
THE UNIVERSITY OF CALGARY

TLSIM: A TIMING AND LOGIC DIGITAL CIRCUIT SIMULATOR

by

Idan Shoham

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

JUNE, 1993

© Idan Shoham 1993

1+1
National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of

the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your (lie Votre rilférence

Our file Noire rilférence

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa these
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du

droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88628-5

I,'

Canada

Name /d4
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

J 7ec'cf
SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
An History 0377
Gnemo 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413

Communication 0459
 0465

Speech
Theater

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. o 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosoohy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General
Agonomy
Animal Culture and

Nutrition
Animal Pathology
Food Science and
Technoly 0359

Fore's Wildlife 0478
ufture 0479

Plant Pathology 0480
Plant Physiology 0817
Range Manooement 0777
Wood Technlogy 0746

Bioloay nerol 0306
Anatomy 0287
Bostatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General
Medical -

EARTH SCIENCES
Biogochmistry
3eachemistry

Psycholy 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Language

General 0679
Ancient 0289
linguistics 0290
Modem 0291

Literature.
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modem 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geodesy, 0370
Geology 0372

0473 Geophysics 0373
0285 Hydrology 0388

Mineralogy 0411
0475 Paleobotany 0345
0476 Paleoecology 0426

Paleontology 0418
Paleozoology 0985

Palynof1' agraphy 0427 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
The 0354

Ophthalmology 0381
0786 Pathology 0571
0760 Pharmacology 0419

Phormoc 0572 Cal
erapy 0382

0425 Puic Health 0573
0996 Radiology 0574

Recreation 0575

Theoiogy

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Relugon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

0469

SOCIAL SCIENCES
American Studies 0323
Anthropoloay

Archoekrgy 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology 0460
Toxicology 0383

Home Economics 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General 0605
Acoustics 0986
Astronomy and

Astrophysics 0606
Atmospheric Science 0608
Atomic 0748
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0 If
SUBJECT CODE

UM1

Ancient 0579
Medieval 0581

-. Modem 0582
Block 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic ond ociol Studies 0631
Individual and Family
Studies 0628

Industrial and Labor
Relations 0629

Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

Engineering
General 0537
Aerospace 0538
Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and. Electrical 0544
Hèat and Thermodynamics 048
Hydraulic 0545
Industrial 0546
Marine , 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554
System Science 0790

Geotechnology 0428
Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
social 0451

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty

of Graduate Studies for acceptance, a thesis entitled, "TLSIM: A TIMING AND

LOGIC DIGITAL CIRCUIT SIMULATOR," submitted by Idan Shoham in partial

fulfillment of the requirements for the degree of Master of Science.

Dr. Jun Gu, Supervisor
Dept. of Electrical & Computer Engineering

u-j-'11paco,
Dr. L. T. Bruton
Dept. of Electrical & Computer Engineering

Dr. B. Nowrouzian
Dept. of Electrical & Computer Engineering

L0(Jj
Dr. X.
Dept. of Mechanical Engineering

Date-

11

Abstract

This thesis discusses the design of the Timing and Logic SIMulator (TLSIM):

a fast, accurate digital circuit simulator. The development of TLSIM is broken

down into a number of issues, each of which is described in detail, resulting in a

design choice. Among these issues are the selection of signal and device models, and

a scheduling algorithm. Efficient methods for event cancellation, high-impedance

handling and function evaluation are also presented.

TLSIM incorporates a computationally efficient device model, based on the fol-

lowing assumptions: circuits can be decomposed into interconnected, unidirectional

devices; node voltages always saturate, and delays may be lumped at device outputs.

In addition, TLSIM uses a four-valued signal representation (O,1,X,Z).

TLSIM's execution speed is compared to commercial software, and favourable

results are measured. This speedup is attributed to a number of design features,

including the level of abstraction of TLSIM's device model, its event scheduling and

cancellation mechanisms, and optimizations related to memory allocation.

111

Preface

I dedicate this thesis to my dear grandfather, Adolf Haimov Gershon, who re-

cently passed away after a long battle with cancer.

I would like to thank my family and friends, who have been very supportive

during the development of TLSIM, and the writing of this thesis. I would also like to

thank my supervisor, Dr. Jun Gu, for our long discussions and his helpful comments.

Finally, I would like to thank the Natural Sciences and Engineering Research

Council, who awarded me a PGS-A award during my studies, and who provided

Strategic Grant number MEF0045793 to Dr. Gu. This work would not have been

possible without NSERC's support.

iv

Table of Contents

Approval Page

Abstract

Preface iv

Table of Contents v

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 Circuit Simulators 2

1.2 Compiled vs. Interpretive Simulation 3

1.3 The TLSIM Digital Circuit Simulator 6

1.4 Project Background 6

1.5 Thesis Outline 7

2 The Components of a Simulator 8

2.1 Definitions 8

2.2 Signal Representation 10

2.2.1 Continuous Signals S 11

2.2.2 Discrete Signal Levels 11

2.2.3 Four-Valued Signal Representation 12

V

2.2.4 The High Impedance State 13

2.3 Device Representation 14

2.3.1 Switch Primitives 15

2.3.2 Discrete Event Incremental Simulation 17

2.3.3 Gate Primitives 20

2.3.4 Functional Block Primitives 20

2.3.5 Memory Elements 23

2.3.6 Higher Level Device Models 25

2.4 Event Scheduling 26

2.4.1 Heapsort Scheduling 27

2.4.2 Time Wheel Scheduling 28

2.5 Circuit Initialization 31

2.6 Simulation Language Expressiveness 33

3 The TLSIM Digital Circuit Simulator 34

3.1 Simulator Execution 34

3.2 Signal Representation 36

3.3 The UNIMOD1 Device Model 38

3.3.1 Truth Tables 40

3.3.2 Device Memory 42

3.3.3 Asynchronous Inputs 43

3.3.4 Internal Nodes and Feedback 45

3.3.5 Examples 47

3.4 Four-Valued Truth Tables 52

vi

3.5 Event Scheduling 55

3.5.1 Event Allocation and Deallocation 57

3.5.2 Event Cancellation 58

3.6 Circuit Initialization 59

3.7 Summary 60

4 Basic Algorithms in TLSIM 62

4.1 Four-Valued Boolean Functions 63

4.1.1 Building Four-Valued Truth Tables 65

4.1.2 Evaluating Four-Valued Truth Tables 68

4.2 The Device Evaluation Algorithm 68

4.2.1 Output Enables 72

4.2.2 Asynchronous Overrides 72

4.2.3 Propagation Delays 75

4.2.4 Input Transitions 77

4.2.5 Summary 77

4.3 Event Scheduling 78

4.4 Event Cancellation 84

4.5 The Source Count High-Impedance Model 85

4.6 Simulating Memory Blocks 86

4.7 Memory Allocation 88

4.7.1 Small Block Allocation 90

4.7.2 Event Allocation 90

5 Algorithm Analysis 94

vi'

5.1 The AddVector Procedure 95

5.2 The Fillln Procedure 96

5.3 The EvalFunction Function 98

5.4 The Schedule Procedure 99

5.5 The RecalcDevice Procedure 99

5.6 The EvalEnable Procedure 100

5.7 The EvalAsynch Procedure 100

5.8 The EvaiMemory Procedure 100

5.9 The Retrieve Function 101

5.10 The GetNextEvent Function 102

5.11 The ReadEvents Procedure 103

5.12 Memory Management 103

6 Experimental Results 104

6.1 Correctness 104

6.2 Performance 105

6.2.1 Verilog Simulations 106

6.2.2 ISCAS Benchmarks 106

6.2.3 Functional Device Modeling 112

7 Discussion 115

7.1 Interpretive Simulation 115

7.2 The UNIMOD1 Device Model 116

7.3 Rapid Evaluation of Four-Valued Truth Tables 116

viii

8 Conclusion 118

8.1 Accomplishments 118

8.2 Future Work 118

Bibliography 120

ix

List of Tables

2.1 A 2-valued, 4-strength signal representation 12

2.2 Truth tables for some common gates 22

2.3 Truth tables for a full adder 23

3.1 Truth table for a JKFF implementation 48

3.2 Truth table for a counter implementation 51

3.3 Sample input vectors and equivalent sets 55

3.4 Truth table for a Boolean OR. function 56

6.1 ISCAS'85 benchmark circuit parameters 110

6.2 ISCAS'89 benchmark circuit parameters 111

6.3 Circuit parameters for custom circuits 113

x

List of Figures

1.1 The compiled and interpretive simulation approaches 4

1.2 Performance of compiled vs. interpretive simulation 5

2.1 The relationship between a device output and a device's output node 10

2.2 A problem with event sequencing and high impedance 13

2.3 Graph representation of a circuit 16

2.4 Sample unidirectional circuit 18

2.5 Sample gate evaluation algorithm 21

2.6 A typical truth-table evaluation algorithm 22

2.7 Oscillation due to identical delays in feedback loops 24

2.8 Two procedural models for 3-input AND gates 25

2.9 The time wheel scheduling paradigm 29

2.10 Time wheel scheduling algorithms 30

2.11 A frequency-division circuit, which does not have to be reset 32

3.1 Correct simulation of transient signal conflicts 37

3.2 Complete UNIMOD1 device model 40

3.3 Simple Boolean device model 41

3.4 Device model with memory added 43

3.5 Device model with asynchronous overrides added 44

3.6 A DFF implementation using UNIMOD1 48

3.7 A JKFF implementation using UNIMOD1 49

3.8 A counter implementation using UNIMOD1 50

xi

3.9 Total computational effort as a function of device complexity 52

3.10 A 4-bit adder model 53

3.11 Cascading 4-bit adders to make a 16-bit adder 54

3.12 AND and OR gates with X inputs 54

3.13 Event memory allocation scheme 57

3.14 The need for event cancellation . 58

4.1 TLSIM function and procedure hierarchy 64

4.2 Truth tables specified using X entries 65

4.3 Algorithm to expand implicit vectors to their equivalent sets 67

4.4 Algorithm to assign values to implicit vectors in a truth table . . 69

4.5 The effect of the AddVector and Fillln algorithms 70

4.6 Algorithm for evaluating four-valued truth table functions 71

4.7 Algorithm to process transitions at device enable inputs 73

4.8 Gate circuit with eight data lines 74

4.9 Algorithm to handle signal transitions at asynchronous overrides . 76

4.10 Device evaluation algorithm 79

4.11 Time wheel scheduling and retrieval algorithms 81.

4.12 Algorithm to retrieve the next event, from either the time wheel or

stimulus file 82

4.13 Algorithm to read transitions from stimulus file 83

4.14 Modeling different types of memory in TLSIM 87

4.15 Procedure to process transitions at memory block inputs and outputs 89

4.16 Algorithms for allocating small memory blocks 91

xii

4.17 Algorithms for managing event allocation 93

6.1 Sample Verilog test circuit: ISCAS'89/s27 107

6.2 ISCAS'85 benchmark circuit simulation performance 108

6.3 ISCAS'89 benchmark circuit simulation performance 109

6.4 Performance improvement with functional modeling 114

Chapter 1

Introduction

As Very Large Scale Integration (VLSI) technology advances, designers are building

ever-larger integrated circuits. Currently, state-of-the-art microprocessor designs

incorporate up to two million transistors. This figure is the result of a trend in

fabrication technology, where the minimum feature size in MOS technologies has

been dropping by approximately O.2tm every two years, for at least the last decade

[23, 14]. This trend is expected to continue for at least another four years.

Two problems arise because of the rising level of integration. The first is that

the cost for lithography and fabrication of high device density prototype wafers is

rising [23]. The second is that design verification for digital circuits becomes more

difficult as circuit complexity increases. These problems together mean that while

design errors are becoming even less tolerable, the ability of current tools to verify

design correctness is diminishing.

Clearly, there is a constant need for better design verification tools. In the initial

stages of circuit design, one of the primary tools used to check designs is a circuit

simulator. A circuit simulator reads in a description of the circuit and the signals

applied to its inputs, and predicts its behaviour. Using this tool, a designer can

check whether a circuit will perform correctly for a given set of inputs.

1

2

1.1 Circuit Simulators

There are several types of circuit simulators currently in use [19, 11, 33, 1, 37, 40, 22,

3, 4, 9, 39]. They differ primarily in the trade-off they make between execution speed

and the accuracy of their predictions. Models using a higher level of abstraction take

less time to execute, but give less detailed predictions about circuit behaviour.

Circuit simulators may be characterized by the models they use to represent

signals and devices in the circuit. Signal models may be continuous [21] or discrete,

and discrete models may use two or more signal states. There are many possible

device models. Among these are: continuous models [11], using resistors, capacitors,

etc., switch-level models [38, 9, 12, 33, 31, 1, 5, 2], using ideal switches, resistors,

etc., gate models [39, 4] and functional models [18, 29]. In general, the device and

signal models are related, but a number of combinations are possible. For instance, a

switch-level simulator may use either a continuous or discrete signal representation.

The most precise, but slowest signal model is the continuous model. Continuous

domain simulators, such as Simulation Program with Integrated Circuit Emphasis

(SPICE), solve a set of simultaneous equations in order to calculate the transient

response of every circuit element. By using continuous variables to represent sig-

nals in the circuit, these simulators obtain good accuracy. Unfortunately, this is

accomplished at the cost of very slow execution. Continuous-domain simulators are

normally used to design basic components, such as standard cells and gates. The

performance characteristics of these components are then used as parameters for

simulators with a higher level of abstraction.

Switch-level simulators are faster but less accurate. These simulators model a

3

circuit as a collection of switches, resistors and capacitors. Switch-level simulators

achieve better performance than continuous-domain simulators by using only a small

set of discrete values to represent node voltages. Some of them are able to approx-

imate propagation delays by estimating each driving transistor's channel resistance

and dynamically calculating the charging / discharging capacitance to each node

[1]. Although they do provide an excellent degree of behavioural verification, the

ability of these simulators to accurately predict the timing characteristics of a circuit

is unclear [10].

Gate-level simulators achieve better performance by disallowing bidirectional swi-

tches [3, 6]. Requiring circuit elements to be strictly unidirectional has a number

of significant computational advantages. In general these simulators are faster than

switch-level simulators. Gate-level simulators, however, are incapable of directly

modeling certain circuit structures, especially MOS circuits that make use of charge

storage and sharing effects [9].

Higher-level simulators generally use a procedural language to model complex

elements [18, 29]. These are the fastest, because the internal operation of large circuit

blocks is not calculated. However, these simulators are the least accurate, because

the timing behaviour of these blocks is impossible to predict without simulating their

internal operation.

1.2 Compiled vs. Interpretive Simulation

One of the major differentiating factors between simulators is whether or not they

generate executable code. Some simulators represent the circuit to be simulated as

4

a data structure, and apply various algorithms to change its state over simulation

time. Other simulators convert the circuit specification into source code (typically

in assembler or C), which is then compiled into an executable program. These two

approaches are illustrated in Figure 1.1.

Netlist

(fast)

(slow)

(very fast)

Source
code

(fast)

Compiler

Test
Executable vectors
PR gram (typically
4, many)

Simulation
results

Netlist

Simulation
results

Test
... vectors

(typically
few)

(a) Compiled (b) Interpretive

Figure 1.1: The compiled and interpretive simulation approaches

The first approach, called interpretive simulation, has the advantage that simu-

lation commences almost immediately after the simulator is invoked, since the effort

required to construct a graph of the circuit is minimal. However, due to the complex

data structures involved, interpretive simulation is relatively slow. Compiled simula-

tion, on the other hand, incurs a large amount of overhead for compilation. However,

once the circuit has been compiled, very few machine instructions are required to

model devices such as gates and flip-flops. Accordingly, compiled simulation proceeds

much faster.

The choice of either compiled or interpretive simulation depends on two factors:

5

the required flexibility in the device model and the number of test vectors to be

processed in a typical simulation run. In order to gain a performance advantage,

compiled simulators must use only simple devices, such as gates, which map well

to machine instructions. Accordingly, compiled simulators are less flexible in their

choice of a device model. For small test vectors, interpretive simulators are faster,

since they do not incur compilation overhead. For exhaustive testing, it is usually

preferable to use a lower level of abstraction, so compiled simulation is acceptable.

If the number of test vectors is sufficiently large, the performance gain attained

by replacing complex device evaluation functions with short sequences of machine

instructions makes up for the compilation overhead.

The relationship between simulator performance and test vector size is illustrated

in a general way in Figure 1.2.

Interpretive
simulation

Compiled
simulation

Compile
overhead

Initialization overhead

Simulation length

Figure 1.2: Performance of compiled vs. interpretive simulation

6

1.3 The TLSIM Digital Circuit Simulator

This thesis describes the design of the Timing and Logic SIMulator (TLSIM): an

interpretive digital circuit simulator which uses an efficient hybrid device model.

TLSIM is meant for use in circuit design. It uses a functional device model, combining

features of both the gate-level and algorithmic models. This model produces results

at least as accurate as traditional gate-level simulators, while at the same time

achieving much of the performance and flexibility previously associated only with

algorithmic models.

TLSIM is meant for circuit design, not for exhaustive circuit testing. This design

goal is crucial to many of the design decisions made in its development. In the cir-

cuit design process, a user enters a circuit description, and tests it with some input

vectors. This process is normally repeated very often, so it is important for a simu-

lator to give fast turn-around. Accordingly, start-up overhead in simulation should

be minimized. In particular, a compiled circuit simulator would be inappropriate for

circuit design, as circuit compilation could easily take more time than the simulation

runs. With this in mind, TLSIM was implemented as an interpretive simulator.

