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Abstract 

This thesis discusses the design of the Timing and Logic SIMulator (TLSIM): 

a fast, accurate digital circuit simulator. The development of TLSIM is broken 

down into a number of issues, each of which is described in detail, resulting in a 

design choice. Among these issues are the selection of signal and device models, and 

a scheduling algorithm. Efficient methods for event cancellation, high-impedance 

handling and function evaluation are also presented. 

TLSIM incorporates a computationally efficient device model, based on the fol-

lowing assumptions: circuits can be decomposed into interconnected, unidirectional 

devices; node voltages always saturate, and delays may be lumped at device outputs. 

In addition, TLSIM uses a four-valued signal representation (O,1,X,Z). 

TLSIM's execution speed is compared to commercial software, and favourable 

results are measured. This speedup is attributed to a number of design features, 

including the level of abstraction of TLSIM's device model, its event scheduling and 

cancellation mechanisms, and optimizations related to memory allocation. 
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Chapter 1 

Introduction 

As Very Large Scale Integration (VLSI) technology advances, designers are building 

ever-larger integrated circuits. Currently, state-of-the-art microprocessor designs 

incorporate up to two million transistors. This figure is the result of a trend in 

fabrication technology, where the minimum feature size in MOS technologies has 

been dropping by approximately O.2tm every two years, for at least the last decade 

[23, 14]. This trend is expected to continue for at least another four years. 

Two problems arise because of the rising level of integration. The first is that 

the cost for lithography and fabrication of high device density prototype wafers is 

rising [23]. The second is that design verification for digital circuits becomes more 

difficult as circuit complexity increases. These problems together mean that while 

design errors are becoming even less tolerable, the ability of current tools to verify 

design correctness is diminishing. 

Clearly, there is a constant need for better design verification tools. In the initial 

stages of circuit design, one of the primary tools used to check designs is a circuit 

simulator. A circuit simulator reads in a description of the circuit and the signals 

applied to its inputs, and predicts its behaviour. Using this tool, a designer can 

check whether a circuit will perform correctly for a given set of inputs. 

1 



2 

1.1 Circuit Simulators 

There are several types of circuit simulators currently in use [19, 11, 33, 1, 37, 40, 22, 

3, 4, 9, 39]. They differ primarily in the trade-off they make between execution speed 

and the accuracy of their predictions. Models using a higher level of abstraction take 

less time to execute, but give less detailed predictions about circuit behaviour. 

Circuit simulators may be characterized by the models they use to represent 

signals and devices in the circuit. Signal models may be continuous [21] or discrete, 

and discrete models may use two or more signal states. There are many possible 

device models. Among these are: continuous models [11], using resistors, capacitors, 

etc., switch-level models [38, 9, 12, 33, 31, 1, 5, 2], using ideal switches, resistors, 

etc., gate models [39, 4] and functional models [18, 29]. In general, the device and 

signal models are related, but a number of combinations are possible. For instance, a 

switch-level simulator may use either a continuous or discrete signal representation. 

The most precise, but slowest signal model is the continuous model. Continuous 

domain simulators, such as Simulation Program with Integrated Circuit Emphasis 

(SPICE), solve a set of simultaneous equations in order to calculate the transient 

response of every circuit element. By using continuous variables to represent sig-

nals in the circuit, these simulators obtain good accuracy. Unfortunately, this is 

accomplished at the cost of very slow execution. Continuous-domain simulators are 

normally used to design basic components, such as standard cells and gates. The 

performance characteristics of these components are then used as parameters for 

simulators with a higher level of abstraction. 

Switch-level simulators are faster but less accurate. These simulators model a 
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circuit as a collection of switches, resistors and capacitors. Switch-level simulators 

achieve better performance than continuous-domain simulators by using only a small 

set of discrete values to represent node voltages. Some of them are able to approx-

imate propagation delays by estimating each driving transistor's channel resistance 

and dynamically calculating the charging / discharging capacitance to each node 

[1]. Although they do provide an excellent degree of behavioural verification, the 

ability of these simulators to accurately predict the timing characteristics of a circuit 

is unclear [10]. 

Gate-level simulators achieve better performance by disallowing bidirectional swi-

tches [3, 6]. Requiring circuit elements to be strictly unidirectional has a number 

of significant computational advantages. In general these simulators are faster than 

switch-level simulators. Gate-level simulators, however, are incapable of directly 

modeling certain circuit structures, especially MOS circuits that make use of charge 

storage and sharing effects [9]. 

Higher-level simulators generally use a procedural language to model complex 

elements [18, 29]. These are the fastest, because the internal operation of large circuit 

blocks is not calculated. However, these simulators are the least accurate, because 

the timing behaviour of these blocks is impossible to predict without simulating their 

internal operation. 

1.2 Compiled vs. Interpretive Simulation 

One of the major differentiating factors between simulators is whether or not they 

generate executable code. Some simulators represent the circuit to be simulated as 



4 

a data structure, and apply various algorithms to change its state over simulation 

time. Other simulators convert the circuit specification into source code (typically 

in assembler or C), which is then compiled into an executable program. These two 

approaches are illustrated in Figure 1.1. 

Netlist 

(fast) 

(slow) 

(very fast) 

Source 
code 

(fast) 

Compiler 

Test 
Executable vectors 
PR gram (typically 
4, many) 

Simulation 
results 

Netlist 

Simulation 
results 

Test 
... vectors 

(typically 
few) 

(a) Compiled (b) Interpretive 

Figure 1.1: The compiled and interpretive simulation approaches 

The first approach, called interpretive simulation, has the advantage that simu-

lation commences almost immediately after the simulator is invoked, since the effort 

required to construct a graph of the circuit is minimal. However, due to the complex 

data structures involved, interpretive simulation is relatively slow. Compiled simula-

tion, on the other hand, incurs a large amount of overhead for compilation. However, 

once the circuit has been compiled, very few machine instructions are required to 

model devices such as gates and flip-flops. Accordingly, compiled simulation proceeds 

much faster. 

The choice of either compiled or interpretive simulation depends on two factors: 
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the required flexibility in the device model and the number of test vectors to be 

processed in a typical simulation run. In order to gain a performance advantage, 

compiled simulators must use only simple devices, such as gates, which map well 

to machine instructions. Accordingly, compiled simulators are less flexible in their 

choice of a device model. For small test vectors, interpretive simulators are faster, 

since they do not incur compilation overhead. For exhaustive testing, it is usually 

preferable to use a lower level of abstraction, so compiled simulation is acceptable. 

If the number of test vectors is sufficiently large, the performance gain attained 

by replacing complex device evaluation functions with short sequences of machine 

instructions makes up for the compilation overhead. 

The relationship between simulator performance and test vector size is illustrated 

in a general way in Figure 1.2. 

Interpretive 
simulation 

Compiled 
simulation 

Compile 
overhead 

Initialization overhead 

Simulation length 

Figure 1.2: Performance of compiled vs. interpretive simulation 
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1.3 The TLSIM Digital Circuit Simulator 

This thesis describes the design of the Timing and Logic SIMulator (TLSIM): an 

interpretive digital circuit simulator which uses an efficient hybrid device model. 

TLSIM is meant for use in circuit design. It uses a functional device model, combining 

features of both the gate-level and algorithmic models. This model produces results 

at least as accurate as traditional gate-level simulators, while at the same time 

achieving much of the performance and flexibility previously associated only with 

algorithmic models. 

TLSIM is meant for circuit design, not for exhaustive circuit testing. This design 

goal is crucial to many of the design decisions made in its development. In the cir-

cuit design process, a user enters a circuit description, and tests it with some input 

vectors. This process is normally repeated very often, so it is important for a simu-

lator to give fast turn-around. Accordingly, start-up overhead in simulation should 

be minimized. In particular, a compiled circuit simulator would be inappropriate for 

circuit design, as circuit compilation could easily take more time than the simulation 

runs. With this in mind, TLSIM was implemented as an interpretive simulator. 

1.4 Project Background 

TLSIM was developed as a component in a larger project, whose goal was to develop 

a set tools for the computer-aided design of Path Programmable Logic integrated 

circuits [16]. This tool set consists of a PPL circuit editor, a netlist extractor, the 

TLSIM simulator, an interactive waveform editor, and a host of smaller utilities. 

Although it is used as a component in this larger system, TLSIM was built with 
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flexibility in mind, and is capable of simulating any digital circuit. 

1.5 Thesis Outline 

The rest of this thesis is organized as follows: 

Chapter 2 gives background relevant to digital circuit simulator design in general. 

It describes different types of simulators, and discusses the major design issues which 

must be addressed before implementing a simulator. 

Chapter 3 describes how the issues identified in Chapter 2 are addressed in the 

TLSIM simulator. It describes the basic design decisions made in the development 

of TLSIM, and justifies why they were made. 

Chapter 4 gives detailed descriptions of some of the key algorithms in the TLSIM 

simulator. The need for each algorithm and the manner in which it contributes to 

simulator performance is discussed here. 

Chapter 5 gives an analysis of the computational complexity of the algorithms 

from Chapter 4. 

Chapter 6 presents some experiments which were undertaken to quantify the 

performance of TLSIM. It gives execution times for various benchmark circuits, and 

compares them to execution times incurred by Verilog, a commercially available 

circuit simulator. 

Chapter 7 contains a more in-depth discussion of some of the design decisions 

made in the TLSIM simulator. This discussion emphasizes how these choices are 

relevant within the broader framework of circuit design, rather than only simulation. 

Chapter 8 concludes this thesis, with a summary of the'significant results. 



Chapter 2 

The Components of a Simulator 

This chapter gives an overview of the major issues in the design of a circuit simulator. 

The first of these are the selection of signal and device models. Sections 2.2 and 2.3 

discuss how signals and devices may be represented in a simulator. In the case of 

an event-driven simulator, an ordered queue of pending events must be maintained. 

Section 2.4 gives an overview of this scheduling problem. Section 2.5 discusses dif-

ferent approaches to setting the initial state of the circuit being simulated. Finally, 

section 2.6 discusses the merits of various degrees of expressiveness in a simulator's 

input language. 

2.1 Definitions 

Before proceeding with this chapter, we need some definitions: 

Device: Adevice is a circuit component. Devices are atomic - within the simu-

lation framework, they may not be decomposed into smaller circuit elements. 

For instance, in a gate-level simulator devices are gates, while in a switch-level 

simulator devices are transistors, resistors and capacitors. 

Node: A node is an equipotential conducting, region in a circuit. It acts as a 

single electrical point. In practice, nodes represent metal or polysilicon wires 

and traces. 

8 
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Nodes are said to have a fan-in. A node's fan-in is the set of all devices whose 

outputs are connected to it. Nodes also have a fan-out. A node's fan-out is 

the set of all devices whose inputs are connected to that node. 

Netlist: A netlist is a description of device interconnections used to model a 

circuit's topology. A netlist consists of devices and nodes, where devices are 

connected to. one another using nodes. 

Netlists may be flat, containing only devices and nodes, or they may be hier-

archical, hi which case they may also contain other netlists. 

Circuit Inputs: The inputs to a circuit are the set of nodes whose fan-in is 

empty. During simulation, the user is responsible for setting the state of these 

nodes. 

Circuit Outputs: The outputs of a netlist are the set of nodes whose fan-out 

is empty. During simulation, thesimu1ator reports the state of these nodes to 

the user. 

Device Output: Uni-directional devices, such as gates, are said to have outputs. 

A device's output is the value which it tries to apply to its node. Note that 

more than one device may be connected to a single node, so a device's output 

is not necessarily equal to the node's value. Note also that one device may 

have multiple outputs. 

The relationship between a device output and a device's output node is illus-

trated in Figure 2.1. 



10 

Event: To model device propagation delays, some simulators schedule transitions 

at nodes, and later retrieve them in a time-increasing order. An event is a data 

structure which identifies a node, a time and a new signal value. 

Queue: When a simulator makes use of events, it needs a mechanism for schedul-

ing and retrieving events. In the context of circuit simulation, a queue is a 

mechanism for event scheduling which guarantees that event retrieval will oc-

cur in a time-increasing order. 

Output 
Device node 

Device 
output 

Figure 2.1: The relationship between a device output and a device's output node 

2.2 Signal Representation 

A circuit simulator functions by modeling how devices in a circuit modify signals 

over time. Before considering how these devices work, a signal representation must 

be chosen: 

There are a number of ways to model electrical signals in a digital circuit. Since 

normally signals in the circuit refer to node voltages, it is natural to represent signals 

with real numbers, which stand for voltage levels. Because of computational com-

plexity, we might restrict the voltage levels to a discrete set of approximate values. 
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At the extreme, we could use just two values - representing the binary digits 0 and 1. 

We might also generalize to a four-valued system, {0, 1, X, Z}, where X represents 

an unknown value, and Z indicates the absence of any signal. 

Each of these signal representation schemes bears more detailed consideration, 

as it leads to different simulation stratgies. 

2.2.1 Continuous Signals 

The use of continuous signals requires that devices operate on continuous inputs 

and produce continuous outputs. Because of the smooth variation of outputs with 

input values, this representation necessitates that device equations be solved simul-

taneously. This is only feasible for small circuits. Due to computational cost, it is 

impossible to simulate even moderate-sized digital circuits, with 100 or more gates, 

with this model. 

2.2.2 Discrete Signal Levels 

Since digital circuits are meant to operate only on binary numbers, rather than 

represent node voltages using real numbers, it is possible to use a set of discrete 

values. Typically, discrete schemes use a combination of voltage level and charge 

strength to characterize the signal at a node. "Charge strength" may indicate the 

dynamic node capacitance or the node's capacitive charge with respect to the power 

or ground levels. For instance, Table 2.1 shows one signal representation which uses 

two logic levels and four charge strengths. Alternately, a mixed model might use a 

continuous variable to represent node capacitance or accumulated. charge. 

Using this representation, charge decay may be modeled by a sequence of signal 
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Table 2.1: A 2-valued, 4-strength signal representation 

Charge 
Strength 

Node voltage 
level=O level=1 

Decaying 1 5 
Weak 2 6 
Normal 3 7 
Strong 4 8 

states at a node. If a buffer was initially at logic 1 and was then turned off, a 

simulator could model the node voltage as a sequence of signal values: first 7, then 

6, and finally 5. These transitions would be scheduled with appropriate time delays. 

2.2.3 Four-Valued Signal Representation 

Digital circuits operate on continuous voltages, but these voltages are meant to 

represent only two binary values, 0 and 1. In order to reduce the computational 

complexity of simulation, it seems natural to use a two-valued signal representation. 

Unfortunately, the two-valued model has severe limitations. Real digital circuits 

actually make use of three signal values: 0, 1, and high-impedance, i.e., no signal. 

Without a high-impedance state (Z), it would be impossible to simulate tn-statable 

buses, fundamental to modern circuits. Furthermore, when a circuit is turned on, 

all of its nodes quickly settle to one of the three values mentioned above. Before 

beginning the simulation, however, a simulator has no way of calculating which node 

starts at which value, since some nodes may power up to random values determined 

by thermal noise. To account for this, a -fourth signal value must be added. 

Rather than assigning an arbitrary initial value to every node, we may designate 
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X to represent signals whose value has not been specified or cannot be calculated 

by the simulator. The X state models the initial value of all nodes in the circuit. 

In addition, the X state may be used by the circuit designer as a deliberate input 

value, in order to study the effect of floating terminals on the circuit. 

2.2.4 The High Impedance State 

Special care must be taken with the high impedance state in a four-valued simulator. 

