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Abstract 

In this paper we consider a periodic review, reorder point, order-up-to-level system, a 

type commonly used in practice.  Motivated by a specific practical context, we present a novel 

approach to determining the reorder point and order-up-to-level (for a given review interval) so 

as to target desired values of i) customer fill rate and ii) average time between consecutive 

replenishments.  Specifically, by using a diffusion model (producing normally distributed 

demand) we convert a periodic review, constant lead time setting into one having continuous 

review and a random lead time.  The method is simple to implement and produces quite 

reasonable results. 

 

Keywords:  Inventory control, Heuristics, Stochastic, Diffusion process, Supply chain 

management 
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1. Introduction 

This paper is concerned with an inventory control system commonly used in practice.  

Specifically, the status of an item is examined at equi-spaced (review) intervals and, if the 

inventory position (on-hand plus on-order minus backorders) is at or below the reorder point 

(denoted by s), then a replenishment, that raises it to the order-up-to-level (denoted by S), is 

initiated.  The review interval (denoted by R) is often preset at a convenient value (e.g., day, 

week), which is what will be assumed here. 

The research leading to this paper was motivated by the actual context faced by a major 

international producer and distributor of food products.  In particular, they were using a periodic 

(weekly) review control system and it was deemed crucial to determine s and S so as to 

approximately satisfy two practical constraints:  i) a specified fill rate (fraction of demand 

satisfied without backordering), i.e., a marketing requirement, and ii) a specified average time 

between consecutive replenishments (e.g., three weeks), desirable from the perspective of the 

supplier (production department).   

It is inherently difficult to find proper values of the two control parameters, the reorder 

point and order-up-to-level, primarily due to periodic review causing undershoots of the reorder 

point before replenishments are triggered.  This is illustrated in Figure 1, where replenishments 

are placed at times 0 and 3R and a shortage occurs because the undershoot at time 3R plus the 

demand during the lead time L exceeds the reorder point s.  The probability distribution of the 

undershoot is a complicated function of the distance S s  and the distribution of demand during 

the review interval R.  This complexity is not present in the simpler periodic review, order-up-to-

level system where a replenishment is initiated at each review instant (see, for example, Robb 
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and Silver, 1998, or Silver et al., 1998).  However, this latter type of system is not appropriate 

when there is a non-negligible fixed cost associated with each replenishment. 

Practical implementation would be facilitated by a relatively simple procedure for 

determining appropriate values of s and S.  An early software package, IBM’s IMPACT system 

(IBM, 1971), provided a simple, but overly conservative, choice of s by assuming that the 

inventory position is just above s at the review prior to the one at which a replenishment is 

initiated, hence s must provide protection over an interval of length R L .  This approach had 

been advocated even earlier (Brown, 1967).   

In contrast, most of the literature presents rather complicated procedures.  Moreover, 

none of these explicitly deals with both of the above-mentioned constraints.  Schneider (1978, 

1981) and Tijms and Groenevelt (1984) used asymptotic results from renewal theory (Roberts, 

1962) to approximate the undershoot distribution.  For a different type of service measure 

(fraction of demand being on backorder), Schneider and Ringuest (1990) developed power 

approximations for s and S in the spirit of the original power approximation work of Erhardt 

(1979).  Bashyam and Fu (1998) advocated a simulation-based approach to minimize setup and 

holding costs subject to meeting a prescribed fill rate.  Other authors (e.g., Erhardt and Mosier, 

1984, and Zheng and Federgruen, 1991) considered shortage costs rather than a service 

constraint.  More recently, Moors and Strijbosch (2002) developed an efficient descriptive 

method for determining the fill rate for given values of s and S under the assumption of gamma 

distributed demand.  Unlike in the approach we propose, their method would have to be 

combined with a search on s and S to achieve a desired value of the fill rate. 

In the next section the underlying assumptions are laid out.  Then, in Section 3 we 

provide a relatively non-technical overview of the general approach for determining appropriate 
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values of s and S, subject to the practical constraints mentioned earlier.  This is followed in 

Section 4 by a listing of the detailed steps of the method as well as a numerical illustration of its 

use.   Simulation testing (in terms of how closely the two constraints are met) is presented in 

Section 5.   Summary comments are provided in Section 6 and supporting technical details, 

including mathematical derivations, are placed in appendices.   

