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Abstract 

The advent of a number of computers connected in a network has brought to the 

foreground some old problems. Among these is the problem of file allocation, or file 

distribution, among the nodes of the network. Two possibilities exist when deciding 

when and how to allocate files. 

The first is that of fixed allocation. In this situation files are allocated once to a 

particular node and remain there from then on. The second possibility is dynamic 

allocation. Here files are initially assign to nodes. From this point on however files 

may transfer to other nodes depending upon a number of factors. 

The research is designed to explore the possibilities of dynamic file allocation 

through the use of a heuristic algorithm. In particular the areas of frequency of 

access, workload, and user response time will be explored. 

A prototype is developed in order to test the validity of the results when compared 

to theoretical results. 
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Chapter 1 

Introduction 

1.1 Centralized System Fundamentals 

Databases and DBMS (Database Management Systems) were born out of necessity, 

for file environments suffered from a number of problems. Among these were the 

problems of data redundancy and consistency of data. An application program 

that created and even maintained its own files of data and its own particular data 

structures is quite usable as long as it is the only one accessing this data. The 

major problem with this approach is the fact that any other application program 

using this data must take into account this particular file and data structure. If 

another application program is created that uses files of essentially equivalent data, 

and possibly structures it differently from the first example, a problem has now been 

created in the area of data redundancy and possibly consistency. 

Data redundancy may be described as the same data being stored in a number 

of different locations. At the very least this is an inefficient use of memory, but 

more often other considerations such as data updates are also involved. If a data 

update is required, it is now quite possible for one occurrence of the data to have 

a new value and yet another to not have been updated as yet. This is usually 

referred to as the inconsistency problem. A further problem that often arises is that 

of an application program needing data from files which have a different structure 

as well as containing data of different types. This tends to make access to data 
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much more difficult because applications programs must now take these differences 

into account. DBMS were designed to eliminate some of these problems as well as 

provide the Database Administrator with centralized control of its operations [14]. In 

order for a DBMS to solve some of these problems it is required that an applications 

program's call for data be intercepted by the DBMS and it, in turn, do the actual 

data accessing. 

This abstraction brings forward the concept of different views of the data. In a 

centralized database, data independence is achieved through the use of the notions 

of a conceptual schema, an external schema and a logical schema. The external view 

may be defined as the view of the data from that of an individual program or user. 

The internal view may be said to be a low level representation (although still one 

level removed from the physical level) consisting of actual records complete with 

how values are represented, indexes and pointers [14]. The conceptual view is an 

intermediate view between these two. It consists of the entire data base viewed as 

it really is but without its pointers and indexes and values required in the internal 

view. 

One of the real aims of a DBMS is to achieve data independence. This will 

then allow application programs to be unaffected by changes to either the data 

structures or the database. This data independence can then be used to allow a 

single occurrence of a data item to meet the needs of multiple different applications 

programs and so avoid duplication of data and related update and inconsistency 

problems. 

Closely tied to the idea of data independence through the use of a database is the 

idea of what structure the data should actually take. Initially there were generally 
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three types: Hierarchial such as IMS by IBM; Network such as IDMS by Cullinet; 

and Inverted like ADABAS by Software AG. In more recent years almost all new 

database systems are of the Relational type such as INGRES and DB2. Although 

there is little doubt that the relational approach is the present trend [14] it still has 

difficulty competing in terms of speed with older database packages such as IMS. 

IMS has a transaction speed of approximately 100 - 1000 transactions per second 

due to relatively simple updates and retrievals. In comparison IBM's DB2 is much 

slower due to software overhead; even so DB2 is easier to program due to the high 

level DBML (Database Management Language) and transaction speed should soon 

improve [7]. 

Of prime importance when designing any database is to take into account the 

use to which it will be put. Here file size, file activity ratios and volatility must be 

considered. A file activity ratio (FAR) may be defined as: 

. FAR = number of records accessed/number of records in file 

A FAR value approaching 1 for any job indicates that almost all records were 

accessed, so READS are very important. A FAR number approaching 0 means 

that few records were accessed and so random access becomes most important. File 

volatility ratio (FVR) may be measured as follows: 

FVR = (number of additions + number of deletions) / number of records in 

original file. 

If this FVR value approaches 1 then WRITE and DELETE should be made as 

fast as possible, if close to 0 then READS are again most important [25]. An example 
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of a file with low volatility and activity would be a dictionary or thesaurus, here few 

changes or additions are made so random access reads are of prime importance. This 

is in contrast to a bank chequeing account where there may be numerous updates 

and so WRITES should. be given a higher priority than in the previous example: 

Most users care little about underlying concepts or mechanisms and are primarily 

concerned with product or program usability. In this light, response and performance 

become the prime criteria. Performance depends directly on the number of I/O 

operations that must be done to do a particular job [25]. 

Traditional databases tend to be I/O bound in that they spend a relatively large 

amount of time waiting for I/O operations to be performed while spending relatively 

• little time on actual computations. There has been general agreement that I/O costs 

are to a large extent a limiting factor on reducing user response time. The advent of 

faster disk drives has reduced the access time somewhat but it still remains, by far, 

the single most important factor in any sort of database retrieval. Due to the laws 

of elementary physics, the speed at which mechanical parts can be moved or caused 

to change direction is limited and reductions in access times, such as those that have 

been seen in primary memory, are unrealistic. 

In an effort to reduce I/O times for file access, a number of different techniques 

have been developed in the way files are actually stored. These range from se-

quential files, random access files and multi-keyed files. Each of these has its own 

advantages and tradeoffs but have been developed and modified to such a point that 

major reductions in I/O times are unlikely to be achieved by farther manipulation 

or modification in this area. 

The use of multiple secondary storage devices with large centralized databases 
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signaled a further complication. Now not only must the way files are stored be 

looked at, but also which drive unit it will be stored' on must be considered. This 

was essentially the start of what is now referred to as the file allocation problem 

(FAP). 

Further complicating an already increasingly difficult problem is the fact that 

files are not always used in the same way by either the same or different users. 

An example of this is in the use of different data files with the same applications 

program. 

1.2 Distributed System Objectives 

The time when a large centralized database was the only possible solution to the 

storage and processing problems of a large organization has passed. The advent 

of the mini and micro computer, as well as related network hardware and software' 

has been shown by both the banking system and the airline industry to be a viable 

alternative to the centralized concept, while at the same time still allowing the user 

to view the system as if it were a single centralized entity. Keeping this unified view 

is one of the major objectives of a distributed system. 

This is not to say however that all the problems of either centralized or distributed 

systems have been overcome or should be minimized. On the contrary, what appears 

to have happened is that many of the problems related to centralized systems have 

been carried over to distributed systems. Along with this is the fact that distributed 

systems have created some of their own unique problems. One of the major differ-

ences is that while in centralized systems I/O was to be minimized, in a distributed 
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system one important aim is to minimize the total amount of data transmitted and 

messages sent within the system. Yet even with the rise of these new problems, as 

well as some remaining from the older centralized systems, there are few who will 

disagree with the fact that distributed systems have much to offer. 

Some of the global objectives of distributed systems could be summarized as 

follows: 

1. connecting existing databases 

2. reducing communications costs 

3. local autonomy 

4. availability 

5. increased efficiency 

6. maintain a centralized view 

Some of the more important aspects of distributed system will be discussed in 

the following sections. 

1.3 Distributed Systems Fundamentals 

A number of distributed systems were introduced in the late 70's and early 80's. 

These ranged from the first system called SDD-1 from Computer Corporation of 

America, to System R/Star from IBM and then Distributed Ingres from Relational 

Technology. As with almost any new system or product there were the inevitable 
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areas in each of these that have been found lacking, due to either poor or incor-

rect decisions on the part of the designers, or due to the fact that there are some 

very difficult problems involved that have as yet not been solved satisfactorily. Dis-

tributed Systems are naturally more complex than centralized ones. An example of 

the added complexity is the fact that while in a Centralized system only an Exter-

nal, Conceptual and Internal view are required to achieve data independence, in a 

distributed database system the concept of data transparency must be added. Data 

transparency means that the applications program should not need to know at which 

site the required data is maintained. If data transparency is not achieved in a dis-

tributed database then applications programs must take into account possibilities 

which soon become almost unmanageable. For example if two files are requested, 

are they both on this site, are they on different sites and so on. 

In centralized databases data redundancy or replication is minimized in an effort 

to ensure data consistency. In a distributed database system it can be shown that a 

certain degree of data replication can be a positive factor. Although it is true that 

the same negatives, such as the update problem and data consistency, still exist, as 

they did in the centralized system, there are now certainly also some positive aspects. 

For example, by having data at the needed site it can quickly and easily be accessed. 

With data replication the failure of one site and its database still allows other sites 

to use this replicated data in processing. 

In tandem with the availability question is the concept of increased site autonomy. 

With both data and processing power available locally, sites can more easily answer 

questions of concern to them, as well as reduce demand on centralized facilities and 

so increase overall efficiency. 
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1.3.1 Topologies 

The most common type of computer networks are, Star, Ring, Completely Connected 

and Bus as shown in figure 1.1. 

Ring 

Bus 

Figure 1.1: System Topologies 

Each of these has its advantages and drawbacks, often inherent in the design, but 

also due to the choice of application. One of the more obvious drawbacks of the Star 

design is that if the central site fails, no communication can take place between any 

other sites. This design however does allow a high degree of control over both data 

and communication flows. Some Ring networks have a facility to bypass a failed site 
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and in this way allow the network to continue to function without that site. The 

failure of subsequent sites may be allowed in some Ring networks. It can be seen 

from this that the Ring design has an advantage over the Star design in that if any 

site fails the other sites may still communicate with each other. The Completely 

Connected design has the advantage of allowing any site directly to communicate 

with any other site. This tends to be feasible for only a small number of sites for 

as the number of sites grows, the number of connections grows even quicker. The 

Bus design is certainly popular especially for a LAN (Local Area Network) but is 

unfeasible for Long Haul Networks. 

1.3.2 Distributed Database Manager 

In a centralized system the DBMS is the software package that controls and regu-

lates all access to the database. In a distributed database system this software is 

also required, except now each site has its own DBMS which could now be more 

appropriately called a site or local DBMS. Due to the fact that each site is but one 

node of the network and must be able to communicate with other sites, some extra 

components are required to complement and supplement each DBMS. A DDB (Dis-

tributed Database) component must be added, at each site, so as to enable intersite 

communication and so allow each site to function as part of the network. 

A more complete set of functions provided by a DDB manager could be described 

in the following ways: 

1. To provide location transparency for the data used by the applications program. 

A local request for data may or may not require a remote data request, either 

way it should be immaterial to the applications program. 
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2. Remote database access to another site. 

3. Code to complement the local DBMS in the area's of concurrency, monitoring, 

statistics and recovery. 

1.4 Distributed System Advantages 

In most large organizations there is the head office concept, but this is complemented 

with the concept of districts of control and branch plants that are to a large extent 

autonomous. With a large centralized database an attempt was made to have this 

often physically distributed organization of central office and branch plants fit into 

a centralized mold. It would seem that the idea of a network and a distributed 

database system would more closely fit and meet the needs of a distributed company 

organization. 

1.4.1 Availability and Reliability 

The reliability of a distributed system can be dramatically improved, as compared 

to that of a centralized system, for in a centralized system if the main site fails all 

processing stops. In the distributed system, the effects of the failure of one site 

are more likely to range from no effect at all, to a partial degrading of the system 

capacity, but even this degradation must be preferred to a total failure. Availability 

of data may be greatly enhanced in a distributed system in that if data is replicated 

on another site, the failure of one site will still allow other sites to have access to 

this replicated data. 
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1.4.2 Site Autonomy 

A branch plant or site can be given a degree of responsibility for its own database 

administration ranging from very little to complete. Site autonomy allows the local 

organization a much greater degree of control over data, especially over data that 

only they need, as well as making it much less dependent on the database located at 

some other, possibly far away, location. 

1.4.3 Increased Efficiency 

This autonomy can also help achieve much higher efficiency. Imagine for instance 

the example of a main office in Calgary and a branch plant 2000 kilometers away 

with no local autonomy. All processing would have to be sent to Calgary, processed 

and the results sent back. It is obvious that this incurs extra costs in the area of 

communication and time delays. All other factors remaining equal, local processing 

would at least eliminate the communication and time costs. 