Due to different propagation delays, two devices connected to a single node may cause 

a dangerous sequence of events to occur, as shown in Figure 2.2. 

y 
Y-  'Z Z 

A A 
- 

y(b)Z tO' I 1 o 
L ...._I 

x(b) - OFF 'Q' Z->O ON 

y(a) - 1 - delay 
L  

x(a) 0N 'QF' 1->Z OFF 
delay 

  Time(ns) 
Initial 5 10 15 Final 

(a) A sample tristate node (b) Event sequence with an error in the final state 

Figure 2.2: A problem with event sequencing and high impedance 

In the figure, two tn-statable buffers, a and b, are connected to a single node. 

Initially, a is on, b is off, and y is set to 1, reflecting a's input. At t = 5ns, a turns 

off while b turns on. Let the turn-on delay for these buffers be 5ns, and the turn-off 

delay be lOris. The two events at t = 5ns will cause both buffers' outputs to change 

states, scheduling two events at t = iOns and t = l5ns at node y. At t = iOns, the 

value of y will change from 1 to 0. At t = 15ns, another event will set the value of 
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y to Z. The final value of y will therefore be Z. 

Since the final state of buffer b is ON, the correct final value of y is 0. The error 

results from a transient conflict between y(a) and y(b), which are both asserted on 

node y from t = iOns to t = l5ns. Blindly processing events from the queue can 

cause simulation errors when the Z signal value is involved. A four-valued simulator 

must take some precaution to ensure that transient signal conflicts do not introduce 

errors into the simulation. 

2.3 Device Representation 

By selecting a particular signal representation, we limit the number of device models 

to just those that are compatible with the signal model. With a continuous signal rep-

resentation, devices must be modeled according to their time-domain voltage/current 

characteristics. Using the logic level/charge strength or four-valued signal models, 

there are many more possibilities. For instance, we may model devices as ideal 

switches, gates, truth tables, procedures, etc. 

Due to its computational limitations, we will not give further consideration to the 

continuous signal representation. There remain, however, four major device models 

applicable to discrete signals: switches, gates, functional blocks and procedures. 

These models are discussed in this section. 

This section also contains a brief discussion of event-driven simulation, which is 

normally used with the gate, functional and algorithmic device models, since these 

models all exhibit the property of uni-directional signal propagation. 
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2.3.1 Switch Primitives 

Metal-Oxide Semiconductor (MOS) digital circuits may be decomposed into transis-

tors, resistors and capacitors. The transistors, in turn, may be approximated using 

ideal switches, which conduct when turned on. Using the logic level/charge strength 

signal model, it is possible to estimate the behaviour of these switches. 

With the switch model, a simulator represents the circuit using an undirected 

graph G(E, V), whose vertices V represent electrical nodes in the circuit, and edges 

E represent the subset of transistors which are conducting at any given time. This 

model is illustrated in Figure 2.3. In Fig. 2.3(a), a sample circuit consisting of three 

transistors and five electrical nodes is shown. If every transistor is "on," then this 

circuit would be represented by a graph as shown in Fig. 2.3(b). If only transistor 

Ti is turned on, the graph would look like Fig. 2.3(c). 

In an idealized model, we may consider conducting transistors to have no channel 

resistance. This implies that every set of nodes in the circuit which are connected 

to one,, another by conducting transistors may be thought of as one effective node, 

with the same voltage everywhere. If transistor Ti is the only transistor turned on, 

then nodes n+ and n3 form a single "effective node," as shown in Fig. 2.3(c). In this 

case, since the voltage of n+ is fixed (n+ is the power supply), the voltage at n3 is 

also known. 

The task of a switch-level simulator is to iteratively identify which transistors in 

the circuit are switched on. This calculation is equivalent to finding which edges {E}, 

out of all possible edges in the circuit, are part of the circuit graph at every time step. 

Given the set of turned-on transistors (edges {E}), the simulator identifies "effective 
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Figure 2.3: Graph representation of a circuit 
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nodes" which contain either the power or ground node, and propagates these voltages 

across the "effective nodes." By iterating this procedure, the simulator is eventually 

able to calculate the voltage at every node in the circuit. 

Due to the complex bidirectional signal flow in the switch-level circuit model, 

simulators must solve large sets of simultaneous equations to identify which tran-

sistors are turned on at every time step. Fortunately, it is possible to reduce the 

computation by making use of the fact that the set of "effective nodes" only changes 

incrementally at each time step. Furthermore, there are efficient algorithms for solv-

ing the circuit's state equations with this model, which make use of constraints on 

signal and transistor behaviour. These optimizations together mean that typically 

switch-level simulations are only about an order of magnitude slower than the next 

higher level of abstraction - gate level simulation [9, 6]. 

2.3.2 Discrete Event Incremental Simulation 

At all levels of abstraction higher than the switch model, devices are considered 

to propagate signals in a single direction only. The network graph thus becomes a 

directed graph G(E, V), where vertices V represent electrical nodes in the circuit, 

and edges {E} represent unidirectional devices.' 

Consider the circuit illustrated in Figure 2.4. vi - viO are vertices representing 

electrical nodes in the circuit. Nodes have a definite state, which usually denotes 

a voltage level. Nodes are connected to one another by means of devices. Edges 

representing devices in the circuit are labeled el - e4. In a unidirectional model, 

edges are directed. That is, they have definite inputs and outputs. For instance, the 

'In practice, a single "edge" may start from multiple vertices, and end at multiple vertices. 
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state of vertice 0 affects edge e4, and may thus affect vertice viO. However, there 

is no way for vlO to affect the state of 0. 

V1 

v2 

v3 

v4 

v5 

v6 

viO 

Figure 2.4: Sample unidirectional circuit 

The directed nature of a circuit graph leads to the concepts of fan-in and fan-out 

(see Section 2i). The fan-in of a vertice is the set of edges which affect its state 

(i.e., devices whose outputs are connected to that node). The fan-out of a vertice is 

the set of edges that begin in that vertice (the devices whose inputs are connected 

to that node). In the example shown, the fan-out of vi is {el}, and the fan-out of 

v2 is {el, e2}. The fan-in of 0 is fell, and that of v8 is {e2}; 

Using a directed graph for circuit simulation. is advantageous since the circuit 

may be simulated incrementally. Given a known circuit state at some time to, inputs 

applied to the circuit at time to will cause some device outputs to change state 

after various delays, at to + AT,, to + LT2, -•, where AT,, LT2,... are device 

propagation delays. The simulator need only reevaluate the state of the circuit at 

times to + AT,, to + LT2, •.. This is more efficient than evaluating the circuit at 

every time step. 

In addition, since only some nodes change at times to + AT,, to + LT2, •., 
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the simulator only has to reevaluate the states of some devices at these times. In 

particular, it must reevaluate devices in the fan-out of nodes whose value has changed. 

These observations are used to formulate a general procedure for simulating cir-

cuits which only contain uni-directional devices, and whose nodes take on discrete 

values [39]. When inputs are applied to the circuit, the simulator schedules events, 

indicating which nodes must change states, and when. The simulator retrieves these 

events in order, and for each event executes the following steps: 

1. Update the node's state. 

2. Propagate the new state to the node's fan-out. 

3. Re-evaluate each device in the fan-out. 

4. Schedule one new event for each device output that changed. 

Using this sequence of steps, device evaluation is only performed when one or 

more inputs to each device have changed. If only a small fraction of a circuit's 

nodes change state in a given time step, the above operations significantly improve 

performance over the "brute force" approach. A widely accepted estimate of typical 

activity rates is that only about 1% of the nodes in a typical circuit are active at 

any one time [39]. Using this figure, event-driven simulation is approximately 100 

times faster than a "brute-force" approach, which evaluates every device at every 

time step. 
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2.3.3 Gate Primitives 

Perhaps the most intuitive method for modeling simple, unidirectional digital devices 

is to build gate primitives into the simulator. In this scheme, the user specifies the 

circuit topology in terms of interconnected gates. When the simulator needs to 

evaluate a gate, it executes a procedure which evaluates that type of gate. 

A typical algorithm for device evaluation is shown in Figure 2.5. In this algorithm, 

the Evaluate Gate function examines the gate, and selects an appropriate function to 

calculate its new output value. The EvalAND function is one such function, used to 

evaluate AND gates. 

The advantages of this model are two: it is simple and may readily be used 

in both compiled and interpretive simulators. In a compiled simulator, this model 

executes very rapidly since at most a few machine instructions are needed to replace 

the evaluation algorithm in Figure 2.5. 

The gate-primitive model has the disadvantage that it only allows for a fixed set 

of device types. There is no way, short of modifying the simulator itself, for the 

user to add new device types. Furthermore, the gate-primitive model is awkward in 

cases where the target technology allows for devices which perform more complex 

tasks than the devices supported by the simulator. Such devices must consequently 

be modeled as a collection of gates, which degrades simulation accuracy and slows 

down execution. 

2.3.4 Functional Block Primitives 

Rather than providing a finite set gate primitives, we can assign truth tables to each 

type of gate. Since truth tables can just as easily be loaded at run time as when the 
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Inputs: gate type, number of inputs, array of input values 
Outputs: new gate output value 

Function EvaluateGate { 
switch(gate type) 

case AND: return Eva1AND(Ninputs,inputs) 
case OR: return Eva1OR(Ninputs,inputs) 
case NAND: return Eva1NAND(Ninputs,inputs) 
case NOR: return Eva1NOR(Ninputs,inputs) 
case XOR: return Eva1XOR(Ninputs,inputs) 
case NOT: return EvalNOT(Ninputs,inputs) 

} 

Inputs: the inputs to an AND gate 
Outputs: new output value of AND gate 

Function EvalAND { 
for( each input) 

if( input is equal to zero) 
return 0 

return 1; 

} 

Figure 2.5: Sample gate evaluation algorithm 
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simulator is compiled, it is possible for the user to extend the library of primitive 

devices. Truth tables for some common Boolean functions are shown in Table 2.2. A 

typical device evaluation algorithm that uses this model is shown in Figure 2.6, where 

the truth table is stored as an array of integers. The Evaluate Table function converts 

an array of function arguments into a single integer, and returns the contents of the 

truth table at that location. 

Table 2.2: Truth tables for some common gates 

Input 1 Input 2 AND OR NAND NOR XOR 

o o 0 0 1 1 0 
o 1 0 1 1 0 1 
1 0 .0 1 1 0 1 
1 1 1 1 0 0 0 

Inputs: A truth table, the number of inputs, and a pointer to an array of input 
values 

Outputs: The function value for the given arguments 

Function EvaluateTable { 
let offset=0 
for( each input) 

shift offset left 1 bit 
offset = offset or this input 

return table[offset] 

} 

Figure 2.6: A typical truth-table evaluation algorithm 

Using this model; we can easily build more complex primitives by specifying truth 
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tables for their logical functions. For instance, a binary adder would be specified by 

a pair of primitives: a sum-forming element and a carry-forming element, as shown 

in Table 2.3. 

Table 2.3: Truth tables for a full adder 

a b carr yin Sum Carry0t 

00 0 0 0 
00 1 1 0 
01 0 1 0 
0 1 1 0 1 
10 0 1 0 
10 1 0 1 
11 0 0 1 
11 1 1 1 

The disadvantage of this model is that there is no significant performance advan-

tage to implementing truth tables as compiled code, so this model is only effective 

in an interpretive simulator. 

2.3.5 Memory Elements 

In the last two sections, methods for representing simple feed-forward devices were 

discussed. So far, none of the models explicitly specify how to simulate memory 

elements. In actual circuits, flip-flops, registers and latches are used to store data for 

one or more clock intervals. To be useful, a digital circuit simulator must provide a 

means of simulating such memory elements. 

It is usually not practical to simulate memory elements as collections of gates. 

Consider the pair of NAND gates in Fig. 2.7(a). If the propagation delays of the two 
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devices are equal, the two outputs will simultaneously change to 0, back to 1, and 

oscillate indefinitely. This errOneous oscillation is due to the fact that, in practice, 

no two devices have exactly the same propagation delays, so such feedback loops 

settle at one state or the other. In the simulation, however, only nominal values of 

delays are known, so multiple devices with identical delays are common. While this 

instability problem is not unique to the small feedback loops found in flip-flops, due 

to their widespread use this is where the problem normally arises. 2 

(a) Unstable feedback state (b) Alternate state 

Figure 2.7: Oscillation due to identical delays in feedback loops 

In order to avoid this problem, and also speed up computation, most modern 

circuit simulators provide a special facility for simulating memory elements. A prim-

itive memory element may store one or more binary digits. It may have one of the 

following configurations: 

. A level-sensitive latch, which follows its input as long as it is enabled. 

. An edge-sensitive flip-flop, which samples its input on either a rising or falling 

clock edge. 

'Currently, no general method is known for dealing with this instability in circuit simulators [4]. 
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Additionally, the memory element may or may not allow for asynchronous set and 

clear logic. 

2.3.6 Higher Level Device Models 

Rather than force the user to construct the circuit with gates or truth tables, some 

simulators provide a complete procedural language, such as Very High Speed Inte-

grated Circuit (VHSIC) Hardware Description Language (VHDL) or Verilog. Using 

these languages, the user may specify his/her own models, and simulate the circuit 

at any desired level of abtraction. This approach is illustrated in Figure 2.8, which 

shows two possible ways to model an AND gate. 

module and3..typel(y,a,b,c) 
if (a==O or b==O or c==O) 

Y=O 
else 

y=1 
endmodule 

module and3_type2(y,a,b,c) 
y=a&b&c 

endmodule 

Figure 2.8: Two procedural models for 3-input AND gates 

The procedural device model is useful primarily in cases where the behaviour of 

one or more modules in a larger system has been specified, but the module has not 
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yet been implemented. This type of construct is especially useful for mixed level 

simulation, in order to help test other modules which have been implemented. The 

main disadvantages of this model are that it may be inaccurate, and it is difficult to 

automatically synthesize a hardware design from a procedural description. 

2.4 Event Scheduling 

Regardless of the device and signal models selected, it is useful to associate delays 

with devices. There are many possible forms for the delays: they may be nominal 

values, statistical forms such as minimum/average/maximum, or physically related 

parameters such as rise and fall times. In addition, delays may be static or dynamic, 

reflecting the current state of a node's fan-out [2]. 

In order to ensure causal behaviour, the simulator must process events at all 

nodes in a time-increasing order. If this is not done, a simulator might evaluate one 

device, say device A, at simulation time to, and later in the sequence of evaluations 

it might calculate the state of another device, say B, at simulation time to - AT. 

If there is a signal path from any output of device B to any input of device A, this 

sequence may cause errors in the simulation. 

Events may be scheduled in any order. For example, for the three time steps 

t2 > t1 > to, events scheduled for {t0, t, t2} may be added to the queue in any order. 

Because they must be retrieved in the sequence {t0, t1 t2}, a digital circuit simulator 

must provide a mechanism for sorting the event queue. 

The task of adding events to a queue in arbitrary order, while retrieving them in 

time-increasing order is a classical problem in computer science [36]. Accordingly, 
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there are a number of available solutions. Two of these are briefly presented in this 

section. 

2.4.1 Heapsort Scheduling 

A classical solution to the scheduling problem is the heapsort algorithm [36], which 

uses a heap to represent a queue. The heapsort algorithm makes use of a special 

array h, called a heap, which satisfies the following condition: 

hhj,h;,,hN (2.1) 

Vi, hi h2i and hi ≤ h21 (2.2) 

Clearly, element h1 must be the smallest element (earliest event) in the array. 

This structure lends itself well to scheduling, where we only retrieve the smallest 

element in the 'queue (earliest event). The heapsort algorithm resolves the scheduling 

problem by adding and retrieving events to and from the array h, while maintaining 

the condition in Equation 2.2. 

