@,

BiolVled Central

Research article

Interspecies data mining to predict novel ING-protein interactions

in human
Paul MK Gordon™!, Mohamed A Solimant123, Pinaki Bosel-2, Quang Trinh!,
Christoph W Sensen! and Karl Riabowol *1:2

BIVIC Genomics

Address: 'Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, 2Department of
Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada and 3Department of Biochemistry, Faculty of Pharmacy, Cairo
University, Cairo, Egypt

Email: Paul MK Gordon - gordonp@ucalgary.ca; Mohamed A Soliman - maesolim@ucalgary.ca; Pinaki Bose - pbose@ucalgary.ca;
Quang Trinh - qtrinh@ucalgary.ca; Christoph W Sensen - csensen@ucalgary.ca; Karl Riabowol* - karl@ucalgary.ca

* Corresponding author tEqual contributors

Published: 18 September 2008
BMC Genomics 2008, 9:426  doi:10.1186/1471-2164-9-426

Received: 9 August 2008
Accepted: 18 September 2008

This article is available from: http://www.biomedcentral.com/1471-2164/9/426

© 2008 Gordon et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The INhibitor of Growth (ING) family of type Il tumor suppressors (INGI-ING5)
is involved in many cellular processes such as cell aging, apoptosis, DNA repair and tumorigenesis.
To expand our understanding of the proteins with which the ING proteins interact, we designed a
method that did not depend upon large-scale proteomics-based methods, since they may fail to
highlight transient or relatively weak interactions. Here we test a cross-species (yeast, fly, and
human) bioinformatics-based approach to identify potential human ING-interacting proteins with
higher probability and accuracy than approaches based on screens in a single species.

Results: We confirm the validity of this screen and show that ING1 interacts specifically with three
of the three proteins tested; p38MAPK, MEKK4 and RAD50. These novel ING-interacting proteins
further link ING proteins to cell stress and DNA damage signaling, providing previously unknown
upstream links to DNA damage response pathways in which INGI participates. The bioinformatics
approach we describe can be used to create an interaction prediction list for any human proteins
with yeast homolog(s).

Conclusion: None of the validated interactions were predicted by the conventional protein-
protein interaction tools we tested. Validation of our approach by traditional laboratory techniques
shows that we can extract value from the voluminous weak interaction data already elucidated in
yeast and fly databases. We therefore propose that the weak (low signal to noise ratio) data from
large-scale interaction datasets are currently underutilized.

Background

Protein-protein interactions play vital roles in regulating
protein function and can provide valuable insight into the
biological activity of proteins and biochemical pathways
in which they function. The importance of protein inter-
actions in biology has fueled intense efforts to identify

such interactions and a vast repository of data has been
accumulated over the years, particularly in relatively sim-
ple model organisms that are easier to manipulate geneti-
cally and biochemically. A number of bioinformatics-
based approaches attempt to predict interactions using
various techniques.
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The budding yeast, Saccharomyces cerevisiae, is one of the
most comprehensively studied eukaryotic organisms and
a substantial amount of biochemical and genetic data has
been accumulated. After the publication of the S. cerevisiae
genome a decade ago [1], high throughput genetic and
proteomic screens aimed at identifying novel genetic and
protein interactions began complementing more tradi-
tional biochemical approaches [2,3]. We suspected that
the voluminous data from yeast genes with human coun-
terparts could be exploited more fully to provide better
insights into human protein-protein interactions. Yeast
and humans represent extreme ends of the eukaryotic evo-
lutionary spectrum. Therefore the genes they share are
often involved in fundamentally important cellular proc-
esses and represent an interesting set of genes which war-
rant further investigation. An example of a shared gene of
particular interest to us was ING1.

