1 INTRODUCTION 2

1 Introduction

...if all my possessions were taken from me with one exception, I would choose
to keep the power of communication, for by it I would soon regain all the rest.

Daniel Webster

Extremely slow communication is a daily reality for some people. Rate of expression is
significantly and irreversibly reduced by several forms of physical disability, and for those
afflicted, unaided spoken and written communication may be intolerably slow—even non-
existent. In order for such individuals to participate effectively in society a means of facili-
tating and accelerating their rate of expressive communication has to be found.

We have developed a device called the Reactive Keyboard that accelerates typewritten
communication with a computer system by predicting what the user is going to type next.
Obviously predictions are not always correct, but they are correct often enough to form
the basis of a useful communication device. Since they are created adaptively, based on
what the user has already typed in this session or in previous ones, the system conforms to
whatever kind of text is being entered. Present implementations have proved most useful in
enhancing the command interface to the UNIX operating system by predicting commands,
arguments, and filenames; and for the entry of free text.

This paper describes the technical and human interface techniques that are used in the
Reactive Keyboard. To enable it to make predictions, a model of previously-entered text is
created and maintained adaptively. The modeling technique that is adopted was developed
for use in text compression, and in fact forms the basis of one of the most effective existing
compression methods (originally described by Cleary & Witten, 1984; see Bell et al., in
press, for a recent survey of the field). To render it suitable for use in a communication
aid, two main issues had to be addressed. First, there were a number of practical problems
concerned with resource consumption. Second, whereas for text compression the adaptive
prediction mechanism fed an encoder that generated a bit-stream representing the message,
for present purposes it must be equipped with a human interface that allows predictions to
be displayed and selected. Communication aid users trade physical dexterity for cognitive
load, and several difficult interface design issues have to be confronted in an attempt to
maximize the accessibility of the predictions and minimize both physical demands and
cognitive load. Two different interface styles were selected, one using a plain keyboard and
the other a two-dimensional pointing device.

The paper is structured as follows. The remainder of the present section sketches the
functional architecture of a communication aid, as a basis for subsequent discussion. The
next section introduces the idea of predictive text generation systems, and draws the im-
portant distinction between adaptive and non-adaptive models. Section 3 describes the
design of the Reactive Keyboard, including the prediction mechanism and user interface.
Since the success of the device rests very heavily on the success of the adaptive modeling
and prediction technique, a discussion is included of some important issues that arise in the
implementation of the adaptive predictor. Section 4 gives some practical details about the
system, amongst them the size of models, the use of text to prime them, and interaction
with local editing facilities. Finally, we conclude with a discussion of the target population
and comments from disabled users, and mention some future research directions.

2 PREDICTIVE TEXT GENERATION SYSTEMS 3

Communication aids can be defined as devices that augment the ability of a communica-
tively handicapped person to produce communication signals. Several different functional
breakdowns of communication aid components have been suggested (e.g. Morasso et al.,
1979; Ring, 1980; Rosen & Goodenough-Trepagnier, 1982; Vanderheiden, 1984). Buhr &
Holte (1981) identify the four components shown in Figure 1:

(a) input device (e.g. joystick, pneumatic switch) which translates the user’s physical
movements into input signals;

(b) output devices (e.g. typewriter, CRT display, speech synthesiser) which display the
selected symbol(s)—more than one may be available through a single communication
aid;

(c) selection algorithm (e.g. linear scan, matrix scan) which uses the input signals to select
a symbol from a group of symbols;

(d) prompting device (e.g. CRT display, cycling light) which informs the user of the symbols
that are currently available for selection and of the actions required to make a selection.

At the core of any communication aid is the “selection set,” the group of symbols
that are presented to the user for concatenation into messages. The key parameters of the
system upon which performance depends are the number of elements in the selection set, N;
and the number of physical controls or buttons in the interface, B (Rosen & Goodenough-
Trepagnier, 1982). For example, a conventional keyboard would have N = B, were it not
for the presence of shift and control keys which double or triple N while increasing B by
only one or two.

2 Predictive Text Generation Systems

Predictive text generation (PTG) is a context-sensitive technique for enhancing expressive
communication rate. It works by suggesting, on the basis of preceding inputs, what the user
wants to select next (Arnott et al., 1984). PTG systems exploit stored information about
past selections to predict future ones. Likely continuations are identified by locating a con-
text of recent selections in a large “memory” of previously encountered element sequences.
Frequency-of-occurrence data are then used to sort predictions and offer the most probable
continuations to the user for selection, thereby accelerating input.

2.1 The Basis for Prediction

The ability to guess or predict next letters or words relies on the statistical redundancy of
language. Shannon (1951) estimated that English is about 75% redundant, and noted that
in general, good prediction does not require knowledge of more than a fairly small number of
preceding letters of text. While for a native speaker success in predicting English gradually
improves with increasing knowledge of the past, apart from some statistical fluctuation, it
does not improve substantially beyond knowledge of eight to ten preceding letters (see also
Cover & King, 1978; Suen, 1979).

Communication aid designers reasoned that it should be possible to tabulate all length n
letter sequences present in a suitably large text sample or word list (e.g. Foulds et al., 1975;

2 PREDICTIVE TEXT GENERATION SYSTEMS 4

Baletsa et al., 1976; Baletsa, 1977; Heckathorne et al., 1980; Thomas, 1981). The resulting
tables might then be used to make predictions of likely next letters or words. Knowing
a user’s first n—1 letter selections would make it possible to predict likely n’th letters by
retrieving items that begin with this prefix. The predictions could be preferentially offered
to the user in order to speed selection. Alternatively, word predictions could be made by
using word prefixes to retrieve likely completions from dictionaries of frequently used words.

Existing PTG systems fall into three main categories: letter anticipators, word or phrase
completors and combined systems (Darragh, 1988). Letter anticipators accelerate user input
by making likely next letters faster and easier to select. Completors amplify inputs by
offering word or phrase completions based on an initial prefix of one or more letters spelled
by the user. Word completion strategies form a natural extension to letter anticipation
schemes. Combined systems, as the name implies, do both. Most use letter anticipation
but switch to word/phrase completion if a known prefix is entered.