Change is a part of any organization, as few remain static for long. Distributed 

databases can more easily allow for change than can centralized databases. As the 

network grows new sites may be added with a minimum of disruption. The added 

benefits of allowing data replication and increased processing power will likely result 

in a network that is speedier and more resistant to failures. 

1.5 Distributed System Difficulties 

There is little doubt that distributed systems do solve some of the problems found 

in centralized systems, but many of the same problems still exist together with some 
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new ones, as well as some new versions of old ones. In the area of query processing 

it is now possible that part of the data required, data that resides on another site, 

will be inaccessible due to the failure of that particular site. This problem may be 

partially solved by replication of data but this then introduces the problem of update 

control and data, consistency. 

The problem of ensuring consistency of the data after an update spans a very 

wide spectrum. At the one end, the system that does no updates at all. In a 

situation where only READS occur there is no update or consistency problem. This 

situation is very rare however and a more realistic situation would be one of at least 

a number of updates, even for a READ intensive situation such as an name and 

address database. In a centralized database with no replication a lock may be put 

on a file or record that needs to be changed, changes made, and the lock removed so 

that subsequent reads are again allowed and no inconsistency occurs. In a distributed 

database with file replication at more than one site, any change in data at one site 

should also occur at the other site or else the inconsistency problem comes into play. 

This simultaneous updating at more than one site may be quite difficult in real time, 

due to factors such as, another and different, change occurring to the data at the 

other site simultaneous with the first, or possibly the other site has even failed at 

this time. It can be seen that this is not a trivial problem, it remains one in which 

there are still many unanswered questions. 

1.5.1 Communications 

One of the most apparent and obvious problems is that of communications. This 

added factor of communications adds complexity to the overall system. Compound-
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ing this is the problem of failure. How does one site determine whether or not another 

site has failed, or is it a communication line failure? This point may have major im-

plications since it is now possible for independent sites to continue updating data of 

which another site is unaware. 

Long Haul and Local Area Networks 

Communication systems can really be subdivided into two areas, that of Long Haul 

Networks, such as Arpanet and Datapac, and Local Area Networks such as Ethernet. 

It can be argued that failures may occur equally in both Long Haul and Local Area 

Networks (LAN), but there is little doubt that Long Haul Networks data transfer, 

with data rates in the area of 25,000 bytes per second, is much slower than the 

average LAN. If a lot of data must be transmitted between sites the time taken for 

communications becomes an important factor for not only does the file transfer take 

place but it may now become unavailable to any other site. 

Message Passing and RPC's 

Not only does the actual data that is sent to a site need to be taken into account 

but also the type of message passing and RPC (Remote Procedure Call) used. A 

number of systems exist which require messages between machines in the form of 

acknowledgement for send or receive. It has been found that to send a message and 

receive an acknowledgement may cost in the neighborhood of 5000 to 10000 machine 

instructions of operating system and communication system control [15]. 
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Versions and Temporaries 

A scheme implemented by some systems to reduce data transfer between sites is that 

of Versions and Temporaries. Applications exist which do not need the most up to 

date information. Quite possibly the information required, although out of date is 

still sufficient for this particular need. This is done by applying a version number 

to the data and the process and then comparing this to the application's version 

number. 

Temporaries are often created at a site that does not have a copy of the data but 

requires it more then once. If this site often needs the same data for a particular 

application a temporary copy of the data maybe created and stored at this site for 

a period of time. 

1.5.2 File Allocation Problem 

Placement of Files 

In centralized systems the need to minimize I/O operations was often given a high 

priority when making decisions on which device a file would be stored. This file allo-

cation was static in nature with the DBA making decisions based on device speeds, 

channel capacities and access frequencies. In a centralized system changes in file 

usage can affect system performance dramatically but as the following example will 

show, in a distributed system there are even more ways in which system performance 

may be affected. Consider the case where file usage remains the same and that the 

site that normally generates a certain query also contains the required data file to 

answer this query but that the query now originates from a different site. If this new 

querying site has none of the data required then there is little doubt that there are 
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extra costs involved in generating results to this query. In a distributed database 

system the site of a query can have a major impact on system performance quite 

unlike a centralized system where the choice of which terminal is used has little effect 

on performance. It is for, this and other reasons that file allocation and specifically 

dynamic file allocation (in which files can be automatically moved to the sites where 

they are most in demand) can be of such importance in a distributed database sys-

tem. When attempting to allocate files what criteria should be followed? Should 

the most current usage be used as an indicator of future usage or should prior usage 

be used in determining file allocation or re-allocation? This area will be looked into 

extensively in Chapter 4. 

Replication of Files 

Notwithstanding the additional costs of time, complexity and processing power, the 

potential gains to be made in distributed systems far outweigh these costs. 

While in a centralized system the replication of files was to be avoided if at all 

possible, this is not the case in distributed systems. As was shown previously there 

are certain advantages to replicated files, such as increased availability, efficiency and 

autonomy. Some very difficult problems arise because of this. If some replication 

is good, is total replication best, or partial replication? The following example will 

show the point. If a network has 10 sites and only 10 files exist and each file may 

only exist on one site, the number of possibilities of where to put a particular file are 

1010. If full replication is allowed at each site the possibilities increase to 2100, and 

this is only a very small example, quite atypical of a large commercial database. 
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Primary and Secondary Copies 

When file redundancy is introduced it is self evident that introducing a second copy 

has more benefit than the introduction of a third, fourth or subsequent copies. As 

with many applications, there is decreasing benefit or return as more is introduced. 

The difficulty with this problem is to determine at what level of replication the 

benefits still outweigh the costs incurred. One answer to this has been to allow only 

2 instances of a file to exist. One will be designated a Primary copy and the other 

the Secondary copy. With this scheme, reads are allowed from both copies, but when 

an update is to occur the write lock is not released on the primary copy until the 

secondary copy has also been updated, thus giving consistency. Of real benefit is 

the possibility of continued processing, due to the availability of a second copy, if a 

failure occurs. If a site failure occurs at the primary copy site the secondary site can 

now become the primary copy and take over. When the failed site again becomes 

active it may be updated from the new primary copy and resume being the primary 

or it may continue and be designated the secondary copy. This is not without its 

pitfalls however, for how does a site determine that another site has failed? As was 

pointed out earlier, is it really a site failure or is it a failure in the communications 

system. 

1.5.3 System Catalog 

Unlike the centralized systems catalog, the distributed systems catalog must be ex-

tended to include information about the system itself eg. at which site a particular 

file is stored. With the system's catalog existing as really just another file, the ques-

tion arises, should it be replicated as well? Not only does the replication question 
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arise but also the question of partitioning. Should one site have a complete sys-

tems catalog or should each site have that part of the catalog that applies only for 

data stored at that site? With query optimization being an integral part of most 

databases a systems catalog now often contains values relating to how many rows 

and columns are in each table. A number of possibilities exist here and as will be 

shown latter, different systems have used different approaches. The real options are 

these: 

1. Completely Centralized: the catalog is stored at only one site. 

2. Fully Replicated: the catalog is stored at every site. 

3. Completely Partitioned: each site has a catalog only for its own data. 

4. A combination of the three above. 

In analyzing these four approaches it would seem that a Completely Centralized 

approach goes counter to the underlying theory of a distributed system in that the 

whole system depends on one site. If that one site fails the whole system fails, not 

much different than the original centralized DBMS approach. 

The second approach of Fully Replicated has much merit in that each site can 

easily determine where data is as well as allowing it a high degree of autonomy. 

It does suffer from at least one serious drawback however, as with any replicated 

approach the higher the degree of replication the more problematic becomes the 

area of updates. If the system's catalog contains values stating how many rows and 

columns are in each table an update must be distributed to all sites each time a 

change occurs. This can be very resource intensive as well as problematic if a site 
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fails either before or during an update. If the system is highly read intensive then 

Fully Replicated may be a proper alternative if there also exists a need for high 

availability. 

The Completely Partitioned approach appears reasonable from the standpoint 

that the complete system catalog can be derived from the individual catalogs due 

to the fact that each site has a catalog for the data at that site. Any updates need 

be done only to one particular site so the update problem is reduced. A problem 

arises however in the area of remote data requests. In the event of a remote data 

call, the originating site must do a broadcast to all other sites to determine where 

the required data is situated. In a LAN this may be feasible although even here time 

delays again become a factor. In a Long Haul Network it would appear to be too 

expensive to really be practical, due to the communications costs for the broadcast, 

as well as acknowledgements and possible data transfers. 

There has as yet not been one generally accepted answer, as for example System 

R/Star and Distributed Ingres both use different methods which will be described 

in a later section. 

1.6 Overview 

The increased use and growing importance of distributed systems and distributed 

data base systems has led to a new awareness of the importance of file allocation 

within distributed systems. In this thesis the area of dynamic file allocation is 

explored and data presented in support of dynamic file allocation as both possible 

and advantageous to system performance. Chapter 2 presents earlier work on the file 
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allocation problem. This work is divided into two distinct groups, proposed solutions 

that attempt to minimize systems costs such as storage and communications and 

solutions which try to maximize system performance as measured by user response 

time and system throughput. Chapter 3 describes It/Star and Ingres and their 

implementation of data base systems. These two were chosen because their methods 

for file allocation are quite distinct with R/Star using its own data base system and 

Ingres developers deciding to use what was already available in UNIX. In Chapter 4 

a heuristic algorithm for dynamic file allocation is developed and tested. Evidence 

is presented which supports the premise that significant benefit may be obtained by 

implementing dynamic re-allocation. 



Chapter 2 

File Allocation Solutions 

With the advent of, computer networks which do not just share a common database 

but actually distribute the database among the nodes of the network, a number of 

benefits have been obtained, at the cost of creating some very difficult problems. The 

increase in node autonomy, as well as file availability and parallel processing among 

nodes, has certainly increased overall productivity. Yet only part of the potential 

has been realized. With better allocation of files, dramatic reductions in I/O times 

are possible. 

There appears little doubt that optimal file assignment can enhance system per-

formance tremendously. The FAP (File Allocation Problem) has been studied ex-

tensively [41] and improvements have been made, but as yet no one has put forth an 

optimal solution. 

Many proposed solutions or improvements were designed for centralized systems 

and may not be completely appropriate for distributed systems, for what may work 

well in a centralized system may not work as well in a distributed system or may 

even be ctunter productive. 

It is important to decide what sort of system is being discussed, that of a single 

dedicated machine, a file server, or that of a distributed database among a number 

of sites. In a centralized system it has long been realized that I/O was an overrid-

ing factor and to minimize disk accesses was often the ultimate goal. This is not 

necessarily the case in DDB systems for here communications costs are often more 

20 
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important and methods to reduce remote data calls or minimize acknowledge mes-

sages must be looked at first. Compounding this is the fact, that unlike a centralized 

system were data redundancy is to be minimized, in a DDB system, replication of 

files among sites is often desirable and thus the situation is quite different. 

The proper allocation of files within a computer system is of prime importance 

if the nodes of the system are to be equally used or at least not have one underused 

while another suffers delays caused by overuse. If the solution were easy it would 

already have been solved, but it has not. It has been shown that the file allocation 

problem in a DDB is. NP-Complete [19] [23]. So for all except a small number of files, 

in which case an exhaustive search may be done, algorithms for solving the problem 

have an exponential growth function and it soon becomes so time consuming and 

complex as to become unsolvable in a reasonable time. 

The term "proper allocation" is also too general in that it could mean to minimize 

cost in the area of file reads and writes, remote procedure call (RPC) costs or it 

could be viewed in light of maximum performance where the performance goal is to 

minimize response time. One of the major problems lies in the fact that in an attempt 

to optimize one function, for instance cost, another function such as response time 

performance is likely to degrade and vice versa. 

It would appear that one principle of prime importance in attempting to establish 

a file allocation for a distributed system is putting data that is usually referenced 

together at a common site. 

Notwithstanding these facts, some basis must be established as a starting point 

for file allocation. Some file assignment strategies will be presented ranging from 

considering each file assignment separately and attempting to minimize costs, to 
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assigning multiple files and attempting to maximize performance through the use of 

heuristics. 

The areas of system reliability and queuing delays will not be looked at in the 

first 2 solutions presented but will be included in the last 2 considered. 

The placement of a single file within a system will be looked at first. Two 

simplifying assumptions will be made as a starting point. The first is that update 

communications and query communications have equal cost. The second assumption 

is that once a file has been assigned a location it is never moved to another site. Both 

of these assumptions will be relaxed in later models. 

