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ABSTRACT 

Recent developments in the modem geodetic, geophysics and oceanographic applications 

require a geoid with absolute accuracy of 10 centimetre or better and a relative accuracy of 

1 part per million (ppm) of the inter-station distance. Gravity field data in Canada are 

spectrally analysed with the view of refining geoid estimation methods that will yield the 

above-mentioned accuracy requirements. The analysis is based on estimates of empirical 

covariance functions and degree variances derived from local gravity observations, a 

global geopotential model (EGM96), and topographic heights. 

Numerical results for selected areas in mountainous, flat and marine areas of Canada show 

that the empirical signal and error covariance functions are non-uniform and they are 

highly correlated with the roughness of the topography. Gravity data and topographic 

heights with 1' spatial resolution are required for 1 cm geoid in the mountainous areas 

while the same level of geoid accuracy can be achieved with 5' data set in the flat areas. In 

addition, rigomus modelling of the topographic effects with actual topographic density 

values, as well as combination of the solution from the GM and Stokes's integral using 

gravity data in a cap size of 10°xlOO is required for accurate geoid estimation. 
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CHAPTER 1 

INTRODUCTION AND RESEARCH BACKGROUND 

1. I BACKGROUND AND PROBLEM STATEMENT 

The demand for a high precision geoid, which is required for modem geodetic. 

geophysics and oceanographic applications, has necessitated the need to refine the theory 

and practical computation methods of geoid estimation. The absolute g o i d  accuracy 

required for these modem applications are in the range of few centimetres, with a relative 

accuracy of 1 part per million (ppm) of the ioter-station distance. Although some major 

developments have been made in precise geoid estimation, the current geoid prediction 

methods and data availability are still far from meeting these high accuracy requirements. 

Therefore, more improvements in the theory and practical methods of poid 

determination are needed in order to obtain centimetre level geoid and at the same time 

increase the computation efficiency and data handling of the methods. 

Improvement in practical geoid estimation can be achieved through a thorough 

examination of existing geoid estimation methods and optimal data combination 

techniques. Geoid undulations can be determined by various prediction techniques such 

as least squares collocation, input output system theory, spherical harmonic expansions, 

Stokes's integral solution, Molodensky's solution, or their combination. The advantage of 

the least squares collocation lies in its ability to accept heterogeneous data as input 

observations. The accuracy of the results relies on both the accuracy of the observations 

and the reliability of the signal and error covariance functions (Moritz, 1980; Tscheming, 

1984). With a given geopotential model, geoid undulations can be computed from a 

spherical harmonic expansion. The solution from the geopotential model however 



contains only the long wavelength information of the gravity field (Pavlis, 1997; Rapp 

and Pavlis, 1990; Rapp, et al., 1991; Sideris and Li, 1992). which is inadequate for the 

level of accuracy required for modem applications. Stokes's integral computes geoid 

undulations from gravity anomalies. The use of Stokes's integral theoretically requires 

gravity measurements on the whole earth surface and gravity anomalies reduced to the 

geoid. In practice, Stokes's integration is done with a limited spherical cap size instead of 

over the whole earth, as the formula requires. For gravity reduction, some assumptions on 

the topographic density are made in order to estimate the mass outside the geoid 

(Heiskanen and Moritz, 1967) and thus further errors are introduced into the solution. 

Therefore, it becomes apparent that the refinement of geoid determination methods can 

be achieved through analysis of the properties of gnvity field signals and errors in order 

to derive reliable a-priori infomation provided by the signal and error covariance 

functions, as well as through the use of optimal data combination techniques. In addition, 

data reductions through rigorous modelling of the effect of topographic masses and 

density variations especially in the mountainous areas, and minimization of data errors 

propagated into the estimated geoid are necessary in order to achieve the required geoid 

accuracy. 

Two methods are used to extract important properties of gravity field signals and errors. 

Both the space domain method and frequency domain methods, which utilize the fast 

Fourier transform algorithm, have been used extensively to study the properties of 

the gravity field signals. The two methods have their advantages and disadvantages. In 

recent times, the spectral (frequency domain) technique has been more popular due to its 

computational ease. The space domain method was used to estimate empirical covariance 

functions of gravity anomalies for selected areas in Canada by, e.g., Schwarz and 

Lachapelle (1980a, 1980b). The resulting empirical covariance functions were then 

modeled by modifying global covariance models (Heiskanen and Moritz, 1967; 

Tscheming and Rapp, 1984). Knudsen (1987) also used the space domain method to 

estimate and model autocovariance function for gravity anomalies and geoid heights, as 



well as the cross-covariance function between the two quantities. Many other covariance 

modelling studies have also been reported in the literature (Vassiliou and Schwarz, 1987; 

Jordan, 1972; Tscheming and Rapp, 1974). 

Spectral techniques provide excellent means of extracting gravity field information 

contained in each of the gravity field data with the view of determining the contribution 

to the gravity spectrum of each data type (Sideris, 1987; Forsberg 1984, 1986; Kotsakis 

and Sideris, 1999). Analysis of the gravity field spectrum should involve critical 

examination of the spectral information from each data set and from a combination of 

geopotential model (GM), local gnvity data and heights, which respectively provide 

long, medium and short wavelengths information of the gravity field. Such analysis 

would provide the necessary gravity field signal and error covariance or power spectral 

density (PSD) functions required for geoid prediction techniques. In addition, estimates 

of data sampling density derived from degree variances of the gravity signal would give a 

better picture of the data requirement for geoid estimation with sub-decimetre accuracy. 

Both the space domain and frequency domain methods need to be critically examined to 

determine which method will be better in estimating the covariance functions for a local 

area. It will also be necessary to know how the two methods could be combined to 

achieve the best results in extracting spectral properties of the gravity field signals. In 

addition, estimated PSD functions and degree variances should be thoroughly exploited 

in various spectral bands to determine the geoid power contribution in various spectral 

bands, as well as to estimate the data resolution required for centimetre to decimetre level 

of geoid accuracy. 

Investigation of the contribution to geoid undulations of the GM coefficients and errors 

using the EGM96 geopotentiai model, in combination with local gravity in Stokes's 

integral, would provide the means of optimally combining the two data types. 

Consequently, the effects of truncating the degree of the spherical harmonic expansion of 



the GM in favour of using larger cap size to evaluate Stokes's integral need to be 

examined. In similar studies, an increased area of integration has been shown to improve 

the results for geoid estimates (Schwarz, 1984; Sjoberg, 1987). The limit to which the cap 

size should be increased is investigated in order to derive an optimal cap size for Stokes's 

integral solution. 

Critical analysis of the signal information from the short wavelength part of the gravity 

field spectrum in which the topographic terrain corrections have a dominant role is 

required in order for the centimetre geoid to be achievable. Li and Sideris (1994) 

established that the discrepancy between the gnvimetric geoid and GPSAevelling derived 

geoid is correlated with the roughness of the topography. Therefore. rigorous modelling 

of the effect of topography and density variations especially in the mountainous areas 

would provide information on the recoverable geoid power in the very high spectral band. 

Rigorous formulas for terrain correction have been proposed and used (Sideris 1984. 

1985, 1990; Li, 1993). The effect of using mass prism topographic model and line prism 

topographic model is also documented in Li (1993). In all these studies constant density 

values were used for the computation of the terrain effect even in the mountainous areas. 

The effect of terrain correction with actual topographic density values on the estimated 

geoid needs to be examined if the sub-decimetre geoid is to be achieved especially in 

areas with very rough topography. 

The overall achievable accuracy of predicted geoid is limited by a number of error 

sources. Of more importance are those errors in the geopotentid model (GM), local 

gravity anomalies Ag , and heights, which are propagated into the geoid results through 

the prediction formulas. Smaller errors due to datum biases, spherical approximation, and 

the mass of the atmosphere are not considered in this study; further details can be found 

in Heiskanen and Moritz (1967). Proper description of the behavior of data source errors 

are provided by suitable covariance function models. While the error covariance function 



from the GM can be easily derived from the error degree variances of the coefficients, 

empirical error covariance models have to be derived for the gravity and height data that 

will represent the actual error behavior for the local area. Sideris and Schwarz (1986) 

documented error covariance models of gravity and height for areas located in the North 

American continent. In order to derive error models for gravity and heights that will 

actually represent the local area, models for areas with different topography should be 

derived separately, and the overall geoid error from the data errors should be estimated 

and modeled for individual areas. In addition, a thorough analysis of errors from each of 

the data sources and combination of the data would provide a good picture of internal 

geoid accuracy achievable with each data type and combination of the data types. 

Therefore, it can be expected that spectral analysis of the gravity field data can provide 

the information required for refining geoid estimation methods in order to obtain geoid 

with a crn level of accuracy in a local area. Information contained in the spectrum of 

different data types would provide the geoid rms power from each of the data types and 

their combination. Such information will be useful in determining the optimal procedures 

for combining the different data for the geoid prediction methods. 

Furthermore, a thorough analysis and rigorous modelling of the effect of topography and 

density variation especially in the mountainous areas would improve the short 

wavelength information of the geoid in these areas. 

1.2 RESEARCH OBJECTIVES 

The main task of this study is to investigate how the practical geoid determination 

methods could be refined especially in terms of data requirements to achieve geoid 

estimates with sub-decimetre level of accuracy. Both space domain and frequency 

domain methods will be used to estimate empirical covariance functions of gravity 



anomaly for areas with different topographic features in order to examine their 

correlation with the topography, as well as to investigate the use of uniform covariance 

function for prediction by collocation. Spectral techniques will be used extensively to 

extract the properties of local gravity field signals in various wavelength bands using the 

EGM96, local gravity anomalies, topographic densities and heights. Models for the decay 

of the spectrum of the p v i t y  data at various wavelength bands will be derived and the 

results compared to standard models. In addition, rigorous terrain correction formulas 

will be used with lateral density variations to investigate the effect of using a constant 

topographic density value for terrain corrections and geoid indirect effects computation 

especially for high mountainous areas. 

The role of the GM using EGM96 and local gravity data in geoid estimation will be 

investigated. Maximum degree of spherical harmonic expansion of the GM coefficients 

in combination with cap size of the Stokes integral will be studied to determine the effect 

of truncating the harmonic series in favour of using more local gravity data. 

More specifically, the overall objectives of this research will be achieved through the 

following tasks: 

Derive covariance and power spectral density (PSD) functions for the gravity field 

signals and erron for areas with different topography, possibly marine, flat and 

mountainous areas. 

Derive estimates of the gravity and height spacing required for a given level of 

accuracy for the geoid. 

Investigate the role of topographic density variations especially in mountainous areas. 

Investigate the role of the GM maximum degree of expansion, in conjunction with 

Stokes integral cap size containing the local gravity data. 

Derive models for geoid errors from gravity, heights and GM, as well as the 

combined geoid error separately for flat and mountainous areas. 



1.3 METHODOLOGY 

Available gravity, topographic heights and density data for Canada, as well as EGM96 

coefficients will be analyzed to derive the covariance and PSD functions of the data sets. 

The estimated PSD and covariance functions are used to derive corresponding degree 

variances for the gravity data which are then used to estimate the required gravity data 

spacing for various levels of accuracy of geoid prediction in the centimetre to decimetre 

range. Covariance and PSD functions will be estimated for selected areas in the marine, 

flat and mountainous areas of Canada. The results of the spectral analysis for the different 

areas will then be compared to determine the avenge spectral properties of the gravity 

field in the marine, flat and mountainous areas of Canada. Furthermore, the effect of 

using actual topographic density values for terrain corrections in mountainous areas will 

be investigated for areas selected in the Rocky Mountains of western Canada. Analysis 

will be based on topographic density data with 30"x30" resolution and a digital elevation 

model @EM) with 3"x3" resolution. The results of the terrain corrections and geoid 

indirect effects derived with actual topographic density values will be compared with 

those obtained with a constant topographic density value. 

Reduced gravity anomalies with Sx5' resolution in a block size of about 1S0x15" and 

EGM96 coefficients will be used to study the effect of truncating the harmonic expansion 

of the GM model in favour of using more local gravity in a cap size for Stokes's 

integration. Various values of maximum degree of spherical harmonic expansion will be 

used to estimate gravity anomalies from the reference model and subsequently used to 

derive various reduced gravity anomalies. For each set of estimated reduced gravity 

anomalies, the corresponding geoid undulation is estimated using Stokes's integral with 

varying cap size. The total geoid estimated for a given cap size and harmonic degree of 

expansion is then compared to geoid undulations derived from GPSllevelling benchmarks 

located within the area of analysis. In addition, the spectrum of the GM and local gravity 

data will be analyzed to determine better procedures for combining the GM coefficients 

with local gravity data. 



Gravity data error covariance and PSD functions will be derived by modelling the 

differences between actual measurement and predicted observations for selected areas in 

flat and mountainous areas. The derived gravity error covariance models will be used to 

determine the magnitude of propagated geoid undulation errors for the flat and 

mountainous areas. An attempt will be made to compare internal propagated errors with 

external poid errors derived from GPSAevelling benchmarks in the flat and rocky test 

areas. 

1.4 THESIS OUTLINE 

The thesis consists of seven chapters. The content of the next six chapters is  summarized 

below. 