Before considering how a heap works, we need some definitions: In a heap, the 

parent of element hi is h,2. A child of element h3 is either h2j or h231. A path 

through the heap is a sequence of the form: h, child(h), child(child(h)), 

In scheduling, we may add a new element (an event in our case) to a heap by 

appending it to the array. After the element is appended, we examine its parent, 

and see if it is larger, i.e., if it is a later event. If so, we swap the parent and child 

elements, and repeat the procedure along a path until we reach an element that is 

not larger than the 'newly inserted element. 
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To retrieve an entry from a heap, i.e. to get the next event, we just retrieve h1, 

since it is the smallest element, by virtue of Equation 2.2. After this is done, however, 

the empty space must be filled in such a way that the heap condition continues to 

be satisfied. This is done by moving the smaller of h1 's children to location h1, and 

repeating the same process for that child along a path to the end of the array. 

Since both the queuing and dequeuing procedures described above iterate along a 

single path in the heap, and since, for a heap containing n elements, the average path 

length is log2(n), both queuing and dequeuing using a heap have a computational 

complexity of O(10g2(n)). 

2.4.2 Time Wheel Scheduling 

Since there are a. finite number of devices in the circuit, each circuit has a maximum 

propagation delay, at the output of the slowest device. If a circuit uses only integer-

valued delays, then there is only a finite set of possible delays. At most, this set 

consists of the integers {1, 2'... , MAXDELAY}. We can take advantage of this 

observation by using an array to track pending events. 

The time wheel algorithm represents the event queue as an array of event lists. 

The array length, N, is set to equal the longest delay in the circuit. The array is 

traversed in a circular fashion: events scheduled for time step i are stored at array 

position i mod N. Clearly, scheduling with a time wheel is an 0(1) operation: to 

insert an event at some delay P after the current timestep i, it is added to the event 

list at array position (i + F) mod N. 

The basic concepts of time wheel scheduling are illustrated in Figure 2.9. A 

typical algorithm for accessing the event queue is shown in Figure 2.10. For the sake 
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of brevity, the code used to schedule inputs to the circuit, which may arrive later 

than the simulation time plus the maximum delay, is omitted. 

current_time+7 

current time+2 

current_time+1 

current time 

current time+MAXDELAY 

Scheduled Events 
S 

S 

S 

S 

S 

Scheduled Events 

Figure 2.9: The time wheel scheduling paradigm 

The primary advantage of the time wheel scheduling algorithm is that scheduling 

is very fast: Adding a new event to the queue is an 0(1) operation. As long as 

different devices in the circuit have many different delays, and there is a reasonably 

large amount of activity in the circuit, the while loop in the GetNextEvent function 

is rarely executed more than once, so event retrieval also averages 0(1). 

The disadvantage of the time wheel algorithm is that for periods of low circuit 

activity, or for cases when most of the circuit activity is in devices with a single 

long delay, the while loop is executed frequently, thus slowing down event retrieval. 

Fortunately, the code in the while loop is short, so even this situation should not 

exact a heavy penalty. 
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Inputs: None 
Outputs: The earliest pending event in the queue 

let list = an array of pointers to linked lists of events 
offset = an integer representing the current location in the time wheel 
current-time = the simulation time 

Function GetNextEvént { 
/* while no events in this time step / 
while( list[offset] is an empty list) 

offset = (offset+1) mod MAXDELAY 
current-time = current-time + 1 

new = list[offset] / remove first event in this list / 
list[offset] = new—+next 
return new 

} 

Inputs: A new event, and the delay after which it should be processed 
Outputs: None 

Procedure Schedule { 
let pos = (offset + delay) mod MAXDELAY 
new—*next = list[pos] / add to appropriate list / 
list[pos] = new 

} 

Figure 2.10: Time wheel scheduling algorithms 
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2.5 Circuit Initialization 

Regardless of the device and signal models, we may represent the circuit to be simu-

lated using a graph G(E, V), where the edges {E} represent devices, and the vertices 

{V} represent nodes. In all but the switch model, the edges are directed - that is, 

signals flow from one vertice to one or more others. 

Given that a circuit has been loaded into a graph G(E, V) in memory, the simu-

lator must set the initial state of the vertices {V} in the graph. In practice, when a 

physical circuit is turned on, the initial state of the vertices {V} is a complex func-

tion of the technology, layout, circuit topography and random thermal effects. Due 

to this complexity, there is no practical way for the simulator to accurately calculate 

the initial state of the circuit. 

There are a number of methods for initializing a circuit in a logic simulator. The 

most common one is to set the value of each node to X (this presumes a four-valued 

signal model, or some variant). In this way, the simulator is making no undue initial 

assumptions. An alternate approach extends this by scheduling events, to the ground 

and power nodes, so that the state of some of the devices in the circuit may be 

calculated before the simulation begins. 

There are inherent problems with the method of setting the initial state of every 

member of {V} to X. Consider a simple counter, made up of one or more flip-flops as 

shiown in Figure 2.11. One of the possible uses of this counter is frequency division. 

In a practical circuit, a designer need not provide a reset signal to this network, since 

its function is independent of its initial state. As long as it has some initial state, the 

counter will correctly perform frequency division. The only characteristic of interest 
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in this device is the rate at which it progresses through states. If we initialize each 

node in this device to X, and never apply a reset signal, then the simulator will 

never change the state of the device, and the counter will fail. This is strictly a 

simulation problem, since in practice the counter starts at an arbitrary state, and 

functions correctly. 
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Figure 2.11: A frequency-division circuit, which does not have to be reset 

Unfortunately, there is no known method to accurately initialize a circuit. In 

particular, it is impossible to guarantee the simulation results for any circuit which 

functions correctly regardless of its initial state, and whose initial state is not explic-

itly set. 

Fortunately, this problem is easily solved by adding some small degree of flexibility 
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to, the simulator. The user may either provide a secondary reset signal, which is only 

used to initialize "initial-state-independent" subcircuits. This signal can then be 

ignored by any hardware synthesis software. Alternately, the simulator may provide 

a facility for explicitly giving the initial state of nodes in the circuit. This calls for 

more care on the part of the user, but guarantees satisfactory simulation results. 

2.6 Simulation Language Expressiveness 

The final issue in simulator design is the expressiveness of the simulator language. 

The simulator language is used to describe the circuit, and in some cases device 

operation. The capabilities of different simulation languages vary enormously. The 

simplest languages, such as SPICE, are only capable of listing network topologies, 

while more complex languages, such as VHDL and Verilog, include complete proce-

dural constructs. 

Choosing a degree of expressiveness for a simulator language is a trade-off be-

tween performance and debugging capability. Adding high-level constructs is useful 

for modeling sections of a circuit before they are implemented. However, interpret-

ing these constructs takes more time than interpreting a simple language, so the 

simulation of simple devices is somewhat slowed down. 

Using only low level constructs makes it possible to ensure that it will always 

be possible to automatically synthesize a hardware design from the netlist. On the 

other hand, debugging large circuits is more difficult, since every module must be 

specified simultaneously. 



Chapter 3 

The TLSIM Digital Circuit Simulator 

TLSIM stands for Timing and Logic SIMulator. It is an interpretive simulator, 

incurring low overhead for simulation start-up. Since building a circuit graph takes 

little time, simulation commences almost immediately after the TLSIM is executed. 

In addition its short delay, TLSIM provides rapid simulation by using an optimized 

device model. This model is capable of describing devices with complexity similar 

to that of small- and medium- scale integration discrete components. 

This chapter addresses the major issues the development of the TLSIM digital 

circuit simulator. TLSIM uses a four-valued (0, 1,X, Z) signal representation and a 

hybrid device model, with some features in common with both the truth-table and 

algorithmic models. This model results in excellent simulation performance. 

3.1 Simulator Execution 

TLSIM is a circuit simulator intended for circuit design rather test generation. In the 

design phase, designers specify the contents and topology of a circuit and apply some 

short tests to check their evolving design. This procedure is repeated frequently, so 

every effort should be made to shorten the turnaround time to a minimum. 

In practice, simulators are used for two types of testing. In the first type of 

testing, the circuit is checked for correct operation. This testing is performed during 

circuit design, and is referred to as conventional simulation. 

34 
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A second testing phase is performed in order to develop a set of input vectors 

for use in identifying faulty circuits after fabrication. To do this, some test vectors 

are applied to the circuit, and the simulation results are recorded. The same test 

vectors are then applied to a slightly modified circuit, where a manufacturing defect 

has been introduced. Simulation results from the two runs are compared, and if they 

differ the input vectors are recorded, since they have shown the ability to identify 

circuits with that particular manufacturing flaw. This testing phase is referred to as 

fault simulation. 

Just as there are two types of testing performed on circuit designs, there are two 

types of simulators. The first, a compiled simulator, converts the circuit topology 

into source code, either in a high-level language like C, or in assembler. This code is 

then compiled into an executable file. This approach gives very rapid simulation at 

the cost of high overhead, due to the compile and link steps. 

The second approach to simulation is to build data structures in memory to rep-

resent the circuit topology, and to change their state according to rules about device 

operation. This approach, called interpretive simulation, typically runs about an or-

der of magnitude slower than compiled simulation, but has the significant advantage 

of very low overhead. That is, building a graph to represent a circuit takes very little 

time. 

Since TLSIM is meant for circuit design, it uses an interpretive paradigm for 

execution. This means that for short simulation runs, i.e., typically not exceeding 

more than a few million input transitions, it is faster than compiled simulation, since 

it does not incur a compilation overhead. For exhaustive testing, however, a compiled 

simulator is preferable. 
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Using the interpretive paradigm, TLSIM execution proceeds in the following se-

quence of steps: 

1. Load a library of Boolean functions, represented as truth tables. (By default, 

this is read from the file INTRINS.LIB.) 

2. Load a library of device definitions, whose behaviour is specified using the 

above functions. (By default, this is read from the file DEVICE.LIB.) 

3. Load a netlist of the circuit to be siiiauiated. 

4. Construct a graph in memory representing a flattened netlist, i.e., the hierar-

chy of network definitions in the netlist is converted into a flat representation 

consisting of only nodes and primitive devices. 

5. Initialize the power nodes, Vdd and Gnd, and commence the simulation. 

6. Load the first user-specified inputs into the circuit and simulate. 

7. Continue simulating until there are no more inputs left, and the circuit has 

either settled or a time limit has expired. 

3.2 Signal Representation 

At the logic design stage, the designer rarely knows what node capacitances in the 

circuit will be. By the same token, he/she does not yet know the driving strength 

of each transistor in the circuit. Normally, the circuit designer is more concerned 

with the logical operation of basic components, and how they interact to produce 

the overall circuit behaviour. 
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TLSIM achieves a significant performance improvement over switch-level simula-

tors by neglecting node capacitance and signal strength information. This is done at 

no real cost in terms of simulation accuracy, since layout information is not normally 

available during logic design. By neglecting these details, it is possible to represent 

signals with a simple four-valued model, consisting of the values {O, 1, X, Z}. 

In order to avoid errors introduced by transient signal conflicts, TLSIM extends 

the four-valued model with a source count: Whenever a device output changes from Z 

to one of the values {O, 1, X}, the source count at the associated node is incremented. 

Alternately, whenever a device output changes from one of {O, 1, X} to {Z}, the 

source count at the associated node is decremented. Only when the source count 

becomes zero does a node's value become equal to Z. 

Use of the source count guarantees correct simulation results, as long as no more 

than two signals are simultaneously applied to the same node. In particular, correct 

simulation results are guaranteed even if there are transient signal conflicts. 

y(a) y 

S(y)1 2 1 1 

actual  1 0 0 

scheduled  - O 'Z 
A A 

y(b)Z '0' I 0 

x(b) - OFF QIjJ Z->O I ON 
-- delay 

y(a)1 ,Z'  Z 
I   I 

x(a) - ON OFF) 1->Z OFF 
delay 

i 1, Time(ns) 

Initial 5 10 15 Final 

(a) A sample tristate node (b) Using a source count to ensure correct behaviour 

Figure 3.1: Correct simulation of transient signal conflicts 
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Figure 2.2 in Chapter 2 illustrated how indiscriminate use of the high-impedance 

state can cause simulation errors. The example in Figure 3.1 shows how TLSIM 

avoids errors caused transient signal conflicts by using the source count. In the 

figure, S(y) is a source count, indicating how many device outputs are active at 

node y. Initially, only buffer a is on, and S(y) = 1. Due to the differing propagation 

delays, buffer b turns on before a can turn off, so for a short period S(y) = 2. 

However, when a does turn off, the transition sets 8(y) = 1 and the transition to Z 

is ignored, so the final value of y is 0. 

3.3 The UNIMOD1 Device Model 

The device model used in TLSIM is key to its performance. UNIfied MODel .7 

(UNIMOD1) is capable of describing realistic circuit building blocks, in a way which 

helps accelerate simulation. 

Most simulators offer one or more trade-offs between simulation performance, 

i.e., the time it takes to carry out the simulation, and accuracy. For instance, al-

gorithmic models can be fast, since they describe the function of a large number of 

physical devices with simple high-level statements. Consider a multiplier; the circuit 

would occupy at least hundreds of gates, but only dozens of functional blocks, and a 

single high-level instruction. This makes the algorithmic model fastest to simulate. 

However, if the circuit is implemented using gates, then the gate-level model gives 

the designer an opportunity to test the circuit more accurately, and make predic-

tions about timing characteristics of the circuit. This is clearly not possible with the 

algorithmic model. 
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TLSIM incorporates a unified model capable of modeling devices at multiple levels 

of abstraction. UNIMOD1 is a functional model with extensions for supporting some 

features of algorithmic models. It was designed with efficiency in mind, so it is as 

fast at evaluating gates as some dedicated gate-level simulators. The power of the 

UNIMOD1 model derives from the fact that it maps well to real circuit building 

blocks. For instance, an IC designer may use a device library that includes registers, 

adders, gates, etc. UNIMOD1 can model each of these blocks as single devices, 

whose behaviour is a relatively good approximation to the physical components. 

This means that a high degree of confidence may be reached that the final design 

implementation will conform to simulation results. 

Since TLSIM uses a functional, unidirectional device model, it is incapable of 

modeling certain circuit structures. In particular, it cannot directly represent charge 

sharing or storage effects. These effects can only be simulated directy by switch-level 

or continuous simulators. However, since such effects are normally only used within 

macro-cells, which themselves are unidirectional, this restriction primarily affects the 

level to which TLSIM can break down a circuit, rather than limiting the number of 

circuits which it can simulate. 

A block diagram of the UNIMOD1 device model is shown in Figure 3.2. The two 

truth table blocks (A and B) are able to evaluate complex Boolean functions, of the 

form yj = f(x,y_i,g(x,y_i)), where i is the simulation time step. These blocks 

are used to calculate the state of a device from its previous state and data inputs. 

Memory elements (C) are used to model synchronous devices, such as flip-flops, 

latches and counters. They function by selecting when the Boolean function values 

(ol) are passed on to a device's output (o2). Multiplexors (D) model asynchronous 



40 

overrides, such as set and clear logic. They function by selecting either the enabled 

function values (o2) or some constants (0, 1 or X) to pass on to the device's output 

(o3). Finally, the delay elements model propagation delays, in the form of rise and 

fall times. 

Input Variables (i)  

Variables (a,int,o4) 

Truth 
Tables 

(A) 

(int) 

Enabling Signals (el 

Clear / Preset Signals (a  

Truth 
Tables 

(B) 

(ol) Memory 
Elements 

(C) 

(o2) 

1-
0— 

Multi-
plexors 

(D) 

(01), 

Figure 3.2: Complete UNIMOD1 device model 

Delay 
elements 

(B) 

(o4) 

Outputs 

In the following several sections, starting with simple truth tables, and ending up 

with the complete model, we develop the UNIMOD1 device model in greater detail. 

The model is presented incrementally, in order to clarify the motivation behind every 

portion of the model. 

3.3.1 Truth Tables 

A simulator may use a simple truth-table model to represent combinational elements. 