2.1 Single File Assignment 

In a multiple user system with only one file on the complete system it can be seen 

that, for the situation of non replicated files, the cost to each user for a simple query is 

the same: a remote access, which breaks into time delay costs and communications 

costs. Improvement can take two roads, one for a read only situation, the other 

where updates are involved. In the read only situation the optimal situation would 

be complete replication of the file at each site, in this way eliminating time and 

communications costs. The more realistic situation, one which incorporates updates, 

must take into account the cost of updates in the areas of communications and 

consistency. A solution has been developed by Wah [41] which takes into account 

the costs of updates as well as factors such as frequency of use. File allocation is 

started by taking a single file and determining from queries and updates to this file 

which sites should be assigned this file. The overall objective is to minimize systems 
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costs while allowing all accesses. Once the initial file is assigned to the appropriate 

site or sites, other files are now allowed on the system and each allocated to the site 

or sites where the benefits outweigh costs. In this way a complete distributed file 

system may be built as shown by Ramamoorthy [35]. 

Shortcomings in this solution are not only in the areas of the original assumptions, 

in particular that of disregarding queuing delays, but also in the area of static file 

assignment, once assigned a file stays at that site. A further limitation is that no 

consideration is given to the interaction between files. 

2.2 Program/Data Assignment 

A solution developed by Morgan [33] specifically takes into account the interdepen-

dence of a program file to a data file. In this solution it is assumed that program 

files may be restricted to execute only on particular sites and that assigning a data 

file, say Yl, is independent from the assignment of data files Y2 ... Yn. 

It can be seen in the following example that different allocations of a program 

file and a data file can lead to different cost results. A query from site A may need 

to be evaluated by a program file residing at site B. This program in turn may 

need to access a data file residing at site C or possibly even site A. It can easily 

be seen that when this is compared to the situation where a query, program file 

and data file all occur on a single site there is a difference in costs involved in, at 

the very least, communications. A very extensive cost function, taking numerous 

pages of text to explain and incorporating program query costs, program updating 

costs, data file update costs as well as program and data file storage costs has been 
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developed by Morgan [33]. With the possible exception of the inclusion of file storage 

costs, the price of file storage has dropped dramatically since this work was done 

[41] the cost function presented still appears valid. This cost function does allow 

optimal file allocation and the inclusion of program/data file dependence in the 

allocation algorithm must be considered an advance over the first solution presented. 

However, the lack of attention to queuing delays in this solution may be considered a 

shortcoming due to the fact that data files are allocated independently of each other 

regardless of which program uses them. 

2.3 Heuristics to Minimize Communications 

While the previous solutions to the FAP have attempted to minimize costs in the 

areas of communications, both query and update, as well as storage costs, the fol-

lowing solutions attempt to maximize performance by minimizing one or more of 

the following: access time, execution time, data transfer, queuing delays, and user 

response time. 

A solution developed by Mahmoud [30] which concentrates on replicating files 

is described below. The solution objective is to minimize communications costs 

while taking into account network system delays. Two of the more major ideas in 

Mahmoud's approach are, (i) only feasible possibilities will be explored and (ii) the 

heuristic solution found to have the lowest cost is assumed to be close to the global 

optimal solution. 

The proposed method has two components, a start routine and an optimising 

routine. The start routine finds possible initial file allocations, subject to the system 
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delay and availability constraints. With a number of possible starting solutions now 

created, the optimising routine is then used. Each initial solution is presented to the 

optimising routine which in turn tries to improve the cost by adding or removing one 

copy of the file. If a solution is found that has a lower cost than the starting solution, 

this new solution now becomes the new starting point. This process repeats itself 

for all feasible solutions until no further cost reductions are possible by movement 

of a file. By comparing the final cost relating to each of the starting solutions the 

smallest cost is assumed to be one closest to the optimal solution. Examples have 

been tested that support the conclusion but differences of at least 10 percent between 

the best heuristic solution and an optimal solution have also been found. 

This heuristic method does appear to allow a reasonable solution to large alloca-

tion problems, but does have some shortcomings. No consideration has been given to 

program file and data file relationships and it also ignores system storage constraints. 

If no storage constraints exist and few updates occur, all sites could be assigned all 

files and in this way minimize costs. 

2.4 Heuristics to Minimize Access Time 

A solution that attempts to minimize average access time has been developed by 

Ramamoorthy [34]. An optimal file assignment is achieved but a number of assump-

tions are used that are quite possibly too restrictive. Among these are: file activity 

is known beforehand, only one site makes file requests, query and update costs to 

a particular file by one user are always identical. Even though this solution may 

have overly restrictive assumptions, it does bring into play the fact that a memory 
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hierarchy exists and is very important in the FAP. 

This initial restrictive solution has been expanded upon by Chen [12] to a more 

complete solution. A more complete cost function is presented in an effort to min-

imize the total cost of the system for any sort of network topology. The costs 

considered are actual computer equipment cost, software costs, storage costs of both 

database and programs, communication links and transaction processing costs. The 

idea of incorporating a comprehensive cost function to include both initial design 

costs as well as actual production or operating costs is certainly what is required. 

The solution does however, overlook an important aspect of most databases. It is 

stated that the solution "avoids some of the disadvantages of heuristic and decompo-

sition algorithms". This is true but only with restrictive assumptions and a minimal 

set of sites and databases. The problem has already been shown to be intractable 

and so the use of heuristics can not be avoided if a solution is to be found in a 

reasonable time for a large number of sites and a large number of files. 

With the problem of file allocation being NP-Complete and an exhaustive search 

mechanism being unfeasible it would appear that some sort of heuristic solution must 

be employed to attempt to optimize or at least tend toward an optimal solution. 



Chapter 3 

Implemented Solutions 

An outline will be presented for both the logical and physical architectural require-

ments of a DDB system. Two systems will be looked at to see how specific problems 

were solved as well as areas where improvements might be made. 

3.1 System R/Star 

As with other distributed systems, R/Star is really centralized database technology 

that has been improved upon in order to make a distributed version. The foundations 

for Ft/Star were laid in 1976 with a system called "System R". System R was one 

of the first relational database management systems and was the first to implement 

the relational query language SQL, called SEQUEL at the time. It is this centralized 

systemthat is used in today's DB2 and SQL/DS. 

The R/Star system was designed to allow sharing of data among separate data 

bases on separate machines. Three design principles which guided the project were 

[4] [13] [11]: 

1. Site Autonomy. 

2. A single site view. (location transparency) 

3. Support of Replicated and Partitioned tables. 
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Site autonomy requires that a site must be able to fully control its own data as 

well as being able to control access of other sites to its data. This should occur even 

in the event of communications failure. A single site view is required so that from 

the users point of view the system appears to be the same as a centralized version 

eg. System R. The final major objective was that of replicated and partitioned 

tables. This objective is closely linked to good system performance. Fragmentation 

and Replication are not implemented on current versions but views can simulate 

fragmentation. 

3.1.1 System R/Star Architecture 

The R/Star system consists of three major components [13]: 

1. A Transaction Manager. (TM) 

2. A Data Communication unit. 

3. A Database Management system. 

The Database Management system in turn may be looked as as consisting of two 

major components: 

1. A storage system which is concerned with the actual storage and retrieval of 

data. 

2. A database language processor which translates programs written in SQL into 

operations provided by the storage system [11]. 

These interaction of these components may be seen in figure 3.1. 
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Figure 3.1: R/Star component interaction 

Transaction Manager 

R/Star may be accessed through the Relational Data System (RDS) in two ways. 

SQL may be used interactively or SQL may be embedded within other programming 

languages. A transaction may be defined as one or more SQL statements enveloped 

by a start-trans and end-trans statement. The Transaction Manager (TM) at the 

invoking site assigns a unique identifier to the transaction consisting of a unique 

local identifier combined with a site identifier. A database application program 

can only get access to the database through the R/Star system and in particular, 

through the TM. The site at which the transaction is invoked is defined as the Master 

site. The master site has the responsibility of determining the global optimization 

of the transaction. In the R/Star system it was decided early on that compilation 

of transactions or queries was desirb1e from a performance standpoint, since the 

advantages of compiled code outweighed the cost of doing the compilation. It is 

during this compilation process that the master site determines the actual execution 
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plan. The database objects referenced in the query are resolved by systems catalog 

references, user authorization is verified and an access plan derived. It is up to the 

master site to decide which parts of the global access plan will be distributed to 

other sites called apprentice sites. The master site now proceeds to compile that 

part of the access plan that pertains to its site, while the apprentice sites repeat 

the planning process at their own sites until complete compilation is achieved. In 

the event of a similar transaction in the future it can quickly be resolved, since all 

objects and access paths have already been determined and compiled code already 

exists, there is no need to repeat these operations again. The compiled code residing 

at .a site is called an access module. If upon a subsequent query it is discovered that 

some object or dependency has been changed the entire module is destroyed and a 

new one created incorporating the new values. This occurs for this one site only, and 

not for all sites since their access modules are still up to date, thus in essence, only 

a partial recompilation need take place. 

Systems catalogs are storedin the system as ordinary tables. There are two types 

of names allowed with R/Star, a print-name and a system-wide-name. A print-name 

is a name normally used by a user to refer to an object. The system-wide-name is a 

name used to give every object a unique identifier. It consists of a concatenation of 

four values in the following design: 

. <CREATOR - NAME > © < CREATOR— SITED> . <OBJECT - 

NAME> © <OBJECT - BIRTH - SITE> 

<CREATOR - NAME> is a user name and defaults to the current user but 

is unique for that site. <CREATOR - SITE> and < OBJECT - BIRTH - 
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SITE > are unique system wide names whose uniqueness is guaranteed at system 

installation time, these default to the current site. An < OBJECT - NAME> or 

simple print-name is resolved to a full system wide name using synonym tables and 

name completion defaults [13]. 

Each site maintains catalog entries for each object that was created there. As 

well, a table is maintained for all objects for which this is the current site; this 

is required since objects may move between sites. Regardless of where an object 

resides, the object's birth-site table contains enough information to allow full data 

retrieval from another storage site. If a storage site of an object is different than the 

birth site, entries in the birth site table show where the storage site is. In this way 

at most two accesses are ever required to retrieve any object. 

Data Communication Unit 

Communications between R/Star sites is provided by IBM's Customer Information 

Control System (CICS) designed to handle I/O and communications. It is the Inter 

System Communications ('ISC) component of the CICS that does the actual com-

munications. Both the applications program and R./Star run within the CICS, but 

it is the R/Star system at different sites that communicate, with all queries being 

processed by an R/Star system. 

When an initiating site makes a request at another site for data, this second site 

starts up a process to handle this request. This child process remains linked with 

the parent process until the request is completed. Identification and authorization is 

only done once, at process creation time, once completed, a session of communication 

lasts until one of a number of terminating conditions. Upon successful completion of 
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the request the process sends the data to the requester and the process terminates. 

In the event of communication failure the use of primitives such as acknowledge or 

timeouts will notify the child process that a problem has occurred and to terminate. 

Database Management System 

The actual storage and retrieval of data is done using a storage system known as 

RSS*, which, in turn, is based oh the Database Management subsystem known as 

RSS, an acronym for Relational Storage System developed for and used with System 

R. In System R data is stored in a logical address space called a segment. All the 

tuples of a relation must be assigned within one segment as set out in the Relational 

Database System (RDS) and as set out by the user during initialization of the system. 

Different types of segments exist however, each with its own set of functions. It is 

the function of the RSS to map these logical segments onto the physical disk space 

available. A physical page size is determined at system design time and in this way, 

each segment depending on its size, consists of a number of pages. 

Bit maps exist that are directly associated with physical page areas on disk. By 

setting the bit map, areas can be allocated to segments of any size and created or 

destroyed dynamically. It is the allocation of disk space through these bit maps that 

allows clustering of related data physically on disk. 

When a relation is created, each tuple within that relation is stored with a prefix. 

This prefix consists of a tuple identifier (TID), the number of fields required for the 

data, and the number of fields required for pointers. It is at creation time that each 

tuple within the relation is assigned a TID by the RSS. It is this TID that is used by 

the RSS when referencing a tuple. These TID's are also used in linked lists during 
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requests such as "next" and "previous". The TID itself is actually a combination 

of a page number within the segment as well as the byte offset from the bottom of 

the page. The byte offset refers to a fixed location reserved at the bottom of each 

page which contains the actual byte location of the tuple on the page. By allowing 

more than one relation to occupy a single data segment page, tuples from another 

relation can be stored on the same page if required. This clustering of tuples which 

have some matching data fields can lead to dramatic improvements in access times 

due to reduced page accesses. It is the Relational Data Interface that supplies the 

RSS with clustering hints. These hints are in the form of possible TID's which are 

to be used by the RSS if possible. If the tuple in question cannot be put on the page 

requested, it is then assigned to a nearby page. 

