THE UNIVERSITY OF CALGARY

Discrete Mechanics of Granular Matter

by

Dmitri Gavrilov

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE

STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE CROSS-DISCIPLINARY DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

and

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1999

© Dmitri Gavrilov 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

39§ Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada _
Your Ng Votre référance
Our fig Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-47891-2

ABSTRACT

A discrete model of granular type materials is presented in this dissertation. The model
has three submodels: the Molecular Dynamics model, the Quasi-Static Model and the
Muitibody Dynamics model. Each of the submodels is a valid granular material model
with its own applicability limits. By combining the three submodels, a unique model with
a very wide range of applicability is obtained. The model can adapt to dynamic changes

in the granular system by “morphing” into the most applicable submodel.

The Multibody Dynamics model is presented first, together with the underlying equations
and algorithms. The application of this model to the simulation of a shaker ball mill is

presented. Two grinding models, a statistical and an analytical, are also presented.

Then, the Quasi-Static model is presented. The original Recursive Inverse Matrix
Algorithm (RIMA) that enables the inverse stiffness matrix of a granular system to be
maintained dynamically is presented. It is then shown how the model handles local
instabilities in the system, such as slips and micro-avalanches. The application of the

Quasi-Static model to the simulation of a silo is presented.

Finally, the unified model based on the original Multibody Dynamics approach is
presented. The model contains the Molecular Dynamics and Quasi-Static models as
submodels and uses them to represent various parts of the granular system depending on
the current conditions. The application of the unified model to the simulation of hopper

flow is presented.

iii

ACKNOWLEDGEMENTS

I gratefully acknowledge the support, guidance and encouragement that I received from
my supervisor, Dr. Oleg Vinogradov, throughout the course of my studies. I thank him
for careful reading, valuable suggestions and helpful discussions of my dissertation. I
would like to thank my co-supervisor, Dr. Jon Rokne, for his help, advice and

€ncouragement.

I am thankful for the financial support in the form of scholarships from the Killam
Foundation, Pan-Canadian Petroleum Corporation and Robert B. Paugh Foundation.

Finally, my special thanks to my son, Andrei, for giving me inspiration and motivation to
explore. And my very special thanks to my wife, Marina Gavrilova, for her love and

support. It is to her that I dedicate my dissertation.

iv

TABLE OF CONTENTS

APPIOVAL PAGE ..ottt et e e e e s ee e e e ee e ee e, i
ADSITACL ...ttt ee e ee e st e e eeeees e eee s s e e e me e e i
ACKNOWIEAZEMENLScooieenrnieieeeeeieeee et eem e e iv
Table Of CONENS ..o e v
LSt Of FIGUIES ..o et ix
Chapter 1. INtTOQUCHONoooveieeeieieeceeeeeeeeeeet et e e ee e e 1
1.1. Computer simulation as a virtual experimentation toolcceoeeveeveeeoevenio . 1
1.2. Computer simulation of granular materialscooooooooooeoeeeeeee 5
1.3. TRESIS CONUENL ...ttt e eeee e e 7
Chapter 2. Preliminaries and reVIewooceueuememeueueeioeeeeeeeeeeeeeeeeeeeee e 9
2.1. Definition of a granular material...........ccoooveioveeemeeoieeeeeeeeeeeeeeeeeeeeeeeeeee 9
2.2. Existing approaches to granular materials simulations..................ccoeoveoeeeeuvooo 10
2.2.1. Continuum-based models............ccueeumeommeeiomiieeeeeeeeeeeeeeeeeeeeeee 11
2.2.2. Finite element method (FEM) modelscoooveeoemmeomoeoeeeeeeeeee 14
2.2.3. Cellular-automata modelscooeeeeeueeomeiiiieeeeeee e 17
2.2.4. Molecular dynamics modelscooueeememeememieieeeieeeeeeeeeeeeeeeeeeeeeeeeee 18
2.2.5. Distinct element method (DEM) MOdElSooommnmmeeeeeeoeeeeeeeeeeeeeeee 19

2.3. Suggested approach — morphing modelscoooueoeeieeiemeeeeeeeeeeeeeeeeen 21
Chapter 3. Molecular Dynamics Modelcoceveuerieeeeriioeeeeeeeeeeee e e 24
3.1. System structure in the MD modelc.oeveemeeiemininieeeeeeeeeeeeee e 26
3.2, Laws Of MIGUONooiimiiieeceeeeee ettt e e e e e e ee e seeeeeeso 28
3.2.1. Constant force fieldconmeeeueemeieeeeeieeee e eeee e 28
3.2.2. Variable force fieldooouooeeieeieeieeeeeeeeeeeee e 29

3.3. Collision detection €QUALIONSceveemeeeeueetereetetereeieeeeeeeemeeeeeeeeeeeeemeeeeeeesese s 30
3.3.1. Collision detection between two disks (SPheres)c.oooeeveeeeeeeeeeeeeeenannnn., 31
3.3.2. Collision detection between a disk (sphere) and a line (plane) segment 32

3.4, COlliSION JAWS............eiiieee ettt et ee e e e e es e e seesereea 33
3.5. General simulation algOrithim...........coceoueiemiieueeeeeeieeeeeceeee e ene s 35
3.5.1. Discrete event-driven SIMUIAONoeeuemiieiieeeeeeeeee oo 35
3.5.2. PrediCt-trajectory EVENLcceceueemeieueeieeeeteeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseemeens 36
3.5.3. COIlSION @VENLoeeeiereeeeeeeeeeeereeeet e eeeeeee e e eeeem e e e eneeeeene e 38
3.5.4. TIMESLEP SEIECHON.........c.eeveereeieieceeeeteeeee ettt e e e e ee e e ees e s 38