A truth table may be evaluated using an efficient look-up procedure, as outlined in 

Figure 2.6, on page 22. For a device with m outputs, m arrays are used to represent 

device function (although the arrays need not be unique). 
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A device model consisting of only truth tables is illustrated in Figure 3.3. 

Figure 3.3: Simple Boolean device model 

This model may easily be extended for use with four-valued signals. For four-

valued signals, the array length becomes 22n, since two bits are needed to represent 

each input.' The truth table functions are evaluated using the same procedure, but 

the offset number is now formed using the equation: 

offset = (bi)I(b2 <<2)1... (b << 2(n - 1)) (3.1) 

In this equation, function arguments are represented by b, where i is the ar-

gument number. The arguments bi take on the binary values {00, 01, 10}, which 

represent the signal values {0, 1, X}. Note that Z arguments are mapped to one of 

the other three values prior to function evaluation, so are omitted here. 

This representation of function arguments as bit fields in an integer resembles the 

representation used by Rok Sosic et al. in their parallel Boolean function evaluation 

algorithm, Unison [35]. 

'For four-valued signals the consruciion of the array is more complicated. Chapter 4 describes 
this issue in detail. 
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3.3.2 Device Memory 

The simple truth table model suffices for gates, but it has no provision for devices 

with memory. It cannot directly represent devices which have state, such as flip-flops, 

latches or counters. Memory elements are incorporated into UNIMOD1 by adding a 

control element after the functional block. 

While in physical circuits node voltages decay over time, this is not inherently the 

case in a simulated node. Since the simulator must store the state of each node in a 

variable, simulated nodes have built-in memory. The simple device model presented 

in the previous section does not take advantage of this property, however, since every 

change in a device's function values is immediately applied to the device's output 

nodes. 

UNIMOD1 extends the simple truth-table model to include memory by control-

ling when a device's output values are copied to its output nodes. 

The modified device model is shown in Figure 3.4. UNIMOD1 allows for any 

signal value or transition (i.e., 0, 1, 1 — 0, or 0 — 4 1) to be cause a device's output 

values to be copied to their nodes. Making the enabling signals sensitive to signal 

transitions (1 —+ 0 or 0 - 1) makes the device edge-sensitive, while using signal 

values (0 or 1) makes the device level-sensitive. 

The function of the enabling block may be stated formally as follows: 

o, if e is active 

o 1, if e is inactive 

where superscripts indicate a timestep, and variable names are as shown in Figure 3.2. 

This model of storage elements has the benefit of improving simulator perfor-

mance. Consider a device input changing value while some or all of the device's 

(3.2) 
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Inputs (i) No Truth 
Tables 
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(ol) 

Enabling Signals (e) 
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(C) 
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(o2) 

Outputs 

Figure 3.4: Device model with memory added 

outputs are disabled. With this model, the simulator does not have to recalculate 

the disabled device outputs. Since several such input transitions may occur while 

outputs are disabled, the simulator may save a substantial amount of computation. 

In general, if m input transitions occur while a device output is disabled, n - 1 re-

calculations are skipped. The single recalculation is performed when the output is 

re-enabled. 

3.3.3 Asynchronous Inputs 

The device model presented in the last section is essentially a model for synchronous 

devices. They have data and clocking inputs, and an arbitrary number of outputs. In 

practice, we may also want to be able to set and reset outputs as,nehronously. This 

ability may be added to the model by adding a layer of multiplexing elements between 

the memory blocks and output nodes. When the device is operating normally, the 

memory blocks' outputs are transferred directly to the output nodes. When an 

output is set, its multiplexor passes a 1 signal to its output nodes. When an output 

is reset, a 0 signal is passed to its output node. The ability to pass an X signal is 

added for completeness, although it probably has no practical application. 
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The addition of asynchronous overrides to the device model is illustrated in Fig-

ure 3.5. In this figure, for each output, a multiplexor in block D selects either the 

enabled function value from block C, or a Boolean constant to pass on to the output 

node. 

Inputs (i) Truth 
Tables 

(B) 

Enabling Signals (e) 

(01) r Memory 
Elements 

(C) 

Clear / Preset Signals (a) 

(o2) 

X\ 
1-
0 

Multi-
plexors 

(D) 

(0) 01 

Outputs 

Figure 3.5: Device model with asynchronous overrides added 

As with the clocking inputs, TLSIM can make asynchronous overrides active 

on any signal state or transition. The ability to set and clear device outputs on 

an override transition is included for completeness, rather than with any particular 

application in mind. 

The function of the asynchronous override (Multiplexor) block may be stated 

formally as follows: 

I K if a is active 
03 ' (3.3) 

02, otherwise 

where K may be one of the constants {O, 1, X}, and any level or transition can make 

a active. 

The asynchronous override blocks (D) are similar to the memory element blocks 

(C) in that they can also reduce the computation required for simulation. As long 
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as an output is set or reset, there is no need to recalculate the associated function, 

even though inputs to the device may change. As before, if n transitions occur 

at a device's inputs while an output is forced to some state, only n - 1 function 

recalculations are required. 

3.3.4 Internal Nodes and Feedback 

While circuits built using the model in Figure 3.5 can represent most physical de-

vices, the model cannot represent state machines internally. With thi model, state 

information can only be fed back to a device's function block (B) through the sur-

rounding circuit, outside of the device. To get feedback, a device must include state 

variable outputs, as well as state variable inputs. These must then be connected to 

one another. A useful modification to th device model, then, is to add an internal 

feedback path. 

A second feature which is sometimes useful is to factor Boolean functions into sub-

expressions, so that several outputs in a device may reuse intermediate results. With 

this modification, we have three sets of variables for use in the Boolean functions: In-

put pins ,pp), internal nodes (i1,. . ,i1) and output nodes (oi,. .. ,00), where 

a device has P inputs, I internal nodes, and 0 outputs. Relating this, nomenclature 

to Figure 3.2, input pins enter the device from the left, internal nodes are the outputs 

of block A, and output nodes are the outputs of block B. Using this terminology, the 

outputs may be calculated using the following equations: 
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= f(pi," ,pp,i1 )...,il,oi,... ,00) 

(3.4) 

01 ff(pi, ,pp,ii, ,00) 

(3.5) 

00 = f(pi )...,pp,ii,...,ii,oi,... ,00) 

In the above equations, f is the Boolean function for the jth internal node, and 

fk° is the Boolean function for the kth output node. To simplify these equations, we 

may define a vector notation: 

p[p1,...PAT 

]T 

OE[ol,00 ]T 

fi Ui, ,JIJ ci1T 
-  

ço fçoi, , J cOJolT 
J. - U  

Equations (3.4) and (3.5) may then be rewritten as: 

I = fi(p, I, 0) 

(3.6) 

(3.7) 

0 =f°(P,I,0) (3.8) 

Equations (3.7) and (3.8) may be thought of as the state equations of a device. 

They determine a device's outputs and next state from its, inputs and present state. 
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By adding compound functions, as shown in Equations 3.7 and 3.8, and internal 

feedback to the model in Figure 3.5, we finally get the complete UNIMOD1 device 

model, illustrated in Figure 3.2. 

3.3.5 Examples 

In order to further clarify how UNIMOD1 works, some sample devices are modeled 

in this section. The simplest examples are gates, while the most complex illustrate 

how UNIMOD1 can represent complete arithmetic-logic units. 

Gates 

Gates are trivially defined in TLSIM by omitting the internal, output enabling and 

asynchronous override blocks in the device model (blocks A, C and D). Due to its use 

of truth tables, TLSIM requires that a separate truth table be provided for gates with 

different numbers of inputs. For instance, a 2-input NAND gate would be defined 

with one truth table, and a 3-input NAND gate would use another. 

Flip Flops 

A D flip-flop may be readily implemented in TLSIM using the Boolean identity 

function, enabled by a falling (or rising) edge on a clock signal. This is illustrated in 

Figure 3.6. 

A JK flip-flop may be implemented using a special truth table, as shown in 

Table 3.1. 

The inverted output can be formed either by an inverter outside the flip-flop, an 

inverting function within the flip-flop, or a second truth table, with outputs negated 

to the ones in Table 3.1, also within the device. The choice of which, if any, of these 
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D 

CLK 

COPY -7-
Q 

Block Block 
B 6. 

Figure 3.6: A DFF implementation using UNIMOD1 

Table 3.1: Truth table for a JKFF implementation 

J K q Q 

0000 
0011 
0100 
0110 
1001 
1011 
1101 
1110 
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to use in a device library should be made based on the characteristics of the physical 

devices being modeled. 

An implementation of the JKFF using the Boolean function in Table 3.1 is shown 

in Figure 3.7. Note that this particular representation does not generate an inverted 

output Q. 

K - 

J  

CLK 

JKFF 

Block Block 
B C 

Figure 3.7: A JKFF implementation using UNIMOD1 

Counters 

A unidirectional counter, which follows the sequence {O, 1,. . , 2, 0, 1, .}, may be 

modeled as a single device in TLSIM. Consider that in the state transition of a 

counting process, a bit will change from 1 to 0 or 0 to 1 if and only if all preceding 

bits are equal to 1, in the previous state. Accordingly, internal nodes may be used to 

calculate how many contiguous bits, starting with the least-significant bit, are equal 

to 1. Given the results of these internal calculations, the truth table in Table 3.2 

can then be used to calculate each counter output. This arrangement is shown in 

Figure 3.8. Note that the truth table turns out t6 be simply the XOR function. 
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Figure 3.8: A counter implementation using UNIMOD1 
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Table 3.2: Truth table for a counter implementation 

all less significant bits equal to 1? q Q 
O(no) 0 0 

.0 (no) 1 1 
1(yes) 0 1 
1(yes) 1 0 

Adders 

Binary adders may be modeled as either single monolithic devices or arrays of smaller 

adders. For instance, a 16-bit adder (with two sets of 16 data inputs, a carry input, 16 

sum outputs and a carry output) could be implemented as a monolithic device, a pair 

of eight-bit devices, four four-bit devices, etc. Selecting a level of abstraction depends 

on two variables - accuracy, i.e., the model should reflect the actual implementation, 

and performance. 

As shown in Figure 3.9, as the complexity of a UNIMOD1 device grows, it absorbs 

a growing amount of circuit function, so less event scheduling is required to account 

for inter-device communication. At the same time, the computational effort required 

to evaluate each device increases. Clearly, increasing device complexity reduces the 

number of required device evaluations, but it also lengthens the time required to 

perform each evaluation. The net result is that while the event scheduling effort 

shrinks, the device evaluation effort increases. The best simulation performance is 

achieved by selecting a device complexity which roughly balances device evaluation 

against event scheduling. 

Returning to the 16 bit adder mentioned above, assume that the technology in 

which the circuit is to be implemented provides 4-bit adder macro-cells. In this 
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Figure 3.9: Total computational effort as a function of device complexity 

environment, TLSIM would model the 16-bit adder as a cascade of 4-bit adders, as 

shown in Figure 3.11. Using a pair of truth tables for carry and sum functions, a 

four bit adder could be modeled as a single device as shown in Figure 3.10. 

3.4 Four-Valued Truth Tables 

The use of four-valued truth tables complicates the function eváJuation procedure in 

Figure 2.6. In order to represent four values, we must use two bits per argument. 

Furthermore, the simulator must evaluate functions whose arguments are set to X 

or Z in a reasonable manner. 

Since in general it is not known how a Z input will be interpreted by a physical 

circuit, Z inputs are replaced by X during .function evaluation. However, in some 

technologies Z does behave like 0 or 1 when it is applied to a device input, so TLSIM 

allows the user to override the default mapping of Z -* X with Z - 0 or Z -* 1. 

When a function with one or more X arguments is evaluated, its value may or 

may not equal X. Consider two functions - Boolean AND and OR, with various 
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Figure 3.11: Cascading 4-bit adders to make a 16-bit adder 

input combinations, as shown in Figure 3.12, on page 54. Clearly there are cases 

where at least one argument is unknown (X), and the function value is not X (i.e., 

it is 0 or 1). 

1 

Figure 3.12: AND and OR gates with X inputs 

To address the problem of correctly evaluating Boolean functions with X ar-

guments, we begin by reformulating a function's arguments, or input vector as an 

equivalent set. If the vector contains no X entries, then its equivalent set has a single 

member - the original vector. However, if the vector contains X entries, the set is 

larger. In general, an equivalent set representing an original input vector will have 

2' elements, where the input vector contains n X entries. Some examples of the 

relationship between input vectors and their equivalent sets are given in Table 3.3. 

This equivalence relation is defined rigorously in Chapter 4. 
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Table 3.3: Sample input vectors and equivalent sets 

Input vector Equivalent set of explicit vectors 
1111 {1111} 
11X1 {1111, 11O1} 
X1X1 {1111,11O1,O111,O1O1} 

If a given Boolean function has the same non-X value for each member of the 

equivalent set of an input vector, then the function value for that input vector is not 

X. 

In order to avoid the need to enumerate X inputs and calculate equivalent sets, 

whenever a function is evaluated, TLSIM calculates the value of each truth table for 

every possible input vector when its loads the truth table library, before simulation 

begins. For instance, a two-input Boolean OR function might be specified by a truth 

table such as the one in Table 3.4. Assuming that Z inputs are mapped to one 

of {O, 1, X}, there are five input vectors which the original table does not directly 

specify. These are: (X, X), (0, X), (1,X), (X, 1) and (X, 0). During initialization, 

TLSIM calculates the equivalent sets for each of these input vectors, and updates 

the truth table appropriately. During simulation, any of these inputs can be applied 

to the-truth table directly, and a look-up procedure similar to the one in Figure 2.6 

is used to evaluate the function rapidly. 

3.5 Event Scheduling 

TLSIM uses a time wheel to manage. the event queue. This model was chosen after 

both the time wheel and heap scheduling algorithms were compared using a number 



56 

Table 3.4: Truth table for a Boolean OR function 

Input a Input b a OR b 
o o 0 
o 1 1 
1 0 1 
1 1 1 

of practical circuits. In all cases, the time wheel algorithm performed better, but 

only marginally. 

In a time wheel, delays are necessarily integer. Accordingly, a device library is 

specified using some fundamental unit of time; typically nanoseconds or tenths of 

nanoseconds. Device outputs are assigned rise and fall delays, specified as integer 

multiples of this fundamental unit. The longest delay in the device library is then 

used to set the length of the time wheel. 

Event scheduling in TLSIM is somewhat more complex than the classical time 

wheel model presented in the background chapter. This is so for two reasons: to 

ensure correct simulator operation, and to improve performance. In order to ensure 

correctness, TLSIM employs an event cancellation mechanism. In order to improve 

performance, TLSIM uses a fixed number of event slots, or allocated event data 

structures. Event allocation is then performed using a stack of pointers to these 

event slots. The net result is that both event allocation and deallocation are 0(1) 

operations. 
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3.5.1 Event Allocation and Deallocation 

In practice, a simulator spends much of its time allocating and deallocating space 

for events. In fact, due to operating system overhead, as much as 50% of the total 

simulation time may be taken up by memory allocation routines. Although a large 

number of events are allocated during the course of a typical simulation run, only a 

few event data structures are in use at any one time. 

TLSIM takes advantage of the fact that only a relatively small number of events 

are needed simultaneously by implementing a two-tier memory allocation scheme for 

events. This scheme is illustrated in Figure 3.13. TLSIM first allocates a reasonably 

large number of event data structures. These structures are stored in a static array, 

whose size may be increased as necessary during the course of the simulation. Next, 

TLSIM allocates a stack of pointers to these data structures. Initially, there is a one-

to-one relationship between the pointer stack and the event array. Whenever TLSIM 

requires an event data structure, it pulls a pointer from the stack. After an event has 

been processed, its address is pushed back onto the pointer stack. Since both pull 

and push stack operations require an 0(1) effort, event allocation and deallocation 

are both 0(1). 