Chapter 2 outlines the methodology and equations for conventional geoid estimation. The 

results of varying cap size in Stokes's integral and the maximum degree of spherical 

harmonic expansion for the GM coefficients are presented. The effect of lateral density 

variations on terrain correction and estimated geoid is presented as well. 

In chapter 3, the basic concept of covariance and PSD estimation is discussed and 

equations relating the two functions, as well as their relation to the degree variances, are 

presented. 

Chapter 4 discusses the results of local gravity anomaly empirical covariance functions 

for areas selected across Canada in the mountainous, flat and marine test areas. A 

comparison is made between the covariance functions derived from the space domain 

method with actual gravity data and those from the frequency domain method using 



gravity data on a grid. The effect of data griding on the estimated covariance estimates is 

also discussed. 

The variation of the gravity field spectrum at very high frequencies is discussed in 

chapter 5. Numerical results for flat and mountainous test areas in Canada are presented. 

In addition, the gravity data sampling density required for a level of poid accuracy in the 

decimetre to centimetre range is also presented. 

In chapter 6 .  models for gravity and height data error covariance functions are discussed. 

Numerical results of geoid error covariance from these data erron are presented for flat 

and mountainous test areas. External geoid errors derived from comparison of GPS and 

levelling benchmarks within the area of analysis are estimated and the results are 

compared with the internally propagated geoid errors in flat and mountainous areas to 

examine their correlation with the topography. 

Chapter 7 summarizes the results of the whole study. Main conclusions and 

recommendations for geoid estimation and further research are also discussed. 



CHAPTER 2 

GEOID ESTIMATION WITH A GEOPOTENTIAL MODEL AND LOCAL GRAVITY 

DATA 

This chapter discusses the role of the global geopotential model (GM), local gravity data 

and their combination in conventional geoid determination methods. In practice. the long 

wavelength geoid is usually estimated by a spherical harmonic expansion up to the 

maximum degree and order of the given GM. The contribution from the local gravity data 

is estimated by Stokes's integral with gravity anomalies in a given cap size which define 

the area of integration. The evaluation of Stokes's integral by FFT requires gravity 

anomalies on a regular grid. The interpolation of gravity anomalies is usually carried out 

with collocation, which requires reliable a priori information provide by signal and error 

covariance functions. 

Section 2.1 of this chapter presents the conventional formulas for gavimetric geoid 

determination using the remove restore technique. Section 2.2 outlines the formulas 

for evaluating the Stokes and terrain correction convolution integrals. Analysis of results 

for selected areas in Canada is discussed in section 2.3. In section 2.4, the effect of lateral 

topographic density variations on terrain correction and estimated geoid in mountainous 

areas is discussed. 



2.1 FORMULAS FOR GEOID COMPUTATION 

The computation of the gravimetric geoid undulation is accomplished by combining 

solution from three sources; a global geopotential model (GM). local gravity anomalies 

Ag, and the topography represented by a Digital Elevation Model @EM) using the 

remove-restore technique. Local gravity anomalies are first reduced by removing the 

effect of the topography and the long wavelength contribution from a reference field. The 

effect of the topography and global field are then restored in the final expression for the 

geoid undulation. The expression for the gravimetric geoid undulation could therefore be 

written as 

where NGM is the geoid undulation implied by the geopotential model. NAgr is the 

contribution of reduced gravity anomalies, which is derived from Stokes's integration, 

and NDEM is the indirect effect of the topography. 

The contribution of the GM coefficients, N,, , at a point is computed by spherical 

harmonic expansion series (Heiskanen and Moritz, 1967), and is given in spherical 

approximation on the geoid as 

where R is the mean radius of the earth, F, and S,, are the fully normalized harmonic 
- 

coefficients of the anomalous potential, P,, are the fully normalized associated 



Legendre functions, and n, denotes the maximum degree and order of expansion of 

the GM geopotential solution. 

The Stokes formula for computing the geoid undulations is given as 

where o denotes the sphere of integration, cp and h are the gocentric latitude and 

longitude of the data point respectively, y is the normal gnvity, Ag, is the residual 

gravity anomaly, which has been corrected for the effect of the topography and 

referenced to a GM, S(y) is the Stokes function, and t , ~  denotes the spherical distance 

between the data point and the computation point. Since in real world applications the 

gravity data are only available in discrete point locations. the expression in (2.3) can be 

rewritten for gravity anomaly data given on the sphere (Haagmans et al, 1992; Li and 

Sideris, 1994) as 

where Acp and AA. are the grid spacing in latitude and longitude direction respectively, L 

and B define the cap size and they represent the number of meridians and parallels in the 

block respectively. The Stokes kernel function S(y), can be expressed as 



S(v) 
Y d 7 sin - 

where 

sin ~(r) = sin fv] + s i n ~ [ ~ ) . o s ~ p c o s t p  

The term Ag, in equation (2.4) according to Helmen's second condensation reduction is 

given as 

where AgFA is the free air gravity anomaly corrected for the atmospheric attraction, C is 

the classical terrain correction, 6,, is the indirect effect on gravity which, being very 

small, is neglected in this study, and AgGM is the gravity anomaly computed in spherical 

approximation on the geoid by the spherical harmonic expansion formula 



The terrain correction C, can be expressed in planar earth approximation as 

I 

where s = ((x, - x)' + (y , - y)' + (h, - z)~):, G is the Newton's gravitational constant, 

p is the topognphic density, h is the topographic height, (x, y, z) represents the running 

point, (x, , y, , h, ) represents the computation point, and E represents the integration 

area. 

The indirect effect of Helmert's condensation reduction on the geoid in planar 

approximation, considering the first two terms is given (Sideris, 1990) as 

See Sideris (1990) and Li (1993) for the detailed expression of goid  topographic indirect 

effect and its evaluation via FFT. 1D-FFT formulas for evaluating equation (2.4) are 

presented in the next section. Further details on the evaluation of convolution integrals in 

physical geodesy by FFI' techniques can be found in Schwarz et al. (1989), Sideris 

(1994), and Sideris and She (1994). It should be noted that in using the FFT formulas, 

data on grids are 100% zero padded, to minimize the effect of circular convolution. 



2.2 TFE SPHERICAL STOKES FORMULA 

The ID FFT technique allows for the evaluation of the discrete spherical Stokes integnl 

without approximation (Sideris and She, 1994). The result of equation (2.4) on a certain 

parallel of latitude (p, using data along parallels of latitude qj can be expressed as 

Since the bracket in (2.1 1) contains a one-dimensional discrete convolution with respect 

to h, i.e., along a parallel, the expression for its evaluation is given for the fixed parallel 

Gal as 

where F and F-' denotes the ID Fourier transform operator and its inverse, respectively. 

Detail discussion on the derivation of equation (2.12) from equation (2.3) can be found in 

Sideris and She (1994), and Haagmans et al. (1992). The expression in (2.12) yields the 

geoid undulation for all the points on one parallel. The major advantage of using the 1D 

FFT approach lies in its ability to give exactly the same result as those obtained by direct 

numerical integration. 



2.3 FORMULAS FOR TERRAIN CORRECTION WITH MASS PRISM 

TOPOGRAPHIC MODEL 

For a given topographic density and height data on a grid. equation (2.9) under the 

assumption of uniform density within a topographic mass model. can be written as 

where T(x, y) is the kernel function given as, Li (1993): 

In equation (2.14). Ax and Ay represent the grid spacing in the x and y directions 

respectively, and the distance kernel s = [(x, - x12 + (y , - y)2 + (h, - 2)' lf . The 

derivation of equations (2.13) and (2.14), and evaluation by 2t FFT' is discussed in detail 

in Li (1993, pp. 70 - 83). In this thesis, the estimation of ail terrain correction is 

implemented by the program originally written by Yecai Li (1993); some modifications 

are made to the original program to suite the size and format of the input and output data. 

Equations (2.1), (2.2) and (2.4) to constitute the set of formulas adopted in this study for 

the computation of the gravimetric geoid. Specifically, equation (2.2) is used to derive the 

geoid contribution with various values of the degree and order of spherical harmonic 



expansion of the EGM96 while equation (2.4) is used to derive the geoid with various cap 

sizes. Reduced gravity anomalies are derived by using equation (2.7); the reference 

gravity anomalies are derived with various degree and order of spherical harmonic 

expansion of the EGM96 by using equation (2.8) while the terrain corrections are derived 

by using equation (2.9). The effect of change in the integration cap size on the geoid 

indirect topographic effects in equation (2.10) is very small and is ignored in this study. 

2.4 ANALYSIS OF RESULTS FOR GM AND GRAVITY DATA COMBINATION 

2.4.1 Data Sets Used 

An area between latitudes 50.047 1 and 65.047 1, and longitudes -128.047 1 and - 1 13.047 1 

(15' ~ 1 5 ' )  located in the Alberta and British Columbia provinces is selected for analysis. 

Gnvity data with 5'xS' grid spacing and l'xl' DEM data provided by the Geodetic 

Survey Division are used. The data sets belong to the same sets of data used for 

computing GSD95 geoid model (Veronneau, 1996). The gravity anomaly and geoid 

undulation from the GM is computed using the software developed in the department of 

Geomatics Engineering, University of Calgary by Li Y. C. (1993). The EGM96 

geopotential model, which is complete to degree and order 360, is also used as the 

reference field. Newly adjusted leveling data referenced to the Canadian Geodetic Datum 

(CGD28) and GPS data points in the selected area are use to derive geoid undulation with 

which the estimated gravimetric geoid is compared. Table 2.1 shows the statistics of the 

reduced gravity anomaly data and heights used for the analysis. 



Table 2.1: Statistics of residual gravity anomalies and heights used 

for GM and local gravity data analysis 

2.4.2 Computed Gravimetric Geoid Undulations 

The geoid undulation contributions from the EGM96 and reference gravity anomalies 

AgGM are computed with (2.2) and (2.8) respectively using 45, 60, 90, 120, 180, 240, 

and 360 spherical harmonic expansions. For each degree of expansion, the block size 

used in the Stokes integration varies between iOx10 and 15"x15", which correspond 

respectively to the smallest and largest cap sizes used in this analysis. The results of 

N,, are then added to the corresponding geoid contribution from the EGM96, as well as 

the geoid topographic indirect effect, which is computed with all the data points in each 

block. 



2.4.2.1 Absolute Geoid Error with respect to GPSlleveling 

The statistics of the standard deviation (Std) of the absolute differences between the two 

types of geoid undulations at 265 GPS benchmark stations are summarized in Table 2.2. 

The systematic datum differences between the gravimetric geoid and the GPSllevelling 

geoid (Kotsakis and Sideris, 1999) are removed by a four-parameter transformation 

equation. See Heiskanen and Moritz (1967) for details. The Std of the absolute difference 

after a least-squares fit with a four-parameter model is also given (in parentheses) in 

Table 2.2. Figures 2.1 and 2.2 show the graphs of absolute geoid difference Std values 

against the degree of expansion and cap size, respectively. 

Table 2.2: Comparison of gravimetric geoid with GPSlIevelling derived geoid 

before and after (in parenthesis) datum fit 

Cap 
Size 

Zero 
1 
3 
5 

7.5 
10 

12.5 
15 

Degree of Spherical Harmonic Expansion 
120 
(m) 

0.64 (0.59) 
0.30(0.27) 
0.24(0.19) 
0.23 (0.18) 
0.22(0.16) 

180 
(m) 

0.52 (0.46) 
0.25(0.20) 
0.24(0.20) 
0.23 (0.20) 
0.18(0,15) 

60 
(m) 

1.04 (0.94) 
0.49(0.40) 
0.38(0.31) 
0.35 (0.25) 
0.32(0.17) 

90 
(m) 

0.72 (0.66) 
0.34(0.31) 
0.29(0.24) 
0.28 (0.22) 
0.27(0.18) 

240 
(m) 

0.45 (0.39) 
0.24(0.20) 
0.24(0.19) 
0.22 (0.19) 
0.18(0.15) 

0.22(0.14) 
0.22(0.16) 
O.Zl(0.16) 

360 
(m) 

0.43 (0.35) 
0.24(0.20) 
O.E(O.19) 
0.22 (0.19) 
0.18(0.15) 
O.lS(O.13) 
0.15(0.14) 
0.15(0.14) 

O.lS(O.13) 
0.15(0.13) 
O.lS(0.13) 

0.20(0.14) 
0.19(0.15) 
0.19(0.15) 

0.15(0.13) 
O.lS(0.14) 
0.15(0.14) 

0.18(0.13) 
0.18(0.14) 
0.18(0.14) 



Spherical harmonic expansion (degree) 

Figure 2.1: Absolute geoid accuracy versus harmonic degree of expansion 

Legend values are block sizes in degrees 

Cap size (degrees) 

Figure 2.2: Absolute geoid accuracy versus Stokes's cap size 

Legend values are spherical harmonic degree 



As shown in Table 2.2, the gravimetric po id  computed with larger cap size, which 

corresponds to more local gravity data, gives better results. Figure 2.1 shows that the 

improvement in the accuracy of the geoid estimated with harmonic expansion greater 

than 200 degrees and cap size of 10" xlOO or greater is negligible. Figure 2.2 shows that 

the improvement in the accuracy of the computed geoid when the block size is increased 

beyond 10axlOO is of the order of few mm. 