3.6. Application — shaker ball mill [Gavrilov et. al. 99]ocoovmoeeeeeeeeeeeeeeeennn. 39

v

3.6.1. Problem definmition...........oooeeeeeeeeeieeiieeeee e 41

3.6.2. Statistical grinding mModelcccoeoimimiiiiiiiieeeeeeeeeeeeeeeeeee 42
3.6.3. Analytical grinding model............cocoooiiiiiiiiimieieeeeeeeeeeeeeeeeeeee 47
3.6.4. Numerical XPerimentsc.co.oceemmrreminieieieeeeeeeeeeeeeseee e 50
3.6.5. ValIdAtioN...........o.oiiiei et 51
3.7, CONCIUSIONS ...ttt ee e e e e e e e e e 54
Chapter 4. Quasi-Static MOMEN...........oceiemrueieieieeieee e 55
4.1 INOAUCHUON ...t e e e et ee e e e 56
4.2. Recursive Inverse Matrix Algorithm [Gavrilov and Vinogradov 97a].................. 57
4.2.1. Element attachment Case Oc.cooeeeuvmiomiumineeeeeeeeeeeeeeeeeeeees e 58
4.2.2. Element attachment case [........c.cocooiiiiiiiiiiioeieeeeeeeeeeeeeeeeeeee 59
4.2.3. Element attachment CaSe 2cc.coceecemmmimnmncieeeeee oo 60
4.2.4. Element attachment CaS€ 3coceoiommiuiniiieeneeeeeeeeeeeeeeeeeeeeee e 61
4.3. Cluster as an equivalent beam SYSIEM...............oc.oooeeeeeeeoeeeeeeeeeeeeeeeeeeeeeoo 62
4.4. Algorithm desSCriPtioncccooiieiiiiitieeeeeeeee e 64
4.4.1. Computation of stresses in HNKSoooomieeemoeeeeeeeeeeeeeeeeeeeeee 65
4.5. Slides and topology Chan@esccooieieiuimieieeeeeeeeeeee e 66
4.5.1. Detection of connections and diScOnNectionsccoeeeeeeeeosremeveeen.n. 67
4.5.2. Slide detection and aNAlYSisccecceemeuriiiueieeeeceee e 67
4.5.3. Dependent tOpolOogy ChaNEESccccceummimmiuiemieieieeeeeeeee e 69
4.6. Limitations of the quasi-static model....................ccoooeoeeieeeeeeeeeeeeeeeee 72
4.7. Application — silo simulation [Gavrilov and Vinogradov 99]ccocovennn....... 72
4.7.1. Problem defInition........c.cooeieeiiieeietceeeeeee e e 75
4.7.2. Numerical €XPEriMENtScc.coceveeriemmiitiieeeeeeeee e oot ees e 78
4.7.3. ValdAUON ...ttt e e e e e e e e 82
4.8. Parallel implementation of RIMA.......ccccooooimiimiiiieeeeeeeeeeeeeeeeeeeeeeeee e 83
4.8.1. Data SLOTAZE........eorneeeeiieeeeeeeesteee et e e e e eeeeaeeeeemeeeeeseme e 84
A.B.2.CaS€ 0.ttt et et e e n e enon 85
B.8.3.CASC et e e v e e e et e s er e et eon 85
B.8.4.CASE 2 ...ttt e s e e et r e s e s 86
B.8.5.CASE 3 ...ttt e e e et en et e e eeen 86
4.8.6. Numerical eXPErimentsc...coceceetememieieieeieeeee e eeeeeeeeeeeeeeeeesese e 87
4.9. CONCIUSIONScoeiiieineeeecetee ettt ee e s s e s eseee et eas e e es s 88
Chapter 5. Multibody dynamics Model.........c.oeouueueeiueniinceeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 89
5.1. Hierarchical Sraphsc.c.coooeeeieietnneeiteeeieeeee e eees e 90
5.1.1. Hierarchical graph definitionc.cccooviiiniiiiiiieceeeee e 91
5.1.2. Basic primitives on hierarchical graphscocoeeeevemeoeeeeeeeeenn 94
5.1.2.1. FindMemberContainingccovweueueeeieereeeeeeeeeeeeeeeeeeeeeeeeeseseeesessonn, 94

5. 1.2, 2. DEPth ..ttt ettt s e e 94
5.1.2.3. FindLoweStCOMMONOWIETccormemeeeerenrereeeeeeeseeeeeeeresereeseseoas 95

vi

5. 12,5 GIOUP ettt et e e 96
5.0.2.6. UDGIOUD et 97

5.2. General SYSLEImM SUCHUTEouereereeeeeeeeeeceeeeeeeeceeeeeeese e 98
5.3. General simulation algorithm..................ccoooooomoeeeoeeeeoo 100
5.3.1. FindConnectedGroup routine...............ceueeeemeeemeceeeseeeeeeeeeooeeoeeooeoo. 101
5.3.2. FINACIUSIETS TOUUMNEc.eeoeeeeeteeeeeeeeeeeeeeeeeeeeee e 101
5.3.3. FINdQRBS TOUHNEoonneeeitinineeeeeceee et 102
5.3.4. Predict-trajectory type €VENLS.coueeeumeeeemeeeemeeeeeeeeseoeeeeoeeoeeeooo. 103
5.3.4.1. Predict-trajectory event for CIUSIETSc.oeoeeemmmememeoeeeeoeeo 103
5.3.4.2. Analyze-internal-forces event for QRBs.........c.ccooooooooooooooo 105
5.3.4.3. Predict-trajectory event for moving boundaries..................................... 105
5.3.5. LINK @VEMES ..ottt ettt e 106
5.3.5.1. InSert-lnK €VeNntocoooommimiiemieieeeeeeeeeeeeeeeeeeeeeeee e 106
5.3.5.2. Remove-linkK @VeNtcoouomiemiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeo, 107
5.3.5.3. SHP-HNK ©VENL ...t 108
5.3.5.4. Grip-linK €VeNtco.oooomimimmimieeeeeeeee e 109
5.3.5.5. Stabilize-linK @VeNtoovvioiiiieieeeeeeeee e, 109
5.3.6. SYSIEIM EVEMS ...ttt et eeee e e e 109
5.3.6.1. ViSUQNIZE @VENL........cooiiieinininieeeeeeeeeeeee e 109
5.3.6.2. LOG-SIAtE EVENLc.eeiriteeieeeceee ettt ee e 110
5.3.6.3. FiNiSh @VENU ..o 110
5.3.6.4. Add-body €VENL.....c.oomnommiieeeeeeeeeeeeeeeeeeeeeeeee e 110
5.3.6.5. Collision-detection-optimizer eVent...............ocuouewomereoeneooeeeeeeeo 110

SA BOGIES.....eeeee ettt e 111
5.4.1. BOAY PrOPEILIEScoviuiteeeeeeceeeeeereee et e e 111
5.4.2. RigidBOdy PIOPEIHESoovmeeeeeeeeeeeeeeee e 112
5.4.3. DiSK PrOPETLIESccoevmirrrerieeteeeeeeeeeeeeeete et eeeee e ee e 112
3.5. LADKS ettt ettt et e 113
5.5.1. LinK PrOPEIUIESeveiinireeeeeece ettt 113
5.5.2. LinK MOeneeiectiiieee et 115
5.6. CIUSLETSoneeeceeecceec ettt ettt ete s es e e e e 119
5.6. 1 DEFINIION ..ottt eee e 119
5.6.2. LaWs Of MOUOMoccoumiminmiereeeeeeceeee et 120
5.6.3. Numerical solution of the ODE SYStemcooeeeeemmmeueeeeeeeoeeeeeeeo. 123
5.6.4. TImMESIEP SEIECHON. ..o e 126
5.7. Quasi-Rigid BOGIESc.cemmmrmetieeeeeeeeeeeeeeeeeeeeee e, 127
5.7.1. Definition of Quasi-Rigid BodY...........ccoueieeemeeeoeeeereoeeeeoeoeeoeeoeeeeoeon 127
5.7.2. Non-slipping link modelc.cocuemmimemieieeieeeeeeee e, 128
5.7.3. Graph-theoretical properties of QRBScc.cueeeceeemeeeeeeeeeeeeeeeeeeeo, 129
5.7.4. QRB deteCtion.........cocimimineeeeeeee et eesee e e e e 132
5.7.5. QRB tEMPIALES ...ttt et es e eees e s esees s ereas 134

5.7.6. Dynamic maintenance algorithms..................oooooeeeoeeoeeee 137

5.7.7. FOrces in QRBSooooiueieeeiieeeeeeeeeee e e 139
5.7.7.1. RIMA-based force computation.................o.oooeeeeeeemeeeoeemeeoeooooo 140
5.7.7.2. Conjugate Gradient iterative methodcooeveeoeoeeeeeo 140
5.7.7.3. Comparison of RIMA and CG methodseoveeemeeemeeeeeoooooo 141
5.7.7.4. Selecting which method to USe.................oooeeeeeeeeeeeeeeeo 145

5.7.8. Free-flowing QRBSceoemiueeuieieieeeeeeeeeeeeee e 145

5.7.9. QRB stiffness COMPULALIONccecemermrrmminieeeeeeeeeeeeeeeeeeeeeeeeeeeeee oo 148

5.8. SYSIBIM ettt ettt et e e e 149

5.8.1. Description of the Systerm ObJECtoeeeeeeemeeeeeeeeeeeeeeeeeo 149

5.8.2. Dynamic creation and deletion of bodies................ccoooveeeeei 150
5.8.2.1. Dynamic creation of BOAIESoueeeememeeeeeeeeeeeeeeeeeeeeeeeoooo 151
5.8.2.2. Dynamic deletion of BOAIESc.voeeeeceeeeeeeeeeeeeeeeeeeeeeeeeo 152