1.4 Project Background

TLSIM was developed as a component in a larger project, whose goal was to develop

a set tools for the computer-aided design of Path Programmable Logic integrated

circuits [16]. This tool set consists of a PPL circuit editor, a netlist extractor, the

TLSIM simulator, an interactive waveform editor, and a host of smaller utilities.

Although it is used as a component in this larger system, TLSIM was built with

7

flexibility in mind, and is capable of simulating any digital circuit.

1.5 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 gives background relevant to digital circuit simulator design in general.

It describes different types of simulators, and discusses the major design issues which

must be addressed before implementing a simulator.

Chapter 3 describes how the issues identified in Chapter 2 are addressed in the

TLSIM simulator. It describes the basic design decisions made in the development

of TLSIM, and justifies why they were made.

Chapter 4 gives detailed descriptions of some of the key algorithms in the TLSIM

simulator. The need for each algorithm and the manner in which it contributes to

simulator performance is discussed here.

Chapter 5 gives an analysis of the computational complexity of the algorithms

from Chapter 4.

Chapter 6 presents some experiments which were undertaken to quantify the

performance of TLSIM. It gives execution times for various benchmark circuits, and

compares them to execution times incurred by Verilog, a commercially available

circuit simulator.

Chapter 7 contains a more in-depth discussion of some of the design decisions

made in the TLSIM simulator. This discussion emphasizes how these choices are

relevant within the broader framework of circuit design, rather than only simulation.

Chapter 8 concludes this thesis, with a summary of the'significant results.

Chapter 2

The Components of a Simulator

This chapter gives an overview of the major issues in the design of a circuit simulator.

The first of these are the selection of signal and device models. Sections 2.2 and 2.3

discuss how signals and devices may be represented in a simulator. In the case of

an event-driven simulator, an ordered queue of pending events must be maintained.

Section 2.4 gives an overview of this scheduling problem. Section 2.5 discusses dif-

ferent approaches to setting the initial state of the circuit being simulated. Finally,

section 2.6 discusses the merits of various degrees of expressiveness in a simulator's

input language.

2.1 Definitions

Before proceeding with this chapter, we need some definitions:

Device: Adevice is a circuit component. Devices are atomic - within the simu-

lation framework, they may not be decomposed into smaller circuit elements.

For instance, in a gate-level simulator devices are gates, while in a switch-level

simulator devices are transistors, resistors and capacitors.

Node: A node is an equipotential conducting, region in a circuit. It acts as a

single electrical point. In practice, nodes represent metal or polysilicon wires

and traces.

8

9

Nodes are said to have a fan-in. A node's fan-in is the set of all devices whose

outputs are connected to it. Nodes also have a fan-out. A node's fan-out is

the set of all devices whose inputs are connected to that node.

Netlist: A netlist is a description of device interconnections used to model a

circuit's topology. A netlist consists of devices and nodes, where devices are

connected to. one another using nodes.

Netlists may be flat, containing only devices and nodes, or they may be hier-

archical, hi which case they may also contain other netlists.

Circuit Inputs: The inputs to a circuit are the set of nodes whose fan-in is

empty. During simulation, the user is responsible for setting the state of these

nodes.

Circuit Outputs: The outputs of a netlist are the set of nodes whose fan-out

is empty. During simulation, thesimu1ator reports the state of these nodes to

the user.

Device Output: Uni-directional devices, such as gates, are said to have outputs.

A device's output is the value which it tries to apply to its node. Note that

more than one device may be connected to a single node, so a device's output

is not necessarily equal to the node's value. Note also that one device may

have multiple outputs.

The relationship between a device output and a device's output node is illus-

trated in Figure 2.1.

10

Event: To model device propagation delays, some simulators schedule transitions

at nodes, and later retrieve them in a time-increasing order. An event is a data

structure which identifies a node, a time and a new signal value.

Queue: When a simulator makes use of events, it needs a mechanism for schedul-

ing and retrieving events. In the context of circuit simulation, a queue is a

mechanism for event scheduling which guarantees that event retrieval will oc-

cur in a time-increasing order.

Output
Device node

Device
output

Figure 2.1: The relationship between a device output and a device's output node

2.2 Signal Representation

A circuit simulator functions by modeling how devices in a circuit modify signals

over time. Before considering how these devices work, a signal representation must

be chosen:

There are a number of ways to model electrical signals in a digital circuit. Since

normally signals in the circuit refer to node voltages, it is natural to represent signals

with real numbers, which stand for voltage levels. Because of computational com-

plexity, we might restrict the voltage levels to a discrete set of approximate values.

11

At the extreme, we could use just two values - representing the binary digits 0 and 1.

We might also generalize to a four-valued system, {0, 1, X, Z}, where X represents

an unknown value, and Z indicates the absence of any signal.

Each of these signal representation schemes bears more detailed consideration,

as it leads to different simulation stratgies.

2.2.1 Continuous Signals

The use of continuous signals requires that devices operate on continuous inputs

and produce continuous outputs. Because of the smooth variation of outputs with

input values, this representation necessitates that device equations be solved simul-

taneously. This is only feasible for small circuits. Due to computational cost, it is

impossible to simulate even moderate-sized digital circuits, with 100 or more gates,

with this model.

2.2.2 Discrete Signal Levels

Since digital circuits are meant to operate only on binary numbers, rather than

represent node voltages using real numbers, it is possible to use a set of discrete

values. Typically, discrete schemes use a combination of voltage level and charge

strength to characterize the signal at a node. "Charge strength" may indicate the

dynamic node capacitance or the node's capacitive charge with respect to the power

or ground levels. For instance, Table 2.1 shows one signal representation which uses

two logic levels and four charge strengths. Alternately, a mixed model might use a

continuous variable to represent node capacitance or accumulated. charge.

Using this representation, charge decay may be modeled by a sequence of signal

12

Table 2.1: A 2-valued, 4-strength signal representation

Charge
Strength

Node voltage
level=O level=1

Decaying 1 5
Weak 2 6
Normal 3 7
Strong 4 8

states at a node. If a buffer was initially at logic 1 and was then turned off, a

simulator could model the node voltage as a sequence of signal values: first 7, then

6, and finally 5. These transitions would be scheduled with appropriate time delays.

2.2.3 Four-Valued Signal Representation

Digital circuits operate on continuous voltages, but these voltages are meant to

represent only two binary values, 0 and 1. In order to reduce the computational

complexity of simulation, it seems natural to use a two-valued signal representation.

Unfortunately, the two-valued model has severe limitations. Real digital circuits

actually make use of three signal values: 0, 1, and high-impedance, i.e., no signal.

Without a high-impedance state (Z), it would be impossible to simulate tn-statable

buses, fundamental to modern circuits. Furthermore, when a circuit is turned on,

all of its nodes quickly settle to one of the three values mentioned above. Before

beginning the simulation, however, a simulator has no way of calculating which node

starts at which value, since some nodes may power up to random values determined

by thermal noise. To account for this, a -fourth signal value must be added.

Rather than assigning an arbitrary initial value to every node, we may designate

13

X to represent signals whose value has not been specified or cannot be calculated

by the simulator. The X state models the initial value of all nodes in the circuit.

In addition, the X state may be used by the circuit designer as a deliberate input

value, in order to study the effect of floating terminals on the circuit.

2.2.4 The High Impedance State

Special care must be taken with the high impedance state in a four-valued simulator.

Due to different propagation delays, two devices connected to a single node may cause

a dangerous sequence of events to occur, as shown in Figure 2.2.

y
Y- 'Z Z

A A
-

y(b)Z tO' I 1 o
L_I

x(b) - OFF 'Q' Z->O ON

y(a) - 1 - delay
L

x(a) 0N 'QF' 1->Z OFF
delay

 Time(ns)
Initial 5 10 15 Final

(a) A sample tristate node (b) Event sequence with an error in the final state

Figure 2.2: A problem with event sequencing and high impedance

In the figure, two tn-statable buffers, a and b, are connected to a single node.

Initially, a is on, b is off, and y is set to 1, reflecting a's input. At t = 5ns, a turns

off while b turns on. Let the turn-on delay for these buffers be 5ns, and the turn-off

delay be lOris. The two events at t = 5ns will cause both buffers' outputs to change

states, scheduling two events at t = iOns and t = l5ns at node y. At t = iOns, the

value of y will change from 1 to 0. At t = 15ns, another event will set the value of

14

y to Z. The final value of y will therefore be Z.

Since the final state of buffer b is ON, the correct final value of y is 0. The error

results from a transient conflict between y(a) and y(b), which are both asserted on

node y from t = iOns to t = l5ns. Blindly processing events from the queue can

cause simulation errors when the Z signal value is involved. A four-valued simulator

must take some precaution to ensure that transient signal conflicts do not introduce

errors into the simulation.

2.3 Device Representation

By selecting a particular signal representation, we limit the number of device models

to just those that are compatible with the signal model. With a continuous signal rep-

resentation, devices must be modeled according to their time-domain voltage/current

characteristics. Using the logic level/charge strength or four-valued signal models,

there are many more possibilities. For instance, we may model devices as ideal

switches, gates, truth tables, procedures, etc.

Due to its computational limitations, we will not give further consideration to the

continuous signal representation. There remain, however, four major device models

applicable to discrete signals: switches, gates, functional blocks and procedures.

These models are discussed in this section.

This section also contains a brief discussion of event-driven simulation, which is

normally used with the gate, functional and algorithmic device models, since these

models all exhibit the property of uni-directional signal propagation.

15

2.3.1 Switch Primitives

Metal-Oxide Semiconductor (MOS) digital circuits may be decomposed into transis-

tors, resistors and capacitors. The transistors, in turn, may be approximated using

ideal switches, which conduct when turned on. Using the logic level/charge strength

signal model, it is possible to estimate the behaviour of these switches.

With the switch model, a simulator represents the circuit using an undirected

graph G(E, V), whose vertices V represent electrical nodes in the circuit, and edges

E represent the subset of transistors which are conducting at any given time. This

model is illustrated in Figure 2.3. In Fig. 2.3(a), a sample circuit consisting of three

transistors and five electrical nodes is shown. If every transistor is "on," then this

circuit would be represented by a graph as shown in Fig. 2.3(b). If only transistor

Ti is turned on, the graph would look like Fig. 2.3(c).

In an idealized model, we may consider conducting transistors to have no channel

resistance. This implies that every set of nodes in the circuit which are connected

to one,, another by conducting transistors may be thought of as one effective node,

with the same voltage everywhere. If transistor Ti is the only transistor turned on,

then nodes n+ and n3 form a single "effective node," as shown in Fig. 2.3(c). In this

case, since the voltage of n+ is fixed (n+ is the power supply), the voltage at n3 is

also known.

The task of a switch-level simulator is to iteratively identify which transistors in

the circuit are switched on. This calculation is equivalent to finding which edges {E},

out of all possible edges in the circuit, are part of the circuit graph at every time step.

Given the set of turned-on transistors (edges {E}), the simulator identifies "effective

(b) Edge / vertice
representation

16

11+

ni
Ti
113n4

T3

T2 n5

(a) Example circuit

(c) An effective node

Effective
I node

Figure 2.3: Graph representation of a circuit

17

nodes" which contain either the power or ground node, and propagates these voltages

across the "effective nodes." By iterating this procedure, the simulator is eventually

able to calculate the voltage at every node in the circuit.

Due to the complex bidirectional signal flow in the switch-level circuit model,

simulators must solve large sets of simultaneous equations to identify which tran-

sistors are turned on at every time step. Fortunately, it is possible to reduce the

computation by making use of the fact that the set of "effective nodes" only changes

incrementally at each time step. Furthermore, there are efficient algorithms for solv-

ing the circuit's state equations with this model, which make use of constraints on

signal and transistor behaviour. These optimizations together mean that typically

switch-level simulations are only about an order of magnitude slower than the next

higher level of abstraction - gate level simulation [9, 6].

2.3.2 Discrete Event Incremental Simulation

At all levels of abstraction higher than the switch model, devices are considered

to propagate signals in a single direction only. The network graph thus becomes a

directed graph G(E, V), where vertices V represent electrical nodes in the circuit,

and edges {E} represent unidirectional devices.'

Consider the circuit illustrated in Figure 2.4. vi - viO are vertices representing

electrical nodes in the circuit. Nodes have a definite state, which usually denotes

a voltage level. Nodes are connected to one another by means of devices. Edges

representing devices in the circuit are labeled el - e4. In a unidirectional model,

edges are directed. That is, they have definite inputs and outputs. For instance, the

'In practice, a single "edge" may start from multiple vertices, and end at multiple vertices.

18

state of vertice 0 affects edge e4, and may thus affect vertice viO. However, there

is no way for vlO to affect the state of 0.

V1

v2

v3

v4

v5

v6

viO

Figure 2.4: Sample unidirectional circuit

The directed nature of a circuit graph leads to the concepts of fan-in and fan-out

(see Section 2i). The fan-in of a vertice is the set of edges which affect its state

(i.e., devices whose outputs are connected to that node). The fan-out of a vertice is

the set of edges that begin in that vertice (the devices whose inputs are connected

to that node). In the example shown, the fan-out of vi is {el}, and the fan-out of

v2 is {el, e2}. The fan-in of 0 is fell, and that of v8 is {e2};

Using a directed graph for circuit simulation. is advantageous since the circuit

may be simulated incrementally. Given a known circuit state at some time to, inputs

applied to the circuit at time to will cause some device outputs to change state

after various delays, at to + AT,, to + LT2, -•, where AT,, LT2,... are device

propagation delays. The simulator need only reevaluate the state of the circuit at

times to + AT,, to + LT2, •.. This is more efficient than evaluating the circuit at

every time step.

In addition, since only some nodes change at times to + AT,, to + LT2, •.,

19

the simulator only has to reevaluate the states of some devices at these times. In

particular, it must reevaluate devices in the fan-out of nodes whose value has changed.

These observations are used to formulate a general procedure for simulating cir-

cuits which only contain uni-directional devices, and whose nodes take on discrete

values [39]. When inputs are applied to the circuit, the simulator schedules events,

indicating which nodes must change states, and when. The simulator retrieves these

events in order, and for each event executes the following steps:

1. Update the node's state.

2. Propagate the new state to the node's fan-out.

3. Re-evaluate each device in the fan-out.

4. Schedule one new event for each device output that changed.

Using this sequence of steps, device evaluation is only performed when one or

more inputs to each device have changed. If only a small fraction of a circuit's

nodes change state in a given time step, the above operations significantly improve

performance over the "brute force" approach. A widely accepted estimate of typical

activity rates is that only about 1% of the nodes in a typical circuit are active at

any one time [39]. Using this figure, event-driven simulation is approximately 100

times faster than a "brute-force" approach, which evaluates every device at every

time step.

20

2.3.3 Gate Primitives

Perhaps the most intuitive method for modeling simple, unidirectional digital devices

is to build gate primitives into the simulator. In this scheme, the user specifies the

circuit topology in terms of interconnected gates. When the simulator needs to

evaluate a gate, it executes a procedure which evaluates that type of gate.

A typical algorithm for device evaluation is shown in Figure 2.5. In this algorithm,

the Evaluate Gate function examines the gate, and selects an appropriate function to

calculate its new output value. The EvalAND function is one such function, used to

evaluate AND gates.

The advantages of this model are two: it is simple and may readily be used

in both compiled and interpretive simulators. In a compiled simulator, this model

executes very rapidly since at most a few machine instructions are needed to replace

the evaluation algorithm in Figure 2.5.

The gate-primitive model has the disadvantage that it only allows for a fixed set

of device types. There is no way, short of modifying the simulator itself, for the

user to add new device types. Furthermore, the gate-primitive model is awkward in

cases where the target technology allows for devices which perform more complex

tasks than the devices supported by the simulator. Such devices must consequently

be modeled as a collection of gates, which degrades simulation accuracy and slows

down execution.

2.3.4 Functional Block Primitives

Rather than providing a finite set gate primitives, we can assign truth tables to each

type of gate. Since truth tables can just as easily be loaded at run time as when the

21

Inputs: gate type, number of inputs, array of input values
Outputs: new gate output value

Function EvaluateGate {
switch(gate type)

case AND: return Eva1AND(Ninputs,inputs)
case OR: return Eva1OR(Ninputs,inputs)
case NAND: return Eva1NAND(Ninputs,inputs)
case NOR: return Eva1NOR(Ninputs,inputs)
case XOR: return Eva1XOR(Ninputs,inputs)
case NOT: return EvalNOT(Ninputs,inputs)

}

Inputs: the inputs to an AND gate
Outputs: new output value of AND gate

Function EvalAND {
for(each input)

if(input is equal to zero)
return 0

return 1;

}

Figure 2.5: Sample gate evaluation algorithm

22

simulator is compiled, it is possible for the user to extend the library of primitive

devices. Truth tables for some common Boolean functions are shown in Table 2.2. A

typical device evaluation algorithm that uses this model is shown in Figure 2.6, where

the truth table is stored as an array of integers. The Evaluate Table function converts

an array of function arguments into a single integer, and returns the contents of the

truth table at that location.

Table 2.2: Truth tables for some common gates

Input 1 Input 2 AND OR NAND NOR XOR

o o 0 0 1 1 0
o 1 0 1 1 0 1
1 0 .0 1 1 0 1
1 1 1 1 0 0 0

Inputs: A truth table, the number of inputs, and a pointer to an array of input
values

Outputs: The function value for the given arguments

Function EvaluateTable {
let offset=0
for(each input)

shift offset left 1 bit
offset = offset or this input

return table[offset]

}

Figure 2.6: A typical truth-table evaluation algorithm

Using this model; we can easily build more complex primitives by specifying truth

23

tables for their logical functions. For instance, a binary adder would be specified by

a pair of primitives: a sum-forming element and a carry-forming element, as shown

in Table 2.3.