Combining the results of Figure 2.1 and 2.2, it is evident that the best estimates of the 

geoid can be obtained with spherical harmonic expansion of about 200 degree and 

Stokes's integration with local gravity data in a capsize of 10" x 10". Results computed 

with degree of expansion greater than 200 degree and cap size greater than 10" x LO0 do 

not seem to improve the accuracy of the geoid estimates. 

2.4.2.2 Relative Geoid Error with respect to GPSlleveling 

To evaluate the relative agreement of the computed gravimetric geoid with respect to the 

GPSAeveling data, relative differences are formed on baselines of lOOkrn and 5OOkm in 

length. The relative accuracy values are the average value over the baselines with length 

about + lOkm from the nominal value. The results of the Std of relative geoid differences 

are plotted against the degree of spherical harmonic expansion in Figures 2.3 and 2.5 for 

the lOOkrn and 500krn baselines respectively. Figures 2.4 and 2.6 show the graph of the 

relative geoid Std against cap size, for 1OOk.m and 500km baselines respectively. Again 

the results of Figures 2.3 to 2.6 agree with the previous results shown in Figures 2.1 and 

2.2 for the Std of absolute geoid differences. In order to obtain geoid with a relative 

accuracy of 1.5ppm on lOOkrn baseline, EGM96 solution with a minimum of 200 

spherical harmonic expansion, as well as Stokes's integration with local data in cap size 

of SCx5' or more is required. In Figures 2.3 and 2.5, the legend values are the cap sizes in 

degrees; while in Figures 2.4 and 2.6, the legend values are spherical harmonic degree. 



Spherical harmonic expansion (dqree) 

Figure 2.3: Relative geoid accuracy versus degree of expansion for 100 km baselines 

Cap Size (degrees) 

Figure 2.4: Relative geoid accuracy versus Stokes's cap size for 100 km baselines 



Spherical harmonic expansion (degree) 

Figure 2.5: Relative geoid accuracy versus degree of expansion for 500 km baselines 

Cap size (degrees) 

Figure 2.6: Relative geoid accuracy versus Stokes's cap size for 500 km baselin 



2.5 TEE EFFECT OF LATERAL DENSITY VARIATIONS ON TERRAIN 

CORRECTIONS AND GEOID UNDULATIONS 

The ternin correction formula based on the mass prism or mass line model (Li. 1993) is 

usually executed with constant topographic density value (p, = 2.67gm/cm3) for most 

applications. In this section, rigorous terrain correction formulas in which the earth 

topographic mass is represented by mass prisms of equal base area is used to estimate 

terrain corrections with actual topographic density values, as well as with a constant 

topographic density value. The effect of making the assumption of constant density 

values for the terrain correction, as well as for estimating geoid undulation, is 

investigated for five areas located in the Rocky Mountains of western Canada. 

Table 2.3: Statistics of topographic densities and heights 

The terrain corrections for selected areas are computed using equations (2.13) and (2.14) 

with actual topographic density values, and with constant topographic density value of 

2.67g/cm3. Table 2.3 shows the statistics of the topographic density data and heights, as 

Test 
Area 
DRKY 1 
DRKY:! 
DRKY3 
DRKY4 
DRKYS 

SW corner 
coordinate 
Lat. 
49 
49 
5 '  
49 
5 1 

Long. 
-1 16 
-120 
-120 
-122 
-122 

Density 
(g/cm* * 3) 

Min 
2.49 
2.49 
2.56 
2.49 
2.56 

w 

Height 
(m) 

Min 
700.00 
170.00 
386.00 

0.00 
294.00 

Max 
2.85 
2.90 

Std 
2.57 
2.68 

Max 
3377.00 
2814.00 
3506.00 
2754.00 
2803.00 

Std 
1697.78 
1281.64 
1639.44 
1284.57 
1265.98 

2.90 
2.98 
2.90 

2.60 
2.70 
2.71 



well as the location of the test areas. The results of the terrain corrections, and their 

differences are presented in Table 2.4. 

Figures 2.6 and 2.7 show contour plots of the topographic heights and the differences 

between the two estimated terrain corrections. Each figure contains the plot for the areas 

DRKY3 and DRKYS at the top and bottom, respectively. 

Table 2.4: Statistics of terrain corrections with and without topographic density 

variations 

Geoid undulations are estimated with equation (2.12) using reduced p v i t y  anomalies 

that are derived with the two different terrain corrections. The result of the difference 

between the geoid undulations estimated with actual topographic density and constant 

topographic density is shown in Figure 2.9 for DRKY3 and DRKYS at the top and 

bottom, respectively. The Statistics of the difference is also given in Table 2.5. 

Test 
Area 

DMY1 
DRKY2 
DRKY3 
DWY4 
DRKYS 

Without density 
variations 

(mGaI) 
Min 
0.10 
0.33 
9-82 
0.23 
0.05 

With density 
variations 

(mGal) 
Max 
50.39 
50.04 
75.27 
60.52 
46.45 

Min 
0.10 

Difference 

(mGal) 
Std 
6.65 
6.23 
11.35 
7.69 
5.13 

0.33 
0.82 
0.23 
0.05 

Min 
-0.58 

Max 
50.37 

Std 
6.44 

46.78 
77.99 
60.12 
48.40 

Max 
2.27 

Std 
0.24 

6.24 1 -1.28 3.26 
3.82 
3.18 
1.38 

11.64 
7.71 
5.29 

0.20 
0.45 
0.22 
0.21 . 

-2.73 
-1.95 
-1.95 



Table 2.5: Statistics of geoid undulations with and without topographic density variations 

Geoid indirect effect is estimated using equation (2.10) with and without topographic 

density variations. The result of the differences between the two geoid indirect effects is 

shown in Figure 2.10 for DENY3 and DRKY5 at the top and bottom, respectively. The 

two components of the geoid from the terrain correction and topographic indirect effect 

on the geoid are then combined under the assumption of perfect (linear) correlation 

between the two components. The result of the geoid difference from the total effect of 

the two components is shown in Figure 2.11, for DRKY3 and DRKYS at the top and 

bottom, respectively. The Statistics of the geoid indirect effects differences are given in 

Table 2.6 while those of the combined geoid effects differences are given in Table 2.7. 

Test 
Area 

D w Y 1  
DWY2 
D M Y 3  
DRKY4 
DRKYS 

Without density 
variation 

(cm) 
Min 

-165.7 
-170.1 
-10.6 
-125.0 
-154.3 

With density 
variation 
(cm) 

Max 
118.7 
110.6 
256.0 
177.5 
122.2 

Min 
-1.673 
-1.704 
-0.1 16 
-1.248 
-1.544 

Difference 

(cm) 
Std 
69 
88 
139 
72 
76 

Min 
0.7 
-0.7 
-0.1 
-1.2 
-0.5 

Max 
1.173 
1.103 
2.53 
1.776 
1.205 

Std 
70 
88 
137 
72 
76 

Max I Std 
2.1 
0.8 

1.6 
0.3 

3.8 1 2.5 
0.8 
1.8 

0.3 
0.8 . 



rorrgtad.(dw--) 

Figure 2.7: Contour plots of topographic heights for DRKY3 and DRKY5, in metres 



Figure 2.8: Contour plots of terrain correction differences for DRKY3 and DRKYS, in 

mGal 



Figure 2.9: Contour plots of geoid undulation differences for DRKY3 and DRKYS, in 

cm 



Figure 2.10: Contour plots of geoid indirect effect differences for DRKY3 and DEKY5 

in cm 



Figure 2.11: Contour plots of geoid direct and indirect effect differences for DRKY3 and 

DRKYS in cm 



Table 2.6: Statistics of geoid indirect effect with and without topographic density 

variations 

Table 2.7: Statistics of geoid direct and indirect effect with and without topographic 

density variations 

Test 
Area 

DRKY1 
DRKY3, 
DRKY3 
DRKY4 
DRKYS 

It is evident in Figures 2.6 and 2.7 that the terrain correction difference is correlated with 

the topography of the local area. In addition, the results in Table 2.5 and Figure 2.9 show 

that a geoid difference of up to 4cm could be omitted in areas with very high topography 

if constant density value is used instead of actual values for terrain correction estimation. 

Test 
Area 

DRKY1 
DRKY2 
D E Y 3  
DRKY4 

Without density 
variation 

(cm) 
Min 
-39.9 
-28.1 
-39.8 
-27-1 
-31.1 

With density 
variation 
(cm> 

Without density 
variation 

(cm) 

Max 
-2.9 
-0.7 
-1.4 
5.5 
-1.4 

Min 
-30.3 
-28.4 
-30.2 
-27.1 
-24.5 

Difference 

(cm) 

Min 
-180.9 

DRKYS -156.2 

Std 
7.1 
5.2 
6.8 
4.8 
4.6 

Min 
-14.6 
-6.3 
-17.3 
-6.8 
-15.3 

With density 
variation 
(cm) 

-14.2 

Max 
2.5 
2.5 
7.0 
5.5 
4.0 

-177.5 
-22.0 
-128.9 

Max 
100.3 

1li.l 

Difference 

(cm) 

Std 
6.5 
5.1 
5.8 
4.8 
3.7 

Max 
12.3 
16.9 
12.2 
19.7 
9.2 

Std 
54.3 

Std 
54.1 

Min 
-178.4 

Min 
-12.7 
-5.6 
-14.9 
-7.1 

10.8 

Std 
2.5 
1.4 
3.2 
1.5 
2.2 

89.6 
241.6 
161.4 

Max 
102.3 

1.9 64.6 

Max 
13.2 
17.0 
14.0 
19.5 

112.7 

Std 
2.4 
1.4 
3.0 
1.5 

63.6 

50.2 
62.3 
68.8 

-157.8 

92.4 
241.9 
161.9 

------.--- 

50.0 
61.8 
68.6 

-179.5 
-27.8 
-131.7 



The effect of using actual density values is more noticeable in the computation of the 

geoid indirect effect. The results in Table 2.6 and Figure 2.10 show that a difference of 

up to 20 cm could be omitted in the geoid estimates. When the two geoid components are 

combined, a geoid difference of 20 cm is noticed (Table 2.7 and Figure 2.1 1). 



CHAPTER 3 

ESTIMATION AND MODELLING OF GRAVITY FIELD COVARIANCE AND 

PO= SPECTRAL DENSITY FUNCTIONS 

This chapter outlines the basic concepts of covariance, correlation and power spectral 

density (PSD) function estimation and the relation between the three functions. Formulas 

that are used in the spectral analysis are also presented. 

Section 3.1 discusses the basic concepts of covariance, correlation and power spectral 

density functions; it also highlights the relationship between the three functions. In 

section 3.2, formulas used for practical estimation of empirical gravity anomaly 

covariance function, as well as covariance function models, are presented. Section 3.3 

discusses the computation of gravity anomaly PSD function, and the relationship between 

the PSD function and degree variances is presented in section 3.4. 

3.1 CONCEPTS OF COVARIANCE AND SPECTRAL DENSITY FUNCTIONS 

This section discusses the basic concepts of covariance, correlation and power spectral 

density functions and the relation between the three functions. The derivations of the 

equations relating the functions is not discussed as it can be found in many text books and 

papers on the subject; see, e-g., Bendat and Piersol (1980, 1986) and Sideris (1994). The 

definition of these functions is limited in this section to Cartesian coordinates with the X 

axis pointing east, the Y axis pointing north and the Z axis pointing upward. 



The covariance function C& (x, y) of two functions g(x, , y  , ) and h(x 2 ,  y ) , which are 

sample functions of the corresponding stationary random processes, is defined as 

where Ax = x 2  - x, , Ay = y2 - y, , E[ ] is the mathematical expectation operator, and H 

and are the mean values of the functions g(x , , y , ) and h(x, , y , ) , respectively. When 

the two functions g(x, , y, ) and h(x, , y , ) are identical, i.e., h(x, . y , ) = g(x ?, y , ) , then 

the result of equation (3.1) is termed auto-covariance function. Otherwise, if 

h(x,. y , )  # g(x,, y2) ,  the resultant covariance is known as the cross-covariance function. 

Furthermore, if Cgh (Ax,Ay) is such that it could be replaced with Cgh (s) , where 

s' = Ax' +Ay', then the resultant covariance function is said to be isotropic. 

The correlation function R (x, y) of two sample functions g(x ,. y , ) and h(x 2 ,  y 2 ) is 

defined as 

where all variables have the same meaning as previously defined. For sample functions 

with zero means, i.e.,P=F = 0 ,  the corre1x;on function is identical to the covariance 

function, i.e., R ,, = C,, . Sample functions with zero means are referred to as centred 

functions. Again, if the two sample functions are identical, the correlation function in 

equation (3.2) is known as the auto-correlation function. Othenvise, it is called cross- 

correlation function. 



The PSD function is defined as the frequency domain equivalent of the correlation 

function. The function contains the spectrum of the mean square values of the sample 

functions. For the two sample functions g(x,, y , )  and h(x2, y,) , the PSD function 

P* (x, y) is defined via the Fourier transform of the correlation function R,, (x, y) as 

00 00 

P,, (u, v) = I I R,, (x, y)e-iln(ux"Y)dxdy = F{R (x, y)} 
-0- 

where the spatial frequencies u and v (also known as wave numbers) correspond to x and 

y, respectively. If the two functions g(x,, y , )  and h(x2, y 2 )  are centered functions, then 

equation (3.3) is equivalent to 

0. OD 

P,, ( u, v) = I Ic,, (x, y)e~J"'ux'vy'dxdy = F{c,, (x, y)) 
e-0 

since in this case the covariance and correlation functions are equal. Again we have auto- 

power spectral density function if the two sample functions are identical and cross-power 

spectral density function if othenvise. 