 

2. Assumptions underlying the approach 

The assumptions underlying the proposed procedure include the following:   

i) The inventory position is reviewed every R units of time, where R is prespecified, not 

controllable. (For convenience we set R=1, i.e. the review interval is redefined as unit time.) 

ii) There is a constant replenishment lead time (L) from when a replenishment is triggered (at a 

review instant) until it is available in stock. 

iii) Demands in disjoint intervals of time are independent, stationary, and normally distributed. 

iv) There is complete backordering of any demand during a stockout situation. 

v) The service measure is the fill rate, the fraction of demand to be routinely met from stock. 

vi) A target average time (n units of time) between consecutive replenishments is specified 

rather than explicitly incorporating setup and carrying costs. 

 

3. Overview of the suggested approach 

The key idea in the approach is to recognize that the reorder point is reached at a random 

time between reviews.  As shown in Figure 1, at the instant that the inventory position drops to 

the reorder point there is a time, denoted by , remaining until the next review instant.  (Under 

periodic review, the actual value of  would not be observed in practice.)  Thus, we can think in 
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terms of a continuous review model with effective lead time L , where  is a random variable.  

Under the assumption of stationary, independent, normally distributed demands in non-

overlapping time intervals, the behaviour of the inventory position can be modeled by a diffusion 

process which, in turn, permits us to develop estimates of the first two moments of  as a 

function of the distance S s  and a measure of variability (the coefficient of variation, or CV) of 

the demand process.  These moments are used as building blocks in choosing S and s so as to 

meet the two practical constraints in the following manner. 

First, we recognize that the expected time between consecutive replenishments in the (R, 

s, S) system is the average size of a replenishment divided by the demand rate.  But the average 

size of a replenishment is S s  plus the average size of the undershoot (see Figure 1).  The 

latter, in turn, is easily developed from the expected value of .  Thus we can select S s  so as 

to target the desired average time between replenishments, hence satisfying the second practical 

constraint. 

Second, the moments of also lead to expressions for the mean and variance of total 

demand (denoted by X) over the effective lead time L .  Assuming that this total demand is 

approximately normally distributed, we can then determine a value of s appropriate to satisfy the 

fill rate constraint.  Finally, from the previous paragraph we know the desired value of S s , 

hence we now can compute the value of S. 

 

4. Suggested procedure for selecting appropriate values of s and S 

In this section the steps of the implementation method are laid out.  The underlying 

mathematical derivations are provided in Appendix A.  Recall that the given review interval (R) 

is used as the basic time period. 
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Step 1: Determination of the mean and standard deviation of  

For given values of the parameters n (the desired integer average number of time 

intervals between replenishments) and CV (the standard deviation divided by the mean of the 

demand per unit time), the functions given in Tables 1 and 2 provide easily computed values of 

the mean E( )  and the variance Var( ) .   

Step 2: Determination of the (normalized) mean and standard deviation of X  

Setting µ to be the average demand during R, the basic time interval, compute  

 
E( )

E( )
X

L  (1) 

and  

 2[E( ) ]( ) Var( )X L CV  (2) 

Step 3: Finding the appropriate value of the safety factor k 

Compute the quantity 2(1 ) / XP n , where 2P  is the desired (fractional) value of the fill 

rate.  Then set  

 2(1 )
( )u

X

P n
G k  (3) 

where ( )uG k is the unit normal loss function.   There are tables, spreadsheet functions (e.g., in 

Excel), and other accurate, rational approximations that permit finding k when the value of 

( )uG k is known. 

Step 4: Determination of the (normalized) appropriate value of the reorder point, s 

Now /s  is given by 

 
E( ) Xs X

k  (4) 
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 Step 5: Determination of the (normalized) appropriate value of the order-up-to-level S 

Use   

 E( )
S s

n  (5) 

 

From equations (1) to (5) and the fact that E( ) and Var( )  do not depend on the value 

of µ, it can be seen that all of the key results are normalized with respect to µ, the average 

demand per unit time, i.e. the value of µ does not affect the choice of /s  or /S . 

