1.0 INTRODUCTION

The object-oriented approach to database management [3, 8,
13, 14, 15, 16, 18, 19, 20, 25] evolved from the object-oriented
approach used with programming languages such as C** and Smalltalk,
and is finding use in many application areas.

A consistent feature of the object-oriented approach is
that associated with every object type representation, usually
called a class, is a system generated identifier attribute together
with both reference-list attributes and individual reference at-
tributes, that reference the object identifiers of related object
instances.

In an object-oriented database, at the conceptual level,
the relationships between object types can be one-to-many, binary
many-to-many, ternary many-to-many, recursive many-to-many, and and
IS-A one-to-one relationships, as with relational databases [11,
12]. These relationships are supported by individual and reference-
list attributes that are included in the conceptual database
definition.

Although rich in properties, the object oriented model is
quite complex and does not have the strong theoretical foundation
of the conceptually simpler relational model - nor is there any
agreement on what exactly constitutes an object-oriented model [9,
26]. Unfortunately it is the simplicity of the relational model
that makes it awkward to use effectively with data bases that es-
sentially describe complex objects, where users frequently need to
deal with composite objects, within which is an extensive structure
of contained objects (often with a hierarchy of IS-A-PART-OF one-
to-many and IS-A relationships). In the relational approach each
type of subobject has to be retrieved and dealt with separately
[12].

But because of the firm foundation underlying the rela-
tional approach and its wide use, there has evolved considerable
support in the data base research community for extending the rela-
tional model to enable it to support objects, both from a point of
view of the structure of objects and the behaviour of objects.

1.1 Object oriented extensions to the relational model

The most widely accepted extension paradigm involves remov-
ing the requirement for normalized relations on which the conven-
tional relational approach is based [1, 2, 21]. Retaining this re-
quirement makes for a simpler data model, but one that is probably
too simple for object-oriented data bases. Removing it makes for a
more complex but richer relational model on which what might be
termed a comprehensive object-oriented relational approach can be
based. With such a model, conventional 3NF or 5NF relations can be
used if desired, so that the model would be upward compatible with
the conventional relational model, which is obviously desirable;
where object-orientation is desired, unnormalized, or non-first
normal form (NZF) relations need to be used.

An N2F relation can have collection attributes, both sets
and lists. While in theory a set attribute of an unnormalized rel-
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ation could have a value that is a set of tuples, it seems
desirable and sufficient to restrict N“F relations to attributes
that contain a single stored atomic value, attributes that contain
stored sets or lists of atomic values, structure attributes (at-
tributes with composite type) corresponding to program defined
hierarchically structured types (such as DATE or ADDRESS), and at-
tributes whose values are not stored but are derived, where the
derivation of an attribute value is via a function acting on stored
values. The equivalent of structure array attributes is not al-
lowed. It is in this sense that N2F relations are used in this
paper.

Extended versions of the conventional relational declara-
tive languages are needed to manipulate an N“F relational data
base. The best known prototypes embodying this approach are IBM's
STARBURST [17], which uses an extension of SQL, and the POSTGRES
system [23, 24], which uses an extension of QUEL. Such systems,
known as extended relational systems, essentially attempt to com-
bine the benefits of object oriented data base systems with those
of the standard relational approach. Extended relational systems
are best suited in circumstances where there are many different
kinds of data bases (both object and other data bases) with ap-
plications that sometimes need access to more than one kind. They
are thus in the mainstream of data base development. Strictly
object-oriented systems, particularly those that are designed to
interface efficiently with a specific object-oriented programming
language, are likely to find use restricted to independent
engineering (CAD/CAM) applications. In this paper we are concerned
with the object-orientation aspect of extended relational systems.
An N2F data base, restricted in the sense described above, is as-
sumed.

1.2 Declarative language approaches

There appears to be two fundamentally different approaches
to declarative languages. One approach is the relation-oriented ap-
proach, embodied in the languages of the conventional relational
approach, such as DSL Alpha, SQL, and relational algebra and QUEL
[12]. The other approach is what might be called a composite
object-oriented approach exemplified by Composite object-oriented
Language or COOL [7], which is currently being implemented as part
of the GenRel project.

COOL is a powerful language, is soundly-based on the theory
of sets and relations [6] and is fundamentally object-oriented.
COOL has borrowed some concepts, such a natural quantifier
facilities, from older languages for relational data bases, such as
the EOS predicate calculus [4], and SQL/N [5]. However COOL has
many new concepts, particularly the concept of a genitive relation,
that enable it to handle all kinds of composite objects.

We can initially compare and contrast the concepts behind
these two approaches, that is, essentially the SQL and COOL ap-
praoches, in the light of the three types of structures that occur
in data bases; these structures are:
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(a) independent entity structures, both hierarchical and
network,
(b) aggregation or composite object structures, aggregated via
IS-A-PART-OF relationships,
(c) generalization or IS-A type hierarchies.

1.3 Independent-entity structures

Independent-entity structures are widespread in business
data bases, with independent entity types or object classes partic-
ipating in one-to-many and many-to-many relationships resulting in
either network structures, for example, Date's network structure
Suppliers, Parts, Projects and Shipments data base [12], or a
hierarchical structure such as Bank-branch (root), Teller (level
2), Customer (level 3), Savingsaccount (level 3), Checkingaccount
(level 3).

It is important to understand that SQL is used with such
data bases in an entire relation oriented manner. If one wants the
status of suppliers in Athens that have shipped only red bolts, one
uses constructs that deal with all of the Supplier tuples, all of
the Shipment tuples and all of the Parts tuples, that is, one deals
with, and thinks in terms of, entire relations and all of the rela-
tions involved in the retrieval.