The founding member of the ING family of type II tumor
suppressors (ING1) was discovered using the method of
subtractive hybridization aimed at identifying factors that
were differentially expressed in normal mammary epithe-
lial cells as opposed to breast cancer cell lines [4]. Ectopic
over-expression of ING1 was subsequently observed to
promote G1 arrest and suppression of its expression led to
transformation in vitro and tumor formation in vive. Other
ING genes (i.e., ING2, ING3, ING4, and ING5) have been
subsequently identified in various mammalian genomes
[5]. A significant number of tumors, either (i) harbour
mutations within the ING genes, (ii) have reduced expres-
sion of ING proteins, or (iii) have altered ING protein
subcellular localization. A large spectrum of cancers show
attenuation of ING expression (reviewed in [6,7]) and
mechanistic studies have implicated the ING family in
apoptosis, gene expression, senescence, hormone signal-
ing and angiogenesis among others (reviewed in [8]). The
major mechanism through which ING proteins exert their
effects is through altering chromatin structure by regulat-
ing HAT and HDAC activity [9-11]. This involves binding
to differentially methylated histone H3 via the ING PHD
domain and also via binding to phosphatidylinositol
monophosphates through the polybasic region near the
PHD [12-15]. Binding is then believed to target associated
HAT or HDAC complexes to chromatin regions, resulting
in alteration of local histone acetylation states [10,12,14].
Other regions of the INGs have been shown to bind to
PCNA, 14-3-3, [16,17] and cytoplasmic proteins such as
liprin [18]. Therefore, we wished to establish a compre-
hensive list of ING interacting proteins that would aid in
the understanding of the complex role of this family of
tumor suppressors in regulating diverse cellular functions.
ING genes are evolutionarily conserved and members of
the ING family have been identified across the animal and
plant kingdoms including the yeast S. cerevisiae [5].
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Krogan et al. (2006) have described the use of tandem
affinity purification (TAP) tagging followed by two differ-
ent mass spectrometry methods, namely MALDI-TOF and
LC-MS/MS, with the aim of assigning interacting partners
to each of the yeast proteins [19]. An impressive 72% cov-
erage of the predicted yeast proteome was made possible
due to the increased sensitivity of tandem affinity purifi-
cation followed by mass spectrometry. We have used this
study as the initiation point to determine the range of pro-
teins that can interact with the ING family of proteins.
Here we attempt to elucidate human ING protein interac-
tions based the recently published yeast interactome data
[19], hoping to identify real interactions in the long tail of
low probability noisy interactions detected.

Results

Pairwise alignment of YNGs (yeast ING-like proteins) and
human INGs

The first member of the ING family (ING1) was discov-
ered in humans [4] and subsequently four more ING
genes have been identified (ING2-5). Homologs of ING
proteins also exist throughout the animal and plant king-
doms [5]. Three yeast proteins, YNG1, YNG2 and YNG3
(Pho23), have been shown to bear considerable homol-
ogy to the human ING1 protein in their C-terminal region
and could functionally substitute for each other [9]. Here
we generated Needleman-Wunsch pairwise alignments
between individual yeast and human ING proteins. [20].
Sequences of ING1-5 (including all known INGI1 iso-
forms) and YNG1-3 were obtained from the NCBI Gen-
bank database http://www.ncbi.nlm.nih.gov/.
Additionally, CLUSTAL-W [21], T-COFFEE [22] and
Geneious (Biomatters Ltd., NZ) were used to generate
multiple sequence alignments, from which we derived the
additional pairwise alignments shown in the Additional
file 1. Although the alignment scores were very close to
each other, given the consistency of the results obtained
from the various sequence alignment tools used, the fol-
lowing observations can be made: (i) YNG1 shows the
highest degree of sequence homology to ING1, (ii) YNG2
shows considerable homology to ING4 and ING5, and
(iii) Pho23 and ING3 are similar to each other. These
results agree with previous reports of phylogenetic rela-
tionships among ING proteins [5] and also with a recent
report which attempts to classify ING proteins with
respect to their association with either HAT or HDAC
complexes [11].

ING-interacting protein prediction

Since members of the ING family of tumor suppressors
show significant sequence conservation from yeast to
humans [5], we proposed that functional interactions
might also be conserved. From the available yeast interac-
tome data, it is evident that the yeast counterparts of the
ING proteins, also referred to as YNGs, interact with sev-
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eral other yeast proteins under normal physiological con-
ditions [19]. We reasoned that although the majority of
these interactions have very low probability scores, and
hence are likely artifacts of the detection method, several
of them may be transient, but nonetheless real interac-
tions. Because of the availability of a large amount of mar-
ginal, unanalyzed yeast interaction data [19], we
hypothesized there was potentially valuable untapped
data to guide selection of human ING-interacting protein
candidates. The yeast dataset has the advantage of being
near saturation with regards to interactome coverage, so
that almost all real interactions should be detected. Our
confidence was bolstered by the fact that many of the pre-
viously validated ING interactions in humans were also
present in the yeast interactome data. We attempted to
reconcile interactomes from multiple model organisms
based on two different approaches: orthology [23] and
interaction network topology techniques [24]. Neither
provided new insights for novel ING interacting proteins.
Given the richness of available yeast data, we designed a
new approach to better predict ING interactions. The bio-
informatics workflow devised to filter down the massive
lists of yeast interactions to a few salient candidates for
biochemical validation is illustrated in Figure 1, and can
be generalized to be useful for many other proteins.