In practice, discrete values of the sample functions are usually given on a finite plane. 

Therefore, the continuous spectrum given in equation (3.3) and (3.4) becomes discrete. 

The discrete Fourier transform is then applied. In addition, the expressions in (3.1) and 

(3.2) are executed as summation in the x and y directions. The derivation of the 

expressions for the covariance, correlation and PSD functions, and their general 

applications can be found in Bendat and Piersol (1980, 1986). 



3.2 LOCAL GRAVITY ANOMALY COVARIANCE FUNCTION 

Moritz (1980) gave the basic definition of a global covariance function on a sphere as the 

expected value over the sphere of the product of all pairs of gravity values located at 

fixed distances apart. The local covariance function of the gravity field is defined by 

Goad et al, (1984) as a special case of a global covariance function where the information 

content of wavelengths longer than the extent of the local area has been removed, and the 

information outside, but nearby, the area is assumed to vary in a manner similar to the 

information within the area. In this section. the fundamental equations for the estimation 

of local covariance functions for gravity anomalies are presented. The notation employed 

in the expressions for the covariance functions follow closely the one used in Heiskanen 

and Moritz (1967). 

Three parameters are used to describe the characteristics of the local covariance function 

of p v i t y  field quantities. The definition of the three parameters, the variance Co, the 

correlation distance zv2 and the horizontal gravity gradient variance, are given in Moritz 

(1980). 

The first two parameters C, and xy, (Figure 3.1) are used in this study to describe the 

local covariance function of the gravity anomalies. The variance C, is the value of the 

covariance for zero distance while the correlation distance zllz is defined as the distance 

1 
at which the covariance is half of the variance value, i.e. C(X,,,) = -Co . 

3 - 



Distance (unit) 

Figure 3.1: Local covariance function parameters, C, = 160, x,,, = 20 

In the sequel, two observations g and h at (cp, A) and (cp', 7c') respectively on the spherical 

earth surfdce are assumed to be linear fiinctionals of the anomalous potential T, with 

information content of the wavelength longer than the extent of the local area removed. 

The covariance function between g(q, h) and h(cpr, A') is given as 



where A is the size of the area on the unit sphere, tp, , p2, h , . h represents the extent of 

the local area. a is the azimuth and cos(y) = sinpinp'+ cosgrosp'cos(~ -h ') . 

Equation (3.5) represents a homogenous and isotropic covariance function, which is 

calculated as an average of the product of g and h over the local area (homogeneity) and 

as an average over the azimuth (isotropy). In practice, the observations are at discrete 

points in the local area and the integral reduces to numerical surr,rnation. 

3.2.1 Estimation of Empirical Covariance Function 

Two methods are usually employed in the estimation of the local gravity empirical 

covariance function. The first method makes use of the actual data available to compute 

the empirical covariance functions directly. while the second method computes the 

empirical covariance functions by taking the inverse Fourier transform of PSD functions. 

The former method is referred to as the direct method while the later is referred to as the 

indirect method. 

3.2.1.1 Covariance Function from Actual Data 

This method cornpules the empirical covariance function directly from actual data and is 

referred to as the direct method. Two formulas are presented for empirical covariance 

estimation with actual gravity data. The first set of formulas estimate the isotropic 

empirical covariance function of gravity data with irregular distribution. For gravity data 

with a regular grid, the empirical covariance function is given by the second set of 

formulas. 



The covariance function between the function g and h given at discrete points in blocks 

on the sphere is given as 

where a, and a, represent the area of the blocks on the sphere for observation g and h, 

respectively. For gravity anomalies, g(q,  k) = Agi and g(p',A ') = Ag , equation (3.6) 

provides an isotropic ogavity anomaly covariance function. 

If the gravity anomalies for example are given in blocks of equal area, then equation (3.6) 

reduces to 

where n, represents the number of products taken at a given spherical distance p,. The 

distance y to which product at yl, is determined is defined by 



where A((I is a suitable interval. 

In the case of gravity anomalies given on a rectangular regular grid of area size T, x T, 

and with grid spacing Ax and Ay in the x and y directions, respectively, the empirical 

non-isotropic covariance function for gravity anomalies Ag is estimated as 

T, where M = - TY , N=-. 
Ax AY 

3.2.1.2 Covariance Function via Spectral Density Function 

The empirical covariance function could be estimated indirectly from gridded data by the 

fast Fourier transform (FFT) algorithm. Since the power spectral density function is the 

frequency domain equivalence of the correlation function, then for centered gravity data, 

the inverse Fourier transform of the PSD function provides the corresponding covariance 

function of the gravity data. 

In flat earth approximation, the surface of the earth is replaced by a tangential plane. The 

spherical distance (y) becomes the planar distance s (s2 = x' + y2). In a local area, both 

approximations converge to each other (Knudsen, 1987). The PSD function ( actually the 

periodogmm) of gravity anomaly observations is estimated by Fourier transform as 



where AG is the Fourier transform of the gravity anomaly observations Ag. 

The two-dimensional non-isotropic covariance function C, (x, y) is then estimated by 

taken the inverse Fourier transform of PA, (u, v) as 

An isotropic covariance function C,@, (s) is derived from equation (3.1 1) by averaging 

over all azimuths as 

For isotropic PSD function (a), where o' = u ' + v ' , the corresponding isotropic 

covariance function CbA,,,(s), is obtained by the inverse HankeI transform and not with 

the inverse Fourier transform; see Forsberg 1984 for details. The Hankel transform 

operator H and its inverse H-' is define for the function g as 



where J, is the Bessel function of order zero. 

3.2.2 Modeling of the Gravity Anomaly Covariance Function 

In gravity field prediction with heterogeneous gravity field data, self sufficient covariance 

models are required in the estimation method. The self-sufficiency of the covariance 

functions ensures that the covariance functions of the different gravity field quantities are 

related through linear functional of the anomalous potential. A self sufficient covariance 

function is derived by fitting empirical covariance values to some analytical function, 

which is usually characterized by few parameters. 

Various covariance models for gravity field signals are presented in Moritz (1980). A 

number of analytical covariance functions have also been suggested and used for gravity 

field approximation in flat earth approximation. See Vassiliou and Schwarz (1987) and 

Jordan (1972) for details. 

For spherical earth, the covariance function model is usually derived from degree a 

veriance model. The Tscheming/Rapp model (Tscheming and Rapp, 1974) is the most 

widely used degree variance models, and is adopted in this study for covariance 

modelling. Empirical covariance values are fitted to the analytical model by least squares 

in an iterative procedure. 



The covariance function K(y) of the anomalous potential T expanded into a harmonics 

series is given in terms of Legendre polynomials as, (Moria, 1980): 

where n,, is the maximum degree and order of a global geopotential model that is used 

as the reference field, ~;(T,T) are the anomalous potential degree variances, r and r' 

represent the geocentric radial distances of two observation points at a (spherical) 

distance p apart, and R , is the radius of the Bjerhammar sphere. 

Since in practice the covariance function K(y) of the znornalous potential T cannot be 

estimated directly, equation (3.5) is  fitted to covariance values of gravity field data that 

are linear functionals of T. The covariance of the local anomaious potential is then 

derived by applying the inverse linear functional relation. The covariance function of 

reduced local gravity anomalies derived from equation (3.15) can be expressed as 

where c i  (bg., bg, ) are the local gravity anorndy degree variances. S = (3). &, is 

the reduced gravity anomaly, and E: (Ag, ,Ag, ) are the error degree variances of the local 

gravity data. 



The degree variances of the potential and gravity anomalies are estimated using the 

TschemingRapp model given as 

o: (T, T) = 
A 

(n - l)(n - 2)(n + 24) 

where A is a constant which is related to the variance value in unit of rn~al?. For other 

quantities of the gravity field, the covariance function and degree variances can be 

derived from the linear functional relation of such quantities to the anomalous potential. 

Expressions for other gravity field quantities can be found in Mori tz ( 1980). 

The error degree variances of the local gravity data €:(Ag,,Ag, ), is obtained by an 

approximate method with the following expressions: 

where Pg* is the isotropic gravity error PSD function, o, is the average standard 

deviation of the gravity observations, and a is a constant (a=10). A detail expression for 

gravity emr degree variances is given later in this thesis. 



The fitting of the model in equation (3.16) to the empirical covariance values is done by 

an adjustment of the parameters Re and A using a least square inversion method; see 

Knudsen (1987) for details. In the covariance analysis that follows, the modelling of the 

covariance functions is carried out with a computer program, which was originally 

written by Tscheming (1975). The program has been modified to suite the data format 

and error degree variance model in equation (3.19). 

3.3 ESTIMATION OF THE GRAVITY ANOMALY POWER SPECTRAL DENSITY 

FUNCTION 

The power spectral density (PSD) function can be estimated directly from the actual data 

in a grid by Fourier transform or indirectly by taken the inverse Fourier transform of 

previously estimated correlation function. For gravity anomalies given at discrete points 

on a plane, the PSD function can be computed directly from the data as 

where denotes complex conjugate. and F is the Fourier transform operator. Again, the 

evaluation of equation (3.21) by FFT requires that the gravity anomalies be on a grid. 

Further detail information on Fourier transform and its applications are found in 

Bracewell (1983) and Schwarz et al. (1990). 

The second method used in the estimation of power spectral density function involves 

taking the Fourier transform of a previously calculated correlation function. For gravity 

anomalies Ag located at discrete points on a plane equation, (3.3) could be written as 



where F denotes two-dimensional (2D) discrete Fourier transform operator. For centered 

gravity anomalies on a regular grid, the correlation function is equivalent to the 

covariance function given in (3.9). 

3.4 RELATIONSHIP BETWEEN DEGREE VARIANCES AND POWER SPECTRUM 

Degree variances are usually used to study the variation of the gravity field in various 

spectral bands because they allow easy comparison with results from global models. The 

degree variances of the anomalous potential 0: can be defined as the spectrum of the 

local isotropic covariance function of this potential in spherical earth approximation. 

Forsberg (1984) established a relationship between the degree variance and the 

isotropic PSD function P,(o) of the anomalous potential for flat earth approximations 

1 
n+- 

where the wave number o = - * . In the sequel, two-dimensional PSD function of the 
R 

gravity anomaly is computed first with equation (3.21) and made isotropic by averaging 

dong circles of constant wavelength. Then the degree variances of the anomalous 

potential are estimated from 



where c, is the degree variances of the local gravity anomalies estimated from the 

corresponding isotropic PSD function using an expression similar to (3.23) for the gravity 

anomaly. 



CHAPTER 4 

COVARIANCE ANALYSIS FOR AREAS IN CANADA 

This chapter discusses the results of the empirical covariance functions for local gravity 

anomalies in selected areas across Canada. The preprocessing of the gravity anomaly data 

is discussed in section 4.1 while the results of both the space domain and frequency 

domain methods are presented and compared for all the selected areas in section 4.3. The 

selected mountainous areas are located in the west, the flat areas in the east and the 

marine areas in the Hudson bay, and the Pacific and Atlantic coasts of Canada. The 

mountainous areas have highly varying topography with standard deviation of 450m or 

higher. The flat areas are rather smooth with standard deviation usually below 200m. 

4.1 TEST AREAS AND DATA REDUCTION 

The results of the analysis in the sequel are based on data selected from blocks of 2' x 2" 

in western (rocky areas) and eastern Canada (flat areas), and blocks of 5Ox 5' in marine 

areas. Figure 4.1 shows the location of all the test areas in rectangular blocks. In Table 

4.1, the statistics of topographic heights, as well as the geographic local of the test areas 

are presented. 





Table 4.1: Covariance and ysis test areas and height data statistics 

For each selected area, the observed gravity anomalies are corrected for the terrain effect 

and the long wavelength part of the potential field was removed by subtracting the 

contribution fiom the EGM96 geopotential model, complete to degree and order 360. 

This corresponds to a wavelength of one degree, which is below the extent of the area 

blocks selected for analysis. 

Test 
Area 

SW Corner 
Coordinate 
Lat. I Long. 