Event structure array: 

Stack of pointers: 

(free) (free) (in use) (free) (in use) (in use) 

I 
Stack pointer: 
Next free event. 

Figure 3.13: Event memory allocation scheme 
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3.5.2 Event Cancellation 

Consider the circuit of Fig. 3.14(a), and the sequence of events at its inputs, as shown 

in Fig. 3.14(b). Assume that the AND gate has a rise propagation delay of iOns, 

and a fall propagation delay of 4ns. Let the initial inputs be a = 1 and b = 0. At 

t=5ns, a transition occurs, setting b -p 1. Since both inputs of the AND gate are 

now equal to 1, an event is scheduled for t=l5ns to set y - 1. Next, at t=6ns, 

a second transition occurs, setting a -* 0. Since the current function value is 1, a 

second event is scheduled, to set y -+ 0 at t=lOns. 

A 

- - I 

1 

a&b-0 10 
I 0 

b- 1 (charge) 
a-'l E"-' 0 r (discharge) 

I I i I Time(ns) 
Initial 5 10 15 Final 

(a) Labelled AND gate (b) Event sequence with an error in the final state 

Figure 3,14: The need for event cancellation 

If the two events at node y are processed in sequence, then the final state of the 

gate will be: a = 0, b = 1 and y = 1. Clearly, this is wrong. 

In order to alleviate this problem, and others like it, it is necessary to differentiate 

between the sequence in which events are scheduled, and the sequence in which they 

are retrieved. TLSIM guarantees correct steady-state response by ensuring that, 

for every node, only the last scheduled event is applied to the node. For instance, a 

number of inputs at a gate might change simultaneously, causing a sequence of events 
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to be scheduled at the gate's output node. TLSIM tags each event with a unique 

ID number, reflecting the order in which it was scheduled and stores the event ID at 

the node referred to in the event. The node then "knows" which event to "expect." 

When a spurious event is retrieved from the queue, its ID does not match the event 

ID at the target node, and it is discarded. 

Referring once again to Figure 3.14, the event setting y -+ 1 would be given an 

ID number, say '1.' At the same time, the event ID '1' would be stored at node y. 

Since it is scheduled later, the event to set y -+ 0 would get a later event ID, say 

'2,' and .the event ID at node y would also be set to '2.' When the y - 0 event 

is retrieved from the queue, its ID will match the one at node y, and it will be 

processed. However, when the y -+ 1 event is retrieved from the queue, its ID will 

not match the ID at node y, so it will be cancelled. 

3.6 Circuit Initialization 

TLSIM assigns an initial value of X to every node in a circuit. When simulation 

begins, TLSIM schedules events to set the value of the ground node to 0 and of the 

power node to 1. This is done in order to propagate the power nodes' constant values 

to device inputs before any other signals are applied. Furthermore, it ensures that 

devices whose only inputs are power nodes are evaluated at least once, even though 

good designs should have no such devices. This must be done because the simulator 

can make no assumptions about reasonable circuit. design - its function is to identify 

poor designs. 
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3.7 Summary 

Overall, TLSIM is designed to give good simulation performance and accuracy by 

using a device model which simultaneously is efficient to evaluate and accurately 

represents device blocks used in real circuits. 

The UNIMOD1 device model is fairly expressive: it can easily describe the major 

modes of device operation. These are feed-forward, i.e., simple Boolean functions, 

clocking, to control when outputs are asserted on their nodes, and asynchronous. Us-

ing this scheme, TLSIM can represent the operation of devices ranging from gates to 

small arithmetic-logic units (ALUs) using a single, unified model, without the perfor-

mance degradation associated with modeling low-level components in an algorithmic 

language. 

In addition to its powerful device model, TLSIM provides accurate simulation 

using its four-state signal representation, and a fast event cancellation mechanism, 

which ensures correctness in complex scenarios involving rapid sequences of input 

transitions. TLSIM does not suffer a performance penalty for the four-state signal 

model, as it uses a novel variation on the classical truth table look-up procedure to 

rapidly evaluate Boolean functions even when some of their arguments are equal to 

X. 

Finally, TLSIM achieves good execution performance. This is done in several 

ways. Using UNIMOD1, TLSIM can discard many events prior to device evaluation. 

Using efficient algorithms for memory allocation, function evaluation, event cancel-

lation and treatment of the high-impedance state, TLSIM can efficiently process the 

remaining events. For instance, a major time savings is achieved by reusing memory 
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allocated for event data structures. Similar measures are taken to rapidly allocate 

memory for devices and nodes during circuit initialization. 



Chapter 4 

Basic Algorithms in TLSIM 

This chapter describes the algorithms used to implement the various mechanisms 

in the TLSIM simulator. It describes their function, and how they address issues 

in simulator design. The main focus in each section is on implementing various 

components of a simulator efficiently, so as to reduce execution time. This is a 

feature of primary importance in the TLSIM simulator. 

Section 4.1 discusses how truth tables are constructed, and how they are used to 

evaluate Boolean functions. Together, the algorithms from these two sections make 

it possible to use the four-valued signal model without any significant performance 

degradation as compared to the binary-valued model. 

Section 4.2 describes how devices are evaluated when the state of one or more 

of their inputs changes. This is significant, because TLSIM spends most of its time 

evaluating devices. Every small improvement in performance here is multiplied out 

by the number of device evaluations carried out during execution, so can yield.. a 

large savings in overall simulator run time. 

Section 4.3 gives a detailed description of the scheduling mechanisms in TLSIM. 

There are two components to TLSIM's scheduling mechanism - one that loads tran-

sitions from an input file, and another that schedules internally-generated events. 

This section illustrates how these components are integrated. 

Section 4.4 describes the event-cancellation mechanism in TLSIM. It emphasizes 

how a potentially difficult problem is averted with no computational cost. In fact, 
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event cancellation in TLSIM can yield a performance improvement. 

Section 4.5 illustrates how the problems which arise from the use of a high im-

pedance (Z) state are addressed in TLSIM. The source count mechanism in TLSIM 

ensures correctness while incurring only minor overhead. 

Section 4.6 extends the ideas presented in Section 4.2 to illustrate how memory 

elements are evaluated. There are some important points to consider here, in order 

to avoid feedback on data lines in RAM chips, and to maintain a correct count of 

the number of signal sources active at every node. 

Section 4.7 describes the memory management algorithms used in the simulator. 

Since the simulator must allocate a large number of small blocks of memory to 

represent devices and nodes in the circuit, and later must perform a large number of 

memory allocation and deallocation operations, efficient memory management makes 

a large contribution to simulator performance. 

Figure 4.1 shows the relationship between procedures in TLSIM. It should serve 

as a useful reference while reading this chapter and Chapter 5. 

4.1 Four-Valued Boolean Functions 

TLSIM uses four-valued logic to represent device functionality. This is an extension 

to classical Boolean algebra, which adds the values {X, Z} to the classical {O, 1}. 

TLSIM uses truth tables to evaluate Boolean functions rapidly. In order to yield 

reasonable results for function evaluations where the function arguments range over 

{O, 1, X, Z}Th, rather than just {O, l}', some care must be taken both in truth table 

construction and evaluation. Sections 4.1.1 and 4.1.2 show how TLSIM constructs 
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truth tables and it uses them to evaluate four-valued Boolean functions. 

4.1.1 Building Four-Valued Truth Tables 

TLSIM uses four-valued truth tables to represent Boolean functions. These tables 

are stored in memory as arrays of integers, where each integer represents the function 

value for a different combination of inputs. A truth table is evaluated by forming 

an offset into the table, where each two bits in a binary representation of the offset 

number represent an input variable. The function value for that combination of 

inputs is then given by the integer at the offset position in the table. 

Building four-valued truth tables is a non-trivial task for two reasons. First, the 

table may be specified in terms of input vectors containing X elements, as illustrated 

in Figure 4.2. Second, the table may have to be evaluated for cases when one or more 

of the inputs are unknown (X). This separate problem is illustrated in Figure 3.12, 

on page 54. 

2-Input MTJX 
Boolean OR 
a  y 
xi i 
lxi 

s d0 d1 y 
00 
01 
ix 
lxii 

x 
xi 
00 

0 

Figure 4.2: Truth tables specified using X entries 

In order to more clearly illustrate how TLSIM solves these two problems, we must 
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first consider some definitions. Arguments to a Boolean function may be taken to 

be fixed-length vectors, where each element of the vector takes on one of the values 

{ 0, 1, X}. Using this notation, four-valued Boolean functions may be represented as 

f (v) E {0, 1, X, Z}, where v E {0, 1, X}', for some n.1 A vector v is classified as 

an explicit vector if and only if v E {0, 1}'. Otherwise, a vector is classified as an 

implicit vector - i.e., it contains at least one element which is equal to X. 

Next, we must consider the concept of equivalent sets of vectors. An explicit 

vector v is equivalent to the set {v}. An implicit vector v- is equivalent to the set 

{ v1, viol, where v1 and v0 are formed by replacing an element in vi which was equal 

to X with 1 and 0, to give two new vectors vil and v0. This equivalence relation 

may be applied repeatedly to find larger equivalent sets to v. 

In order to evaluate a Boolean function for an explicit argument, we simply look 

up the value of the truth table at the offset derived from its vector. To evaluate 

a Boolean function for an implicit argument, we first find its largest equivalent set 

all of whose elements are explicit vectors, and then evaluate the function for each 

member of that set. If each of the vectors in this set yields the same function value, 

then that is the function value for the original implicit argument. Otherwise, the 

function evaluates to X. 

Since TLSIM allows truth tables to be specified in terms of implicit vectors, the 

following steps must be taken to initialize each truth table: 

1. Allocate a table, and set all elements to 0. 

2. For every implicit vector in the function definition, generate two entries by 

'Elements of a vector which are equal to Z are mapped to one of {O, 1, X} before function 
evaluation. 
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selecting an element in the vector whose value is X, and replacing it with both 

0 and 1. Repeat step 2 for each new vector. 

3. Set the table at the offset derived from each resulting explicit vector. 

This procedure is illustrated in Figure 4.3. 

Inputs: The truth table (table), array of arguments (arguments), and the func-
tion value (value) 

Outputs: None 

Procedure AddVector { 
/ * expand out implicit vectors: / 
for( each argument, i ) 

/ if implicit, substitute 1 and 0 and repeat: / 
if( argument = X) 

let argumenti = 0 
recurse: AddVector (table, arguments,value) 
let argumenti = 1 
recurse: Add Vector(table,arguments ,value) 
let argumenti = X 
return 

/ assign function values to explicit vectors: / 
offset=0 
for( each argument, i ) 

shift offset left 2 bits 
offset = offset or argument 

let table[offset] = value 

} 

Figure 4.3: Algorithm to expand implicit vectors to their equivalent sets 

The algorithm in Figure 4.3 only initializes positions in the table which corre-

spond to explicit argument vectors. TLSIM must then fill in the table in order to 
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assign correct function values to all implicit vectors. To do this, TLSIM checks every 

possible input vector and, if it is implicit, calculates the function value for that vector 

by checking its equivalent set. If the function yields the same value for each member 

of the equivalent set, then that is the implicit vector's function value. Otherwise, 

the function value for the implicit vector is set to X. This procedure is illustrated 

in Figure 4.4. 

The effect of these two algorithms on a sample truth table is illustrated in Fig-

ure 4.5, for a two-input multiplexor function. The Add Vector algorithm removes 

any information from table entries representing implicit vectors, while the Fillln 

algorithm restores these, as well as 'any other implicit vectors. 

4.1.2 Evaluating Four-Valued Truth Tables 

Given that a truth table has been filled in and expanded as shown in Figure 4.5, 

TLSIM may use a trivial truth table evaluation algorithm. This algorithm simply 

forms an offset into the table, and.returns the table's contents at that offset. This 

procedure, which is oblivious to implicit and explicit vectors and therefore quite 

efficient, is illustrated in Figure 4.6. 

4.2 The Device Evaluation Algorithm 

Whenever inputs to a device change, TLSIM must reevaluate the state of the device 

and, if outputs change, schedule transitions at the nodes connected to the device's 

outputs. In order to reduce the time required to recalculate the state of devices, 

TLSIM attempts to identify device states where changing some of the inputs will 
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Inputs: The truth table (table), and the number of arguments (Narguments) 
Outputs: None 

Procedure Fillln { 
for( 

} 

v = 0 to 22Nargumens ) 
1* 
if( v contains no Z elements and v is implicit) 
v represents a function argument vector / 

table[v] = EvalEquivalent(table,Narguments,v) 

Inputs: The truth table (table), number of arguments (Narguments), and ar-
gument vector (v) 

Outputs: The function value 

Function EvalEquivalent { 
1* recursively handle implicit vectors: / 
for( every element k in the vector v ) 

if( element k = X ) 
let i = EvalEquivalent() with the same arguments, except that 

element Ic is set to 0. 
let j = EvalEquivalent() with the same arguments, except that 

element Ic is set to 1. 

if( i = j ) 
return i 

else 
return X 

1* explicit vectors need no special treatment / 
return table[v] 

} 

Figure 4.4: Algorithm to assign values to implicit vectors in a truth table 
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Figure 4.5: The effect of the AddVector and Fillln algorithms 
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Inputs: The truth table (table), an array of arguments (arguments), and the 
number of arguments (Narguments) 

Outputs: The function value 

Function EvalFunction { 
let offset = 0 
for( i = 0 to Narguments - 1) 

shift offset left 2 bits 
offset = offset or argument 

return table[offset] 

} 

Figure 4.6: Algorithm for evaluating four-valued truth table-functions 

not affect the device outputs. When inputs change while a device is in such a state, 

TLSIM postpones device evaluation, thus reducing execution time. 

There are two cases where TLSIM does not reevaluate the state of device outputs. 

The first is when outputs are disabled, and the second is when outputs are under 

the control of an asynchronous override. Consider the example of a D-type flip flop. 

The DFF has a single data input (D), a clock input (CLK) active on its falling 

edge, an asynchronous clear input (CLR), which is active low and an output (Q). A 

transition on the D input will never cause an output recalculation. Furthermore, Q 

need not be recalculated as long as CLR is set to 0. The only transition that may 

cause Q to be recomputed is a 1 -* 0 transition on the CLK input while CLR is set 

to 1 (inactive). 

In general, devices have more complicated output functions than the simple Q = 

D operation of a DFF. By avoiding the recalculation of many output nodes (block 
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B of Figure 3.2, on page 40), TLSIM gains a measure of efficiency. 

The following sections describe the operating principles in TLSIM's evaluation-

cancellation mechanism. The final section puts these ideas together to show the 

device evaluation procedure. 

4.2.1 Output Enables 

TLSIM's output enables are analogous to clocking pins on a device. They are used 

to model both level- and edge-sensitive inputs, which control when the value of a 

device output is updated. TLSIM allows for at most one enable per output. 

Associated with each output in a device is a flag indicating whether it is currently 

enabled. When the output function is considered for reevaluation (i.e., when some 

input to the device has changed), TLSIM checks this flag to see if the output is 

active. If it is not, the evaluation is skipped. Whenever an enable input to a device 

changes, TLSIM updates all the appropriate flags, and if the state of an enable input 

changed from inactive to active, each affected output is re-evaluated. 

The procedure for deciding whether or not to recalculate any subset of a device's 

outputs when an enable input changes is shown in Figure 4.7. Given a device, the 

number of the enable that changed, and the new enable value, this procedure updates 

flags inside the device, and if necessary calls the device evaluation procedure. 

4.2.2 Asynchronous Overrides 

TLSIM allows for a number of asynchronous override inputs to be used in a device. 