Identification of domains

Since conservation of interacting partners is often a func-
tion of conservation of domain structure within [25] or
across species [26,27], the next step was to identify the
domain structure similarities between human and yeast
ING family proteins. In order to characterize possible
interaction domains of ING-like proteins quantitatively,
we used an iterative consensus building processes. This
process consisted of building initial Hidden Markov Mod-
els (HMMs), a position-specific amino acid substitution
model of previously identified domains such as the leu-
cine zipper-like (LZL) motif, plant homeodomain (PHD),
potential chromatin regulatory (PCR) domain [now
referred to as the lamin interacting domain or LID],
nuclear localization signal (NLS), and peptide-interacting
motif [PIM, now referred to as the poly basic region or
PBR] using the multiple sequence alignments reported in
[5]- These domain models were searched against the Uni-
prot database http://www.pir.uniprot.org/ (which con-
sists of non-redundant protein datasets for all species) to
identify proteins with domains closely related to the
human INGs. All Uniprot proteins matching the human
domain models were then added to the original model
sequence to make them less species-specific and new
HMMs were built based on the expanded list of
sequences. This process was repeated until no new Uni-
prot matches were found. Because Uniprot contains data
from many species, the iterative approach is a method to
create domain models capturing sequence conservation
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amongst multiple species. The phylogenetic distribution
and consensus sequences for the domains are illustrated
in Figure 2, and significance thresholds are discussed later
in this section.

The use of domain-specific models

Since protein-protein interactions are primarily based on
specific domains, we tried to generate domain-specific
models of amino acid substitutions for the various anno-
tated domains of the ING family proteins. This allowed us
to statistically examine the validation of the domain mod-
els across species. Results obtained from this method of
analysis should be more sensitive and verifiable than the
generalized substitution rates used by the current ortholog
detection methods based on pairwise alignments. This
improved sensitivity may be due to the accounting for the
specific evolution of individual protein domains and/or
the greater flexibility of HMMs over simple pairwise align-
ments. The domain structure models generated using this
approach were then used to identify possible ING-like
proteins in model species for which interaction data is
readily available. We investigated D. melanogaster, C. ele-
gans, and S. cerevisiae interactome data as these species
have the most extensively consolidated lists of protein-
protein interactions.

We ran our generalized ING domain models against the
proteomes of the above mentioned three species to verify
if counterparts of human ING protein domains exist in
them. The interaction databases to use depend on the con-
servation breadth of the gene to be investigated. Only one
of the domains was found to be conserved in a single pro-
tein in C. elegans (PHD in Y51H1A.4, human INGI1b
homolog). Much better conservation of multiple ING
domains was observed in S. cerevisiae and D. melanogaster.
We therefore focused on identifying potential ING-inter-
acting proteins in these two species. The domain conser-
vation in these species is illustrated in Figure 3. As
expected, the PHD domain is highly conserved across all
three, with the highest overall homology with human
ING2. Also noteworthy is that the fly ING1 homolog con-
tains an LZL domain, whereas the human version does
not. The PCR domain is strongly conserved in all humans
and fly INGs, but is not present in yeast. It has recently
been shown to interact specifically with lamin proteins
and was subsequently renamed the lamin interaction
domain (LID). Interestingly, the PIM domain is weakly
conserved in yeast's ING2 homolog, but not in fly. The
PIM was also recently renamed the polybasic region (PBR)
since it harbours several basic residues and specifically
binds signaling phospholipids [15]. The inclusion thresh-
olds for each domain model were: PIM 104, PHD 1073,
NLS 10-6, PCR 103, and LZL 10-5. The thresholds represent
the weakest e-value for any sequence used to create the
domain model, i.e. the lowest score for a known positive
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Figure 2

Domain consensus and phylogenetic distribution of ING domains, based on iteratively-built Hidden Markov

Models, seeded with multiple sequence alignments from
tion, according to the default WebLogo algorithm [67].

[5]- The height of letters represents the degree of conserva-

example. The different thresholds are a consequence of
the varying natures of the domain models (length, amino
acid composition, phylogenetic distribution, etc.). With
the exception of PIM (10-2), all domain matches are well
above these thresholds. PIM's somewhat weak score may
reflect the fact that the domain model was built using only
animal sequences (Figure 2).

Identifying human orthologs

Using the taxonomic search tools of MAGPIE [28,29], the
1075 yeast genes were filtered to just those with human
homologs. This left 381 genes that both interact with
YNGs in yeast, and have human orthologs (see Additional
file 2). We reasoned that the probability of the yeast inter-
action being conserved in humans would be higher for
those proteins that show homology in another higher
eukaryote because this would be evidence for the mainte-
nance of the interaction in the Metazoan lineage. We fil-
tered the ING-interacting proteins found in both yeast
and human against the Drosophila database as the Dro-
sophila ING showed high degree of domain conservation
with the yeast and human ING proteins. Of the 36 ING-
interactors identified in fly by FlyBase [30], only 5 had
strong yeast homologs (e-value < 10-35), and only 3 of

these showed a high degree of sequence conservation in
humans. These 3 fly genes (having putative conserved
interacting partners in yeast) have 5 potential homologs
in human, namely: hRPC155, PAK1B, MAP3K4 (MEKK4),
p38MAPKa, and GSPT1. The Venn diagram in Figure 4
shows the overlapping sets of potential ING-interacting
proteins in fly, yeast and human. The numbers shown
beside the interactions involving fly represent interaction
probability [31]. All yeast interactions shown are 0.014 or
0.012 using the probability scale from the data in [19].
The homology statistics for yeast, fly and human ING-
interactors that were used to construct the Venn diagram
can be found in Additional file 3.