Table 2.3: Truth tables for a full adder

a b carr yin Sum Carry0t

00 0 0 0
00 1 1 0
01 0 1 0
0 1 1 0 1
10 0 1 0
10 1 0 1
11 0 0 1
11 1 1 1

The disadvantage of this model is that there is no significant performance advan-

tage to implementing truth tables as compiled code, so this model is only effective

in an interpretive simulator.

2.3.5 Memory Elements

In the last two sections, methods for representing simple feed-forward devices were

discussed. So far, none of the models explicitly specify how to simulate memory

elements. In actual circuits, flip-flops, registers and latches are used to store data for

one or more clock intervals. To be useful, a digital circuit simulator must provide a

means of simulating such memory elements.

It is usually not practical to simulate memory elements as collections of gates.

Consider the pair of NAND gates in Fig. 2.7(a). If the propagation delays of the two

24

devices are equal, the two outputs will simultaneously change to 0, back to 1, and

oscillate indefinitely. This errOneous oscillation is due to the fact that, in practice,

no two devices have exactly the same propagation delays, so such feedback loops

settle at one state or the other. In the simulation, however, only nominal values of

delays are known, so multiple devices with identical delays are common. While this

instability problem is not unique to the small feedback loops found in flip-flops, due

to their widespread use this is where the problem normally arises. 2

(a) Unstable feedback state (b) Alternate state

Figure 2.7: Oscillation due to identical delays in feedback loops

In order to avoid this problem, and also speed up computation, most modern

circuit simulators provide a special facility for simulating memory elements. A prim-

itive memory element may store one or more binary digits. It may have one of the

following configurations:

. A level-sensitive latch, which follows its input as long as it is enabled.

. An edge-sensitive flip-flop, which samples its input on either a rising or falling

clock edge.

'Currently, no general method is known for dealing with this instability in circuit simulators [4].

25

Additionally, the memory element may or may not allow for asynchronous set and

clear logic.

2.3.6 Higher Level Device Models

Rather than force the user to construct the circuit with gates or truth tables, some

simulators provide a complete procedural language, such as Very High Speed Inte-

grated Circuit (VHSIC) Hardware Description Language (VHDL) or Verilog. Using

these languages, the user may specify his/her own models, and simulate the circuit

at any desired level of abtraction. This approach is illustrated in Figure 2.8, which

shows two possible ways to model an AND gate.

module and3..typel(y,a,b,c)
if (a==O or b==O or c==O)

Y=O
else

y=1
endmodule

module and3_type2(y,a,b,c)
y=a&b&c

endmodule

Figure 2.8: Two procedural models for 3-input AND gates

The procedural device model is useful primarily in cases where the behaviour of

one or more modules in a larger system has been specified, but the module has not

26

yet been implemented. This type of construct is especially useful for mixed level

simulation, in order to help test other modules which have been implemented. The

main disadvantages of this model are that it may be inaccurate, and it is difficult to

automatically synthesize a hardware design from a procedural description.

2.4 Event Scheduling

Regardless of the device and signal models selected, it is useful to associate delays

with devices. There are many possible forms for the delays: they may be nominal

values, statistical forms such as minimum/average/maximum, or physically related

parameters such as rise and fall times. In addition, delays may be static or dynamic,

reflecting the current state of a node's fan-out [2].

In order to ensure causal behaviour, the simulator must process events at all

nodes in a time-increasing order. If this is not done, a simulator might evaluate one

device, say device A, at simulation time to, and later in the sequence of evaluations

it might calculate the state of another device, say B, at simulation time to - AT.

If there is a signal path from any output of device B to any input of device A, this

sequence may cause errors in the simulation.

Events may be scheduled in any order. For example, for the three time steps

t2 > t1 > to, events scheduled for {t0, t, t2} may be added to the queue in any order.

Because they must be retrieved in the sequence {t0, t1 t2}, a digital circuit simulator

must provide a mechanism for sorting the event queue.

The task of adding events to a queue in arbitrary order, while retrieving them in

time-increasing order is a classical problem in computer science [36]. Accordingly,

27

there are a number of available solutions. Two of these are briefly presented in this

section.

2.4.1 Heapsort Scheduling

A classical solution to the scheduling problem is the heapsort algorithm [36], which

uses a heap to represent a queue. The heapsort algorithm makes use of a special

array h, called a heap, which satisfies the following condition:

hhj,h;,,hN (2.1)

Vi, hi h2i and hi ≤ h21 (2.2)

Clearly, element h1 must be the smallest element (earliest event) in the array.

This structure lends itself well to scheduling, where we only retrieve the smallest

element in the 'queue (earliest event). The heapsort algorithm resolves the scheduling

problem by adding and retrieving events to and from the array h, while maintaining

the condition in Equation 2.2.

Before considering how a heap works, we need some definitions: In a heap, the

parent of element hi is h,2. A child of element h3 is either h2j or h231. A path

through the heap is a sequence of the form: h, child(h), child(child(h)),

In scheduling, we may add a new element (an event in our case) to a heap by

appending it to the array. After the element is appended, we examine its parent,

and see if it is larger, i.e., if it is a later event. If so, we swap the parent and child

elements, and repeat the procedure along a path until we reach an element that is

not larger than the 'newly inserted element.

28

To retrieve an entry from a heap, i.e. to get the next event, we just retrieve h1,

since it is the smallest element, by virtue of Equation 2.2. After this is done, however,

the empty space must be filled in such a way that the heap condition continues to

be satisfied. This is done by moving the smaller of h1 's children to location h1, and

repeating the same process for that child along a path to the end of the array.

Since both the queuing and dequeuing procedures described above iterate along a

single path in the heap, and since, for a heap containing n elements, the average path

length is log2(n), both queuing and dequeuing using a heap have a computational

complexity of O(10g2(n)).

2.4.2 Time Wheel Scheduling

Since there are a. finite number of devices in the circuit, each circuit has a maximum

propagation delay, at the output of the slowest device. If a circuit uses only integer-

valued delays, then there is only a finite set of possible delays. At most, this set

consists of the integers {1, 2'... , MAXDELAY}. We can take advantage of this

observation by using an array to track pending events.

The time wheel algorithm represents the event queue as an array of event lists.

The array length, N, is set to equal the longest delay in the circuit. The array is

traversed in a circular fashion: events scheduled for time step i are stored at array

position i mod N. Clearly, scheduling with a time wheel is an 0(1) operation: to

insert an event at some delay P after the current timestep i, it is added to the event

list at array position (i + F) mod N.

The basic concepts of time wheel scheduling are illustrated in Figure 2.9. A

typical algorithm for accessing the event queue is shown in Figure 2.10. For the sake

29

of brevity, the code used to schedule inputs to the circuit, which may arrive later

than the simulation time plus the maximum delay, is omitted.

current_time+7

current time+2

current_time+1

current time

current time+MAXDELAY

Scheduled Events
S

S

S

S

S

Scheduled Events

Figure 2.9: The time wheel scheduling paradigm

The primary advantage of the time wheel scheduling algorithm is that scheduling

is very fast: Adding a new event to the queue is an 0(1) operation. As long as

different devices in the circuit have many different delays, and there is a reasonably

large amount of activity in the circuit, the while loop in the GetNextEvent function

is rarely executed more than once, so event retrieval also averages 0(1).

The disadvantage of the time wheel algorithm is that for periods of low circuit

activity, or for cases when most of the circuit activity is in devices with a single

long delay, the while loop is executed frequently, thus slowing down event retrieval.

Fortunately, the code in the while loop is short, so even this situation should not

exact a heavy penalty.

30

Inputs: None
Outputs: The earliest pending event in the queue

let list = an array of pointers to linked lists of events
offset = an integer representing the current location in the time wheel
current-time = the simulation time

Function GetNextEvént {
/* while no events in this time step /
while(list[offset] is an empty list)

offset = (offset+1) mod MAXDELAY
current-time = current-time + 1

new = list[offset] / remove first event in this list /
list[offset] = new—+next
return new

}

Inputs: A new event, and the delay after which it should be processed
Outputs: None

Procedure Schedule {
let pos = (offset + delay) mod MAXDELAY
new—*next = list[pos] / add to appropriate list /
list[pos] = new

}

Figure 2.10: Time wheel scheduling algorithms

31

2.5 Circuit Initialization

Regardless of the device and signal models, we may represent the circuit to be simu-

lated using a graph G(E, V), where the edges {E} represent devices, and the vertices

{V} represent nodes. In all but the switch model, the edges are directed - that is,

signals flow from one vertice to one or more others.

Given that a circuit has been loaded into a graph G(E, V) in memory, the simu-

lator must set the initial state of the vertices {V} in the graph. In practice, when a

physical circuit is turned on, the initial state of the vertices {V} is a complex func-

tion of the technology, layout, circuit topography and random thermal effects. Due

to this complexity, there is no practical way for the simulator to accurately calculate

the initial state of the circuit.

There are a number of methods for initializing a circuit in a logic simulator. The

most common one is to set the value of each node to X (this presumes a four-valued

signal model, or some variant). In this way, the simulator is making no undue initial

assumptions. An alternate approach extends this by scheduling events, to the ground

and power nodes, so that the state of some of the devices in the circuit may be

calculated before the simulation begins.

There are inherent problems with the method of setting the initial state of every

member of {V} to X. Consider a simple counter, made up of one or more flip-flops as

shiown in Figure 2.11. One of the possible uses of this counter is frequency division.

In a practical circuit, a designer need not provide a reset signal to this network, since

its function is independent of its initial state. As long as it has some initial state, the

counter will correctly perform frequency division. The only characteristic of interest

32

in this device is the rate at which it progresses through states. If we initialize each

node in this device to X, and never apply a reset signal, then the simulator will

never change the state of the device, and the counter will fail. This is strictly a

simulation problem, since in practice the counter starts at an arbitrary state, and

functions correctly.

Enable

Clock

14

1
DFF

IF
DFF

'1J

DFF

DFF

0'

Q2

Q3

Figure 2.11: A frequency-division circuit, which does not have to be reset

Unfortunately, there is no known method to accurately initialize a circuit. In

particular, it is impossible to guarantee the simulation results for any circuit which

functions correctly regardless of its initial state, and whose initial state is not explic-

itly set.

Fortunately, this problem is easily solved by adding some small degree of flexibility

33

to, the simulator. The user may either provide a secondary reset signal, which is only

used to initialize "initial-state-independent" subcircuits. This signal can then be

ignored by any hardware synthesis software. Alternately, the simulator may provide

a facility for explicitly giving the initial state of nodes in the circuit. This calls for

more care on the part of the user, but guarantees satisfactory simulation results.

2.6 Simulation Language Expressiveness

The final issue in simulator design is the expressiveness of the simulator language.

The simulator language is used to describe the circuit, and in some cases device

operation. The capabilities of different simulation languages vary enormously. The

simplest languages, such as SPICE, are only capable of listing network topologies,

while more complex languages, such as VHDL and Verilog, include complete proce-

dural constructs.

Choosing a degree of expressiveness for a simulator language is a trade-off be-

tween performance and debugging capability. Adding high-level constructs is useful

for modeling sections of a circuit before they are implemented. However, interpret-

ing these constructs takes more time than interpreting a simple language, so the

simulation of simple devices is somewhat slowed down.

Using only low level constructs makes it possible to ensure that it will always

be possible to automatically synthesize a hardware design from the netlist. On the

other hand, debugging large circuits is more difficult, since every module must be

specified simultaneously.

Chapter 3

The TLSIM Digital Circuit Simulator

TLSIM stands for Timing and Logic SIMulator. It is an interpretive simulator,

incurring low overhead for simulation start-up. Since building a circuit graph takes

little time, simulation commences almost immediately after the TLSIM is executed.

In addition its short delay, TLSIM provides rapid simulation by using an optimized

device model. This model is capable of describing devices with complexity similar

to that of small- and medium- scale integration discrete components.

This chapter addresses the major issues the development of the TLSIM digital

circuit simulator. TLSIM uses a four-valued (0, 1,X, Z) signal representation and a

hybrid device model, with some features in common with both the truth-table and

algorithmic models. This model results in excellent simulation performance.

3.1 Simulator Execution

TLSIM is a circuit simulator intended for circuit design rather test generation. In the

design phase, designers specify the contents and topology of a circuit and apply some

short tests to check their evolving design. This procedure is repeated frequently, so

every effort should be made to shorten the turnaround time to a minimum.

In practice, simulators are used for two types of testing. In the first type of

testing, the circuit is checked for correct operation. This testing is performed during

circuit design, and is referred to as conventional simulation.

34

35

A second testing phase is performed in order to develop a set of input vectors

for use in identifying faulty circuits after fabrication. To do this, some test vectors

are applied to the circuit, and the simulation results are recorded. The same test

vectors are then applied to a slightly modified circuit, where a manufacturing defect

has been introduced. Simulation results from the two runs are compared, and if they

differ the input vectors are recorded, since they have shown the ability to identify

circuits with that particular manufacturing flaw. This testing phase is referred to as

fault simulation.

Just as there are two types of testing performed on circuit designs, there are two

types of simulators. The first, a compiled simulator, converts the circuit topology

into source code, either in a high-level language like C, or in assembler. This code is

then compiled into an executable file. This approach gives very rapid simulation at

the cost of high overhead, due to the compile and link steps.

The second approach to simulation is to build data structures in memory to rep-

resent the circuit topology, and to change their state according to rules about device

operation. This approach, called interpretive simulation, typically runs about an or-

der of magnitude slower than compiled simulation, but has the significant advantage

of very low overhead. That is, building a graph to represent a circuit takes very little

time.

Since TLSIM is meant for circuit design, it uses an interpretive paradigm for

execution. This means that for short simulation runs, i.e., typically not exceeding

more than a few million input transitions, it is faster than compiled simulation, since

it does not incur a compilation overhead. For exhaustive testing, however, a compiled

simulator is preferable.

36

Using the interpretive paradigm, TLSIM execution proceeds in the following se-

quence of steps:

1. Load a library of Boolean functions, represented as truth tables. (By default,

this is read from the file INTRINS.LIB.)

2. Load a library of device definitions, whose behaviour is specified using the

above functions. (By default, this is read from the file DEVICE.LIB.)

3. Load a netlist of the circuit to be siiiauiated.

4. Construct a graph in memory representing a flattened netlist, i.e., the hierar-

chy of network definitions in the netlist is converted into a flat representation

consisting of only nodes and primitive devices.

5. Initialize the power nodes, Vdd and Gnd, and commence the simulation.

6. Load the first user-specified inputs into the circuit and simulate.

7. Continue simulating until there are no more inputs left, and the circuit has

either settled or a time limit has expired.

3.2 Signal Representation

At the logic design stage, the designer rarely knows what node capacitances in the

circuit will be. By the same token, he/she does not yet know the driving strength

of each transistor in the circuit. Normally, the circuit designer is more concerned

with the logical operation of basic components, and how they interact to produce

the overall circuit behaviour.

37

TLSIM achieves a significant performance improvement over switch-level simula-

tors by neglecting node capacitance and signal strength information. This is done at

no real cost in terms of simulation accuracy, since layout information is not normally

available during logic design. By neglecting these details, it is possible to represent

signals with a simple four-valued model, consisting of the values {O, 1, X, Z}.

In order to avoid errors introduced by transient signal conflicts, TLSIM extends

the four-valued model with a source count: Whenever a device output changes from Z

to one of the values {O, 1, X}, the source count at the associated node is incremented.

Alternately, whenever a device output changes from one of {O, 1, X} to {Z}, the

source count at the associated node is decremented. Only when the source count

becomes zero does a node's value become equal to Z.

Use of the source count guarantees correct simulation results, as long as no more

than two signals are simultaneously applied to the same node. In particular, correct

simulation results are guaranteed even if there are transient signal conflicts.

y(a) y

S(y)1 2 1 1

actual 1 0 0

scheduled - O 'Z
A A

y(b)Z '0' I 0

x(b) - OFF QIjJ Z->O I ON
-- delay

y(a)1 ,Z' Z
I I

x(a) - ON OFF) 1->Z OFF
delay

i 1, Time(ns)

Initial 5 10 15 Final

(a) A sample tristate node (b) Using a source count to ensure correct behaviour

Figure 3.1: Correct simulation of transient signal conflicts

38

Figure 2.2 in Chapter 2 illustrated how indiscriminate use of the high-impedance

state can cause simulation errors. The example in Figure 3.1 shows how TLSIM

avoids errors caused transient signal conflicts by using the source count. In the

figure, S(y) is a source count, indicating how many device outputs are active at

node y. Initially, only buffer a is on, and S(y) = 1. Due to the differing propagation

delays, buffer b turns on before a can turn off, so for a short period S(y) = 2.

However, when a does turn off, the transition sets 8(y) = 1 and the transition to Z

is ignored, so the final value of y is 0.

3.3 The UNIMOD1 Device Model

The device model used in TLSIM is key to its performance. UNIfied MODel .7

(UNIMOD1) is capable of describing realistic circuit building blocks, in a way which

helps accelerate simulation.

Most simulators offer one or more trade-offs between simulation performance,

i.e., the time it takes to carry out the simulation, and accuracy. For instance, al-

gorithmic models can be fast, since they describe the function of a large number of

physical devices with simple high-level statements. Consider a multiplier; the circuit

would occupy at least hundreds of gates, but only dozens of functional blocks, and a

single high-level instruction. This makes the algorithmic model fastest to simulate.