There is little need for an object-oriented approach here
and the conventional relational approach with SQL works very well.
However, a language like COOL can be beneficial even here. To il-
lustrate, compare the SQL and COOL expressions for the retrieval
from Date's Supplier-Parts database:

Retrieve the status of London suppliers that have supplied
only red bolts:

SQL: Select S#, status
from S
where S# not in (select S#
from SP
where P# not in (select P#
from P
where Pname = 'bolt'
and color = 'red'));

COOL: Select S#, status
from [each] S [object]
where for each [of its] S.Sref*SJ [objects](
for the [one] SJ.P#*P [object] (Pname
and color

'bolt'
'red')

[}

The SQL expression is error prone because of the required double-
negative and danger of mistakes with De Morgan's Rules. In the COOL
expression words in square brackets may be omitted and are intended
to aid readability. The COOL expression follows natural language
structure, and has obvious meaning except for the terms S.Sref*SJ
and SJ.P#*P. These terms denote genitive relations and essentially
correspond to the expressions "supplier's shipments" and "ship-
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ment's parts" respectively. Unlike SQL, COOL expression structure
is independent of the quantifiers involved. If we change the
quantifier in the above retrieval to "for most", instead of "for
all" or "for each", as in:

Retrieve the status of London suppliers that have supplied
mostly red bolts:

the COOL expression structure remains unchanged:

COOL: Select S#, status
from [each] S [object]
where for most [of its] S.Sref*SJ [objects](
for the [one] SJ.P#*P [object] (Pname "bolt'
and color = 'red')

In contrast, the SDQL expression is much more complex and quite
different in structure from the previous one. The reader is urged
to try it.

1.4 Aggregation or composite-object structures

The second type of structure is a composite object, or ag-
gregate, type, where the relationships are mostly one-to-many and
involve physical containment or attachment, and where the resulting
structure is usually hierachical. For example, suppose that a data
base involves national parks entities (object type Park). A Park
instance can contain instances of ranger stations (Station), and
forest areas [Forest]. A Forest can contain campgrounds (Campgr),
and lakes (Lake). The data for a specific park forms a composite
object instance, whose subobject instances form a hierarchical
structure, involving the specific Park data, with its contained
Ranger and Forest instances, with, in turn for each Forest in-
stance, the contained Campgr and Lake instances. [A specialized
variation is the bill-of-materials structure, where root and subob-
jects are all of the same class Part; this give rise to both
hierachical explosions and implosions.]

Once again SQL is used with such a data base in an entire
relation oriented manner. If one wants the size of Parks in Cali-
fornia that have only forests without bears, one uses constructs
that deal with all of the Park tuples and all of the Forest tuples,
that is, one deals with, and thinks in terms of, entire relations
and all of the relations involved in the retrieval.

However users seem to prefer to work with composite object
instances when dealing with such an aggregation data base and not
with Forest and Lake relations, whose tuples belong to a wide vari-
ety of Park instances. They prefer to deal with them in a composite
object-oriented manner, that is, they prefer to retrieve and store
composite object instances, manipulate them with programming lan-
guages, have them displayed in hierachical format, and, most impor-
tantly from a declarative language point of view, specify the
retrieval and update of a composite object-instance in terms of the
values in that instance. They prefer not to deal with them in the
quite unnatural terms of the entire relations to which the subob-
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jects belong, as is required with the relation-oriented approach to
declarative languages. As an example, take the easily expressed re-
quest:
Retrieve full data on each California park object instance
where all of its forests exceed 10 square miles and have only
campgrounds with fireplaces.
With SQL we would have to code something like:

sql: select * from Park
where loc - 'California' and
park# in (select park# from Forest)
and park# not in (select park# from Forest
where area <= 10 or
forest# <not> in (select forest# from Campgr
where fireplace = 'no')
or forest# not in (select forest# from Campgr));

Although the type of park required is natural to visualize from a
point of view of a composite object, we have to think and code in
relational terms of entire relations (not to mention treading care-
fully with De Morgan's rules), which can be error prone (the above
expression contains a slight but fatal logical error, which the
reader is invited to find). An alternative is a language that
enables us to state our requirements in terms of the kind of com-
posite object it is desired to retrieve, that is, from a composite
object manipulation point of view, for example:

Retrieve each park, in California
where all that park's forests each has
(a) area > 10, and
(b) all that forest's campgrounds each has
a fireplace.

Such a language would be fundamentally object oriented and much
more convenient to think in terms of - for data bases of this type.
COOL has such a structure.

The COOL expression for the above retrieval mirrors the nat-
ural language expression structure:

select * from [each] Park [object]
where loc = "California"
and for all [Park.]forestref*Forest [objects]
((area > 10 and
for all [Forest.]campref*Campgr [objects]
(fireplace = "yes'))

Items in square brackets may be omitted. The expression
Park.forestref*Forest objects specifies a genitive relation which
is semantically equivalent to the natural language genitive case
expression "a park's forests". Similarly Forest.campref*Campgr is
equivalent to the expression "a forest's campgrounds". The
quantifier "for all" is used exactly as in natural language and not
in the convoluted manner of conventional set theoretic expressions,
which has prevented its incorporation in SQL. Once again, if the
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quantifiers change, the structure of the COOL expression does not.
For example, suppose now we want full data on each califor-
nia park object instance where all but 3 of the forests therein ex-
ceed 10 square miles and each forest has a majority of campgrounds
with fireplaces. The COOL expression is:

select * from [each] Park [object]
where loc = "California"
and for all but 3 [Park.]forestref*Forest [objects]
((area > 10 and
for most [Forest.]campref*Campgr [objects]
(fireplace = "yes')

The quantifiers are the natural quantifiers for all but 3 and for
most or for majority of. The composite-object oriented structure of
COOL and its use of natural quantifiers simplify many query expres-
sions involving composite objects. The above query expressed in SQL
is quite difficult - and quite different in structure from the ear-
lier one. This does not imply that there is anything wrong with
SQL. It is merely that SQL is relation-oriented and is best suited
to situations where it is natural to deal with whole relations.
Where it is natural to deal with a single composite object instance
SQL is usually inconvenient to work with, and composite-object-
oriented languages like COOL are unusually convenient to work with.

