ith GPU

• Sri : the right-hand side of the extended vector on ith GPU

• Dri: dr data on ith GPU

• Dsi: ds data on ith GPU

• x: the extended vector on ith GPU

property local in mg_commu_node_t

extended vector

Figure 4.8: Extended vector

55

When determining dr data by equation (4.7), the elements in Sli can be counted and stored as

property local in mg commu node t. By now, the SPMV on a multiple-GPU architecture has been

divided into subtasks and distributed onto multiple GPUs.

4.2 Nested Restricted Additive Schwarz Framework

4.2.1 Theory Review

The nested RAS framework devotes to providing a highly parallel framework for assembling ILU

preconditoner matrices. This subsection gives a brief review of the RAS theory and related ILU

precondioner equations, which will be used in the following contents.

4.2.1.1 Restricted Additive Schwarz

A = (Ai j) is a nonsingular n×n sparse matrix. We define an graph G = {W,E}, where the set of

vertices W = {1, . . . ,n} represents the n unknowns. The edge set E = {(i, j) : Ai j 6= 0, Ai j ∈ A}

represents the pairs of vertices [24]. Then the graph G is divided into k non-overlapping subsets,

denoted by W 0
1 ,W

0
2 , . . . ,W

0
k . For any subset W 0

i , a 1-overlap subset W 1
i can be generated by in-

cluding all the direct neighboring vertices in W [24]. By this analog, a δ-overlap subset W δ
i can be

created, and the resulting overlapping subsets are W δ
1 ,W

δ
2 , . . . ,W

δ

k . W δ
i and the edges among the

vertices in W δ
i form a sub Ni×Ni matrix, denoted by Ai. All these sub-matrices can be assembled

and an enlarged system is obtained:

M = diag(A1,A2, . . . ,Ak) (4.10)

Obviously, M is a (N1 +N2 + · · ·+Nk)× (N1 +N2 + · · ·+Nk) matrix whose system can be solved

by an ILU preconditioner, for example. All these sub-matrices, A1,A2, . . . ,Ak, can be obtained

simultaneously.

56

4.2.1.2 Related Preconditioner Equations

The linear system we solve is written as (4.11).

A~x =~b (4.11)

where A is a nonsingular n× n sparse matrix, ~x is an unknown vector, and~b is a right-hand side

vector. Preconditioning algorithms all need to solve a linear system (4.12) at least once at each

iteration. A common situation is that the preconditioner is available in the factorized form (4.13)

where L and U are triangular matrices [7].

M~y = ~f (4.12)

where M is a preconditioner which is a nonsingular n× n sparse matrix, ~y is an unknown vector,

and ~f is a right-hand side vector.

M = LU (4.13)

where M is the preconditioner, L is a lower triangular matrix, and U is an upper triangular matrix.

4.2.2 Data Structure

In the nested RAS implementation, all matrix formats are CSR (Compressed Sparse Row). The

data structures of storing matrices and vectors are shown in Figure 4.3-(1),(2) and (3). mat csr t is

the data structure for a single matrix. mg mat csr t is used to manage multiple matrices. mg vec t

is designed to manage a set of vectors. We do not establish a specific data structure for a single

vector, because a one-dimensional array is a suitable format for it. A detailed explanation of CSR

data structure is referred to subsection 4.1.2.

4.2.3 Domain Decomposition

In Figure 4.9-(2), each horizontal rectangle stands for a domain matrix. According to the graph

theory, the pivot element of each row can be looked at as a node. The nodes in the same domain

matrix form a node set. The other nonzero elements of a row are looked at as communication

57

(1) (2) (3)

original matrix domain decomposition RAS

Figure 4.9: Domain decomposition and RAS

edges. If an element is located in a pivot diagonal block of a domain matrix, it has no influence

on the parallelization between the current domain matrix and others. However, if an element is

located outside of a pivot diagonal block, it represents a communication edge between two domain

matrixes. According to the RAS theory, the nonzero elements outside of the diagonal blocks will

be discarded and the diagonal blocks will be used for parallel computing. Removing the nonzero

elements from the original matrix leads to some data information loss. Hence the nonzero elements

outside of the diagonal blocks should be reduced to the least, which means that the relationship

between the rows within the same domain matrix ought to be as tight as possible.

The partition methods are illustrated in Figure 4.2. As described in Section 4.1.1, a sequence

domain partition method is used for a regular structure matrix that usually comes from the FDM

(Finite Difference Method) or FVM (Finite Volume Method). The special partition method is

used for an unstructured matrix derived from the FVM or FEM (Finite Element Method). We use

METIS as a partition method, which is suitable for both structured and unstructured matrices [48].

Figure 4.9-(2) denotes the remaining diagonal blocks after discarding the sparse nonzero elements

in the non-diagonal blocks.

58

4.2.4 Overlapped Diagonal Block Matrices

The first step of RAS creates a series of square block matrices by discarding a few nonzero ele-

ments, which improves the degree of parallelization but loses the calculation accuracy due to the

missed data information. This can be compensated to a certain extent by the overlap mechanism

discussed below.

Figure 4.10: Overlap example

Figure 4.10 shows a schematic of one level overlap. The horizontal lines represent the rows

of the original matrix. The vertical lines represent the columns of the original matrix. The circle

symbol set represents a diagonal block. If a nonzero element is found outside of it, the block

should be extended according to the new found element. For example, if the symbol x is a nonzero

element, the diagonal block should be extended by both the column of x and the row which has

the same index as the column. All circle symbols, the square symbols and the x symbols form the

resulting block matrix of the first level overlap, which is an extended square matrix. Because new

lines are added, it is possible for a few nonzero elements to appear outside of the extended matrix

on these new lines in the original matrix. These nonzero elements will be used for the next overlap

level. If the next overlap level is not needed, these nonzero elements are just discarded. In this

example, only one overlap level is under consideration. As illustrated in Figure 4.10, from the new

added line, a triangle symbol, which is a nonzero element that lies outside of the overlapped block,

can be found. Because we only need the first level overlap, the triangle is discarded.

Figure 4.9-(3) shows the overlapped diagonal blocks. In other words, the domain matrices in

Figure 4.9-(2) are all rectangles but all the domain matrices in Figure 4.9-(3) are cut into squares

59

and then enlarged by overlapping.

The diagonal blocks can be stored in the data structure mat csr t. The global matrix in Fig-

ure 4.9-(3) can be managed by mg mat csr t. The procedure of generating overlapped blocks is

described in Algorithm 8.

Algorithm 8 Generate overlapped blocks
1: input

2: level . overlap levels

3: for i = 1 : level do

4: for each extended row of i−1 th level overlapped block do

5: for each nonzero element outside block do

6: Extend one row and one column

7: end for

8: end for

9: end for

4.2.5 Row Tracing Mappings

(1) (2) (4)

U2W V2W

(3)

V2U

Figure 4.11: Row tracing mappings

Figure 4.11-(1) shows the matrix schematic after the above overlapping process. All these over-

lapped blocks will be distributed onto different GPUs to serve as the coefficient matrix of a precon-

60

ditioner system; see Figure 4.11-(2). This means that all these overlapped blocks should be sepa-

rated. For an individual sub-matrix, the row indices are renumbered from zero. The new index of

a row may be different from its index in the global matrix. Therefore, mappings of the row indices

need to be created for tracing the row data. We define U = {i : row indices of overlapped block matrices},

V = { j : row indices of block matrices}, and W = {k : row indices of the original matrix}. Here

we assume that each set is sorted in ascending order according to the row indices. Now, three

mappings can be defined as follows:

k =U2W (i) (4.14)

i =V 2U(j) (4.15)

k =V 2W (j) (4.16)

where i ∈U, j ∈V and k ∈W .

Figures 4.11-(1) and 4.11-(2) show that the global matrix is divided into overlapped blocks.

The original location of each row in an overlapped block can be found by mapping U2W . After

solving a precondtioner system, the solution sub-vectors on multiple GPUs must be restored to

the original location in the global vector. Therefore, the mapping of row indices between the

non-overlapped blocks and the global matrix is necessary. We establish mapping V 2W between

the non-overlapped blocks and the global matrix; see Figures 4.11-(3) and 4.11-(4). The row

relationship between the overlapped blocks and the non-overlapped blocks is recorded by mapping

V 2U . All the mappings can be established in Algorithm 9.

4.2.6 Outer RAS and Inner RAS (Nested RAS)

In order to make the most use of the parallel capacity provided by a multiple GPUs platform, a

nested RAS framework is designed, which contains two layers named an outer RAS and an inner

RAS, respectively. The outer RAS corresponds to the multiple-GPU level which provides coarse-

grained parallelization. The inner RAS is designed for fine-grained parallelization at a GPU-thread

61

Algorithm 9 Generation of mappings
1: input

2: block . non-overlapped block located in overlapped block

3: overlappedBlock . overlapped block

4: for each row of overlappedBlock do

5: Create a U2W mapping entry

6: if row is in block then

7: Create a V2W mapping entry

8: Create a V2U mapping entry

9: end if

10: end for

(1) (2) (3) (4)

Figure 4.12: Nested RAS

level. The global matrix is shown in Figure 4.12-(1). Through the outer RAS procedure, the global

matrix is divided into outer overlapped blocks which have the same number as GPUs. Each GPU

acquires an outer overlapped block; see Figure 4.12-(2). These blocks are still nonsingular square

matrices and do not have any communication between each other. Each GPU can solve its own

outer overlapped block independently. The outer overlapped blocks could be factorized by ILU

62

and then solved by a parallel triangular solver. In order to make maximal use of the parallel

capacity on each GPU, we apply the inner RAS to the outer overlapped blocks to improve the

degree of parallelism. The principle of the inner RAS is the same as that of the outer RAS, as

discussed above. Each outer overlapped block acts as a global matrix. The inner overlapped blocks

produced from one outer overlapped block are on the same GPU and can be solved concurrently.

The schematic is shown in Figures 4.12-(3) and 4.12-(4). Algorithm 10 states the process of the

nested RAS.

Algorithm 10 Nested RAS
1: input

2: Global matrix

3: Outer partition by METIS

4: Generate outer overlapped blocks by Algorithm 8

5: Generate outer mappings by Algorithm 9

6: for each outer overlapped block do

7: Inner partition by METIS

8: Generate inner overlapped blocks by Algorithm 8

9: Generate inner mappings by Algorithm 9

10: end for

After the nested RAS decomposition, the original global matrix is transferred to many groups

of inner overlapped blocks. Each group of blocks is on a same GPU and has better capability for

parallel computing. In order to apply a parallel triangular solver to solve the sub-systems on each

GPU, the matrix on the GPU needs to be factorized into a lower triangular matrix and an upper

triangular matrix by ILU; see equation (4.13). There are two ways to implement this factorization.

One way is to factorize each inner overlapped block individually and then put all small lower

and upper triangular matrices together to form the resulting lower and upper triangular matrices.

The other way is first to put all inner overlapped blocks head-to-head and then perform an ILU

63

factorization on the resulting matrix directly. Because there is no relationship between any two

inner overlapped blocks, either way is reasonable. We select the first way; see Figure 4.13.

(1) (2) (3)

Figure 4.13: ILU for inner overlapped blocks

4.2.7 Right-Hand Side Vector Overlap and Solution Vector Recovery

outer mappings inner mappings outer mappingsinner mappings

(1) right hand side vector overlap (2) solution vector recovery

Figure 4.14: Right-hand side vector overlap and solution vector recovery

The preconditiner matrix M has been established and factorized into L and U ; see equations

(4.12) and (4.13). M is stored in mg mat csr t format and each GPU has a sub-system to solve. To

64

solve this precondtioner system, the right-hand side vector must be divided into sub-vectors and

each sub-vector is overlapped by the same outer and inner mappings as discussed above. Since

a preconditioner system is solved on a single GPU, the right-hand side vector only needs to be

divided into outer sub-vectors. It is not necessary to divide the right-hand side vector into inner

ones because the vector elements do not have any relationship that affects parallel performance

between each other as matrix rows have. But the inner mappings should still be employed to

generate the overlapped right-hand side vector for the preconditoner system; see Figure 4.14-(1).

Because the matrix and right-hand side vector of a preconditioner system are enlarged by outer

and inner overlaps, the solution vector is also overlapped. Therefore, after the preconditioner

system is solved, a similar but inverse procedure needs to be performed on the solution vector. The

recovery procedure for the solution vector is illustrated in Figure 4.14-(2).

By now, we have finished the construction of the nested RAS framework. In summary, we

divide the original matrix A into small matrices to improve the parallel performance through a

nested RAS process. These small matrices can be further factorized into triangular matrices by

ILU or other preconditioner algorithms. We use the parallel triangular solver to solve triangular

matrices on each GPU. In Section 4.3, we will give a detailed description of the ILU(k) algorithm

and the parallel triangular solver.

4.3 Decoupled ILU(k) and Parallel Triangular Solver

4.3.1 Data Structure

For ILU(k) factorization, we still store matrices in the CSR format which is implemented by the

data structure mat csr t; see Figure 4.3-(2). If ignoring the concrete values of entries in a matrix

and only considering whether they equal zero or not, all the nonzero positions of a matrix will

form a nonzero pattern. Obviously, an entry is a nonzero element if its row and column indices are

involved in Ap and A j; otherwise, it is a zero element. Therefore, Ap and A j also represent the

nonzero pattern of a matrix or the structure of a matrix.