However, if the circuit is implemented using gates, then the gate-level model gives

the designer an opportunity to test the circuit more accurately, and make predic-

tions about timing characteristics of the circuit. This is clearly not possible with the

algorithmic model.

39

TLSIM incorporates a unified model capable of modeling devices at multiple levels

of abstraction. UNIMOD1 is a functional model with extensions for supporting some

features of algorithmic models. It was designed with efficiency in mind, so it is as

fast at evaluating gates as some dedicated gate-level simulators. The power of the

UNIMOD1 model derives from the fact that it maps well to real circuit building

blocks. For instance, an IC designer may use a device library that includes registers,

adders, gates, etc. UNIMOD1 can model each of these blocks as single devices,

whose behaviour is a relatively good approximation to the physical components.

This means that a high degree of confidence may be reached that the final design

implementation will conform to simulation results.

Since TLSIM uses a functional, unidirectional device model, it is incapable of

modeling certain circuit structures. In particular, it cannot directly represent charge

sharing or storage effects. These effects can only be simulated directy by switch-level

or continuous simulators. However, since such effects are normally only used within

macro-cells, which themselves are unidirectional, this restriction primarily affects the

level to which TLSIM can break down a circuit, rather than limiting the number of

circuits which it can simulate.

A block diagram of the UNIMOD1 device model is shown in Figure 3.2. The two

truth table blocks (A and B) are able to evaluate complex Boolean functions, of the

form yj = f(x,y_i,g(x,y_i)), where i is the simulation time step. These blocks

are used to calculate the state of a device from its previous state and data inputs.

Memory elements (C) are used to model synchronous devices, such as flip-flops,

latches and counters. They function by selecting when the Boolean function values

(ol) are passed on to a device's output (o2). Multiplexors (D) model asynchronous

40

overrides, such as set and clear logic. They function by selecting either the enabled

function values (o2) or some constants (0, 1 or X) to pass on to the device's output

(o3). Finally, the delay elements model propagation delays, in the form of rise and

fall times.

Input Variables (i)

Variables (a,int,o4)

Truth
Tables

(A)

(int)

Enabling Signals (el

Clear / Preset Signals (a

Truth
Tables

(B)

(ol) Memory
Elements

(C)

(o2)

1-
0—

Multi-
plexors

(D)

(01),

Figure 3.2: Complete UNIMOD1 device model

Delay
elements

(B)

(o4)

Outputs

In the following several sections, starting with simple truth tables, and ending up

with the complete model, we develop the UNIMOD1 device model in greater detail.

The model is presented incrementally, in order to clarify the motivation behind every

portion of the model.

3.3.1 Truth Tables

A simulator may use a simple truth-table model to represent combinational elements.

A truth table may be evaluated using an efficient look-up procedure, as outlined in

Figure 2.6, on page 22. For a device with m outputs, m arrays are used to represent

device function (although the arrays need not be unique).

41

A device model consisting of only truth tables is illustrated in Figure 3.3.

Figure 3.3: Simple Boolean device model

This model may easily be extended for use with four-valued signals. For four-

valued signals, the array length becomes 22n, since two bits are needed to represent

each input.' The truth table functions are evaluated using the same procedure, but

the offset number is now formed using the equation:

offset = (bi)I(b2 <<2)1... (b << 2(n - 1)) (3.1)

In this equation, function arguments are represented by b, where i is the ar-

gument number. The arguments bi take on the binary values {00, 01, 10}, which

represent the signal values {0, 1, X}. Note that Z arguments are mapped to one of

the other three values prior to function evaluation, so are omitted here.

This representation of function arguments as bit fields in an integer resembles the

representation used by Rok Sosic et al. in their parallel Boolean function evaluation

algorithm, Unison [35].

'For four-valued signals the consruciion of the array is more complicated. Chapter 4 describes
this issue in detail.

42

3.3.2 Device Memory

The simple truth table model suffices for gates, but it has no provision for devices

with memory. It cannot directly represent devices which have state, such as flip-flops,

latches or counters. Memory elements are incorporated into UNIMOD1 by adding a

control element after the functional block.

While in physical circuits node voltages decay over time, this is not inherently the

case in a simulated node. Since the simulator must store the state of each node in a

variable, simulated nodes have built-in memory. The simple device model presented

in the previous section does not take advantage of this property, however, since every

change in a device's function values is immediately applied to the device's output

nodes.

UNIMOD1 extends the simple truth-table model to include memory by control-

ling when a device's output values are copied to its output nodes.

The modified device model is shown in Figure 3.4. UNIMOD1 allows for any

signal value or transition (i.e., 0, 1, 1 — 0, or 0 — 4 1) to be cause a device's output

values to be copied to their nodes. Making the enabling signals sensitive to signal

transitions (1 —+ 0 or 0 - 1) makes the device edge-sensitive, while using signal

values (0 or 1) makes the device level-sensitive.

The function of the enabling block may be stated formally as follows:

o, if e is active

o 1, if e is inactive

where superscripts indicate a timestep, and variable names are as shown in Figure 3.2.

This model of storage elements has the benefit of improving simulator perfor-

mance. Consider a device input changing value while some or all of the device's

(3.2)

43

Inputs (i) No Truth
Tables

(B)

(ol)

Enabling Signals (e)

Memory
Elements

(C)
A

(o2)

Outputs

Figure 3.4: Device model with memory added

outputs are disabled. With this model, the simulator does not have to recalculate

the disabled device outputs. Since several such input transitions may occur while

outputs are disabled, the simulator may save a substantial amount of computation.

In general, if m input transitions occur while a device output is disabled, n - 1 re-

calculations are skipped. The single recalculation is performed when the output is

re-enabled.

3.3.3 Asynchronous Inputs

The device model presented in the last section is essentially a model for synchronous

devices. They have data and clocking inputs, and an arbitrary number of outputs. In

practice, we may also want to be able to set and reset outputs as,nehronously. This

ability may be added to the model by adding a layer of multiplexing elements between

the memory blocks and output nodes. When the device is operating normally, the

memory blocks' outputs are transferred directly to the output nodes. When an

output is set, its multiplexor passes a 1 signal to its output nodes. When an output

is reset, a 0 signal is passed to its output node. The ability to pass an X signal is

added for completeness, although it probably has no practical application.

44

The addition of asynchronous overrides to the device model is illustrated in Fig-

ure 3.5. In this figure, for each output, a multiplexor in block D selects either the

enabled function value from block C, or a Boolean constant to pass on to the output

node.

Inputs (i) Truth
Tables

(B)

Enabling Signals (e)

(01) r Memory
Elements

(C)

Clear / Preset Signals (a)

(o2)

X\
1-
0

Multi-
plexors

(D)

(0) 01

Outputs

Figure 3.5: Device model with asynchronous overrides added

As with the clocking inputs, TLSIM can make asynchronous overrides active

on any signal state or transition. The ability to set and clear device outputs on

an override transition is included for completeness, rather than with any particular

application in mind.

The function of the asynchronous override (Multiplexor) block may be stated

formally as follows:

I K if a is active
03 ' (3.3)

02, otherwise

where K may be one of the constants {O, 1, X}, and any level or transition can make

a active.

The asynchronous override blocks (D) are similar to the memory element blocks

(C) in that they can also reduce the computation required for simulation. As long

45

as an output is set or reset, there is no need to recalculate the associated function,

even though inputs to the device may change. As before, if n transitions occur

at a device's inputs while an output is forced to some state, only n - 1 function

recalculations are required.

3.3.4 Internal Nodes and Feedback

While circuits built using the model in Figure 3.5 can represent most physical de-

vices, the model cannot represent state machines internally. With thi model, state

information can only be fed back to a device's function block (B) through the sur-

rounding circuit, outside of the device. To get feedback, a device must include state

variable outputs, as well as state variable inputs. These must then be connected to

one another. A useful modification to th device model, then, is to add an internal

feedback path.

A second feature which is sometimes useful is to factor Boolean functions into sub-

expressions, so that several outputs in a device may reuse intermediate results. With

this modification, we have three sets of variables for use in the Boolean functions: In-

put pins ,pp), internal nodes (i1,. . ,i1) and output nodes (oi,. .. ,00), where

a device has P inputs, I internal nodes, and 0 outputs. Relating this, nomenclature

to Figure 3.2, input pins enter the device from the left, internal nodes are the outputs

of block A, and output nodes are the outputs of block B. Using this terminology, the

outputs may be calculated using the following equations:

46

= f(pi," ,pp,i1)...,il,oi,... ,00)

(3.4)

01 ff(pi, ,pp,ii, ,00)

(3.5)

00 = f(pi)...,pp,ii,...,ii,oi,... ,00)

In the above equations, f is the Boolean function for the jth internal node, and

fk° is the Boolean function for the kth output node. To simplify these equations, we

may define a vector notation:

p[p1,...PAT

]T

OE[ol,00]T

fi Ui, ,JIJ ci1T
-

ço fçoi, , J cOJolT
J. - U

Equations (3.4) and (3.5) may then be rewritten as:

I = fi(p, I, 0)

(3.6)

(3.7)

0 =f°(P,I,0) (3.8)

Equations (3.7) and (3.8) may be thought of as the state equations of a device.

They determine a device's outputs and next state from its, inputs and present state.

47

By adding compound functions, as shown in Equations 3.7 and 3.8, and internal

feedback to the model in Figure 3.5, we finally get the complete UNIMOD1 device

model, illustrated in Figure 3.2.

3.3.5 Examples

In order to further clarify how UNIMOD1 works, some sample devices are modeled

in this section. The simplest examples are gates, while the most complex illustrate

how UNIMOD1 can represent complete arithmetic-logic units.

Gates

Gates are trivially defined in TLSIM by omitting the internal, output enabling and

asynchronous override blocks in the device model (blocks A, C and D). Due to its use

of truth tables, TLSIM requires that a separate truth table be provided for gates with

different numbers of inputs. For instance, a 2-input NAND gate would be defined

with one truth table, and a 3-input NAND gate would use another.

Flip Flops

A D flip-flop may be readily implemented in TLSIM using the Boolean identity

function, enabled by a falling (or rising) edge on a clock signal. This is illustrated in

Figure 3.6.

A JK flip-flop may be implemented using a special truth table, as shown in

Table 3.1.

The inverted output can be formed either by an inverter outside the flip-flop, an

inverting function within the flip-flop, or a second truth table, with outputs negated

to the ones in Table 3.1, also within the device. The choice of which, if any, of these

48

D

CLK

COPY -7-
Q

Block Block
B 6.

Figure 3.6: A DFF implementation using UNIMOD1

Table 3.1: Truth table for a JKFF implementation

J K q Q

0000
0011
0100
0110
1001
1011
1101
1110

49

to use in a device library should be made based on the characteristics of the physical

devices being modeled.

An implementation of the JKFF using the Boolean function in Table 3.1 is shown

in Figure 3.7. Note that this particular representation does not generate an inverted

output Q.

K -

J

CLK

JKFF

Block Block
B C

Figure 3.7: A JKFF implementation using UNIMOD1

Counters

A unidirectional counter, which follows the sequence {O, 1,. . , 2, 0, 1, .}, may be

modeled as a single device in TLSIM. Consider that in the state transition of a

counting process, a bit will change from 1 to 0 or 0 to 1 if and only if all preceding

bits are equal to 1, in the previous state. Accordingly, internal nodes may be used to

calculate how many contiguous bits, starting with the least-significant bit, are equal

to 1. Given the results of these internal calculations, the truth table in Table 3.2

can then be used to calculate each counter output. This arrangement is shown in

Figure 3.8. Note that the truth table turns out t6 be simply the XOR function.

50

Carry in

Qo
XOR

AND

AND r--

XOR . Qi

XOR

AND

Clock

XOR
Q3

Carr out

Internal Output Memory
truth tables truth tables elements
(block A) (block B) (block C)

Figure 3.8: A counter implementation using UNIMOD1

51

Table 3.2: Truth table for a counter implementation

all less significant bits equal to 1? q Q
O(no) 0 0

.0 (no) 1 1
1(yes) 0 1
1(yes) 1 0

Adders

Binary adders may be modeled as either single monolithic devices or arrays of smaller

adders. For instance, a 16-bit adder (with two sets of 16 data inputs, a carry input, 16

sum outputs and a carry output) could be implemented as a monolithic device, a pair

of eight-bit devices, four four-bit devices, etc. Selecting a level of abstraction depends

on two variables - accuracy, i.e., the model should reflect the actual implementation,

and performance.

As shown in Figure 3.9, as the complexity of a UNIMOD1 device grows, it absorbs

a growing amount of circuit function, so less event scheduling is required to account

for inter-device communication. At the same time, the computational effort required

to evaluate each device increases. Clearly, increasing device complexity reduces the

number of required device evaluations, but it also lengthens the time required to

perform each evaluation. The net result is that while the event scheduling effort

shrinks, the device evaluation effort increases. The best simulation performance is

achieved by selecting a device complexity which roughly balances device evaluation

against event scheduling.

Returning to the 16 bit adder mentioned above, assume that the technology in

which the circuit is to be implemented provides 4-bit adder macro-cells. In this

52

Si
mu

la
ti

on
 t
im
e

total

device
evaluation

event
scheduling

Single-device complexity

Figure 3.9: Total computational effort as a function of device complexity

environment, TLSIM would model the 16-bit adder as a cascade of 4-bit adders, as

shown in Figure 3.11. Using a pair of truth tables for carry and sum functions, a

four bit adder could be modeled as a single device as shown in Figure 3.10.

3.4 Four-Valued Truth Tables

The use of four-valued truth tables complicates the function eváJuation procedure in

Figure 2.6. In order to represent four values, we must use two bits per argument.

Furthermore, the simulator must evaluate functions whose arguments are set to X

or Z in a reasonable manner.

Since in general it is not known how a Z input will be interpreted by a physical

circuit, Z inputs are replaced by X during .function evaluation. However, in some

technologies Z does behave like 0 or 1 when it is applied to a device input, so TLSIM

allows the user to override the default mapping of Z -* X with Z - 0 or Z -* 1.

When a function with one or more X arguments is evaluated, its value may or

may not equal X. Consider two functions - Boolean AND and OR, with various

53

aO

bO

al

bi

a2
b2

a3
W

CARRY

SUM

 10

CARRY

SUM

I YO

 00.

"V

CARRY

SUM

 b.
I

'V

CARRY

SUM

 . y2

Ny

Internal Output
truth tables truth tables
(block A) (block B)

Figure 3.10: A 4-bit adder model

y3

Cout

54

Cin a0a3 b0 b3 a4 a7 b4b7 a8 all b8bll
a12 b12
a15 b15

A B A B A B A B

—*Cin Cout—+Cin Cout*Cin Coul*Cin Cout

Y Y

yo..y3 y4..y7 y8 .y11 y12..yl5 Cout

Figure 3.11: Cascading 4-bit adders to make a 16-bit adder

input combinations, as shown in Figure 3.12, on page 54. Clearly there are cases

where at least one argument is unknown (X), and the function value is not X (i.e.,

it is 0 or 1).

1

Figure 3.12: AND and OR gates with X inputs

To address the problem of correctly evaluating Boolean functions with X ar-

guments, we begin by reformulating a function's arguments, or input vector as an

equivalent set. If the vector contains no X entries, then its equivalent set has a single

member - the original vector. However, if the vector contains X entries, the set is

larger. In general, an equivalent set representing an original input vector will have

2' elements, where the input vector contains n X entries. Some examples of the

relationship between input vectors and their equivalent sets are given in Table 3.3.

This equivalence relation is defined rigorously in Chapter 4.

55

Table 3.3: Sample input vectors and equivalent sets

Input vector Equivalent set of explicit vectors
1111 {1111}
11X1 {1111, 11O1}
X1X1 {1111,11O1,O111,O1O1}

If a given Boolean function has the same non-X value for each member of the

equivalent set of an input vector, then the function value for that input vector is not

X.

In order to avoid the need to enumerate X inputs and calculate equivalent sets,

whenever a function is evaluated, TLSIM calculates the value of each truth table for

every possible input vector when its loads the truth table library, before simulation

begins. For instance, a two-input Boolean OR function might be specified by a truth

table such as the one in Table 3.4. Assuming that Z inputs are mapped to one

of {O, 1, X}, there are five input vectors which the original table does not directly

specify. These are: (X, X), (0, X), (1,X), (X, 1) and (X, 0). During initialization,

TLSIM calculates the equivalent sets for each of these input vectors, and updates

the truth table appropriately. During simulation, any of these inputs can be applied

to the-truth table directly, and a look-up procedure similar to the one in Figure 2.6

is used to evaluate the function rapidly.

3.5 Event Scheduling

TLSIM uses a time wheel to manage. the event queue. This model was chosen after

both the time wheel and heap scheduling algorithms were compared using a number

56

Table 3.4: Truth table for a Boolean OR function

Input a Input b a OR b
o o 0
o 1 1
1 0 1
1 1 1

of practical circuits. In all cases, the time wheel algorithm performed better, but

only marginally.

In a time wheel, delays are necessarily integer. Accordingly, a device library is

specified using some fundamental unit of time; typically nanoseconds or tenths of

nanoseconds. Device outputs are assigned rise and fall delays, specified as integer

multiples of this fundamental unit. The longest delay in the device library is then

used to set the length of the time wheel.

Event scheduling in TLSIM is somewhat more complex than the classical time

wheel model presented in the background chapter. This is so for two reasons: to

ensure correct simulator operation, and to improve performance. In order to ensure

correctness, TLSIM employs an event cancellation mechanism. In order to improve

performance, TLSIM uses a fixed number of event slots, or allocated event data

structures. Event allocation is then performed using a stack of pointers to these

event slots. The net result is that both event allocation and deallocation are 0(1)

operations.