 

Numerical illustration.  Consider the following realistic set of parameters values: 

n = 4 (i.e., on average, a replenishment is desired every 4 periods) 

CV = 0.3 

L = 2 periods (i.e. the lead time is equal to 2 review intervals) 

P2 = 0.9 (desired fill rate) 

Step 1: From the fractional polynomial approximations in Tables 1 and 2, E( )  = 0.5033 and 

Var( )  = 0.0839.   

Step 2: Equations (1) and (2) give E( ) / 0.5033 2 2.5033X and  /X  

22.5033(0.3) 0.0839   0.5561. 

Step 3: From equation (3) we have ( ) (0.1)4 / 0.5561 0.7194uG k .  Using a table lookup or 

Excel function (see Appendices B and C of Silver et al., 1998), 0.5309k . 

Step 4: Use of equation (4) produces / 2.5033 ( 0.5309)(0.5561) 2.208s .   

Step 5: From equation (5) there results / 5.705S .  So, for example, if the average demand 

per review interval,  = 100, then s = 220.8 and S = 570.5.   
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5. Simulation testing of the approach 

Our approach has involved approximations including the assumption of a normal 

distribution of X.  Thus, it is important to simulate the actual performance associated with using 

the prescribed values of s and S.  The simulation replicates what would happen in actual 

application of (R, s, S) control.  Specifically, the inventory position is only updated at each 

review instant.  For the update  

 

inventory position at a review instant   

inventory position after a possible order at previous review  –  

total demand in the review interval . 

 (6) 

The total demand is randomly generated from a normal distribution with parameters  and .  

Note that in the simulation the times at which the inventory position hits s (hence the ’s) are not 

observed, just like in practice.   

If the updated inventory position (denoted by I) is less than or equal to s, then an order 

(of size Q = S – I) is placed.  Otherwise nothing is done until at least the next review.  Any order 

placed arrives a constant time L later.  Rather than keeping track of any backorders just before 

replenishments arrive, we have used a far more efficient method of estimating the actual fill rate 

achieved.  The technical details of the method, as well as how the actual average time between 

replenishments is estimated, are presented in Appendix B.   

 

5.1  Selection of parameter values 

As seen from the detailed steps of Section 4, there are four independent parameters, 

namely CV, n, L and P2.  As shown in Table 3, each of these was set at three reasonable values 

(from a practical standpoint) to produce a total of 81 experiments.   
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As mentioned earlier, in the practical context that motivated this work, integer values of n 

were desired.  The lowest value of interest is 2 (in that n = 1 would imply ( , )R S  control, which 

is much easier to analyze as the protection period is always exactly R + L).  Because demand is 

normally distributed we used an upper value of 0.5 for the CV.  For higher values of CV a 

different distribution (e.g., gamma) would likely be more appropriate.  The L values were 

selected so that the smallest was less than the review interval and the largest appreciably larger 

than the interval.  Finally, the three fill rates span the range typically targeted in practice. 

 

5.2 Results 

The results are displayed in Table 4.  Although the details are not shown, all half-widths 

of 95% confidence intervals were less than 0.007 (0.12%) for the estimates of the average time 

between orders and less than 0.0004 (0.05%) for the estimates of the fill rates.   

The major finding, indicated by the low percent deviations from the two targets (n and 

P2), is that the approach works very well overall.  Deviations from n as high as just over 5% 

occur in the average time (AT) between replenishments.  However, such deviations are relatively 

unimportant in practice because, even if the average time between replenishments was right at 

the targeted value, such as 2 periods, there would still be occasions where the observed times 

would differ, e.g., be 1 or 3 periods, simply due to the random nature of the demand, i.e., one 

could never assure that the time between consecutive replenishments was a constant. 

All of the entries in the last column of the table are negative, indicating that the achieved 

fill rate is always somewhat below the target.  The largest deviation of 3.03% occurs in the third 

line, where n = 2 and CV = 0.5.  (This also produces one of the highest deviations of AT from n.)  