2.2 Predictive vs Non-Predictive Systems

Predictive systems differ from their non-predictive counterparts primarily in the way they
deal with message composition. Figure 2 illustrates the difference diagrammatically (refer-
ences to the Figure are emphasized below). In both cases, users decompose their intended
message into a series of selection elements. Each component element is then selected using
a sequence of input strokes. Finally, the system synthesizes the series of selection elements
back into the user’s intended message. The difference is in the way selection elements are of-
fered to the user. Non-predictive systems present users with a fixed set of selection elements
which are equally accessible at each choice point. Predictive systems, on the other hand,
use prediction rules to make likely elements easier, faster and (possibly) more productive
to select.

Figure 2 also illustrates some common PTG system features by expanding the prediction
rules component. Progressing from right to left, a PTG system monitors user selections (se-
lection elements) and stores the last few together in short-term memory to form a current
contezt. The context is then sought in long-term memory to find likely continuation ele-
ments and associated probabilities of occurrence. This information is then processed by the
system’s selection algorithm to generate a changing selection set display on the prompting
device.

2.3 Adaptive vs Non-Adaptive Models

Every communication aid incorporates a model of the communication task it is designed
to facilitate. Models include the language elements the user can choose (the selection set)
and the technique for making selections (the selection algorithm). Many aids embody static
models, created by the designer and frozen for the lifetime of the device. For example,
a predictive system could be primed with a static model of a particular language which
captured common words and phrases thought to be representative of a typical user’s input.
Alternatively, the model could be dynamic, adapting to its user’s vocabulary and phrasing.

While systems incorporating static or “canonical” models are general purpose and easy
to implement, they lack flexibility and often constrain their users by a largely inefficient lan-
guage model. The alternative, adaptive, models can either be constructed explicitly by the
user (“explicit” modeling) or implicitly by the system (“automatic” modeling). Greenberg

2 PREDICTIVE TEXT GENERATION SYSTEMS 5

(1984) discusses these alternatives more fully. One of the biggest problems of providing a
model explicitly is that users must not only anticipate future language usage but also divert
themselves from the task at hand to create the model.

Like explicit modeling, automatic modeling has two distinct stages, model construction
and model consultation. Automatic systems construct their models from scratch by con-
tinuously monitoring user behavior patterns and updating internal user models to reflect
changing behavior. To do so the system must use limited cues and rules to guess likely user
behaviors. An automatically constructed model is inevitably probabilistic, and any given
prediction may be inaccurate—particularly if user errors are incorporated as though they
were part of the user’s intended behavior.

2.4 Long-Term Memory

PTG systems form their predictions by consulting long-term memory. This generally con-
tains a large number of recurring selection element sequences (n-grams), with associated
occurrence frequencies. The current context, n — 1 recent selections stored in short-term
memory, is used to look up likely continuations. In other words, predictions are made on
the basis of the present situation, represented by short-term memory (sTM), and past ex-
perience, represented by long-term memory (ETM). The prompting device display normally
changes after each user selection to present a new subset of predicted elements, in proba-
bility order. A four-phase cycle of user selection, STM update, LTM lookup, display update
continues for the duration of a message composition session. When adaptive modeling is
used, LTM is also updated.

Several types of communication model and memory structure are possible, based on
the various levels of redundancy present in natural language. Language redundancies range
from orthographic, through to syntactic, semantic, and even pragmatic levels (Pickering &
Stevens, 1984). Such models span the disciplines of computational linguistics and artificial
intelligence and become increasingly hard to generate and utilize at the higher levels. This
paper limits discussion to the n-gram based orthographic models which have been used in
all PTG systems to date. These are constructed statically from representative text sam-
ples and/or dynamically by monitoring the user’s text generating behavior letter by letter.
Gathered text experience is stored in LTM as n-gram sequences, with associated occurrence
frequencies.

A model’s predictive power depends on how accurately its experience matches the user’s
current communication needs, and on the length (n) and number of stored sequences. Adap-
tive systems use models that adjust themselves to individual user’s idiosyncracies, which
is why they are often superior to canonical models. Canonically defined models are giving
way to more personalizable explicit and combination models in an effort to gain further
communication rate enhancements (Heckathorne & Childress, 1983; Nelson et al., 1984).

2.5 Predictive Text Generation: Pros and Cons

The main advantages of using predictive techniques include communication rate enhance-
ment (Witten et al., 1982; Heckathorne & Childress, 1983); reduced physical load on the
user (Baletsa, 1977); reduced cognitive spelling load (Colby et al., 1982; Colby 1984; Gibler
& Childress, 1982); and increased articulateness (Heckathorne & Childress, 1983). Rate
enhancement is achieved using acceleration and amplification techniques to make the se-

3 THE REACTIVE KEYBOARD 6

lection of likely language elements faster and more productive. Physical load on the user
is reduced coincident with increased overall fluency—less time and effort is expended to
generate a message. Spelling errors are reduced by offering most likely letters first, pro-
viding a strong visual cue to correct spelling; or by predicting correctly spelled word or
phrase completions, forestalling mis-spelling altogether. Finally, the context and frequency
sensitivity of PTG systems allows rapid access to very large and rich selection sets. The
result is a faster, easier to use, more productive communication aid.

The potential disadvantages of using predictive techniques include unlearnability (Rosen
& Goodenough-Trepagnier, 1982); visual vigilance (Rosen & Goodenough-Trepagnier, 1982);
and visual discontinuity (Foley & Wallace, 1974). Large memories and constantly changing
prompt displays make predictive systems potentially confusing and difficult to learn, and
may distract from the primary communication task. This is particularly true when adaptive
modeling is used. The visual demand these systems place on their users is a related but
more serious concern. Users must constantly direct their attention to the prompting device
in order to evaluate offered predictions. Visual workspace allocation is a major difficulty
faced by system designers. Workspace must be divided between the prompting device and
message composition areas. Selection element menus may consume most of a PTG system’s
display space, restricting space available for message composition. Visual discontinuity
can be partially overcome using multiple windows where one physical device includes both
logical displays (Warfield & White, 1983).

Overall, the desirable characteristics seem to outweigh the relatively few disadvantages
of predictive techniques for most purposes.

3 The Reactive Keyboard

“To originate is to combine”—Edgar Allen Poe

The idea for the Reactive Keyboard evolved from an earlier system called Predict, which
provided input acceleration for command input to a general-purpose computer system (Wit-
ten et al., 1982). It was one of the first communication aids to model user inputs adaptively.
Perhaps the most important advance was the use of concatenated predictions. Instead of
being single-letter, word, or phrase oriented, the selection set was constructed dynamically
from single-character predictions. Predictions were based on an n-gram model which was
formed adaptively from the user’s inputs.