Mountainous Areas 

Areasize 
(B1wk) 

Height Statistics 
(m) 

' Min I Max I Mean 1 Std 

RK! 
RK2 
RK3 
RK4 
RK5 
RK6 
RK7 
RK8 

-131 
-131 
-129 
-129 
-120 
-120 
-122 
-122 

60 
62 
60 
62 
49 
51 
49 
51 

Flat Areas 
FC1 
FT2 
FT3 
FT4 
FT5 
FI'6 
FT7 
FT8 

2"xZ0 
2"~2"  
2"xZ0 

2034.42 
2275.23 
2528.29 
24l9.13 
2589.89 
29 10.97 
2667.9 1 
2822.00 

627.09 
875.12 
600.39 

49 
51 
49 
51 
48 
50 

Marine Areas 
I 

1167.24 
1449.66 
1234.63 
1704.12 
1047.07 
1498.26 
1 122.0 1 
1173.93 

Z0x2" 
2"x2" 
20e0  
2"~2" 
l'k2" 

-110 
-110 
-108 
-108 
-76 
-76 

MR1 
MR2 
MR3 

376.43 
327.73 
436.33 
386.17 
601.17 
728.87 
5 17.26 
464.49 

627.97 
282.55 
344.52 
6.10 

274.1 1 

Z0x2" 
2"~2"  
2"~2" 
2"~2" 
2"x2" 
2 " a 0  

48 
50 

56 
52 
71 

2Ox2" 
2"~2O 

-74 
-74 

563.88 
500.79 
547.73 
348.36 
280.1 1 
248.1 1 

-85 
-136 
-70 

99.67 
296.88 

1225.60 
771.14 
1000.35 
768.71 
502.92 
467.26 

5"xS0 
5%5" 
5Ox5" 

572.41 
758.65 

824.56 
668.16 
746.32 
568.65 
391.24 
342.30 

0.00 
-2.60 
0.00 

134.16 
49.94 
94.3 1 
60.52 
4 1.37 
37.05 

307.15 
430.59 

146.05 
84.90 

49.38 
2052.30 

0.00 

0.0 1 
6.63 
0.00 

0.50 
87.40 
0.00 



Table 4.2: Statistics of reduced gravity anomalies before and after gridding 

(all values are in rnGaf) 

Since the frequency domain method requires that data be given on a regular grid, it is 

necessary to have the gravity data at some specified points. The interpolation of reduced 

gravity anomalies is carried out by the Suffer software using ordinary Kriging (Blais, 

1982). Predicting gravity data by collocation method (Moritz, 1980) was not employed in 

JT6 
FT7 
FT8 

8.6 
7.7 

_ 8.9 
Marine Areas t 

-15.8 
-28.7 
-30.2 

MRl 
MR2 
MR3 

26.0 
13.1 
24.0 

3.0 
3.1 

-2.7 
-5.9 
-3.7 

-33.4 
-189.1 

31.2 
144.0 

4.6 

6.9 
8.2 
7.8 

-0.9 
-2.7 

-39.1 1 68.0 1 5.2 

58 
439 

-11.8 1 -10.7 28.4 
16.8 
26.1 

-23.8 
-26.3 

-32.6 1-30.1 
-184.1 -188.9 

266 

-20.8 
-20.4 

49.2 1 64.0 -49.4 1 49.2 

23.8 
15.9 
21.6 

64.0 1 12.6 

-30.1 131.2 
-188.9 116.1 

31.2 1 7.2 
116.1 1 24.2 

4.6 
6.3 
6.6 

4.5 
6.3 
6.7 



the gridding procedure due to the amount of computation involved. Tables 4.2 and 4.3 

present the statistics of the reduced and free-air gravity anomalies before and after 

gridding, respectively. The avenge inter point distance (IPD) represent the actual data 

resolution before gridding, and it is estimated as 

where NP represents the number of data point in the selected block area. and A is the area 

size. It should be noted that the gravity anomalies are also centered after gridding by 

subtracting the mew value from the data. 

Table 4.3: Statistics of free air gravity anomalies before and after gridding 

(all values are in mGal) 

Test 
Area 

RK1 
RK2 
RK3 
R.4 

, RK5 
RK6 
RK7 
RK8 

Before Gridding 
Min 
-71.3 
-81.5 
-107.0 
-122.9 

;i36.9 
-154.9 
-184.9 
-137.3 

After centering (mean = 0) 
and gridding with 1' spacing 

Min 
-69.9 
-88.0 
-101.9 
-136.1 
-144.2 
-155.3 
-161.2 
-134.2 

Max 
53.9 
70.3 
66.5 
90.1 
117.6 
109.7 
126.3 
92.0 

Max 
59.6 
63.5 
63.8 
70.3 
128.6 
97.9 
126.7 
100.0 

Mean 
-7.7 
4.2 
-8.9 
16.4 
-23.3 
-19.0 
-19.6 
-11.0 

Std 
22.3 
17.8 
28.4 
27.9 
51.3 
2833 
2667 
1385 

- Std 
28.7 
27.6 
39.4 
40.1 
61.2 
5756 
2616 
1616 



4.2 ESTIMATION OF COVARIANCE FUNCTION PARAMETERS 

The essential parameten (Co and xln) are estimated for each of the test areas. The 

C, value is derived from the following equation 

where n is the number of gravity observations in the test area. In order to obtain x the 

covariance values at a 1' spherical distance interval are first derived. Then a fifth order 

polynomial function is fitted to the covariance functions. The values are estimated 

from the fitted polynomial function by an iterative procedure. 

4.3 RESULT AND DISCUSSION 

The results of the empirical covariance functions of the gravity anomalies using the space 

domain method and spectral method for each of the selected areas are presented in this 

section. In addition, the characteristics of the local covariance functions are discussed. 

The empirical covariance function is estimated in the space domain using equation (3.7) 

with A y  = 1 arcmin. The results of the space domain empirical covariance functions are 

fitted to the model in equation (3.16) with the degree variance model derived from the 

Tsc hernin g/Rapp model. 



Empirical non-isotropic 2D covariance functions are estimated from the 2D PSDs with 

equation (3.1 l), which is evaluated via m. To minimize the effect of circular 

convolution (Sideris. 1994). 100% zero padding is used. The 1D isotropic covariance 

functions are derived from the corresponding 2D covariance functions by averaging over 

the azimuths with equation (3.12). 

Figures 4.2, 4.3 and 4.4 show the graphs of the results of the space domain (SPC) and 

frequency domain (FFT) methods alongside with the plots of the corresponding 

covariance function model (MDL) obtained after fitting the result of the space domain 

method to the covariance model. The results of the space domain method show 

oscillations, which are more pronounced in some distance intervals. These oscillations 

are due to few data points available for the distance interval. 

Each figure (4.2,4.3 and 4.4) shows the ID isotropic (upper graph) and 2D non-isotropic 

(lower graph) covariance function for an area in the mountainous (RK6), flat ( R 2 )  and 

marine (MR3) test areas, respectively. Tables 4.4 and 4.5 present the statistics of the 

variances C, and correlation distance zy, estimated with both space domain and 

Fourier transform methods for all the selected ai-eas. 

In the mountainous areas (Table 4.4), the value of C, varies between 980m~al* and 

7000rn~a.l~ for the space domain method after fitting with a model while the 

corresponding value for the frequency domain method is much lower than expected and 

varies between 420m~al' and 3300m~al'. Estimates of the correlation distance for the 

space domain method vary between 2.6' and 4.0' while those of the frequency domain 

method vary between 3.9' and 6.5'. 



- FFT -&- SPC - - - -MDL 

Spherical Distance (min) 

Figure 4.2: Empirical 1D and 2D gravity anomaly covariance function for a mountainous 

area (RK6), in mGa12 
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Figure 43: Empirical 1D and 2D gravity anomaly covariance function for a flat area 

(m), in m w 2  
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Figure 4.4: Empirical 1D and 2D gravity anomaly covariance function for a marine area 

(MR3), in rnGa12 



Table 4.4: Gravity anomaly covariance function parameters for mountainous areas 

The results of the space and frequency domain methods for the flat and marine areas 

(Table 4.5) are however close with little change in the variance values and correlation 

distances. For flat areas, estimates of the variance vary between 20m~al '  and 60m~al '  

for the frequency domain method and 26m~al"nd 90m~al '  for the space domain 

method. The correlation distance varies between 7.3' and 9.4' for the frequency method 

while the space domain method estimates vary between 5.2' and 8.3'. The results for the 

marine areas show that the variance values vary widely from one area to the other; the 

correlation length is between 7.0' and 10.6', and 8.1' and 9.4' for the frequency and space 

domain methods, respectively. 

Test 
Area 

RK1 
RK2 
RK3 
RK4 

The results of the covariance function parameters estimated by frequency domain method 

for referenced free air gravity anomalies in the mountainous areas are presented in Table 

4.6. 

K 5  2976 
RK6 3311 4.5 321 1 4.6 7026 3.2 
RK7 3339 6.5 3394 6.2 1675 2.8 
RK8 2004 5.7 1924 5.3 2059 4.0 

Frequency Domain Method Space domain 
method 5' Spacing 

CO 
(m~al ' )  
984 
1012 
2606 
1446 

CO 
(m~a l ' )  

646 
417 
1028 
915 

I' Spacing 
X 
( '1 - 

3.5 
2.9 
3.3 
3.3 

X 
( ' 

5.6 
3.9 
4.2 
4.6 

CO 
(rn~ai') 

622 
404 
997 
914 

X 
( ' ) 

5.6 
3.9 
4.3 
4.6 



Table 4.5: Gravity anomaly covariance function parameters for flat and marine areas 

Table 4.6: Free air gravity anomaly covariance function parameters 

Test 
Area 

The results presented in Figures 4.2 to 4.4 and Tables 4.4 and 4.5 show that covariance 

functions estimated by both the frequency and space domain methods vary for the 

different areas selected. In the mountainous areas, the covariance functions have higher 

variance value and shorter correlation distance when compared to the corresponding 

Frequency Domain I Space Domain 

Flat Areas 
r 

FL 1 
FL2 
FL3 
FL4 
FLS 
FL6 
FL7 
FL8 

5' Spacing: 

CO 
(m~al ' )  

c o  

(m~al ' )  

1' Spacing 
X 
( ' ) 

54 
27 
40 
27 
60 
20 
40 

- 4 4  

X 
( * )  

c o  

(m~al')  

Marine Areas 
L 

X 
( ' ) 

8.4 
8.4 
9.4 
8.3 
8.4 
7.3 
7.8 
7.6 

MR 1 
MR2 
MR3 

54 
27 
31 
27 
59 
21 
40 
4 4  

52 
423 
159 

7.4 
5.2 
6.4 
5.2 
7.7 
4.6 
6.3 
6.6 

7.0 
7.9 
10.6 

56 
26 
28 
27 
86 
5 1 
82 
55 

52 
415 
157 

8.2 
7.7 
8.3 
6.4 
5.8 
6.1 
8.3 
5.2 

7.0 
- 7.6 

10.5 

74 1 8.1 
342 
370 

8.8 
9.4 



values estimated for the flat and marine areas. It should be noted that both the frequency 

and space domain methods are influenced by 'smoothing' effect, due on the one hand to 

the gridding procedure employed in the frequency method an on the other hand to the 

azimuth averaging employed in the space domain method. The smoothing effect depends 

to a great extent on the roughness of the topography and the distribution of the data points 

in the local area. The data distribution is represented by the average inter-point distance 

(IPD), which is given in Tables 4.4 and 4.5. The lower the IPD value with better data 

distribution, the less the smoothing effect. 

In areas with rather flat topography, the empirical covariance function functions from 

both space and frequency domain methods agree better in most of the test areas; for areas 

with very rough topography, the covariance function from the space domain method and 

frequency domain method vary widely. Again this can be attributed to the 'smoothing 

effects' which is more pronounced for areas with rough topography. 

The effect of the grid spacing on the covariance estimates is shown in Tables 4.4 and 4.5. 

Using the frequency domain method with data on 5' and 1' grid, the covariance function 

estimates have smaller variance value and the correlation distance with the 1' grid data 

when compared with the corresponding results for 5' grid data. 



CHAPTER 5 

HIGH FREQUENCY VARIATION OF THE GRAVITY FIELD SIGNAL SPECTRUM, 

AND ESTIMATION OF REQUIRED SAMPLING DENSITY FOR LOCAL GRAVITY 

DATA 

In this chapter, analysis of the spectrum of the gravity field signals is discussed. 

Information from the spectrum of the gravity field data is used to derive among other 

things the decay parameters for different frequency bands of the gravity field signal 

spectrum, and estimate the sampling density for local gravity data and heights required to 

provide a certain geoid accuracy and resolution. 

The very high frequency information of the local gravity field is derived from very dense 

digital elevation model data @EM) on a 3"x3" grid while local gnvity anomalies on a 

l'xl' grid are used to derive the medium to high frequency gravity field information. The 

long wavelength information characteristics of the gravity field are determined from the 

EGM96 geopoten tial model. 

The spectrum of the geoid from various gravity field signals for a selected area is first 

presented in section 5.1; the geoid spectrum from EGM96 and local gravity data is 

analyzed in view of the combination of GM and gravity data. In section 5.2, the results of 

estimated geoid degree variances for selected areas are presented alongside the derived 

variances from the Tscheming/Rapp model and degree variances with decay implied by 

the Kaula rule for comparison. In addition, estimates of the decay parameter for the test 

areas are presented. Section 5.3 discusses gravity data resolution requirement for various 

levels of geoid accuracy in the centimetre to decimetre range. 



5.1 GEOID SPECTRUM FROM GM, LOCAL GRAVITY DATA AND 

TOPOGRAPHIC HEIGHTS 

In this section, the power spectrum of the geoid represented by the degree variances a; 

(in crn'), is estimated for the various local geoid components. The GM geoid degree 

variances are given as 

while the geoid degree variances from gravity anomaly and terrain corrections is derived 

from 

where o: is derived from equation (3.23). 