In order to facilitate efficient access and logical ordering of tuples of one or more 

relations, a system of links is used. These links or pointers may be used to access 

either previous or next tuples dependent on some field, or to designate either a parent 

or a child relationship. It is these pointer values that are kept in the prefixes attached 

to every tuple and are essentially in the form of linked list. 

In order to access tuples the RSS maintains a hierarchial structure of indexes 

in the form of B trees. The B trees take a balanced structure with the leaf nodes 

consisting of a concatenation of the key value as well as the TID. The leaf nodes are 

linked in the form of a linked list so as to facilitate sequential access between leaves 

and pages if need be. The actual data value is accessed through the leaf node value 

and not directly. 

As was stated earlier in this section R/Star is in many ways System R with 

communications facilities. Due to this foundation it may be that certain decisions 
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that were made in System R are not as correct for ft/Star as they might have been. 

One of the choices that may have been correct for System R but a poor choice for 

R/Star is that of file allocation. In System R the choice of file allocation may have 

been obvious as there was but one site and the need to minimize I/O operations 

was given a high priority [4]. In R/Star the need to minimize I/O operations is 

still important but of more concern is the need to minimize communications. More 

importantly from a file allocation aspect is the fact that in ft/Star tables must 

be manually allocated by the Database Administrator (DBA) to specific sites [151 

based on statistics gathered during usage and experience. There appears to be no 

automated or dynamic file re-allocation available at this time. 
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3.2 Distributed Ingres 

Distributed Ingres (Interactive Graphics and Retrieval System) has its roots in the 

single version of Ingres. In the same way that R/Star is in many ways multiple ver-

sions of System R, with communications between them, Distributed Ingres is really 

multiple copies of Ingres with communications between them. When an application 

program invokes Ingres at a site, it becomes the "master" site and any other site 

from which data may be required will become "slave" sites. It is the master site that 

makes all decisions in resolving queries. Designed to run within the Unix operat-

ing system, it is Unix that provides the actual physical file handling for Distributed 

Ingres. All communications aspects are also done through the Unix system. 

One of the main criteria that the designers of Distributed Ingres wanted to follow 

was that of a large degree of parallelism, so as to improve overall system performance. 

This parallelism was to be achieved through the use of multiple machines and a fast 

communications network. 

3.2.1 Ingres System Architecture 

The Distributed Ingres system consists of really two major components: 

1. Ingres 

2. The Unix Operating System 

• The Ingres component may be broken farther into two subcomponents: 

1. Access procedures 

2. Storage structures 
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The Unix Operating System component will be looked at in light of: 

1. File System 

2. Processes and Communications 

Ingres 

There are two ways in which a user can communicate with Ingres, either through 

use of the interactive query language known to the system, called QUEL (QUEry 

Language) or through use of EQUEL (Embedded QUEL). QUEL statements may be 

looked at as requests to Ingres to perform certain functions while EQUEL is really 

more complex due to the use of a precompiler designed to convert the EQUEL code 

into a C program with appropriate calls to Ingres. It follows from this that Ingres 

can really be invoked in two very different ways, either interactively through the use 

of a database name or through the execution of a program in C that was created 

through using the precompiler. 

The Ingres database is essentially made up of four types of files: 

1. Administration Catalog Files 

2. System Catalog Files 

3. Database Administration Relation Files 

4. User Relation Files 

The Administration file contains only the user ID of the Database Administrator 

and information required for initialization of the system. A System Catalog file 
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exists for every database created and consists of predefined names for each relation. 

As with every relation they must be "owned" by someone, in this case the Database 

Administrator (DBA). Only Ingres itself or the superuser may perform direct updates 

on these ,relations, although anyone may do reads on them. The system catalog is 

really made up of six catalogs: 

1. Relations Catalog 

2. Attribute Catalog. 

3. Index Catalog 

4. Protection and Integrity Catalog 

5. View Catalog 

6. Graphics Catalog 

It is the Relations Catalog and Attributes Catalog that have information about 

the ownership, names, type and size, and related information required to determine 

structure and contents of each tuple. 

The Index catalog is used if secondary indexes exist for a relation. The Protec-

tion and Integrity catalog is used for exactly that purpose, to indicate access and 

integrity constraints. The View catalog provides the information required to provide 

particular views of a relation consistent with a particular request. The Graphics 

catalog contains information related to graphics processing. 

The actual storage and retrieval of data from a relation is done using a system 

called Access Method Interface (AMI). AMI is composed of a set of very UNIX like 

calls. For example the call sequence to open a relation for access has the form of: 
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OPENR(descriptor, mode, relation-name) 

These calls are the interface between Ingres and the underlying Unix operating 

system which does the actual storage and retrieval operations. Unlike System R/Star, 

the designers of Ingres decided against building a file handling system as part of 

Ingres and decided instead to leave these functions up to Unix. 

There are five methods of storage in Ingres. These are hashed, compressed 

hashed, ISAM, and compressed ISAM. When a tuple is stored using one of these 

methods its position in the relation is determined by the value of the domains used 

as keys. 

Every relation is stored in a separate file with each file consisting of one or more 

pages. The first is a primary page consisting of five major areas. If this primary 

page is of insufficient size to hold all the data that needs to be stored, more primary 

pages are created for farther storage. If the relation grows due to additions and more 

storage pages are required, overflow pages are created and linked to the primary page 

with which they are associated through the use of pointers. One key restriction is 

put on all tuples, this is that a tuple must reside entirely on a single page. This 

however does not, appear to be a major impediment in most cases. In the event 

that the ISAM storage method is used, the directory for accessing the primary and 

overflow pages is kept on separate pages following the primary or overflow pages. 

As noted earlier every relation is stored as a separate file. This is not to imply 

however that a relation may not exist as more than one file, for this is exactly what is 

allowed. Horizontal fragmentation of a relation is supported with the Distribute com-

mand which creates a new relation containing the name of the fragmented relation 



39 

and the site on which that fragment resides. Replication of relations is also sup-

ported. With replication one of the copies is designated as a primary copy. These 

conditions apply to normal data relations as well as the systems catalogs. It can 

easily be seen that this ability to store systems catalogs at another site can lead to 

tremendous advantages in transaction speed if remote data is required, although this 

overhead does complicate updates and concurrency. 

When a table is created by a user it is the user who becomes the administrator 

of that table and makes the decisions related to fragmentation and replication. The 

user's decision to replicate a relation at another site does not need to take into 

account costs related to storage capacity, communications or queries and updates. 

• The only restriction that may be placed on users in an effort to restrict or prevent 

this haphazard replication and distribution of files, is to remove their ability to issue 

the related QUEL commands. This may be done by the system DBA. Possibly due 

to the user's ability to either replicate relations or remove relations there appears to 

be no reason for the system to do this. Replication of relations by the system would 

certainly be advantageous however, for if it was discovered that a great number of 

queries were generated at a site that did not have a particular relation, this relation 

could then automatically be replicated at this particular site without a user having 

to do so manually. As was the case with R/Star, Distributed Ingres has the functions 

required to gather statistics on relation usage but a facility to dynamically move and 

re-allocation relations does not exist. 
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The Unix File System 

When Ingres was initially designed it was decided by the design group that Ingres 

should appear to Unix as just another process and not to make any changes to Unix 

at all. Due to this it is up to Unix to do all the actual file storage and retrievals as 

need be. 

When a new file is created, the Unix system assigns to it a unit called a disk mode. 

The mode contains the following information, owner, group, file type, permission 

settings for read, write and execute, last accessed, last modified, last written, size in 

bytes and disk addresses. The areas of file type and disk addresses will be addressed 

here as they are of special interest. File types are regular, directory and special file. 

A normal data file would be named regular. When a request is processed by the 

kernel, for the opening of a file, the file path name is actually converted to an mode 

which then allows access to the file. A number of disk accesses may be required at 

this point. First to retrieve the disk mode from disk and move it to main memory 

buffers. Second to access from this mode the disk address of the blocks required for 

the actual data. These addresses are then used to do further disk accesses of the 

actual data block which are then also moved into system buffers. It should be noted 

that the original request produced by the kernel came from Ingres and before an 

actual search can be done for the specific data, one more move is required. The data 

in the system buffers must now be moved to the Ingres memory area or Ingres cache. 

In an effort to reduce the number of disk accesses and so improve file access times, 

the latest version of Unix 4.2 BSD has allowed blocks to increase from 512 byte to 

1024 byte pages. Support for commercial database systems is provided through the 

System V variant of Unix which has file and record locking facilities that were not 
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available on earlier Unix version. File locking is the ability to give exclusive access 

to a particular process for Reading and Writing until this process is finished with 

this file, while record locking allows this for a subcomponent of the file, in the case 

of Ingres, a tuple. 

Unix Processes and Communications 

A process may be considered as a number of instructions designed for execution. 

Processes may be created or destroyed as required. A process is created through use 

of a Unix instruction called a "fork". A fork operation splits the original program 

into two copies. The only difference between the parent and the child process is their 

actual process identification number (PID). When Ingres is invoked through Unix it 

causes four processes to be created in a form as shown in figure 3.2 [39]. 

User 
Process 

4— 

Process 
1 

4— 

Process 
2 

4— 

Process 
3 

Figure 3.2: Ingres process structure 
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Process one is a terminal monitor allowing user interaction. If an EQUIEL pro-

gram had been executed to invoke Ingres, then process one is a C program. It should 

be noted that use of the EQUEL precompiler over interactive usage of Ingres does 

not result in an increase in performance. All queries are interpreted, one interac-

tion at a time regardless of whether they occur once or a number of times. Process 
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two contains a lexical analyzer, parser, integrity control routines and query modifi-

cation routines. Process three has query decomposition routines. Process four has 

utility routines required to activate Create, Index, etc, as well as a deferred update 

processor. 

The reason that process two, three and four are created instead of just one larger 

process is due to hardware constraints as well as the possibility of generating too 

many page faults. It should be remembered that at the time Ingres was implemented, 

the hardware was a PDP 11/40. There are, however, costs involved in having three 

processes instead of just one. If one process is used, it could incorporate subroutine 

calls instead of the "piping" system required by Unix for communicating between 

processes. In the four process example it takes a minimum of eight such piping calls to 

completely execute even one Ingres command [39]. The option of one process instead 

of three separate ones is a real possibility today. The idea of using subroutines instead 

of communications is unrealistic for separate machines regardless of how close they 

might be, especially in a truly distributed system. 

As distributed Ingres is essentially a number of single site Ingres implementations 

supplemented with communication, it would seem a relatively straightforward im-

plementation. This has not been the case. The only hardware and software available 

to the designers in 1978 was a communication system called Berknet, essentially a 

multiplexer for RS232 communications lines. It can be seen that the undertaking 

was no trivial task in that it was not completed until early 1983 [39] . The need to 

provide a separate communication system outside of standard Unix would appear 

to circumvent the original aim of having Ingres appear as just another process to 

Unix. The Unix shortcoming of not providing intersite or intermachine communi-
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cations had to be overcome, and distributed Ingres did this by providing its own 

communications system. This lack of intermachine communication has been allevi-

ated on later versions of Unix. With the release of Unix 4.0 BSD there has been the 

implementation of a new system facility called a "socket". Sockets allow for both 

communications between processes residing on a single machine as well as processes 

residing on separate machines. When a socket connection is created within the UNIX 

domain it may be used for interprocess communication within a single site. This is 

very much like the "piping" function that existed previously. In actuality pipes are 

now implemented as the connection of two sockets. There is a major advantage to 

the use of sockets over the original piping system within a single site. This is due 

to the fact that pipes are uni-directional while sockets are bi-directional. When a 

socket connection is created using the INTERNET domain it is designed to be used 

for interprocess communication between separate sites. This internal communica-

tion facility of sockets is essential for truly distributed Ingres while at the same time 

maintaining standard Unix. 



Chapter 4 

Dynamic File Allocation Model 

4.1 Introduction 

User response time in a distributed database is among other things highly dependent 

upon the distribution of program and data files within the system. In many systems 

the decision as to where to place files is made by the Database Administrator. This 

is often done in a static manner where files are assigned to a site and then left there. 