This combination of n and CV tends to produce a number of instances of small  values (in that 
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the distribution of first passage time from S to s has a significant mass below, but close to, 2).  

This occurs for all cases where CV = 0.5, but to a lesser degree as n, L and P2 increase. 

There are two possible causes of the inaccuracy.  The more obvious reason is the 

inaccuracy in assuming that X (the total demand in L ) has a normal distribution.  We were 

able to empirically determine the actual distribution of X in the following way.  The time (u) for 

the diffusion process to first move the inventory level from S down to s has an analytical 

distribution (see equation (9) in Appendix A), thus u values were randomly generated from that 

distribution.  But each value of u implies an associated value of τ, the remaining time until the 

next review (e.g., with R=1 a u value of 3.4 implies a τ of 0.6).  Thus we were able to randomly 

generate a large number of values of τ.  Then, for each such τ we randomly generated a value of 

X from a normal distribution with mean (τ )L  and variance 2 ( )L . We thus developed 

empirical distributions of X for different combinations of the parameters, comparing each with a 

normal distribution having the same moments.  As expected, the empirical distribution became 

closer to the normal as the fixed component L increased. This helps explain why the fill rate 

deviation decreases as L increases. 

The second cause of the slight inaccuracy of our method is more subtle.  If the reorder 

point (s) is first reached at a distance τ from the next review instant, we have used an associated 

effective lead time of length L . However, recalling the diffusion representation of the 

demand process, which permits negative demands (returns), it is conceivable that by the time of 

the next review the inventory position could have come back up above s due to negative overall 

demand in the interval τ.  It can be shown that this is far more likely to happen for low values of 

τ.  In such a case, the position will very quickly drop back to the reorder point, resulting in a 

relatively large value of τ (occurring in the next R interval).  Thus, low values of τ assumed by 
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our model will tend to be replaced by actual larger values.  Consequently, our approach 

underestimates both E( ) and Var( ) , resulting in a fill rate slightly lower than the target as well 

as an average order size (which has a component proportional to E( ) ) larger than targeted, 

hence leading to an average time between replenishments somewhat higher than n.  As 

mentioned earlier, it is precisely when CV takes on its highest value of 0.5 that there is a 

significant probability of small τ values occurring.   

The authors (Silver et al, 2008) have developed a modified approach for adjusting the 

estimates of E( ) and Var( )  under such circumstances.  This modified approach is available 

upon request from the authors.  However, as discussed earlier, it is our opinion that, from a 

practical standpoint, even without the adjustment (which would complicate matters from an 

implementation perspective) the deviations from the desired target values of fill rate and average 

time between replenishments are small enough not to be of concern. 

 

6. Summary 

In this paper we have considered an (R, s, S) inventory control system, a type commonly 

used in practice.  Motivated by a practical context, we have presented a novel approach to 

determining s and S (for a given review interval R) so as to target desired values of i) customer 

fill rate and ii) average time between consecutive replenishments.  Specifically, by using a 

diffusion model we converted a periodic review, constant lead time situation into one having 

continuous review and a random lead time.  The basic method is simple to implement and 

produces quite reasonable results.   

There are a number of possible extensions of this work, including: 
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i) Dealing with a variable lead time.  Except for the possibility of crossing of orders (which 

cannot happen in the context of the current paper because τ is, by definition, less than R), this 

should be a straightforward extension. 

ii) Using a demand distribution other than the normal, particularly to encompass situations 

where the CV exceeds 0.5.  One possibility would be to modify the normal so that it cannot 

take on negative values as suggested by Strijbosch and Moors (2006).  Another would be to 

use the gamma distribution.  A third option would be to consider a discrete distribution, such 

as the Compound Poisson, so as to be able to model large, individual demand transactions. 

iii) Incorporating shortage costing rather than a service measure. 

iv) Treating a different control system, specifically an (R, s, mQ) system where orders must be 

placed in an integer multiple m of a prescribed, basic replenishment quantity.  This would be 

appealing where the supply comes from production, e.g., the production department may 

prefer to produce in integer multiples of a convenient lot size (Q).  An equivalent context 

would be where supply is only delivered as an integer number of non-unit-sized (Q) packs.   
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Appendix A – Derivations Leading to the Procedure for Selecting Values of s and S 