The Reactive Keyboard uses a more sophisticated modeling technique that improves its
predictive ability. Principal features of this technique include a tree-structured memory
and the use of partial context matching; these are explained further below. Two alternative
selection algorithms are provided, tailored for different input devices.

The adaptive model maintains a frequency-ordered list of context-conditioned candidate
strings, and presents them to the user either individually or as a menu. It makes each start
with a different Ascll character, so that the entire character set can always be accessed.
Each option is a concatenation of several predicted characters. With the standard keyboard
interface the user can cycle through these predictions and accept all or part of any one. With
a proportional input device the user selects not only a menu item but also a point within
it, so that part of the item can be chosen.

3 THE REACTIVE KEYBOARD 7

3.1 The Modeling Technique

A longest-match policy is adopted when seeking likely continuations (in LTM) for the current
context (i.e. STM). If no elements in LTM match the current STM in its entirety, the latter
is truncated until a match can be found. The technique proves extremely effective because
it is capable of predicting from more complete lower-order models if less complete higher-
order models fail to contain an instance of the current context. All lower-order models are
implicit in the highest-order model so no extra storage is required. This kind of model has
been found to be extremely effective for text compression (Darragh et al., 1983; Cleary &
Witten, 1984; Bell et al., in press).

The model is stored in a special tree structure that allows partial matches between sTM
and LTM to be found economically. An example is shown in Figure 3. Here, the phrase
“to be or not t” is represented as a tree with maximum depth four. Alternatives at any
level are listed alphabetically for presentation purposes only—frequency order is used in
practice to speed updating and menu generation. Each node of the tree has four parts: a
character element label, a frequency counter, a pointer to the next alternative at its level
and a pointer to the next higher level’s list of continuations.

A number of important technical issues arise when implementing this partial-match
modeling method. Models become quite large and need to be carefully organized because
of the real-time search and update requirements imposed by an interactive user interface.
Moreover, the system needs to work continuously, with no upper bound on the amount of
text that can be accommodated.

Updating LTM

Three operations are required to update and maintain LTM: incrementing frequency counts
of recurring n-grams, adding new n-grams to the model as new input behavior is experienced,
and removing old n-grams to make way for new ones when the model is full. The update
procedure is as follows. Each input character is processed separately. First, if LTM is
full, up to 7 old nodes are deleted to ensure that sufficient space is available for possible
additions. (At most n free nodes will be required to store each new input character, one
instance at each of n levels.) Then, starting at the highest order, each level in the tree is
searched for the input character. If found at any level, the corresponding node’s frequency
count is incremented. Finally, frequency order is maintained by re-sorting the linked list
of alternatives to speed future accesses. If the input character is not found, a new node is
created and added to the end of the list with a count of one.

Representing Frequency Counts

It is convenient to represent frequency counts as fixed-length integers, in which case the
possibility of overflow must be considered. The Reactive Keyboard simply halves frequency
counts just before overflow. All associated counts at the current level are also halved. Some
accuracy is lost, but the relative frequency of alternatives and the ability to discriminate
between them is largely maintained. Any multiplier less than one could be used to reduce
counts; one-half works well in practice and is efficiently implemented as a bit-shift operation.

Frequency reduction creates a sort of memory “blurring” even when nodes are not for-
gotten. The statistical significance of an n-gram slowly deteriorates if it occurs infrequently
relative to other alternatives, ensuring that unrepresentative statistics—caused perhaps by

3 THE REACTIVE KEYBOARD 8

a change in the kind of text being generated—cannot influence prediction efficiency indefi-
nitely.

In order to determine the best size for frequency counts, some text-compression ex-
periments were performed (Darragh et al., 1983). Larger counters will retain probability
distributions to greater accuracy, but increase the time-constant for decay. It was encour-
aging to discover that when the number of bits used for frequency counts was reduced to
six or eight for storage reasons, the model actually performed better than earlier versions
using thirty-two bit counts. This surprisingly low value indicates that sensitivity to drift in
the statistics of the text is more important than accurate representation of the probability
distributions. It is quite acceptable to store counts in 8-bit bytes. Seven bits work well in
practice and are used in current Reactive Keyboard implementations.

Forgetting

Since LTM is finite, exceptional action must be taken when it becomes full. If the system is
to continue adapting, less useful n-grams must be discarded to make room for new ones as
they occur, and prediction efficiency will depend as much on what the model forgets as on
what it remembers.

The Reactive Keyboard forgets based on frequency of occurrence, for other automatic
schemes would require additional overhead per node stored. The least frequently seen leaf
nodes, which are presumably the least likely to recur, are deleted from LTM when new space
is required. In addition to keeping LTM within predefined limits, forgetting adds a measure
of automatic error correction to the model, for erroneous entries will be the first to be
discarded because of their low frequency of occurrence.

When frequency counts are halved as described above, special attention must be paid
to nodes whose counts fall to zero. Such nodes could either be retained by restoring their
counts to one, or deleted and the space freed for subsequent new nodes. The Reactive
Keyboard does both by restoring nodes when LTM has room and forgetting them (and their
sub-trees) when it is full. Frequency count reduction conveniently doubles as a simple
forgetting mechanism.

Data Structures

There are many design options for long-term memory, representing different trade-offs be-
tween update speed, retrieval speed, and space consumed. A variety of storage schemes that
permit partial matches between sSTM and LTM to be found have been considered, and some
implemented and tested. The method of choice depends on the application context, the
total storage space available, and the speed of the implementation on the target computer
system.

The aim of the LTM structure is to allow the predictions associated with substrings of
STM to be found quickly. A tree-structured storage scheme is essential to avoid repeated
searches for each different context length. Trees are represented by including with each node
two or more pointers to its children, and three possible storage structures are an n-way tree,
a binary tree, and a linked list implementation.

The simplest and fastest, but not the most economical, technique is to include space at
each node for a pointer associated with every possible character. For example, using the
Ascil character set, 128 pointers are needed at each node—an exorbitant space requirement.

3 THE REACTIVE KEYBOARD 9

A binary tree representation contains three pointers, and a character, per node. This
permits logarithmic-time binary searching for desired characters. Even more compact, but
potentially rather slower, is to store a linked list at each node which records the characters
associated with it, as illustrated in Figure 3. This requires just two pointers, but involves a
time-consuming linear scan through the list for the desired character. This penalty can be
reduced by maintaining the linked lists in frequency order. Further details of these options
are given by Darragh (1988).