57

3.5.1 Event Allocation and Deallocation

In practice, a simulator spends much of its time allocating and deallocating space

for events. In fact, due to operating system overhead, as much as 50% of the total

simulation time may be taken up by memory allocation routines. Although a large

number of events are allocated during the course of a typical simulation run, only a

few event data structures are in use at any one time.

TLSIM takes advantage of the fact that only a relatively small number of events

are needed simultaneously by implementing a two-tier memory allocation scheme for

events. This scheme is illustrated in Figure 3.13. TLSIM first allocates a reasonably

large number of event data structures. These structures are stored in a static array,

whose size may be increased as necessary during the course of the simulation. Next,

TLSIM allocates a stack of pointers to these data structures. Initially, there is a one-

to-one relationship between the pointer stack and the event array. Whenever TLSIM

requires an event data structure, it pulls a pointer from the stack. After an event has

been processed, its address is pushed back onto the pointer stack. Since both pull

and push stack operations require an 0(1) effort, event allocation and deallocation

are both 0(1).

Event structure array:

Stack of pointers:

(free) (free) (in use) (free) (in use) (in use)

I
Stack pointer:
Next free event.

Figure 3.13: Event memory allocation scheme

58

3.5.2 Event Cancellation

Consider the circuit of Fig. 3.14(a), and the sequence of events at its inputs, as shown

in Fig. 3.14(b). Assume that the AND gate has a rise propagation delay of iOns,

and a fall propagation delay of 4ns. Let the initial inputs be a = 1 and b = 0. At

t=5ns, a transition occurs, setting b -p 1. Since both inputs of the AND gate are

now equal to 1, an event is scheduled for t=l5ns to set y - 1. Next, at t=6ns,

a second transition occurs, setting a -* 0. Since the current function value is 1, a

second event is scheduled, to set y -+ 0 at t=lOns.

A

- - I

1

a&b-0 10
I 0

b- 1 (charge)
a-'l E"-' 0 r (discharge)

I I i I Time(ns)
Initial 5 10 15 Final

(a) Labelled AND gate (b) Event sequence with an error in the final state

Figure 3,14: The need for event cancellation

If the two events at node y are processed in sequence, then the final state of the

gate will be: a = 0, b = 1 and y = 1. Clearly, this is wrong.

In order to alleviate this problem, and others like it, it is necessary to differentiate

between the sequence in which events are scheduled, and the sequence in which they

are retrieved. TLSIM guarantees correct steady-state response by ensuring that,

for every node, only the last scheduled event is applied to the node. For instance, a

number of inputs at a gate might change simultaneously, causing a sequence of events

59

to be scheduled at the gate's output node. TLSIM tags each event with a unique

ID number, reflecting the order in which it was scheduled and stores the event ID at

the node referred to in the event. The node then "knows" which event to "expect."

When a spurious event is retrieved from the queue, its ID does not match the event

ID at the target node, and it is discarded.

Referring once again to Figure 3.14, the event setting y -+ 1 would be given an

ID number, say '1.' At the same time, the event ID '1' would be stored at node y.

Since it is scheduled later, the event to set y -+ 0 would get a later event ID, say

'2,' and .the event ID at node y would also be set to '2.' When the y - 0 event

is retrieved from the queue, its ID will match the one at node y, and it will be

processed. However, when the y -+ 1 event is retrieved from the queue, its ID will

not match the ID at node y, so it will be cancelled.

3.6 Circuit Initialization

TLSIM assigns an initial value of X to every node in a circuit. When simulation

begins, TLSIM schedules events to set the value of the ground node to 0 and of the

power node to 1. This is done in order to propagate the power nodes' constant values

to device inputs before any other signals are applied. Furthermore, it ensures that

devices whose only inputs are power nodes are evaluated at least once, even though

good designs should have no such devices. This must be done because the simulator

can make no assumptions about reasonable circuit. design - its function is to identify

poor designs.

60

3.7 Summary

Overall, TLSIM is designed to give good simulation performance and accuracy by

using a device model which simultaneously is efficient to evaluate and accurately

represents device blocks used in real circuits.

The UNIMOD1 device model is fairly expressive: it can easily describe the major

modes of device operation. These are feed-forward, i.e., simple Boolean functions,

clocking, to control when outputs are asserted on their nodes, and asynchronous. Us-

ing this scheme, TLSIM can represent the operation of devices ranging from gates to

small arithmetic-logic units (ALUs) using a single, unified model, without the perfor-

mance degradation associated with modeling low-level components in an algorithmic

language.

In addition to its powerful device model, TLSIM provides accurate simulation

using its four-state signal representation, and a fast event cancellation mechanism,

which ensures correctness in complex scenarios involving rapid sequences of input

transitions. TLSIM does not suffer a performance penalty for the four-state signal

model, as it uses a novel variation on the classical truth table look-up procedure to

rapidly evaluate Boolean functions even when some of their arguments are equal to

X.

Finally, TLSIM achieves good execution performance. This is done in several

ways. Using UNIMOD1, TLSIM can discard many events prior to device evaluation.

Using efficient algorithms for memory allocation, function evaluation, event cancel-

lation and treatment of the high-impedance state, TLSIM can efficiently process the

remaining events. For instance, a major time savings is achieved by reusing memory

61

allocated for event data structures. Similar measures are taken to rapidly allocate

memory for devices and nodes during circuit initialization.

Chapter 4

Basic Algorithms in TLSIM

This chapter describes the algorithms used to implement the various mechanisms

in the TLSIM simulator. It describes their function, and how they address issues

in simulator design. The main focus in each section is on implementing various

components of a simulator efficiently, so as to reduce execution time. This is a

feature of primary importance in the TLSIM simulator.

Section 4.1 discusses how truth tables are constructed, and how they are used to

evaluate Boolean functions. Together, the algorithms from these two sections make

it possible to use the four-valued signal model without any significant performance

degradation as compared to the binary-valued model.

Section 4.2 describes how devices are evaluated when the state of one or more

of their inputs changes. This is significant, because TLSIM spends most of its time

evaluating devices. Every small improvement in performance here is multiplied out

by the number of device evaluations carried out during execution, so can yield.. a

large savings in overall simulator run time.

Section 4.3 gives a detailed description of the scheduling mechanisms in TLSIM.

There are two components to TLSIM's scheduling mechanism - one that loads tran-

sitions from an input file, and another that schedules internally-generated events.

This section illustrates how these components are integrated.

Section 4.4 describes the event-cancellation mechanism in TLSIM. It emphasizes

how a potentially difficult problem is averted with no computational cost. In fact,

62

63

event cancellation in TLSIM can yield a performance improvement.

Section 4.5 illustrates how the problems which arise from the use of a high im-

pedance (Z) state are addressed in TLSIM. The source count mechanism in TLSIM

ensures correctness while incurring only minor overhead.

Section 4.6 extends the ideas presented in Section 4.2 to illustrate how memory

elements are evaluated. There are some important points to consider here, in order

to avoid feedback on data lines in RAM chips, and to maintain a correct count of

the number of signal sources active at every node.

Section 4.7 describes the memory management algorithms used in the simulator.

Since the simulator must allocate a large number of small blocks of memory to

represent devices and nodes in the circuit, and later must perform a large number of

memory allocation and deallocation operations, efficient memory management makes

a large contribution to simulator performance.

Figure 4.1 shows the relationship between procedures in TLSIM. It should serve

as a useful reference while reading this chapter and Chapter 5.

4.1 Four-Valued Boolean Functions

TLSIM uses four-valued logic to represent device functionality. This is an extension

to classical Boolean algebra, which adds the values {X, Z} to the classical {O, 1}.

TLSIM uses truth tables to evaluate Boolean functions rapidly. In order to yield

reasonable results for function evaluations where the function arguments range over

{O, 1, X, Z}Th, rather than just {O, l}', some care must be taken both in truth table

construction and evaluation. Sections 4.1.1 and 4.1.2 show how TLSIM constructs

64

Time
wheel
A

Simulation main loop

/
/

next event

(ReadEvents)

I circuit inputs

V

I - - - - (Schedule)- new events

event event
at at
memory asynch.
cell override

(EvalMem)

liocateEvent

event event
at at
input enable

(Evalnable)

RecalcDevice) 1

truth table, inputs

vai'unction)

 Free-event .

pointer stack

 I.
S1ju1ator initializati9

(Memory management)

I - .memory_ -
allocation

stack

 (nput file parse

Figure 4.1: TLSIM function and procedure hierarchy

)
empty
event
data
structure

-(FreeEven

65

truth tables and it uses them to evaluate four-valued Boolean functions.

4.1.1 Building Four-Valued Truth Tables

TLSIM uses four-valued truth tables to represent Boolean functions. These tables

are stored in memory as arrays of integers, where each integer represents the function

value for a different combination of inputs. A truth table is evaluated by forming

an offset into the table, where each two bits in a binary representation of the offset

number represent an input variable. The function value for that combination of

inputs is then given by the integer at the offset position in the table.

Building four-valued truth tables is a non-trivial task for two reasons. First, the

table may be specified in terms of input vectors containing X elements, as illustrated

in Figure 4.2. Second, the table may have to be evaluated for cases when one or more

of the inputs are unknown (X). This separate problem is illustrated in Figure 3.12,

on page 54.

2-Input MTJX
Boolean OR
a y
xi i
lxi

s d0 d1 y
00
01
ix
lxii

x
xi
00

0

Figure 4.2: Truth tables specified using X entries

In order to more clearly illustrate how TLSIM solves these two problems, we must

66

first consider some definitions. Arguments to a Boolean function may be taken to

be fixed-length vectors, where each element of the vector takes on one of the values

{ 0, 1, X}. Using this notation, four-valued Boolean functions may be represented as

f (v) E {0, 1, X, Z}, where v E {0, 1, X}', for some n.1 A vector v is classified as

an explicit vector if and only if v E {0, 1}'. Otherwise, a vector is classified as an

implicit vector - i.e., it contains at least one element which is equal to X.

Next, we must consider the concept of equivalent sets of vectors. An explicit

vector v is equivalent to the set {v}. An implicit vector v- is equivalent to the set

{ v1, viol, where v1 and v0 are formed by replacing an element in vi which was equal

to X with 1 and 0, to give two new vectors vil and v0. This equivalence relation

may be applied repeatedly to find larger equivalent sets to v.

In order to evaluate a Boolean function for an explicit argument, we simply look

up the value of the truth table at the offset derived from its vector. To evaluate

a Boolean function for an implicit argument, we first find its largest equivalent set

all of whose elements are explicit vectors, and then evaluate the function for each

member of that set. If each of the vectors in this set yields the same function value,

then that is the function value for the original implicit argument. Otherwise, the

function evaluates to X.

Since TLSIM allows truth tables to be specified in terms of implicit vectors, the

following steps must be taken to initialize each truth table:

1. Allocate a table, and set all elements to 0.

2. For every implicit vector in the function definition, generate two entries by

'Elements of a vector which are equal to Z are mapped to one of {O, 1, X} before function
evaluation.

67

selecting an element in the vector whose value is X, and replacing it with both

0 and 1. Repeat step 2 for each new vector.

3. Set the table at the offset derived from each resulting explicit vector.

This procedure is illustrated in Figure 4.3.

Inputs: The truth table (table), array of arguments (arguments), and the func-
tion value (value)

Outputs: None

Procedure AddVector {
/ * expand out implicit vectors: /
for(each argument, i)

/ if implicit, substitute 1 and 0 and repeat: /
if(argument = X)

let argumenti = 0
recurse: AddVector (table, arguments,value)
let argumenti = 1
recurse: Add Vector(table,arguments ,value)
let argumenti = X
return

/ assign function values to explicit vectors: /
offset=0
for(each argument, i)

shift offset left 2 bits
offset = offset or argument

let table[offset] = value

}

Figure 4.3: Algorithm to expand implicit vectors to their equivalent sets

The algorithm in Figure 4.3 only initializes positions in the table which corre-

spond to explicit argument vectors. TLSIM must then fill in the table in order to

68

assign correct function values to all implicit vectors. To do this, TLSIM checks every

possible input vector and, if it is implicit, calculates the function value for that vector

by checking its equivalent set. If the function yields the same value for each member

of the equivalent set, then that is the implicit vector's function value. Otherwise,

the function value for the implicit vector is set to X. This procedure is illustrated

in Figure 4.4.

The effect of these two algorithms on a sample truth table is illustrated in Fig-

ure 4.5, for a two-input multiplexor function. The Add Vector algorithm removes

any information from table entries representing implicit vectors, while the Fillln

algorithm restores these, as well as 'any other implicit vectors.

4.1.2 Evaluating Four-Valued Truth Tables

Given that a truth table has been filled in and expanded as shown in Figure 4.5,

TLSIM may use a trivial truth table evaluation algorithm. This algorithm simply

forms an offset into the table, and.returns the table's contents at that offset. This

procedure, which is oblivious to implicit and explicit vectors and therefore quite

efficient, is illustrated in Figure 4.6.

4.2 The Device Evaluation Algorithm

Whenever inputs to a device change, TLSIM must reevaluate the state of the device

and, if outputs change, schedule transitions at the nodes connected to the device's

outputs. In order to reduce the time required to recalculate the state of devices,

TLSIM attempts to identify device states where changing some of the inputs will

69

Inputs: The truth table (table), and the number of arguments (Narguments)
Outputs: None

Procedure Fillln {
for(

}

v = 0 to 22Nargumens)
1*
if(v contains no Z elements and v is implicit)
v represents a function argument vector /

table[v] = EvalEquivalent(table,Narguments,v)

Inputs: The truth table (table), number of arguments (Narguments), and ar-
gument vector (v)

Outputs: The function value

Function EvalEquivalent {
1* recursively handle implicit vectors: /
for(every element k in the vector v)

if(element k = X)
let i = EvalEquivalent() with the same arguments, except that

element Ic is set to 0.
let j = EvalEquivalent() with the same arguments, except that

element Ic is set to 1.

if(i = j)
return i

else
return X

1* explicit vectors need no special treatment /
return table[v]

}

Figure 4.4: Algorithm to assign values to implicit vectors in a truth table

70

Inputs User
Specification

After
Add Vector

After
Fillin s d0 d1

000 - 0 0
001 - 0 0

0 OX 0 - 0

010
O 1 1
O 1X
oxo -

- x
oxi -

- x

Oxx -
- x

100 - 0 0
101 - 1 1

lox -
- x

110 - 0 0

111 - 1 1

1 lx - - x

ixo o - o

1X1 1 - 1

lxx -
- x

x 0 -
- 0

x 1 -
- x

xox -
- x

x 0 -
X

x 1 -
- 1

xix -
- x

xxo -
- X

xxi - - x

x x x - - x

Figure 4.5: The effect of the AddVector and Fillln algorithms

71

Inputs: The truth table (table), an array of arguments (arguments), and the
number of arguments (Narguments)

Outputs: The function value

Function EvalFunction {
let offset = 0
for(i = 0 to Narguments - 1)

shift offset left 2 bits
offset = offset or argument

return table[offset]

}

Figure 4.6: Algorithm for evaluating four-valued truth table-functions

not affect the device outputs. When inputs change while a device is in such a state,

TLSIM postpones device evaluation, thus reducing execution time.

There are two cases where TLSIM does not reevaluate the state of device outputs.

The first is when outputs are disabled, and the second is when outputs are under

the control of an asynchronous override. Consider the example of a D-type flip flop.

The DFF has a single data input (D), a clock input (CLK) active on its falling

edge, an asynchronous clear input (CLR), which is active low and an output (Q). A

transition on the D input will never cause an output recalculation. Furthermore, Q

need not be recalculated as long as CLR is set to 0. The only transition that may

cause Q to be recomputed is a 1 -* 0 transition on the CLK input while CLR is set

to 1 (inactive).

In general, devices have more complicated output functions than the simple Q =

D operation of a DFF. By avoiding the recalculation of many output nodes (block

72

B of Figure 3.2, on page 40), TLSIM gains a measure of efficiency.

The following sections describe the operating principles in TLSIM's evaluation-

cancellation mechanism. The final section puts these ideas together to show the

device evaluation procedure.

4.2.1 Output Enables

TLSIM's output enables are analogous to clocking pins on a device. They are used

to model both level- and edge-sensitive inputs, which control when the value of a

device output is updated. TLSIM allows for at most one enable per output.

Associated with each output in a device is a flag indicating whether it is currently

enabled. When the output function is considered for reevaluation (i.e., when some

input to the device has changed), TLSIM checks this flag to see if the output is

active. If it is not, the evaluation is skipped. Whenever an enable input to a device

changes, TLSIM updates all the appropriate flags, and if the state of an enable input

changed from inactive to active, each affected output is re-evaluated.

The procedure for deciding whether or not to recalculate any subset of a device's

outputs when an enable input changes is shown in Figure 4.7. Given a device, the

number of the enable that changed, and the new enable value, this procedure updates

flags inside the device, and if necessary calls the device evaluation procedure.

4.2.2 Asynchronous Overrides

TLSIM allows for a number of asynchronous override inputs to be used in a device.