These inputs model asynchronous clear and preset logic in otherwise synchronous 

devices. They are also useful in gating circuitry - for instance, a row of AND gates, 
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Inputs: The device (device), the input that changed (pin) and new value (1) 
Outputs: None 

Procedure EvalEnable { 
switch( active transition type for this enable pin) 

1* active-high *1 
case HI: if( l=1) 

set enable flag to True 
recalculate affected output functions in the device 

else 
set enable flag to False 

/ active-low / 
case LO: if( lO) 

set enable flag to True 
recalculate affected output functions in the device 

else 
set enable flag to False 

/ rising-edge triggered *1 
case LOHI: if( 1 = 1) 

set enable flag to True 
recalculate affected output functions in the device 
set enable flag to False 

1* failing-edge triggered *1 
case HILO: if( 1 = 0 ) 

set enable flag to True 
recalculate affected output functions in the device 
set enable flag to False 

} 

Figure 4.7: Algorithm to process transitions at device enable inputs 
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with a function as shown in Figure 4.8, could be modeled as a single device with 

eight inputs, eight outputs, and a clearing asynchronous override. This model is 

more efficient than using eight separate gates, since it requires less computation, 

with no loss in precision. 

y. = AND(di,gate) 
Y2 = AND(d2,gate) 

ys = AND(ds,gate) 

Figure 4.8: Gate circuit with eight data lines 

.Asynchronous overrides differ from enable inputs in two ways. First, asyn-

chronous overrides specify not only when an output is active, but also what value it 

takes on when it is inactive. Second, more than one asynchronous override may be 

applied to the same output (e.g., clear and set in a flip-flop). This second property 

presents a problem - what happens when more than one asynchronous override is 

applied to an output? The solution is to keep track of how many overrides are active 

on each output, in order to properly determine when to reactivate it. 

The algorithms for processing asynchronous overrides are simple. 'Whenever an 

override becomes active, all the outputs it controls are set to the appropriate logic 

value, and each of their override counters is incremented. As with enable inputs, 

before a device output is recalculated, the override count is checked. If the count is 

zero, then the output is considered to be active, and the output function is evalu-

ated. Otherwise, the evaluation is skipped. Whenever an asynchronous override is 

deactivated, the override counter on each affected output is decremented. For each 
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output whose counter becomes equal to zero, the output function is evaluated. 

This procedure for dealing with multiple, simultaneously applied asynchronous 

overrides unfortunately has the property that the last override asserted on a de-

vice output is the one retained until the output is re-enabled. Consider the input 

sequence: {Set on, Clear on, Clear off, Set off}, applied to asynchronous over-

rides in one device. In this sequence, a device output should follow the sequence 

a -+ 1 -* X -* 1 -+ b, where a is the initial output function value, b is the 

final output function value and device operation when both set and clear are ac-

tive is undefined. However, using the TLSIM model, the actual sequence will be 

a - 1 -+ 0 -+ 0 - b. This may not reflect the operation of the device in reality. 

However, since device behaviour is in general undefined when multiple overrides are 

applied to devices, this is only a minor issue. Although a simple algorithm could 

be used to give better model behaviour under multiple overrides, it is probably not 

worth the additional computation. 

The algorithm for processing events applied to asynchronous overrides is shown 

in Figure 4.9. 

4.2.3 Propagation Delays 

Physical devices have propagation delays due to capacitive charge and discharge. 

Each electrical point inside a device has associated rise and fall times, which reflect 

the time it takes to charge and discharge the capacitance between that node and 

ground. Furthermore, charge and discharge delays are caused by the capacitance 

of wire routing between devices. Typically, the delays at device outputs dominate, 

because wire capacitance is much larger than the capacitance of active areas within 
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Inputs: The device, the asynchronous override number and its new value 
Outputs: None 

Procedure EvalAsynch { 
/* level sensitive override became active / 
if( (active high and value = 1) or (active low and value = 0)) 

for( each affected output) 
increment the asynch count 
if( override value 54 old output value) 

schedule a transition to the override value 

/ level sensitive override became inactive / 
else if( (active high and value = 0) or (active low and value = 1)) 

for( each affected output) 
decrement the asynch count 

/ momentary override / 
else if( (falling edge triggered and value = 0) or 

(rising edge triggered and value = 1)) 

/ * note that the asynch. override count is unaffected / 
for( each affected output) 

if( override value old output value ) 
schedule a transition to the override value 

} 

Figure 4.9: Algorithm to handle signal transitions at asynchronous overrides 
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devices [26]. Accordingly, TLSIM makes the approximation that device delays are 

lumped entirely at their outputs (i.e., twjre + tdevjce twire since twjre >> 

Whenever the value of an output node in a device changes, due to changes in 

the device's inputs, TLSIM schedules an event at the node in the circuit which is 

driven by that output. This event represents a transition which is set to occur at the 

current time, plus some propagation delay. Devices have propagation delays defined 

individually for each output, with rise and fall times specified separately. TLSIM 

looks up the appropriate delay for each output transition before scheduling an event. 

4.2.4 Input Transitions 

Whenever a device input changes value, TLSIM must decide which truth tables in 

the device to reevaluate. In general, it must recompute the value of every internal 

node (reevaluate block A in Figure 3.2, on page 40). This is the case for two reasons - 

there is no way to temporarily disable an internal node (as is possible with outputs), 

and TLSIM has no convenient way to calculate the dependency relationship between 

device outputs (which may be disabled) and internal nodes. 

After evaluating internal function, TLSIM checks each output in the device. In 

case it is currently active, i.e., it is enabled, and no asynchronous override is asserted 

on it, the output function is evaluated. If the new function value differs from the 

node value, a transition is scheduled to change the node's value after some delay. 

4.2.5 Summary 

Combining the ideas of the previous sections, we get the algorithm for device evalua-

tion, as shown in Figure 4.10. Note that the algorithm shown is somewhat simplified, 
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in that it does not show how all the flags in each device are initialized. 

4.3 Event Scheduling 

TLSIM is an event-driven simulator. This means that inputs cause events to be 

scheduled, which the simulator processes in a non-decreasing time sequence. When 

the simulator processes an event, it changes the state of the affected node, and 

reevaluates every device in the node's fan-out. If any device outputs changed, new 

events are scheduled at the nodes connected to those outputs. 

From the above description of simulator execution, it is evident that TLSIM has 

three repeating execution phases: event scheduling, retrieval and device evaluation. 

Accordingly, any improvement in event scheduling leads to significant performance 

improvement. 

To manage an event queue efficiently, TLSIM uses the time wheel algorithm, as 

outlined in Section 2.4.2, on page 28. 

The time wheel algorithm derives its performance from the fact that scheduling 

events is a trivial operation - they are simply inserted into the linked list at array 

position 

insert - (current time + Tdelay) mod N, (4.1) 

where icurrent time is the position representing the current time step, Tdelay is the 

device propagation delay, and N is the array size. 

• Similarly, retrieving .events from the array is trivial - just increment Zcurrent time 

until an occupied array element is reached, and process the list of events at that 

element. If activity in the circuit is reasonably high, and different devices have 
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Inputs: The device, the pin number type where the transition occurred 
Outputs: None 

Procedure RecalcDevice { 
/* internal evaluation can't be skipped when inputs change / 
if( device has internal nodes and an input just changed) 

evaluate each internal node 

for( each output) 
1* disabled due to asynchronous override? */ 
if( at least one asynchronous override is active ) 

continue to next output 

1* 
if( 

} 

input or enable changed to affect the device? / 
any input changed and the output is enabled or an enable 
became active and it controls this output) 

1* evaluate the output function / 
new = output function( current inputs) 
node = node which this output drives 

1* 
if( 

schedule changes with the right delay / 
new 0 value( node)) 
if( new = Z and output is currently on) Lsources = -1 
else if( new Z and output is currently off) Lsources = 1 
else Lsources = 0 

if( new = 0) 
Schedule a transition at node, to new, with a propagation 
delay tf all, and add L.sources to the source count. 

else 
Schedule a transition at node, to new, with a propagation 
delay trisa, and add Lsources to the source count. 

Figure 4.10: Device evaluation algorithm 
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different propagation delays, then the distribution of events over the array' will tend 

to be uniform, and the index current time won't have to be incremented much before 

a new group of events is found. 

The algorithm for scheduling events in the time wheel is shown in Figure 4.11. 

The algorithm used to retrieve events from the time wheel is shown in Figure 4.11. 

Note that these algorithms are somewhat more efficient than the classical time wheel 

algorithm [39] shown in Figure 2.9, shown on page 29, in that they avoid having to 

make N iterations when the time wheel is empty by keeping count of how many 

events are still 'pending in the queue. 

These two algorithms suffice for scheduling events produced within the simula-

tor, where propagation delays are bounded. However, inputs applied to the circuit 

may arrive at any time, with an unbounded delay. This can cause the time wheel 

algorithm to fail. TLSIM handles externally generated events by keeping track of 

the time of the next pending input event. When TLSIM runs out of internal events 

to process, or reaches the time for which an input event is pending, it retrieves all 

the input transitions for the next time step, and updates the 'pending time' variable 

to indicate the next set of inputs. 

The overall procedure for event retrieval, from both the input file and time wheel, 

is shown in Figure 4.12. It first checks to see if there are input events pending for the 

current time step, and if so reads them into the queue. Next, it attempts to dequeue 

a single event. If this fails, it attempts to read any events from the file. If this also 

fails, it ends the simulation. Assuming the previous steps produced a valid event, it 

is returned. 

The procedure for reading input transitions from the stimulus file is shown in 
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Inputs: The new event (e), and a delay after which the event should be pro-
cessed 

Outputs: None 

let currentoffset = the current position in the time wheel. 
array = the time wheel array of linked lists. 
pendingevents = the number of events in the queue. 

Procedure Schedule { 
position = (currenLoffset + delay) mod N 
/* link e to the array at position / 
e—next = array[position] 
array [position] = e 
increment pending-events 

} 

Inputs: None 
Outputs: The next event in the queue 

Function Retrieve { 
if( no events pending in the queue ) 

return NULL 

while( array [current-offset] =NULL) 
current-offset = (current-offset + 1) mod (array length) 

/ next time, continue with the next event at this position / 
ptr = array [current _offset] 
array [current _offset] = ptr—*next 
return ptr 

} 

Figure 4.11: Time wheel scheduling and retrieval algorithms 
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Figure 4.13. This procedure is designed to read every event for a single time step 

into the queue. First, it checks for an end-of-file condition, and quits if this is the 

case. Next, it reads a single event from the stimulus file (by default called input). 

If this is the first event to be read, or it occurs at the same time as the last read 

event, the new event is added to the queue. Otherwise, it is returned to a buffer, to 

be reread later. 

Inputs: None 
Outputs: The next event (e) 

let time = the current simulation time. 
nextinput = the time of the next event in the stimulus file. 

Function GetNextEvent { 
/ if there are pending events for this time step, read them / 
if( time≥ nextinput ) 

ReadEvents() 

Retrieve event e from the queue 
if( no event ) 

ReadEvents() 
Retrieve event e from the queue 
if( no event) 

End the simulation 

return e 

} 

Figure 4.12: Algorithm to retrieve the next event, from -either the time wheel or 
stimulus file 
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Inputs: None 
Outputs: None 

let nextinput = the time of the next event in the stimulus file, a global variable. 
thistime, t = time variables 

Procedure ReadEvents { 
thistime = -1; 
while( True) 

if( end of file ) 
/ wind down simulation / 
nextinput = current time + 1000 
return 

Read: the next event (e) in the file 

/* if not first event and later than last event read / 
if( thistime 54 -1 and time( e) 54 thistime) 

return e to input stream (to be reread later) 
nextinput = time( e) 
return 

Schedule( e) 

thistime = time( e) 

} 

Figure 4.13: Algorithm to read transitions from stimulus file 
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4.4 Event Cancellation 

During the course of simulation, a rapid sequence of transitions may arrive at a 

device's inputs. Such a sequence may cause a naive event-driven simulator to produce 

incorrect steady-state results. This problem is illustrated in Figure 3.14 on page 58, 

where a sequence of input events causes a two-input AND gate to reach an incorrect 

steady-state value. 

TLSIM addresses this problem by adding an event-cancellation mechanism to the 

scheduler. Of ri events pending in the queue, all at node N, only the last scheduled 

event is applied to node N. This event may well be different from the latest of the n 

events. To do this, whenever an event is scheduled, the node at which the transition 

is to occur is marked with an event ID, which identifies that event uniquely. When 

events are retrieved from the queue, they are only processed if their ID matches the 

ID stored at their target node. This has the effect that spurious events are queued 

and processed by the event-scheduling routines, but when they are retrieved spurious 

events are cancelled. 

The event cancellation mechanism identifies events uniquely using a global coun-

ter, which is incremented every time an event is allocated. When scheduling an 

event, TLSIM follows the steps: 

1. Allocate an event. 

2. Initialize the event's data structure with a node, time and value. 

3. Set the event's number to the counter, global_evertLnumber. 

4. Set the target node's pending event number to global-event-number. 
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5. Increment global-event-number. 

6. Add the event to the time wheel. 

When an event is retrieved, the following steps are taken to remove spurious 

events: 

1. Retrieve an event. 

2. Compare the event ID with the number in the node. 

3. If they differ - return to step 1 (i.e., cancel this event). 

4.5 The Source Count High-Impedance Model 

TLSIM gives the high impedance (Z) state special treatment. In many practical 

circuits two signals may be active on the same node for a brief period, before one of 

them is disabled, as shown in Figure 2.2 on page 13. Clearly, if the last event to be 

dequeued in Figure 2.2 is y - Z, a simulation error will occur. In order to overcome 

this problem, TLSIM only changes the state of a node to Z when the number of 

signals asserted on a node becomes equal to zero. To do this, TLSIM must monitor 

device outputs turning on and off, and count the number of active signal sources at 

each node. 

In order to track transitions to and from Z, when TLSIM schedules events it in-

cludes a source change variable, Lsources, in the event data structure. This variable 

indicates whether the transition at the device output in question was to the Z state 

(in which case Lsources = —1), from the Z state (in which case Lsources = 1), or 
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did not involve the Z state (Lsources = 0). When an event is retrieved from the. 

queue, Asources is immediately added to the source count at its target node. In 

case the source count of the node then becomes equal to zero, the node is set to Z. 

4.6 Simulating Memory Blocks 

Memories in TLSIM are simulated using a regular array of binary digits, where the 

size of the address space is limited by the memory available on the host computer, and 

the wordlength is limited by the wordlength of the host computer. Memory blocks 

have three types of connections - data lines, address lines, and a read/write input. 

Address lines are strictly inputs, data lines are bidirectional, and the read/write line 

is an input. Memory blocks are meant to be used as building blocks when modeling 

real memory circuits, such as RAM and ROM chips, so they have no propagation 

delay. Propagation delays are normally included in the interface circuitry, as shown 

in Figure 4.14. Furthermore, TLSIM does not distinguish between read-only and 

read-write memories. There is, however, a facility for setting the initial contents 

of a memory, so read-only memories are modeled by initializing the contents of a 

memory block, and fixing the read/write line to a logic high value (read), as shown 

in Figure 4.14. 

In accordance with the source count model presented in Section 4.5, TLSIM 

must ensure that the source count at nodes connected to data lines is accurate. 

Since the direction of signal flow reverses between read and write operations, TLSIM 

decrements the source count at nodes connected to data lines whenever a memory is 

set to write, and increments the same source counts whenever the memory is set to 
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Figure 4.14: Modeling different types of memory in TLSIM 
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read. 

A problem presented by the bidirectional nature of data lines is that the memory 

block appears in both the fan-in and fan-out of nodes connected to the data lines, as 

shown in Fig. 4.14(b) and 4.14(c). To avoid unnecessary signal propagation, where 

signals are passed out of and back into a memory block, whenever a memory block 

is set to read, transitions on the data lines are ignored by the memory block, since 

by definition that is where they originated. 