3.2 User Interface

The Reactive Keyboard deliberately maintains a clear separation between modeling aspects
and user interface aspects. In practice, it is necessary to restrict the range of possible user
interfaces to a small number of workable options which can be implemented and (ideally)
evaluated against one another. The most suitable interface can then be selected for a given
user’s circumstances.

Input Devices and Implementations

The user interface is determined by the user’s input device and is adaptable to a wide variety
of two-state and proportional devices. Two different interface options have been developed,
one keyboard (or button) based and the other mouse (or pointer) based. The former was
designed for remote access to a host computer via a telephone link and uses a standard vbu
keyboard and screen for input and output. In this version, called RK-button, predictions
are presented at the host cursor one at a time, and users can step through and select any
one of the possible continuations offered by the predictor. The latter, called RK-pointer and
illustrated in Figure 4, uses a proportional input device for menu selection, and incorporates
a dual window display which separates the menu from the text being entered. Both employ
the same two-dimensional menu structure, but they display and access it quite differently.

Two-Dimensional Menu Generation

The Reactive Keyboard generates the initial characters of its predictions using a simple
ordering strategy that favors longer contexts. First, any matches found for the highest-
order context are added to the menu in frequency order. Then, progressively shorter context
matches are made and any new character predictions which have not yet been encountered
are added to the list, again in frequency order. This ensures that each initial menu character
is unique and limits the total number of items to the size of the Ascir alphabet. When the
context length becomes zero, all remaining characters not yet found while context matching,
but which have occurred in the input stream, are added in frequency order. Finally, all
remaining characters which are not represented in the model are added to the list.

Figure 5 gives an example of how an initial element list would be generated if the user
were spelling the word “dAPPY” and had already entered “HAPP”. It is based on a 26
letter alphabet plus space, with n = 4. The alternative predictions for each context length
are shown in frequency order. Notice that the relative popularity of candidate letters varies
with order, and that once a letter appears at a given level it reappears at all lower levels too.
Letters not previously encountered at higher levels are added to the menu list in frequency
order—each level’s new additions are underlined in the Figure.

3 THE REACTIVE KEYBOARD 10

Once the list of initial letters is complete, each one in turn is followed “into the future”
to complete the menu item. Progressively longer concatenations are made by assuming that
the current prediction is correct and destined to be accepted. In the present example, the
n—1 context “APP” would be shifted forward to make concatenated predictions. The process
repeats with the projected new context until either the end-of-line character is predicted
or the screen line length is exceeded. For example, if the current context “aApp” predicted
the initial letter “y”, then “y” would be assumed correct and the context shifted to “pPpyY”.
This would then be used to predict another letter, say “_”, and the process repeated with
the projected context “Py,,.” If no further elements were predicted, the concatenation “y "
would be displayed for selection.

Menu Selection

RK-button has five function keys associated with item selection: “previous” and “next”
keys to step through options, and three “accept” keys which accept characters, words, and
complete lines respectively. With RK-pointer, where the user points to a position within a
menu item, the substring up to that point—referred to as the “extent”—is inserted into the
text buffer. For example, if the prompting display included a menu item “next prediction,”
then pointing to the letter “d” would insert the extent “next pred”.

Immediately after a menu selection is made, a new set of menu items is generated and
displayed. This involves first updating STM to take the selection into account, and then
consulting LTM to generate a new set of concatenated predictions. In RK-pointer, LTM
is updated as soon as the selection is made. In RK-button, line buffering is used and LM
updated only after the newline character is selected, because the system provides line-editing
facilities that the user frequently employs while composing each line.

The selection feedback provided by RK-button simply involves moving the text cursor
past the selected item (character, word, or line) and generating a new prediction. RK-
pointer gives selection feedback in two locations on the display: in the text buffer, by
transferring the currently highlighted menu item/extent to the cursor position, and in the
menu window (Figure 4). Feedback in the menu window is more complex, though it changes
in a predictable way after every selection. The mouse cursor remains at the current menu
position, and most of the selected item/extent is shifted out of the menu window, leaving
a few characters as additional context to guide further selections. This aids item selection
because the beginning letter or letters of a word, and its overall length, are primary visual
cues for word discrimination (Dunn-Rankin, 1978; Nooteboom, 1981).

Displaying the Menu

RK-pointer’s prompt display consists of a menu window separate from the host-controlled
text buffer. The user may position and size the menu window using standard window system
commands. The best position relative to the text buffer depends on both the display device’s
physical dimensions and the user’s personal preferences. By varying its size the user has
direct control over the number and maximum length of predictions in the menu. The menu
never exceeds 128 items because the first letter of each item is unique, and in practice is
usually about 90.

What is the best menu length? Human factors considerations would limit the number
of items in a window to something like Miller’s “magic number” seven plus or minus two

3 THE REACTIVE KEYBOARD 11

(Miller, 1956). When the system is primed by sufficiently representative text, it is possible
to achieve high hit rates with menus of this size. For example, simulation studies have been
reported for various levels of priming (Witten et al., 1983). By plotting the probability
of selection against menu length, these demonstrated (for a specific sample of text) that
a window with ten items would contain 99.8% of all desired initial characters if LTM were
pre-primed with the same text sample. Even without any priming, on a fairly short 11,000
character passage the first ten items contained 69% of the desired initial letters. These
results suggest that given adequate priming, menus of about six items or more would suffice
to ensure that appropriate selections could virtually always be made without having to
scroll or page further down the menu. In practice, maximum menu length is left to the
individual user’s preference.

Truncating Menu Items

The maximum size of individual menu items is limited only by the width of the prompting
device. There are several possible strategies for determining it. For example, one can take
a fixed-length approach and fill all available menu space. Alternatively, length could be
determined as a function of a prediction’s popularity and/or the context length associated
with retrieval of its initial character. A further possibility is to base the length on perceptual
units such as words or lines of text.

The first method is easily implemented and is used in current versions of the Reactive
Keyboard. Besides its simplicity, this technique offers the user the greatest potential selec-
tion productivity. The second method has some merit in that item length would provide
feedback on the relative strength of competing predictions, but this does not add apprecia-
ble information when items are displayed in popularity order. It is supported by evidence
that the grammatical correctness of n-gram based predictions increases with model order
and decreases with prediction length (Damerau, 1971).

The third method, unlike the first two, takes account of the grammatical structure of
predictions and the significance of delimiting white space. The most general approach is to
create fragments of some predetermined maximum length, and then shorten them to suit
the particular psycho-linguistic, display and selection strategies in effect. One drawback
is that large variations in item length may occur due to the relative positions of various
delimiters.