5.8.3. Input/output, statistics and state lOgging...............ooweeeeeemeeeeomememooo 152

5.8.4. EXIENAl OICESonvenrenieieeeeeeiteeee e e 153

5.8.5. Collision detection OPtIMUZALIONooveemeeeeeeeeeeeeeeeeeeeeseeooo 155

5.9. Program archit€CtUreco.veeermeeeeeeeeeeeeeeeeee e 156
5.10. Application — hOPPEr flOWc..omvreeieeeieeeeeeeeeeeeeeeeeee e 158

5.10.1. Problem desCriptioneococeeeeeeeueemeeioeeeeeeeeeeeeeeeeeeeeeeee e 159

5.10.2. Numerical @XPErimentsc.eoueuremiucueemeeeeeeeeeeeeeeeeeseeeeeeeeseooooooo 160

5.10.3. Validation.......c..o.oouiimiieieeee et 168

5. 11 CONCIUSIONS ...t e e 170
Chapter 6. Conclusions and future work directions..................ooooveeveveoeeeeoe 171
REFEIENCES ..oeeeeee et e e e e e 89

viii

LIST OF FIGURES

Figure 2.1. The ‘g-model’ with two neighbors.ccoeooemimeoeeeeeeeeeeeeeee 11
Figure 2.2. Three-neighbor configuration.c.oveeeevemeoeeeeeeeeeeeeee e 12
Figure 2.3. A granular system (a) and the corresponding FE model (b).......c.ooonn.......... 15
Figure 3.1. Shakerball mill..............cocoooiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 26
Figure 3.2. Billiard Simulation.c...o.oiveioeieieiieeeeeeeeee e 26
Figure 3.3. Linear spline trajectory interpolation.coooeoeeeceeeeeeoeeeeeeeeeeeeoon 30
Figure 3.4. The distance between two disks (SPheres).eeemeeeeeeeeee e, 31
Figure 3.5. The distance between a disk (sphere) and a line (plane).cccconnnnnnen, 32
Figure 3.6. All possible collisions have to be scheduled.occoeveeeeeee 37
Figure 3.7. Infinite loop in @a MD Simulation.coooememeeemeoeeeeeeeeeeeeeeeeeeeeeeoo 39
Figure 3.8. An illustrative example of the graph describing the grinding process. 43
Figure 3.9. The grinding VOIUMIE.cooommemiee 45
Figure 3.10. Effect of collision on redistribution of particles in baskets. 47
Figure 3.11. Energy dissipation vs. amplitude (f =52.6H2). «eeeemeeeeeeeeeeeeeeeeeeeo 50
Figure 3.12. Energy dissipation vs. frequency of vibrations (A =10.9mm). 51
Figure 3.13. Distribution of velocities in an ideal gas model.oooeeeeeeeeeoeerrnn. 52
Figure 3.14. Particle radii distribution after 24 hours of milling.c.coeoeeveeeeeen....... 53
Figure 4.1. New element attachment cases.c.cooceeeoeememeeeoeeeeeeeeeeeeeeeeeeeeeeoeeoo 58
Figure 4.2. Slide in @ K.o.ooomiminiieeeeeeeeeeeeeeeeeeeee e 68
Figure 4.3. Dependent topological Changes.ccooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeseo. 69
Figure 4.4. Infinite sequence of SLAES. «.............ocoovomeemeeeeeeeeeeeeeeeeee e 72
Figure 4.5. A silo with 500 Particles.o.ooveimemeieeeieeeeeee e 76
Figure 4.6. A new particle is connected by two HinKs.c.eoeeemeeeeeeeeeeeeeeeeeeeeeee 78
Figure 4.7. Final stress distributions.c.oovoueoeooemoeeeeeeeeee e 79
Figure 4.8. Slides occurred after a new particle (marked in black) has been added......... 80
Figure 4.9. Irregular CONfIGUIALION.cooviviueeeeceeeeeeeeeeeeee e 80
Figure 4.10. Energy dissipated due to Slides.o.ooemeeoeeemeeeeeeeeeeeeeeeeeeee 81
Figure 4.11. Silo Wall PrESSUTE.oveemeeieeeeeceeeeeeeeeeeeeeeee e 82
Figure 4.12. Distribution of rows among slave processes.oowoceeeveeeeeereornnenrsenn.. 84
Figure 4.13. sendRoW(QL, P) PIMILIVE.eememeeeeeeeeeeeeeee oo eeeseesees oo, 84
Figure 4.14. Case O MatrixX UPAate.cooememomeemeeeeeeeeeeeeeeee e 85
Figure 4.15. Case I MatrixX UPAALE.cooovevemeeeeenieceeeeeee e ses s 86
Figure 4.16. Case 2 MatrixX update.coeueeeeimeereerereeeeeeeeeeeeeeeeeeeee e eeee e eees e 86
Figure 4.17. Case 3 matrix UPAte.o.oeueeeemimeeeeeeeeeeeeeeee e eseseees e 87
Figure 4.18. Parallel RIMA Performance.c.ooomueeeueereeeeeeeeeeeeeeeeeeeesseesessessssone. 87
Figure 5.1. Example of a hierarchical graph.cco.oooeueiueeoemeceeeeeeeeeeeeeeeeeeereeenrnn. 91
Figure 5.2. Illustration to the definition of a hierarchical graph.cccovueeeeveveenn.... 92
Figure 5.3. The IoWeSt COMMON OWRET.............o.oeeeeeeeeeeeeeeeeeeeeeeeeeeee oo 93
Figure 5.4. Group and Ungroup primitives.ceeooeevoeeremeeeeeeeeeeeeeeeeeeeeeeeererenon 96

ix

Figure 5.5. An example of a free and a fixed QRB.........oocooommmormoooeeeeeeeeee 99

Figure 5.6. Basic QRB temPIates.oc.coioieimmmmmmeeeeeeeieeeeeeeeee e e 102
Figure 5.7. QRB detection process and the corresponding H-graph transformations. ... 103
Figure 5.8. Removing a link from a CIUSEEr.ouiemomeeeeeeeeeeeeeeeeeeeee 107
Figure 5.9. Removing a link from a QRB.....ccccooouommimimiieeeeeeeeeeeeeeeeeeeeeee 108
Figure 5.10. Body class dia@ram.cccoooeomueiomimeiieeeeeeeeeeeeeeeeeeeeeeeeeee 111
Figure 5.11. The link coordinate system and the global coordinate system. 114
Figure 5.12. The link MOdel.c.oooiiiiiiieieeeieeeeeeeeee e 115

Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.16.
Figure 5.17.
Figure 5.18.
Figure 5.19.
Figure 5.20.
Figure 5.21.
Figure 5.22.
Figure 5.23.
Figure 5.24.

Figure 5.25.
Figure 5.26.
Figure 5.27.
Figure 5.28.
Figure 5.29.
Figure 5.30.
Figure 5.31.
Figure 5.32.
Figure 5.33.
Figure 5.34.
Figure 5.35.
Figure 5.36.
Figure 5.37.
Figure 5.38.
Figure 5.39.
Figure 5.40.
Figure 5.41.
Figure 5.42.
Figure 5.43.
Figure 5.44.
Figure 5.45.