 

A.1 ( )E  and ( )Var  for a given value of S s  

As indicated in Figure 2 (which reflects setting 1R ),  is the time from the instant that 

the inventory position first reaches s until the moment of the next review.  The behaviour of 

cumulative normally distributed demand (hence the change in the inventory position away from 

the order-up-to-level, S) can be modeled as a continuous time diffusion process (Miltenburg and 

Silver, 1984).  Moreover, the probability density function of the first passage time, u, for the 

inventory position to drop from S to s is given by (Cox and Miller, 1965)  

 
2

0
0 023

00

( μ )
( ) exp 0

22
u

S s uS s
f u u

uu
 

Setting  

 
S s

m  (7) 

and   

 CV  (8) 

we obtain 

 
2

0
0 023

00

( )
( ) exp 0

2( )2
u

m um
f u u

CV uCV u
 (9) 

As an aside, Burgin (1969) developed an analytic expression for the expected value of u. 

Now, multiple values of u can produce the same value of .  Specifically 0  will 

result from any of 01u , 02 , etc.  Hence, the density function of  is given by 
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0 0

1

( ) ( )u

i

f f i  

Using (9) we have  

 
2

0
0 023

1 00

( )1
( ) exp 0 1

2( ) ( )2 ( )i

m im
f

CV iCV i
 (10) 

Unfortunately, it is not possible to analytically develop expressions for the moments of .  

However, note that the density function, hence the moments, depend on only two parameters, 

namely m and CV.  For given values of these parameters 0 can be discretized on a fine grid and 

accurate estimates of E( )  and Var( )  can be found by numerical integration.   

 

A.2 Determining S s  to target the desired average time between replenishments (also 

leading to Step 1 of the procedure) 

 

For a given value of   the expected size of the undershoot  

 0 0E(undershoot | )  

Hence E(undershoot) E( ) Let Q denote the order size.  Then, the average order size 

 E( ) E(undershoot) E( )Q S s S s  

The average time between replenishments 

 
E( )

E( )
Q

t  

Using (7), E( ) E( )t m .  But we want to target an integer n for E(t).  Thus we require 

 E( )m n  (11) 

Now E( ) is a function of both m and CV.  Thus, for a given value of CV we have to find the m 

that satisfies (11).  This was done using Mathematica where for each value of m, as mentioned 
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earlier, numerical integration is needed to estimate E( ) .  Rather than providing detailed tables 

of E( )  vs. CV, for several practical values of n we have instead used Stata (StataCorp. 2003) to 

fit fractional polynomial functions of degree 3 (with very high R
2
 values).  The results of fitting 

functions to 51 values of E( ) , resulting from equi-spaced values of CV between 0.1 and 0.5, are 

shown in Table 1.  Note that the powers of CV have been adjusted to the average CV value (0.3) 

in the approximation expressions; see the Stata Base Reference Manual (vol. 1, pp. 402-3) for 

further information.   

In the above, once the m is found that satisfies (11) for given values of n and CV, we then 

use numerical integration to estimate Var( ) .  Again, very accurate fractional polynomial 

functions were fit to Var( )  as a function of CV for selected values of n, as shown in Table 2. 

 

A.3 Determining s to give a desired service level (Steps 2, 3 and 4 of the procedure) 

As discussed in the previous subsection, for given values of n and CV we are able to 

determine E( ) and Var( ) .  Let X represent the total demand in the effective lead time L .  