65

Figure 4.15 shows data structure imatcsr t which is specially designed for storing a nonzero

pattern and will be applied in the symbolic phase of ILU(k). n represents the dimension of a

matrix. nz is an array for the length of each row. The two-dimensional array A j is used for storing

column indices. As stated above mat csr t stores column indices in a one-dimensional array. If

an element is deleted from the matrix, the entire elements after the current element in the memory

space must be moved forward, which costs a large amount of computing resources, especially

when the deletion operation happens frequently. However, because the column indices are stored

in the two-dimensional array A j of imatcsr t row by row and each row contains sparse elements,

a very low cost of moving data is required for the deleting operation. Therefore, imatcsr t is more

suitable for manipulating a nonzero pattern.

imatcsr_t

 n: integer

 nz: integer *

 Aj: integer **

 * : one dimension array

**: two dimension array

Figure 4.15: Data structure for nonzero pattern

4.3.2 Decoupled ILU(k) Algorithm

Algorithm 11 shows the ILU(0) algorithm. P represents the nonzero pattern of matrix A. If the

code (i, p)∈P on line 2 and (i, j)∈P on line 4 are removed, this algorithm is Gaussian elimination.

As we know, Gaussian elimination is costly on computing resources. In the ILU(0) algorithm, P

serves as a filter where only the elements lying in the nonzero positions of P can be calculated by

lines 3 and 5. Due to the sparse character of P, the complexity of this algorithm is very low, which

can be performed at each iteration of a Krylov subspace solver. Matrix A is stored in mat csr t

format. In this algorithm, the resulting matrix also uses the same memory as A, which means that

the original elements of A will be replaced by the resulting elements calculated by lines 3 and 5.

66

Algorithm 11 ILU(0) factorization
1: for i = 2: n do

2: for p = 1: i - 1 & (i, p) ∈ P do

3: Aip = Aip/App

4: for j = p + 1: n & (i, j) ∈ P do

5: Ai j = Ai j−AipAp j

6: end for

7: end for

8: end for

The lower triangular matrix L from factorization will be stored in A’s low triangular part except the

diagonal which are all unit values. L is generated by line 3. The upper triangular matrix U from

factorization will be stored in A’s upper triangular part including the diagonal. U is generated by

line 5. Figure 4.16 shows a schematic of ILU(0) factorization. Because P comes from the nonzero

pattern of A, Figure 4.16-(2), which represents the resulting matrix, has the same nonzero pattern

as Figure 4.16-(1).

(1) (2)

A

L

U

Figure 4.16: ILU factorization

Because A is a sparse matrix, the nonzero pattern P of A is also sparse. The accuracy of

ILU(0) may be insufficient to yield an adequate rate of convergence. More accurate incomplete LU

factorizations are often more efficient as well as more reliable. These more accurate factorizations

differ from ILU(0) by allowing some fill-in. A level of k is defined to control the degree of fill-in

[7]. A larger k allows more fill-ins in the nonzero pattern in addition to the original nonzero pattern

67

created by A. k is a nonnegative number; ILU(k) is ILU(0) when k is zero.

Li j =


0, (i, j) ∈ P

∞, (i, j) /∈ P.
(4.17)

Li j = min{Li j,Lip +Lp j +1}. (4.18)

ILU(k) requires that a level is defined for each entry of matrix A. The initial level of each

entry Ai j is defined by formula (4.17), where P represents the nonzero pattern of matrix A. The

nonzero elements of A have a level zero; otherwise, it has a level of infinity. Formula (4.18) gives

the level updated algorithm [7]. Apparently, formula (4.18) has no influence on the level of a

nonzero element, because the level of a nonzero element always remains zero. This means that

only zero element’s level can be updated from infinity to a limited positive value. If the new level

value is still greater than level k, this entry will be kept as zero and the position of this entry is not

involved in the next factorization. In other words, only the positions that have a new level value

smaller than level k can continue to a next calculation. If this position continues to the end, it will

be considered as a fill-in position included in the extended nonzero pattern. Because the nonzero

pattern generated by ILU(k) has more nonzero positions than ILU(0), the accuracy of solution for

a preconditioner system improves. Algorithm 12 gives the whole procedure of ILU(k).

Apparently, the calculations of Aip, Ai j and Li j are mixed together in Algorithm 12, which

complicates the algorithm. There is no direct relationship between Aip, Ai j and Li j. Li j merely acts

as a filter to control whether Aip or Ai j is qualified to be calculated in the following steps. Because

different functions are compounded into one subroutine to implement, the design of Algorithm 12

decreases the maintainability of the codes. From another perspective, line 6 is not necessary to

be calculated when Li j is greater than k because Ai j is set to zero on line 11. In other words, if

an element Ai j cannot stay to the end to be a fill-in element, the calculation for Ai j on lines 6 is

unnecessary. Thus line 6 wastes some computing resources in some situations. If the functions

of the zero pattern creation and the ILU factorization can be separated, the problems stated above

68

Algorithm 12 ILU(k) factorization
1: For all nonzero entries in nonzero pattern P define Li j = 0

2: for i = 2 : n do

3: for p = 1 : i−1 & Lip ≤ k do

4: Aip = Aip/App

5: for j = p+1 : n do

6: Ai j = Ai j−AipAp j

7: Li j = min{Li j,Lip +Lp j +1}

8: end for

9: end for

10: if Li j > k then

11: Ai j = 0

12: end if

13: end for

can be resolved. It is more clear and easier to process if Algorithm 12 is decoupled instead of im-

plementing everything in one subroutine. Therefore, for both the aspects of designing a favorable

maintainable program and a performance optimization algorithm, a decoupled ILU(k) implemen-

tation is necessary. The decoupled ILU(k) contains two steps. The first step is called the symbol

phase focusing on establishing a fill-in nonzero pattern, which has no relation to the processing of

any concrete data values. The second phase is responsible for the ILU factorization which uses

the nonzero pattern established in the symbolic phase to factorize the original matrix into a lower

triangular part and an upper triangular part.

The symbolic phase can be presented in Algorithm 13, where P′ is designed to record the fill-

in nonzero pattern. The data structure tm ilu t is applied to P′, which can easily and efficiently

remove entries. The logic for computing Li j is the same as in Algorithm 12. Algorithm 13 has

been separated totally from the processing of concrete data values. The factorization phase is

69

Algorithm 13 Symbolic phase
1: For all nonzero entries in nonzero pattern P define Li j = 0

2: Define P′ as n×n nonzero pattern

3: Initiate P′ by full filling with entries

4: for i = 2 : n do

5: for p = 1 : i−1 & Lip ≤ k do

6: for j = p+1 : n do

7: Li j = min{Li j,Lip +Lp j +1}

8: end for

9: end for

10: if Li j > k then

11: Remove entry i j from P′

12: end if

13: end for

responsible for creating L and U according to the nonzero pattern P′. Because tm ilu t only stores

the pattern without actual data values, in order to apply the ILU factorization, it is necessary to

create a matrix A′ by mat csr t from the nonzero pattern P′, which contains both structure and

data values. All entries are copied from A to A′ since all the entry positions of A are remained in

P′. The fill-in positions of A′ are all filled with a value zero. Thus A′ has the same structure as P′

but has no essential data value difference from A. The ILU(0) algorithm can be directly applied to

A′ and so it is called the factorization phase; see Algorithm 11. The process of the factorization

phase is also illustrated in Figure 4.16. The only difference from ILU(0) for A is that the number of

nonzero elements in Figure 4.16-(2) is greater than the number of nonzero elements in A, because

extra fill-in elements are imported by ILU(k).

70

4.3.3 Parallel Triangular Solver and Level Schedule Method

Each GPU owns a set of the ILU(k) outcomes of the nested RAS and a corresponding overlapped

right-hand side vector. They form the preconditioner system. We use the parallel triangular solvers

to solve it [51]. These parallel triangular solvers employ a level schedule method [7, 28]. The idea

is to group unknowns x(i) into different levels so that all the unknowns within the same level can

be computed simultaneously [7, 28]. Because an upper triangular system can be easily converted

to a lower triangular system, only a lower triangular system is analyzed bellow.

For the lower triangular linear system (4.19), the level of xi (1 ≤ i ≤ n) is defined in equa-

tion (4.20).

L~x =~b (4.19)

where

• L : lower triangular matrix

• ~x : unknown vector

• ~b : right-hand side vector

l(i) = 1+max
j

l(j) (4.20)

where

• for all j such that Li j 6= 0, i = 1,2, . . . ,n

• Li j : the (i, j)th entry of L

• l(i) : ith level, zero initially

• n : the number of rows.

The level schedule method is described in Algorithm 14. For GPU computing, each level in this

algorithm can be parallelized.

The lower and upper triangular matrices come from a nested RAS resulting matrix by ILU(k).

If the resulting matrix has higher parallel structure, so do the lower and upper triangular matrices.

71

Algorithm 14 Level schedule method for solving a lower triangular system
1: input

2: n . the number of levels

3: for i = 1 : n do

4: for each row in current level do

5: Solve the current row

6: end for

7: end for

(2)(1) (3)

Figure 4.17: Inner RAS for level schedule method

If the level schedule method acquires more rows at each level, better parallel performance will

be expected. Figure 4.17-(1) shows an example of a resulting matrix. Each row of this matrix

represents the coefficients of an equation. Apparently, these equations have tight relationships and

most of them cannot be solved simultaneously. In order to use the high parallel computing ability of

GPU, some nonzero elements need to be removed from the matrix to improve the parallel structure.

The extreme way is to discard all the elements except the diagonal elements as in Figure 4.17-(3).

Ideal parallel performance can be acquired and all equations can be solved concurrently because

there is only one level. However, it may not reach convergence or needs far more iterations to

reach convergence due to the very poor accuracy. A compromise method divides a matrix into

sub-domain matrices and discards the nonzero elements outside of the diagonal blocks as shown

in Figure 4.17-(2). The number of sub-domains can be used to control the parallelization degree.

This provides a theoretical basis for the inner RAS, as discussed in Section 4.2.

72

In this chapter, the crucial implementation mechanism and corresponding algorithms for the

GMRES with ILU(k) are explained in detail. The SPMV is the core operation in the GMRES

algorithm. The nested RAS constructs the framework for the ILU(k) preconditioner on the mul-

tiple GPU architecture. The decoupled ILU(k) algorithm is convenient for coding and improving

efficiency. At last, we introduce the principle of the level schedule method and its implementation,

namely, the parallel triangular solver. In the next chapter, a series of numerical experiments are

presented and analyzed, which validate all these algorithms.

73

Chapter 5

NUMERICAL EXPERIMENTS

We designed three sections of numerical experiments to test the performance of our algorithms.

They are experiments of SPMV, experiments of the nested RAS framework and experiments of

GMRES with ILU(k). The workstation is established by an Intel Xeon X5570 CPU and four

NVIDIA Tesla C2050/C2070 GPUs. The operating system is CentOS X86 64 with CUDA 5.1

and GCC 4.4. All cases are run in double precision. All data results are calculated by average on

three runs. In order to determine the parallel performance of the algorithms on multiple GPUs,

some contrastive algorithms are implemented for a CPU. The CPU codes are all compiled with

-O3 option and only one thread is employed. An algorithm speedup on GPUs against a CPU is

calculated by tc/tg where tc is the CPU time and tg is the GPU time, which shows how many times

acceleration GPUs can achieve relative to a CPU.

5.1 SPMV

The SPMV algorithm performance on the multiple-GPU architecture is tested by a series of ma-

trices which are listed in Table 5.1. The number of rows, the number of nonzero elements and

the ratio of the number of nonzero elements to the number of rows are listed in the columns of

o f rows, Nonzeros and NNZ/N, respectively. The matrix 3D Poisson comes from a three-

dimensional poisson equation. The matrix SPE10 comes from a classical reservoir model. The

other matrices are all downloaded from a matrix market [54]. All these matrices are nonsingular.

A SPMV algorithm for a CPU is implemented as a reference. We use only one thread in the CPU

algorithm for the reference purpose. Our SPMV algorithm uses the HEC format to store matrices

on GPUs. In order to test the performance of the HEC format, a reference experiment about the

HYB format is also presented, which uses the same SPMV algorithm except the matrix format.

74

Matrix # of Rows Nonzeros NNZ/N

BenElechi1 245,874 6,698,185 27.24

af shell8 504,855 9,042,005 17.91

parabolic fem 525,825 2,100,225 3.99

tmt sym 726,713 2,903,837 4.00

ecology2 999,999 2,997,995 3.00

thermal2 1,228,045 4,904,179 3.99

atmosmodd 1,270,432 8,814,880 6.94

atmosmodl 1,489,752 10,319,760 6.93

Hook 1498 1,498,023 30,436,237 20.32

G3 circuit 1,585,478 4,623,152 2.92

3D Poisson 1,728,000 12,009,600 6.95

kkt power 2,063,494 7,209,692 3.49

SPE10 2,188,851 29,915,573 13.67

memchip 2,707,524 13,343,948 4.93

Table 5.1: Matrices used for testing SPMV

5.1.1 SPMV Algorithm Performance

The running results are collected in Table 5.2. The CPUtime lies in the first column. The GPUtime

for a different number of GPUs is listed in other columns. The corresponding speedup is calculated

and shown in Table 5.3. Figure 5.1 provides a scatter diagram of speedup vs. the GPU number

which is used for the study of the performance scalability when employing more GPUs. The rows

of the tested matrices range from 240,000 to 2,700,000, which are a wide range of sparse matrices.