The concepts behind genitive relations and the use of COOL
for elementary retrieval expressions with composite objects have
been presented in detail in [7]. In this paper, COOL concepts and
facilities for defining and concentrating complex objects are pre-
sented.

1.5 Generalization or IS-A type hierarchies

The third kind of data base structure involves generaliza-
tion, that is, IS-A relationships and inheritance. Before the in-
vention of classes and object-oriented programming languages, such
structures were commonly dealt with (and still are) in COBOL and
PL/1 file processing, using variable-length record files.

The classic variable-length record file processing example
involves a file containing records about ships, where each record
represents a ship. Suppose for now that just two distinct kinds of
ship are represented, tankers and freighters, so that there are two
kinds of record in the file, each of different length and format.
But because all records deal with ships, the initial fields, such
as shipname, tonnage, captain, would be common to all records.
Other fields, o0il capacity, number of tanks, and so on, would apply
only to the tanker records, whereas container capacity, maximum
container size, and so, on would apply only to the freighter
records. Thus the program would need two types of record structure
to deal with this file, one for ships that are freighters and one
for ships that are tankers. However, within each record structure,
normally at the beginning, is the set of attributes common to all
types of ship, one of which will indicate the type of ship, ena-
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bling the record to be dealt with, that is, assigned to the correct
structure variable, when read from a file.

The object-oriented programming approach to such ship ob-
jects would be to define three classes (structures with private at-
tributes) as opposed to two record structures in COBOL or PL/1l. We
define a Ship class, together with a Freighter class that inherits
all the attributes of a Ship class, and also a Tanker class that
inherits all the attribute of the Ship class. Leaving aside for the
moment considerations of private attributes and methods, a (struc-
ture) program variable will be used to represent a specific
freighter instance and a different variable to represent a tanker
instance, each of which variables will also explicity, via in-
heritance, represent a ship instance. The contents of these
variables can be made persistent and stored as part of a data base,
if an object oriented data base system is available, the stored
structure being the equivalent of a variable-length record file.
This is essentially not any different, at least in principle, from
the COBOL or PL/1 approach, where there is a structure variable for
tanker records and another one for freighter records. What is quite
different in the object-oriented programming approach is that some
of the attributes of a class can be private, and others are derived
attributes, the result of applying a function (or method) to other,
possibly private, attributes. However, this is best treated as an
additional or extension feature of earlier ideas.

The relational approach to generalization structures is to
define a relation for the root type (for example a SHIP relation)
and each subtype (Tanker or Freighter) and for each of their sub-
types (for example a freighter could be a Bulkcarrier or a Contain-
nership), and so on. Suppose we have the type hierachy Ship, which
can be Tanker or Freighter, which can be Bulk carrier or Container-
ship. In the relational approach there would likely be five rela-
tions, one for each of the Ship, Tanker, Freighter, Bulkcarrier,
Containership relations. There is a severe problem with this ap-
proach. As an example, suppose we want all data about the container
ship Lentia. In SQL we would specify:
sql: select *

from Ship, Freighter, Containership
where Ship.ship# = Freighter.ship#
and Freighter.ship# = Containership#
and Ship.shipname = 'Lentia'.

We concatenate or join all Containership tuples with their matching
Freighter tuples and all the resulting tuples with their matching
Ship tuples (using the Ship identifier attribute ship#) to give the
full tuples for all containerships represented in the data base.
Then we select the record for shipname Lentia. However, this
presupposes that we knew in advance that the Lentia was a con-
tainership. Suppose we had not known. In that case we would have
had to search all of the subtype hierarchy looking for a match,
which is awkward to do in SQL, especially if the hierarchy is
large. There are several alternatives, but the simplest, in this
case, is search the full concatenated types for all tankers (join
of Ship and Tanker), for all bulk carriers (join of Ship,
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Freighter, Bulkcarrier) and for all containerships (join of Ship,
Freighter and Containership), which requires three separate SQL ex-
pressions. It is clear, however, that it can be awkward to handle
type hierarchies with SQL in a conventional relational data base.

In this paper we present COOL techniques, using an N“F re-
lational data base, that enable such retrievals to be expressed
more conveniently. These techniques depend on techniques for
definition and concentration of composite objects, as discussed in
the previous section.

1.6 COOL and object manipulation

In the rest of this paper we show how the composite object-
oriented language, COOL, for object-oriented N%F relational data
bases can be used with both aggregation data base structures and
generalization IS-A type hierarchies but with other structures as
well. For this reason the project data base used to demonstrate
COOL concepts in this paper is not solely either aggregation or
generalization structure oriented, but is well diversified with
respect to possible structures.

1.7 The project database

In the object-oriented approach, an object has a unique identity
that is independent of any values it contains [10]. An object
normally has associated attributes, and, as in the relational ap-
proach, one of these attributes, or a group of them, may be
regarded as a primary key. However, because every object has a
unique identity, an object need not have a primary key. Instead,
the database system will generate a unique object identifier, which
may or may not be accessible by the user, depending on the database
system employed. Such system generated unique keys are assumed in
the N2F data model used in this paper.