Relative tangential displacement computation.ocooeeevemenreerennn.... 116
Examples of CIUSEETS.c.coeeiceeeeeeeeee e, 119

Multiple clusters connected to the same fixed body............ccccoveeeernnnn.c... 120
Lagrangian formulation of the equation of motion.coeoevevevveeeno... 121
Timestep SElection.oo vt 126
Examples of Quasi-Rigid Bodies.cooeommomeoeeeeoeeeeeeeeeen, 128
NON-SHPPINg LNK.oveoeeee e 128
Overconstrained SYSEEM...........oovueummurmruemeereeeeeeeeeeeeeeeeee et e e e e 130
Property 5.1 is not a sufficient condition................ccooeveeeeeeeeeeeeeeenennnn. 131
Examples of irregular configurations.oooooeveueemeneeeeeeeeeennn. 131
Basic QRB templates.cocooimmmmmmiieeieece e 134
A Q template, fi =8 o 135
Building a template with 5-faces.c.coveviuiieiieoeeeeeeeeeeeen 135
A QRB template obtained from a graph with 5-faces.ccoccerveeeenen..... 135
Attaching 4-faces on top of each other.................oooooioiiiieieieeiaen. 136
AdAINg @ 5-faCC....c.eeomieeee e 136
A 5-face only QRB template.oooo.o.oiuieeiiiieeeeeeeeeeeeeeeeeeeeen 137
Disintegrating a QRB.ooeeeeeeeee e 138
Removing a redundant link from a QRB..............cocoovoeeeeeeeeeereenn. 138
Combining tWo iNVerse mMatriCes.c.oeeeoeeeeecoeeeeoeeeeeeeeeeereeeeeennen 140
“Closing of a bridge” configuration.c.c.cooeoeemeeeeeeeeneeeenenn. 142
Internal stress computation time.oooevomereeeieiiieceneeeeeeeeeeeeeeeeenenns 142
RIMA matrix maintenance overhead....................cccoooeveveecneeeeeeeannnn. 143
Number of iterations in CG method.c.c.ovoveoivemeeeeeeeeeeeeennnn.. 144
“Grounding” a free QRB.coooiieeee e 147
Link between two QRBS........ooniiiiiimiieiieieeeeeeeeeeeeeeeeeeee e 148
Pipe flow Simulation.coccoiiieiiniieeeeeeeeee e 150
ADSUaction Jayers. ..ottt ene e 157
A hopper with 500 Particles............ccoomuiioiemieieeeeeeceeeece e 159
HOPPer BEOMELry. ..ot 160
Initial configurations for the monosized and polysized datasets. 161
Average discharge rate, monosized configuration..............ccccceeveeenen...... 162

162

Average discharge rate, polysized configuration............c.ccceeveeeeveornenenn...

Figure 5.46. Jam in the polysized configuration.coeeeoevoooeeeo 163
Figure 5.47. Effective event rate, monosized configuration.c.........._. 164
Figure 5.48. Effective event rate, polysized configuration.o.o.o..o.o. 164
Figure 5.49. Event processing rate, monosized configuration.o.oooooo....__. 165
Figure 5.50. Event processing rate, polysized configuration.oo.ooo. 165
Figure 5.51. Last stages of the simulation, monosized configuration............................. 166
Figure 5.52. Simulation efficiency, monosized configuration.ocoooovoooooo. 167
Figure 5.53. Simulation efficiency, polysized configuration.ocoovooooooio 167
Figure 5.54. Energy flow, monosized configuration.oooooooooooo 168
Figure 5.55. Energy flow, polysized configuration.oooovooovooooo 168
Figure 5.56. Alternating flow, monosized configuration. 169
Figure 5.57. Alternating flow, polysized configuration.o....o................ 170

xi

CHAPTER 1. INTRODUCTION

1.1. Computer simulation as a virtual experimentation tool

Computer simulation is an extremely powerful tool, which is used in both research and
industry applications. Before computers were introduced, physical experimentation was
the primary tool available to researchers to test their theories and hypotheses. It is
through experimentation that the first laws of physics, such as the law of gravitation,
were discovered. Experimentation was also used by engineers, when they were testing

various designs and materials for building machines and devices.

Experimentation was often a difficult, expensive and even dangerous practice. This is the
main reason why people started to come up with various rules and algorithms, which
would allow them predicting the outcome of an experiment for a given set of initial
conditions without actually performing the experiment. These rules and algorithms
gradually evolved into some generic formulas or principles, which became known as
laws of physics. Discovering such laws has become one of the primary objectives of

scientific research.

Experimentation always will be used as a major tool used by scientists and enginesrs. It is
considered as an ultimate approach to validate a discovered law, proposed theory or
design. The main advantage of this approach is that it is usually very close to practice, i.e.
to the final environment, where the law or design will be practically utilized. Also,
experimentation does not usually require introduction of any hypotheses, constraints or

models in addition to the one being tested.

The disadvantages of the approach include such factors as the cost of building the
experimental equipment (considering that in many cases it will become useless or even
destroyed during the experiment), time factor (some experiments must run for a
prolonged period of time), as well as other factors. The main disadvantage of the

approach is that it usually requires introduction of special measurement devices into the

2

system being tested. These devices are “foreign” to the system and their presence may
falsify the results of the experiment. Another problem is that sometimes the parameters of
interest simply can not be measured directly either because of the extreme range of the
parameter values (such as the temperature at the core of a nuclear reactor), or because of
the very small scale of the parameter values (such as the interaction between molecules of
a gas). To measure such parameters, certain implicit methods are used. This, however,
introduces additional inaccuracy into the measurement. In addition, a theory or a law
allowing the interpretation of the implicitly measured parameter values must be

developed and tested.

An alternative to the experimentation approach is the logical inference approach. This
approach is the direct opposite to experimentation, because it is completely theoretical
(paper-based). The approach assumes a set of axioms, or generally accepted facts and
rules, and tries to logically infer a new law (or a theorem) based on the axioms and some
generic induction rules. Very often, this approach uses a set of previously obtained and
confirmed laws and theories. The sequence of inference steps leading to the statement of

a law (or theorem) is called the proof.

The logical inference approach is the primary discovery tool in many areas, mathematics
being the key example. The main advantage of the approach is that the results obtained
are usually absolutely precise (as opposed to the approximately measured
experimentation results), well defined, logically sound and concise. The main
disadvantage of the approach is that it can be extremely difficult or even impossible to
obtain a proof for a law. Using logical inference to prove theories is an art, i.e. in most
cases it can not be standardized or automated. Still, logical inference remains the only
approach, which ultimately yields 100% correct results (unless, of course, there is an

error in the proof).

Logical inference and experimentation approaches were often used hand in hand, when
an experiment would give a hint to an existence of a fundamental law, which was later

proven logically with the logical inference approach.

3

Simulation is the third approach available to test a theory or a design. It combines the
advantages (and disadvantages) of both experimentation and logical inference.
Simulation can be generically considered as numerical experimentation, where a numeric
(virtual) experiment (as opposed to a physical experiment) is performed either on paper
or on a computer. Simulation was known before computers were introduced, but it
became widely used only after computers started to appear in scientific and industry
institutions. The reason for this is that simulation usually involves very large amounts of
computation, which is practically impossible to perform without a computer. This is why

the terms *‘simulation” and “computer simulation” are often used as synonyms.

Similarly to the logical inference approach, a simulation experiment is based on a set of
axioms and generally accepted laws, which constitute the basis of the simulation model.
Another part of the simulation model is a set of assumptions and constraints defining the
applicability of the model. The final part of a simulation model is the set of evolution
laws, which define how the model evolves or changes during the virtual experiment. The

evolution laws are usually based on some known laws.

A simulation experiment is conducted very much like a practical experiment. An initial
set of parameters is entered into the model. Then, the evolution laws are applied to the
parameters in an iterative manner and the parameters of the model are being observed as

they evolve.

A simulation model usually has to be validated. This is achieved by comparing the
simulation results to the experimental results obtained for a given initial parameter set.
Another validation technique is related to observing certain behaviors in the simulated
system, which are usually found in physical systems (such as conformance to certain
physical laws). One of the widely used validation techniques is based on various
conservation principles (energy conservation, for example). The conservation principles
are often used by the simulation model itself to control the numerical errors and, possibly,

to correct the system evolution paths. Another validation technique is comparing the

4

results produced by different simulation models. This validation technique is, however,

somewhat limited and, thus, can not be used alone to validate a model.