A minimum item length of approximately seven characters may be desirable based on
the observation by Salthouse (1984) that a preview size of seven letters is required for
efficient copy typing by normal subjects. Another approach to determining the minimum
item length is to look at mean type (unique word) and token lengths, the latter being a
frequency-weighted version of the former. Taking words (or types) into account suggests
that a minimum length of about twelve characters is required to ensure that 85%-90%
of words can be presented unbroken in the menu (Kucera & Francis, 1967). About the
same number of characters could be retained as context feedback for word recognition in
the menu buffer. Longer items help decrease typographical errors, reducing overall error
recovery time.

4 INTEGRATING THE REACTIVE KEYBOARD INTO A SYSTEM 12

Ordering Menu Items

Once the number and length of menu items are determined, they must be sorted into a
sensible order for display on the prompting device. Clearly each successive menu page
should contain items of decreasing popularity. There is, however, considerable latitude for
more elaborate ordering schemes within individual menu pages. Current implementations
simply present predictions in probability order. Alternatives are plain alphabetical ordering
or cursor-centered placement, where high-probability items are positioned near the cursor.
Furthermore, it might be desirable to minimize changes between one display and the next
by retaining the position of items whose initial characters also appeared on the previous
menu.

The final display issue to be considered is the representation of non-printing characters
(other than the space character). Ascil character-oriented prompting devices limit the
possibilities. We adopt the common convention of displaying control characters as a digram,
prefixing the uppercase rendition of the character with a “~”. For example, the BEL and NL
characters are displayed as “~G” and “~J” respectively. The most obvious disadvantage of
this technique is that it impinges on available display space. In addition, such digrams can
be awkward to recognize, particularly when several are presented in close proximity. The
number of control codes displayed is dramatically reduced when line buffering is used, as
in RK-button, because no attempt is being made to model the intra-line editing operations
(backspace, line erase, etc).

4 Integrating the Reactive Keyboard into a System

Our description so far has concentrated on the new communication medium that the Reac-
tive Keyboard provides: adaptively predicted text, offered to the user for selection. When
this new medium is embedded within a system, a number of important practical consider-
ations arise that greatly affect its useability. The success of the modeling technique hinges
on the parameters of the model—its maximum order n and the amount of space allocated
to it—and on the text used to prime it. It is often worthwhile to explicitly alter the sys-
tem’s model of the user’s communication requirements by re-priming it with new samples
of text. User control of display parameters, such as menu size, has already been mentioned.
An important issue is how the predictions interact with line-editing facilities such as the
character, word, and line erase functions. Another is the possibility of segmenting the input
stream based on knowledge of what the dialogue means. Finally, there is the question of
getting help on use of the system itself.

4.1 Model Size

The maximum order n of the model—which is governed by the size of sTM—determines
the depth of the tree that is represented in LTM. Experiments in text compression show
that the predictive power of the model is relatively insensitive to the value of n provided it
exceeds a certain minimum (Cleary & Witten, 1984), and current implementations of the
Reactive Keyboard use n="7.

The second parameter of the model is its size, in other words the total number of n-
grams it accommodates. It is difficult to estimate accurately the minimum size required to
store a complete model of an open-ended stream of text. In practice, limits are imposed on

4 INTEGRATING THE REACTIVE KEYBOARD INTO A SYSTEM 13

the number of nodes by implementation considerations such as the amount of storage space
available, the size of each tree node and the type of data structure employed. Versions of the
Reactive Keyboard have been implemented with both the two-pointer linked list structure
and the three-pointer binary tree structure mentioned in Section 3.1. RK-button, intended
to accelerate command input to a computer system, uses the former, and 64,000 nodes
appears to be sufficient for its constrained command input predictions; these occupy 640
Kbytes. RK-pointer, intended for free text entry as well as command input, uses the latter
and can accommodate up to 16,000,000 nodes, which would occupy a total of around 100
Mbytes (see Darragh, 1988).

4.2 Priming the Model

By far the most important factor affecting the quality of predictions is the actual text
used to prime the model. Finding truly representative text samples is difficult, as the
statistical characteristics of seemingly similar samples can vary greatly (Kucera & Francis,
1967; Gibler, 1981). This implies that the text samples used to prime LTM must be carefully
selected to be as representative as possible of what the user wants to generate.

Sources of Text for Priming

The Reactive Keyboard derives its model in three ways using a combination of automatic
and explicit modeling techniques. Priming occurs (a) automatically from a default (or user-
specified) startup file, (b) automatically from current user inputs, and (c) explicitly from
any text file the user chooses to add into the model. Automatic modeling keeps LTM up to
date, yet users have the option of explicitly specifying (and even, if they wish, altering) the
text used to prime it. In the current UNIX implementation the default startup text file is
simply a log of all text generated to date by the user with the Reactive Keyboard. After
priming LTM with the startup file, the initial model and log file are updated automatically
as new text is generated. More recent entries always take precedence when LTM is full,
through “forgetting” mechanisms discussed earlier.

Global context control is available during a session because the user can at any time
request a text file to be read by the Reactive Keyboard. This feature also allows LTM to
serve as a store in which the user may capture program output (such a list of filenames) on
a temporary basis, for possible future use in text generation. Moreover, LTM can be erased
and re-primed, giving the user the option of either keeping multiple contexts concurrently in
the model, or—by first clearing LTM—switching between separate, possibly very different,
global contexts.

Establishing the Character Set

While the entire ASCII character set can be used as n-gram elements, many of these never oc-
cur in normal text generation. Analysis of several fairly large ascii text files—both English
and program source code—revealed that about 30 to 40 characters were not represented
at all. Moreover, whenever LTM starts unprimed, even common symbols initially have no
frequency listing in the model. For example, only the letters “#,b.e,n,0,r,t” are contained
in the unprimed model in Figure 3; all other symbols have zero frequency so far.

To establish initial character frequencies, the Reactive Keyboard reads a standard (or
user-defined) frequency table before starting a session. This contains a frequency-ordered

4 INTEGRATING THE REACTIVE KEYBOARD INTO A SYSTEM 14

list of the symbol set derived from a large sample of representative text. It is used to build
a backup zero-length context level into the model which is scanned after the adaptive part
of LTM. Symbols with equal frequency are listed in the table in collating order, and ones
that do not occur in the source sample are therefore presented last in ASCII sequence.