The procedure for processing events at memory block boundaries is shown in 

Figure 4.15. 

4.7 Memory Allocation 

TLSIM allocates a large number of memory blocks, most of which are quite small. 

Initially, it must allocate data structures representing function and device defini-

tions. Next, it must allocate and initialize a graph of the circuit. Finally, during 

simulation TLSIM must allocate and deallocate a large number of event blocks. In 

many simulations; the number of allocated blocks can run into the millions. Clearly, 

providing a mechanism for fast memory allocation makes a large contribution to 

simulator performance. 

TLSIM contains two separate algorithms for rapid allocation of small memory 

blocks. The first is an algorithm that allocates large amounts of space from the 

operating system, and then hands out memory in small blocks to various functions 

in TLSIM, as required. The performance of this algorithm rests on the assumption 

that all these small memory allocation units will remain in use until the end of the 
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Inputs: memory block (mem), pin type, new value 
Outputs: None. 

Procedure EvalMemory { 
switch( pin type) 

case DATA: 
/ ignore data lines when reading *1 
if( reading) return 
data-word = data-word with new bit changed 
data[address_word] = data-word 

case ADDR: 
address-word = address-word with new bit changed 
if( writing) /* update array at new location / 

data[address_word] = data-word; 
else / copy new word to data lines / 

for( each data line ) 
if( value( node) differs from data bit) 

Schedule an event at this data line 
return 

case READ: 
if( now reading) /* change to writing / 

data-word = data[addressword] 
for( each data line) 

if( value( node) differs from data bit) 
Schedule an event at this data line 

increment source count at that node 
else / change to reading *1 

data[address_word] = data-word; 
for( each data line) 

decrement source count at that node 

} 

Figure 4.15: Procedure to process transitions at memory block inputs and outputs 



90 

simulation, so do not need to be deallocated individually. A second algorithm is 

used to rapidly allocate and deallocate events. The performance of this algorithm 

is based on the observation that the number of events queued at any given time 

is much smaller than the total number of events required during the course of the 

simulation. Accordingly, relatively small number of event data structures is reused 

throughout the simulation. 

4.7.1 Small Block Allocation 

When loading function definitions (by default from the file INTRINS.LIB) and device 

definitions (by default from, the file DEVICE-LIB), as well as the circuit netlist, 

TLSIM uses a large number of small, dynamically-allocated memory blocks. Node 

names, fan-ins and fan-outs, truth tables, device definitions, etc. are stored in these 

blocks. Rather than incur the overhead of calling the operating system's memory 

allocation function for every small memory block that's needed, TLSIM allocates 

large blocks of memory, and incrementally uses up the space they provide. 

Initially, TLSIM allocates a large stack in memory. Whenever TLSIM requires a 

small amount of memory, it is pulled from the stack. When the stack is empty, TL-

SIM allocates a new stack, and the process continues. The procedures for allocating 

and using the memory stack are illustrated in Figure 4.16. 

4.7.2 Event Allocation 

During execution, TLSIM uses a large number of events to represent circuit activity. 

However, only a relatively small number of events are required simultaneously. In 

order to reduce its memory requirements and improve performance, TLSIM uses a 
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Inputs: None 
Outputs: None 

let memptr = a static pointer to a large block of memory 
sp = be a static integer used as an offset into this block 

Procedure InitSmallMem { 
let memptr = allocate( a large block of memory) 
let sp = 0 

} 

Inputs: Number of bytes required (size) 
Outputs: A pointer to a free block of memory 

Function SmallAllocate { 
if( sp+size> the size of the memory block) 

InitSma11Mem() 
/ remember this location and increment sp to reflect the allocation 
= sp 

sp = sp + size 
return memptr + i 

} 

Figure 4.16: Algorithms for allocating small memory blocks 

*1 
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static array of event data structures and a stack of pointers to these structures, as 

shown in Figure 3.13, on page 57. In case an event is required when the stack is 

empty, there is a facility for allocating more event data structures, and resizing the 

stack. The event allocation and deallocation algorithms are shown in Figure 4.17. 



93 

Inputs: None 
Outputs: None 

let eventblock = a pointer to a block of event data structures 
estack = a pointer to a block of pointers to event data structures 
esp = an integer used as an offset into the estack array 

Procedure InitEventAlloc { 
let eventblock = allocate( a large number of event data structures) 
let estack = allocate( a large number of event structure pointers) 
let esp = 0 
for( i = 0 to the length of the eventblock array) 

estack[i] = eventblock + i 

} 

Inputs: None 
Outputs: A pointer to an empty event 

Function AllocateEvent { 
if( esp = the length of the eventblock array) 

enlarge the eventblock and estack arrays. 
ptr = estack[esp] 
esp = esp + 1 
return ptr 

} 

Inputs: A pointer to an event 
Outputs: None 

Procedure FreeEvent { 
esp = esp - 1 
estack[esp] = ptr 

} 

Figure 4.17: Algorithms for managing event allocation 



Chapter 5 

Algorithm Analysis 

This chapter gives an analysis of the execution time incurred by the most frequently 

called functions in the TLSIM simulator. It does not give an an analysis of the 

various input-file parsers or circuit initialization routines. Furthermore, it makes no 

attempt to analyze the overall execution time of the simulator, due to its dependence 

on the following factors: 

• Circuit size 

• Average fan-out 

• Tendency of devices to propagate signal transitions 

• Number of input vectors 

These factors are random and unpredictable, so there is little point in calculating 

overall execution time, as the resulting formula would be unusable. 

On the other hand, it is helpful to calculate the computational complexity of many 

of the algorithms in TLSIM, as this gives some indication of where the simulator 

spends much of its execution time, and how simulator performance may, in general, 

be improved. 

The following sections give a brief analysis of each of the major algorithms in 

Chapter 4. 
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5.1 The AddVector Procedure 

This procedure, shown in Figure 4.3 on page 67, is used to add a vector, supplied by 

the user, to the truth table used to represent a Boolean function. A special algorithm 

is needed for this purpose since implicit vectors are allowed in the function defini-

tion. Essentially, if a vector is explicit, the table at that location is duly initialized. 

Otherwise, the implicit vector supplied by the user is recursively expanded out into 

its largest equivalent set, and the same assignment is performed for every resulting 

explicit vector. 

If the user-supplied vector contains n. bits set to X, then the size of the equivalent 

set is 2" explicit vectors. Since most of the execution time in a short recursive 

algorithm like this is spent in function-call overhead, it is sufficient to find the number 

of function calls required to generate each member of the equivalent set. 

Consider that a single function call initially starts AddVector. Furthermore, if 

there is an X entry in the input vector, it is replaced with two vectors, so AddVector 

is called again for each. Clearly, this pattern continues, forming a binary tree of 

function calls with the explicit vectors at its leaf nodes. For a binary tree with m 

leaf nodes, there are 2m - 1 edges (or function calls). In our case, for n bits set 

to X in an implicit vector, m = 2, and AddVector is executed 2(2') - 1 times. 

Accordingly, its requires O(2') time to process a vector with n bits set to X. In 

practice, vectors seldom contain more than 6 elements, so ri < 6. 
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5.2 The Fillln Procedure 

This procedure, shown in Figure 4.4 on page 69, is used to assign values to every 

implicit vector that might be used as an argument to a Boolean function. In the for 

loop, every vector is tested to see if it is both valid and implicit. For a function with 

n arguments, using 2 bits per argument, there are 2 2n possible input vectors, so the 

loop is repeated 22n times. 

A vector is valid if it is of the form: {O, 1, X}'. Using 2 bits per input, this means 

that no element in the vector is equal to Z. The probability that a given vector is 

valid is then Pr[valid] = ()'. 

Similarly, a vector is explicit if it is of the form {O, 1}, for some rt. Given that 

it is valid, the probability of a vector being explicit is just ()'. If a vector is not 

explicit, it must be implicit, so the probability that a vector is implicit is 1 -  

Whenever a vector is valid and implicit, the function EvalEquivalent is called. 

In the same way as AddVector in Section 5.1, EvalEquivalent requires a total of 

2(21) - 1 recursions, where 1 is the number of X elements in its initial argument. We 

must therefore calculate the average value of 1, 1, for implicit vectors in order to find 

the average time complexity of the EvalEquivalent function, and thus the Fillln 

procedure. 

Consider a vector of length n bits, of the form {O, 1, X}. The probability that 

the number of X elements in the vector is k is given by: 

Fr[k] = Ck(() n! (1)k(2)fl (5.1) 
fl3 3 (rt—k)!k!2 3 

The average number of X elements in a completely random vector is thus given 
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by: 

1= k(Pr[k]) = k(Pr[k]) 

Substituting, we get: 

2 Thn! 1= (1)k 1 
k=1 2 (n—k)!(k-1)! 

After some manipulation, this result can be reduced to: 

(5.2) 

(5.3) 

(5.4) 

An implicit vector of length n can be formed from a random vector of length 

n - 1 by placing a X in one of the implicit vector's positions, and using the random 

vector to fill all the remaining elements. Accordingly, we can use the previous results 

to find the average number of X elements in an implicit vector: 

1implicit 1 + n - 1 = 72+2 (55) 

Applying the above results, EvalEquivalent is executed, on average, 2(22)13) - 1 

times per implicit vector. The probability of a vector being implicit is (3/4)(1 - (2/3)'). 

The overall computational complexity of Fillln is then: 

22Th()(1 - ())(2(2( 2)13) —1) (5.6) 

For large n, we can let 1 - (2/3)' 1, and 2(2 (n+2)/3) - 1 The com-

putational complexity of the FillIn algorithm then becomes: 
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/33n 

This expression may be rearranged as follows: 

exp( in 2) exp(n in 3) 

(5.7) 

(5.8) 

(5.9) 

For n >> 1, we factor out the n terms, to get the approximate computational 

complexity of FillIn: 

exp(nln(3.78)) = 3.78n (5.10) 

Overall, then, the computational complexity of FillIn, for a truth table with ri 

arguments, is O(3.78'). As before, it is fortunate that n. is limited to at most 6 in 

practice. 

5.3 The EvalFunction Function 

This function, shown in Figure 4.6 on page 71, is used to evaluate Boolean functions 

when device inputs change. EvalFunct ion uses a table lookup approach to find the 

value of a Boolean function for a given set of inputs. An offset vector into the truth 

table is formed from the function arguments, and the table's value at that offset is 

returned. 

For a function with n inputs, it takes n steps to form the offset vector, so the 

Eva.lFunction algorithm requires an 0(n) computational effort. 
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5.4 The Schedule Procedure 

This procedure, shown in Figure 4.11 on page 81, is used to add events to the 

queue. In the time-wheel paradigm, this is just a matter of calculating the insertion 

point, and attaching the event to the approrpiate linked list. Accordingly, scheduling 

requires only an 0(1) computational effort. 

5.5 The RecalcDevice Procedure 

This procedure, shown in Figure 4.10 on page 79, is used to update the state of a 

device, following a change in the state of one of its data inputs, enables, or asyn-

chronous overrides. 

Consider a device with d data inputs, i internal nodes, and o outputs. In principle, 

every Boolean function could have as many as d + i + o arguments. As outlined in 

Section 5.3, recalculating the state of a Boolean function with m arguments is an 

0(m) operation. Accordingly, the loop for evaluating every internal node requires 

an 0(i(d+i+o)) effort. 

Next, a for loop checks the state of each output. If every output function is 

calculated, the for loop requires an 0(o(d + i + o)) effort. 

Together, then, for d inputs, i internal nodes and o outputs, the RecalcDevice 

procedure may require as much as an 0((i + o)(d + i + o)) effort. If d, i and o are 

comparable, then we may define a new quantity, n, to be the total number of nodes 

in the device, such that n = d+i+o. In this case, we may say that the RecalcDevice 

algorithm requires an 0(n2) effort. Per device output, this is approximately 0(n). 
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5.6 The EvalEnable Procedure 

This procedure, shown in Figure 4.7 on page 73, is used to decide whether or not a 

device evaluation must be performed after a change in the state of one of a device's 

enables. Since it just makes some decisions and possibly calls the RecalcDevice 

function once, it requires the same order of computational effort as RecalcDevice: 

0(n2), where the device has n nodes. 

5.7 The EvalAsynch Procedure 

This procedure, shown in Figure 4.9 on page 76, is used to decide whether or not 

device evaluation must be performed after a change in the state of one of a device's 

asynchronous overrides. For a device with o outputs, as many as o outputs may 

be affected by the state of the asynchronous override that triggered EvalAsynch's 

execution. Since a loop is executed to update the asynchronous override count at each 

output, after which the RecalcDevice procedure may be called, the computational 

complexity of EvalAsynch is 0(n2) + 0(n) 0(n2), for a device with n internal 

nodes and outputs. 

5.8 The EvalMemory Procedure 

This procedure, shown in Figure 4.15 on page 89, is used to process every transition 

that arrives at the boundaries of a memory cell. It actually consists of three mutually-

exclusive segments of code, which handle transitions at data lines, address lines, and 

the read line, respectively. As outlined at the start of this chapter, it is impossible 
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to predict the relative frequency with which these will be executed in practice. 

In case the transition occurred on a data line, EvalMemory executes a simple, 

0(1) code segment. 

In case the transition occurred on an address line, one of two things may happen. 

If the memory is in write mode, an 0(1) operation is performed to update the contents 

of the buffer. Otherwise, in read mode, up to d transitions may have to be scheduled, 

for a memory cell with d data lines. Accordingly, in this case the EvalMemory 

procedure requires an 0(d) effort. 

In case the transition occurred on the read line, one of two for loops must be 

executed. Both, however, are executed once per data line, so an 0(d) effort is 

required. 

Overall, then, evaluating a memory cell requires either an 0(1) or an 0(d) effort. 

5.9 The Retrieve Function 

This function, shown in Figure 4.11 on page 81, is used to dequeue events from 

the timewheel. This is done by checking every position, starting with the current 

position in the time wheel, to see if it is empty. At the first location in the time 

wheel which contains one or more events, this function removes one event from the 

linked list. 

Clearly, the order of this algorithm depends on the number of iterations in the 

while loop. This number, in turn, depends both on the level of activity in the circuit, 

and the distribution of different propagation delay values over devices in use in the 

circuit. 
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For instance, there may be heavy activity, but every device may have a fixed 

propagation delay of 50 time units. In this case, the while loop is executed either 

zero or 50 times, depending on whether all events at the current position in the 

timewheel have been exhausted yet. 

Alternately, the circuit may have many devices with different propagation delays. 

In this case, assuming there is sufficiently heavy activity, the events will be spread 

out more evenly over the timewheel, and the while loop will be executed either zero 

or one times per call to Retrieve. 

In practice, it is hoped that users will give devices realistic (and therefore var-

ied) propagation delays. This will lead to an even distribution of events over the 

timewheel, and thus an average computational complexity of 0(1) for the Retrieve 

function. However, the worst case performance of this algorithm remains 0(n), 

where i-i is the size of the time wheel. 

5.10 The GetNextEvent Function 

This function, shown in Figure 4.12 on page 82, is used to retrieve the next event, 

be it in the queue or pending in the input file. To do this, it compares the time of 

the next input event with the time of the next event in the queue, and decides from 

which source it should fetch an event. 

Since this function has no loops, its computational complexity depends on that of 

any functions it might call. GetNextEvent calls only queue scheduling and retrieval 

events, which all average 0(1), so its own computational complexity is 0(1). 
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5.11 The ReadEvents Procedure 

This procedure, shown in Figure 4.13 on page 83, is used to read a set of events, all 

of whom are scheduled to occur simultaneously, from the stimulus file. Its only loop 

iterates as many times as there are simultaneous events, so if there are an average 

of n events per time step in the input file, its computational complexity is 0(n). 