As well as a possible primary key attribute, an object may
have either simple attribute types, such as a quantity or a name,
whose type allows either literal numeric or alphnumeric values, or
structure attribute, that is, composite attribute types, such as
the type ADDRESS, indicating a composite value, coresponding to the
value of a C structure variable (that is not an array). As in 02,
ORION and POSTGRES [3, 16, 14, 24], an element of a composite type
can be specified using a path expression with a nested dot nota-
tion, as in address.street.number. A composite type may not be a
set, that is, an embedded relation, so that the equivalent of
repeating groups of conventional file processing are not allowed in
the N“F relations considered here.

An object type may also have collection attributes, such as
sets or lists, for example, the set of keywords in a document, or a
list of object identifiers to support a relationship. As well as
conventional stored or persistent attribute object types, an object
type may have computed object types, computed by means of func-
tions, which can use related object instances, as in Cactis [], to
derive a result. Thus for an object type Sphere, attributes radius
and center could be stored, whereas other non stored but retriev-
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able attributes could be volume() and surface-area(), and number-
of-attachments(), this last attribute being computed from the num-
ber of related object instances in the Attachments object type. If
the stored attributes are all private, only computed attributes are
available. For purposes of this paper, all attributes are assumed
to be public. The inclusion of functions as attributes is merely a
convenience. Obviously, they can be done without by defining views
that contain the results of retrieval operations, but often at the
expense of more complex query expressions.

Our N2F data base is assumed to allow all of the attribute
types described above - but, as mentioned, no repeating group
equivalents. Many of these points can be illustrated by the data-
base definition in Figure 1 and also later in Figure 3 for the pro-
ject database, which concerns document management.

Document: <
doci: Document;
title: STRING;
revised: DATE;
topic: STRING;
nchapters() INTEGER FUNCTION;
keyword: SET[STRING];
authlist: LIST[Person];
chaplist: LIST[Chapter];>
nchapters(d) =
count (select * from Chapter
where for the related doc#*Document object
doc# = d)
Chapter:
chapit: Chapter;
doc#: Document;
ctitle: STRING;
npages: INTEGER;
ndiagram: INTEGER; >
Person: <
persit: Person;
doclist: LIST[Document];
pname: STRING;
position: STRING; >
Program: <
progi#: Document
lang: STRING;
lines: integer
runlist: LIST[Runl; >
Run: <
run#: Run;
progi Program;
machine: STRING;
rundate: DATE; >

Figure 1
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With the exception of cyclic or recursive relationships,
the database in Figure 1 contains the common types of relationships
that are encountered in object-oriented databases. It is a modified
N°F version of a database used by Cattell in a discussion of
object-oriented databases [10]. It has 1:n relationships as well as
a binary many-to-many and a subtype (IS-A) relationship, this last
relationship permitting utilization of the inheritance concept
[22].

The main object type is Document, where each object
represents a document. A document can have many chapters, with each
chapter represented by a Chapter object. The number of chapters in
a document is not stored, but is derived by the function nchap-
ter(), shown defined as the result of a COOL operation, which will
become clear later. [There is no advantage in using COOL here to
define nchapters(), however. It could equally well be defined using
an SQL expression as:

nchapters(d) = select count(*) from Chapter
where doc# in (select doc# from Document
where doc# = d) ]

A person can author many documents and a document can be
authored by many persons. A person is represented by a Persomn ob-
ject and the object Authact (or author activity) emnables the
resulting many-to-many relationship between Document and Persomn ob-
jects.

The object Program represents a computer program. Since a
program is a kind of document, the set of unique (system generated)
object identifiers (prog# values) in Program objects are to be
found among the set of unique object identifiers (doc# values) in
Document. Thus the object types Document and Program form a subtype
hierarchy, the relationship between the two being an IS-A rela-
tionship. A Run object represents an execution of a program. Since
a program can be executed many times there is a 1l:n relationship
between Program and Run.

Note the significance of the IS-A relationship in the data-
base. Because of this relationship, a Program object inherits not
only the attributes of the corresponding Document but also each re-
lationship in which Document participates. Thus we can have both
legitimate requests involving attribute inheritance, such as:

"What are the titles of programs executed more than 100
times?"

and legitimate requests involving relationship inheritance:

"Who are the authors of C programs that have never been ex-
ecuted?”

The names of the attributes in Figure 1 were chosen to make the
semantics self-apparent. Where this is not so, more detailed dis-
cussion later in the paper should clarify matters. Note that the
system generated object identifier for each object type is
specified in Figure 1 using the object type. Thus the object iden-
tifier doc# has the type Document, and chap# the type Chapter.




12
The convention of using a relation name beginning with an
upper case letter, and an attribute name beginning with a lower
case letter is used throughout, with both SQL and COOL expressions.

2.0 BASIC COOL AND GENITIVE RELATION CONCEPTS

To retrieve attribute values from each object instance of a given
type that complies with a simple condition, the semantics and es-
sential syntax of SQL suffices, except where a collection attribute
is involved in a condition [7].

2.1 Genitive relations and 1:n relationships

A genitive relation is needed with the common case of retrieval of
attribute values from each tuple of object type A that satisfies a
condition that can involve one or more related tuples of type B,
where A and B are in a 1l:n or n:m relationship.

Consider the 1:n relationship between Document and Chapter
objects (Figure 1). In the object Chapter, the attribute chap#, al-
though system generated, is taken as naming the object identifier
for a chapter of a document. Accordingly, the collection attribute
chaplist in Document, which is a list of chap# values, gives a list
of the object identifiers of the chapters of that document, so that
the type of chaplist must be LIST[Chapter]. Furthermore, in a Chap-
ter object, there is an attribute doc# with the type Document, that
is, its value must be a Document object identifier. The attributes
chaplist and doc# are reference or relationship attributes. They
are used instead of the primary and foreign keys of the conven-
tional relational approach, and precisely define the 1:n rela-
tionship between the objects Document and Chapter.