Editing Priming Files

It is rarely necessary to edit the Reactive Keyboard’s priming file to eliminate errors, since
they become low-probability predictions that are eventually discarded by the forgetting
mechanism. There is, however, a practical reason for editing it that arises primarily from
exclusive reliance on a frequency-based prediction heuristic. At times, before log file has
grown sufficiently large, there may be a desire to override certain high-frequency items
explicitly in favor of more recent, yet lower-frequency, items. The most common example
in our experience occurs when an electronic mail correspondent changes addresses. The
Reactive Keyboard will faithfully predict the old address instead of the new one, until the
latter has been seen more often than it. To circumvent this problem one can edit the log file
and either delete occurrences of the old address or, better still, change them all to the new
address to preserve the historical context. Of course, such action is not really necessary
since the new address will be predicted as an alternative to the old and will eventually
automatically preempt it. Editing the address simply forces the change and speeds future
correspondence by making the correct address the first to be offered.

4.3 Interaction with Local Editing

An important choice in predictive text generation is the level at which user behavior is
modeled. Specifically, should user behavior be modeled in its entirety, including input line
editing and control functions, or should some or all of these user interface tasks be isolated
so that only finished text is modeled? Whiteside et al. (1982) studied able-bodied knowledge
workers creating documents, and secretaries transcribing and updating documents. They
attempted to record and describe actual usage patterns by keystroke-level logging of free
use of different text editors. They discovered that only about one-half of users’ keystrokes
were for text entry, another quarter were for cursor movement, an eighth were for deletion
and the rest were for miscellaneous functions. Their results suggest that it may not be
sufficient just to model the final form of the text generated if maximal predictive assistance
is to be provided.

Previous PTG systems have based their canonical communication models on representa-
tive samples of completed text rather than on the user’s actual behavior. The alternative
is to model interactive user text generation behavior and not simply the finished product.
However, as Nelson et al. (1984) point out, an aid which learns its user’s mistakes will not
be very helpful. A simple strategy to minimize the assimilation of errors is to delay updat-
ing the model until each input line is complete. Specific line editing capabilities (which are
not modeled) must then be incorporated into the PTG system’s user interface.

RK-pointer and RK-button take different approaches to this issue. RK-pointer models
all user behavior, including cursor movement and deletion functions, in an effort to provide
greater text generation assistance. RK-button, on the other hand, isolates line-buffer editing
functions at its user interface by supplying explicit line editing commands; and only the
finished text is modeled.

5 DISCUSSION AND CONCLUSIONS 15

Both approaches have merits and drawbacks. Modeling all behavior gives added as-
sistance in non-text entry tasks, but interspersing less redundant or predictable edit and
control operators among what would otherwise be connected text effectively lowers n for
the text. Prediction and display of non-text operators can also be problematic and may
unduly clutter the prompt display. The main advantage of modeling only finished text is
that many potential errors are filtered out at the user interface. The best approach for a
specific user depends on the application and the user’s individual ability and circumstances.

4.4 Segmenting the Dialogue

Just as it is possible to exclude certain user behavior (like line editing) from the model,
special elements can be added which do not normally occur in the input stream, but which
nevertheless serve to guide predictions.

An example is the special character which the Reactive Keyboard inserts to mark the
beginning or end of each text generation session. This marker is added to synchronize STM
with LTM at the start of a new session before any new user generated context is available.
This alignment is based on the reasonable assumption that users will generate predictable
command sequences when logging in (such as reading new mail).

It would be very easy for RK-button to monitor the commands issued by the user,
tracking the state of the system, and alter its operation accordingly. For example, it could
re-prime LTM when an editor is entered, and keep different priming files for different editors
(mail, general text, programming languages) or for when the same editor is invoked on
different file types. However, we have resisted the temptation to provide this kind of inte-
gration, partly to keep the system general-purpose, partly because there is often a surprising
amount of cross-over between the contents of different file types (e.g. natural-language com-
ments in a program file; filenames in mail), and partly because we want to rely on a single
mechanism of adaptation to track changes of context.

4.5 Getting Help

The final meta-level task is getting help on the working of the Reactive Keyboard itself.
Because of its interface transparency, RK-pointer has no on-line help facility. Though
this may seem counter to human factors principles, it is noteworthy that the “help” key
available to subjects in a pilot experiment with the older Predict system was never used.
Apparently this type of PTG system is easily understood and used after receiving brief
introductory instructions. RK-button, on the other hand, includes a help facility listing
available commands and their functions—most of which are related to line-buffer-editing
meta-tasks (e.g. delete word).

5 Discussion and Conclusions

How much assistance does the Reactive Keyboard actually provide? The answer depends on
the user’s range of residual communication abilities and the environment they are working in.
Evaluating adaptive PTG systems is extremely difficult and formal user interface experiments
have not yet been conducted. Further studies could perhaps determine such things as
optimal menu display and selection feedback strategies. However, these are likely to vary

5 DISCUSSION AND CONCLUSIONS 16

greatly with individual users and the nature of their disability, and this reduces the utility
of formal evaluation.

For example, a good typist may find the Reactive Keyboard a hindrance in any environ-
ment where a full keyboard is available. However, it might prove invaluable as an occasional
text generation facility in an (otherwise) keyboard-less graphics interface. A moderate to
poor typist—or a physically limited one—may find RK-button worthwhile for mundane
command input, but too visually distracting or awkward for general text generation. A
person with no keyboard experience such as a young child, or someone who cannot use
a standard keyboard efficiently such as a high-level quadraplegic, might find RK-pointer
indispensable as a writing aid.

Of all potential users, those with severe physical limitations and communication disabil-
ities stand to gain the most from the Reactive Keyboard. Certain individuals within this
user group will find it a valuable time- and energy-saving enhancement to (or replacement
for) their standard communication aid when writing or accessing computer systems.

5.1 Comments From Two Disabled Users

Two physically disabled students at the University of Calgary currently use RK-button as
their standard command interface. Their combined daily experience amounts to approxi-
mately three years. One user types with one partially paralyzed hand and uses the system
for entering commands and electronic mail. He estimates that over a two-year period, it has
provided assistance on over thirty thousand host system commands, averaging 10 predicted
characters/command, and writes:

The Reactive Keyboard has dramatically changed the way I use computers. I
now use much longer, more descriptive, file names than I otherwise would have
without its reliable recall and typing assistance. I also rely completely on RK-
button to remember such things as electronic mail addresses and long complex
command-line sequences. Life on-line would just not be the same without it.