As evident in Figure 1, a shortage will occur if X exceeds the reorder point s.  We can model the 

situation as a continuous review, reorder point system where the effective lead time L  is a 

random variable with mean E( ) L  and variance Var( ) .  Under such circumstances X has 

moments (see Silver et al., 1998, p. 283) 

 E( ) [E( ) ]X L  (12) 

and 

 
2 2Var( ) [E( ) ] Var( )X L  (13) 

Dividing (12) by µ and (13) by µ
2
 we have  
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E( )

E( )
X

L  (14) 

and   

 2

2

Var( )
[E( ) ]( ) Var( )

X
L CV  

Taking the square root of the latter results in  

 2[E( ) ]( ) Var( )X L CV  (15) 

In the usual fashion, set E( ) Xs X k .  It is again convenient to divide through by   to obtain  

 
E( ) Xs X

k  (16) 

If we assume that X is normally distributed (which we know is an approximation because  is a 

random variable; however, Tyworth and O’Neill, 1997, and Silver et al., 1998, pp. 272-3, argue 

that as long as / E( ) 0.5X X , there is little risk in making the normality assumption), then use 

of (8) leads to the expected units short per replenishment cycle (see Silver et al., 1998) 

 EUSPRC ( )X uG k  (17) 

where 

 0 0 0( ) ( ) ( )u

k

G k z k z dz  (18) 

is the unit normal loss function and 0( )z is the unit normal density function.  Note that there is a 

more precise version of (18) which turned out to not be required in our numerical experiments, 

specifically  

 EUSPRC ( )X u u

X

n
G k G k  (19) 
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The target allowed (average) units short per replenishment cycle 

 2AUSPRC (1 )E( )P Q  (20) 

From (17) and (20) and noting that E(Q) = n , we thus require 

 2(1 )
( )u

X

P n
G k  (21) 

A.4 Determining the S value (Step 5) 

Use of (7) and (11) gives 

 E( )
S s

n  

Hence  

 E( )
S s

n  (22) 

 

Appendix B – Some Technical Details of the Simulation 

 To estimate the fill rate achieved, we have used the “virtual measures” approach of 

variance reduction first suggested by Ignall and Carter (1975).  Specifically, let ( )iI s be the 

inventory position when the ith order (of size Qi) is placed.  Then (for reference purposes see 

(19)) the expected units short at the end of the lead time conditional on iI can be computed 

analytically as  

 EUS( ) i i i
i u u

I L I Q L
I L G G

L L
 

Over a large number (N) of replenishments the estimated average number of units short per 

replenishment is  



19 
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1
EUS EUS( )

N

i

i

I
N

 

Also, i iI Q S .  Thus 

 
1

EUS 1 N
i

u u

i

I L S L
G G

NL L L
 

where the last term on the right side is a constant.  Consequently, we only have to compute 

i
u

I L
G

L
 for each replenishment i.   

Now an estimate of the average order size is given by  

 
1

1
E( )

N

i

i

Q Q
N

 

and the expected fill rate is  

 
EUS

1
E( )

FR
Q

 

The other performance measure we need is the average time between replenishments 

 
E( )

AT
Q

 

Besides point estimates of each of FR and AT, confidence intervals were developed based upon 

the replication-deletion method for estimating a steady-state mean (see, e.g., Law and Kelton, 

2000).

 

 



 

 

Figure 1 – Undershoots in a Periodic Review System 

 

 

 

 



 

 

Figure 2 – Relation Between First Passage Time (u) and 

 

 

 

 



 

 

Table 1 – Fractional Polynomial Approximations of E( )  as a Function of CV for Selected 

Values of n 

 

 

 

n Approximation (note C  CV) 

2 .53608 + .44271(C
 –1 

– 3.333) + 1.7634(C 
–½

 – 1.826) + 1.0508(C 
–½

 ln C + 2.198) 

3 .51211 + 1.8652(C – .3) – 1.1430(C
2
 – .09) + 3.1367(C

2
 ln C + .1084) 

4 .50325 + 2.1455(C
½

  – .5477)  – .65943(C
½
 ln C +.6594) + .50973(C

½
 (ln C)

2
 – .794) 

5 .50079  – .13438(C 
–1

 – 3.333) – .39946(C 
–½

 – 1.826)  – .28188(C 
–½

 ln C + 2.198) 

6 .50004 – .00237(C 
–2

 – 11.11) – .03307(C 
–1

 – 3.333) – .02296 (C 
–1

 ln C + 4.013) 

 

 

 

 

 

 

 

 

Table 2 – Fractional Polynomial Approximations of Var( )  as a Function of CV for Selected 

Values of n 

 