The matrices BenElechi1, a f shell8, parabolic f em, tmt sym and ecology2 are matrices which

have rows smaller than one million. Their CPU times are 0.01213, 0.01754, 0.00635, 0.00824 and

0.00877, respectively. When employing one GPU, their running times are reduced to 0.00084,

75

0.00167, 0.00048, 0.00053 and 0.00049. The speedups are 14.40, 10.53, 13.29, 15.67 and 17.85,

respectively. When employing two GPUs, their running times are reduced to 0.00049, 0.00093,

0.00032, 0.00037 and 0.00037. The speedups are 24.60, 18.87, 19.73, 22.48 and 23.94. When em-

ploying three GPUs, their running times are reduced to 0.00035, 0.00067, 0.00024, 0.00027 and

0.00026. The speedups are 34.42, 26.31, 26.85, 30.61 and 33.48. When employing four GPUs,

their running times are reduced to 0.00028, 0.00051, 0.00020, 0.00022 and 0.00021. The speedups

are 43.36, 34.15, 31.93, 38.23 and 41.57, respectively.

Obviously, the speedup effects increase with the number of GPUs increasing. The maxi-

mal speedups are all over 30 when four GPUs are employed. From Figure 5.1, the curves of

BenElechi1, a f shell8, parabolic f em, tmt sym and ecology2 all display a favorable linear effec-

t. This reveals our SPMV algorithm has good scalability for these matrices which are under one

million rows.

The matrices thermal2, atmosmodd, atmosmodl, Hook 1498, G3 circuit, 3D Poisson, kkt power,

SPE10 and memchip are in the range from one million to nearly three million rows. Their CPU

times are 0.01930, 0.01767, 0.02136, 0.05723, 0.01342, 0.02630, 0.02315, 0.05686 and 0.03342,

respectively. When employing one GPU, their running times are reduced to 0.00203, 0.00125,

0.00152, 0.00642, 0.00099, 0.00156, 0.00366, 0.00475 and 0.00314. The speedups are 9.49,

14.10, 14.07, 8.91, 13.61, 16.85, 6.32, 11.96 and 10.63. When employing two GPUs, their running

times are reduced to 0.00116, 0.00080, 0.00096, 0.00340, 0.00063, 0.00108, 0.00195, 0.00253 and

0.00180. The speedups are 16.64, 22.14, 22.31, 16.84, 21.21, 24.36, 11.85, 22.50 and 18.55. When

employing three GPUs, their running times are reduced to 0.00082, 0.00072, 0.00080, 0.00247,

0.00045, 0.00099, 0.00138, 0.00190 and 0.00127. The speedups are 23.57, 24.49, 26.72, 23.19,

30.11, 26.48, 16.73, 29.89 and 26.30. When employing four GPUs, their running times are re-

duced to 0.00061, 0.00066, 0.00070, 0.00189, 0.00034, 0.00095, 0.00107, 0.00161 and 0.00103.

The speedups are 31.44, 26.59, 30.63, 30.31, 38.93, 27.76, 21.58, 35.28 and 32.41, respectively.

For these matrices which have over one million rows, the SPMV algorithm also displays a

76

direct proportion effect with the number of GPUs employed. The maximal speedups can still

reach over 20 when four GPUs are employed. The speedups for matrices under one million rows

range from 31 to 43 on four GPUs, but for matrices over one million rows range from 21 to 38.

This can be explained that the cost of communication among GPUs increases as the number of

rows increases. From Figure 5.1, the curves of thermal2, atmosmodl, Hook 1498, G3 circuit,

kkt power, SPE10 and memchip are close to a straight line, which represents good performance

of scalability. However, the matrices atmosmodd and 3D Poisson have low speedup improvement

when more than two GPUs are employed, which is caused by their concrete matrix patterns.

From the aspect of NNZ/N, the matrices BenElechi1, a f shell8, Hook 1498 and SPE10 have

a high NNZ/N of 27.24, 17.91, 20.32 and 13.67 and can be sped up to 43.36, 34.15, 30.31 and

35.28 on four GPUs, respectively. Another set of matrices parabolic f em, tmt sym, ecology2,

thermal2, G3 circuit, kkt power and memchip, which have a low NNZ/N less than 5, can also be

sped up to 31.93, 38.23, 41.57, 31.44, 38.93, 21.58 and 32.41 on four GPUs. These show that the

SPMV algorithm can be adapted to different values of NNZ/N.

In Figure 5.1, the speedup vs. GPU number curves are drawn according to all the matrices and

each matrix provides a group of four points. Obviously, most groups of points fit a straight line

well. Due to the difference of matrix patterns and sizes, the slopes have a little difference but the

general tendency of them is almost consistent. Therefore, Figure 5.1 demonstrates that the SPMV

algorithm has good scalability for the current four GPUs available.

In summary, all these matrices represent a common scope of large-scale matrices. The lowest

speedup happens on the matrix kkt power on four GPUs, which is 21.58. The highest speedup

43.36 is obtained on matrix BenElechi1 on four GPUs. Though the speed of SPMV is decided by

a combination effect of the number of rows, the number of nonzeros and the matrix pattern, the

experiments show that all the matrices can be sped up to 20 to 40 times faster than they are run on

a traditional CPU.

77

Matrix
CPU time 1 GPU time 2 GPUs time 3 GPUs time 4 GPUs time

(second) (second) (second) (second) (second)

BenElechi1 0.01213 0.00084 0.00049 0.00035 0.00028

af shell8 0.01754 0.00167 0.00093 0.00067 0.00051

parabolic fem 0.00635 0.00048 0.00032 0.00024 0.00020

tmt sym 0.00824 0.00053 0.00037 0.00027 0.00022

ecology2 0.00877 0.00049 0.00037 0.00026 0.00021

thermal2 0.01930 0.00203 0.00116 0.00082 0.00061

atmosmodd 0.01767 0.00125 0.00080 0.00072 0.00066

atmosmodl 0.02136 0.00152 0.00096 0.00080 0.00070

Hook 1498 0.05723 0.00642 0.00340 0.00247 0.00189

G3 circuit 0.01342 0.00099 0.00063 0.00045 0.00034

3D Poisson 0.02630 0.00156 0.00108 0.00099 0.00095

kkt power 0.02315 0.00366 0.00195 0.00138 0.00107

SPE10 0.05686 0.00475 0.00253 0.00190 0.00161

memchip 0.03342 0.00314 0.00180 0.00127 0.00103

Table 5.2: SPMV algorithm running time for HEC format

5.1.2 Comparison with HYB Format

The HYB format is a hybrid of ELL and COO, which is designed by Bell and Garland [31, 32].

We use the HYB format as a reference to test the effect of the HEC format. The SPMV algorithm

on multiple GPUs remains the same with only the HYB format instead of the HEC format. All

the matrices listed in Table 5.1 are tested by this algorithm. Table 5.4 collects the running time

on a CPU or GPUs. Table 5.5 gives the speedup results. Figure 5.2 provides a scatter diagram of

speedup vs. the GPU number.

Because the algorithm remains unchanged, the difference only comes from the matrix format.

78

Matrix
1 GPU 2 GPUs 3 GPUs 4 GPUs

(speedup) (speedup) (speedup) (speedup)

BenElechi1 14.40 24.60 34.42 43.36

af shell8 10.53 18.87 26.31 34.15

parabolic fem 13.29 19.73 26.85 31.93

tmt sym 15.67 22.48 30.61 38.23

ecology2 17.85 23.94 33.48 41.57

thermal2 9.49 16.64 23.57 31.44

atmosmodd 14.10 22.14 24.49 26.59

atmosmodl 14.07 22.31 26.72 30.63

Hook 1498 8.91 16.84 23.19 30.31

G3 circuit 13.61 21.21 30.11 38.93

3D Poisson 16.85 24.36 26.48 27.76

kkt power 6.32 11.85 16.73 21.58

SPE10 11.96 22.50 29.89 35.28

memchip 10.63 18.55 26.30 32.41

Table 5.3: SPMV algorithm speedup for HEC format

By the comparison of Tables 5.3 and 5.5, a quarter of the running time has a significant gap. The

white cells indicate that the speedup of the HYB format is approximately equivalent to that of the

HEC format. The gray cells denote the speedup of HYB format which is less than that of the HEC

format. For the matrix a f shell8, the speedups on three GPUs and four GPUs are 12.69 and 10.54

with the HYB format. By comparison, the speedups on three GPUs and four GPUs are 26.31 and

34.15 with the HEC format. For the matrix thermal2, the speedups on two GPUs, three GPUs and

four GPUs are 12.54, 13.70 and 11.18 with the HYB format. By comparison, the speedups on two

GPUs, three GPUs and four GPUs are 16.64, 23.57 and 31.44 with the HEC format. For the matrix

Hook 1498, the speedups on two GPUs, three GPUs and four GPUs are 13.88, 17.20 and 15.58

79

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4

sp
ee

d
u
p

GPU number

BenElechi1

af_shell8

parabolic_fem

tmt_sym

ecology2

thermal2

atmosmodd

atmosmodl

Hook_1498

G3_circuit

3D_Poisson

kkt_power

SPE10

memchip

Figure 5.1: SPMV algorithm speedup vs. GPU number. for HEC format

with the HYB format. By comparison, the speedups on two GPUs, three GPUs and four GPUs

are 16.84, 23.19 and 30.31 with the HEC format. For the matrix kkt power, the speedups on three

GPUs and four GPUs are 10.20 and 9.97 with the HYB format. By comparison, the speedups on

three GPUs and four GPUs are 16.73 and 21.58 with the HEC format. For the matrix SPE10, the

speedups on three GPUs and four GPUs are 22.45 and 27.00 with the HYB format. By comparison,

the speedups on three GPUs and four GPUs are 29.89 and 35.28 with the HEC format. For the

matrix memchip, the speedups on two GPUs and four GPUs are 15.38 and 20.53 with the HYB

format. By comparison, the speedups on two GPUs and four GPUs are 18.55 and 32.41 with the

HEC format. On the whole, the HEC matrix format shows a more friendly effect of speedup about

the SPMV algorithm.

From Figure 5.2, a linear relationship does not exist between the speedup and the GPU number

80

for some matrices, such as a f shell8, thermal2, atmosmodd, Hook 1498, 3D Poisson, kkt power,

memchip and SPE10, compared to the HEC format which has only two matrices atmosmodd and

3D Poisson with an apparent nonlinear relation. This demostrates that the HEC format has more

stable scalability to the SPMV algorithm than the HYB format.

We have given a detailed comparison of the performance between the HYB format and the HEC

format. In both the aspects of speedup and scalability, the HEC format has a favorable performance

on the whole.

Matrix
CPU time 1 GPU time 2 GPUs time 3 GPUs time 4 GPUs time

(second) (second) (second) (second) (second)

BenElechi1 0.01213 0.00084 0.00049 0.00035 0.00028

af shell8 0.01754 0.00183 0.00097 0.00138 0.00166

parabolic fem 0.00635 0.00048 0.00032 0.00023 0.00019

tmt sym 0.00824 0.00053 0.00036 0.00026 0.00021

ecology2 0.00877 0.00050 0.00036 0.00026 0.00020

thermal2 0.01930 0.00227 0.00154 0.00141 0.00173

atmosmodd 0.01767 0.00125 0.00079 0.00076 0.00065

atmosmodl 0.02136 0.00152 0.00094 0.00078 0.00072

Hook 1498 0.05723 0.00670 0.00412 0.00333 0.00367

G3 circuit 0.01342 0.00099 0.00062 0.00044 0.00034

3D Poisson 0.02630 0.00156 0.00107 0.00100 0.00093

kkt power 0.02315 0.00402 0.00228 0.00227 0.00232

SPE10 0.05686 0.00473 0.00259 0.00253 0.00211

memchip 0.03342 0.00333 0.00217 0.00127 0.00163

Table 5.4: SPMV algorithm running time for HYB format

81

Matrix
1 GPU 2 GPUs 3 GPUs 4 GPUs

(speedup) (speedup) (speedup) (speedup)

BenElechi1 14.40 24.55 34.82 43.89

af shell8 9.60 18.08 12.69 10.54

parabolic fem 13.15 20.09 27.87 33.38

tmt sym 15.63 22.75 31.35 39.70

ecology2 17.57 24.48 34.40 43.42

thermal2 8.51 12.54 13.70 11.18

atmosmodd 14.10 22.44 23.29 27.05

atmosmodl 14.06 22.74 27.28 29.81

Hook 1498 8.54 13.88 17.20 15.58

G3 circuit 13.61 21.54 30.63 39.89

3D Poisson 16.82 24.65 26.41 28.25

kkt power 5.76 10.17 10.20 9.97

SPE10 12.02 21.94 22.45 27.00

memchip 10.05 15.38 26.25 20.53

Table 5.5: SPMV algorithm speedup for HYB format

5.2 Nested RAS

The performance of the nested RAS framework can be adjusted by four parameters which are

Outer RAS, Inner RAS, Outer overlap and Inner overlap. In order to obtain the effect affected by

these parameters, we use ILU(0) as a fixed triangular factorization algorithm. The linear solver

is GMRES(20). We select the restarted number as 20 because it is commonly used. In addition

to the nested framework on multiple GPUs, we also implement the same nested RAS framework

designed for a CPU, which will run in a single thread to serve as a reference for calculating the

speedup of the nested RAS algorithm on multiple GPUs. Four experiments are presented. In these

82

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4

sp
ee

d
u
p

GPU number

BenElechi1

af_shell8

parabolic_fem

tmt_sym

ecology2

thermal2

atmosmodd

atmosmodl

Hook_1498

G3_circuit

3D_Poisson

kkt_power

SPE10

memchip

Figure 5.2: SPMV algorithm speedup vs. GPU number. for HYB format

experiments, different parameter combinations are configured to test the speedup which shows the

nested RAS parallel performance.