The other user has a progressive neuro-muscular disorder and is extremely slow and

otherwise unable to write. He uses RK-button as a general command interface and writing
aid.

Ifind the Reactive Keyboard to be an extremely beneficial tool for typing. Since
I have severe neurological damage in my hands, it seems to cut the time I spend
coding manyfold. To illustrate this, I need only inform you how I mailed John
this letter. All that was required was my typing “ma”, after which time it
predicted “il darragh~J”. So, I was able to type and enter a command normally
requiring thirteen keystrokes in but three! This saves much time since it is rather
difficult for me to access some keys on the board. It must be remembered that
both my hands and fingers move slowly and inaccurately.

5.2 Ideal Technology

The Reactive Keyboard is adaptable to a wide range of technologies. The ideal is an im-
plementation resident in the user’s personal workstation from which the local operating

5 DISCUSSION AND CONCLUSIONS 17

system and other host computers can be accessed. Fully transparent to the local worksta-
tion, it would perhaps constitute a plug-in card complete with LTM, microprocessor, and
prediction display software. Though RK-button would not involve any special display-space
considerations, RK-pointer would have to integrate into the workstation’s window system
to construct and update its prompting display. Certain cases might require a separate
prompting display to eliminate display space conflicts. For example, a 8 x 25 character flat
panel display, plugged into the Reactive Keyboard’s add-on card, could be positioned near
the standard display. The precise configuration would have to depend on the user’s input
device and a number of other implementation-specific factors.

5.3 Summary

The Reactive Keyboard combines and exploits many PTG concepts and represents a consid-
erable advance over earlier systems. Table 1 summarizes its major advantages and short-
comings. The attention given to both the predictive modeling technique and user interface
issues results in a synergy that is unprecedented in communication aid design. The Reactive
Keyboard seems to have great potential to enhance the ease and rate of communication for
physically limited people.

Acknowledgements

This research has been supported by the Natural Sciences and Engineering Research Council
of Canada and by the Alberta Heritage Foundation for Medical Research. We would like
to acknowledge the enthusiastic support of David Hill throughout the work.

18

References

Arnott, J.L., Pickering, J.A., Swiffin, A.L., and Battison, M. (1984) ‘‘An adaptive
and predictive communication aid for the disabled exploits the redundancy in
natural language” Proc 2nd International Conference on Rehabilitation
Engineering, 349-350, June.

Baletsa, G.S., Foulds, R.A., and Crochetiere, W. (1976) ‘“‘Design parameters of an
intelligent communication device’® 29th Annual Conference on Engineering in
Medicine and Biology, 371, Boston, MA, November.

Baletsa, G.S. (1977) ‘“‘Anticipatory communication’ Masters Thesis, Engineering,
Tufts New England Medical Center, Medford, MA, July.

Bell, T.C., Cleary, J.G., and Witten, LH. (in press) Text compression. Prentice Hall,
Englewood Cliffs, NJ.

Buhr, P. and Holte, R. (1981) ‘‘Some considerations in the design of communication
aids for the severely physically disabled’’ Medical and Biological Engineering
and Computing, 19, 725-733.

Cleary, J.G. and Witten, LH. (1984) ‘‘Data compression using adaptive coding and
partial string matching” IEEE Trans Communications, COM-32 (4) 396-402,
April.

Colby, K.M., Christinaz, D.U., Parkison, R.C., and Tiedemann, M. (1982)
“‘Predicting word-expressions to increase output rates of speech prostheses used
in communication disorders’’ Proc IEEE International Conference on Acoustics,
Speech and Signal Processing, 751-754.

Colby, K.M. (1984) “‘Intelligent speech and memory prostheses’> ACM SIGCAPH
Newsletter (34), Spring.

Cover, T.M. and King, R.C. (1978) ‘A convergent gambling estimate of the entropy
of English’’ IEEE Trans Information Theory, IT-24 (4) 413-421, July.

Damerau, F.J. (1971) ‘‘Markov models and linguistic theory: an experimental study
of a model of English’’ Janua Linguarum (95).

19

Darragh, 1.J., Witten, LH., and Cleary, J.G. (1983) ‘‘Adaptive text compression to
enhance a modem’’ Research Report 83/132/21, Computer Science Department,
University of Calgary.

Darragh, JJ. (1988) ‘‘Adaptive predictive text generation and the Reactive
Keyboard’”> MSc Thesis, Department of Computer Science, University of

Calgary.

Dunn-Rankin (1978) ‘“The visual characteristics of words’’ Scientific American, 238
(1) 122-130, January.

Foley, J.D. and Wallace, V.L. (1974) ‘“The art of natural graphic man-machine
communication’’ Proc Institute of Electrical and Electronic Engineers, 62 (4)
462-471, April.

Foulds, R.A., Baletsa, B.S., and Crochetiere, W.J. (1975) ‘‘The effectiveness of
language redundancy in non-verbal communication”” Proc Conference on
Devices and Systems for the Disabled, 82-86.

Gibler, C.D. (1981) ‘‘Linguistic and human performance considerations in the design
of an anticipatory communication aid”” PhD Thesis, Northwestern University,
Evanston, Illinois, June.

Gibler, C.D. and Childress, D.S. (1982) ‘‘Language anticipation with a computer
based scanning aid’’ Proc IEEE Computer Society Workshop on Computing to
Aid the Handicapped, 11-15, Charlottesville, Virginia, November.

Greenberg, S. (1984) ‘“User modeling in interactive computer systems’’ MSc Thesis,
Computer Science Department, University of Calgary.

Heckathorne, C.W., Doubler, J.A., and Childress, D.S. (1980) ‘‘Experience with
microprocessor-based aids for disabled people’” Proc IEEE Computer Society

Workshop on Applications of Personal Computing to Aid the Handicapped, 53-
56, April.

Heckathorne, C.W. and Childress, D.S. (1983) ‘‘Applying anticipatory text selection
in a writing aid for people with severe motor impairment’’ IEEE Micro, 17-23,
June.

Kucera, H. and Francis, W.N. (1967) Computational analysis of present-day
American English. Brown University Press, Providence Rhode Island.

20

Miller, G.A. (1956) ‘‘The magical number seven, plus or minus two: some limits on
our capacity for processing information”’ Psychological Review, 63 (2) 81-97,
March.

Morasso, P., Pesno, M., Suetta, G.P., and Tagliasco, V. (1979) “‘Towards
standardization of communication and control systems of motor impaired
people’’ Medical and Biological Engineering, 17, 481-488.