Biochemical validation of potential human ING protein
interactions

In order to select candidates for biochemical validation of
human ING interactors, we compared our data with
experimentally validated ING interactions in human, as
listed in the STRING database [32]. Nine of the ten exper-
imentally validated human ING interactors with yeast
homologs in the 381 gene list had extremely weak interac-
tions (p < 0.017) [19]. It therefore seems reasonable to
biochemically validate any of the 5 potential human
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Protein Domain scores, based on Hidden Markov Models in Figure 2 for the three species under study. The con-
servation of multiple ING domains amongst the species increases the confidence in predicting conserved protein interactions

among them.

homologs, even though they had similarly low probabil-
ity scores according to available yeast data. The fact that
none of the 5 candidate human homologs were found in
the validated list of ING interaction from the STRING
database is not surprising, since the human interactome
dataset is at present not nearly as saturated as that of yeast.

To restrict the list of 5 candidates further, we considered
the biological relevance of the potential interactions to
the known functions of INGs. Accordingly, the choice was
amongst PAK1b, MAP3K4 (MEKK4) and p38MAPKa in
descending order of homology among the 3 species (e-
values 1028, 1045, and 1026, respectively). We also
selected another gene (RAD50) that does not fulfill all of
the requirements of our method, but which is predicted
by STRING. RAD50 has a weak yeast interaction score but
an extremely strong homolog (10-15¢) in humans. We
wanted to test if in such cases the yeast data could be used
alone in successfully predicting human ING interactors.

Based on scientific relevance of the interactions (see Dis-
cussion), we chose to biochemically validate three puta-
tive interactions (MEKK4, p38MAPK and RAD50) using
co-immunoprecipitation (Co-IP) followed by western

blot analysis. As shown in Figure 5A, IP-western analyses
indicated that endogenous RAD50 specifically interacted
with endogenous ING1. Since the other two proteins that
we chose to investigate, MEKK4 and p38MAPK are closely
linked in a stress pathway [33], we chose to confirm these
interactions under both normal and stress conditions
approaches, namely UV. Figure 5B shows that overex-
pressed p38MAPK and overexpressed MEKK4 showed
strong signals in ING1 immunoprecipitates, but not in the
negative control glutathione-S-transferase (GST) immu-
noprecipitates. Figure 5C shows that ING1 immunocom-
plexes from untransfected cells, but not GST
immunocomplexes, contain both p38MAPK and MEKK4,
confirming that this interaction occurs between endog-
enous proteins. Unlike the case for ING1-PCNA interac-
tion that is increased by UV-induced stress [16], treatment
of cells with a UV dose sufficient to induce a stress
response did not markedly alter the degree of kinase-
INGI1 interaction. Input lanes also show that robust sig-
nals were obtained for both the p38MAPK and MEKK4
proteins in control western blots of lysates used, under
conditions where little, if any, signal was seen for ING1.
This indicates that high levels of the kinases are expressed
in our experimental cell system, compared to ING1 pro-
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? ING-interacting genes

36 potential ING-
interacting gene

Figure 4

Overlap of the ING-interactome datasets for human, fly and yeast. 5 potential ING interactions are shared
between fly and yeast, and 3 of the fly interactions involve genes with good human homologs (central nodes).
These interactions (3 in fly with 5 equivalents in yeast) are candidates for biochemical validation, hence the question marks, in

humans.

tein. Relatively high expression levels of the kinases com-
pared to ING1 likely explains why reciprocal IP-western
assays did not clearly demonstrate a detectable interaction
(data not shown), since only a small portion of the
kinases would be expected to interact with ING1 protein
based upon their apparent relative stoichiometry.