Often the only time that any attempt is made to reconsider these decisions is when 

one of two things ocur: where someone wants to use a file and is unable to access 

it due to some sort of restriction or when a particular file or set of files is accessed 

so frequently that the site or system throughput starts to suffer dramatically. In an 

effort to prevent access changes from reaching a point where it causes the system to 

degrade to an unacceptable level the area of dynamic file allocation holds a great 

deal of promise. 

Access frequency is often measured or estimated in an attempt to determine where 

best to allocate files. These accesses are then often combined with known values such 

as the number and speed of devices such as disk drives as well as processing power 

of a particular site in an effort to determine the best allocation of files. This must of 

course be combined with some sort of balancing of files among sites, as it is obvious 

that when too many files are stored on a fast device or more powerful site, the waiting 

time to finish processing might turn out to be longer than if a file were stored on a 
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slower device or less powerful site. 

Fundamental to all of the above is the need for some underlying trend in the 

way files are accessed. Access frequencies, queuing delays and system throughput 

values have been known for sometime as basic indicators of system performance. It 

is access frequency however that primarily determines the rest and is fundamental 

in determining file allocation. Changes in file accesses would also indicate that a 

different allocation of files may be required. It is this reallocation of files to improve 

efficiency that should be given primary consideration. This brings out a number of 

questions. For example how much change must occur in the way files are accessed in 

order to allow successful reallocation of these files? Is it possible to reallocate files 

by determining an underlying access trend from a number of small sets of access fre-

quencies, each of which in themselves would be unusable? The following sections will 

attempt to answer these questions and their relationship to dynamic file allocation. 

4.2 Research Objective 

In an effort to improve system efficiency when changes in access frequency are en-

countered, the area of dynamic file allocation will be explored. This will be done 

through the use of a heuristic algorithm and the simulation of events. It should be 

noted however that this is not a pure simulation of events. The area of commu-

nications between nodes of the system has actually been implemented within the 

simulation code. The reason for doing this is that there was no need to simulate 

communications when it was actually possible to implement it. It is also possible 

in this way to make the step from simulation to prototype much easier. Unlike the 
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area of actual data files and user requests which had to be simulated since "real" 

values were not available, actual communications and their related values could be 

obtained. 

Extensive monitoring of a real system's behavior may be impractical or impos-

sible due to cost or time constraints, yet often small sets of data related to access 

frequencies are obtainable. A lower level of system monitoring associated with the 

smaller access frequency sets should result in less system overhead and so contribute 

to savings in time and cost. 

It will be shown that by using a number of small access frequency sets (history) 

combined, file allocation can be determined dynamically. Factors such as throughput 

and queuing delays will be used in an effort to show that this reallocation of files is 

possible. It is suggested that significant improvements will result in query response 

time and system throughput when files are allocated based on the above mentioned 

factors. 

The remaining sections of this chapter may be summarized as follows: 

• Section 4.3 - A description of hardware used for the simulation. 

• Section 4.4 - Contains information on file structure, communication between 

sites, as well as data collection and reduction. 

• Section 4.5 - Describes the algorithm used in determining file reallocation. 

• Section 4.6 - Simulation Verification. 

• Section 4.7 - Simulation Results. 

• Section 4.8 - A discussion of conclusions reached. 
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. Section 4.9 - Future Research 

4.3 Environment 

The hardware on which the simulation was developed and run is as follows. It consists 

of four Sun 4s as nodes as well as two Sun 3s as file servers communicating on a 10 

Megabyte per second Ethernet spine as shown in figure 4.1. The Operating System 

is Sun OS Release 4.OE. The figure of 10 Megabyte per second on the Ethernet is a 

theoretical figure, for the actual transmission rates are known to be substantially less 

on Ethernet systems, which are CSMA/CD (carrier sense, multiple access, collision 

detection) systems. 

server 
1 

server 
2 

multiplexer 

sun 1 sun 2 sun 3 sun 4 

Figure 4.1: System Configuration 

4.4 Model Description 

A system that is to include dynamic file allocation would be very complex and the 

use of analytical evaluation seemed impractical since the problem has been found to 
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be intractable [19] [23]. It is for this reason that a simulation was done. In most 

simulation models an effort is made to emulate the system being modeled as closely 

as possible. The difficulty in this is that in an effort to completely or closely mirror 

the characteristics of a system, the simulation model may become too complex. A 

small number of sites and files will be used in an effort to limit complexity and yet 

retain enough of the problem to make the results useful. 

Figure 4.2: Model Network 

The chosen model topology is that of an arbitrary number of sites in a completely 

connected network as shown in figure 4.2. Each site in the system is completely 

independent, containing its own processor, communications system, database and 

query file representing a set of user queries. In an attempt at minimizing the amount 

of communication traffic required, when remote requests are serviced, a completely 

connected network was chosen. Each site in the network contains software designed 

to maintain a table indicating locations of files that are either currently residing at 

this site or were created at this site, thereby keeping the maximum number of sits 

that need to be contacted in order to access any file at 2. In Local Area Networks it 



49 

is quite common to have completely connected networks due to the close proximity 

of most nodes and increased system efficiency even though there may be added cost 

and complexity in both hardware and software. 

In an effort to prevent the simulation from becoming more complex than is neces-

sary, certain simplifying assumptions are made. It is assumed that a request requires 

access to only one data file. Although in an actual system requests or queries need-

ing access to more than one data file are not unusual, such requests need not be an 

essential part of the simulation. There are really two reasons for this decision. The 

first is that queries that require single data files are quite realistic and in certain 

types of databases make up the majority of requests. An example of this might be 

interactive queries concerning a bank balance at a local branch or an auto parts 

dealer request on the availability of a specific part. There are also certain multi-file 

queries that can be treated as a sequence of single file queries. An example of this 

may be seen in the following SQL like statement: 

select employee-number from employees where city is in 

(select city from offices where office = 'head-office') 

The second reason is not quite as obvious but is still equally valid. It would seem 

reasonable to start out with an elementary situation and build to the more complex. 

If it can be shown that file reallocation is worthwhile for simple file queries then it 

would certainly be justifiable to continue the research for the more complex case of 

queries that require more than one file, but it is best to prove the elementary case 

first. 

It is assumed that a query can be completely processed at one site and needs 

only to return a result that is smaller than the actual data file accessed. This is 
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based on allowing only one file to be used, for if two or more files are allowed then it 

is very easily possible to achieve results that are larger than simply the sum of the 

data files. 

Taking into account the above simplifying assumptions, the events in a Dis-

tributed Database would likely take the following form. The user enters a query. 

The applications program or system then evaluates the query and determines what 

data are needed to derive the result. If the required data reside on the host machine's 

database, the data required are retrieved, the result determined and returned to the 

user and the next query is then processed. When it is determined that the data re-

quired do not reside on the host machine, it must then be decided where the required 

data exist and the query is sent there. Update queries are quite straight forward in 

this case but when retrieval queries are considered two major possibilities exist. The 

first possibility is that of retrieving the data from the remote site, transferring it to 

the querying site from the remote site and processing it at the querying site. Once 

processing is completed and the result of the query displayed, the next query may 

now be submitted at this site. The second possibility is that of processing the query 

at the remote site and sending back only the required answer to the querying site. 

The introduction of parallel processing into the structure seems quite appropriate 

considering the increasing use of networks. It would seem reasonable to assume that 

if a querying site has a relatively high percentage of processor usage compared to a 

remote site, then, if possible, it would be better to process the query on the remote 

site rather than move large amounts of data to the querying site where processing 

is already higher. The introduction of large data transfers in the communications 

system will. certainly tend to slow down the communications system. In this second 
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possibility, when processing is complete and a result returned to the querying site via 

the communications system, the next query may now be processed at this site. In 

this simulation model processing will be done at the site where the data file resides. 

In the simulation the above sequences take the following form. For each available 

site, a series of values is generated representing requests for data files. These values 

are stored in a file referred to as the query file. As will be shown later these values 

may be adjusted to simulate a wide range of requests, from totally random requests 

to the other extreme of values generated to simulate requests for only one data file 

repeatedly. A file designed to simulate actual data files is also created for each site. 

This database file contains values designed to represent data files of differing sizes as 

well as an index table to be used for determining on which site a particular file now 

resides. Section 4.4.1 will give a more in-depth explanation as to how these data 

values are generated as well as how the index table is used. 

The first value is taken from the query file and evaluated for processing. If the 

requested data exists on this site, execute the query. If the data does not reside on 

this site then send the query to the remote site where the data file resides and evaluate 

the next query. The remote site will upon completion of processing immediately 

return the result of a query to the site where the query originated. It is therefore 

possible for a querying site to process a number of quick requests before the result 

of a more time consuming remote request returns. The sequence of events may be 

viewed as shown in figure 4.3. 
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Figure 4.3: Single Node Interaction 
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The idea of a host site with a query file, a database and a means of communicating 

with remote sites which also have databases and processing power can now be taken 

a step further. Each of the remote sites itself also has its own query file that will be 

executing concurrently. This is shown in figure 4.4. 

Database 

Request Queue 

Processor 
Incoming 
Remote 
Requests 

Figure 4.4: Multiple Node Interaction 

The creation and running of a site is best described as follows: 

1. A main process is created and remains active until all queries from the query 

file for this site have been completed. 

2. The main process on its initial creation, itself creates a child process which is 

designed to handle all queries for files at this site, whether from this site or 

queries from other sites for data files on this site. 

The basic process structure for a site is shown in figure 4.5. 
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Figure 4.5: Individual Site Process Structure 

The actual sequence of events for an arbitrary number of sites is as follows. After 

the initial creation of the main process, and remote communications process, each site 

takes the first entry in its query file and evaluates it. A table used to determine file 

locations is maintained at each site. Section 4.4.1 is used to provide a full explanation 

of how this table is used and maintained. If the file does not reside at the requesting 

site this request is sent to the site where the requested data file was initially created, 

and an immediate check is done to see if the requested data file still exists at this site 

or has been transferred to a different site. In the event that the data file has been 

moved the query is immediately routed to the site where the data file now resides. 

At most two sites must be visited for any query, since the site where a data file was 

initially created can always supply the name of the site where the file now resides. 

this is much like the R/Star system where at most two sites need to be visited to 

answer a request for a file. Arguments can be made that all sites could maintain a 

record of the location of all files and this may be quite valid in a situation where there 

are few file re-allocations. In systems where there is a great deal of file movement, 

the duplication of each file's location in every site's table will slow down the system 
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because all tables must now be updated every time a file is moved.. When considering 

these points, in addition to trying to maintain site autonomy it was decided to have 

each site only retain information directly related to it. 

Upon determining that the data file resides on this site, the query is entered into 

the queries pending queue along with the value representing the requested data file's 

service time. A complete explanation of a data file's service time is given in the 

following section. 

Query entry into the queue follows a Poisson distribution. It would seem rea-

sonable to treat all requests the-same and yet have each totally independent of each 

other. Arrivals that are randomly distributed and independent of each other appear 

to closely mimic the actual operations of independent sites in a network [27]. Upon 

entering the queue of queries pending an immediate calculation is done to determine 

the amount of time this query must wait in this queue. This is done by using the 

data file service times that were entered in the queries pending queue with every 

query when it entered the queue. By adding up the service times of queries preced-

ing this query in the queries pending queue the total wait time for the latest entry 

is calculated. If the site is not busy the queries pending queue is checked for avail-

able queries and the leading query is processed following a First-Come-First-Served 

principle. Any queries arriving either from this site or other sites must then wait in 

the queries pending queue until the processor is again available. Upon completion 

of a query, statistics are collected concerning that query. The process of evaluating 

queries, both local and remote, continues until all queries have been evaluated for 

each site in the system and statistics gathered for all sites. The methods used to 

create both data and query files as well as their actual contents are shown in the 
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following section. 

4.4.1 Database Files 

Each site has its own file designed to simulate a database. This file retains informa-

tion only on simulated files that were either initially created at this site or simulated 

files that are currently residing here. If a file was created here but now resides at 

another site, the new site ID. is paired with the file number at the creation site. If in 

the future the data file is moved to yet another site, this new site ID. is entered at 

the file's creation site but all references at the intermediate site are removed. Sites 

only retain file information that is directly related to them. 