Global degree variance models given by the Kaula's rule (Kaula, 1966) and the 

TschemingRapp model (Tscheming and Rapp, 1974) are also employed herein for 

comparison. The Kaula's rule is given as 



The TscheminglRapp model for Bjerhammar sphere depth (R , - R E  = 1.2km) is given 

as 

The results of the geoid power spectrum derived from, the EGM96 (GM-NVAR) 

complete to degree and other 360, the local gravity data (GV-NVAR), the terrain 

correction (TC-NVAR), and the geoid indirect effect (IND-VAR) are shown in Figure 

5.1. The data sets used for the analysis are selected from an area block of 1 5 " ~ 1 5 ~ ,  which 

is located in the Alberta and British Columbia provinces between latitudes 50.0471 and 

65.047 1. and longitudes -128.047 1 and -1 13.047. The selected area is similar to the one 

used for GM and local gravity combination analysis in chapter two of this thesis. The 

statistics of the data sets are given in Table 2.1. The resolution of the local gravity data is 

5'x5', while the DEM data are interpolated on 5'xS' grid. 

Figure 5.1 shows the importance of proper modeling for ail local terrain effects on the 

geoid undulation signal especially in mountainous areas. Terrain correction alone can 

create a geoid signal which amounts to over 10 crn (rms) for harmonic degree n < 2,150. 

The corresponding value for flat areas (Kotsakis and Sideris, 1998) show that such 

topographic effects should always be taken into account if a centimetre geoid is truly 

desired. 

It is also interesting to note (Figure 5.L) the significant amount of low-wavelength power 

that the geoid indirect effect signal appears to have for harmonic degrees n > (-320) in 

the selected area. It completely dominates over the geoid signal originating from the use 

of the terrain comection. In particular, the geoid indirect effect shows a rrns value of 

approximately 1.8 crn inside the spectral band 24 < n c 2,150, while the geoid component 



from the terrain correction in the same band has an average power of 10.3 cm. The local 

free-air geoid also has a signal power at the 4.5 cm level over the spectral band 360 < o < 

2,150; the geoid rms power fiom terrain correction and geoid indirect in the same spectral 

band are 0.3 cm and 0.7 cm, respectively. All the corresponding values in the spectral 

band 360 < n < 2,150, for flat test areas (Kotsakis and Sideris, 1998) are almost 

negligible. The effect of using local gravity data in lager cap size for geoid estimation is 

again shown in Figure 5.1. A closer look of the geoid spectrum form EGM96 and local 

gravity data is shown in Figure 5 -2. 

Spherical harmonic degree 

Figure 5.1: Geoid power spectrum fiom various gravity field signals 



In Figure 5.2, the vertical lines represent the cap sizes containing the local gravity data. 

As shown in Figure 5.2, the power fiom local gravity data (GV-NVAR) is higher than 

that fiom the EGM96 (GM-NVAR) for frequencies higher than that corresponding to a 

cap size of 10°xlOO. Below the frequency that corresponds to a lO0x lo0 cap size, the 

geoid power spectrum is dominated by the contribution fiom EGM96. It is also evident 

that when a cap size of 1 degree, which corresponds to 360 harmonic degree, is used the 

contribution from the local gravity data will not provide all the necessary information 

required for accurate geoid determination. 
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Figure 5.2: Geoid power spectrum fiom EGM96 and local gravity data 



5.2THE DECAY OF THE GRAVITY FIELD SPECTRUM IN THE HIGH WAVE 

NUMBERS 

This section discusses the variation of the earth gravity field spectrum in medium and 

high frequencies. and the results of the estimates of the decay parameters for local areas 

are presented. 

On a global scale, the earth gravity field spectrum has been known to obey a power decay 

law in the form of 

where a and p are constants. The constant P describes the rate of decay of the g n v i t y  

field spectrum. 

In Figure 5.1, the geoid power spectra originating from the local gravity data and the 

terrain correction seem to follow a faster decaying pattern than the spectrum of the third 

geoid component (indirect effect). A comparison of the geoid power cr ,' . derived from 

local gravity anomalies, with global models in equations (5.3) and (5.4) is shown in 

Figures 5.3, 5.4 and 5.5, respectively for mountainous, flat and marine test areas in 

C a n a h  The test areas and gravity data are similar to those used for covariance analysis 

in chapter four of this thesis. The location of these areas is shown in Figure 4.1 while the 

statistics of the gravity and height data are given in Tables 4.2 and 4.1, respectively. 



Each figure (5.3, 5.4 and 5.5),  shows the plot of the estimated geoid degree variances 

(DEGV) &om local gravity anomalies alongside the plot of the Tscheming/Rapp degree 

variance (TRMDL) and degree variance with decay implies by Kaula rule (KMDL). The 

result of using linear models fitted to the estimated degree variance (MDL) is also shown 

in these figures. All the graphs are shown on logarithmic scale. The I'xl' gridded gravity 

anomalies used for estimating o ,' provide a maximum harmonic degree of 10,800. The 

minimum recoverable degree for flat and mountainous areas is 180 while that of the 

marine areas is 72, since the area size is 2*x2* and 5Ox5' for flat/mountainous and marine 

areas, respectively. 
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Figure 53: Geoid degree variances for a mountainous (RK6) area 
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Figure 5.4: Geoid degree variances for a flat (FT2) area 
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Figure 5.5: Geoid degree variances for a marine (MR3) area 



The values of the parameters a and in equation (5.5) are estimated for various bands 

of the harmonic degree by least-squares fittings of a linear model to the estimated values. 

Tables 5.1 and 5.2 show the results of the constants a and P for all selected areas in 

mountainous, and flat and marine areas of Canada, respectively. 

Table 5.1: Local geoid decay parameters at various spectral bands 

for mountainous areas 

In Figures 5.3 to 5.5, the geoid spectra originating from the local gravity data seem to 

follow a faster decaying pattern than the Kaula rule implies (5.3), especially in the 

spectral band above n = 3030 (Tables 5.1 and 5.2). These result agree with similar 

indications given in previous studies in Canada (Kotsakis and Sideris, 1998; Vassiliou 

and Schwarz, 1985) and in northern Europe (Forsberg, 1986). The spectral decaying 

pattern for geoid (from local gravity data) is in good agreement with the TscheminglRapp 

model (Figures 5.3,5.4 and 5.5) and EGM96 geoid degree variances (Figure 5.1 and 5.2), 



in the spectral band 60 c n < 360. In addition, the local geoid spectra decay faster in high 

frequencies (n > 3030) with P > 4.0 for most areas. 

Table 5.2: Local geoid decay panmeten at various spectral bands 

for flat and marine areas 

a) Flat 

b) Marine 

FT7 
FT8 

Mean 

-9.2 
-9.5 

I ',"' Band Range 

180SnS3030 13030SnS108W 

-3.7 
-3.6 
-3.8 

-8.4 
-9.2 

-4.1 
-3.8 
-4.0 



5.3 DATA RESOLUnON REQUIREMENT FOR GEOID ESTIMATION 

In order to investigate the required data spatial resolution for certain level of geoid 

accuracy, gravity data and topographic heights in both the mountainous and flat areas are 

analyzed separately in view of the wide difference in the gravity field signals in both 

areas (Table 4.2). In this section, the estimation of spatial resolution for local gravity data 

and heights required for centimetre to decimetre geoid accuracy in the mountainous and 

flat areas of Canada is presented. 

The contribution of the local gravity field data to the g o i d  can be investigated from 

estimates of the geoid short wavelength power. The estimated geoid short wavelength 

power contains the rms value of the local geoid signal contributed above a certain 

harmonic degree no,  and can be expressed as 

where o i ( n  > n o )  represent the geoid rms value above certain spherical harmonic 

degree. 

The estimated values of 0; for different no, which correspond to the highest harmonic 

degree and consequently to the data spacing, provides a means of evaluating the data 

resolution requirement for the decimetre to centimetre geoid accuracy. It should be noted 

that the values of a; represent only the ideal local geoid variance, since in most cases 

the spherical harmonics errors of the reference field will be much larger than these 

values. 



The graph of estimates of a: derived from gravity data and fitted models in the selected 

mountainous and flat test areas of Canada against no are shown in Figure 5.6. The 

corresponding redts after adding the effect of the topography are shown in Figure 5.7. 

In estimating a;, it is assumed that a perfect (linear) correlation exists among all the 

geoid components. The plotted geoid rms values are based on the average of a$ 

estimates for the mountainous test areas and flat test areas. 
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Figure 5.6: Local data sampling density for a - d m  geoid without topographic effm 



As shown in Figures 5.6 and 5.7, the use of very dense local gravity data (e.g., l'x 1') in 

mountainous areas will result in a geoid accuracy at the 30-35 cm level, while the 

incorporation of equally dense height data will bring the accuracy down to the 2-3 cm 

level. On the other hand, the required gravity and height data resolution in the same areas 

for cm-geoid was estimated to be 0.5' and for dm-geoid 7'-7.5'. 
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Figure 5.7: Local data sampling density for cm-dm geoid with topographic effm 



In the flat areas of Canada, dm-geoid accuracy can be achieved without even taking 

terrain effects into account, by using a local gravity grid spacing of 20'. For cm-level 

po id ,  gravity and terrain data should be combined with a resolution better than 6'. It 

should be noted that all the above accuracy estimates refer to an average spatial behavior 

and individual point erron may vary from these values. 



CHAPTER 6 

ANALYSIS AND MODELLING OF THE GEOID ERRORS 

In geoid determination, a number of error sources limit the accuracy of the predicted 

geoid undulations. The most significant of these errors are due to the noisy data used in 

the conventional geoid estimation: the popotential model (GM), local gravity anomalies 

Ag and the heights. Smaller emors due to datum biases, spherical approximation. and the 

mass of the atmosphere are usually considered to be at the noise level (Sideris and 

Schwarz, 1986), and are not taken into consideration in this study; further details about 

this class of errors can be found in Heiskanen and Moritz ( 1967). 

The two basic methods that are used to evaluate the accuracy of gravimetrically derived 

geoid undulations, external comparison with GPS/levelling benchmarks and intemal 

propagation of data erron, are employed in the estimation of the geoid error covariance 

functions. The methodology for the internal error propagation is similar to that employed 

by Sideris and Schwan (1986 and 1987). Absolute geoid error covariances from each 

source are derived by propagation of error covariances of the data source. 

Covariance models for relative geoid errors can be derived by propagating the error 

covariances of absolute geoid for two baselines. Then the contribution of each data to the 

relative geoid error variances and covariances can be investigated as for the absolute 

geoid undulation error covariances, which is presented in the sequel. Derivation of the 

expressions for the relative geoid error covariance function is contained in Sideris and 

Schwarz (1986). 



In section 6.1, the general expression for geoid error covariance propagation is presented. 

This is followed by error covariance models from the GM coefficients, gravity data and 

heights, which are presented in section 6.2. In sections 6.3 and 6.4, estimates of the errors 

from GM coefficients and gravity data are derived for two areas selected, respectively. 

Section 6.5 presents the results of the combined geoid error covariance function from 

both GM and gravity data are discussed. In addition, estimates of the geoid errors derived 

from comparison of gnvirnetric geoid and GPSnevelling derived geoid are compared 

with the internally propagated geoid errors from the GM and local gravity data. 

6.1 DATA ERROR PROPAGATION 

Applying the theory of error propagation to the expression for geoid estimation in 

equation (2.1), the error variance of the geoid undulations, under the assumption of 

uncorrelated data errors, can be expressed as 

where ok, is the combined geoid error variance, is the geoid error variance due to 

error in gravity anomaly, oiGM is the geoid error variance from the GM, and is the 

geoid enor variance due to e m r  in the topographic heights. Again for simplicity, 

equation (6.1) represents the case where the data errors are assumed to be uncorrelated. 

The expressions for these components are given (Li and Sideris, 1994) as follows: 



where o- are the errors (standard deviations) of the normalized geopotential 

coefficients of degree n and order m, a ,  is the error (standard deviation) of the height 

measurement, S(v)  is the Stokes's Kernel function, and S(v) is the summation of the 

Legendre series of Stokes spherical kernel up to nmK=360. It is given as, (Li and Sideris, 

1994): 

- 
S(p) = y = p n  (cosy), 

n=2 " -1 

6.2 GEOID ERRCbR COVARIANCE FUNCTION MODELS 

The geoid error covariance function EN for any data set with geoid error degree 

variances o : ~  , computed from the data, can be obtained from the following formula, 

(Sideris and Schwarz, 1986): 



where EN is the error covariance function of the estimated geoid undulation N, E,, ,cN2 

are the errors of the estimated N's of two points at distance y,, apart, y l ,  is the 

spherical distance between points 1 and 2, n,, is the maximum degree of spherical 

harmonic expansion, and P, are the Legendre polynomials. 

Hnrmonic degree 

Figure 6.1: Geoid error degree variances of EGM96 coefficients 



6.2.1 GM Coefficients Error Covariance Function 

The geoid error covariance function from the GM coefficients is derived from the error 

degree variances, which is given in equation (6.3). The graph of the actual (N-ERDV) 

and cumulative (CN-ERDV) geoid degree variances of the EGM96 geopotential model 

coefficients plotted against spherical harmonic degree are shown in Figure 6.1. It is 

evident from Figure 6.1 that the GM geoid errors are more in h e  long and medium 

wavelength bands compared to those in the higher frequencies (above 200 harmonic 

degree). See Pavlis (1997) for detail. 