Experiment 1 : The matrix used in this experiment comes from discretization of a three-

dimensional Poisson equation. The grid is 120×120×120 and its dimension is 1,728,000. It has

12,009,600 nonzero elements.

From Table 5.6, there are three data sections. They are responsible for variations of the outer

RAS, the inner RAS and the overlap (the outer overlap and the inner overlap) parameters. In the

first section, the yellow parts denote an increasing of the outer RAS when the other parameters

are fixed. The speedup is 11.71 when the outer RAS is one (only one GPU is employed). With

setting a higher outer RAS, the nested RAS algorithm displays an improvement of parallelism

gradually. The speedup is improved to 18.90, 20.95 and 26.45 when the outer RAS is 2, 3 and 4,

83

Outer Inner Outer Inner ILU(k) CPU time GPU time

RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 16 1 1 0 19.2223 1.6412 11.71 5

2 16 1 1 0 18.8530 0.9976 18.90 5

3 16 1 1 0 16.7350 0.7980 20.95 5

4 16 1 1 0 18.7378 0.7087 26.45 5

4 32 1 1 0 18.1899 0.6975 26.05 5

4 128 1 1 0 21.7188 0.7913 27.53 6

4 512 1 1 0 23.5084 0.8248 28.55 6

4 2048 1 1 0 24.2982 0.8589 28.29 6

4 16 2 1 0 17.4788 0.7663 22.80 5

4 16 1 2 0 17.4902 0.7387 23.67 5

4 16 2 2 0 19.3838 0.8166 23.74 5

Table 5.6: Nested RAS performance for 3D Poisson equation

respectively (when two GPUs, three GPUs and four GPUs are employed, respectively). As we fix

the outer RAS at four and increase the inner RAS as denoted by blue parts, the speedup can be

increased to 26.05, 27.53, 28.55 and 28.29 gradually when the inner RAS is set as 32, 128, 512 and

2048 separately in data section two. As analyzed in the last chapter, high RAS values cause more

nonzero elements discarded outside of the square blocks. This leads to low calculation accuracy,

which needs more iterations to balance out. Therefore, the iteration improves in five or six with

the outer RAS and inner RAS increasing. Because the overlaps are fixed at one in the first two

data sections, the loss of calculation accuracy can only be compensated by improving the iteration

times. It can also be compensated through setting a larger outer overlap or inner overlap parameter.

In the last data section, we test the performance of the nested RAS according to different overlap

parameters as the red parts indicate. When the outer overlap and the inner overlap are set to 2 and

1, the speedup reduces to 22.80 and the iteration number reduces to 5. When the outer overlap and

84

the inner overlap are set to 1 and 2, the speedup is 23.67 and the iteration number is 5. When the

outer overlap and the inner overlap are set to 2 and 2, the speedup is 23.74 and the iteration number

is 5. Because a higher overlap imports more elements into the square blocks to be calculated, the

degree of parallelism about the square blocks is decreased. This explains a decrease in speedup.

However, more elements can improve the accuracy of calculation, which contributes to a decrease

in the iteration number.

The experiment gives a reasonable effect of outer RAS, inner RAS and overlap parameters.

It shows that the nested RAS framework is effective and over 20 times speedup can be achieved

when running on our four GPUs workstation against on a traditional CPU.

Experiment 2 : The matrix used in this experiment is the matrix atmosmodd which is taken

from the University of Florida sparse matrix collection [54]. atmosmodd is derived from a compu-

tational fluid dynamics problem. Its dimension is 1,270,432 and has 8,814,880 nonzero elements.

Outer Inner Outer Inner ILU(k) CPU time GPU time

RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 16 1 1 0 9.9472 1.0148 9.80 4

2 16 1 1 0 10.0678 0.6039 16.67 4

3 16 1 1 0 9.3382 0.5102 18.30 4

4 16 1 1 0 12.6885 0.5094 24.91 5

4 32 1 1 0 12.6788 0.5007 25.32 5

4 128 1 1 0 13.8076 0.5144 26.87 5

4 512 1 1 0 13.9041 0.5017 27.72 5

4 2048 1 1 0 15.2217 0.5426 28.15 5

4 16 2 1 0 12.0949 0.5727 21.16 5

4 16 1 2 0 13.4669 0.5753 23.44 5

4 16 2 2 0 13.5958 0.6027 22.64 5

Table 5.7: Nested RAS performance for atmosmodd

85

The results are displayed in Table 5.7. In the first data section, the yellow parts show the

effect of increasing the outer RAS as other parameters are fixed. The speedup reaches 9.80, 16.67,

18.30 and 24.91 when the outer RAS is set to 1, 2, 3 and 4, respectively. In the second data

section, if the outer RAS is fixed at 4 and the inner RAS is increased as the blue parts indicate, the

speedup can reach 25.32, 26.87, 27.72 and 28.15 when the inner RAS is set to 32, 128, 512 and

2048, respectively. The iteration improves from 4 to 5 as the outer RAS and inner RAS increase.

The improvement of speedup with the outer RAS and the inner RAS increasing demonstrates the

parallel performance is improved on the nested RAS framework. Just like the results of experiment

one, the iteration increases from 4 to 5 to compensate the loss of calculation accuracy. The third

data section shows the influence of overlap parameters on the nested RAS framework, which is

presented by the red parts. Higher overlap parameters reduce the speedup. When the outer overlap

is 2 and the inner overlap is 1, the speedup reduces to 21.16. When the outer overlap is 1 and

the inner overlap is 2, the speedup reduces to 23.44. When the outer overlap is 2 and the inner

overlap is 2, the speedup is 22.64. Because the speedup is influenced not only by the factors

of these parameters but also by the factor of matrix pattern, the data of speedup only shows a

general tendency. The iteration does not reduce back to 4 from 5 with high overlap, which is also

influenced by the matrix pattern. However, the nested RAS can still keep the speedup over 20

when outer overlap or inner overlap is set to 2. This experiment also demonstrates that the nested

RAS framework can provide 20 times speedup or higher as four GPUs are employed.

Experiment 3 : The matrix used in this experiment is the matrix atmosmodl which is taken

from the University of Florida sparse matrix collection [54]. atmosmodl is derived from a compu-

tational fluid dynamics problem. Its dimension is 1,489,752 and has 10,319,760 nonzero elements.

86

Outer Inner Outer Inner ILU(k) CPU time GPU time

RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 16 1 1 0 6.2765 0.5929 10.59 2

2 16 1 1 0 6.3254 0.3576 17.69 2

3 16 1 1 0 5.6723 0.3058 18.56 2

4 16 1 1 0 5.9346 0.2715 21.85 2

4 32 1 1 0 6.2587 0.2749 22.77 2

4 128 1 1 0 5.9306 0.2592 22.86 2

4 512 1 1 0 6.8067 0.2608 26.13 2

4 2048 1 1 0 7.0531 0.2701 26.14 2

4 16 2 1 0 5.8703 0.2830 20.73 2

4 16 1 2 0 6.2210 0.2860 21.77 2

4 16 2 2 0 6.0569 0.2928 20.69 2

Table 5.8: Nested RAS performance for atmosmodl

The nested RAS results of the matrix atmosmodl are shown in Table 5.8. This matrix can be

solved quickly on the nested RAS framework and only two iteration numbers are needed. For

different parameter configurations, the iteration remains at 2 because the influence of these param-

eters is not serious enough to change the iteration numbers. In the first data section, the yellow

parts give changes of speedup and iteration with different outer RAS parameters. The speedup

can be accelerated to 10.59, 17.69, 18.56 and 21.85 when the outer RAS is set as 1, 2, 3 and 4,

respectively. This shows that higher parallel performance is obtained on more GPUs. In the second

data section, the blue parts demonstrate the increase of speedup as the inner RAS increases. When

the inner RAS is configured as 32, 128, 512 and 2048, the speedup reaches 22.77, 22.86, 26.13

and 26.14, respectively. The parallel performance is further improved through improving the inner

RAS. Higher overlap parameters are set in the third data section and the results are displayed in

the red parts. The speedup reduces to 20.73 when the outer overlap is 2 and the inner overlap is 1.

87

The speedup reduces to 21.77 when the outer overlap is 1 and the inner overlap is 2. The speedup

is 20.69 when the outer overlap is 2 and the inner overlap is 2. The speedups in the third data

section are apparently less than those in the second data section. That is because of lower degree

of parallelism caused by higher overlaps. Based on the analysis above, this experiment also shows

that 20 times speedup or higher can be provided by the nested RAS framework on the four GPUs

workstation.

Experiment 4 : SPE10 is a classical reservoir model in porus media and has been widely

applied for benchmark tests by the oil and gas industry [2]. The problem is highly heterogeneous

and is difficult to solve. The grid size for SPE10 is 60× 220× 85. The number of unknowns is

2,188,851 and the number of nonzero elements is 29,915,573. This experiment uses one of the

SPE 10 matrices generated at a time step.

Outer Inner Outer Inner ILU(k) CPU time GPU time

RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 16 1 1 0 121.8090 13.5696 8.98 24

2 16 1 1 0 117.3070 8.0304 14.61 24

3 16 1 1 0 109.2337 5.6871 19.21 22

4 16 1 1 0 124.4517 5.0351 24.71 24

4 32 1 1 0 140.9913 5.4257 25.98 26

4 128 1 1 0 187.4940 7.7556 24.18 36

4 512 1 1 0 173.4530 6.4400 26.93 29

4 2048 1 1 0 234.5983 8.9732 26.15 37

4 16 2 1 0 214.3207 8.9957 23.83 42

4 16 1 2 0 147.2643 5.6850 25.90 26

4 16 2 2 0 173.0123 8.0894 21.39 33

Table 5.9: Nested RAS performance for SPE10

SPE10 is hard to solve and much time is needed as illustrated in Table 5.9. The iterations of

88

all runs are equal to or greater than 22. Though it is complicated and costs more time to reach

convergence compared to the previous three matrices, its results have a similar data tendency like

them. The yellow parts of the first data section show the increase of speedup as the outer RAS goes

up. When the outer RAS is configured as 1, 2, 3 and 4, respectively, the corresponding speedup

is 8.98, 14.61, 19.21 and 24.71. The blue parts of the second data section display the change of

speedup with the inner RAS. If the inner RAS is set as 32, 128, 512, and 2048, the speedup will

be 25.98, 24.18, 26.93 and 26.15. We find that the speedup does not strictly increase as the inner

RAS goes up. That is because the speedup is also affected by the pattern of the SPE10. However,

the speedups in the blue parts are greater than those in the yellow parts as a whole. The iteration

from the first data section to the second data section also displays a general growing tendency. The

iteration number is 24, 24, 22, and 24 when the outer RAS is set as 1, 2, 3 and 4, respectively. When

the outer RAS is fixed at 4 and the inner RAS is set as 32, 128, 512 and 2048, the iteration goes

up to 26, 36, 29 and 37, respectively. Therefore, the general data tendency is reasonable and the

nested RAS still contributes to the improvement of parallel performance. In the last data section,

the speedup goes down as higher overlap parameters are configured compared to the second data

section. When the outer RAS is 2 and the inner RAS is 1, the speedup is 23.83. When the outer

RAS is 1 and the inner RAS is 2, the speedup is 25.90. When the outer RAS is 2 and the inner

RAS is 2, the speedup is 21.39. The iteration values in the third data section also present a general

decreasing tendency with respect to the values in the second data section because extra elements

are introduced by high overlaps. Overall, the speedup in this experiment is still kept over 20 times

when four GPUs are employed.

5.3 GMRES with ILU(k)

In this section, we focus on testing the performance of the algorithm of GMRES(20) with the

preconditioner ILU(k) on multiple GPUs. We use the same testing matrices and the nested RAS

parameters as in Section 5.2. For any combination of the nested RAS parameters, the parameter

89

k is configured as 0, 1, 2 and 3, respectively. The influence on the speedup and the iteration of

different parameter k can be tested and analyzed. We also implement the same ILU(k) algorithm

for a CPU, which plays as a contrastive algorithm used with the algorithm for GPUs to determine

the speedup. The experiment results for matrices 3D Poisson, atmosmodd, atmosmodl and SPE10

are listed in Tables 5.10, 5.11, 5.12 and 5.13, respectively. In each table, the data are divided into

many data sections. Each data section is responsible for a concrete RAS parameter combination.