Comparison to existing datasets and methods

To evaluate the combined contribution of Krogan et al.
marginal data and our prediction technique to the study
of protein-protein interactions, we compared our results
to those obtained from biochemical surveys, and other
prediction algorithms [34]. Through an evaluation of the
completeness of current yeast and human protein-protein
interaction networks, we propose that making raw unfil-
tered results available to all researchers could help distin-
guish between real and spurious interactions. Table 1

summarizes the few ING interactions we could extract
from the available datasets surveyed by Hart et al. [34],
covering most of the commonly used techniques, from
yeast two-hybrid to tandem affinity purification followed
by mass spectrometry. Unfiltered experimental data is
only available in very few of the datasets listed in Table 1,
therefore we observed how many of the ING interactions
in other datasets also occurred in the unfiltered Krogan
dataset, and how well they matched our technique's crite-
ria. It is clear from the data that YNG/ING is poorly repre-
sented in several datasets, and that different methods
produced different biases in which ING is detected. This
supports the notion by Hart et al. that even the well-stud-
ied yeast interactome is only about 50% elucidated by
existing filtered datasets.
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Figure 5

Biochemical validation of potential human ING protein interactions. A) HEK293 cells were transfected with
the equal amounts of the indicated constructs and cell lysates were immunoprecipitated using anti-INGI and
then immunoblotted with anti-p38MAPK. The blot was reprobed with anti-INGI to confirm equal IP efficiency. B) Same
as in panel A but immunoblotting with anti-MEKK4. C) Endogenous interaction between ING| and p38 MAPK under non-UV
and UV conditions. HEK293 cell lysates were immunoprecipitated using anti-ING and then immunoblotted with anti-
p38MAPK. Interestingly, the interaction seems to be stronger under normal rather than stress conditions. The input shows
equal amounts of cell lysates have been used. INGI levels after reblotting of the same membrane with anti-INGI. INGI levels
were equal under both normal and stress conditions. D) Same as in C but the immunoblotting was done with anti-MEKK4 to
detect ING|-MEKK4 interaction at the endogenous interaction. E) Same as in C but the immunoblotting was done with anti-

RADS50 to detect INGI-RADS50 interaction at the endogenous level.

Based on our success in identifying valid ING interacting
proteins from the unfiltered dataset in Krogan et al., we
strongly agree with Hart et al. that the research community
would be much better served by the release of raw interac-
tion datasets in general for comparison and consolida-
tion. Additionally, some original datasets, such as those
from Ito el al., were only available via the Internet Archive
http://www.archive.org/web/web.php as the original web
links referenced in the papers no longer exist.

Other bioinformatics-based approaches have been used
to predict interactions between proteins (for a review, see
[35]). Sequence, domain, and motif structure based
approaches form the basis of Bayesian network models
[36]. Examining co-evolution of interacting proteins by
comparing phylogenetic trees [37], correlating mutations
[38], or gene fusion [39] also rely on sequence based
approaches. Protein domain interface-based approaches
[40] also exist. Other approaches such as gene expression,
gene ontology annotations, and transcriptional regula-
tion, can also be used to predict whether or not a group of
proteins are members of the same complex. Our attempts

to use conventional protein-protein interaction predic-
tion tools [41-43] on ING and YNG proteins did not yield
results beyond those described in the various public inter-
action repositories (as listed in [44]) or predicted by liter-
ature text mining. An exhaustive comparison of our
technique to others is beyond the scope of this paper, but
Table 2 summarizes the results of searching for ING1/2/3
interactions employing various techniques.

It must be noted that our core predictions (hRPC155,
PAK1B, MAP4K3, p38MAPK and GSPT1) do not overlap
with other ortholog-based techniques [43], which would
be the most natural comparison to make. Interestingly,
our two marginal predictions, PDI1 and CDC37, agree
with some methods in Table 2. The fact that none of the
core predictions overlaps, but marginal ones do highlights
the fact that different techniques were used to define
orthologs. All of the methods in Table 2 used either InPar-
anoid [45] or Homologene [46] to define interspecies
gene mappings. The former maps only YNG1 and Pho23
to the human counterparts we have identified, while the
latter maps all three yeast ING equivalents to ING3.

Page 8 of 14

(page number not for citation purposes)


http://www.archive.org/web/web.php

BMC Genomics 2008, 9:426

http://www.biomedcentral.com/1471-2164/9/426

Table I: Comparison of datasets used by Hart et al.[34] for ING protein interaction predictions.

Reference Total number of INGI/YNGI ING2/YNG2 ING3/PHO23 Interactions
Interact-ions interactions interactions interactions matching our
predictions
Yeast Krogan [197* 393,878 237 772 349 5
Krogan [19] 14,317 5 24 15 0
Jansen [36]# 49,640 0 0 0 0
Ho [68] 8118 0 0 0 0
Gavin [69] 589~ 0 0 3 0
Ito [70] 4,549 2 | 2 0
Uetz [71] 957 0 0 0 0
Gavin [72] 491~ 2 2 8 0
von Mering [32]* N/A I 19 17 0
Humans Rual [73] 6,726 0 0 0 0
Stelzl [74] 5,749 0 0 0 0
Rhodes [75] 39,816 I 0 0 0
Lehner [76] 71,806 3 0 0 0
von Mering [32]* N/A 22 3 18 0