6.2.2 Estimation and Modelling of Gravity Data Error Covariance Function 

In gravity field prediction by collocation or input output system theory (IOST) using 

heterogeous data, the overal accuracy of the predicted quantity will depend on how the 

error information which is contained in the error covariance or PSD function of each data 

represent the reality for the local area. Well represented error covariance and PSD 

functions will provide proper weights for the different data and thus improve the 

precision of the prediction. In this study, an attempt is made to estimate and compare 

gravity error covariance functions for two areas with different topographic features. This 

is necessary especially when gravity field prediction is done in areas with diverse 

topography 

6.2.2.1 Gravity Error Covariance Function Based on Multiple Observations 

The error covariance function of local gravity data can easily be derived for areas with 

multiple gravity databases as documented in Weber and Wenzel(1983) for marine areas. 

See also Esan and Sideris (1999). However, the availability of multiple gravity data over 



the terrain surface is practically impossible and thus makes estimation of gravity error 

covariance from multiple observations for such areas impossible. In the sequel, gravity 

errors are obtained by comparing predicted to measured gravity anomalies in the selected 

areas. The gravity anomalies (Ag) are first corrected for terrain effect and referenced to 

EGM96. The mathematics of estimating covariance function from multiple observation is 

presented below. 

Assuming a sufficient number of multiple and independent observations of the gravity 

data, the error covariance function can be estimated from observation differences. Using 

the parameters g,, g ,  for true values located at two points separated by a spherical 

distance yl2, t' for observations, E for tme errors, and the subscripts i .  j. k. 1 for the 

various data sources, we can write the following expressions: 

Defining the observation differences (dg) as, 

the expectation value for product pairs of differences at the two points can be expressed 

as follows: 

~{dg, i jdg, l=~k ,E 11-4 1 ) - ~ k  ,)+EE F ,I 

Equation (6.10) could be estimated as 



Replacing expectation values by covariances, we have the following expressions: 

where n denotes the number of observations in the sources. 

Error covariances can be determined in two ways. In the first case, if one of the sources 

that participated in the evaluation of dg,ij also participated in the evaluation of dg,,, e.g. 

then using the of hypothesis of zero cross correlation between emon of different sources 

and inserting equation (6.13) into (6.12), the error covariances for observations of source 

i can be written as 

In the other case, if both sources that participated in the evaluation of difference dgIij 

also participated in the evaluation of the difference dg, , then 



Accepting the hypothesis of equal error covariances for both sources, and combining 

equations (6.15) and (6.12), the error covariances is given as 

It should be noted that the reliability of the results of these models depend on the validity 

of the hypothesis introduced. Gravity enor covariance functions for the selected areas are 

computed using equation (6.14). The error degree variances af ,,, of the gravity anomaly 

contributed to the undulations are then computed from the corresponding error PSD 

function with equation (3.23). 

The numerical results for two test areas in Canada are shown in Figures 6.2 and 6.3. The 

two test areas each with S0x50 block size are located in the west (latitudes 50" to 55", and 

longitudes -120' to - 115) and in the east (latitudes 46' to 5 lo, and longitudes -74' to - 
697 of Canada. 

The values of parameters characterizing the behavior of the covariance function (the 

variance C, and correlation length x ,,?) for the two selected areas show that while C, 

values are different, the x v2 vvales are similar. The variance values are about 3 18 r n ~ a l ~  

and 20 m ~ a l '  respectively for the mountainous and flat areas. Estimated values of x ,,? in 

the mountainous area is about 4', while that of the flat area is about 4.5'. 
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Figure 6.2: Gravity error covariance function for a flat area 
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Figure 63: Gravity error covariance hc t ion  for a mountainous area 



6.2.2.2 Gravity Error Covariance Function Model 

A number of error covariance models for gravity data have been suggested by different 

authors. Gravity error covariance could be derived from a Gaussian error PSD function 

P, (Sideris and Schwarz, 1986), given as 

where a, is a constant with unit (rn~al') and a,  is a scaling factor. Both a, and a ,  are 

to be determined for each local area. The corresponding covariance function can be 

written as 

The estimated gravity error covariance model derived after fitting the empirical error 

covariance values with equation (6.14) is also shown in Figures 6.2 and 6.3 alongside 

with the empirical covariance values for flat and mountainous areas, respectively. 

Estimated values of a, and a, of the fitted models are 318.6m~al~ and 12.0 for the 

mountainous area, and 20.0rn(3al2 and 10.0 for the flat area. 



6.2.3 Topographic Effect Error Covariance Model 

The effect of the terrain on predicted geoid undulations is very small in areas with 

smooth terrain, such as in eastern Canada. However, the terrain contribution in areas with 

rough topography has a considerable effect on predicted gravity field quantities. Error 

due to the topographic heights can be derived from a Gaussian covariance model given as 

E , ~  (v) = ce-"'l , for yl in degrees. 

where c and d are parameters (with units similar to those of a, and a,) that characterize 

the behavior of the topographic srror effect for the local area. Estimate of c and d for the 

North American continent is given by Sideris and Schwarz (1986) as 5 rn~al '  and 10.5. 

respectively. To derive estimates of c and d. standard deviations of the gravity 

observations were propagated into the emor variances of the terrain correction equation, 

and the result modeled using equation (6.19) Geoid error due to the topographic indirect 

effect can be derived from the corresponding error variances, which is given in equation 

(6.4), by using equation (6.7). 

6.3 GEOD ERROR FROM GM COEFFICIENTS 

The evaluation of the error contribution of the GM coefficients can be done with distance 

dependent data error covari~ce functions derived from the error degree variances of the 

GM coefficients. The contribution of the GM errors to C, (ylr2) is computed from emor 

degree variances of the EGM96 coefficients with equation (6.3), for which the 

coefficients and their errors are given up to degree 360, and the plot of the result is shown 



in Figure 6.4. The variance value is about 1300cmL while the correlation length is about 

30'. 
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Figure 6.4: Geoid error covariance function from EGM96 coefficients 

6.4 GEOID ERROR FROM GRAVITY DATA 

Since the gravity anomalies used in the computation of the geoid undulations are 

referenced to the geopotential model and reduced for topographic effect, the combined 

gravity error variances is derived for the harmonics of degree nSn-  

(n, = 360) from the EGM96 coefficient error using equation (6.5). For n > n,, , the 

errors from local gravity data and terrain effect are estimated separately. The local gravity 

error degree variances is computed as 



where and n starts at 361, and PA, is the isotropic gravity error PSD function estimated 

from the corresponding error covariance function, which is derived with equation (6.14). 

The corresponding geoid error covariances computed with equation (6.20) are shown in 

Figures 6.5 and 6.6, respectively for flat and mountainous test areas. 

The variance value of the derived geoid error covariance furlction is higher for the 

mountainous test area compared with that from the flat area as expected. In mountainous 

area, the geoid variance is estimated at about 4.8 cm2, the corresponding value in the flat 

area, is about 0.18 cm'. The correlation length is 7' for both test areas. Covariance model 

of the form 

is then Fitted to the derived covariance values. The values of the parameters a, and a, of 

the fitted models are estimated as 4.80 cm', 6.7 and 0.19 cm2, 6.3 for the mountainous 

and flat test areas, respectively. 
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Figure 6.5: Geoid error covariance hction £?om gravity data for a flat area 
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Figure 6.6: Geoid error covariance fimction from gravity data for a mountainous area 



6.5 Combined Geoid Error Covariance Function 

6.5.1 Geoid Error from GM and Gravity Data 

The total geoid error covariance function from gravity and GM is obtained from (6.1) 

where for 2 5 n S 360, the formula (6.4) is used to compute the errors degree variances 

of the coefficients of the EGM96 geopotential model, for which the coefficients and their 

errors are given up to degree 360. For n >360,  the error covariance functions are 

computed with equation (6.20). The results for the two selected areas are similar to that 

shown in Figure 6.2. The variance value for the total geoid error covariance function is 

about 1300 cm' while the correlation length is about 30' for the two areas. The fact that 

these values are the same for the two areas is due to the strong influence of the errors 

coming from the GM which dominates the long and medium wavelength bands of the 

geoid error spectrum. 

6.5.2 Comparison of Internal and External Geoid Errors 

Gnvimetric geoid undulations are computed for the two selected areas above using the 

formulas presented in chapter 2. The results of the totd geoid were compared to the 

GPSAeveling data on benchmarks in the two areas (80 and 112 data points for the 

mountainous and flat areas, respectively). The difference between the gravimetric and 

GPSneveling derived geoid provides an estimate of the external geoid error which can be 

compared to the internal propagated geoid errors. The standard geoid error derived from 

the difference between the gravimetric geoid and GPSfleveIing is about 19 cm and 17 cm 

for the mountainous and flat areas, respectively. 



Covariance functions for the external GPSAeve1i.g derived geoid errors are computed 

empirically for the two areas and the results are fitted with fourth order polynomial 

model. The graph of the empirical error covariance functions and fitted models are shown 

in Figures 6.7 and 6.8 for the flat and mountainous test areas, respectively. Values of 

fitted model parameters are given in Table 6.1. The covariance function of the external 

geoid error has a correlation length of about 8' for the two areas. The variance value of 

the covariance b c t i o n  for the mountainous area is about 344cm2 while that of the flat 

area is about 302cm2. 
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Figure 6.7: GPSAeveling geoid error covariance function for a flat area 
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Figure 6.8: GPS/leveling geoid error covariance function for a mountainous area 

Table 6.1 : Parameters for external geoid error covariance fhction model 

I Test / Polynomial Model Parameters I 

The large discrepancy between the internal and external geoid error variances (Figures 

6.4, 6.7 and 6.8) in the two selected areas could be partially attributed to errors that are 

not accounted for in the estimation of the external geoid error. Such erron include those 

Area 

Mountainous 
Flat 

a0 
344.35 
302.12 

a1 
-26.34 
-38.74 

a2 

0.86 
1.35 

a3 
-0.01 
-0.02 

1 

a4 

0.0001 
0.0001 



in the leveling and GPS data, as well as datum biases (Kotsakis and Sideris, 1999). As 

expected, the variance of geoid error covariance h c t i o n  for the western area is higher 

compared to the corresponding value for the eastern area. 

The reliability of the external GPSflevelling derived geoid errors depends on how 

accurate the GPS and orthometric observations are. Thus it should be use as standard to 

test the accuracy of the gravimetric geoid if the accuracy of the GPS and heights are 

know. The internal propagated geoid enon on the other hand, provides useful 

information on the relation between the gravity anomaly errors, the GM erron and the 

computed geoid undulations. The reliability of the internal errors depends on how 

accurate the source data errors are know. This type of error should be used in gravity 

field prediction with geoid undulations as input data. 



CHAPTER 7 

7.1 SUMMARY 

Gravity field data in areas with different topographic features have been analyzed to 

derive characteristics of the gravity field signal and errors for local areas. Firstly, the 

effect of truncating the spherical harmonic expansion of the GM coefficients in favour of 

using lager cap size for Stokes's integral solution is investigated in order to derive the 

appropriate combination techniques for the two data types. In addition, the effect of using 

lateral density variations for terrain correction computation and geoid estimation in the 

Mountainous Mountains is also investigated. 

Secondly, estimates of local gravity empirical covariance functions for mountainous, flat 

and mountainous areas of Canada are derived using space domain and spectral methods. 

Models for the empirical covariance functions are derived for all the areas by fitting some 

analytical function to the space domain empirical covariance values. In addition, the 

sampling density of gravity data required for a centimetre to decimetre accuracy level of 

the geoid is estimated separately for the flat and mountainous areas. 

Finally, estimates of gravity error covariance function for mountainous and flat areas are 

derived and compared. Geoid erron propagated form both gravity data and geopotential 

model coefficient errors are also estimated; the results are then compared to the external 

geoid error derived from GPSAevelling data. 



7.2 CONCLUSION 

From the analysis and results presented in this report, the following can be concluded: 

A. The covariance functions for areas in Canada with similar topographic and 

geophysical features are rather stationary, while the covariance functions for areas 

with different topography vary widely with the topography. The results of both the 

space domain and spectral method of empirical covariance determination are similar 

in areas with flat ternin. The result of the two methods is very different for areas with 

rough topography. The difference is attributed to the smoothing effect introduced by 

the gridding procedure, and radial averaging used in the spectral method, as well as 

the distance averaging used in the spatial method. The smoothing effect depends on 

the roughness of the topography and the distribution of the data points in the local 

area. 

B. The decay of the geoid spectrum in medium and high frequencies is not constant, and 

it also varies with the topographic height differences. For certain areas in Canada, the 

rate of decay is different from the decay implied by the Kaula rule (decay rate = 3) in 

medium and high frequencies. Between 180 and 3030 harmonic degree the rate of 

decay is about 3.2 while for frequencies above harmonic degree of 3030, the geoid 

spectrum decay even faster at about 4.6. 

C. The data resolution required for centirnetre to decimetre accuracy level of geoid 

estimation varies between the flat and mountainous areas. In the mountainous area, a 

1 cm geoid estimate will require grid data with I' spacing while in the flat areas, a 5' 

grid data is required to achieve the same level of accuracy. 



D. The difference between terrain corrections estimated with constant and varying 

density values is correlated with the topography of the local area. The computation of 

terrain corrections with actual density values using the prism mass model for the 

topography is required in the mountainous areas if the centimetre geoid is to be 

achieved in these areas. 