 

n Approximation (note C  CV) 

2 .07401 +  .53380(C – .3)  – .58217(C
2
 – .09) 

3 .08283  +  .36794(C
½
 – .5477)  – .35809(C

½
 ln C + .6594) 

4 .08387  – .12888(C 
–½ 

– 1.826) – .10939(ln C + 1.204) 

5 .08371  +  .01876(C 
–1

 – 3.333)  +  .00887(C 
–1 

ln C + 4.013) 

6 .08352 – .00078(C 
–2

 – 11.11)  +  .00503(C 
–1

 – 3.333) 



 

Table 3 – Settings of Independent Parameters 

 

 

Parameter  Definition  Values Selected 

     

n 
 target average number of review (unit) intervals 

between replenishments 

 
2, 4, 6 

     

CV 
 coefficient of variation of (the normally distributed) 

demand in a unit interval 

 
0.1, 0.3, 0.5 

     

L  lead time  0.5, 2, 4 

     

P2  target fill rate   0.8, 0.9, 0.99 

 



 

Table 4 – Simulation Results 

     Average Time (AT) Between Orders  Fill Rate (FR) 

P2 L n CV  Observed % Deviation from Target, n  Observed % Deviation from Target, P2 

0.8 0.5 2 0.1  1.980 -0.99%  0.800 -0.01% 

0.8 0.5 2 0.3  2.023 1.13%  0.790 -1.29% 

0.8 0.5 2 0.5  2.102 5.11%  0.776 -3.03% 

0.8 0.5 4 0.1  3.965 -0.88%  0.799 -0.11% 

0.8 0.5 4 0.3  4.005 0.12%  0.792 -0.99% 

0.8 0.5 4 0.5  4.079 1.97%  0.780 -2.45% 

0.8 0.5 6 0.1  5.948 -0.87%  0.799 -0.11% 

0.8 0.5 6 0.3  5.985 -0.25%  0.794 -0.74% 

0.8 0.5 6 0.5  6.061 1.01%  0.785 -1.90% 

0.8 2 2 0.1  1.980 -0.99%  0.800 -0.01% 

0.8 2 2 0.3  2.023 1.13%  0.790 -1.23% 

0.8 2 2 0.5  2.101 5.06%  0.779 -2.68% 

0.8 2 4 0.1  3.964 -0.89%  0.799 -0.11% 

0.8 2 4 0.3  4.005 0.14%  0.793 -0.94% 

0.8 2 4 0.5  4.081 2.03%  0.783 -2.08% 

0.8 2 6 0.1  5.947 -0.88%  0.799 -0.11% 

0.8 2 6 0.3  5.987 -0.21%  0.794 -0.74% 

0.8 2 6 0.5  6.063 1.05%  0.786 -1.71% 

0.8 4 2 0.1  1.980 -0.99%  0.800 -0.02% 

0.8 4 2 0.3  2.022 1.11%  0.791 -1.14% 

0.8 4 2 0.5  2.101 5.06%  0.781 -2.39% 

0.8 4 4 0.1  3.964 -0.89%  0.799 -0.09% 

0.8 4 4 0.3  4.006 0.16%  0.793 -0.86% 

0.8 4 4 0.5  4.079 1.96%  0.786 -1.81% 

0.8 4 6 0.1  5.947 -0.88%  0.799 -0.11% 

0.8 4 6 0.3  5.986 -0.24%  0.795 -0.67% 

0.8 4 6 0.5  6.060 0.99%  0.788 -1.57% 

0.9 0.5 2 0.1  1.980 -0.98%  0.900 -0.01% 

0.9 0.5 2 0.3  2.023 1.14%  0.890 -1.11% 

0.9 0.5 2 0.5  2.102 5.11%  0.879 -2.28% 

0.9 0.5 4 0.1  3.964 -0.90%  0.899 -0.07% 

0.9 0.5 4 0.3  4.007 0.18%  0.894 -0.70% 

0.9 0.5 4 0.5  4.077 1.93%  0.885 -1.69% 

0.9 0.5 6 0.1  5.948 -0.87%  0.899 -0.08% 

0.9 0.5 6 0.3  5.985 -0.26%  0.895 -0.58% 

0.9 0.5 6 0.5  6.061 1.01%  0.887 -1.45% 

0.9 2 2 0.1  1.980 -0.99%  0.900 -0.01% 

0.9 2 2 0.3  2.022 1.12%  0.892 -0.92% 

0.9 2 2 0.5  2.102 5.12%  0.884 -1.74% 

0.9 2 4 0.1  3.964 -0.89%  0.899 -0.08% 

 