When k is zero, namely, the preconditioner is ILU(0), the gray color is set for the cells. The cells

in other colors are used for higher k levels which is greater than zero.

A higher k introduces more fill-in elements and the calculation accuracy for solving precon-

ditioner systems is optimized. However, an apparent negative effect also takes effect at the same

time, which is that more elements decrease the degree of parallelism for a precondtioner matrix.

In addition, the algorithm performance is also related to the pattern of a matrix. Therefore, the

running result of an algorithm with a certain k needs comprehensive consideration under all these

impact factors.

Experiment 1: The matrix used in this experiment is from a 3D Poisson equation. Its di-

mension is 1,728,000 and it has 12,009,600 nonzero elements. The average number of nonzero

elements in each row is seven. The results are displayed in Table 5.10.

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time

No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 1 16 1 1 0 19.2223 1.6412 11.71 5

1 11.3803 1.2312 9.24 3

2 16.8692 2.7678 6.10 4

3 12.9443 2.3717 5.46 3

2 2 16 1 1 0 18.8530 0.9976 18.90 5

1 11.7629 0.8832 13.32 3

Continued on next page

90

2 16.9354 2.1309 7.95 4

3 13.6234 2.0693 6.58 3

3 3 16 1 1 0 16.7350 0.7980 20.95 5

1 13.3249 0.9539 13.97 4

2 16.0166 1.8743 8.55 4

3 13.6167 1.8888 7.21 3

4 4 16 1 1 0 18.7378 0.7087 26.45 5

1 15.9671 0.8437 18.95 4

2 14.9939 1.5560 9.63 4

3 13.2788 1.5195 8.74 3

5 4 32 1 1 0 18.1899 0.6975 26.05 5

1 15.0185 0.7989 18.78 4

2 20.7133 1.7771 11.66 5

3 13.7563 1.4681 9.37 3

6 4 128 1 1 0 21.7188 0.7913 27.53 6

1 16.1373 0.7122 22.62 4

2 21.2229 1.4322 14.81 5

3 18.0938 1.4807 12.22 4

7 4 512 1 1 0 23.5084 0.8248 28.55 6

1 16.6320 0.7235 22.99 4

2 22.5626 1.3106 17.22 5

3 19.6067 1.3298 14.74 4

8 4 2048 1 1 0 24.2982 0.8589 28.29 6

1 17.9229 0.7493 23.90 4

2 23.5394 1.3480 17.46 5

Continued on next page

91

3 21.2095 1.2877 16.48 4

9 4 16 2 1 0 17.4788 0.7663 22.80 5

1 14.6865 0.9659 15.21 4

2 18.7666 2.1537 8.71 5

3 13.1767 1.7508 7.53 3

10 4 16 1 2 0 17.4902 0.7387 23.67 5

1 11.7230 0.7200 16.27 3

2 16.2099 1.7118 9.47 4

3 13.2869 1.7386 7.64 3

11 4 16 2 2 0 19.3838 0.8166 23.74 5

1 15.6976 1.0011 15.68 4

2 20.5109 2.2900 8.95 5

3 13.4053 1.9399 6.91 3

Table 5.10: ILU(k) performance for 3D Poisson equation

In Table 5.10, each data section corresponds to a concrete RAS parameter combination. All

the data sections have a similar data tendency and can be analyzed using the same way. We take

the first data section as an analysis example. The RAS parameter combination in the first section is

configured as 1, 16, 1, 1 for the outer RAS, the inner RAS, the outer overlap and the inner overlap,

respectively.

With an increase in k, the CPU time changes. When k is 0, the CPU time is 19.2223. When

k is 1, the CPU time is 11.3803. When k is 2, the CPU time is 16.8692. When k is 3, the CPU

time is 12.9443. Obviously, when k is greater than zero, the CPU time decreases compared to

k = 0. As a high k increases the accuracy of calculations and saves the CPU time, the data results

92

are reasonable. However, the CPU time does not show a strict downtrend as k increases. That is

because the matrix pattern plays a part. On the whole, by applying k which is greater than zero,

the algorithm on a CPU is accelerated.

Next, the GPU time also changes with different k. When k is 0, the GPU time is 1.6412. When

k is 1, the GPU time is 1.2312. When k is 2, the GPU time is 2.7678. When k is 3, the GPU

time is 2.3717. The degree of parallelism affects the GPU time. More fill-in elements decrease the

parallel performance. The negative influence becomes more apparent when a high k is configured.

The acceleration effect from the increase of calculation accuracy will be balanced out or even the

negative influence accounts for a major role. Therefore, the positive factor dominates at first, the

GPU time of k = 1 is less than the GPU time of k = 0. Then the negative factor dominates and the

GPU time of k = 2 is greater than the GPU time of k = 1. Eventually, the positive effect comes

back when k is 3 and the GPU time of k = 3 is less than the GPU time of k = 2.

The speedup goes down as k goes up. When k is 0, the speedup is 11.71. When k is 1, the

speedup is 9.24. When k is 2, the speedup is 6.10. When k is 3, the speedup is 5.46. Although

the algorithm on multiple GPUs obtains a favorable acceleration of speedups greater than five, the

parallel performance is heavily affected and the speedup goes down as k increases. That is because

the extra fill-in elements limit the parallel ability. The GPU time goes up. However, this has little

effect on a single thread CPU platform. On the contrary, the CPU time goes down as the calculation

accuracy increases. In all together, the speedup goes down.

The purpose of ILU(k) is to improve the accuracy of calculations and to reach convergence at

fewer iterations. The iteration data shows reasonable results. The iteration is 5 when k is 0. The

iteration is 3 when k is 1. The iteration number is 4 when k is 2. The iteration is 3 when k is 3.

Obviously, the iteration has a general downtrend. The iteration goes back to 4 when k is 2. This

is because the iteration is also affected by the pattern of the matrix. The whole objective of using

a high k to reduce iteration is realized. The variation trend of the iteration is corresponding to that

of the CPU time. That is because they are both affected by the factors of calculation accuracy and

93

matrix pattern.

The data sections of other RAS parameter combinations can be analyzed like above. From an-

other analysis angle, if the k value is fixed, the speedup and iteration can reflect the parallel ability

of different RAS parameter combinations, as illustrated in Figures 5.3 and 5.4. The horizontal axes

of these two figures are both the sequence number of combinations. The sequence numbers from

1 to 8 represent the outer RAS increase from 1 to 4 and then the inner RAS increases from 16 to

2048. For Figure 5.3, the speedup shows an apparent rising trend in the first eight points. The

last three sequence number 9, 10 and 11 represent combinations with high overlaps. In addition,

the speedup of them goes down since the degree of parallelism is affected negatively by the high

overlaps. For Figure 5.4, the iteration has an upgoing trend when the sequence number goes from

1 to 8. After the sequence number is beyond 8, the iteration goes down.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

sp
ee

d
u
p

sequence number

k = 0

k = 1

k = 2

k = 3

Figure 5.3: Speedup for matrix 3D Poission

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10 11

it
er

at
io

n

sequence number

k=0

k=1

k=2

k=3

Figure 5.4: Iteration for matrix 3D Poission

Experiment 2: The matrix used in this experiment is atmosmodd which is downloaded from

the University of Florida sparse matrix collection [54]. Its dimension is 1,270,432 and has 8,814,880

nonzero elements. The average number of nonzero elements in each row is seven. The results are

listed in Table 5.11.

94

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time

No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 1 16 1 1 0 9.9472 1.0148 9.80 4

1 8.3525 0.9687 8.62 3

2 10.9537 2.2354 4.90 4

3 8.9240 2.0367 4.38 3

2 2 16 1 1 0 10.0678 0.6039 16.67 4

1 8.6323 0.6525 13.22 3

2 11.3346 1.5006 7.55 4

3 9.0390 1.4414 6.27 3

3 3 16 1 1 0 9.3382 0.5102 18.30 4

1 8.0514 0.5824 13.83 3

2 10.7574 1.3659 7.88 4

3 8.7288 1.3294 6.57 3

4 4 16 1 1 0 12.6885 0.5094 24.91 5

1 7.8831 0.5157 15.27 3

2 11.6020 1.1862 9.78 4

3 9.5057 1.2340 7.71 3

5 4 32 1 1 0 12.6788 0.5007 25.32 5

1 8.5043 0.4750 17.90 3

2 11.3103 1.1416 9.92 4

3 9.2747 1.1008 8.43 3

6 4 128 1 1 0 13.8076 0.5144 26.87 5

1 8.8368 0.4235 20.96 3

2 11.6731 0.8925 13.09 4

Continued on next page

95

3 9.5661 0.8709 10.99 3

7 4 512 1 1 0 13.9041 0.5017 27.72 5

1 9.6113 0.4134 23.25 3

2 13.2917 0.7863 16.91 4

3 11.1087 0.7578 14.68 3

8 4 2048 1 1 0 15.2217 0.5426 28.15 5

1 13.8028 0.5471 25.23 4

2 17.9290 0.9906 18.12 5

3 16.1325 0.9243 17.47 4

9 4 16 2 1 0 12.0949 0.5727 21.16 5

1 8.0350 0.5681 14.17 3

2 11.3430 1.3017 8.72 4

3 9.1000 1.2555 7.25 3

10 4 16 1 2 0 13.4669 0.5753 23.44 5

1 7.7173 0.5928 13.02 3

2 12.1547 1.3952 8.72 4

3 9.8107 1.4445 6.79 3

11 4 16 2 2 0 13.5958 0.6027 22.64 5

1 8.5784 0.6367 13.47 3

2 11.7119 1.4768 7.94 4

3 9.6959 1.4918 6.50 3

Table 5.11: ILU(k) performance for atmosmodd

The data result of atmosmodd is listed in Table 5.11. Because all the data sections have a

96

similar data tendency, the approach for their data analysis is identical. We take the fifth data

section as an sample of analysis. The outer RAS, the inner RAS, the ouer overlap and the inner

overlap are 4, 32, 1 and 1, respectively.

If k is assigned with a high value, more fill-in elements will lead to high calculation accuracy.

The CPU running time is saved. When k is 0, the CPU time is 12.6788. When k is 1, the CPU time

is 8.5043. When k is 2, the CPU time is 11.3103. When k is 3, the CPU time is 9.2747. All the

CPU time for k above zero is less than the CPU time at k = 0. The running time at k = 2 is even

greater than that at k = 3. This is caused by the matrix pattern.

The GPU time shows the effect of different k on the multiple GPU platform. When k is 0, the

GPU time is 0.5007. When k is 1, the GPU time is 0.4750. When k is 2, the GPU time is 1.1416.

When k is 3, the GPU time is 1.1008. There are two opposite factors which affect the GPU time.

Since a high k imports more fill-in elements, a positive effect is an increase in calculation accuracy

but a negative effect is a decrease in the degree of parallelism. Therefore, the overall effect is

determined by which one dominates. At k equal to 1, the positive factor dominates and the GPU

time decreases. However, the negative factor prevails at k equal to 2 or 3. Thus the GPU time goes

up for these two cases.

All the speedups are over eight and favorable. When k is 0, the speedup is 25.32. When k

is 1, the speedup is 17.90. When k is 2, the speedup is 9.92. When k is 3, the speedup is 8.43.

Obviously, a high k does not help improve the speedup. That is because the parallel performance

of the algorithm decreases with an increase in k on multiple GPUs. But the algorithm on a CPU

with a single thread has no relation to the parallelization. The CPU time even decreases due to the

improvement of calculation accuracy. Thus the speedup goes down.

The iteration number can be reduced by using a high k. When k is 0, the iteration is 5. When k

is 1, the iteration is 3. When k is 2, the iteration is 4. When k is 3, the iteration is 3. Because the

matrix pattern takes effect, the iteration does not decrease continuously as k goes up. The variation

trend of iteration is just like that of the CPU time.

97

We show only one sample explanation above. Other data sections can be analyzed similarly.

Next, the parallel performance for different RAS parameter combinations will be studied at a fixed

k. Figure 5.5 shows the speedup vs. the sequence number and Figure 5.6 shows the iteration vs.

the sequence number. The parallel ability of the nested RAS framework enhances gradually as the

sequence number goes up from 1 to 8. The last three sequence numbers which are 9, 10 and 11

represent the combinations of high overlap parameters. First, Figure 5.5 validates the reasonable

rising tendency of speedup for the first 8 points of each curve. The last three points on each

curve show that a high overlap reduces the speedup. Figure 5.6 displays the iteration changes.

The iteration reaches the maximum when the sequence number is 8. As we know, the sequence

number 8 represents the outer RAS at 4 and the inner RAS at 2048, which has the highest parallel

configuration in the experiment. Therefore, the effect of the iteration is appropriate. The iteration

numbers go down when a high overlap is used, which is shown as the sequence number is 9, 10 or

11. One thing to note is the iteration remains unchanged for k = 0 even if the overlap is high. That

is because the impact of the high overlap is not sufficient to decrease the iteration when k is fixed

at 0.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

sp
ee

d
u
p

sequence number

k = 0

k = 1

k = 2

k = 3

Figure 5.5: Speedup for matrix atmosmodd

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10 11

it
er

at
io

n

sequence number

k=0

k=1

k=2

k=3

Figure 5.6: Iteration for matrix atmosmodd

Experiment 3: The matrix used in this experiment is the matrix atmosmodl which is down-

loaded from the University of Florida sparse matrix collection [54]. Its dimension is 1,489,752

98

and it has 10,319,760 nonzero elements. The average number of nonzero elements in each row is

seven. The results are listed in Table 5.12.