The main advantage of the simulation approach is that it is usually virtual, i.e. it is not
required to build any experimental equipment (except for acquiring the computer
hardware, which can however be considered as ultimately universal experimental
equipment). Another major advantage of virtual experimentation is that many of the
parameters of interest may be readily available in the model or can be computed based on
the model parameters. This might include the parameters, which are impossible to
measure in a physical experiment. In some cases, simulation can obtain a result much
faster than a practical experiment would take. This is based on the fact that simulation is
usually based on the notion of “virtual time”, which can be artificially sped up or slowed

down.

The main disadvantage of the simulation approach is that the validity of the experimental
results is heavily dependent on the quality of the simulation model being used. It might
be easy to define a realistic and correct simulation model, but it is much more
complicated to define the applicability limits of this model. Also, it often happens that
after an attractive model has been defined, it starts to be used in many different
applications without considering if it is suited for them. This might lead to falsification of
simulation results. The construction of a good simulation model is also complicated by
the fact that it might be impossible to know in advance which of the factors influencing
the model are important and which are not important, because this can only be found out

as a result of simulation and validation.

Another problem related to the simulation approach is the fact that a simulation model
usually includes a multitude of external parameters, which affect the performance and
sometimes the validity of the model. Some of these parameters can be related to physical
quantities (such as stiffness or damping coefficients), and others are completely
computation-related (such as various tolerance values or the integration timestep).

Ultimately, the validity of the simulation experiment depends on the proper selection of

5

these values. Very often, as a simulation model is being validated, the acceptable values
for the parameters are being obtained by trial-and-error. Such a validation experiment
does, indeed, prove that the model is correct. The practical applicability of the model is
however limited to the cases that are similar to the one for which the validation was
performed, because for a different set of initial conditions the values of model parameters
must be updated. If a simulation model does not include guidelines (or, at least,
recommendations) for parameter selection, this might render the model completely

unusable.

The simulation approach becomes inefficient compared to practical experimentation
when the simulated system is very complex or when very strict requirements are imposed
on the accuracy of computations. For example, the simulations of granular materials are
generally constrained by the total number of particles in the system. Even on a
supercomputer, simulating several thousands of particles might become a quite time-
consuming task (see, for example, [Potapov and Campbell 96]). This is in contrast to
practical experimentation, where working with billions of sand particles is not a problem.
Because of this computational efficiency limitation, many researchers are working on
parallelizing the simulation algorithms, which is an obvious direction towards improving
the simulation efficiency [Baezner et. al. 94]. The other direction is, of course, getting a

faster computer, but this might be limited by technological and financial constraints.

1.2. Computer simulation of granular materials

Granular materials include such physical systems as sand, flowing ice, grain in an
elevator or on a transporter, coal in a hopper, and many others. Applications related to
granular materials are found in many areas, including mechanical engineering, chemical
engineering, civil engineering, manufacturing, mining, agriculture and many others

[Rapaport 95].

Granular matter is a very interesting physical medium, which possesses the qualities of

solids, liquids and sometimes even gases [Rapaport 95]. Another extremely interesting

6

quality of granular systems is their chaotic nature, which is related to the fact that they
consist of many elements and, thus, their behavior is defined as a combination of
behaviors of smaller elements. Therefore, the laws describing the granular matter often
have a statistical or “average” meaning (such as the pressure on a silo wall, which is
averaged among many particle contacts in a unit area). It has also been noted that certain
types of granular systems exhibit the “self-organized criticality” (SOC) phenomenon
([Bak et. al. 88, Carreras et. al. 96, Dendy and Helander 97]). The main property of a

SOC system is that it is a stochastic system that does not have a temporal or spatial scale.

Because of the complexity of a granular system, explicit laws defining the system can not
be obtained. Thus, a number of different theories and models have been introduced,
ranging from continuum-based models to cellular automata models (see Section 2.2
below for a detailed review). Different approaches provide various degrees of accuracy

and have various applicability domains.

Because of the nature of a granular system, it is difficult to measure the internal
properties of the system experimentally. A granular system is one of the systems, where
the behavior is altered by the introduction of external objects [Claudin and Bouchaud 97].
Thus, only external or implicit measurements are possible. Therefore, simulation is
considered to be a very attractive approach to investigate granular systems. It might,
however, be quite difficult to validate the simulation results because the original system’s
parameters are difficult to measure. Thus, a simulation model can be validated by

comparing it to another simulation model.

In this work, an attempt was made to design and develop a universal granular material
model, which can be used in a wide range of application domains, from quasi-static
systems (such as stable sand or silos), to intermediate systems (such as flowing ice or
hoppers), to dynamic systems (such as shakers and fluidized beds). The model adjusts to
varying conditions and “morphs” to an appropriate state as they change. The model has

an adjustable degree of accuracy, so that a more accurate result can be obtained if desired

7

(at the expense of increased simulation time). The model can therefore be used as a

measurement tool, which can be used for grading and comparison with other models.

1.3. Thesis content
This thesis is structured as follows.

The first chapter introduces the concept of computer simulation in comparison to other
scientific discovery methods and describes the general problem of granular material

simulation.

The second chapter gives a detailed definition of the granular-type material. It reviews
the existing approaches to granular material modeling and compares them. It also
introduces the general schema of the proposed universal simulation model, which

consists of three submodels.

The third chapter considers the first submodel, called the Molecular Dynamics (MD)
model. This model is well suited for high-energy granular systems, such as shaker ball
mills. A detailed description of the model is given, followed by a discussion of the
applicability domain. Finally, an application example (shaker ball mill simulation) is

presented.

The fourth chapter considers the second submodel, called the Quasi-Static (QS) model.
This model is best suited for simulating low-energy granular systems, whose topology
does not change too much throughout the simulation. Examples of such models are sand
heaps and silos. The model is based on the original Recursive Inverse Matrix Algorithm
(RIMA). A detailed description of the model is given, followed by a discussion of the

applicability domain and an application example (silo simulation).

The fifth chapter considers the unified model, called the Multibody Dynamics (MBD)
model. This model contains the MD and QS models as its submodels. The MBD model

consists of several layers of objects. A detailed description of objects at each level is

8

given together with the underlying simulation and physical models. The chapter is

concluded with an application example (hopper flow).

Finally, conclusions are presented and future work is discussed.

CHAPTER 2. PRELIMINARIES AND REVIEW

This chapter introduces the concept of a granular-type material and discusses its
properties. A brief review of the existing approaches to granular materials simulation is
presented. Finally, the proposed universal simulation model is introduced and briefly
described.

2.1. Definition of a granular material

A granular material (granular-type material, granular matter) can be defined as a system
consisting of a number of particles interacting with each other. A granular material
confined within some boundaries is called a granular system. The particles move acted
upon by an external force field and interact with each other as well as with the
boundaries. These interactions are of contact-type only, i.e. if two objects do not touch
each other, then they do not affect each other directly. Two particles, which are not in
direct contact can still however affect each other through a connected chain of other

particles.

Examples of granular materials include sand, flowing ice, avalanches, grain, coal, etc.
Granular materials are used in such industrial systems as grain elevators, hoppers, bins,
shaker and drum mills. Many problems in civil engineering (building bridges that are able
to withstand ice pressure, designing avalanche fortifications), hydrotransportation
(moving sand, coal and such through pipelines), chemical engineering applications, and

many others, also involve granular materials.

The above definition of granular-type material excludes certain kinds of interaction
between particles, such as gravitation forces between molecules or planets. Note that such
systems can still be modeled with the suggested approach, however, they will not be

included into consideration in this thesis.