5.12 Memory Management 

The memory allocation and deallocation routines used to accelerate TLSIM's execu-

tion contain no loops, and call no other functions, so they all execute in 0(1). This 

is crucial since they are called so frequently. 



Chapter 6 

Experimental Results 

6.1 Correctness 

In order to verify the correct operation of the TLSIM circuit simulator, a number 

of circuits were implemented. For each design, the circuit was simulated and the 

simulation results were manually verified. This testing procedure was carried out 

over a 12 month period, until no new errors in simulation results were found. 

Among the circuits used to test TLSIM were: 

• A small 8-bit CPU 

• A 4-bit adder implementing carry look-ahead 

• A serial-line interface circuit 

• Several small ALU's and counters 

• An 8-bit by 8-bit multiplier 

• A pure-tone sound synthesizer 

• A distributed-arithmetic matrix multiplier 

In addition, the full complement of ISCAS'85 [8] and ISCAS'89 [7] benchmark 

circuits were simulated with TLSIM using randomly generated test vectors. To verify 

correct operation, a translator from the TLSIM network description language to the 

104 
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Verilog [18] netlist language was written. The benchmark circuits were translated to 

Verilog, and resimulated using that program. The simulation results from the two 

programs were compared graphically. In each case, the results matched. 

6.2 Performance 

In order to test the performance of the TLSIM circuit simulator, both TLSIM and 

Verilog were used to simulate the circuits mentioned above. Identical randomly 

generated test vectors were applied to each program. Note that all simulations were 

performed using a Sun SPARCStation 2 computer. 

In order to demonstrate that TLSIM executes rapidly, benchmarking was per-

formed in two steps. First, to show that TLSIM performs well even when the ex-

pressive capability of the UNIMOD1 device model is not utilized, the ISCAS'85 and 

ISCAS'89 benchmark circuits were simulated with both TLSIM and Verilog. Since 

these circuits use only gates and individual flip-flops, this test demonstrated that at 

the gate level, TLSIM executes at least twice as fast, on average, as Verilog. Next, a 

small number of test circuits were simulated both at the gate level and using more 

complex devices. Simulating circuits using more complex devices was approximately 

three times faster than using gates, indicating that a potential factor of six speed 

improvement can be achieved by using TLSIM with high-level devices instead of 

using Verilog with gates only. 
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6.2.1 Verilog Simulations 

In order to make the timing results that follow more meaningful, some information 

about Verilog is required. The version of Verilog used for all the following simulations 

is Verilog 1.6.0.1, from Cadence. Verilog is a multi-level simulation language, in that 

it can simulate everything from switches to procedural constructs. Clearly, this 

very flexibility causes some overhead in its execution. Nonetheless, many people use 

Verilog as a gate-level simulator, although it is capable of much more. Accordingly, 

comparison of gate-level simulation results with Verilog are reasonable. 

The ISCAS'85 and ISCAS'89 circuits are distributed as flat netlists. They were 

translated to Verilog using an automatic translator, which produced modules such 

as the one in Figure 6.1. 

6.2.2 ISCAS Benchmarks 

Benchmark circuits from the 1985 and 1989 International Symposium on Circuits 

and Systems (ISCAS) were used to test TLSIM. The ISCAS'85 benchmark circuits 

are combinational circuits, consisting only of AND, OR, XOR and inverter gates. 

Circuit size parameters are shown in Table 6.1. 

The ISCAS'89 circuits are sequential, in that they also include D-type flip-flops. 

Size parameters for these circuits are given in Table 6.2. Note that inverters are listed 

separately from other gates in the documentation supplied with these benchmarks. 

Performance results from the benchmark tests are summarized in two figures: Fig-

ure 6.2 shows the execution time required to simulate each circuit in the ISCAS'85 

benchmark set. Figure 6.3 gives this information for the ISCAS'89 benchmark cir-

cuits. 
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primitive dff(q,d,clk,r); 

input d,clk,r; 

output q; 

reg q; 

table 

lid cik r :q :q+ 

7 7 0 : 7 : 0; 

7 7 x : 0 0; 

0 (10) 1 : 7 : 0; 

1 (10) 1 : ? : 1; 

7 (01) 1 : 7  

endtable 

endprimit ive 

module testnet(clear,clock,g3,go,gl,g2,g17); 

input clear,clock,g3,go,gl,g2; 

output g17; 

wire g5,g6,g7,g8,g9,glo,gll,g12,g13,g14,g15,g16; 

supp1y0 f; 

supplyl t; 

nor #(10,10) devicel(g13,g2,g12); 

nor #(10,10) device2(g12,gl,g7); 

nor #(io,10) dev1ce3(gll,g5,g9); 

nor #(io,io) device4(glo,g14,gll); 
nand #(10,io) device5(g9,g16,g15); 

or #(10,10) device6(g16,g3,g8); 

or #(1O,10) device7(g15,g12,g8); 

and #(10,10) device8(g8,g14,g6); 

not #(10,10) device9(g17,gll); 

• not #(10,10) devicelO(g14,go); 

dff #(10,20) devicell(g7,g13,clock,clear); 

dff #(10,20) devicel2(g6,gll,clock,clear); 

dff #(10,20) devicel3(g5,glo,clock,clear); 

endmodule 

Figure 6.1: Sample Verilog test circuit: ISCAS'89/s27 
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Table 6.1: ISCAS'85 benchmark circuit parameters 

Circuit Name Number 'of Gates 
c17 
c432 
c499 
c880 
c1355 
c1908 
c2670 
c3540 
c5315 
c6288 
c7552 

6 
160 
202 
383 
546 
880 
1193 
1669 
2307 
2416 
3512 

From these figures, it is evident that TLSIM is approximately twice as fast as 

Verilog when performing gate-level simulation. Note that the ISCAS'89 circuits 

showed much higher activity counts, so the overhead incurred by scheduling used 

up a greater fraction of the execution time. This accounts for TLSIM's smaller 

performance gain in simulating these circuits, since the advantages of UNIMOD1 do 

not come into play to the same degree. 

To illustrate the balance between the scheduling and device evaluation portions of 

TLSIM, execution profiles were calculated using some of the ISCAS'85 and ISCAS'89 

circuits. These profiles are shown in Figure 3.9, on page 52. The Recaic-Device 

function is used to evaluate the state of devices in the circuit. Eval-Node is a function 

for evaluating truth tables, and the functions Add-Heap, Schedule and Pull-Heap are 

all associated with processing events in the queue. 

Note that the largest portion of the execution time is taken up by the Recaic-

Device function. This function must check each device output, determine whether 

or not to evaluate it, and if so it must call function-evaluation and scheduling pro-
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Table 6.2: ISCAS'89 benchmark circuit parameters 

Circuit Name DFFs INVs Other gates Total gates 
s27 3 2 8 10 
s208 8 38 66 104 
s298 14 44 75 119 
s344 15 59 101 160 
s349 15 57 104 161 
s382 21 59 99 158 
s386 6 41 118 159 
s400 21 58 106 164 
s420 .16 78 140 218 
s444 21 62 119 181 
s510 6 32 179 211 
s526 21 52 141 193 
s526n 21 54 140 194 
s641 19 272 107 379 
s713 19 254 139 393 
s820 5 3.3 256 289 
s832 5 25 262 287 
s838 32 158 288 446 
5953 29 84 311 395 
s1196 18 141 388 529 
s1238 18 80 428 508 
s1423 74 167 490 657 
s1488 6 103 550 653 
s1494 6 89 558 647 
s5378 179 1775 1004 2779 
s9234 228 3570 2027 5597 
s9234.1 211 3570 2027 5597 
s13207 669 5378 2573 7951 
s13207.1 638 5378 2573 7951 
S15850 597 6324 3448 9772 
s15850.1 534 6324 3448 9772 
s35932 1728 3861 12204 16065 
s38417 1636 13470 8709 22179 
s38584 1452 7805 11448 19253 
s38584.1 1426 7805 11448 19253 
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cedures. This involves more computation than any of the other functions listed. 

6.2.3 Functional Device Modeling 

Three circuits were implemented at both the gate and functional levels. These cir-

cuits are described briefly below: 

Sound Synthesizer This circuit uses frequency division techniques to approximate 

any of the 96 pure tones in the musical scale. It uses a number of counters 

of different types (loadable, incrementing, decrementing and bidirectional), as 

well as some logic to generate count-down delays, and to drive seven-segment 

displays (a simple user interface). Due to its nature, this circuit contains a 

large amount of sequential logic, in the form of counters, flip-flops, etc. The 

functional level description of this circuit made use of multiplexors, counters 

and multi-bit latches in addition to simple gates. 

8 x 8 Bit Binary Multiplier This circuit is composed of four 4-bit by 4-bit 

multipliers, and some logic to add up the results. The 4 x 4 multipliers are, 

in turn, made up of more adders. No special carry-propagation circuitry was 

used in this multiplier. The circuit was implemented at the gate level, using 

only AND, OR and NOT gates, and at a functional level, where small adders 

were represented as monolithic devices. Adders with 2, 3, 4 and 5 inputs were 

modeled (e.g., the 5-input adder has three outputs, and can yield an answer as 

high as 101). 

Distributed Arithmetic Matrix Multiplier This circuit forms the product of 

an 8 x 8 matrix by an 8 x 1 vector, generating all eight elements of the product 
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in parallel. For simplicity, all input quantities were taken to be 8 bits wide, thus 

giving 19-bit product terms. This circuit was implemented using 1-bit latches 

and NAND gates for the gate-level simulation. For the functional simulation, 

multiplexors, shift registers and latches were modeled as monolithic, multi-bit 

devices. Furthermore, the adders were modeled using 4-bit slices. 

Some size parameters for these circuits are given in Table 6.3. 

Table 6.3: Circuit parameters for custom circuits 

Circuit 
Number of Nodes Number of Devices 

Gate-level Behavioural Gate-level Behavioural 
Distributed-Arithmetic 5530 858 5396 80 
Matrix Multiplier 

Sound Synthesizer 277 108 264 80 

Multiplier 1123 191 1107 64 

Appropriate test vectors were made up for each circuit, and the three circuits were 

simulated on a Sun SPARCStation 2. The results of these simulations are shown in 

Figure 6.4. Note how in all cases the functional model performed much better than 

the gate-level representation. This is of significant importance, since practical VLSI 

circuits are often designed using macro cell libraries, rather than just gates. This 

means that the functional model can provide improved simulation fidelity while at 

the same time reducing execution time. 
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Chapter 7 

Discussion 

This chapter reviews the significance of the major contributions of the TLSIM sim-

ulator to the methodology of circuit simulation. It focuses on three key areas: The 

application of interpretive simulation, the UNIMOD1 device model, and the algo-

rithms for rapid evaluation of four-valued Boolean functions. 

7.1 Interpretive Simulation 

One of the key points of this thesis is to reinforce the idea that interpretive simu-

lation is very useful in circuit design. Recently, the focus in the literature has been 

on compiled simulation, which is limited primarily to use in fault simulation (for 

automatic generation of test vectors). 

Compiled simulators are, in practice, limited to fault testing because they can 

easily require 10 or more minutes [40] just to compile the circuit, before simulation 

can even begin. This is unacceptable when the simulation run itself only takes several 

seconds. 

Although interpretive simulation is inherently slower than compiled simulation, 

often by approximately an order of magnitude, it is nonetheless more suited to cir-

cuit design, since the latency in compiled simulation dominates the amount of time 

required when simulation runs are short. 

If interpretive simulation is to be used, then the task remains to reduce the gap 
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between the execution speed of interpretive and compiled simulation, while retaining 

the low overhead inherent in the interpretive paradigm. This thesis offers some 

solutions to this problem: Notably, a computationally efficient device model and 

algorithms for rapid evaluation of four-valued Boolean functions. 

7.2 The UNIMOD1 Device Model 

The main method by which TLSIM attempts to accelerate the simulation process 

is by using a device model which evaluates rapidly. UNIMOD1 makes it possible 

to extend the classical event driven concept[39] to the internal operation of devices. 

By defining clocking and asynchronous override inputs separately from data inputs, 

UNIMOD1 makes it possible to minimize the amount of computation required to 

recalculate the state of a device's outputs. 

This extension to the classical event-driven paradigm is only possible when mod-

eling devices using functional blocks. Little acceleration is achieved if a circuit is 

modeled using primitive elements such as gates or switches. This is only a minor 

constraint, however, as larger circuit elements, such as registers, latches and counters 

are often used as circuit building blocks. This is true both in the design of digital 

circuits made up of discrete components, and in the design of ASIC and semi-custom 

VLSI circuits. 

7.3 Rapid Evaluation of Four-Valued Truth Tables 

The second method by which TLSIM accelerates the simulation process is the rapid 

evaluation of Boolean functions. Since a large portion of the simulation is spent 
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evaluating these functions, it is critical to make function evaluation as efficient as 

possible. 

TLSIM uses a four-valued signal model, in order to alleviate the need for de-

termining signal strengths. This is useful at the circuit design stage, when routing 

information is rarely available, since without this information it is impossible to 

predict node capacitances. 

The use of a four-valued signal model complicates the function evaluation algo-

rithm, however. Even though the four possible values of function arguments can be 

reduced to three, by mapping the Z state to one of states: {O, 1, X}, the question of 

how to handle X inputs remains. 

In TLSIM, Boolean functions are represented as arrays. This has the primary 

advantage that function evaluation is very rapid (an 0(n) operation, for n-input 

functions). However, in order to accommodate the possibility that X arguments 

might be applied to these functions, TLSIM must "fill in" the arrays for all pos-

sible input vectors before they are used. This "fill-in" functioh is performed when 

initializing the truth tables. 

Since function initialization is performed only once per function, before simula-

tion begins, it incurs very little overhead. Function evaluation during simulation is 

therefore very rapid. 



Chapter 8 

Conclusion 

8.1 Accomplishments 

This thesis describes the development of a digital circuit simulator. This simulator is 

by no means unique, in that many software circuit simulation tools are commercially 

available. However, this simulator does offer some interesting features: It is optimized 

for digital system design, and tuned to model realistic primitive components. 

This simulator embodies UNIMOD1: a UNIfied device MODel, designed specif-

ically for modeling small- to medium-scale macro cells such as those available in 

VLSI standard cell libraries. Unlike many other packages, this simulator attempts 

to address a single issue only: the simulation of netlists at the level of gates and 

functional blocks. TLSIM gains a measure of efficiency by avoiding other levels of 

abstraction such as the switch-level and algorithmic models. 

8.2 Future Work 

The number of features that could be added to a simulator such as TLSIM, to make 

it more useful as well as easy-to-use, is nearly boundless. The addition of such 

features could be carried out for the entirety of the software's useful life span. Of 

these features, some of the most useful might include the following: 

Pessimism could be added to the simulator in several ways. For instance, when 
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a node undergoes a transition, its value could be set to X rather than held fixed 

during the transition period. Another place where the simulator could make more 

"conservative" predictions is in cases where more than one signal is simultaneously 

asserted on a node (such as in a transient signal conflict on a tn-state bus). Currently, 

TLSIM applies new values to nodes as they arrive, but it could set a node's value to 

X whenever more than one device attempts to drive it simultaneously. 

Another way in which TLSIM could be made more flexible is by improving its 

delay model. Currently, it only models rise and fall times for device outputs. These 

delays are associated with each device, but may be overridden by the user for any 

node. A more detailed model would give 4 x 3 = 12 different delays, from every 

signal value to every other signal value. Better still would be a delay model that 

in some way takes into account the dynamic loading that appears at each node as 

devices in its fan-out change state. 

Other features that could be added are likely not as generally useful. For instance, 

direct support for multi-port memories might be added. Currently, memory blocks 

in TLSIM have a single address and a single data port, but this could be changed to 

allow for multiple data and address ports to a single storage block. 

As it stands, however, TLSIM is reasonably complete. 
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