Each simulated data base file therefore consists of a matrix of three columns and 

an appropriate number of rows to represent every file curriitly residing at this site as 

well as the location of every file initially created at this site. The first column has the 

site number corresponding to where the file listed in column two now resides. The 

values in column three are based on the following assumption. In an actual system, 

queries to certain types of files, accessed through indexes or hashing, often take very 

similar times. If this is then complemented by each file having similar but different 

data, similar response times could be expected. It is therefore not unreasonable to 

assume that all queries to a particular file take equally long to process. It is on this 

assumption that the values in column three are based. Column three contains a value 

representing the time required to evaluate the query needing the file listed in column 

two of the same row. Table 4.1 shows part of a database file and it's corresponding 

values. 
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Site Number File Number Processing Time 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

Ui 

11 

12 

13 

14 

15 

16 

17 

18 

27 

11.534991 

1.686346 

0.000000 

1.044262 

1.678562 

1.186478 

5.610621 

10.942223 

2.026231 

1.362914 

Table 4.1: Simulated Database File 

In table 4.1, the third row down shows an example of a file that was originally 

created, or started out at this site, but now resides on site number 1. The processing 

time value related to the third row has been changed to zeros at this site to indicate no 

corresponding data exists here for this file. The values in column three representing 

query evaluation time are generated using a probability density function designed 

to create exponential service times. This function is derived from one presented by 

Deitel [16]: 

f  = Ae 

and thus the probability distribution 

y = P(T < t) = F(t) = 1 - e 
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where T is a random variable and small t a given value of T. 

Solving for tin terms of y gives 

= ln[(1 - 

where 0 < y < 1 and y is the probability of an arrival in a set time period and 

\ is equal to the arrival rate and where 0 <t <cc 

In real systems it is often the case that there are a great number of small service 

times and a few occasional larger service times; an example of this might be a 

neighborhood bank. In an attempt to simulate this behavior it was decided to use 

exponential service times and so achieve a Poisson distribution. This also greatly 

simplifies the validation process when comparing analytic and actual results. 

4.4.2 Query Files 

A site's query file, the file used to simulate queries for data files, takes the following 

form. It is a simple list of values used to simulate requests for data files either 

residing on this site or for data files on other sites. The arrival at the required site 

of each of these queries is determined by a function similar to the one used to create 

query evaluation times for the data files. A Poisson distribution, similar to that used 

in the creation of data file values, was used in an effort to simulate as closely as 

possible actual site arrivals. As was mentioned in the introduction, if queries were 

truly random in nature and had no trend of any sort, then attempting to reallocate 

files on different sites would be a fruitless venture. The underlying assumption is 

that there is some order in queries and that this can be simulated and so may be used 

in determining the allocation of files. There appears to be an intuitive feeling for 
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this as well as considerable empirical evidence to support this. In economic circles 

considerable research has been done to support the premise that approximately 80 

percent of the work is done by 20 percent of the workers. In the computer science field 

similar values appear appropriate as has been proposed by [25] [31]. Grosshans [25] 

states that "20 percent of the functionality will be used 80 percent of the time" and 

that it is important "to find and identify that critical 20 percent of the functionality 

which most users want". With these ideas as background it was decided to design 

the code that generates values for the query file to allow different sets of values to 

be generated. The design is flexible enough to allow the generation of values ranging 

from completely random requests for all files and sites by any site, to the other 

extreme of completely non-random requests, where a particular site's request file 

would consist of requests for only one data file. This is done by adding parameters to 

the generating function so that an increase in the parameter value would correspond 

to an increased probability of a particular site being requested. A similar parameter 

exists to allow an increase in probability that a particular file or group of files will 

be requested. 

4.4.3 Network Communication 

As was explained in a previous section, each site upon starting up creates a child 

process to act as a file server.' erver This server has two functions. One is to act as an 

access device to the database and so retrieve and verify values, and the other is to 

act as a communications link between this site and all requests for data on this site. 

On the Sun OS 4.OE communication between processes are most often done using 

a facility called a socket. Due to the requirement for intersite communications an 
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Internet Domain was chosen over a Unix Domain which is restricted to local process 

communication. Each Internet Domain socket must be identified by a unique "port 

number". The port number in this case is the site number, given a particular site, 

since all site numbers are unique. Each communications server process in this way 

has a unique address at which it is constantly waiting for incoming messages from 

any sender. A sender or client need only know the server's port number in order 

to communicate. The client need only create its own socket connection and then 

using the server's port number as the destination address can in this way send its 

message. The server's process socket remains open until all requests from all sites 

have been answered. The client's socket only exists until the messages related to 

a specific data file request are completed. An argument can be made that this 

constant process creation is quite wasteful in time and expense. A full connection 

strategy would likely be faster than dynamic creation of socket connections which 

tend to take in the range of .2 to .7 seconds to complete, as well as the actual cost of 

process creation. Arguments can be made that to maintain a process once created 

has a much smaller overall cost than creating a new one. When this project was 

initiated, a system of machines and communications existed that would have allowed 

the actual implementation of the communications between machines in the system. 

Due to hardware and operating system changes that occurred during the project 

initial testing and implementation, the communications aspects became extremely 

difficult to do. It was for this reason that the complete simulation was actually done 

on one machine still using the actual communications system however. Unknown at 

the time of this forced decision to move from a number of machines to one machine 

was a technical constraint that restricted the number of active processes to 50 for 
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any one user. It was this final constraint that forced the decision to create processes 

and sockets dynamically as required and so reduce the total number of processes 

that might exist at any one time. 

4.4.4 Data Collection 

Upon start-up of the simulation and the subsequent movement from one event to 

the next, the following elementary iflformation is gathered. Each site monitors all 

queries of data files at that site regardless of whether these queries are local or re-

mote. With the arrival of a query, the following information as shown in Table 4.2 

is gathered. 

Calling-Site FileNum File-Time File-Wait-Time Queue-Len 

Table 4.2: Structure of Initial Data Collected 

The arriving query packet contains both the calling site number as well as the 

data file number required for the query. A search of the database is done to find 

the appropriate data file and in this way obtain the value representing the query 

processing time. Although the term "file time" is used in table 4.2, this value is meant 

to represent the amount of time required to actually process this file or determine an 

answer to the query presented. The value; file-wait-time, is calculated by adding up 

the file-times of any file queries preceding this query in the queries pending queue. 

This file wait time and the latest query's file time is used to determine a query's total 

service time. The value queue-length is simply a count of the number of queries in 
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the queue wanting service before this query. For example in the event of 100 queries 

at this site, a data file is made into which the values for each query are appended 

as the query is processed, in this case 100 rows would result, each in the format 

presented in table 4.2. 

4.4.5 Data Reduction 

Data reduction, although a component of the evaluation algorithm, is presented here 

to give continuity between data collection and the reduction of this data to a form 

usable for input into subsequent parts of the evaluation algorithm. The initial step 

in data reduction may be done at each individual site and so has each site creating 

a data file of related facts. Processing may also be done at one designated site to 

which all previously collected data files are first moved before this initial reduction 

takes place although it is immaterial which site is chosen. It is this designated site 

scenario that will be followed. 

The data reduction step may be initiated in one of two ways, either at reaching 

a set number of queries processed or by triggering a designated amount of change 

in system performance. At this point it may be said that data collection has been 

completed and that data reduction can begin. A new file is created into which is 

entered a unique row associated with each file/site combination; this is shown in 

table 4.3. 
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File # Calling-Site File-Time Wait-Time Accesses Avg-Wait QLen 

Table 4.3: Intermediate Level of Data Reduction 

If a site made only one query for a data file then the only difference between this 

and the initial data collection file is that accesses and average wait time have been 

added. Accesses in this case would be equal to one and average wait time equal to 

wait time. In the event of a site querying the same file more than once, the access 

column would register the appropriate number of queries. The wait time column 

would indicate the sum of the file wait times for each request. The average wait time 

is the total wait time divided by the number of accesses. In this way every data file 

at every site has associated with it a list of associated information related to queries 

it serviced. 

A further tallying of information is done for each site. A file is constructed con-

taining the following information. See Table 4.4. 

1 2 3 4 5 6 7 8 

5itenum T1Call I TRCal1 LCall I RCall Qlen Avg-Wait T_Wait 

1 2 3 4 

Avg_LocJtesTime Avg-Rem-Res-Time Avg-Site-Res-Time Tot-Sys-Time 

Table 4.4: Final Level of Data Reduction 

In this file each site will have only one corresponding row which will contain its 

values. 
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1. Column 1 contains the site number. 

2. Column 2 is the summation of file and wait times of all data file queries by this 

site querying data residing at this site. 

3. Column 3 is the summation of all file and wait times for all other sites querying 

data files at this site. 

4. Column 4 is simply the count of the number of local calls. 

5. Column 5 represents the number of calls from all other sites. 

6. Column 6 average queue length encountered by all queries to this site. 

7. Column 7 is average_wait_time, calculated by 

total-wait-time 

total-local-calls + total-remote-calls 

8. Column 8 is the summation of all queries wait-time. Wait time is time a query 

is required to wait before this particular query is serviced. 

Having tallied the values for each site and creating a single row corresponding 

to each site, some of these aggregates are now used to determine four different total 

and average values for the complete network. These additional four are shown below 

and are those indicated in the second row of information in table 4.4 

1. Value 1 is average-local-response-time. This is calculated by 

local-call-file-time 

total-local-calls 
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2. Value 2 is average-remote-response-time. This is calculated 

remote-call-file-time 

total-remote-calls 

3. Value 3 is average-site-response-time. This is determined by 

local-call-file-time + remote-call-file-time 

total-local-calls + total-remote-calls 

4. Value 4 is total-system-time. Determined by 

total-local-time + total-remote-time 

So as a result of running the simulation, three different files are created as shown 

in tables 4.2, 4.3 and 4.4. It is the values in tables 4.3 and 4.4 that will be used in 

the input portion of the evaluation program leading up to possible file reallocation. 

In subsequent runs of the simulation new files are created; previous ones are not 

discarded but are kept so that they may be used as a history of what has occurred 

before. This comparison of present to multiple levels of previous events is vital in 

the actual evaluation section of the algorithm. 
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4.5 The Evaluation Algorithm 

As was mentioned previously, the evaluation algorithm takes as initial inputs the 

files generated in the last stage of the data reduction section as were shown in tables 

4.3 and 4.4. 

A maximum of three files representing the latest as well as previous data reduc-

tions were kept, with the latest referred to as profilel, the previous as profile2 and 

the one before the previous as profile3. It is these profiles that are a major force in 

determining whether a file should be moved or remain were it is. In the case where 

this is the first evaluation to occur, the latest profile is copied into profile2 and pro-

fi1e3. A comparison of profilel to profile2 and profi1e3 is used first of all to determine 

if progress is being made with respect to overall system response time. If the latest 

profile shows an improvement in response times when compared to previous profiles 

then it is very likely that at least some previous file movements were beneficial. 

On the initial input of profile values two calculations are made with respect 

to times. Using previous profiles, averages are calculated for previous average site 

response times and previous system times. 

4.5.1 Determination of File Reallocation 

The actual evaluation section of the simulation has the following structure. 

• Input values tabulated in the data reduction section 

• Input values collected in the data collection section 
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• 'Initialize parameters of: entry-point, accuracy-value, home-threshold, remote-

threshold. 

• Sort sites in descending order according to site average..wait...time (AWT) 

• Sort data files in descending order according to number of accesses 

While there are still sites to evaluate and the site's AWT > entry-point 

get the current site's values 

if the current site's AWT> system AWT * accuracy-value 

while there are still file/site combinations 

get input value for next simulated data file used 

call Single Site Requests (see section 4.5.2) 

if data file used by more then one site 

call Multiple Site Requests (see section 4.5.3) 

end while 

look at next site 

end while. 

A search is done on the latest profile to find the site with the largest average 

wait time. This site will be looked at first in an effort to determine if any data files 

should be moved. Entrypoint can take any of a range of values, the simplest being 

0. In this case all sites with an average wait time greater then 0 will be looked at. 

This appears quite reasonable especially when initially allocating files but is a poor 

choice when files have been reasonably well distributed. This initial entry condition, 

into the actual evaluation part of the algorithm, of average wait time compared to 
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entry-point can take a number of different forms as will be shown in the Weightings 

section. 

The results shown in subsequent sections were achieved by giving each profile's 

average wait time equal weight with respect to another profile's average wait times. 