Now suppose we are dealing with a specific Document object.
To specify a quantity of its chapters, that is, a quantity of its
related Chapter objects that complies with a given condition, the
construct needed must specify

(a) A quantifier, and
(b) The set of related Chapter objects
(c) The condition the specified quantity of objects must satisfy

or more formally:
{quantifier><{related objects><{(condition)>

an expression that will have the value true or false. In the syntax
of a computer language, the quantifier symbol could be any common
quantifier notation, such as for all [its], or for each [of [its]].
In the simplest case, the condition specification would involve the
attribute name, a relational operator, and a literal value, such
as: (page = 10).

To specify the <related objects)> term, where in English the
genitive expression "document's chapters" would be used, a precise
relationship specification is needed, since there could be more
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than one relationship between two object types. To explicitly
specify the relevant object instances of the relationship the
reference list chaplist can be used in a flexible and rich con-
struct that specifies what is called a genitive relation.

Semantically, what is needed is an unambiguous specifica-
tion of the current document's Chapter tuples, that is, an unam-
biguous specification of a genitive relation. Since for a given
Document tuple, the chaplist attribute specifies the set of identi-
fiers of that Document's chapters, any construct listing chaplist
and Chapter can serve to unambiguously specify of the current Docu-
ment's Chapter tuples. We therefore use the term

[Document.]chaplist*Chapter

to specify the related Chapter tuples of the current Document
tuple, that is, a genitive relation. [The complete syntax for
specifying a COOL where-expression involving a genitive relation is
shown in Appendix 1.] The use of a genitive relation is illustrated
by the retrieval:
Get the document title for each database document with at least
4 chapters with more than 10 pages.
In this case the required natural quantifier is for at least 4:

select title from [each] Document [object]
where where topic = 'databases'
and for at least 4 [Document.]chaplist*Chapter [objects]
(pages > 10)

The term chaplist*Chapter denotes the set of, that is, the derived
relation holding, Chapter tuples that are referenced in chaplist in
the current Document object. Thus a genitive relation can be looked
at as the join of the list (regarded as a unary relation) chaplist
and the relation Chapter, using the object identifier as the join
field. The relation chaplist*Chapter clearly also is the set of
child Chapter tuples for the Document tuple containing the chaplist
value used. This set of child tuples can also be expressed using
its full path name:

Document.chaplist*Chapter [objects].
[Note that chaplist* is essentially the syntactic equivalent of the
apostrophe s construct of English for the genitive case, so that
the above is semantically equivalent to the English language ex-
pression "document's chapter objects".]

This genitive relation specification technique, which
makes it possible to unamibguously refer to a set of child tuples
in a 1:n relationship, and makes it possible to treat this set as a
relation, is fundamental to COOL and is rich in possibilities.

It should be clearly understood that a genitive relation
such as chaplist*Chapter is a relation. Since a relation name in
SQL and in COOL serves as an implicit range or tuple variable, a
genitive relation name also serves as an implicit range variable in
COOL, and the COOL expression above must be interpreted in this
sense.

The above quantifier retrieval example involved retrieving
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data from a parent object, given conditions in an associated child
object, with a 1:n relation. In such expressions we used a
reference list, such as chaplist, to specify the needed genitive
relation. The converse case involves retrieval of a child, given
conditions for the parent. In this case we use the syntax variable
{reference)>, which specifies a reference (such as doc#) to the
parent entity, to costruct the relatively trivial genitive rela-
tion. This is illustrated by the retrieval:

Get the names of chapters with more than 10 pages in documents

on databases.

select ctitle from Chapter
where (npages > 10)
and for its one [Chapter.]doc#*Document [object]
(topic = 'databases');

Cross reference expressions, involving a quantifier, a
genitive relation and a condition, can be nested, in which case the
condition will itself include another cross reference expression.
This is detailed in the COOL syntax in Appendix 1, and was il-
lustrated with the retrievals earlier with the Parks data base.

Use of alias genitive relation names
A genitive relation can additionally be defined in the data base
definition has having an alias that is convenient to remember. Sup-

pose we define:

Create genitive relation alias:

Document.chaplist*Chapter Document's Chapters/
Document's Chapter objects
Chapter.doc#*Document Chapter's Document

In that case the retrieval expressions above could be rewritten:

Get the document title for each database document with at least
4 chapters with more than 10 pages.

select title from [each] Document [object]
where where topic = 'databases'
and for at least 4 Document's Chapter objects (pages > 10);

Get the names of chapters with more than 10 pages in documents
on databases.

select ctitle from Chapter
where (npages > 10)
and for its Chapter's Document object
(topic = 'databases');

Note that since the genitive case construct is of fundamental im-
poratnce in natural languages in dealings with complex objects, it
seems sensible to introduce it into computer languages for dealing
with objects.
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3.0 COOL AND COMPOSITE OBJECTS

3.1 Language constructs for retrieving composite objects

No conventional retrieval language the author is aware of does jus-
tice to retrieval and definition of composite objects. The most am-
bitious, to date, appears be be the XNF (extended normal form)
views of Starburst. The problem, which is not comprehensively ad-
dressed in conventional relational languages, is that there are two
quite different types of operations involved, each with distinct
conditions. One operation and associated set of conditions is for
selection of the full composite object stored in the data base from
a set of such objects, that is, essentially an XNF view; the other
operation and associated set of conditions is for selection of any
of the large number of possible reduced versions, or concentra-
tions, of the (XNF) composite view, that is, of the selected ob-
ject. An XNF view is not stored, although its definition is, but
the tuples that compose it are stored only in the storage form of
their respective base tables.