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time

No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 1 16 1 1 0 6.2765 0.5929 10.59 2

1 3.3045 0.3654 9.04 1

2 6.6461 1.1165 5.95 2

3 3.4993 0.6921 5.06 1

2 2 16 1 1 0 6.3254 0.3576 17.69 2

1 6.5085 0.5067 12.85 2

2 6.9288 0.8684 7.98 2

3 3.6075 0.5709 6.32 1

3 3 16 1 1 0 5.6723 0.3058 18.56 2

1 6.5227 0.4306 15.15 2

2 6.3221 0.7311 8.65 2

3 3.5934 0.4951 7.26 1

4 4 16 1 1 0 5.9346 0.2715 21.86 2

1 6.5157 0.4005 16.27 2

2 6.7846 0.6862 9.89 2

3 3.8291 0.4722 8.11 1

5 4 32 1 1 0 6.2587 0.2749 22.77 2

1 6.7763 0.3742 18.11 2

2 6.8376 0.5997 11.40 2

3 7.5432 0.7603 9.92 2

6 4 128 1 1 0 5.9306 0.2592 22.86 2

Continued on next page

99

1 7.1376 0.3509 20.34 2

2 7.1071 0.5434 13.08 2

3 7.7270 0.6581 11.74 2

7 4 512 1 1 0 6.8067 0.2608 26.13 2

1 6.6383 0.3220 20.62 2

2 7.7505 0.4710 16.46 2

3 8.2833 0.5699 14.54 2

8 4 2048 1 1 0 7.0531 0.2701 26.14 2

1 8.0811 0.3475 23.26 2

2 8.0445 0.4831 16.65 2

3 9.2654 0.5671 16.34 2

9 4 16 2 1 0 5.8703 0.2830 20.73 2

1 5.9753 0.4149 14.40 2

2 6.4990 0.6857 9.48 2

3 3.6067 0.4916 7.34 1

10 4 16 1 2 0 6.2210 0.2860 21.77 2

1 6.8137 0.4393 15.51 2

2 6.6448 0.7268 9.14 2

3 3.6022 0.4733 7.62 1

11 4 16 2 2 0 6.0569 0.2928 20.69 2

1 6.5487 0.4290 15.28 2

2 6.6413 0.7417 8.95 2

3 3.6763 0.4951 7.42 1

Table 5.12: ILU(k) performance for atmosmodl

100

The results of experiment 3 are listed in Table 5.12. Because all the data sections have a similar

data tendency and can be analyzed in the same way, we only take one of them as an example

analysis. We select the data section 10 as an example, which has a RAS parameter combination

of 4, 16, 1, and 2 for the outer RAS, the inner RAS, the outer overlap and the inner overlap,

respectively.

The CPU time changes with different k. When k is 0, the CPU time is 6.2210. When k is 1, the

CPU time is 6.8137. When k is 2, the CPU time is 6.6448. When k is 3, the CPU time is 3.6022.

As we mentioned above, a high k introduces fill-in elements, which leads to the improvement of

accuracy for solving a preconditioner system. The CPU time can be saved. However, the CPU

time only decreases when k is 3. It increases a little bit when k is 1 or 2. This is a different data

tendency compared to the experiment one and the experiment two. Because the workstation and

configuration of parameters are kept unchanged, this result is caused by the pattern of the matrix.

The GPU time is also affected heavily by k. When k is 0, the GPU time is 0.2860. When k

is 1, the GPU time is 0.4393. When k is 2, the GPU time is 0.7268. When k is 3, the GPU time

is 0.4733. Obviously, when k is greater than zero, all the running times go up. Although a high k

can improve the accuracy of calculation and save GPU running time, fill-in elements decrease the

parallelism. In this experiment, the negative effect dominates and all the GPU times increase.

The speedups are all over seven but decrease quickly as k goes up. When k is 0, the speedup

is 21.77. When k is 1, the speedup is 15.51. When k is 2, the speedup is 9.14. When k is 3, the

speedup is 7.62. As applying a high k, the CPU time remains almost unchanged or goes down. But

the GPU time goes up. Thus the speedup appears a fast downtrend.

Next, we analyze the iteration change with the variation of k. When k is 0, the iteration is 2.

When k is 1, the iteration is 2. When k is 2, the iteration is 2. When k is 3, the iteration is 1. If a

high k can reduce the CPU time significantly, it may improve the accuracy of calculation sharply.

This effect can also be reflected from the iteration number. We can see that the iteration goes down

101

to 1 when k is 3. But for other situations, the iteration remains 2. That is because the calculation

accuracy cannot be optimized for this kind of matrix pattern.

The other data sections can be analyzed similarly. Next, we explain the data from another as-

pect. Figure 5.7 gives the curves of the speedup vs. the sequence number, and Figure 5.8 gives

the histogram of the iteration vs. the sequence number. The sequence number from 1 to 8 repre-

sents the RAS combinations with the parallel ability increasing gradually. Each curve in Figure 5.7

shows a general up trend in the first eight points. Figure 5.8 also shows the iteration reaches the

maximum for each k value when the sequence number is eight. The sequence numbers of 9, 10

and 11 represent three RAS parameter combinations of high overlap. High overlap imports more

elements. The accuracy of calculation is compensated but the degree of parallelism is reduced.

Therefore, there is a low speedup for these three points in Figure 5.7. There is a small iteration

number for k = 3 in Figure 5.8.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

sp
ee

d
u
p

sequence number

k = 0

k = 1

k = 2

k = 3

Figure 5.7: Speedup for matrix atmosmodl

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10 11

it
er

at
io

n

sequence number

k=0

k=1

k=2

k=3

Figure 5.8: Iteration for matrix atmosmodl

Experiment 4: The matrix used in this experiment is the matrix SPE10. Its result is listed in

Table 5.13. It comes from a classical reservoir model which is widely used for benchmark tests

in the petroleum industry. Its grid size is 60× 220× 85. The dimension is 2,188,851 and the

number of nonzero elements is 29,915,573. The average number of nonzero elements in each row

is fourteen.

102

Seq Outer Inner Outer Inner ILU(k) CPU time GPU time

No. RAS RAS overlap overlap level k (second) (second) Speedup Iteration

1 1 16 1 1 0 121.8090 13.5696 8.98 24

1 78.8841 13.3447 5.91 13

2 146.9233 38.2944 3.84 24

3 out of memory

2 2 16 1 1 0 117.3070 8.0304 14.61 24

1 89.5844 9.8897 9.06 14

2 128.7977 26.8328 4.80 21

3 114.2540 40.2732 2.84 13

3 3 16 1 1 0 109.2337 5.6871 19.21 22

1 77.2547 6.1570 12.55 12

2 110.7097 15.3333 7.22 18

3 107.9553 28.4604 3.79 12

4 4 16 1 1 0 124.4517 5.0351 24.71 24

1 90.3743 6.7871 13.32 14

2 149.8153 19.7128 7.60 22

3 129.6670 33.6608 3.85 14

5 4 32 1 1 0 140.9913 5.4257 25.98 26

1 118.9020 7.6273 15.59 18

2 166.5340 17.9623 9.27 26

3 168.7813 31.8236 5.30 18

6 4 128 1 1 0 187.4940 7.7556 24.18 36

1 160.1940 9.8493 16.26 23

2 206.2483 18.3740 11.23 31

Continued on next page

103

3 166.3463 29.6867 5.60 18

7 4 512 1 1 0 173.4530 6.4400 26.93 29

1 149.1907 9.1286 16.34 20

2 169.7443 14.2519 11.91 23

3 205.1323 26.0689 7.87 20

8 4 2048 1 1 0 234.5983 8.9732 26.15 37

1 288.2267 18.0664 15.95 34

2 353.4443 29.4679 11.99 44

3 435.6997 55.5115 7.85 40

9 4 16 2 1 0 214.3207 8.9957 23.83 42

1 103.7013 8.5702 12.10 16

2 162.8040 21.4573 7.59 25

3 132.8710 31.7873 4.18 15

10 4 16 1 2 0 147.2643 5.6850 25.90 26

1 96.1632 7.9527 12.09 14

2 151.6970 22.0360 6.88 22

3 126.8273 35.7694 3.55 13

11 4 16 2 2 0 173.0123 8.0894 21.39 33

1 132.8593 12.2156 10.88 19

2 193.9310 30.1315 6.44 28

3 128.3077 38.6992 3.32 13

Table 5.13: ILU(k) performance for SPE10

Table 5.13 gives the running results for SPE10. Each data section is configured by a fixed RAS

104

parameter combination. For the first data section where the outer RAS is one, namely, the number

of GPU is one, the running for k = 3 indicates memory overflow. Because the matrix is huge, only

two or more GPUs can solve it when k is configured at 3. The data results of other data sections are

complete. They all have similar data tendency and can be analyzed in the same way. We take the

second data section for instance. The second data section has a RAS parameter combination of 2,

16, 1 and 1 for the outer RAS, the inner RAS, the outer overlap and the inner overlap, respectively.

Obviously, the CPU time has a great change with different k values. When k is 0, the CPU time

is 117.3070. When k is 1, the CPU time is 89.5844. When k is 2, the CPU time is 128.7977. When

k is 3, the CPU time is 114.2540. The calculation accuracy of solving a preconditioner system can

be improved by including extra fill-in elements. A high k provides such a role. Thus the CPU time

decreases with k increasing. This is reasonable for k = 1 and k = 3. But the pattern matrix also

takes a part in the calculation which may counteract the action of k, such as the running time of

k = 2 which is even longer than that of k = 0.

The GPU time goes up as a high k is configured. When k is 0, the GPU time is 8.0304. When

k is 1, the GPU time is 9.8897. When k is 2, the GPU time is 26.8328. When k is 3, the GPU

time is 40.2732. The up trend caused by the degree of parallelism is heavily affected by the fill-in

elements. The fill-in elements of a high k make a preconditioner matrix pattern much complex

and the relation among rows much tight. Although the improvement of calculation accuracy can

shorten calculation time, the influence of it is too weak. Thus the sharp fall of the degree of

parallelism makes the GPU time go up sharply, too.

The speedup for different k is listed as follows. When k is 0, the speedup is 14.61. When k is

1, the speedup is 9.06. When k is 2, the speedup is 4.80. When k is 3, the speedup is 2.84. As a

higher k is applied, the decrease of degree of parallelism makes the GPU time become larger but

the accuracy of calculation makes the CPU time less. Therefore, the speedup goes down when k

goes up.

The iteration number has the same variation tendency as the CPU time because they both are

105

affected by the same reason of calculation accuracy and the matrix pattern. When k is 0, the

iteration is 24. When k is 1, the iteration is 14. When k is 2, the iteration is 21. When k is 3,

the iteration is 13. On the whole, the iteration number with a high k is smaller than the iteration

number at k = 0. The purpose of using a high k to reduce the iteration time is achieved. But the

iteration fluctuates as k increases, which is caused by the concrete matrix pattern.

All the other data sections can be analyzed similarly. Next, we give another aspect of the data

analysis. The curves of speedup vs. the sequence number for a fixed k are illustrated in Figure 5.9.

The curves of iteration vs. the sequence number for a fixed k are illustrated in Figure 5.10. The

parallel ability of the nested RAS framework goes up continuously as the sequence number goes

from 1 to 8. Thus the speedup also goes up which can be seen in Figure 5.9. When the sequence

number is 9, 10 or 11, the outer overlap or the inner overlap is configured highly. Moreover, extra

elements are imported and the ability of parallelism decreases. The speedup of these last three

points on each curve is low. Better parallelism leads to less accuracy which needs more iteration

to compensate. As illustrated in Figure 5.10, the iteration goes up till the combination number

reaches eight. After that, the iteration goes down due to the high overlap.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

sp
ee

d
u
p

sequence number

k = 0

k = 1

k = 2

k = 3

Figure 5.9: Speedup for matrix SPE10

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10 11

it
er

at
io

n

sequence number

k=0

k=1

k=2

k=3

Figure 5.10: Iteration for matrix SPE10

106

Chapter 6

CONCLUSIONS

In this thesis, we have designed and developed a GMRES algorithm and an ILU(k) preconditioner

for multiple-GPU architecture in a single node. The major parts of implementation are SPMV

algorithm, nested RAS framework and ILU(k) preconditioner. We have designed a series of exper-

iments to test the algorithm performance. Some conclusions are concluded below.

1. Our SPMV algorithm includes domain decomposition, compact-reorder method, communi-

cation mechanism and HEC format. It can be sped up to 20 to 40 times faster on our four GPUs

workstation compared to a traditional CPU. The SPMV algorithm has favorable scalability with

the number of GPUs.

2. We have designed a nested RAS framework to use the parallel capacity of multiple-GPU

architecture. The outer RAS is designed for the parallelization at multiple-GPU level. The inner

RAS is designed for parallelization at GPU-thread level. According to the numerical experiments,

the GMRES(20) with ILU(0) achieves 20 to 30 times speedup on our four GPUs workstation com-

pared to the same nested RAS algorithm in a single thread on a CPU. Our nested RAS framework

is effective and provides great parallel performance on multiple-GPU architecture. The GMRES

algorithm and ILU(0) have a promising application prospect.