*raw dataset

~proteins purified

#using Lyt > 300

Amedium confidence experimental reports

The uniqueness of our core predictions suggests that the
technique we have developed provides added value over a
straightforward multi-species prediction tools. Given an
unfiltered dataset, it is possible that some of the tech-
niques used in Table 2 that employ existing biochemical
data would also predict some or all of our five candidate
interactions. However, we are unaware of any follow-up
studies by the authors of those tools using a raw dataset.
It is not unreasonable to assume that the level of false pos-
itive predictions from these tools would increase substan-
tially without some changes to their algorithms, which
were built for "clean" input datasets. In contrast, we err on
the side of false negatives by using strict 1) multi-species
criteria and 2) gene-family specific domain models to cast
a highly restrictive "lens" on Krogan et al's massive unfil-
tered dataset. This explains why our methodology is com-
plementary to the existing techniques. We do not suggest
that our technique will find all true positives, because

interactions are not always shared between multiple spe-
cies, and not all interactions have been elucidated. Rather,
our technique provides guidance for researchers working
on proteins whose interactions are not successfully pre-
dicted using existing techniques (such as the ING family
presented here).

Discussion

In this study we have shown that a high degree of conser-
vation of the ING proteins exists between human and
yeast based on their interactions with analogous proteins
across these species. This is consistent with previous
reports showing conservation of ING protein sequence,
particularly in specific domains [5], and conservation of
function in regulating chromatin structure through associ-
ations with HAT and HDAC complexes (reviewed in
[8,47]). In addition to the specific interactions that we
have confirmed experimentally, our work highlights the

Table 2: Comparison of ING results for existing protein interaction prediction tools.

Total number of
Interactions

Prediction Tool

ING1/2/3 interactions

Interactions not in existing
STRING dataset

Overlap with predictions
from this work

12D [78] 200,599 33
YeastNet [77]# 102,803 100
OPHID [41] 47,221 10
POINT [43] 45,378 49
Ulysses [42] 26,797 22
Predict [79] 20,088 5

2 0
57 0
2 0
26 A
15 I*
5 I*

# A yeast database

AThe concurring interactor, PDII, was excluded from the 5 core predictions of this work due to weakness of the human homolog (see Figure 4)
* The concurring interactor, CDC37, was excluded from the 5 core predictions of this work due to weakness of the human homolog (see Figure 4)
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fact that many additional potential and novel interactions
may occur between analogous proteins in these two
organisms. Over 1,000 proteins were reported to interact
with YNGs [19] and of these proteins, we found that 381
had identified homologs in human cells. Based on our
MAGPIE analysis and initial examination of three of the
proposed interactions, many of the set of 381 proteins are
likely to also interact with human INGs. The in silico
approach we have designed allowed us to predict new pro-
tein-protein interactions for the human INGs with a high
degree of success and confirmed many previously eluci-
dated interactions such as those with p21, Karyopherin,
HAT/HDAC proteins and histone H3.

Our findings suggest that ING family proteins are
involved in a more diverse array of biological processes
than are presently suspected from the current literature
and some of the interactions suggest possible additional
mechanisms that might underlie their tumor suppressor
capabilities. The three new interactions we have eluci-
dated and biochemically confirmed here, RAD5O0,
P38MAPK and MEKK4, further link ING1 to DNA dam-
age/stress response pathways [8,48]. ING interaction with
RADS50, an important component of the MRE11-RAD50-
NBS1 complex, gives credence to previous reports linking
ING proteins to DNA damage signaling and repair path-
ways via PCNA and GADDA45 [16,49,50].

In an attempt to understand the connection between the
ING, MEKK4, and p38MAPK protein interaction net-
works, we generated a merged interaction graph (Figure
6). Several reports have indicated that different forms of
stress, such as UV, chemotherapeutic agents and hypoxia
affect the function of the ING proteins [15,16,51-55]. The
mammalian JNK/p38MAP kinase kinase kinase (MEKK4)
and the yeast (S. cerevisiae) Ssk2p protein are homolo-
gous, with MEKK4 being able to replace all of the known
functions of Ssk2p in yeast. The stress-activated mitogen-
activated protein kinase (SAPK) pathways are integral
components of diverse stress signaling pathways such as
UV, hypoxia, heat, osmotic shock, pH, oxidative damage,
cytokines, pheromones and others [33,56]. The fact that
ING1 can interact with both MEKK4 and p38MAPK is not
surprising given the facts that all three proteins are evolu-
tionarily conserved, bear common links to several differ-
ent signaling pathways, both ING1 and MEKK4 bind to
GADDA45 [49,57] and both MEKK4 and p38MAPK are in
a well defined stress response pathway [33]. This observa-
tion is also consistent with reports that ING proteins affect
transcription factor activity [58,59] since the MEKK4/
P38MAPK stress activated kinase cascade culminates in
the regulation of various transcription factors, some of
which are outlined in Figure 6. Analysis of the effects of
altering ING1 activity on MEKK4/p38MAPK signaling
under different conditions of extracellular and intracellu-
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lar stress should serve to better clarify the roles that phys-
ical interaction of ING1 with these proteins plays in the
mammalian stress response cascades. Since several other
ING-interacting partners showed similar degrees of inter-
action, it is tempting to speculate that further examination
of the additional candidate ING-interacting pathways we
have identified in multiple model organisms, and partic-
ularly in yeast, will shed further light on the function of
the ING family of chromatin regulators.