For example suppose we have the object type aggregation
hierarchy: object type A is parent of object types B and C; in turn
object type B is parent of object types X and Y. Suppose Al and A2
are instances of object type A, with Bl, B2, B3 ... instances of B,
and so on. Suppose then that the data base has two composite ob-
jects Al and B2, with hierarchical structures laid out as:

Al
Bl B2 Cl C2 ¢C3
X1 X2 X3 Y1 X4 X5 Y2 Y4
A2
B3 B4 B5 C4 C6
X7 X8 Y5 Y6 Y7 X10 Y8 Y9 X12 X14 X17 Y12

A set of selected objects instances like these Al and A2 composite
object instances can be defined as an XNF view. In the simplest
case the XNF view would contain only a single object instance, such
as A2, although typically several object instances will be con-
tained. For example, we can have a selection operation with associ-
ated conditions that selects composite structure A2, and rejects
Al. These conditions can involve A, B, C, X and Y entities and can
involve natural quantification. But having selected A2 (and perhaps
some other composite objects as well), from each such composite ob-
ject instance we can now create a large number of derived or con-
centrated composite objects based on the original composite object
instance selected, using quite different conditions to sculpt a
desired concentrated object instance or concentration instance.
Some concentrated objects instances derived from A2 might

be:

A2 A2

B4 c4 B5
X10 Y8 Y9 Y12
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In the conventional relational approach the tuples needed
to construct the composite object A2 would be stored as part of 5NF
relations A, B, X, Y and C:

A2 B3 X7 Y5 C4
B4 X8 Y6 Ccé

B5 X10 Y7

X12 Y8

. . X14 Y9

. . X17 Y12
A B X Y C

With conventional relational technology, each of these 17 tuples
might be delivered separately to the host program using a FETCH
[12] or equivalent command, leaving it up to the applications pro-
gram to populate a hierarchical structure variable. This is often
inconvenient.

Alternatively, with conventional SQL, a composite object
could be retrieved as sets of diverse tuple concatenations, with
one set of tuples for each ultimate or lowest-level child object
with all its ancestors in the hierarchy:

A2 B3 X7
A2 B3 X8
A2 B4 X10
A2 B5 X12
A2 B5 X14
A2 B5 X17

A2 B3 Y5

A2 B3 Y6

A2 B3 Y7

A2 B4 Y8

A2 B4 Y9

A2 B5 Y12
A2 C4

A2 Ccé

In the example above 3 distinct SQL expressions would be needed,
one for each type of tuple. The tuples would be delivered to a pro-
gram variable one at a time, and would involve duplication. This
too is often inconvenient.

In the object-oriented extended relational approach the
tuples going to construct the composite object A2 will be stored
only as part of the NZF relations A, B, X, Y and C, whose tuples
include reference lists that may include duplicates:

A2 [B3,B4,B5][C4,C6] B3[X7,X8][Y5,Y6,Y7] X7 Y5 Ch
. B4[X10]1[Y8,Y9] X8 Y6 cé
B5[X12,X14,X17)[Y12] X10 Y7 .
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. . X12 Y8 .
. . X14 Y9 .
X17 Y12
A B X Y C

Since object oriented programming languages, and older lan-
guages like C, PL/1 and COBOL, deal with composite objects as
hierarchical structure variables, a composite object would be best
delivered as a single hierarchically structured record:

A2 B3 X7 X8 Y5 Y6 Y7 B4 X10 Y8 Y9 B5 X12 X14 X17 X12 C4 C6
or, in more easily visualized terms

A2
B3
X7 X8
Y5 Y6 Y7
B4
X10
Y8 Y9
B5 X12 X14 X17 X12
C4
Ccé

whose structure would match that of a previously declared struc-
tured variable.

COOL can be used to select composite objects, that is,
the equivalent of an XNF view, and concentrate and retrieve com-
posite objects for display or delivery to such structure variables.
An example will illustrate the essence of the COOL approach. Sup-
pose the following:

(1) We want to select each composite object consisting of a
document with authors and chapters using the following com-
posite object selection conditions:

* It is a document about data base machines

* At least two of its authors are engineers

* The average chapter length exceeds 20 pages.
We intend to give the name Cl to this set of composite object
instance or XNF view.

(2) From each composite object instance in Cl, where pos-
sible, we want to deliver to a host program a concentrated ob-
ject instance, concentrated using the following concentration
conditions

* Only authors who are secretaries are included.
* Only chapters with less than 10 pages are included,
with omission of the number of diagrams attribute value.

This cannot be specified in conventional SQL, nor even the extended
SQL of Starburst, even though it is not very complicated; in prac-




18
tice composite objects with many hierarchical levels have to be
managed. The operation can be specified in COOL with a composite
object selection step followed by a concentration step. To extract
the necessary composite object instances or XNF view:

select * from Document object
where Document.topic = 'database machines'
and for at least 2 of its authact*Person objects
(position = 'engineer')
and 20 < avg(select npages
from Document.chaplist*Chapter),
* from [related] Document.chaplist*Chapter objects,
* from [related] Document.authlist*Person objects;

The where-condition specifies which composite object instances, in
terms of hierarchy type instances, are to be selected. The from-
expressions specify which subobject instances of the composite ob-
ject are to be part of the selection. As is conventional with SQL,
an asterisk denotes all attributes.