3. We have implemented a decoupled ILU(k) including a symbolic phase and a factorization

phase. A parallel triangular solver is employed on each GPU to solve triangular matrices. The

running results show the multi-aspect characteristics of ILU(k). High k imports fill-in elements,

which leads to high calculation accuracy and low parallel performance. The CPU time and iteration

go down and the GPU time goes up as k increases. Thereby the speedup goes down as k increases.

In a word, higher k leads to better convergence and worse speedup. These experimental results

provide some enlightenments for further ILU(k) study.

107

In scientific computing, block-wise matrices are frequently utilized. For example, a reservoir is

divided into many grid blocks in three dimensions in a saturated case of the black oil model. Each

grid block has three unknowns which are the pressure of the oil phase, the saturation of the water

phase and the saturation of the gas phase. If these three unknowns in each block are numbered

consecutively, the discretization linear system of the mass equilibrium equations from the Newton

method is a block-wise matrix where each block is a 3×3 submatrix. For other reservoir models,

such as a compositional model or a thermal model, each grid block has more unknowns. Because

the block size is determined by the number of unknowns in a block, it is a variable and depends

on the underlying model. A preconditioner algorithm must be compatible to block matrices with

a variable block size. Because a block-wise ILU(k) has a low condition number and may have

more stable performance than a point-wise matrix has, to study an algorithm of solving large-scale

block-wise matrices with variable block size on a multiple-GPU architecture is attractive future

work.

108

REFERENCE

[1] Z. Chen, Reservoir Simulation: Mathematical Techniques in Oil Recovery, CBMS-NSF Re-

gional Conference Series in Applied Mathematics, Vol. 77, SIAM, Philadelphia, 2007.

[2] Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows in Porous Me-

dia, in the Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia, 2006.

[3] S.Yang, Z.Chen, W. Wu, Y. Zhang, and X. Zhang, Addressing Microseismic Uncertainty

from Geological Aspects to Improve Accuracy of Estimating Stimulated Reservoir Volumes,

SPE-174286-MS, Research Institute of the Henan Oilfield, Sinopec,and Haoyun Deng, China

University of Geosciences, Beijing, 2015.

[4] J. Xu, Z. Chen, Y. Yu, J. Cao, Numerical Thermal Simulation and Optimization of Hybrid

CSS/SAGD Process in Long Lake with Lean Zones, SPE-170149-MS, Society of Petroleum

Engineers, SPE Heavy Oil Conference-Canada, Calgary, Alberta, Canada, 10-12 June 2014.

[5] Q. Song, Z. Chen, S. M. Farouq Ali, Steam Injection Schemes for Bitumen Recovery from

the Grosmont Carbonate Deposits, SPE-174463-MS, Society of Petroleum Engineers, SPE

Canada Heavy Oil Technical Conference, Calgary, Alberta, Canada, 09-11 June 2015.

[6] M. Lin, S. Chen, W. Ding, Z. Chen, J. Xu, Effect of Fracture Geometry on Well Production in

Hydraulic-Fractured Tight Oil Reservoirs, SPE-167761-PA, Society of Petroleum Engineers,

Journal of Canadian Petroleum Technology, Volume 54, Issue 03, May 2015.

[7] Y. Saad, Iterative methods for sparse linear systems (2nd edition), SIAM, 2003.

[8] H. Liu, K. Wang, Z. Chen, and K. E. Jordan, Efficient Multi-stage Preconditioners for High-

ly Heterogeneous Reservoir Simulations on Parallel Distributed Systems, SPE-173208-MS,

SPE Reservoir Simulation Symposium Held in Houston, Texas, USA, 23-25 February 2015.

109

[9] H. Liu, B. Yang, Z. Chen, Accelerating the GMRES Solver with Block ILU(k) Preconditioner

on GPUs in Reservoir Simulation, Journal of Geology & Geosciences, 4(199), 2015.

[10] H. Liu, K. Wang, Z. Chen, J. Luo, S. Wu, B. Wang, Development of Parallel Reservoir

Simulators on Distributed-memory Supercomputers, SPE-175573-MS, SPE Reservoir Char-

acterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 14-16 September,

2015.

[11] H. Liu, K. Wang, Z. Chen, K. E. Jordan, J. Luo, A Parallel Platform for Reservoir Simulators

on Distributed-memory Supercomputers, SPE-176045-MS, SPE/IATMI Asia Pacific Oil &

Gas Conference and Exhibition, Nusa Dua, Indonesia, 20-22 October, 2015.

[12] D. W. Peaceman, Interpretation of Well-block Pressures in Numerical Reservoir Simulation,

SPE 6893, The 52nd Annual Fall Technical Conference and Exhibition, Denver, CO. 1977A.

[13] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers Ltd.,

London, U.K., 1979.

[14] Ertekin et al., Basic Applied Reservoir Simulation, 2001.

[15] M. Botchev, A.N.Krylov, a Short Biography, 6 Dec. 2012.

[16] A. T. Grigorian, ”Krylov, Aleksei Nikolaevich.” Complete Dictionary of Scientific Biography,

2008. Encyclopedia.com. 6 Dec. 2012.

[17] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.

Romine and H. Vander Vorst, Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, 2nd Edition, SIAM, 1994.

[18] P. K. W Vinsome, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equa-

tions, SPE Symposium on Numerical Simulation of Reservoir Performance, Los Angeles,

California, 1976.

110

[19] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach,

ISBN: 978-0-12-381472-2.

[20] X. Hu, W. Liu, G. Qin, J. Xu, Y. Yan, C. Zhang, Development of A Fast Auxiliary Subspace

Pre-conditioner for Numerical Reservoir Simulators, SPE Reservoir Characterisation and

Simulation Conference and Exhibition, Abu Dhabi, UAE, SPE-148388-MS, 9-11 October

2011.

[21] H. Cao, H. A. Tchelepi, J. R. Wallis, H. E. Yardumian, Parallel Scalable Unstructured CPR-

type Linear Solver for Reservoir Simulation, SPE Annual Technical Conference and Exhibi-

tion, 2005.

[22] J. R. Wallis, R. P. Kendall, and T. E. Little. Constrained Residual Acceleration of Conjugate

Residual Methods, SPE Reservoir Simulation Symposium. 1985.

[23] S. Balay, W. Gropp, L. McInnes and B. Smith, The Portable, Extensible Toolkit for Scientific

Computing, Version 2.0.13, 1996.

[24] X.-C. Cai and M. Sarkis, A Restricted Additive Schwarz Preconditioner for General Sparse

Linear Systems, SIAM J. Sci. Comput., 21, 1999, pp. 792-797.

[25] L. Zhang, A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using

Bisection, Numer. Math.: Theory, Methods and Applications, 2, 2009, pp. 65-89.

[26] Z. Chen and Y. Zhang, Development, Analysis and Numerical Tests of a Compositional Reser-

voir Simulator, International Journal of Numerical Analysis and Modeling 4,2008 , pp. 86-

100.

[27] Z. Chen and Y. Zhang, Well Flow Models for Various Numerical Methods, International Jour-

nal of Numerical Analysis and Modeling 6,2009 , pp. 375-388.

111

[28] R. Li and Y. Saad, GPU-accelerated Preconditioned Iterative Linear Solvers, Technical Re-

port Umsi-2010-112, Minnesota Supercomputer Institute, University of Minnesota, Min-

neapolis, MN, 2010.

[29] NVIDIA Corporation, Nvidia CUDA Programming Guide, (Version 3.2), 2010.

[30] NVIDIA Corporation, CUDA C Best Practices Guide (Version 3.2), 2010.

[31] N. Bell and M. Garland, Efficient Sparse Matrix-vector Multiplication on CUDA, NVIDIA

Technical Report, NVR-2008-004, NVIDIA Corporation, 2008.

[32] N. Bell and M. Garland, Implementing Sparse Matrix-vector Multiplication on Throughput-

oriented Processors, Proc. Supercomputing, November 2009, pp. 1-11.

[33] H. Liu, S. Yu, Z. Chen, B. Hsieh and L. Shao, Sparse Matrix-vector Multiplication on NVIDIA

GPU, International Journal of Numerical Analysis & Modeling, Series B, Volume 3, 2012,

No. 2, pp. 185-191.

[34] Z. Chen, H. Liu, S. Yu, B. Hsieh and L. Shao, GPU-based Parallel Reservoir Simulators,

Proc. of 21st International Conference on Domain Decomposition Methods, France, 2012.

[35] S. Yu, H. Liu, Z. Chen, B. Hsieh, and L. Shao, GPU-based Parallel Reservoir Simulation

for Large-scale Simulation Problems, SPE Europec/EAGE Annual Conference, Copenhagen,

Denmark, 2012.

[36] G. Haase, M. Liebmann, C. C. Douglas and G. Plank, A Parallel Algebraic Multigrid Solver

on Graphics Processing Units, High Performance Computing and Applications, 2010, pp.

38-47.

[37] H. Klie, H. Sudan, R. Li, and Y. Saad, Exploiting Capabilities of Many Core Platforms in

Reservoir Simulation, SPE RSS Reservoir Simulation Symposium, February 2011, pp. 21-

23.

112

[38] R. Li and Y. Saad, GPU-accelerated Preconditioned Iterative Linear Solvers, Technical Re-

port Umsi-2010-112, Minnesota Supercomputer Institute, University of Minnesota, Min-

neapolis, MN, 2010.

[39] H. Liu, S. Yu, Z. Chen, B. Hsieh and L. Shao, Parallel Preconditioners for Reservoir Simu-

lation on GPU, SPE 152811-PP, SPE Latin American and Caribbean Petroleum Engineering

Conference Held in Mexico City, Mexico, 16-18 April 2012.

[40] Z. Chen, H. Liu and B. Yang, Accelerating Iterative Linear Solvers Using Multiple Graphical

Processing Units, Internaltional Journal of Computer Mathematics, Volume 92, Issue 7, 2015,

pp. 1422-1438.

[41] H. Liu, Z. Chen, S. Yu, B. Hsieh and L Shao, Development of a Restricted Additive Schwarz

Preconditioner for Sparse Linear Systems on NVIDIA GPU, International Journal of Numer-

ical Analysis & Modeling, Series B, 5, 2014, pp. 13-20.

[42] Z. Chen, H. Liu and S. Yu, Development of Algebraic Multigrid Solvers Using GPUs, SPE-

163661-MS, SPE Reservoir Simulation Symposium, 18-20 February, The Woodlands, Texas,

USA, 2013.

[43] J. Bolz, I. Farmer, E. Grinspun and P. Schröder, Sparse Matrix Solvers on the GPU: Conju-

gate Gradients and Multigrid, Symposium A Quarterly Journal In Modern Foreign Litera-

tures, 22(3), 2007, pp. 917-924.

[44] L. Buatois, G. Caumon and B. Lévy, Concurrent Number Cruncher: an Efficient Sparse

Linear Solver on the GPU, High Performance Computing and Communications, 4782, 2007,

pp. 358-371.

[45] D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker and S. Turek,

Using GPUs to Improve Multigrid Solver Performance on a Cluster, International Journal of

Computational Science and Engineering, 4(1), 2008, pp. 36-55.

113

[46] J. Brannick, Y. Chen, X. Hu and L. Zikatanov, Parallel Unsmoothed Aggregation Algebraic

Multigrid Algorithms on GPUs, Springer Processings in Mathematics and Statistics, vol. 45,

2013, pp. 81-102.

[47] H. Liu, Z. Chen and B. Yang, Accelerating Preconditioned Iterative Linear Solvers on GPU,

International Journal of Numerical Analysis & Modeling, Series B, 5, 2014, pp. 136-146.

[48] G. Karypis and V. Kumar, A Fast and Highly Quality Multilevel Scheme for Partitioning

Irregular Graphs, SIAM Journal on Scientific Computing, 20(1), 1999, pp. 359-392.

[49] NVIDIA Corporation, CUSP: Generic Parallel Algorithms for Sparse Matrix and Graph,

http://code.google.com/p/cusp-library/.

[50] N. Bell, S. Dalton and L. Olson, Exposing Fine-grained Parallelism in Algebraic Multigrid

Methods, SIAM Journal on Scientific Computing, 34(4), 2012, pp. 123-152.

[51] Z. Chen, H. Liu and B. Yang, Parallel Triangular Solvers on GPU, Proceedings of Interna-

tional Workshop on Data-Intensive Scientific Discovery (DISD), Shanghai University, Shang-

hai, China, 1-4 August 2013.

[52] M. Naumov, Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned

Iterative Methods on the GPU, NVIDIA Technical Report, June 2011.

[53] L. Wang, X. Hu, J. Cohen and J. Xu, A Parallel Auxiliary Grid Algebraic Multigrid Method

for Graphic Processing Unit, SIAM Journal on Scientific Computing, 35(3), 2013, pp. 263-

283.

[54] T. A. Davis, University of Florida Sparse Matrix Collection, NA digest, 1994, https://

www.cise.ufl.edu/research/sparse/matrices/.

[55] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for

Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

doi:10.1137/0907058.