The overall philosophy of the prediction procedure out-
lined in Figure 1 is to examine the large number of inter-
actions detected in yeast for a given protein, regardless of
their probability scores, and then to reduce the list to a few
candidates. This reduction is accomplished by succes-
sively keeping only the overlap of: 1) domain occurrence,
and 2) interaction pairs, in at least three species. This
approach stands in contrast to current automated predic-
tion methods based on just one or two species, which
often use only relatively high-scoring interaction data to
prevent too many false positive predictions. The success of
our approach, with the test case of ING1, suggests that the
large quantity of low-scoring interaction data available in
yeast is currently underutilized.

Our approach is semi-automatable (see Methods), but the
researcher must: 1) assist in creating the multiple
sequence alignments of domains, and 2) select biologi-
cally tenable interactions from the final shortlist gener-
ated. The procedure focuses on one gene (or set of closely
related genes) at a time, and is not specific to ING pro-
teins, but rather can be applied to any human gene with
equivalents in yeast. We expect researchers who concen-
trate on a specific gene can beneficially use this focused
approach to interaction prediction when generalized,
large-scale prediction services do not yield good results.

Conclusion

We have developed a method using comparisons in differ-
ent organisms in which homologs exist, to predict with a
high degree of certainty what particular protein interac-
tions found in unfiltered data may occur in vivo and con-
tribute to the activities of, in this case, the ING proteins.
This cross-species (yeast, fly, and human) bioinformatics-
based approach was used to identify potential human
ING1 interacting proteins with higher probability and
accuracy than approaches based on screens in a single spe-
cies. We confirm the validity of this screen and show that
ING1 interacts specifically with three proteins tested:
p38MAPK, MEKK4, and RAD50. These novel ING-inter-
acting proteins further link ING proteins to cell stress and
the DNA damage signaling, providing previously
unknown upstream links to DNA damage response path-
ways in which ING1 participates.
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Figure 6

Merger of the interaction maps for the three human proteins INGI, MEKK, and p38a (p38MAPK) based on
empirical data retrieved from the STRING database. Lines connecting p38a and its interactors have been excluded for
clarity, except where the interactor is directly shared with MEKK4 as part of a well-defined stress response pathway. MEKK4
and INGI have relative few confirmed interactions, but the interactions predicted and confirmed in our study (shown as thick
lines) are the first to directly tie INGI to multiple key proteins in this stress response. Examining such interaction overlap
graphs can help, in deciding which interaction predictions to validate biochemically, based on biological tenability and salience.

Methods

Computational approach

The process of creating a list of protein interaction predic-
tions consists of 8 broad steps (please refer to Figure 1 for
the precise data flow between steps). We assume that the
researcher already has a human gene, or closely related set
of human genes of interest (GOI) in mind for analysis,
which in our case was ING. The first step was to determine
if anything resembling ING exists in yeast. This was done
using [60] against the full set of S. cerevisiae genes down-
loaded from the yeast genome database (SGD) [61].
Given good pairwise matches, we determined that it was
worthwhile to proceed with step 2: the construction of
domain models to provide a quantification of their con-

servation among species. In step 2, a multiple sequence
alignment (MSA) was performed using CLUSTALW [21],
and adjusted by hand as required. In step 3, the HMMER
software http://hmmer.janelia.org/ was used to build and
calibrate Hidden Markov Models (HMMs) from multiple,
distinct conserved regions, i.e. potential domains, of the
MSA. In step 4, these HMMs were used to search for pro-
teins in other species with the same domains, using a
DeCypher hardware-based HMM search (ActiveMotif Inc.,
Carlsbad, CA), although HMMER software could also be
used. The database searched against was Uniprot [62],
which provides a non-redundant set of know eukaryotic
genes. Each HMM's search results was reviewed by hand,
and portions of database sequences deemed matching
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(primarily those with e-value < 10-5, and few large gaps)
were incorporated into the HMM. This searching and extra
sequence incorporation was done iteratively (since new
sequences in the HMM affect e-value results) until no new
matches were found in Uniprot. The end result of step 4
was that for each domain we had an HMM representing
the domain's very particular evolution across eukaryotic
species. Step 5 was to compare the HMMs against the
complete protein sets from model organisms with large
amounts of interaction data, namely, worm [63], fly [30]
and yeast (SGD). This was once again done using the
DeCypher HMM search, and identified model organism
genes with the same domains as the ING proteins. Given
HMM matches in yeast and at least one more model
organism (fly, in our case), we proceeded in step 6: to
extract its interacting proteins. The source of the interac-
tion data was either 1) yeast data base [19] or 2) the other
model organism database (FlyBase) [30]. Step 7 was to
reduce the list of ING-interacting proteins in the model
organisms to just those satisfying two conditions: 1)
strong pairwise ING-iteracting proteins homology
between human, yeast and fly, and 2) having interaction
data in both yeast and fly. These filters reduced the list dra-
matically. Finally, in step 8, we viewed the human
homologs of each ING-interacting proteins in the STRING
database [64] and assessed the biological relevance of the
potential interactions in humans.