A composite object so defined may be made into a composite
object view, by means a create composite object command, which
functions like a conventional create view command. Thus the com-
posite object retrieved above could be placed in the composite ob-
ject (view) called Cl, as follows:

create [each instance of] composite object [view] Cl as
select * from Document object
where Document.topic = 'database machines'
and for at least 2 of its authact*Person objects
(position = 'computer engineer')
and 20 < avg(select npages
from Document.chaplist*Chapter),
* from [related] Document.chaplist*Chapter objects,
* from [related] Document.authlist*Person objects;

To specify the concentrated object type:

select * from Cl.Document object,
* from [related] Cl.Document.Authlist*Person objects
where position = 'secretary',
title, npages
from [related] Cl.Document.chaplist*Chapter objects
where npages < 10;

If the concentrated composite object needs to be defined as an ad-
ditional view Cll, we can use the create

create [each instance of] composite object [view] Cll as
select * from Cl.Document object,
* from [related] Cl.Document.Authlist*Person objects
where position = 'secretary',
title, npages




19
from [related] Cl.Document.chaplist*Chapter objects
where npages < 10;

The select and create commands to retrieve and create a view for a
composite object are the same as those needed to concentrate a com-
posite object. A further concentration of Cll could be created by a
further application of the the create command. The asterisk before
"from' has the conventional meaning of all attribute values. Thus
the expression

* from Cl.Document object
specifies all the attributes in the root Document tuple in an in-
stance of the set of composite object instances Cl extracted from
the data base by the 'create composite object Cl' expression.

The create composite object command is quite flexible, and
it is possible to both define and concentrate a composite object
with a single command. This is not recommended, however, since the
two operations are conceptually quite different. To create the con-
centrated composite object Cll in a single command we would write:

create [each instance of] composite object [view] Cll as
select * from Document object
where Document.topic = 'database machines'
and for at least 2 of its authact*Person objects
(position = 'engineer')
and 20 < avg(select npages
from Document.chaplist*Chapter),
title, npages
from [related] Document.chaplist*Chapter objects,
where npages < 10,
* from [related] Document.authlist*Person objects;
where position = 'secretary'

The above expressions further demonstrate the importance
of being able to specify the set of tuples related to a specific
parent tuple in a direct and concise manner, in addition to the in-
direct manner of SQL. Without this direct specification capability,
it would not be possible to specify any arbitrary concentrated com-
posite object type. Although there are only two levels in the above
example, the specification could continue to any arbitrary number
of levels. It should be apparent that as a tool for the extraction
and concentration of complex composite objects COOL is really pow-
erful and versatile - more so than any proposed SQL extensions in
the literature. The reader is also invited to attempt specification
of Cll using SQL - it simply cannot be done.

The general syntax for the create composite object command-
for extracting a composite object (with or without concentration)
from the data base is simple in principle, but repetitive:

create [each instance of]
composite object [view] <composite-object-name) as
select <attribute-listd> from <{root-object> [object]
[where <{where-expression>]
[¢attribute-1list> from <{genitive relation>
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[where {where expression)]
[Cattribute-list> from {genitive relation>
[where <where expression>]
[Cattribute-list> from
..111
{genitive relationd:=
[related][<referencing object)>.]<reference attributed*
{referenced object>[objects]]

The term <{where-expression> has the syntax shown in Appendix 1, and
identical semantics. In any case where a where-expression follows a
genitive relation specification then concentration is being carried
out in addition to initial selection or definition of a composite
object represented in the data base.

A simple Fetch command could be used to transfer composite
objects, one by one, to a host program structure variable, or in a
batch, to a host program structure array.

3.2 COOL expressions with a composite object view

COOL retrieval expressions can be used with a composite ob-
ject view. There is a difference between COOL with conventional
views and composite object views. With a conventional view COOL is
used as with base tables. For example, suppose the view, defined
with either an SQL predicate or a COOL predicate, where each tuple
contains a document title, revision date and topic for documents
with more than 50 pages:

SQL: Create view Macrodoc
as select title, date, topic
from Document
where 50 < (select sum(npages)
from Chapter
where Document.doc# = Chapter.doc#);

COOL: Create view Macrodoc
as select title, date, topic
from [each] Document [object]
where 50 ¢ (select sum(npages)
from Document.chaplist*Chapter [objects])

The retrieval: list the titles of documents about computers, can
thus be written as:

select title
from Macrodoc
where topic = "computers”;

The above expression is both correct COOL and correct SQL.
In contrast, consider the retrieval from the concentrated
composite object Cll, as defined earlier:
Get the title of each document that has at least 3 chapters with
less than 6 pages:
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select title from each Cll.Document object
where for at least 3 Cll.Document.chaplist*Cll.Chapter [objects]
(npages < 6);

Here the relation names must be prefixed with the composite object
name, since only tuples from those relations that occur in Cll are
to be considered. The expression

select title from each Document object
where for at least 3 Document.chaplist*Chapter [objects]
(npages < 6);

would in general produce a different result, since tuples not in
Cll would be used.

3.3 Language constructs for handling inheritance with generaliza-
tion or IS-A type hierarchies

No additional language constructs are needed for manipulation of
inheritance. For example, consider the retrieval:
Get the names of authors of C programs that have never executed
on machine m42.
Between Person and Document there is a many-to-many relationship,
and therefore, via inheritance, also between Person and Progranm,
which is the relationship required for the retrieval. Furthermore,
the LIST attribute persomnlist in Person holds object identifiers of
Program objects, since these are also object identifiers of Docu-
ment objects. The retrieval can therefore be easily expressed as
follows:

select pname from Person

where for at least 1 of its [related] doclist*Program objects

(lang = 'C' and for none of its [related] runlist*Run objects
(machine = 'm42'))

All retrieval expressions involving retrieval of a single object
type and inheritance can thus be handled in this way. A different
approach is needed when we want to retrieve an object instance to-
gether with inherited attributes. For example, the retrieval:

Get full information on C programs that have been run on ma-
chine M42.