Note that for some sophisticated external force field models the particles can affect each

other indirectly by disturbing the external force field. For example, a model of a turbulent

10

flow might consider how the motion of particles affects the turbulence of the flow. Thus,
the motion of one particle might affect the motion of other particles without a direct

contact.

Certain applications may consider moving boundaries. An example of such an application
is a shaker ball mill (see Chapter 3 for a detailed description). Generally speaking, the
motion of the boundaries of the system may or may not be affected by the motion of

particles.

In this thesis, only dry granular materials are considered. It is assumed that the contacts
between objects are one-sided, i.e. the objects never “stick” to each other. Again, systems
with adhesive particle properties can be successfully simulated using the proposed model.

However, this will not be considered here.

The number of particles in a granular system can range from Jjust a few (e.g. 16 balls in a
billiard simulation) to thousands or even millions (in a sand or avalanche simulation).
Simulating systems with a very large number of particles can be quite computationally
expensive. With the proposed model, it is also possible to simulate a system consisting of
a single particle (such as a cylinder rolling down an inclined plane), but such a system

could hardly be regarded as a granular system.

2.2. Existing approaches to granular materials simulations

This section will describe the existing approaches that can be applied to simulation of

granular materials. These can be categorized into the following six groups:
® continuum-based models;
¢ finite-element method (FEM) models;
¢ cellular-automata models;
e molecular dynamics models;

e distinct element method (DEM) models and

11

e the multibody dynamics model.

These models have different applicability domains and different accuracy levels.
Generally speaking, the simulation efficiency decreases as the accuracy increases.
Similarly, the simulation efficiency decreases as the number of objects in the system

increases.

2.2.1. Continuum-based models

Continuum-based models were the first models ever developed for granular matter. One
of the first works on this subject was Janssen’s theory of load distribution in silos
{Janssen 1895]). Various continuum-based models were being developed ever since
[Brown and Richard 66, Ragneau and Aribert 93, Bouchaud et. al. 95, Claudin and
Bouchaud 98, Bouchaud and Cates 98, Wang and Hutter 99, Matuttis and Schinner 99].

A continuum-based model represents the granular material as a continuous medium and
tries to obtain the differential equations governing the stress field in this medium. In the
simplest scalar case, the equations can be obtained as follows [Bouchaud et. al. 98]:

Consider the particle configuration presented in the Figure 2.1.

SO0 0
guli=1.j-1) m,/,_(.u,,-n;)
q_(i, JVV a.Gi) '
O | O

vJ

Figure 2.1. The ‘g-model’ with two neighbors.

It is assumed that each particle is connected to two particles underneath it. Assume that
only the vertical component of the stress (the weight) is taken into account. Then the total

force acting in a vertical direction on the middle particle can be written as

12
wli, j)=wg +q, (i1, j=Dwli—1, j=1)+q_(i+1, j (i +1, j—1), Q.1

where w, is the weight of a particle and g+ (¢, j) are the “transmission” coefficients that

give the fraction of the weight, which the particle (i, j) transmits to its neighbors below.
The mass conservation equation implies that g_(i, j)+q¢, (i, j)=1. In the simplest case,

when the particles have the same radii and the packing lattice is uniform,
.. R |
q-(l,1)=q+(l,1)=§-

To take into account random particle sizes and irregularities of packing, q.(i, j) can be
selected as independent random variables (subject to the above constraint). This model is
similar to a diffusion equation with the random convection term [Bouchaud et. al. 98].

Now consider a similar model in 2 dimensions [Bouchaud et. al. 98] (see Figure 2.2).
The top particle transmits a fraction of its weight p<1 to its downward neighbor, and

the remaining weight is equally split among the particles on the left and right.

Figure 2.2. Three-neighbor configuration.

The force distribution equations in 2 dimensions can be written as

Foli)= (Fli=L =0+ Fli+1,j-1)

+W(F_\,(i— Li=D)+F,(i+1,j-))!

2.2)

13

.. .. 1-
Fy(l,j)= w, +pF_‘.(t,J—l)+Tp(Fy(1—l,j—l)+ F),(l-i-l,j—l))
1 (2.3)

Fli-Lj=-1)+F.(i+1,j-1)),
2tamv((i-Lji-D)+F(i+1,j-1))

+

where y is the angle between particles (see Figure 2.2). Taking the continuum limit on

the equations (2.2) and (2.3), the following differential equations can be obtained.

iFv +_a_Fx =p,
dy °~ ox 2.4)
d d ’

—F,+ci—F, =0,
ay * co ox °

where ¢ =(1- p)tan? ¢ and p is a constant. Note that by eliminating one variable (say,
F.), these equations can be converted to a wave equation for the other variable

(assuming that y coordinate is taken as time):

2 2
Gy +ct 9 F, =0, 2.5)

82y ¥ 3%x

where ¢, represents the speed of the wave. Thus, it can be seen that the stress propagates

along a fixed direction ¢ = arctanc,, where in the general case pEVY.

A number of more sophisticated models can be derived using similar techniques (see
[Herrmann et. al. 98] for a review). The models can take into account friction between
particles (i.e. the maximum ratio between the normal and tangential stress components)
and other parameters, try to model slips (or contact failures) between particles and
introduce stochastic properties into the equations. Indeed, experiments show that the
stress distribution in a granular system can vary in a significant range for a series of
identical physical experiments [Brown and Richard 66], i.e. the stress distribution

depends on the history of the construction of a granular system.

14

In order to obtain a closed system of equations defining the stress distribution based on
the physical properties of the material, it is required to introduce an additional postulate,
called the constitutive equation. One of the recent areas of research is concerned with the
finding of an appropriate constitutive equation. One of the approaches is based on the
“fixed principal axis” (FPA) constitutive equation [Wittmer et. al. 97]. The numerical
results obtained using this constitutive equation are very close to the experimental ones.
The approach is based on the assumption that the stress paths in a sandpile are oriented
along a fixed direction, and that the orientation of the stress is fixed at the time of particle

burial, i.e. it does not change under further loading [Bouchaud et. al. 98].

The continuum-based models are attractive because they can model large granular
systems. With the recent advances in the area, the models show a very good
correspondence with the experimental results. While being quite accurate in the average
case, a continuum model fails to describe the micro-mechanical properties of a granular
material (i.e. the stresses acting on a specific particle), which can be of interest in many
applications. Also, a continuum model can become quite complex, if dynamic changes
have to be considered (such as unloading a hopper). As the model becomes more and
more complex, more assumptions and parameters are introduced into the system, which,
in turn, makes the model less usable. The introduction of additional assumptions also

limits the applicability domain of the model.

Generally speaking, a continuum model “locks” the system in a predetermined range of
states that is defined by the model. Thus, continuum models fail to describe local
instabilities or global jamming, because the physical granular system undergoes a state
transformation, which must be reflected by a corresponding transformation of the

numerical model.

2.2.2. Finite element method (FEM) models

The finite element method models are based on a well-known approach, which considers

a material as a system of interconnected elements (finite elements) [Bickford 95]. Each

15

element’s properties are described by a system of stress-strain relationships. The finite
element method has been around for quite a while and a range of public domain as well
as commercial software packages are available. This makes the method quite attractive
for granulates simulations [Wan et. al. 90, Li and Bagster 93, Briscoe et. al. 93, Tejchman
and Gudehus 93, Ooi and She 97, Meng et. al. 97, Wan and Guo 98, Tejchman 98,
Nuebel and Karcher 98, Karlsson et. al. 98].

The essence of the method can be described as follows. Consider a simple granular

system consisting of two disks and a box (see Figure 2.3a).

\"Tﬁ

——

(a) (b)

Figure 2.3. A granular system (a) and the corresponding FE model (b).