These inputs model asynchronous clear and preset logic in otherwise synchronous

devices. They are also useful in gating circuitry - for instance, a row of AND gates,

73

Inputs: The device (device), the input that changed (pin) and new value (1)
Outputs: None

Procedure EvalEnable {
switch(active transition type for this enable pin)

1* active-high *1
case HI: if(l=1)

set enable flag to True
recalculate affected output functions in the device

else
set enable flag to False

/ active-low /
case LO: if(lO)

set enable flag to True
recalculate affected output functions in the device

else
set enable flag to False

/ rising-edge triggered *1
case LOHI: if(1 = 1)

set enable flag to True
recalculate affected output functions in the device
set enable flag to False

1* failing-edge triggered *1
case HILO: if(1 = 0)

set enable flag to True
recalculate affected output functions in the device
set enable flag to False

}

Figure 4.7: Algorithm to process transitions at device enable inputs

74

with a function as shown in Figure 4.8, could be modeled as a single device with

eight inputs, eight outputs, and a clearing asynchronous override. This model is

more efficient than using eight separate gates, since it requires less computation,

with no loss in precision.

y. = AND(di,gate)
Y2 = AND(d2,gate)

ys = AND(ds,gate)

Figure 4.8: Gate circuit with eight data lines

.Asynchronous overrides differ from enable inputs in two ways. First, asyn-

chronous overrides specify not only when an output is active, but also what value it

takes on when it is inactive. Second, more than one asynchronous override may be

applied to the same output (e.g., clear and set in a flip-flop). This second property

presents a problem - what happens when more than one asynchronous override is

applied to an output? The solution is to keep track of how many overrides are active

on each output, in order to properly determine when to reactivate it.

The algorithms for processing asynchronous overrides are simple. 'Whenever an

override becomes active, all the outputs it controls are set to the appropriate logic

value, and each of their override counters is incremented. As with enable inputs,

before a device output is recalculated, the override count is checked. If the count is

zero, then the output is considered to be active, and the output function is evalu-

ated. Otherwise, the evaluation is skipped. Whenever an asynchronous override is

deactivated, the override counter on each affected output is decremented. For each

75

output whose counter becomes equal to zero, the output function is evaluated.

This procedure for dealing with multiple, simultaneously applied asynchronous

overrides unfortunately has the property that the last override asserted on a de-

vice output is the one retained until the output is re-enabled. Consider the input

sequence: {Set on, Clear on, Clear off, Set off}, applied to asynchronous over-

rides in one device. In this sequence, a device output should follow the sequence

a -+ 1 -* X -* 1 -+ b, where a is the initial output function value, b is the

final output function value and device operation when both set and clear are ac-

tive is undefined. However, using the TLSIM model, the actual sequence will be

a - 1 -+ 0 -+ 0 - b. This may not reflect the operation of the device in reality.

However, since device behaviour is in general undefined when multiple overrides are

applied to devices, this is only a minor issue. Although a simple algorithm could

be used to give better model behaviour under multiple overrides, it is probably not

worth the additional computation.

The algorithm for processing events applied to asynchronous overrides is shown

in Figure 4.9.

4.2.3 Propagation Delays

Physical devices have propagation delays due to capacitive charge and discharge.

Each electrical point inside a device has associated rise and fall times, which reflect

the time it takes to charge and discharge the capacitance between that node and

ground. Furthermore, charge and discharge delays are caused by the capacitance

of wire routing between devices. Typically, the delays at device outputs dominate,

because wire capacitance is much larger than the capacitance of active areas within

76

Inputs: The device, the asynchronous override number and its new value
Outputs: None

Procedure EvalAsynch {
/* level sensitive override became active /
if((active high and value = 1) or (active low and value = 0))

for(each affected output)
increment the asynch count
if(override value 54 old output value)

schedule a transition to the override value

/ level sensitive override became inactive /
else if((active high and value = 0) or (active low and value = 1))

for(each affected output)
decrement the asynch count

/ momentary override /
else if((falling edge triggered and value = 0) or

(rising edge triggered and value = 1))

/ * note that the asynch. override count is unaffected /
for(each affected output)

if(override value old output value)
schedule a transition to the override value

}

Figure 4.9: Algorithm to handle signal transitions at asynchronous overrides

77

devices [26]. Accordingly, TLSIM makes the approximation that device delays are

lumped entirely at their outputs (i.e., twjre + tdevjce twire since twjre >>

Whenever the value of an output node in a device changes, due to changes in

the device's inputs, TLSIM schedules an event at the node in the circuit which is

driven by that output. This event represents a transition which is set to occur at the

current time, plus some propagation delay. Devices have propagation delays defined

individually for each output, with rise and fall times specified separately. TLSIM

looks up the appropriate delay for each output transition before scheduling an event.

4.2.4 Input Transitions

Whenever a device input changes value, TLSIM must decide which truth tables in

the device to reevaluate. In general, it must recompute the value of every internal

node (reevaluate block A in Figure 3.2, on page 40). This is the case for two reasons -

there is no way to temporarily disable an internal node (as is possible with outputs),

and TLSIM has no convenient way to calculate the dependency relationship between

device outputs (which may be disabled) and internal nodes.

After evaluating internal function, TLSIM checks each output in the device. In

case it is currently active, i.e., it is enabled, and no asynchronous override is asserted

on it, the output function is evaluated. If the new function value differs from the

node value, a transition is scheduled to change the node's value after some delay.

4.2.5 Summary

Combining the ideas of the previous sections, we get the algorithm for device evalua-

tion, as shown in Figure 4.10. Note that the algorithm shown is somewhat simplified,

78

in that it does not show how all the flags in each device are initialized.

4.3 Event Scheduling

TLSIM is an event-driven simulator. This means that inputs cause events to be

scheduled, which the simulator processes in a non-decreasing time sequence. When

the simulator processes an event, it changes the state of the affected node, and

reevaluates every device in the node's fan-out. If any device outputs changed, new

events are scheduled at the nodes connected to those outputs.

From the above description of simulator execution, it is evident that TLSIM has

three repeating execution phases: event scheduling, retrieval and device evaluation.

Accordingly, any improvement in event scheduling leads to significant performance

improvement.

To manage an event queue efficiently, TLSIM uses the time wheel algorithm, as

outlined in Section 2.4.2, on page 28.

The time wheel algorithm derives its performance from the fact that scheduling

events is a trivial operation - they are simply inserted into the linked list at array

position

insert - (current time + Tdelay) mod N, (4.1)

where icurrent time is the position representing the current time step, Tdelay is the

device propagation delay, and N is the array size.

• Similarly, retrieving .events from the array is trivial - just increment Zcurrent time

until an occupied array element is reached, and process the list of events at that

element. If activity in the circuit is reasonably high, and different devices have

79

Inputs: The device, the pin number type where the transition occurred
Outputs: None

Procedure RecalcDevice {
/* internal evaluation can't be skipped when inputs change /
if(device has internal nodes and an input just changed)

evaluate each internal node

for(each output)
1* disabled due to asynchronous override? */
if(at least one asynchronous override is active)

continue to next output

1*
if(

}

input or enable changed to affect the device? /
any input changed and the output is enabled or an enable
became active and it controls this output)

1* evaluate the output function /
new = output function(current inputs)
node = node which this output drives

1*
if(

schedule changes with the right delay /
new 0 value(node))
if(new = Z and output is currently on) Lsources = -1
else if(new Z and output is currently off) Lsources = 1
else Lsources = 0

if(new = 0)
Schedule a transition at node, to new, with a propagation
delay tf all, and add L.sources to the source count.

else
Schedule a transition at node, to new, with a propagation
delay trisa, and add Lsources to the source count.

Figure 4.10: Device evaluation algorithm

80

different propagation delays, then the distribution of events over the array' will tend

to be uniform, and the index current time won't have to be incremented much before

a new group of events is found.

The algorithm for scheduling events in the time wheel is shown in Figure 4.11.

The algorithm used to retrieve events from the time wheel is shown in Figure 4.11.

Note that these algorithms are somewhat more efficient than the classical time wheel

algorithm [39] shown in Figure 2.9, shown on page 29, in that they avoid having to

make N iterations when the time wheel is empty by keeping count of how many

events are still 'pending in the queue.

These two algorithms suffice for scheduling events produced within the simula-

tor, where propagation delays are bounded. However, inputs applied to the circuit

may arrive at any time, with an unbounded delay. This can cause the time wheel

algorithm to fail. TLSIM handles externally generated events by keeping track of

the time of the next pending input event. When TLSIM runs out of internal events

to process, or reaches the time for which an input event is pending, it retrieves all

the input transitions for the next time step, and updates the 'pending time' variable

to indicate the next set of inputs.

The overall procedure for event retrieval, from both the input file and time wheel,

is shown in Figure 4.12. It first checks to see if there are input events pending for the

current time step, and if so reads them into the queue. Next, it attempts to dequeue

a single event. If this fails, it attempts to read any events from the file. If this also

fails, it ends the simulation. Assuming the previous steps produced a valid event, it

is returned.

The procedure for reading input transitions from the stimulus file is shown in

81

Inputs: The new event (e), and a delay after which the event should be pro-
cessed

Outputs: None

let currentoffset = the current position in the time wheel.
array = the time wheel array of linked lists.
pendingevents = the number of events in the queue.

Procedure Schedule {
position = (currenLoffset + delay) mod N
/* link e to the array at position /
e—next = array[position]
array [position] = e
increment pending-events

}

Inputs: None
Outputs: The next event in the queue

Function Retrieve {
if(no events pending in the queue)

return NULL

while(array [current-offset] =NULL)
current-offset = (current-offset + 1) mod (array length)

/ next time, continue with the next event at this position /
ptr = array [current _offset]
array [current _offset] = ptr—*next
return ptr

}

Figure 4.11: Time wheel scheduling and retrieval algorithms

82

Figure 4.13. This procedure is designed to read every event for a single time step

into the queue. First, it checks for an end-of-file condition, and quits if this is the

case. Next, it reads a single event from the stimulus file (by default called input).

If this is the first event to be read, or it occurs at the same time as the last read

event, the new event is added to the queue. Otherwise, it is returned to a buffer, to

be reread later.

Inputs: None
Outputs: The next event (e)

let time = the current simulation time.
nextinput = the time of the next event in the stimulus file.

Function GetNextEvent {
/ if there are pending events for this time step, read them /
if(time≥ nextinput)

ReadEvents()

Retrieve event e from the queue
if(no event)

ReadEvents()
Retrieve event e from the queue
if(no event)

End the simulation

return e

}

Figure 4.12: Algorithm to retrieve the next event, from -either the time wheel or
stimulus file

83

Inputs: None
Outputs: None

let nextinput = the time of the next event in the stimulus file, a global variable.
thistime, t = time variables

Procedure ReadEvents {
thistime = -1;
while(True)

if(end of file)
/ wind down simulation /
nextinput = current time + 1000
return

Read: the next event (e) in the file

/* if not first event and later than last event read /
if(thistime 54 -1 and time(e) 54 thistime)

return e to input stream (to be reread later)
nextinput = time(e)
return

Schedule(e)

thistime = time(e)

}

Figure 4.13: Algorithm to read transitions from stimulus file

84

4.4 Event Cancellation

During the course of simulation, a rapid sequence of transitions may arrive at a

device's inputs. Such a sequence may cause a naive event-driven simulator to produce

incorrect steady-state results. This problem is illustrated in Figure 3.14 on page 58,

where a sequence of input events causes a two-input AND gate to reach an incorrect

steady-state value.

TLSIM addresses this problem by adding an event-cancellation mechanism to the

scheduler. Of ri events pending in the queue, all at node N, only the last scheduled

event is applied to node N. This event may well be different from the latest of the n

events. To do this, whenever an event is scheduled, the node at which the transition

is to occur is marked with an event ID, which identifies that event uniquely. When

events are retrieved from the queue, they are only processed if their ID matches the

ID stored at their target node. This has the effect that spurious events are queued

and processed by the event-scheduling routines, but when they are retrieved spurious

events are cancelled.

The event cancellation mechanism identifies events uniquely using a global coun-

ter, which is incremented every time an event is allocated. When scheduling an

event, TLSIM follows the steps:

1. Allocate an event.

2. Initialize the event's data structure with a node, time and value.

3. Set the event's number to the counter, global_evertLnumber.

4. Set the target node's pending event number to global-event-number.

85

5. Increment global-event-number.

6. Add the event to the time wheel.

When an event is retrieved, the following steps are taken to remove spurious

events:

1. Retrieve an event.

2. Compare the event ID with the number in the node.

3. If they differ - return to step 1 (i.e., cancel this event).

4.5 The Source Count High-Impedance Model

TLSIM gives the high impedance (Z) state special treatment. In many practical

circuits two signals may be active on the same node for a brief period, before one of

them is disabled, as shown in Figure 2.2 on page 13. Clearly, if the last event to be

dequeued in Figure 2.2 is y - Z, a simulation error will occur. In order to overcome

this problem, TLSIM only changes the state of a node to Z when the number of

signals asserted on a node becomes equal to zero. To do this, TLSIM must monitor

device outputs turning on and off, and count the number of active signal sources at

each node.

In order to track transitions to and from Z, when TLSIM schedules events it in-

cludes a source change variable, Lsources, in the event data structure. This variable

indicates whether the transition at the device output in question was to the Z state

(in which case Lsources = —1), from the Z state (in which case Lsources = 1), or

86

did not involve the Z state (Lsources = 0). When an event is retrieved from the.

queue, Asources is immediately added to the source count at its target node. In

case the source count of the node then becomes equal to zero, the node is set to Z.

4.6 Simulating Memory Blocks

Memories in TLSIM are simulated using a regular array of binary digits, where the

size of the address space is limited by the memory available on the host computer, and

the wordlength is limited by the wordlength of the host computer. Memory blocks

have three types of connections - data lines, address lines, and a read/write input.

Address lines are strictly inputs, data lines are bidirectional, and the read/write line

is an input. Memory blocks are meant to be used as building blocks when modeling

real memory circuits, such as RAM and ROM chips, so they have no propagation

delay. Propagation delays are normally included in the interface circuitry, as shown

in Figure 4.14. Furthermore, TLSIM does not distinguish between read-only and

read-write memories. There is, however, a facility for setting the initial contents

of a memory, so read-only memories are modeled by initializing the contents of a

memory block, and fixing the read/write line to a logic high value (read), as shown

in Figure 4.14.

In accordance with the source count model presented in Section 4.5, TLSIM

must ensure that the source count at nodes connected to data lines is accurate.

Since the direction of signal flow reverses between read and write operations, TLSIM

decrements the source count at nodes connected to data lines whenever a memory is

set to write, and increments the same source counts whenever the memory is set to

87

Refresh
circuit

Init.
to

zero

data 4'J dela

addr

read

I

I

memory block interface

(c) Dynamic read-write memory

Initial
values
before
simul.

data

addr

read - Constant

memory block interface

(a) Read-only memory

Legend:

= a delay element <
= uni-directional signal propagation

= bi-directional signal propagation

memory block interface

(b) Static read-write memory

Figure 4.14: Modeling different types of memory in TLSIM

88

read.

A problem presented by the bidirectional nature of data lines is that the memory

block appears in both the fan-in and fan-out of nodes connected to the data lines, as

shown in Fig. 4.14(b) and 4.14(c). To avoid unnecessary signal propagation, where

signals are passed out of and back into a memory block, whenever a memory block

is set to read, transitions on the data lines are ignored by the memory block, since

by definition that is where they originated.

The procedure for processing events at memory block boundaries is shown in

Figure 4.15.

4.7 Memory Allocation

TLSIM allocates a large number of memory blocks, most of which are quite small.

Initially, it must allocate data structures representing function and device defini-

tions. Next, it must allocate and initialize a graph of the circuit. Finally, during

simulation TLSIM must allocate and deallocate a large number of event blocks. In

many simulations; the number of allocated blocks can run into the millions. Clearly,

providing a mechanism for fast memory allocation makes a large contribution to

simulator performance.

TLSIM contains two separate algorithms for rapid allocation of small memory

blocks. The first is an algorithm that allocates large amounts of space from the

operating system, and then hands out memory in small blocks to various functions

in TLSIM, as required. The performance of this algorithm rests on the assumption

that all these small memory allocation units will remain in use until the end of the

89

Inputs: memory block (mem), pin type, new value
Outputs: None.

Procedure EvalMemory {
switch(pin type)

case DATA:
/ ignore data lines when reading *1
if(reading) return
data-word = data-word with new bit changed
data[address_word] = data-word

case ADDR:
address-word = address-word with new bit changed
if(writing) /* update array at new location /

data[address_word] = data-word;
else / copy new word to data lines /

for(each data line)
if(value(node) differs from data bit)

Schedule an event at this data line
return

case READ:
if(now reading) /* change to writing /

data-word = data[addressword]
for(each data line)

if(value(node) differs from data bit)
Schedule an event at this data line

increment source count at that node
else / change to reading *1

data[address_word] = data-word;
for(each data line)

decrement source count at that node

}

Figure 4.15: Procedure to process transitions at memory block inputs and outputs

90

simulation, so do not need to be deallocated individually. A second algorithm is

used to rapidly allocate and deallocate events. The performance of this algorithm

is based on the observation that the number of events queued at any given time

is much smaller than the total number of events required during the course of the

simulation. Accordingly, relatively small number of event data structures is reused

throughout the simulation.

4.7.1 Small Block Allocation

When loading function definitions (by default from the file INTRINS.LIB) and device

definitions (by default from, the file DEVICE-LIB), as well as the circuit netlist,

TLSIM uses a large number of small, dynamically-allocated memory blocks. Node

names, fan-ins and fan-outs, truth tables, device definitions, etc. are stored in these

blocks. Rather than incur the overhead of calling the operating system's memory

allocation function for every small memory block that's needed, TLSIM allocates

large blocks of memory, and incrementally uses up the space they provide.