114

http://code.google.com/p/cusp-library/
https://www.cise.ufl.edu/research/sparse/matrices/
https://www.cise.ufl.edu/research/sparse/matrices/

[56] NVIDIA Official Website, http://www.nvidia.com/object/tesla-servers.html.

[57] NVIDIA Official Website, http://www.nvidia.com/object/why-choose-tesla.html.

[58] Fujitsu Official Website, http://techcommunity.ts.fujitsu.com/en/

client-computing-devices-2/d/uid-5911b36b-324b-fc23-45fa-2438e4c546f3.

html.

[59] Intel Official Website, http://ark.intel.com/products/82930.

[60] NVIDIA Official Website, http://www.nvidia.com/object/cuda_home_new.html.

[61] Wikipedia, http://en.wikipedia.org/wiki/CUDA.

[62] NVIDIA Developer Zone, https://developer.nvidia.com/about-cuda.

[63] J. L. Hennessy, D. A. Patterson, J. R. Larus Computer Organization and Design : the Hard-

ware/Software Interface (2. ed., 3rd Print. ed.). San Francisco: Kaufmann. ISBN 1-55860-

428-6, 1999.

[64] M. R. Hestenes, Ed. Stiefel Methods of Conjugate Gradients for Solving Linear Systems,

Journal of Research of the National Bureau of Standards 49 (6), December 1952.

[65] R. Fletcher, G. Watson, Ed. Alistair Conjugate Gradient Methods for Indefinite Systems,

Numerical Analysis. Lecture Notes in Mathematics (Springer Berlin / Heidelberg), 1976,

506: pp. 73-89.

[66] H. A. Van der Vorst Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the

Solution of Nonsymmetric Linear Systems, SIAM J. Sci. and Stat. Comput. 1992, 13 (2): pp.

631-644.

[67] C. Paige and M. Saunders Solution of Sparse Indefinite Systems of Linear Equations, SIAM

J. Numer. Anal. 12, 1975, pp. 617-629.

115

http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/why-choose-tesla.html
http://techcommunity.ts.fujitsu.com/en/client-computing-devices-2/d/uid-5911b36b-324b-fc23-45fa-2438e4c546f3.html
http://techcommunity.ts.fujitsu.com/en/client-computing-devices-2/d/uid-5911b36b-324b-fc23-45fa-2438e4c546f3.html
http://techcommunity.ts.fujitsu.com/en/client-computing-devices-2/d/uid-5911b36b-324b-fc23-45fa-2438e4c546f3.html
http://ark.intel.com/products/82930
http://www.nvidia.com/object/cuda_home_new.html
http://en.wikipedia.org/wiki/CUDA
https://developer.nvidia.com/about-cuda

[68] C. Lanczos An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differ-

ential and Integral Operators, J. Res. Natl Bur. Std. 45, 1950, pp. 225-282.

[69] CUDA Toolkit Documentation, http://docs.nvidia.com/cuda/cusparse/

#hybrid-format-hyb.

[70] GPU-Accelerated Libraries, https://developer.nvidia.com/

gpu-accelerated-libraries.

[71] K. Stüben, A Review of Algebraic Multigrid, Journal of Computational and Applied Mathe-

matics Volume 128, Issues 1-2, 2001, pp. 281-309.

[72] J. W. Ruge and K. Stüben, Algebraic Multigrid (AMG), in: S.F. McCormick (Ed.), Multigrid

Methods, Frontiers in Applied Mathematics, Vol. 5, SIAM, Philadelphia, 1986.

[73] A. Brandt, S.F. McCormick and J. Ruge, Algebraic Multigrid (AMG) for Sparse Matrix E-

quations D.J. Evans (Ed.), Sparsity and Its Applications, Cambridge University Press, Cam-

bridge, 1984, pp. 257-284.

[74] C. Wagner, Introduction to Algebraic Multigrid, Course Notes of an Algebraic Multigrid

Course at the University of Heidelberg in the Wintersemester, 1999.

[75] P. S. Vassilevski, Lecture Notes on Multigrid Methods, Center for Applied Scientific Com-

puting, Lawrence Livermore National Laboratory, 2010.

[76] R. Falgout, A. Cleary, J. Jones, E. Chow, V. Henson, C. Baldwin, P. Brown, P. Vassilevski,

and U. M. Yang, Hypre Home Page, 2011, http://acts.nersc.gov/hypre.

[77] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, G.

N. Miranda, and J.W. Ruge, Robustness and Scalability of Algebraic Multigrid, SIAM J. Sci.

Comput., 21, 2000, pp. 1886-1908.

116

http://docs.nvidia.com/cuda/cusparse/#hybrid-format-hyb
http://docs.nvidia.com/cuda/cusparse/#hybrid-format-hyb
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
http://acts.nersc.gov/hypre

[78] V. E. Henson and U. M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver and

Preconditioner, Applied Numerical Mathematics, 41, 2000, pp. 155-177.

[79] U. M. Yang, Parallel Algebraic Multigrid Methods - High Performance Preconditioners,

Chapter in Numerical Solution of Partial Differential Equations on Parallel Computers, A.M.

Bruaset and A. Tveito, eds., Springer-Verlag, 51, 2006, pp. 209-236.

[80] R. D. Falgout, An Introduction to Algebraic Multigrid, Computing in Science and Engineer-

ing, Special Issue on Multigrid Computing, 8, 2006, pp. 24-33.

117

Appendix A

MATRIX PROPERTIES

Many matrices used in Chapter 5 are downloaded from a matrix market [54]. The properties of

these matrices are listed below. The number of rows, the number of columns and nonzeros of

all the matrices are recounted and validated according to our program. More details about these

matrix properties can be found online [54].

Matrix Description

BenElechi1 problem with many sparse right-hand sides, S. Ben Elechi

af shell8
Olaf Schenk, Univ. Basel: AutoForm Eng. GmbH, Zurich. sheet metal forming.

positive definite

parabolic fem Parabolic FEM, diffusion-convection reaction, constant homogenous diffusion

tmt sym symmetric electromagnetics problem, David Isaak, Computational EM Works

ecology2 circuitscape: circuit theory applied to animal/gene flow. B. McRae, UCSB

thermal2 unstructured FEM, steady state thermal problem. Dani Schmid, Univ. Oslo

atmosmodd Atmospheric models, Andrei Bourchtein

atmosmodl Atmospheric models, Andrei Bourchtein

Hook 1498 3D model of a steel hook with tetrahedral finite elements

G3 circuit circuit simulation problem, Ufuk Okuyucu, AMD, Inc.

kkt power Optimal power flow, nonlinear optimization (KKT), Fabrice Zaoui, RTE, France

memchip Memory chip from K. Gullapalli, Freescale Semiconductor

Table A.1: Matrix description

118

(a)

Matrix properties

number of rows 245,874

number of columns 245,874

nonzeros 6,698,185

structural full rank? yes

structural rank 245,874

of blocks from dmperm 7

strongly connected comp. 7

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author S. Ben Elechi

editor T. Davis

date 2007

kind 2D/3D problem

2D/3D problem? yes

Table A.2: Properties and information for BenElechi1

119

(a)

Matrix properties

number of rows 504,855

number of columns 504,855

nonzeros 9,042,005

structural full rank? yes

structural rank 504,855

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 9,720

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author AutoForm Eng.

editor O. Schenk

date 2003

kind
subsequent structural

problem

2D/3D problem? yes

Table A.3: Properties and information for a f shell8

120

(a)

Matrix properties

number of rows 525,825

number of columns 525,825

nonzeros 2,100,225

structural full rank? yes

structural rank 525,825

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author P. Wissgott

editor T. Davis

date 2007

kind
computational fluid

dynamics problem

2D/3D problem? yes

Table A.4: Properties and information for parabolic f em

121

(a)

Matrix properties

number of rows 726,713

number of columns 726,713

nonzeros 2,903,837

structural full rank? yes

structural rank 726,713

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author D. Isaak

editor T. Davis

date 2008

kind
electromagnetics

problem

2D/3D problem? yes

Table A.5: Properties and information for tmt sym

122

(a)

Matrix properties

number of rows 999,999

number of columns 999,999

nonzeros 2,997,995

structural full rank? yes

structural rank 999,999

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author B. McRae

editor T. Davis

date 2008

kind 2D/3D problem

2D/3D problem? yes

Table A.6: Properties and information for ecology2

123

(a)

Matrix properties

number of rows 1,228,045

number of columns 1,228,045

nonzeros 4,904,179

structural full rank? yes

structural rank 1,228,045

of blocks from dmperm 959

strongly connected comp. 959

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author D. Schmid

editor T. Davis

date 2006

kind thermal problem

2D/3D problem? yes

Table A.7: Properties and information for thermal2

124

(a)

Matrix properties

number of rows 1,270,432

number of columns 1,270,432

nonzeros 8,814,880

structural full rank? yes

structural rank 1,270,432

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry 67%

type real

structure unsymmetric

Cholesky candidate? no

positive definite? no

(b)

author A. Bourchtein

editor T. Davis

date 2009

kind
computational fluid

dynamics problem

2D/3D problem? yes

Table A.8: Properties and information for atmosmodd

125

(a)

Matrix properties

number of rows 1,489,752

number of columns 1,489,752

nonzeros 10,319,760

structural full rank? yes

structural rank 1,489,752

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry 67%

type real

structure unsymmetric

Cholesky candidate? no

positive definite? no

(b)

author A. Bourchtein

editor T. Davis

date 2009

kind
computational fluid

dynamics problem

2D/3D problem? yes

Table A.9: Properties and information for atmosmodl

126

(a)

Matrix properties

number of rows 1,498,023

number of columns 1,498,023

nonzeros 30,436,237

structural full rank? yes

structural rank 1,498,023

of blocks from dmperm 30,001

strongly connected comp. 30,001

explicit zero entries 1,542,994

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author C. Janna, M. Ferronato

editor T. Davis

date 2011

kind structural problem

2D/3D problem? yes

Table A.10: Properties and information for Hook 1498

127

(a)

Matrix properties

number of rows 1,585,478

number of columns 1,585,478

nonzeros 4,623,152

structural full rank? yes

structural rank 1,585,478

of blocks from dmperm 1

strongly connected comp. 1

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

(b)

author U. Okuyucu

editor T. Davis

date 2006

kind
circuit simulation

problem

2D/3D problem? no

Table A.11: Properties and information for G3 circuit

128

(a)

Matrix properties

number of rows 2,063,494

number of columns 2,063,494

nonzeros 7,209,692

structural full rank? yes

structural rank 2,063,494

of blocks from dmperm 9,733

strongly connected comp. 9,611

explicit zero entries 1,841,302

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? no

positive definite? no

(b)

author F. Zaoui

editor T. Davis

date 2007

kind optimization problem

2D/3D problem? no

Table A.12: Properties and information for kkt power

129

(a)

Matrix properties

number of rows 2,707,524

number of columns 2,707,524

nonzeros 13,343,948

structural full rank? yes

structural rank 2,707,524

of blocks from dmperm 63

strongly connected comp. 53

explicit zero entries 1,466,254

nonzero pattern symmetry 91%

numeric value symmetry 40%

type real

structure unsymmetric

Cholesky candidate? no

positive definite? no

(b)

author K. Gullapalli

editor T. Davis

date 2010

kind
circuit simulation

problem

2D/3D problem? no

Table A.13: Properties and information for memchip

130

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	OVERVIEW
	Introduction
	Literature Review

	BACKGROUND
	Reservoir Simulation and Large-Scale Sparse Linear Systems
	The Procedure of Reservoir Simulation
	PDEs for Reservoir Simulation
	Discretization of PDEs
	Characteristics of Large-Scale Sparse Linear Systems

	Linear Solvers
	Krylov Subspace Method
	ILU Preconditioner

	Hardware Platform
	CPU
	Parallel Computing
	GPU
	Multiple GPUs in a Single Node

	Development Environment
	C Language
	OpenMP
	CUDA

	GMRES METHOD
	Gram-Schmidt Process
	Inner Product, Euclidean Norm and Orthogonality
	Projection
	Gram-Schmidt Process

	Arnoldi Iteration
	Cayley-Hamilton Theorem
	Krylov Subspace
	Arnoldi's Method

	GMRES
	GMRES Algorithm
	Preconditioned GMRES

	Basic Operations

	GPU COMPUTATION
	Sparse Matrix-Vector Multiplication Mechanism
	Domain Decomposition
	Data Structure
	Reordering-Compact Method for Domain Matrices
	Communication Mechanism for Domain Vectors

	Nested Restricted Additive Schwarz Framework
	Theory Review
	Data Structure
	Domain Decomposition
	Overlapped Diagonal Block Matrices
	Row Tracing Mappings
	Outer RAS and Inner RAS (Nested RAS)
	Right-Hand Side Vector Overlap and Solution Vector Recovery

	Decoupled ILU(k) and Parallel Triangular Solver
	Data Structure
	Decoupled ILU(k) Algorithm
	Parallel Triangular Solver and Level Schedule Method

	NUMERICAL EXPERIMENTS
	SPMV
	SPMV Algorithm Performance
	Comparison with HYB Format

	Nested RAS
	GMRES with ILU(k)

	CONCLUSIONS
	REFERENCE
	MATRIX PROPERTIES