E. The best achivable accuracy of the geoid estimated by the combination of a GM with 

the Stokes's integral can be obtained if the cap size used in the Stokes integral is not 

less than 10"xlOO and the harmonic degree of expansion not less than 200 with the 

EGM96. Using larger areas and higher degrees of expansion does not neccessarily 

improve the po id  accuracy. 

F. The gravity error covariance function for both flat and mountainous areas of Canada 
3 

can be modeled with a function of the form E,, (yIZ2) = aoe-ri'Y~:2 , for w ~ , ~  in degrees. 

and so can the corresponding geoid error covariance function be modeled with the 
* * 

function E, (y:) = aoe-ani2 . In both cases, a, represents the variance of the error 

covariance function. 

G. The spectrum of the go id  error is mainly dominated by errors from the geopotential 

model, consequently, for both flat and mountainous areas, the combined geoid errors 

from GM coefficients and gravity data are quite similar. The results of the internal 

propagated and external geoid errors disagree in both the flat and the mountainous 

areas tested; estimates of the total geoid error are higher in the mountainous areas 

when compared to those of the flat areas. 



7.3 RECOMMENDATIONS AND FUTURE PLANS 

The following recommendations are proposed for further research: 

I)  The study of the effect of density anomalies on terrain corrections and indirect effects 

should be extended to cover all areas in Canada. In addition, a new geoid model 

should be computed for Canada using, e.g., a 10" xlOO cap size for Stokes integration, 

variable topographic density for rigorous modelling of the terrain correction and 

geoid indirect effect, and new denser gravity anomalies and digital topographic 

heights. The new geoid model should be compared to previous geoid models for 

Canada, as well as global models to assess the improvement in the geoid especially in 

the mountainous areas of Canada. 

2) To derive gravimetric geoid in mountainous areas with an absolute accuracy of 5 cm 

or better, both the gravity anomalies and the digital topographic heights with 1' 

resolution are require. Therefore, the present gravity data have to be improved in 

terms of data coverage, density and precision. 

3) As it has been pointed out in chapters 4 and 6 of this thesis, gravity field signal and 

error covariance functions over Canada are not constant; it vary from one area to the 

other. The covariance analysis should be extended to all areas in Canada. Further 

studies on the effect of using different signal and error covariance functions for 

gravity field prediction in areas with different topographic features should be done 

also. In addition, covariance models that would provide optimal results for gravity 

field approximation with heterogeneous data set should be derived separately for the 

flat, mountainous and marine areas. 



4) The internal geoid error derived from the propagation of both the gravity anomaly 

errors and the geopotential harmonic coefficients (EGM96), provides useful 

information on the relation between the gravity anomaly errors, the GM errors and the 

computed geoid undulations. Numerical investigation to derive internal geoid 

undulation errors for all in Canada should be done. The relation between the internal 

errors estimates and the external accuracy estimation that are obtained by comparing 

gravimetric geoid with GPSnevelling derived geoid on benchmarks should also be 

investigated for all areas in Canada. 

5) Error covariance models for the geoid indirect effect should be derived and the effect 

on the total geoid error should be evaluated especially in the mountainous areas. 

6) In crder to provide a reasonable external standard for evaluating the accuracy of 

gravimetric geoid undulation, it is necessary to investigate the quality (accuracy) of 

the GPS and levelling observations that are used in estimating the external geoid 

accuracy. This is more important in the mountainous areas, where it is believed that 

the accuracy of the orthometric heights is poorer when compared to those of the flat 

areas. 



Balmino, G., B. Moynot, M. Sarrailh, and N. Vales. 1987. Free air gravity anomalies over 

the ocean from SEASAT and GEOS-3 altimetry data. EOS Trans. AGU. Vol. 68, 

pp. 17-19. 

Barzaghi, R., A. Fermi, S. Tarantola, and F. Sand. 1993. Spectral techniques in inverse 

Stokes and overdetermined problems. Slineys in Geophysics, Vol. 14, No. 4-5. 

Bendat, J.S. and A.G. Piersol. 1986. Random data: Analysis and nreasrirenlent 

procedzires, Second edition, John Wiley and Sons, New York. 

Bendat, J.S. and A.G. Piersol. 1980. Engineering Applications of Correlation and 

Spectral Analysis. John Wi ley and Sons, New York. 

Blais J.A.R. 1982. Synthesis of Kriging Estimation Methods. Manltscripta Geoderica 

VO~. 7, pp. 325 - 352. 

Bottoni, G.P. and R. Barzaghi. 1993. Fast collocation. Bulletin G&odisique, Vol. 67. No. 

2, pp. 119-126. 

Bracewell, R.N. 1986. The Fourier transform and its applications, Second edition, 

revised. McGraw-Hill, New York. 

Esan, 0. and M. G. Sideris. 1999. On the Role of the GM, Error Propagation, and 

Optimal Combination of GM with Local Gravity Data in Precise Geoid 

Determination. Report Submitted to Geodetic Survey Canada. 

Forsberg, R. 1984. Local covariance functions and density distributions. OSU Report No. 

356, Department of Geodetic Science and Surveying, The Ohio State University. 



Forsberg, R. 1987. A new covariance model for inertial gravimetry and ,radiometry. 

Joum. of Geophys. Res., Vol. 92, No. B2, pp. 1305-13 10. 

Forsberg, R. 1993. Impact of airbome gravimetry on geoid determination - the Greenland 

example. Bul. International. Geoid Service, No 2, pp. 32-43. 

Forsberg, R. and S. Kenyon. 1995. Downward continuation of airborne gravity data. 

Proc. of IAG Symposium G4. IUGG XXI General Assembly, Boulder, Colorado, 

July 2-14. 1995. pp. 73-80. 

Haagrnans, R. E. de Min and M. van Gelderen, 1992. Evaluation of Stokes' and other 

integrals using ID-FFT and a comparison with existing methods. Paper submitted 

to Manlcscripta Geodetica. 

Hammer, S. 1983. Airborne gravity is here! Geoplzysics, Vol. 48, No. 2, pp. 2 13-223. 

Heiskanen, W. A. and H. Moritz. 1967. PItysical geodesy. W. H. Freeman and Company. 

San Francisco. 

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell Publishing Co., 1966. 

Kotsakis, C. and M. G. Sideris. 1998. Study of the gravity field spectrum in Canada in 

view of cm-Geoid Determination. Paper presented at the Second Joint Meeting of 

the Intemaional Gravity Commission and the Geoid Commission Trieste, Italy, 

Sept. 7-12, 1998. Also submitted to Journ. of Geodesy. 

Kotsakis, C. and M. G. Sideris. 1999. On the Adjustment of Combined 

GPS/Levelling/Geoid Networks. Paper presented at the N Ho fine-Marusi 

Symposium on Mathematical Geodesy Trento, Italy, Sept. 14 - 17 1998. 



Li, Y.C. 1993. Optimized spectral geoid determination. UCGE Report No. 20050, 

Department of Geomatics Engineering, The University of Calgary, Calgary, 

A1 berta. 

Li, J. and M.G. Sideris. 1995. Marine gravity and geoid determination by optimal 

combination of satellite altimetry and shipborne gravimetry data. Paper presented at 

the XXI NGG General Assembly, July 2-14, Boulder, Colorado. Also submitted to 

the Journal of Geodesy. 

Li, Y.C. and M.G. Sideris. 1994. Minimization and estimation of geoid undulation 

errors. B~cNetin G&odisiqne, Vol. 68, pp. 20 1-2 19. 

Moritz, H. 1980. Advanced Plzysical Geodesy. H. Wic hrnann verlag, Karlsruhe, 

Germany. 

Pavlis, N. K. 1997. Development and applications of geopotential models. Prepared for 

the Second international school for the determination and use of the geoid, Rio de 

Janeiro, Brazil. 

Rapp, R. H., Y. M. Wang and N. K. Pavis. 199 1. The Ohio State 1991 geopotential and 

sea surface topography harmonic coefficient models. OSU Report No. 410, 

Department of Geodetic Science and Surveying, The Ohio State University, Ohio, 

USA. 

Rapp, R. H. and N. K. Pavlis, 1990. The development and analysis of geopotential 

coefficient models to spherical harmonic degree 360. Jounz. of Geophys. Res. Vol. 

95, NO. B13, pp. 21885 - 21911. 

Schwan, K. P. 1984. Data types and their spectral properties, Proceedings of Local 

Gravity Field Approximation. Beijing, China, August 21 - September 4. 



Schwarz, K.P. 1987. Geoid profiles from an integration of GPS satellite and inertia data. 

Bollettino Di Geodesia e Scienze Afini. Anno XLVI, N. 2, pp. 1 17- 13 1. Presented 

at the International Symposium on the Definition of the Geoid, Florence, Italy, May 

26-30, 1986. 

Schwarz, K. P. and Y.C. Li. 1995. What can airborne gravimetry contribute to geoid 

determination? Proc. of LAG Symposium GJ, IUGG XXI General Assembly, 

Boulder, Colorado, July 2- 14, 1995. pp. 143- 152. 

Schwarz, K. P. and M.G. Sideris. 1985. Precise geoid heights and their use in GPS 

interferometry. GSD Report NO. 85-004. Geodetic Survey Canada. 

Schwarz, K. P., Sideris M. G. and R. Forsberg. 1989. The use of FFF techniques in 

physical geodesy. Geophys. Jolimal Inter., Vol. 100, pp. 485-5 14. 

Schwarz, K. P. and M. Wei. 1994. Some unsolved problems in airborne gravimetry. 

Paper presented at the Symposium 'Gravity and Geoid', G m ,  Austria, September 

11- 17. 

Schwarz, K. P. and M. Wei. 1992. Inertia surveying and INS/GPS integration. Lecture 

Notes, Department of Geomatics Engineering, The University of Calgary, Calgary, 

A1 berta, Canada. 

Seeber, G. 1993. Satellite Geodesy. Walter de Gruyter, Berlin, New York. 

Sideris, M.G. 1987. On the application of spectral techniques to the gravimetric problem. 

Proc. of the ?UX ZUGG General Assembly, Tome II, Vancouver, BC, August 9-22, 

pp. 428442. 



Sideris, M.G. 1995. On the use of heterogeneous noisy data in spectral gravity field 

modelling methods. Invited paper, presented at the XXDI  IUGG General Assembly. 

Color~do, July 2- 14, 1995. 

Sideris , M.G. and B.B. She, (1994): A new, high-resolution g o i d  for Canada and part of 

the U.S. by the 1D FFI' method. Bulletin Geodesiqrie Vol. 69, NQ 2, pp. 92-108. 

Sideris, M.G. and K. P. Schwarz. 1986. The use of GPS and DOPPLER heights in 

NAVD. Paper presented at the Fourth International Geodetic Symposium on 

Satellite Positioning, Austin, Texas. April 28-May2, 1986. 

Sideris, M.G. and K. P. Schwarz. 1987. Improvement of the medium and short features 

of geopotential solutions by local gravity data. Bollettino Di Grodesia e Scienze 

A p i .  Anno XLVI. N. 3, pp. 206-22 1. 

Sideris, M.G. and Y. Li. 1992. Improved geoid determination for leveling by GPS. In 

Proc. of the sixth Int. Geodetic Symposium on Satellite Positioning Vol. II, pp. 873 

-882, Columbus, Ohio, March 17- 20. 

Sjoberg, L. E. 1987. Progress in global gravity field approximation. Contributions to 

geodetic theory and methodology. XIX general meeting of the NGG. Vancouver, 

BC, Canada, August 2-22. 

Tscheming, C. C. 1975. Covariance expression for second and lower order derivatives of 

the anomalous potential. Report of The Dep. of Geodetic Science No. 225, 1975. 

Tscheming, C. C. 1984. Local approximation of the gravity potential by least-squares 

collocation. Proceedings of the international summer school on local gravity field 

approximation, Beijing, China, August 2 1 - September 4. 



Tscheming, C. C. and R. H. Rapp. 1974. Closed covariance expression for gravity 

anomalies, geoid undulations and deflections of the vertical implied by anomaly 

degree- variance models. OSU Report No. 208, Department of Geodetic Science 

and Surveying, Ohio State University. 

Veronneau M., (1996) Canadian Geoid Model GSD95 and its precision. Geodetic Simey 

Division Canada, internal report. 

Weber G. and H. G. Wenzel. 1983. Error covariance functions of sea gravity data and 

implications for geoid determination. Marine Geodesy. Vol. 7 ,  Number 1 4  

Wu, L. and M.G. Sideris. 1995. Using multiple input-single output system relationships 

in post processing of airborne gravity vector data. Proc. of MG Synrposirtm G4. 

IUGG XXI General AssembZy, Boulder, Colorado, July 2- 14, 1995. pp. 87-94. 

Zhang, C. and J. A. R Blais. 1995. Comparison of methods for marine gnvity 

determination from satellite altimetry data in the Labrador Sea. Bulletin 

Gkodisique, VoI. 69, pp 173- 180. 

Zhang, C. and J. A. R Blais. 1993. Recovery of gravity distubances from satellite 

altimetry by FFT techniques: a synthetic study. Manuscripts Geodaetica. Vol. 18, pp. 

158-170. 

Zhang, C. and M. G. Sideris. 1995. Gravity disturbances from GEOSAT data and 

forward geopotential models in the Labrador Sea. LAG Symposia 113, convened and 

editted by Sunkel, H. and I. Marson, Springer, pp. 3 17-328. 