If it were decided that any change in usage should be emphasized the latest profile 

could be given extra importance by giving it more weight with respect to previous 

profiles. This decision would likely be very dependent on the types of system users 

and was not used in an effort to minimize the number of variables. Using the fact 

that the site currently being processed has a larger average wait time than any of 

the sites yet to be processed the next major value to be looked at is how this site's 

average wait time compares to overall average whit time for all sites. 

By putting a weighting factor on this function, the evaluation can be forced to 

consider only cases where this site's value exceeds the norm by a certain amount, for 

example 10 percent. It was discovered during experimentation that when accuracy-

level was assigned values greater than 20 percent system performance changed lit-

tle between evaluations. When values of less than 10 percent where assigned the 

accuracy-level system thrashing often occurred due to excessive file movement. The 

results derived in the actual simulation were obtained by giving values of 1.1 or 1.2 

to accuracy-level. This value is multiplied by this site's average wait time and so in 

this way only sites that have, in the case of 1.1, average wait time greater then 110 

percent of the average of all sites average wait times will be evaluated. 
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4.5.2 Single Site Requests 

After it has been determined that an evaluation is in order, due to the site being 

processed having an average wait time that is greater than the system average wait 

time * accuracy-level, the second major step is as follows. A search and evaluation 

is done of this site's query log file to determine if there are any data files residing on 

this site and queried only by one site. Although the number of data files requested 

by only one site may be relatively small their importance can not be overlooked. In 

settling these cases first, the number of possibilities for reallocating the remaining 

data files is substantially reduced. 

. If a data file is only used by one site 

If the calling site's AWT * home-threshold < system AWT 

move data file to calling site 

add additional time to current site's AWT 

Else if site with smallest AWT * remote-threshold < system AWT 

move data file to smallest AWT site 

add additional time to that site's AWT 

Else leave data file at present site 

An underlying premise is that if a file is only queried by one site it is likely best 

for it to reside there. This may not necessarily be true in all cases but appears to 

be for the majority. Although further evaluation may prove this to be incorrect in 

a particular instance, it does appear to be at least a reasonable starting point. If 

during this initial part of the evaluation a data file is found that is only requested 
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by one site it must then be decided whether to move the data file to a new site or 

have it remain where it currently is. 

The first step is to compare the calling site's level of average wait time to the 

system's average wait time. The weighting, home-threshold in this case, is done 

to allow for file distributions that although not perfect are considered adequate. 

Through experimentation it wasfound that an assignment of 10 percent to home-

threshold and 20 percent to remote-threshold worked well. 

The rationale for the weighting can be seen in the following example. Let the 

calling site be A, with an average wait time x, equal to average system wait time and 

on which resides file 1. Let another site B exist with a wait time equal to 98 percent 

of average system wait time. Movement of file 1 from A to B may now cause B to 

have an average wait time greater then the average system wait time and possibly 

causing A to have a time equal to less than 98 percent of average. It may be best to 

leave the file on site A even though completely equal site times are not achieved. If 

it is determined that the calling site has a small enough workload and that it should 

also house this additional file, then the file is moved to this site and search tables 

updated. 

A second possibility is this: the file's present site is doing more work than most 

other sites and the calling site is also doing above average work. In this case there 

may, however, be a third site that is doing below average work. What is then looked 

for is the site that has the smallest average wait time as a possible resident site for 

the data file in question. 

Sites with smaller wait times are looked at as possible locations for files that 

should be moved from both their present site and yet not to their calling site. Here 
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again the need to put weightings on the wait time value arises. Two distinct possi-

bilities exist, the second of which has been implemented in the simulation. 

The first is to look at a site's average wait time and determine from the wait 

times and work done at a site that a data file should go to a new site. This may be 

calculated as simply as looking at, for example, the wait time and work done as a 

certain percentage of the average. 

The weighting may also become a more complex function as the following example 

shows. A data file is still assigned as in the previous example but now the recipient 

site's average wait time is increased by a value directly related to file query time, so 

that if in this present evaluation another file may be looking at this site for residence, 

the average wait time will be longer then it was for the previous file assignment. It 

was determined through experimentation that a file with a query time twice that 

of another file had more than double the effect on query response time. A number 

of different functions were used in an attempt to capture this effect. The functions 

tested had the format v = QCIN, where v is the value to be added to the recipient 

site's average wait time, Q is the query response time for a particular file, e is a 

number in the range 1 to 5 and N is an integer between 1 and 10. The best results 

were achieved when the estimated value that is added on to a file's newly designated 

site is the square of the query time divided by 2. From this point on the average 

wait time is no longer only actual time but now incorporates a value estimated to 

reflect by how much the wait time is likely to increase due to the addition of the new 

file. This new value might be more properly called estimated future wait time. It 

is in this way that an effort is made to take into account the previous file that was 

moved to this new site. 
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4.5.3 Multiple Site Requests 

In the previous section data files that were queried by only one site were dealt with. 

Although it is a normal occurrence to have a single data file queried by only one 

site, an equally normal situation is where two or more sites query the same data file 

in a set time period. The following pseudo code explains the algorithm used when 

dealing with multiple requests. Let A be the site that requests the data file most 

often and let B be the next largest requesting site. 

• Assume global initialization of home-threshold 

Find the site that requests this data file most 

If A has AWT * home-threshold < system AWT 

move data file to A 

add additional time to A's AWT 

Else if B has AWT * remote-threshold < system AWT 

move data file to B 

add additional time to B's AWT 

Else look at alternative sites starting with site with smaller AWT 

As shown in the pseudo code, a site querying a data file more than any other site as 

well as doing less work than other sites, will be assigned the data file. This assignment 

is again dependent on weightings put on as parameters. If this assignment would 

increase the recipient site's average wait time by too much, then a site with a smaller 

average wait time and higher throughput will be looked for in the same manner as 

when dealing with single requests. For both of the above cases the recipient site's 
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average wait time is increased by a value indicating not just a single site's request 

but that of multiple requests by this site as well as other sites. After evaluating 

a number of different functions, as was done for the single site case, the value is 

calculated in the following manner. If Q is the query time for a particular file and 

A is the number of accesses to this data file then v = (Q2/2) * (A2/2) where v is 

the value to be added to the recipient's average wait time. Complicating this effort 

to estimate future average wait times based on data file access frequencies is the 

problem of actual data file processing time. If a newly assigned data file has a very 

large or very small processing time the actual processing time may differ substantially 

from the value calculated to be used in estimated future wait times. This particular 

problem is addressed in the next section but requires much more research than is 

presented here. 

If it happens that two or more sites query a data file an equal number of times, the 

decision as to where to store the file is again based on each site's average wait time 

and each site's work load and in this way the file is then assigned to the appropriate 

site. Again if none of the calling sites are appropriate a search is done of other sites 

with smaller wait times and less workload in an effort to find a site. 

4.5.4 Weightings 

Weights are used in the evaluation, both in determining how to proceed when com-

paring a site's present wait time to an other site's wait time in the same time period 

as well as when comparing a site's wait time to that of a previous time period. When 

comparisons are done between different sites as well as over different time periods a 

number of possibilities present themselves. Some of these are shown in the following 
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examples. 

If a straight difference is done between this site's average wait time and the 

overall average wait time, then even a slightly higher value for this site can be used 

to reassign files. This may not be beneficial in certain cases as it will only result in 

needless thrashing. 

It was stated as one of the initial assumptions that there must be some sort of 

underlying trend in data file requests. It would then also be reasonable to assume 

that information collected in previous time periods in regard to these trends could 

then be valuable in evaluating present conditions. 

When comparing present wait times to a previous time period's wait times a 

number of factors must be considered. For example should a change in values in 

the latest profile, profilel as compared to profi1e2 be given more importance than 

the difference between profile2 and profi1e3? There appears to be no one answer 

to this, for it is very situation dependent. If there is much continuity in requests, 

then it would seem that to give equal importance to each profile might be best. It 

is however also quite possible that the latest change could be an indicator of major 

changes in access patterns and so if large changes occur it may be best to emphasize 

these changes. 

Consider two profiles and the average wait time of a particular file in each of these 

profiles, then the comparison process can be made more sensitive to larger changes 

by a formula that uses the square of the difference in these average wait times. In 

this way larger changes are given emphasis and so can more easily be given attention. 

This might be even further enhanced by giving data files a tag designating their 

importance relative to other data files. This second possibility could be used in a 
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new function which would then be the weighted square of the difference in average 

wait times. In this way specific data files could be given more or less emphasis. 

When file weights are used it becomes much easier for the evaluation algorithm to 

determine estimated future wait time for there would then be an indicator showing 

how much processing time a particular data file requires. In the present algorithm a 

change in queries and the related change in wait times is evaluated as a simple differ-

ence function. This approach was taken due to the fact that the primary objective 

is to show that dynamic file allocation is viable and to this end the comparison of 

wait times past that of a simple difference function was considered unnecessary. This 

does not intend to minimize the importance of how the functions presented affect 

the reallocation of files, although there appears to have been little research done in 

in this area. 
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4.6 Simulation Verification 

There can be little doubt that the ideal situation would have been to have real 

data and a real data base to work with. This was not possible however, and so a 

simulation was done as a substitute for an actual data base. In order to verify that 

the simulation is a reasonably good model, a number of simple tests were done using 

different inputs but with no file movement. These same inputs were then also used 

in determining analytical solutions. A comparison is done between analytical results 

and simulation results using request sets of 250 and 500. As was mentioned in an 

earlier section, average arrival time as well as the time required to process a request 

were created using a function that followed a Poisson distribution. Analytical results 

were obtained using common formulas presented by Deitel [16]: 

P = 

as well as 

= PE(S)  
i — p 

Where p is server utilization, ). is average arrival rate and E(s) is the expected 

service time for a request. The results shown in column one of table 4.5. were ob-

tained by substituting the values shown in the third and fourth columns of table 4.5 

into the formulas shown above. 
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Analytic Simulation Average Mean 

Queue Time Queue Time Request Time Arrival Rate 

11.9 8.59 4.89 6.91 

14.1 11.90 5.06 6.91 

19.9 29.03 5.68 7.26 

13.2 13.61 5.85 7.26 

9.9 7.18 4.89 7.26 

11.4 11.90 5.06 7.26 

Table 4.5: Comparison of Analytic and Simulation Results for Model Verification 

Chi-Square results show the difference between the analytical and simulation 

queue times is not significant at a 10 percent level (x2 = 5.91, d.f = 5). More and 

larger groups could have been included but seemed unnecessary as the simulation 

achieved results that corresponded well with the analytical results obtained. It is not 

entirely unexpected that the results were similar, as this had been the goal, but it 

should be noted that the simulation does include actual site to site communication 

and so this similarity is more significant than it may have been otherwise. 

4.7 Simulation Results 

Full scale simulation results were obtained using the following parameters. Simula-

tions were done with the number of sites ranging from 2 to 10 and with the number 

of simulated data files assigned to each site ranging from 10 to 50. The number of 

requests generated per site were done in groups of 100, 150, 250, 500, 1000. The 
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majority of testing was done using 3 sites in an effort to meet the desirable feature of 

the smallest number of sites that would still constitute a distributed data base and 

yet allow a choice of more than one other site when reallocating data files. When 

a larger number of sites, and a larger number of associated files is chosen, a change 

in file distribution of a small number of files does not tend to give the same relative 

effect as when a small number of files is redistributed on a smaller number of sites. 

When a larger number of sites was used, for example 10, the results corresponded 

quite closely to the 3 site situation except that each simulation took much longer 

to finish. For similar reasons the number of data files used was set to a total of 30. 

The effect of a single file moving in a large number of files has less effect on the total 

system than if the number of files were less. Since it is precisely these changes that 

must be measured the majority of testing was done using a simulation of 3 sites and 

a total of 30 files. 

The following discussion and testing results assumes this situation of 30 files 

shared among 3 sites. 

In testing when fewer than 100 requests were generated per site, an even distri-

bution was difficult to obtain due to the limited number of requests. When requests 

in groups of greater than 100 were generated is was possible to get requests for data 

files on a particular site that, while generated randomly, closely fit the probability 

distributions assigned to them. 

The probability of requests from one site was used as a parameter, with the prob-

abilities of requests from other sites then set to being equal. Thus, if the probability 

for 1 site is p, the probability for each of the other sites is (1 - - 1), where X 

is the number of sites. 
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Each site is thus assigned a probability which is then used to determine requests 

for specific files, in the 3 site case this probability was set to .33, to simulate no 

preference for any particular files, while probabilities of .40, .45, and .50 were used 

to simulate differing degrees of preference in a site's requests for specific data files. 