We have focused on the use of thorough methods in our
approach to maximize the sensitivity of our results. It
would be possible to substitute certain methods, such as
BLAST [65] for Smith-Waterman, or InterPro models
searches [66] for HMM building in these steps, with the
caveat of reduced predictive value of the results.

Cell culture

HEK293 (ATCC CRL-1573) cells were maintained in Dul-
becco's Modified Eagle's medium (DMEM; Gibco-RBL)
supplemented with 10% fetal bovine serum and 100
units/ml of penicillin and 100 mg/ml of streptomycin
(Gibco-BRL) in an incubator with 5% CO, at 37°C. Cells
were seeded in 10 cm or 15 cm dishes 24 hrs prior to
transfection.

Constructs

The pCI-ING1b plasmid has been described in [16], and
the pTP11 (Rad50 with C-terminal his tag), MEKK4 and
P38MAPK constructs were kind gifts from Drs. Tanya
Paull (Rad50), Steve Pellech (p38MAPK), Richard Vail-
lancourt (MEKK4) and James Woodgett (p38MAPK).

In vitro transfection and UV-irradiation

HEK293 cells were transiently transfected with the plas-
mids mentioned above at 60-70% confluence using a
standard calcium phosphate protocol. Media was
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removed after 24 hrs, cells were washed with PBS and
either exposed to 40 J/m2 of UV radiation or left
untreated. Fresh media was added and cells were incu-
bated for 2 hrs before they were harvested.

Co-immunoprecipitation and western blotting
Transfected and untransfected HEK293 cells were har-
vested and lysed under non-denaturing conditions in ice-
cold RIPA buffer containing protease inhibitors (Com-
plete Mini, EDTA-free protease inhibitor cocktail tablets
from Roche Diagnostics). Cell lysates were sonicated on
ice and centrifuged at 14,000 x g at 4°C for 15 min. The
supernatants thus obtained were precleared by incubation
with 20 pl 1:1 slurry of protein G-Sepharose (Amersham)
for 30 min at 4°C and then incubated with 5 pg of specific
antibody and 40 pl of protein G-Sepharose (1:1 slurry) or
an equivalent amount of mouse anti-ING1 preconjugated
with 40 pl of protein G-Sepharose (1:1 slurry) at 4°C for
3 hrs on a roller system. The immunocomplexes recovered
on beads were washed two times for 5 min with 1 ml of
RIPA buffer before the addition of Laemmli sample
buffer. Proteins were resolved by sodium dodecyl sulfate-
PAGE and transferred to nitrocellulose membranes
(Hybond; Amersham). Immunoblotting was performed
with a cocktail of four mouse anti-ING1 monoclonal anti-
bodies or with rabbit anti-RAD50 polyclonal (Abcam),
anti-p38MAPK (Zymed) or anti-MEKK4 (a gift from Dr.
Richard Vaillancourt). Immunoreactive bands were visu-
alized using an enhanced chemiluminescence reagent
(Amersham Biosciences).
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Additional material

Additional file 1

Pairwise similarity of ING family proteins in yeast and human. Using var-
ious alignment algorithms, we found that YNG1 is the ortholog of human
ING1/2, YNG?2 is the closest homolog to human ING4/5, and PHO23
(YNG3) is similar to human ING3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-426-S1.ppt]
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Additional file 2

Potential yeast ING-interacting proteins with human homologs. Using the
taxonomic tool in MAGPIE, we filtered the list of 1075 yeast ING-inter-
acting proteins to only those having human homologs with e-value < 10-
35, yielding 381 potential conserved interactions in human.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-426-S2.jpeg]

Additional file 3

Evidence for potential ING-like proteins and their interactors in worm,
fly, human and yeast. In order to increase the confidence in our predic-
tions, we filtered the human-yeast common ING interactors to only those
interactions conserved in fly (worm had poor homologs). We found 36 fly
ING-interacting proteins with either yeast or human homologs, and only
5 showed conservation amongst the three species.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-426-S3.doc]
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