Nelson, P.J., Korba, L.W., and Park, G.C. (1984) ‘‘Evolution of the MOD keyboard
system’’ Proc IEEE Computer Society 3rd Annual Workshop on Computing to
Aid the Handicapped, 3-10.

Nooteboom, S.G. (1981) ‘‘Lexical retrieval from fragments of spoken words:
beginnings vs endings’* Journal of Phonetics, 9, 407-424.

Pickering, J.A. and Stevens, G.C. (1984) ‘“The physically handicapped and work
related computing: towards interface intelligence’” Proc 2nd International
Conference on Rehabilitation Engineering, 126-127, June.

Ring, N.D. (1980) *‘Communication aids for the speech impaired’” in The use of
technology in the care of elderly and the disabled: tools for living, edited by
Bray, J. and Wright, S., pp 79-82. Greenwood Press, Westport, Connecticut.

Rosen, M.J. and Goodenough-Trepagnier, C. (1982) ‘‘Communication systems for
the nonvocal handicapped: practice and prospects’ Engineering in Medicine and
Biology Magazine, 31-35, December.

Salthouse, T.A. (1984) ““The skill of typing”* Scientific American, 250 (2) 128-135,
February.

Shannon, C.E. (1951) ‘‘Prediction and entropy of printed English’> Bell System
Technical J, 50-64, January.

Suen, C.Y. (1979) *‘n-gram statistics for natural language understanding and text
processing’’ IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-1 (2)
164-172, April.

Thomas, A. (1981) ‘‘Communication devices for the nonvocal disabled’’ IEEE
Computer, 25-30, January.

Vanderheiden, G.C. (1984) ““The spectrum of communication technology needs of
individuals with communication impairments’’ In extension course handout,
Personal Computers for the Handicapped, University of Alberta, May, adapted
from *‘Non-conversational communication technology needs of individuals with

5 DISCUSSION AND CONCLUSIONS 22

List of Tables

Table 1 Reactive Keyboard—advantages and disadvantages

List of Figures

Figure 1 Components of a communication aid (after Buhr & Holte, 1981)

Figure 2 Predictive message composition (after Rosen & Goodenough-Trepagnier, 1982)
Figure 3 Example partial-match tree LTM structure

Figure 4 Reactive Keyboard menu and feedback

Figure 5 Example initial menu item letter generation (after Foulds et al., 1975)

5 DISCUSSION AND CONCLUSIONS

DD DODDODDDD DDODDDPDDD DDDDDDD

Advantages

Simple user interface is easy to learn; one operation mode.
Adaptable to diverse users, computers and environments.
Reduces typing errors and recovery time.

Maximizes motor ability of users with low activity tolerance.
Speeds users whose input rate is dominated by movement time.
Complete transparency to host system; runs on minis/micros.
Works in harmony with os level amplification/abbreviations.

RK’s keyboard emulation is adaptable to most input devices.
Concatenated predictions are based on adaptive frequencies.
Combination PTG predicts chars/words/fragments/phrases.
Exploits sub-word fragments and trans-word redundancies.
The selection set presentation not bound to LTM’s token set.
Works with natural/artificial language; alphabet independent.
Automatic modeling; no explicit language usage evaluation.

Prediction technique uses lower n if higher n model not yet formed.
Priming can be chosen according to text type to be entered.

No limit on priming source type or size; context specific.

Proven LTM prediction efficiency; text compression results.
Multiple LTM global contexts; separate or simultaneous LTM.
Amplification reduces Cost (sel/word); possibility of Cost < 1.
Acceleration reduces Length (stroke/sel) speeding input.

(ONONONORORO,

Disadvantages

Constant visual demand and dependency; visual discontinuity.
Display space is commandeered; control code display awkward.
Additional metadialogue required to control user interface.
Constant change; large dynamic LTM is basically unlearnable.
Can generate predictions that were not in the input stream.
Recency information is discarded; time is largely ignored.

Table 1: Reactive Keyboard—advantages and disadvantages

23

Prompting
Device

Selection
Algorithm

Qutput
Devices

Figure 1

1] ”|||
|
! Prediction Rules "y,

| I
IH Selection | Likely -l Current - ' |’|
Ill Algorithm Element Contex ST l

|

ty T
I"'”lllmumnu||mu|n|||nm|l”

g !
s 1
” 5” gty |||
. [—1 "
Intended . | Message Changing El|" | Prediction | ||
Message | Decomposition Display = I Rules <1"
E ‘ Mt !
{ Selection .| Motor Stroke Motor Selection _| Message
Element Encoding [Sequence” | Decoding | Element Synthesis
User E SVStem Message

Figure 2

n Context TO#BE#OR#NO "T#T" ?

o

root (unlabeled) (match at n=2 predicts [0])
1 " # B—E—N—O R—T
| [T |V
2 "T" B—N—O—T E # O R—T—# # [0O]—#
O 2 R T (R I S I B
3 "#T" E O R # O T # # B N # T
L A
4 "THT" 4 # # O R # H T E O B

(maximum n=4, nodes in alpha. order, # = "space")

Figure 3

Composing: “prediction is generated.”

<context> <prediction>

The text for this figure was|new menu length is

generated using the Reactive set of the men
Keyboard primed with the items are disp
text of Section 4.5 of this display and th
thesis (excluding tables and Iprediction is |
figures) . length 1s one N
generation is

Once an item/extent is sel-
ected, the text is inserted <select>
into the text buffer and Py
a new [prediction is |

qcontext> <prediction>

(BEFORE)

(Meta-Dialogue Menu)

Host Text Buffer Prompting Device

<context> <prediction>

The text for this figure was| is made. *J
generated using the Reactive on 1is
Keyboard primed with the currentRy unde
text of Section 4.5 of this required® in th
thesis (excluding tables and directly tied
figures). easily impleme
quoted in the
Once an item/extent is sel-
ected, the text is inserted

into the text buffer and
a new prediction is Eeneratl

<context> <prediction>

(AFTER)

(Meta-Dialogue Menu)

Figure 4

n Context Alternative Predictions / Initial Letters

1 “"#ETAOINS_D_HRLUC_)FMWYPGBVKX
J QZ

 EROAL#IUTPSHYMWNEFG

P> EORLYAIS]

2
3
4 “APP’ ERLYAOIE
4

i3/2/11 ERLYAOIiSi# UTPHMWNEFGIDCB VKX
- JaQz

(maximum n=4, letters in freq. order, # = “space”)

Figure 5