As can be seen in the following examples, a small percentage change in a site's 

assigned probability can have a marked effect on the probability of a particular 

file being requested. Let p be the the difference between the value representing no 

preference for any particular file and the site's present assigned probability and let 

f be the number of files. If q is the probability of requesting a particular file then 

= .q may be used to show how a small change in p dramatically changes q. The 

following examples are given to more clearly show these changes. 

It can easily be seen that for a site requesting 10 data files a change from .33 

to .40 probability results in only increasing to probability of requesting a particular 

data file by .007. The probability of .40 was chosen because the difference between 

.33 and .40 although small, may still be enough to indicate the minimum probability 

that needs to be assigned so as to enable a trend to be established. 

When the probability of a particular site requesting 10 data files is increased to 

.50 from .33 it can be seen that this gives a marked change in the probability of 

requests for a particular data file. In this case from .007 to .017. 

Files were initially ditributed in two ways: 

1. Evenly distributed. 

2. Randomly among the sites. 
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The reasons for choosing these 2 distributions are as follows.. It is obvious that 

putting all files on one site and leaving the remaining sites completely empty and 

having their processors idle must be the poorest allocation possible. This is much like 

the centralized systems of one machine with a number of terminals attached to it. A 

distributed database is defined as files distributed at different sites or nodes. It would 

seem that at the very least a reasonable starting point would be that of allocating 

an equal number of files per site. This is not meant to infer equal work or accesses. 

Another starting point might be that of random distribution. This is quite reasonable 

because it is quite possible that certain sites may have created more new files than 

other sites, either initially or since the last evaluation. Using these 2 file distributions 

as starting points, requests where submitted at each site in groups of 100, 150, 250, 

500, 1000. The probability of each site requesting particular files was set to .33, to 

simulate no preference for any particular files, as well as .40, .45 and .50 to simulate 

different levels of preference for particular data files. When the probability of file 

selection by one site is set to for example .50, the remaining probability is equally 

divided among the remaining sites. Let p be one site's probability and let N be the 

number of sites. Then (;) would be the probability of each of the remaining sites. 

Results in all cases were averaged over a total of 10 simulations run for each 

combination of probabilities and requests. In the case of 3 sites and 1000 requests 

this would then result in a total of 30,000 requests being processed. 

Tabulated results for the simulation of 3 sites with 1000 request per site with 

different probabilities of files being selected and before any reallocation of files are 

shown in table 4.6 for even distribution and in table 4.7 for random distribution. 

The values listed under Probability are meant to indicate the probability assigned 
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to one site's set of data file requests while values listed under Throughput are meant 

to reflect the number of requests served per unit time. 

Probability Throughput Avg.Q Jength Avg-Wait-time 

.33 .0658 2.12 11.84 

.40 .0572 2.16 14.15 

.45 .0579 2.79 12.60 

.50 .0544 2.56 14.61 

Table 4.6: Simulation Results Using Even Distribution of Files 

Probability Throughput Avg.QJength Avg-Wait-time 

.33 .0706 1.89 12.16 

.40 .0361 3.93 25.42 

.45 .0467 3.39 21.05 

.50 .0482 3.41 19.31 

Table 4.7: Simulation Results Using Random Distribution of Files 

Having obtained results for these distributions without any file movement the 

simulation was then run in exactly the same manner except now to include file 

movement and the use of profile information. Using the starting points of Evenly 

and Randomly distributed data files, the evaluation algorithm was run after each 

group of requests had been completed. Groups of requests were identical to those 
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used .when no file movement was included. The probability of particular data files 

being selected by any one site again ranged from .33, .40, .45, .50. The sequence of 

events can be described as follows: 

1. Run simulation for set probability and request set. 

2. Reallocate files as need be using information gathered from previous simulation. 

3. Repeat steps 1 and 2 until no further reallocation takes place 

4. Calculate Throughput, Queue length, and Wait times. 

This sequence was then repeated 10 times for each combination of probabilities 

• and request sets with the final result of combination being an average of the 10 runs. 

For example, if reallocations took place 5 times before the simulation considered the 

allocation correct, this would mean that for the 3 site 1000 request combination, a to-

tal of 150,000 requests were processed to get the final result for this one combination. 

The sequence described above took place for both even and random distributions. 

The results from each of these were almost the same in respect to the number of files 

moved in total or the number of evaluations required. System throughput as well as 

average queue length and average wait time were also very similar. It is for these 

reasons that the results using file reallocation for both even and random distributions 

as starting points were combined and presented as one. The results shown in table 

4.8 were obtained for the 3 site 1000 request per site combination. 
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Probability Throughput Avg QJetigth Avg WaiLtitne 

.33 .0614 2.35 11.65 

.40 .0655 2.03 10.62 

.45 .0663 2.14 10.89 

.50 .0723 1.81 9.69 

Table 4.8: Simulation Results After Reallocation of Files 

The relationship between the probability of a particular site being selected and 

the number of times file redistribution was required to achieve either a 10 percent or 

20 percent level of difference between sites is shown in figure 4.6. 
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Figure 4.6: Comparison of Probabilities to Redistributions Required 
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Combinations for which no results were obtained are shown with open ended 

columns. When requests in sets of 1000 where dealt with, file redistribution made 

it possible to achieve differences in wait times of 10 percent or less between sites. 

When request sets of 500 where used, a 10 percent difference in wait time was not 

achievable with any of the given probabilities. When the wait time difference was 

set to 20 percent it was only achievable for probabilities of .45 and .50. 
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4.8 Conclusions 

For file reallocation to succeed in reducing overall wait time there must be some 

sort of consistency in queries to a site. If queries are totally random and files either 

randomly or evenly distributed among the sites, reallocation would make little sense. 

When a comparison of queue lengths and wait times is done between the results 

of queries to reallocated data files, as shown in table 4.8, and the results of queries 

to either evenly or randomly distributed files, table 4.6 and 4.7, it can be seen that 

the differences are quite dramatic. These are graphically shown in figure 4.7. 
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Figure 4.7: Comparison of Results Between Initial and Final Distribution of Files 

One of the most dramatic changes is in wait times. The difference between 

simulations with reallocated files and when sites had files either evenly or randomly 

distributed with a probability of site selection of .50 is 34 and 50 percent respectively. 

Even with a .40 probability of site selection the difference is 25 and 59 percent 
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respectively. Not surprisingly the differences for random queries on both evenly 

distributed files or reallocated files is very small as indicated by throughput values 

of .0658 and .0706. 

Queue length and wait times seem to increase and decrease in conjunction with 

each other. This however is on average, for during testing, situations did occur where 

a particular site's queue length was larger then a neighboring site's queue and yet 

the wait time less overall. 

The closeness of throughput values for reallocated data files with probabilities 

of .33, .40 and .45 appears to indicate that once a good alldcation of files has been 

achieved, the probability of site selection in the requests matters little. Only when the 

probability is increased to .50 from .45 does throughput increase by approximately 

9 percent while wait time drops by 12 percent. 

When 3 sites are involved, small changes in probability, for example .33 to .40, 

appear to be insufficient to allow the establishment of trends in requests. Larger 

changes in probability, for example .33 to .50, do allow a much quicker and more 

accurate reallocation of data files as can be seen in figure 4.6. As shown in figure 4.6, 

when reallocation is done with query sets of 1000 queries per site and a probability of 

.50, it took on average 3.5 evaluations and the resulting movement in files to achieve 

a resulting file reallocation that gave consistent wait times that differed less then 10 

percent between sites. 

It can also be seen that as the query probability for a site comes closer to random 

considering the same number of requests, it took more evaluations to reach a similar 

level of differences in wait times between sites. In some cases the smallest difference 

in wait time between sites that could be reached was 20 percent. 
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When attempts are made to reallocate files, and the request set became smaller 

or the probability assigned the site became less, it became increasingly difficult to 

get a proper evaluation and redistribution of files. The following example will show 

why this should be expected. 

Let q be the probability that a given site randomly chooses a file from a file set 

residing there, and let Y be the number of files that a given site chooses from the 

file set residing at that site in n trials. Then the random variable Y has a binomial 

distribution with mean nq. Let P(ari < Y < bn) be the probability the Y falls in 

the interval (an,bn). Using the normal approximation to the binomial we know that 

the random variable 

= Y—nq  

Jnq(1—q) 

has approximately a standard normal distribution for n> 30. This may then 

be used to obtain 

[an — riq Y—nq bn — nq  1 
Vnq(l - q) < nq(1 - q) < nq(1 - q)j 

If we let 

zo an - nq= nq(l - q) 

and 

bm - nq 

= nq(1 - q) 
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then the probability is 

P(Z0 < Z < Z1). 

If q = .50, a = .47, b = .53 and n = 500 this then gives values of Zo = —1.34 and 

Z1 = +1.34. The probability is therefore P(-1.34 < Z < 1.34). These values may 

now be used to read from a common standard normal distribution table to obtain 

an answer of P(-1.34 < Z < 1.34) = .818. 

Results for q = .5 , .45 and .4 are as shown in table 4.9. 

q = .50 q = .45 q = .40 

a = 

b = 

.47 

.53 

a = 

b = 

.422 

.479 

a = 

b = 

.373 

.427 Requests 

1000 .944 .930 .922 

500 .818 .790 .782 

250 .660 .644 .594 

100 .451 .428 .408 

Table 4.9: Analytical Results in Support of Simulation 

It can easily be seen in table 4.9 that even for q = .50 the probability of Y being 

in a reasonable range like .47 to .53 is unlikely for sets of under 250. These results 

appear to substantiate the inability of file reallocation past a certain point given too 

small a request sets. The history of a site, previous profiles, appear to be of little 
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help in the redistribution process except to add a degree of conservatism into file 

movements. This may however be due to the fact that once a file is moved to a new 

site its history becomes irrelevant and it takes a number of accesses in order to build a 

new history. The problem may also be due to the way facts on data files and data file 

movements were recorded. It may be that the inability of previous profiles to assist in 

redistribution is due to the totaling of data and that not enough specific information 

was retained on each particular file. It would appear beneficial if previous profiles 

contained information not just on the total number of local and remote accesses and 

time required per site, as was done, but on access frequencies and wait times per 

data file. In this way facts related to a data file could be compared between profiles 

to obtain further valuable information. It may be possible that summing accesses 

for a specific data file between different profiles would enable redistribution more 

easily for smaller request sets. This is certainly an area worthy of further study and 

research. 
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4.9 Future Research 

As was shown in the previous section, a number of positive results were obtained 

through use of the simulation model. Among these is the fact that dynamic file 

allocation is possible but appears highly dependent on the data used. The area 

of obtaining actual system data must be considered. Values obtained through the 

monitoring of a real data base would allow verification of the simulation to be done 

and show whether or not the testing and evaluation done here does actually perform 

as it should. As might be expected in a project of this nature a number of areas of 

interest showed themselves, areas that were not at all obvious at the beginning and 

are certainly worthy of more research. Among these are the following: 

1. The use of some sort of profile (history) needs further evaluation. It would 

appear that system's records generated during simulation were not accurate 

enough and therefore did not capture or retain all of the necessary values 

related to systems usage. It is important that information related to previous 

file queries is not lost but can be used in future evaluations. 

2. With certain program files requesting the same set of data files repeatedly it 

would seem that considering these files as a unit merits further study. By 

moving file units, instead of individual files, if may be possible to reduce the 

number of possible locations that must be considered in evaluating file loca-

tions. An added feature may be that less communication is needed between 

sites because of this pairing. 
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3. File replication has not been used here and yet there is little doubt it holds 

promise. There is also little doubt, however, that even the simple duplication of 

files would require a much more complex evaluation algorithm. The duplication 

of data files introduces the need to determine which copy of a data file will be 

accessed by a requesting site. Among the possibilities are, does the requesting 

site choose the needed data file at the closest location, at the least busy site, or 

at the site doing the least amount of work at that time. These very interesting 

questions certainly merit future research. 

4. A number of database systems now allow the use of a join between distributed 

portions of the database. Little' if any work has been done however in deter-

mining the possibilities of automated or semi- automated file reallocation in 

these databases. It would appear that distributed databases are now at a point 

where this could now be considered and explored. 

The listing of these points shows that the work presented in this thesis is by no 

means the only and final answer. The primary achievement of this thesis has been 

to provide a solid base from which answers to these areas may be achieved. 
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