In the simplest case, each of the contacts between either the disks or a disk and a box can
be modeled by an elastic two-node element (see Figure 2.3b). Thus, a system with two
free and three fixed nodes is obtained. Each of the elements is described by one
longitudinal and one transversal (normal and tangential) stiffness. It is assumed that the
element is only subject to small deformations. Then the relationship between the
displacements D of the element nodes and the force S in the element can be expressed in

a linear form:

c -C
S= 2.6
[_ c C]D, 2.6)

where S = (slx,slv,szjc,sZv)T is the vector of forces acting on the left and right nodes of

the element, D=(d,x,dl).,d2x,d2_‘.)T is the vector of nodes displacements,

16

C=Tg CoT,. where C; is a diagonal stiffness matrix and T, is the coordinate

transformation matrix (from local to global):

K 0 —si
c, =|%n LT, = C?S(p sin @ , 2.7
0 K, sin@ cos®
where K, and K are the normal and tangential stiffnesses of the element, respectively,

and @ is the angle of the element.

Now, it is possible to obtain a system of linear equations defining the displacements of
the free nodes based on the values of the external forces acting on these nodes (such as
gravity forces). These equations are obtained from the equilibrium condition: the sum of
all forces acting on a free node (including the external force and the reaction forces in
links) must be equal to zero. When these equations are coupled with the equations
constraining the displacements of the fixed nodes, a complete linear system is obtained.
By solving the system, one obtains the values of free node displacements for given values
of external forces. Then, by analyzing node displacements, it is possible to obtain the

values for the stresses acting in the internal links of the system.

More advanced implementations of FEM approach may consider particles as rigid bodies
rather than modeling them by point nodes connected by links. See [Herrmann et. al. 98]

for a review of various FEM-based simulation approaches.

The FEM-based approach works very well for static particle configurations, where the
connectivity between particles (the system topology) does not change. Once a slip or a
disconnection is detected in a link, it is necessary to regenerate the system and solve it
again for the new configuration. This becomes quite computationally expensive when the
system is large or when it undergoes many topological changes (such as in hopper

unloading).

17

2.2.3. Cellular-automata models

Cellular-automata models constitute an interesting class of granular models, which is
somewhat different from the rest of the granular models. These models consider a
granular system as a cellular automaton, i.e. a state machine that evolves by certain rules.
These rules are usually quite simple, which allows effective modeling of very large
systems. The evolution rules however are usually defined as certain heuristics, i.e. they
are not obtained from the known laws of mechanics, but rather are based on some real-
life observations and considerations. Thus, the cellular-automata models are best suited
for investigating phenomenological behaviors occurring in granular systems, but not for
determining the actual values of stress distribution fields or parameters of particle motion
and interaction. Examples of cellular-automata models can be found in [Claudin and
Bouchaud 97, Goles et. al. 98, Ktitarev and Wolf 98].

An interesting application of a cellular-automata model was used by [Bak et. al. 88] to
describe the self-organized criticality (SOC) phenomenon. A sandpile is modeled by a

simple lattice, where at each lattice site (i, j) an integer variable z;; is defined. The value

of the variable z can represent the amount of sand at this site as well as the “slope” of
the pile at this site relative to its neighboring sites. The sand is added to the sandpile at
random sites near to the middle of the pile. If the slope at some site exceeds some
predetermined value, say four, then this site will topple, such that four particles are

removed from this site and placed at its neighboring sites:
de“’ = Z"j _4’

new __
Zislj = Zivj T,

new
Zif; = zi,j +1, (2.8)

_new __
Zij+1 = Zijq

new __
Zij—1 = Ziju 1,

18

where the subscript new indicates the updated value of the variable. The redistribution is

performed simultaneously at all points, where the stability condition Z;; <4 is violated.

Note that if toppling occurs at a boundary of the lattice, then the particles are simply
removed from the system (they fall off the boundary).

Obviously, placing a single particle may involve formation of avalanches, which can
differ in size. The sizes of avalanches were measured in the numerical experiments and it
appeared that this sandpile model exposed the self-organized criticality phenomenon. The
avalanches were occurring at random intervals of time and had random sizes both varying
in a maximum possible range, i.e. the system had neither temporal nor spatial scales (see

[Bak et. al. 88] for a more detailed description of the experiment and a discussion).

2.2.4. Molecular dynamics models

The molecular dynamics (MD) approach is a popular approach in granulates simulations.
It is best suited for high-energy systems, where the particles move with high velocities,
collide with each other and with the boundaries, and no long-lasting contacts are formed
between particles. Examples of such systems include gas dynamics, shaker ball mills,
fluidized beds and similar systems. Descriptions of various MD models can be found in

[Rapaport 95, Xie 97, Luding and McNamara 98, Fuji et. al. 98, Gavrilov et. al. 99].

The MD approach assumes that a granular system comprises a number of hard particles,
which move independently in some external force field. The particles can collide with
each other as well as with the boundaries. These collisions are assumed to be
instantaneous and one-to-one only. As a result of a collision, the velocities of the particles
participating in the collision are changed instantly according to a collision law. When the
particles are represented by disks or spheres, a simple collision law based on the
restitution coefficient can be obtained (see Chapter 3 below for a more detailed

description).

19

The simulations are usually carried on using a discrete-event simulation scheme, where
the collisions between objects are regarded as events, which are placed in a priority queue
in sorted order according to their timestamps. The events are retrieved from the event
queue one-by-one and processed by the simulation engine. Processing of an event
(handling a collision) involves updating the current system state and scheduling new

events (checking for collisions with other particles).

The requirement that all collisions are instantaneous and one-to-one only is related to the
fact that a collision involving more than two particles can not be resolved statically in the
general case. Thus, the dynamics of the impact must be considered in order to obtain the

velocities of the particles after the collision.

This requirement places certain limitations on the applicability domain of the MD
models. Indeed, the systems where long lasting contacts are formed among particles can
not be effectively simulated by the MD approach because such a contact is modeled by a
dense sequence of low-velocity collisions, which can essentially bring the simulation to a
halt. Various approaches are suggested to deal with this problem (see, for example
[Luding and McNamara 98]), however, they are generally artificial. Note that in order to
simulate the long-lasting contacts properly, it is required to consider the dynamics of

these contacts, which lies beyond the scope of the MD model.

2.2.5. Distinct element method (DEM) models

The Distinct Element Method (DEM)' was originally introduced in [Cundall and Strack
79]. The method has become the dominant tool in granular materials research due to its
simplicity and ease of implementation. Examples of DEM models in application to

various granular problems can be found in [Ristow and Herrmann 95, Sakaguchi et. al.

' Contrary to the original naming, the method is more commonly referred to as the

Discrete Element Method.

20

93, Hirshfeld et. al. 97, Rong et. al. 97, Potapov and Campbell 98, Zhang and Whiten 98,
Gera et. al. 98, McCarthy and Ottino 98, Kano and Saito 98, Kawaguchi et. al. 98].

The method considers a granular system consisting of a number of particles'. Each
particle is considered separately from other particles. The particles move in an external
force field. At each time step, the positions of all particles are examined and the
overlapping particle pairs are detected. For a pair of disks, the amount of the overlap is

computed as
z ="x,~(t)—xj(t]|—(r,- +r;), 2.9)

where x;(¢) and x ;(r) are the positions of centers of disks and r; and r; are the radii of

the disks. Note that if z >0 then there is no contact between particles.