Here we want a Program tuple concatenated to its parent
Document tuple, depending on conditions applying to the Program
tuples and other related tuples. This is merely a particular case
of composite object retrieval, as discussed earlier

select * from Program object
where for at least 1 of its Program.runlist*Run objects
(machine = 'm42'),
* from [related] Program.prog#*Document object;

or if we wish to treat it as a composite object view:
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create [each instance of] composite object view Pl as
select * from Program object
where for at least 1 of its Program.runlist*Run objects
(machine = 'm42')),
* from [related] Program.progf#*Document object;

Recall that earlier we discussed inheritance in the light
of both variable length files and difficulties with SQL. We had the
example of the Ship, Tanker, Freighter, Containership, and Bulkcar-
rier relations, an IS-A type hierarchy with Ship as the root. We
saw that certain types of information are not easily retrieved from
such type hierarchies by SQL; for example, we saw that it could re-
quire up to three SQL retrievals to retrieve full data about the
ship called Lentia, and more if the hierarchy were larger, if we
did not know beforehand what kind of ship it was.

But suppose these relations were NZF relations, where each
tuple has reference list attributes to tuples at the next level
down. For example, suppose Ship tuples contained the system genera-
ted identifier ship#, Tanker tuples the identifier tanker#,
freighter tuples the identifier freigter#, and so on.

The above retrieval can now be carried out with COOL by
creating a composite object type:
create [each instance of] composite object [view] Cl as

select * from Document object

Create [each instance of] composite object [view] S1 as
select * from Ship
where Ship.shipname = 'Lentia',
from Ship.ship#*Tanker,
from Ship.ship#*Freighter,
from Freighter.freighter#*Bulkcarrier,
from Freighter.freighter#*Containership;

* ok %k %

If we assume that shipnames are unique, then the object will have
only one instance. If the condition clause had been Ship.weight >
10000, instead, for example, the composite object would have many
instances, of the kind Ship concatenated to Tanker, of the kind
Ship concatenated to Freighter and Bulkcarrier, and of the kind
Ship concatenated to Freighter and Containership. And if desired,
such an object type could be concentrated, using the concentration
command described earlier.

3.4 Updating

There is a difficult problem as far as updating composite
objects is concerned. Change, deletion or insertion updating of a
composite object retrieved from the data base without concentration
does not give rise to any special difficulties, since the tuples
from which it is constructed all have a unique identifier and
belong to identifiable relations. However, when we try to update a
concentration of such a composite object, it is entirely another
matter. In many cases it will not be possible to identify the
specific tuples on which the structure is based, so that an updated
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concentration cannot easily be stored. Essentially a concentrated
object is a composite view, that is, a structure constructed from
views of individual relations. Since a view of a relation cannot
always be updated, neither can a much more complex concentration of
a composte object. A trivial, but workable, solution would be to
simply prohibit update of concentrations. However that would
normally be too drastic. What is possible as far as updating con-
centrations is concerned will be considered in a later paper.

4.0 SUMMARY

There are two fundamentally different approaches to data
base declarative languages. One approach is the entire relation-
oriented approach, embodied in the languages of the conventional
relational approach, such as DSL Alpha, SQL, and relational al-
gebra. The other approach is a composite object manipulation ap-
proach, an example being COOL, an_object-manipulation language
designed for manipulation of an N“F relational data base.

An overview of that part of COOL that is necessary for
manipulating N2F relations and relationships between them has been
presented. Full details of this part of COOL are presented elswhere
[71.

In this paper details of COOL language constructs have been
presented for construction, retrieval, concentration and further
manipulation composite object views of arbitrary complexity, with
language constructs that are restricted to objects involved in the
composite object being manipulated. It is also shown how COOL can
handle generalization or IS-A type hierarchies.

CO0L is proposed as an extension to SQL, for use where the
data base has a distinct object-orientation. Currently, there are
no implemented examples of a composite object-oriented genitive re-
lational data base language that allows the use of natural
quantifiers. However, GenRel, a project at the Space Information
Science Laboratory at the University of Calgary to develop a
prototype composite object-oriented NZF genitive relational data
base system, will embody both SQL and COOL.

APPENDIX 1 Essential COOL syntax
Note: As an aid to understanding, some productions are repeated.

PART 1 Quantifiers and cross references to related relations

{where-expression)>:=

<condition) [<<op> {quantifed xreferencel> v
{quantified xreferenced:= {quantifier>{genitive

relationd[({where expression))]

{genitive relation):=

[related] [<referencing object>.]<reference attributed*

(referenced object>[object[s]]
{op>:= AND/OR
{reference attributed:= <{reference)/
{reference list>

{condition>:= {(condition-a>/<{condition-s>
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PART 2 Conditions that involve specific atomic values

{condition-ad:= <attributename) <(comparison op> <attributename>/
{attributename) <{comparison op> {(literald/
{literal) <comparison op> {returned aggregate> /
{returned aggregate)> <{comparison op> {returned aggregate>
{returned aggregate) :=
{aggregation function)>(select <attribute>
from [each] <tuple set> [object]
[where <{where-expression>]) /
(select <aggregation function)>(<attribute))
from [each] <tuple set> [object]
[where <where-expression)] /
{tuple setd:= <{object named/<{genitive relation>
{genitive relation):=
[related] [<referencing object)>.]<{reference attributed*
{referenced object>[object[s]]
{comparison op>:= > [/ > / [not] = [ >= [ (=

PART 3 Conditions that involve sets of values

(condition-s> := <{atomic set)> {set compare op> {atomic set>
{atomic set> := <{set of literal values> /
(select <attribute>
from [each] <(tuple set> [object]
[where <{where-expression>]) /
{tuple setd>:= <object name>/{genitive relation>
{genitive relation>:=
[related]l[<referencing object).]<reference attributed*
{referenced object>[object[s]]
{set compare op> := [not] contains
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