 

Table 4 – Simulation Results (continued) 

     Average Time (AT) Between Orders  Fill Rate (FR) 

P2 L n CV  Observed % Deviation from Target, n  Observed % Deviation from Target, P2 

0.9 2 4 0.3  4.007 0.17%  0.894 -0.70% 

0.9 2 4 0.5  4.082 2.05%  0.887 -1.47% 

0.9 2 6 0.1  5.947 -0.88%  0.899 -0.09% 

0.9 2 6 0.3  5.988 -0.20%  0.895 -0.56% 

0.9 2 6 0.5  6.067 1.12%  0.889 -1.27% 

0.9 4 2 0.1  1.980 -0.99%  0.900 -0.00% 

0.9 4 2 0.3  2.022 1.11%  0.893 -0.74% 

0.9 4 2 0.5  2.102 5.09%  0.887 -1.42% 

0.9 4 4 0.1  3.964 -0.90%  0.899 -0.07% 

0.9 4 4 0.3  4.006 0.15%  0.894 -0.63% 

0.9 4 4 0.5  4.080 1.99%  0.889 -1.20% 

0.9 4 6 0.1  5.947 -0.89%  0.899 -0.08% 

0.9 4 6 0.3  5.987 -0.21%  0.895 -0.53% 

0.9 4 6 0.5  6.065 1.09%  0.890 -1.10% 

0.99 0.5 2 0.1  1.980 -0.98%  0.990 -0.00% 

0.99 0.5 2 0.3  2.021 1.07%  0.987 -0.36% 

0.99 0.5 2 0.5  2.102 5.11%  0.983 -0.76% 

0.99 0.5 4 0.1  3.965 -0.88%  0.990 -0.04% 

0.99 0.5 4 0.3  4.006 0.15%  0.987 -0.35% 

0.99 0.5 4 0.5  4.083 2.08%  0.984 -0.60% 

0.99 0.5 6 0.1  5.947 -0.89%  0.989 -0.07% 

0.99 0.5 6 0.3  5.986 -0.24%  0.987 -0.30% 

0.99 0.5 6 0.5  6.062 1.03%  0.985 -0.49% 

0.99 2 2 0.1  1.980 -0.98%  0.990 -0.00% 

0.99 2 2 0.3  2.022 1.11%  0.988 -0.24% 

0.99 2 2 0.5  2.100 5.01%  0.986 -0.42% 

0.99 2 4 0.1  3.965 -0.89%  0.990 -0.04% 

0.99 2 4 0.3  4.005 0.13%  0.988 -0.24% 

0.99 2 4 0.5  4.083 2.07%  0.987 -0.36% 

0.99 2 6 0.1  5.947 -0.88%  0.990 -0.05% 

0.99 2 6 0.3  5.989 -0.19%  0.988 -0.20% 

0.99 2 6 0.5  6.062 1.03%  0.987 -0.32% 

0.99 4 2 0.1  1.980 -0.99%  0.990 0.00% 

0.99 4 2 0.3  2.023 1.15%  0.988 -0.17% 

0.99 4 2 0.5  2.102 5.09%  0.987 -0.28% 

0.99 4 4 0.1  3.964 -0.90%  0.990 -0.03% 

0.99 4 4 0.3  4.005 0.13%  0.988 -0.17% 

0.99 4 4 0.5  4.076 1.90%  0.987 -0.26% 

0.99 4 6 0.1  5.947 -0.88%  0.990 -0.04% 

0.99 4 6 0.3  5.986 -0.23%  0.989 -0.15% 

0.99 4 6 0.5  6.064 1.06%  0.988 -0.25% 
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