Initially, TLSIM allocates a large stack in memory. Whenever TLSIM requires a

small amount of memory, it is pulled from the stack. When the stack is empty, TL-

SIM allocates a new stack, and the process continues. The procedures for allocating

and using the memory stack are illustrated in Figure 4.16.

4.7.2 Event Allocation

During execution, TLSIM uses a large number of events to represent circuit activity.

However, only a relatively small number of events are required simultaneously. In

order to reduce its memory requirements and improve performance, TLSIM uses a

91

Inputs: None
Outputs: None

let memptr = a static pointer to a large block of memory
sp = be a static integer used as an offset into this block

Procedure InitSmallMem {
let memptr = allocate(a large block of memory)
let sp = 0

}

Inputs: Number of bytes required (size)
Outputs: A pointer to a free block of memory

Function SmallAllocate {
if(sp+size> the size of the memory block)

InitSma11Mem()
/ remember this location and increment sp to reflect the allocation
= sp

sp = sp + size
return memptr + i

}

Figure 4.16: Algorithms for allocating small memory blocks

*1

92

static array of event data structures and a stack of pointers to these structures, as

shown in Figure 3.13, on page 57. In case an event is required when the stack is

empty, there is a facility for allocating more event data structures, and resizing the

stack. The event allocation and deallocation algorithms are shown in Figure 4.17.

93

Inputs: None
Outputs: None

let eventblock = a pointer to a block of event data structures
estack = a pointer to a block of pointers to event data structures
esp = an integer used as an offset into the estack array

Procedure InitEventAlloc {
let eventblock = allocate(a large number of event data structures)
let estack = allocate(a large number of event structure pointers)
let esp = 0
for(i = 0 to the length of the eventblock array)

estack[i] = eventblock + i

}

Inputs: None
Outputs: A pointer to an empty event

Function AllocateEvent {
if(esp = the length of the eventblock array)

enlarge the eventblock and estack arrays.
ptr = estack[esp]
esp = esp + 1
return ptr

}

Inputs: A pointer to an event
Outputs: None

Procedure FreeEvent {
esp = esp - 1
estack[esp] = ptr

}

Figure 4.17: Algorithms for managing event allocation

Chapter 5

Algorithm Analysis

This chapter gives an analysis of the execution time incurred by the most frequently

called functions in the TLSIM simulator. It does not give an an analysis of the

various input-file parsers or circuit initialization routines. Furthermore, it makes no

attempt to analyze the overall execution time of the simulator, due to its dependence

on the following factors:

• Circuit size

• Average fan-out

• Tendency of devices to propagate signal transitions

• Number of input vectors

These factors are random and unpredictable, so there is little point in calculating

overall execution time, as the resulting formula would be unusable.

On the other hand, it is helpful to calculate the computational complexity of many

of the algorithms in TLSIM, as this gives some indication of where the simulator

spends much of its execution time, and how simulator performance may, in general,

be improved.

The following sections give a brief analysis of each of the major algorithms in

Chapter 4.

94

95

5.1 The AddVector Procedure

This procedure, shown in Figure 4.3 on page 67, is used to add a vector, supplied by

the user, to the truth table used to represent a Boolean function. A special algorithm

is needed for this purpose since implicit vectors are allowed in the function defini-

tion. Essentially, if a vector is explicit, the table at that location is duly initialized.

Otherwise, the implicit vector supplied by the user is recursively expanded out into

its largest equivalent set, and the same assignment is performed for every resulting

explicit vector.

If the user-supplied vector contains n. bits set to X, then the size of the equivalent

set is 2" explicit vectors. Since most of the execution time in a short recursive

algorithm like this is spent in function-call overhead, it is sufficient to find the number

of function calls required to generate each member of the equivalent set.

Consider that a single function call initially starts AddVector. Furthermore, if

there is an X entry in the input vector, it is replaced with two vectors, so AddVector

is called again for each. Clearly, this pattern continues, forming a binary tree of

function calls with the explicit vectors at its leaf nodes. For a binary tree with m

leaf nodes, there are 2m - 1 edges (or function calls). In our case, for n bits set

to X in an implicit vector, m = 2, and AddVector is executed 2(2') - 1 times.

Accordingly, its requires O(2') time to process a vector with n bits set to X. In

practice, vectors seldom contain more than 6 elements, so ri < 6.

96

5.2 The Fillln Procedure

This procedure, shown in Figure 4.4 on page 69, is used to assign values to every

implicit vector that might be used as an argument to a Boolean function. In the for

loop, every vector is tested to see if it is both valid and implicit. For a function with

n arguments, using 2 bits per argument, there are 2 2n possible input vectors, so the

loop is repeated 22n times.

A vector is valid if it is of the form: {O, 1, X}'. Using 2 bits per input, this means

that no element in the vector is equal to Z. The probability that a given vector is

valid is then Pr[valid] = ()'.

Similarly, a vector is explicit if it is of the form {O, 1}, for some rt. Given that

it is valid, the probability of a vector being explicit is just ()'. If a vector is not

explicit, it must be implicit, so the probability that a vector is implicit is 1 -

Whenever a vector is valid and implicit, the function EvalEquivalent is called.

In the same way as AddVector in Section 5.1, EvalEquivalent requires a total of

2(21) - 1 recursions, where 1 is the number of X elements in its initial argument. We

must therefore calculate the average value of 1, 1, for implicit vectors in order to find

the average time complexity of the EvalEquivalent function, and thus the Fillln

procedure.

Consider a vector of length n bits, of the form {O, 1, X}. The probability that

the number of X elements in the vector is k is given by:

Fr[k] = Ck(() n! (1)k(2)fl (5.1)
fl3 3 (rt—k)!k!2 3

The average number of X elements in a completely random vector is thus given

97

by:

1= k(Pr[k]) = k(Pr[k])

Substituting, we get:

2 Thn! 1= (1)k 1
k=1 2 (n—k)!(k-1)!

After some manipulation, this result can be reduced to:

(5.2)

(5.3)

(5.4)

An implicit vector of length n can be formed from a random vector of length

n - 1 by placing a X in one of the implicit vector's positions, and using the random

vector to fill all the remaining elements. Accordingly, we can use the previous results

to find the average number of X elements in an implicit vector:

1implicit 1 + n - 1 = 72+2 (55)

Applying the above results, EvalEquivalent is executed, on average, 2(22)13) - 1

times per implicit vector. The probability of a vector being implicit is (3/4)(1 - (2/3)').

The overall computational complexity of Fillln is then:

22Th()(1 - ())(2(2(2)13) —1) (5.6)

For large n, we can let 1 - (2/3)' 1, and 2(2 (n+2)/3) - 1 The com-

putational complexity of the FillIn algorithm then becomes:

98

/33n

This expression may be rearranged as follows:

exp(in 2) exp(n in 3)

(5.7)

(5.8)

(5.9)

For n >> 1, we factor out the n terms, to get the approximate computational

complexity of FillIn:

exp(nln(3.78)) = 3.78n (5.10)

Overall, then, the computational complexity of FillIn, for a truth table with ri

arguments, is O(3.78'). As before, it is fortunate that n. is limited to at most 6 in

practice.

5.3 The EvalFunction Function

This function, shown in Figure 4.6 on page 71, is used to evaluate Boolean functions

when device inputs change. EvalFunct ion uses a table lookup approach to find the

value of a Boolean function for a given set of inputs. An offset vector into the truth

table is formed from the function arguments, and the table's value at that offset is

returned.

For a function with n inputs, it takes n steps to form the offset vector, so the

Eva.lFunction algorithm requires an 0(n) computational effort.

99

5.4 The Schedule Procedure

This procedure, shown in Figure 4.11 on page 81, is used to add events to the

queue. In the time-wheel paradigm, this is just a matter of calculating the insertion

point, and attaching the event to the approrpiate linked list. Accordingly, scheduling

requires only an 0(1) computational effort.

5.5 The RecalcDevice Procedure

This procedure, shown in Figure 4.10 on page 79, is used to update the state of a

device, following a change in the state of one of its data inputs, enables, or asyn-

chronous overrides.

Consider a device with d data inputs, i internal nodes, and o outputs. In principle,

every Boolean function could have as many as d + i + o arguments. As outlined in

Section 5.3, recalculating the state of a Boolean function with m arguments is an

0(m) operation. Accordingly, the loop for evaluating every internal node requires

an 0(i(d+i+o)) effort.

Next, a for loop checks the state of each output. If every output function is

calculated, the for loop requires an 0(o(d + i + o)) effort.

Together, then, for d inputs, i internal nodes and o outputs, the RecalcDevice

procedure may require as much as an 0((i + o)(d + i + o)) effort. If d, i and o are

comparable, then we may define a new quantity, n, to be the total number of nodes

in the device, such that n = d+i+o. In this case, we may say that the RecalcDevice

algorithm requires an 0(n2) effort. Per device output, this is approximately 0(n).

100

5.6 The EvalEnable Procedure

This procedure, shown in Figure 4.7 on page 73, is used to decide whether or not a

device evaluation must be performed after a change in the state of one of a device's

enables. Since it just makes some decisions and possibly calls the RecalcDevice

function once, it requires the same order of computational effort as RecalcDevice:

0(n2), where the device has n nodes.

5.7 The EvalAsynch Procedure

This procedure, shown in Figure 4.9 on page 76, is used to decide whether or not

device evaluation must be performed after a change in the state of one of a device's

asynchronous overrides. For a device with o outputs, as many as o outputs may

be affected by the state of the asynchronous override that triggered EvalAsynch's

execution. Since a loop is executed to update the asynchronous override count at each

output, after which the RecalcDevice procedure may be called, the computational

complexity of EvalAsynch is 0(n2) + 0(n) 0(n2), for a device with n internal

nodes and outputs.

5.8 The EvalMemory Procedure

This procedure, shown in Figure 4.15 on page 89, is used to process every transition

that arrives at the boundaries of a memory cell. It actually consists of three mutually-

exclusive segments of code, which handle transitions at data lines, address lines, and

the read line, respectively. As outlined at the start of this chapter, it is impossible

101

to predict the relative frequency with which these will be executed in practice.

In case the transition occurred on a data line, EvalMemory executes a simple,

0(1) code segment.

In case the transition occurred on an address line, one of two things may happen.

If the memory is in write mode, an 0(1) operation is performed to update the contents

of the buffer. Otherwise, in read mode, up to d transitions may have to be scheduled,

for a memory cell with d data lines. Accordingly, in this case the EvalMemory

procedure requires an 0(d) effort.

In case the transition occurred on the read line, one of two for loops must be

executed. Both, however, are executed once per data line, so an 0(d) effort is

required.

Overall, then, evaluating a memory cell requires either an 0(1) or an 0(d) effort.

5.9 The Retrieve Function

This function, shown in Figure 4.11 on page 81, is used to dequeue events from

the timewheel. This is done by checking every position, starting with the current

position in the time wheel, to see if it is empty. At the first location in the time

wheel which contains one or more events, this function removes one event from the

linked list.

Clearly, the order of this algorithm depends on the number of iterations in the

while loop. This number, in turn, depends both on the level of activity in the circuit,

and the distribution of different propagation delay values over devices in use in the

circuit.

102

For instance, there may be heavy activity, but every device may have a fixed

propagation delay of 50 time units. In this case, the while loop is executed either

zero or 50 times, depending on whether all events at the current position in the

timewheel have been exhausted yet.

Alternately, the circuit may have many devices with different propagation delays.

In this case, assuming there is sufficiently heavy activity, the events will be spread

out more evenly over the timewheel, and the while loop will be executed either zero

or one times per call to Retrieve.

In practice, it is hoped that users will give devices realistic (and therefore var-

ied) propagation delays. This will lead to an even distribution of events over the

timewheel, and thus an average computational complexity of 0(1) for the Retrieve

function. However, the worst case performance of this algorithm remains 0(n),

where i-i is the size of the time wheel.

5.10 The GetNextEvent Function

This function, shown in Figure 4.12 on page 82, is used to retrieve the next event,

be it in the queue or pending in the input file. To do this, it compares the time of

the next input event with the time of the next event in the queue, and decides from

which source it should fetch an event.

Since this function has no loops, its computational complexity depends on that of

any functions it might call. GetNextEvent calls only queue scheduling and retrieval

events, which all average 0(1), so its own computational complexity is 0(1).

103

5.11 The ReadEvents Procedure

This procedure, shown in Figure 4.13 on page 83, is used to read a set of events, all

of whom are scheduled to occur simultaneously, from the stimulus file. Its only loop

iterates as many times as there are simultaneous events, so if there are an average

of n events per time step in the input file, its computational complexity is 0(n).

5.12 Memory Management

The memory allocation and deallocation routines used to accelerate TLSIM's execu-

tion contain no loops, and call no other functions, so they all execute in 0(1). This

is crucial since they are called so frequently.

Chapter 6

Experimental Results

6.1 Correctness

In order to verify the correct operation of the TLSIM circuit simulator, a number

of circuits were implemented. For each design, the circuit was simulated and the

simulation results were manually verified. This testing procedure was carried out

over a 12 month period, until no new errors in simulation results were found.

Among the circuits used to test TLSIM were:

• A small 8-bit CPU

• A 4-bit adder implementing carry look-ahead

• A serial-line interface circuit

• Several small ALU's and counters

• An 8-bit by 8-bit multiplier

• A pure-tone sound synthesizer

• A distributed-arithmetic matrix multiplier

In addition, the full complement of ISCAS'85 [8] and ISCAS'89 [7] benchmark

circuits were simulated with TLSIM using randomly generated test vectors. To verify

correct operation, a translator from the TLSIM network description language to the

104

105

Verilog [18] netlist language was written. The benchmark circuits were translated to

Verilog, and resimulated using that program. The simulation results from the two

programs were compared graphically. In each case, the results matched.

6.2 Performance

In order to test the performance of the TLSIM circuit simulator, both TLSIM and

Verilog were used to simulate the circuits mentioned above. Identical randomly

generated test vectors were applied to each program. Note that all simulations were

performed using a Sun SPARCStation 2 computer.

In order to demonstrate that TLSIM executes rapidly, benchmarking was per-

formed in two steps. First, to show that TLSIM performs well even when the ex-

pressive capability of the UNIMOD1 device model is not utilized, the ISCAS'85 and

ISCAS'89 benchmark circuits were simulated with both TLSIM and Verilog. Since

these circuits use only gates and individual flip-flops, this test demonstrated that at

the gate level, TLSIM executes at least twice as fast, on average, as Verilog. Next, a

small number of test circuits were simulated both at the gate level and using more

complex devices. Simulating circuits using more complex devices was approximately

three times faster than using gates, indicating that a potential factor of six speed

improvement can be achieved by using TLSIM with high-level devices instead of

using Verilog with gates only.

106

6.2.1 Verilog Simulations

In order to make the timing results that follow more meaningful, some information

about Verilog is required. The version of Verilog used for all the following simulations

is Verilog 1.6.0.1, from Cadence. Verilog is a multi-level simulation language, in that

it can simulate everything from switches to procedural constructs. Clearly, this

very flexibility causes some overhead in its execution. Nonetheless, many people use

Verilog as a gate-level simulator, although it is capable of much more. Accordingly,

comparison of gate-level simulation results with Verilog are reasonable.

The ISCAS'85 and ISCAS'89 circuits are distributed as flat netlists. They were

translated to Verilog using an automatic translator, which produced modules such

as the one in Figure 6.1.

6.2.2 ISCAS Benchmarks

Benchmark circuits from the 1985 and 1989 International Symposium on Circuits

and Systems (ISCAS) were used to test TLSIM. The ISCAS'85 benchmark circuits

are combinational circuits, consisting only of AND, OR, XOR and inverter gates.

Circuit size parameters are shown in Table 6.1.

The ISCAS'89 circuits are sequential, in that they also include D-type flip-flops.

Size parameters for these circuits are given in Table 6.2. Note that inverters are listed

separately from other gates in the documentation supplied with these benchmarks.

Performance results from the benchmark tests are summarized in two figures: Fig-

ure 6.2 shows the execution time required to simulate each circuit in the ISCAS'85

benchmark set. Figure 6.3 gives this information for the ISCAS'89 benchmark cir-

cuits.

107

primitive dff(q,d,clk,r);

input d,clk,r;

output q;

reg q;

table

lid cik r :q :q+

7 7 0 : 7 : 0;

7 7 x : 0 0;

0 (10) 1 : 7 : 0;

1 (10) 1 : ? : 1;

7 (01) 1 : 7

endtable

endprimit ive

module testnet(clear,clock,g3,go,gl,g2,g17);

input clear,clock,g3,go,gl,g2;

output g17;

wire g5,g6,g7,g8,g9,glo,gll,g12,g13,g14,g15,g16;

supp1y0 f;

supplyl t;

nor #(10,10) devicel(g13,g2,g12);

nor #(10,10) device2(g12,gl,g7);

nor #(io,10) dev1ce3(gll,g5,g9);

nor #(io,io) device4(glo,g14,gll);
nand #(10,io) device5(g9,g16,g15);

or #(10,10) device6(g16,g3,g8);

or #(1O,10) device7(g15,g12,g8);

and #(10,10) device8(g8,g14,g6);

not #(10,10) device9(g17,gll);

• not #(10,10) devicelO(g14,go);

dff #(10,20) devicell(g7,g13,clock,clear);

dff #(10,20) devicel2(g6,gll,clock,clear);

dff #(10,20) devicel3(g5,glo,clock,clear);

endmodule

Figure 6.1: Sample Verilog test circuit: ISCAS'89/s27

108

300

250

200

150

100

50

0
N
-I
U

0
N
'0
N
U

0

In
m
U

N

U

o
0

U

in
.-4
m
"I
U

00
00
N
0
C)

N
U,
In
N
U

0

00 00

1000 Test Vectors U
100 Test Vectors

10 Test Vectors EJ

Test Circuit (left= Verilog, right= TLSIM)

Figure 6.2: ISCAS'85 benchmark circuit simulation performance

109

450

400

350

300

250

200

150

100

50

1000 Test Vectors

100 Test Vectors El

'000.4 N m .1 0 N W a, N N 0 '0 0 M 4 M 0 N .-4 v en
04 m I 0 INw OS I in N 04 m I ' .-1 N '0 N ' .-4 (N m I m in
.4 N N N 0 S N m m OS in in in N M '0 N (N 0%

- 0 m - -4 - in in s e in o in in S S S m o s
S S N 1 S S S .1 m m in m S s

('1 s in s S S 00 S Os
S

S S S

Test Circuit (left= Verilog, right= TLSIM)

Figure 6.3: ISCAS'89 benchmark circuit simulation performance

110

Table 6.1: ISCAS'85 benchmark circuit parameters

Circuit Name Number 'of Gates
c17
c432
c499
c880
c1355
c1908
c2670
c3540
c5315
c6288
c7552

6
160
202
383
546
880
1193
1669
2307
2416
3512

From these figures, it is evident that TLSIM is approximately twice as fast as

Verilog when performing gate-level simulation. Note that the ISCAS'89 circuits

showed much higher activity counts, so the overhead incurred by scheduling used

up a greater fraction of the execution time. This accounts for TLSIM's smaller

performance gain in simulating these circuits, since the advantages of UNIMOD1 do

not come into play to the same degree.

To illustrate the balance between the scheduling and device evaluation portions of

TLSIM, execution profiles were calculated using some of the ISCAS'85 and ISCAS'89

circuits. These profiles are shown in Figure 3.9, on page 52. The Recaic-Device

function is used to evaluate the state of devices in the circuit. Eval-Node is a function

for evaluating truth tables, and the functions Add-Heap, Schedule and Pull-Heap are

all associated with processing events in the queue.

Note that the largest portion of the execution time is taken up by the Recaic-

Device function. This function must check each device output, determine whether

or not to evaluate it, and if so it must call function-evaluation and scheduling pro-

111

Table 6.2: ISCAS'89 benchmark circuit parameters

Circuit Name DFFs INVs Other gates Total gates
s27 3 2 8 10
s208 8 38 66 104
s298 14 44 75 119
s344 15 59 101 160
s349 15 57 104 161
s382 21 59 99 158
s386 6 41 118 159
s400 21 58 106 164
s420 .16 78 140 218
s444 21 62 119 181
s510 6 32 179 211
s526 21 52 141 193
s526n 21 54 140 194
s641 19 272 107 379
s713 19 254 139 393
s820 5 3.3 256 289
s832 5 25 262 287
s838 32 158 288 446
5953 29 84 311 395
s1196 18 141 388 529
s1238 18 80 428 508
s1423 74 167 490 657
s1488 6 103 550 653
s1494 6 89 558 647
s5378 179 1775 1004 2779
s9234 228 3570 2027 5597
s9234.1 211 3570 2027 5597
s13207 669 5378 2573 7951
s13207.1 638 5378 2573 7951
S15850 597 6324 3448 9772
s15850.1 534 6324 3448 9772
s35932 1728 3861 12204 16065
s38417 1636 13470 8709 22179
s38584 1452 7805 11448 19253
s38584.1 1426 7805 11448 19253

112

cedures. This involves more computation than any of the other functions listed.

6.2.3 Functional Device Modeling

Three circuits were implemented at both the gate and functional levels. These cir-

cuits are described briefly below:

Sound Synthesizer This circuit uses frequency division techniques to approximate

any of the 96 pure tones in the musical scale. It uses a number of counters

of different types (loadable, incrementing, decrementing and bidirectional), as

well as some logic to generate count-down delays, and to drive seven-segment

displays (a simple user interface). Due to its nature, this circuit contains a

large amount of sequential logic, in the form of counters, flip-flops, etc. The

functional level description of this circuit made use of multiplexors, counters

and multi-bit latches in addition to simple gates.

8 x 8 Bit Binary Multiplier This circuit is composed of four 4-bit by 4-bit

multipliers, and some logic to add up the results. The 4 x 4 multipliers are,

in turn, made up of more adders. No special carry-propagation circuitry was

used in this multiplier. The circuit was implemented at the gate level, using

only AND, OR and NOT gates, and at a functional level, where small adders

were represented as monolithic devices. Adders with 2, 3, 4 and 5 inputs were

modeled (e.g., the 5-input adder has three outputs, and can yield an answer as

high as 101).

Distributed Arithmetic Matrix Multiplier This circuit forms the product of

an 8 x 8 matrix by an 8 x 1 vector, generating all eight elements of the product

113

in parallel. For simplicity, all input quantities were taken to be 8 bits wide, thus

giving 19-bit product terms. This circuit was implemented using 1-bit latches

and NAND gates for the gate-level simulation. For the functional simulation,

multiplexors, shift registers and latches were modeled as monolithic, multi-bit

devices. Furthermore, the adders were modeled using 4-bit slices.

Some size parameters for these circuits are given in Table 6.3.

Table 6.3: Circuit parameters for custom circuits

Circuit
Number of Nodes Number of Devices

Gate-level Behavioural Gate-level Behavioural
Distributed-Arithmetic 5530 858 5396 80
Matrix Multiplier

Sound Synthesizer 277 108 264 80

Multiplier 1123 191 1107 64

Appropriate test vectors were made up for each circuit, and the three circuits were

simulated on a Sun SPARCStation 2. The results of these simulations are shown in

Figure 6.4. Note how in all cases the functional model performed much better than

the gate-level representation. This is of significant importance, since practical VLSI

circuits are often designed using macro cell libraries, rather than just gates. This

means that the functional model can provide improved simulation fidelity while at

the same time reducing execution time.

114

0
0

1

0
1
1
0

(a) Gate-based Model (b) Truth-Table Model

Figure 6,4: Performance improvement with functional modeling

Chapter 7

Discussion

This chapter reviews the significance of the major contributions of the TLSIM sim-

ulator to the methodology of circuit simulation. It focuses on three key areas: The

application of interpretive simulation, the UNIMOD1 device model, and the algo-

rithms for rapid evaluation of four-valued Boolean functions.

7.1 Interpretive Simulation

One of the key points of this thesis is to reinforce the idea that interpretive simu-

lation is very useful in circuit design. Recently, the focus in the literature has been

on compiled simulation, which is limited primarily to use in fault simulation (for

automatic generation of test vectors).

Compiled simulators are, in practice, limited to fault testing because they can

easily require 10 or more minutes [40] just to compile the circuit, before simulation

can even begin. This is unacceptable when the simulation run itself only takes several

seconds.

Although interpretive simulation is inherently slower than compiled simulation,

often by approximately an order of magnitude, it is nonetheless more suited to cir-

cuit design, since the latency in compiled simulation dominates the amount of time

required when simulation runs are short.

If interpretive simulation is to be used, then the task remains to reduce the gap

115

116

between the execution speed of interpretive and compiled simulation, while retaining

the low overhead inherent in the interpretive paradigm. This thesis offers some

solutions to this problem: Notably, a computationally efficient device model and

algorithms for rapid evaluation of four-valued Boolean functions.

7.2 The UNIMOD1 Device Model

The main method by which TLSIM attempts to accelerate the simulation process

is by using a device model which evaluates rapidly. UNIMOD1 makes it possible

to extend the classical event driven concept[39] to the internal operation of devices.

By defining clocking and asynchronous override inputs separately from data inputs,

UNIMOD1 makes it possible to minimize the amount of computation required to

recalculate the state of a device's outputs.

This extension to the classical event-driven paradigm is only possible when mod-

eling devices using functional blocks. Little acceleration is achieved if a circuit is

modeled using primitive elements such as gates or switches. This is only a minor

constraint, however, as larger circuit elements, such as registers, latches and counters

are often used as circuit building blocks. This is true both in the design of digital

circuits made up of discrete components, and in the design of ASIC and semi-custom

VLSI circuits.

7.3 Rapid Evaluation of Four-Valued Truth Tables

The second method by which TLSIM accelerates the simulation process is the rapid

evaluation of Boolean functions. Since a large portion of the simulation is spent

117

evaluating these functions, it is critical to make function evaluation as efficient as

possible.

TLSIM uses a four-valued signal model, in order to alleviate the need for de-

termining signal strengths. This is useful at the circuit design stage, when routing

information is rarely available, since without this information it is impossible to

predict node capacitances.

The use of a four-valued signal model complicates the function evaluation algo-

rithm, however. Even though the four possible values of function arguments can be

reduced to three, by mapping the Z state to one of states: {O, 1, X}, the question of

how to handle X inputs remains.

In TLSIM, Boolean functions are represented as arrays. This has the primary

advantage that function evaluation is very rapid (an 0(n) operation, for n-input

functions). However, in order to accommodate the possibility that X arguments

might be applied to these functions, TLSIM must "fill in" the arrays for all pos-

sible input vectors before they are used. This "fill-in" functioh is performed when

initializing the truth tables.

Since function initialization is performed only once per function, before simula-

tion begins, it incurs very little overhead. Function evaluation during simulation is

therefore very rapid.

Chapter 8

Conclusion

8.1 Accomplishments

This thesis describes the development of a digital circuit simulator. This simulator is

by no means unique, in that many software circuit simulation tools are commercially

available. However, this simulator does offer some interesting features: It is optimized

for digital system design, and tuned to model realistic primitive components.

This simulator embodies UNIMOD1: a UNIfied device MODel, designed specif-

ically for modeling small- to medium-scale macro cells such as those available in

VLSI standard cell libraries. Unlike many other packages, this simulator attempts

to address a single issue only: the simulation of netlists at the level of gates and

functional blocks. TLSIM gains a measure of efficiency by avoiding other levels of

abstraction such as the switch-level and algorithmic models.

8.2 Future Work

The number of features that could be added to a simulator such as TLSIM, to make

it more useful as well as easy-to-use, is nearly boundless. The addition of such

features could be carried out for the entirety of the software's useful life span. Of

these features, some of the most useful might include the following:

Pessimism could be added to the simulator in several ways. For instance, when

118

119

a node undergoes a transition, its value could be set to X rather than held fixed

during the transition period. Another place where the simulator could make more

"conservative" predictions is in cases where more than one signal is simultaneously

asserted on a node (such as in a transient signal conflict on a tn-state bus). Currently,

TLSIM applies new values to nodes as they arrive, but it could set a node's value to

X whenever more than one device attempts to drive it simultaneously.

Another way in which TLSIM could be made more flexible is by improving its

delay model. Currently, it only models rise and fall times for device outputs. These

delays are associated with each device, but may be overridden by the user for any

node. A more detailed model would give 4 x 3 = 12 different delays, from every

signal value to every other signal value. Better still would be a delay model that

in some way takes into account the dynamic loading that appears at each node as

devices in its fan-out change state.

Other features that could be added are likely not as generally useful. For instance,

direct support for multi-port memories might be added. Currently, memory blocks

in TLSIM have a single address and a single data port, but this could be changed to

allow for multiple data and address ports to a single storage block.

As it stands, however, TLSIM is reasonably complete.

Bibliography

[1] Dan Adler. SIMMOS: A Multiple-Delay Switch-Level Simulator. In 23rd

ACM/IEEE Design Automation Conference, 1986.

[2] Dan Adler. Switch-Level Simulation Using Dynamic Graph Algorithms. IEEE

Transactions on Computer Aided Design, 10, No. 3, March 1991.

[3] Prathima Agrawal and Vishwant D. Agrawal. Can Logic Simulators Handle

Bidirectionality and Charge Sharing? IEEE International Symposium on Cir-

cuits and Systems, 1990.

[4] Prathima Agrawal and William J. Daily. A Hardware Logic Simulation System.

IEEE Transactions on Computer-Aided Design, 9, No. 1, January 1990.

[5] Z. Barzilai. SLS - A Fast Switch Level Simulator for Verification and Fault. In

23rd ACM/IEEE Design Automation Conference, 1986.

[6] D. T. Blaaw, Automatic Generation of Behavioral Models from Switch-Level

Descriptions. In 26th ACM/IEEE Design Automation Conference, 1989.

[7] F. Brglez, D. Bryan, and K. Kozminski. Notes on the ISCAS'89 Benchmark

Circuits. MCNC, October 1989.

[8] F. Brglez and H. Fujiwara. A neutral Netlist of 10 Combinational Benchmark

Circuits and a Target Translator in FORTRAN. IEEE International Symposium

on Circuits and Systems, June 1985.

120

121

[9] R. E. Bryant. A Switch-Level Model and Simulator for MOS Digital Systems.

IEEE Transactions on Computers, C-33, No. 2, February 1984.

[10] Eduard Cernay, John P. Hayes, and Nicholas C. Rumin. Accuracy of Magnitude-

Class Calculations in Switch- Level Modeling. IEEE Transactions on Computer-

Aided Design, 11, No. 4, April 1992.

[11] Basant R. Chawla, Hermann K. Gummel, and Paul Kozak. MOTIS - An MOS

Timing Simulator. IEEE Transactions on Circuits and Systems, CAS-22, No.

12, December 1975.

[12] Chorng-Yeong Chu and Mark Alan Horowitz. Charge-Sharing Models for

Switch-Level Simulation. IEEE Transactions on CAD, CAD-6, No. 6, Novem-

ber 1987.

[13] E. D. Fabricius. Introduction to VLSI Design. McGraw-Hill, 1990.

[14] G.E. Flores and B. Kirkpatrik. Optical Lithography Stalls X Rays. IEEE

Spectrum, 28-10, October 1991.

[15] J. Gu. Research and Development of VLSI CAD Systems. Private Communi-

cations, 1990-1993.

[16] J. Gu and K.F. Smith. A Structured Approach for VLSI Circuit Design. IEEE

Computer, 22(11):9-22, Nov. 1989.

[17] D. A. Hodges and H. G. Jackson. Analysis and Design of Digital Integrated

Circuits. McGraw-Hill, 2nd edition, 1988.

122

[18] Cadence Design Systems Inc. Verilog-XL Reference Manual, March 1991.

[19] Brion L. Keller, David P. Carlson, and William B. Maloney. The Compiled

Logic Simulator. IEEE Design and Test of Computers, March 1991.

[20] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice-Hall Inc., New York, 1978.

[21] G.A. Korn and J.V. Wait. Digital Continuous-System Simulation. Prentice-Hall

Inc., New York, 1978.

[22] David M. Lewis. A Hierarchical Compiled Code Event-Driven Logic Simulator.

IEEE Transactions on Computer Aided Design, 10, No. 6, June 1991.

[23] Wojciech Maly. Prospects for WSI: A Manufacturing Perspective. IEEE Com-

puter, 25-4, April 1992.

[24] Peter M. Maurer. Scheduling Blocks of Hierarchical Compiled Simulation of

Combinational Circuits. IEEE Transactions on Computer-Aided Design, 10,

No. 2, February 1991.

[25] Peter M. Maurer and Zhicheng Wang. Techniques for Unit-Delay Compiled

Simulation. In 27th IEEE/A CM Design Automation Conference, 1990.

[26] Carver Mad and Lynn Conway. Introduction to VLSI Systems. Addison-

Wesley Inc., 1980.

[27] Steve Meyer. A Data Structure for Circuit Net Lists. In 25th ACM/IEEE

Design Automation Conference, 1988.

123

[28] Masayuki Miyoshi. Speed Up Techniques of Logic Simulation. In 2nd Design

Automation Conference, 1985.

[29] V. Nagasamy, N. Berry, and C. Dangelo. Specification, planning, and synthesis

in a VHDL design environment. IEEE Design and Test of Computers, 9, No. 2,

June 1992.

[30] Lissa F. Pollacia. A Survey of Discrete Event Simulation and State-of-the-Art

Discrete Event Languages. Simulation Digest, 20-3, Fall 1989.

[31] Vijaya Ramachandran. An Improved Switch-Level Simulator for MOS Circuits.

In 20th ACM/IEEE Design Automation Conference, 1983,

[32] M. H. Rashid. SPICE For Circuits And Electronics Using PSpice. Prentice

Hall, 1990.

[33] Arturo Salz and Mark Horowitz. IRSIM - An Incremental MOS Switch-Level

Simulator. In 26th ACM/IEEE Design Automation Conference, 1989.

[34] I. Shoham and J. Gu. UNIMOD1: A New Device Model for Digital Circuit

Simulation. Submitted for Publication, 1993.

[35] R. Sosiè, J. Gu, and R. Johnson. The Unison Algorithm: Fast Evaluation of

Boolean Expressions. Communications of ACM, Accepted for publication, 1990.

To appear.

[36] Stubbs and Webre. Data Structures with Abstract Data Types and Pascal.

Brooks / Cole, 2nd edition, 1989.

124

[37] K. Subramanian and M. R. Zargham. Distributed and Parallel Demand Driven

Logic Simulation. In 27th IEEE/ACM Design Automation Conference,, 1990.

[38] Robert Tjarnstrom. Switch-level simulation based on local decisions. INTE-

GRATION, the VLSI journal, 9, No. 3, July 1990.

[39] E. G. Ulrich. Exclusive Simulation of Activity in Digital Networks. Communi-

cations of the ACM, 12, No. 2, February 1969.

[40] Zhicheng Wang and Peter M. Maurer. LECSIM: A Levelized Event Driven

Compiled Logic Simulator. In 27th IEEE/ACM Design Automation Conference,

1990.