Each overlap is considered as a contact between particles and a restoring force is applied
to the particles in contact. The magnitude of this restoring force is selected to be
proportional to the maximum value of the overlap. After forces at all overlapping pairs of
particles have been determined, the total forces acting on each particle are computed and
the positions of the particles are updated for the beginning of the next time step under the

assumption that the forces remain constant during this time step:

(t)

x,-(t+At)=x,~(t)+v,-(t)At+ ()Ar vit+Ar)=v, (1) + 2 (2.10)

where x;(r) is the position of the particle, v;(r) is the velocity of the particle, m; is the
mass of the particle, F;(r) is the total force acting on the particle at the beginning of the

timestep and Az is the timestep. The simulation proceeds in this manner until the

specified final time is reached. Note that the simulation is not event-driven, i.e. the

: Generally speaking, the particles can be arbitrarily shaped. The original work [Cundall

and Strack 79] assumed that they are represented by discs.

21

overlaps are not detected immediately, but only at the next time grid-point. Also, in order
to ensure that the energy level in the system does not grow, it is necessary to apply

damping at all contacts.

Originally, the method was developed for quasi-static granular assemblies generally
found in such fields as soil mechanics. Soon the method started to be used in a wide
variety of applications, including high-energy systems. Unfortunately, the method is very
often misused. One of the main assumptions of the method is that “the time step chosen
may be so small that during a single time step disturbances can not propagate from any
disc further than its immediate neighbors” {Cundall and Strack 79]. This assumption can
be easily violated when the particles are moving with high velocities because in this case
the time step must be selected as a very small value, which is quite computationally
expensive. Also, the model has a large number of input parameters, such as the
coefficient of proportionality, which is used to compute restoring forces in contacts, the
damping coefficient, as well as the timestep value. The selection of the timestep proves to

be a crucial task, which affects the validity of a simulation significantly [Vinogradov 99].

2.3. Suggested approach — morphing models

The primary objective of the research described in this thesis was to develop a more
universal model for simulation of granular-type materials. The model is, indeed, a
combination of three models: one is based on the molecular dynamics approach, another
(the Quasi-Static model) is similar to the FEM models, and the third one, which is used to
drive the simulation, is based on the Multibody Dynamics (MBD) approach, first
introduced by Vinogradov [Vinogradov 86a].

The MBD approach provides a numerically stable alternative to the DEM. It treats an
interconnected system of particles (a cluster) as a whole and obtains a numerical solution
of the coupled system of differential equations defining the motion of a cluster. The
approach yields a more accurate solution, and also provides better means of error control.

The MBD approach was originally developed at the University of Calgary and then

22

continually evolved [Vinogradov 86a, Vinogradov and Springer 90, Wierzba and
Vinogradov 91, Vinogradov 92a, Vinogradov 92b, Vinogradov 93, Sun et. al. 94,
Vinogradov and Sun 97). The proposed universal model uses the MBD model as a base
and extends it with the concept of “morphing” models, which allows adjusting

dynamically to the system being simulated.

The three submodels constituting the overall simulation model (the MD, QS and MBD
models) are constantly transforming (morphing) into each other, depending on the state
of the system. The MD model is used to simulate particles that are moving
independently; the Quasi-Static model is used to simulate stable configurations of disks
called the Quasi-Rigid Bodies (QRBs); and the MBD model is used for simulating the
systems in transient states, as well as to drive the simulation. The use of different models
is not exclusive, i.e. the MD model can be used to simulate a subset of the system, while

at the same time the QS and MBD models are used to simulate other parts of the system.

The simulation model is event-driven, which ensures that the contacts between particles,

slips and breaking of contacts are detected and handled immediately as they occur.

The model was implemented in a form of an object-oriented library, consisting of several
layers of objects. This allowed creating a system of interchangeable software
components, which can be easily updated. An example of an independent software
component is the ExternalForceField object, which is used to compute the external
forces acting on a particular body. This object communicates with the rest of the
simulation system via a generic interface. Thus, if a new ExternalForceField object needs
to be introduced, it is done transparently such that the rest of the system does not need to

be changed.

Each of the models was implemented and tested. The results compare favorably with the
experimental results as well as with the theory. A number of papers were published based
on the various aspects of this work [Gavrilov and Vinogradov 94, Gavrilov and

Vinogradov 95, Gavrilov et. al. 95, Gavrilov and Vinogradov 96, Gavrilov et. al. 97,

23

Gavrilov and Vinogradov 97a, Gavrilov and Vinogradov 97b, Gavrilov and Vinogradov
98a, Gavrilov and Vinogradov 98b, Gavrilov et. al. 99, Gavrilov and Vinogradov 99].

24

CHAPTER 3. MOLECULAR DYNAMICS MODEL

The Molecular Dynamics (MD) model is the simplest and most commonly used model
for simulating granular matter. Each particle is considered separately from the rest of the
particles. Particles do not form lasting contacts with each other or with the boundaries.
Interactions between particles and boundaries are limited to instantaneous collisions only.

Between two consecutive collisions a particle is subjected to external forces only.

The model is relatively simple. The differential equations governing the motion of
particles (the equations of motion) are not coupled and can be easily integrated. In some
cases an analytical solution is available, for example, when the external force field is
constant (e.g. the gravitational field). Even when the equations can not be analytically
integrated, a high-precision numerical solution can be obtained at a low computational
cost. It is easy to introduce an error control scheme based on the total energy of the

system.

The interactions between particles are limited to collisions. Since they are considered to
be instantaneous, the forces do not participate in the collision equation. The collision
laws define how the state of the colliding objects changes after the collision. In the MD
model, the collision equations are based solely on energy and momentum conservation

principles.

The MD simulations are usually event-driven. Two main types of events can be
distinguished: the predict-trajectory events and the collision events. The predict-trajectory
events represent time steps in the numerical integration of the equation of motion of a
particle. A collision event is scheduled at times when a collision is detected between a
pair of objects (particle-to-particle or particle-to-boundary collisions). In order to

compute the time of a collision, the collision detection equation has to be solved.

If an analytical solution of the equation of motion is available, then the trajectory of a

particle can be predicted for an infinite period of time. In this case, the predict-trajectory

25

events are only scheduled when the state of a particle is changed unexpectedly, i.e. due to

a collision.

Since the model is relatively simple, it is very popular. A straightforward implementation
of the MD model is an easy programming exercise. Since each particle moves separately
from the other particles and since the interactions are limited to a very close vicinity of
the particle, it is usually possible to parallelize the algorithm based on the spatial
partitioning of the simulation space. Some very large simulation experiments involving
over a billion particles have been performed in distributed computational environments
[Stadler et. al. 97).

The MD model has certain limitations. The main limitation is related to the assumption
that no lasting contacts are formed between the particles and no inter-particle forces are
taken into consideration. If a lasting contact occurs in the simulated system (e.g. a ball is
lying on a horizontal surface), it might bring the simulation to a halt. The contact is
essentially modeled by a sequence of low-velocity collisions between the objects in
contact. These collisions are very close together on the time scale. This effect tends to
slow the simulation down significantly, or even bring it to a complete halt. In order to
move the simulation ahead, artificial corrections can be applied, such as changing
particles’ velocities and/or positions. Such corrections are not justified mechanically and

may lead to falsification of the simulation results.

Another class of applications where the MD model does not work very efficiently is high-
density systems, e.g. densely packed shaker mills. In such systems, collisions are very
frequent and, as a result, the energy is dissipated quite rapidly, which, in turn, might lead

to the formation of lasting contacts.

26

o O
o T
O

é

Figure 3.1. Shaker ball mill.

b
7-‘

‘lo

The MD model has many applications where it works very well. Many high-energy
systems, where the particles move with high velocities can be efficiently simulated. One
of the main areas of application of the MD model is, indeed, molecular dynamics
[Rapaport 95]. Others include chemical applications (fluidized beds) [Kawaguchi et. al.
98, Gera et. al. 98] and ball mills used in mechanical alloying [Gavrilov and Vinogradov
98a, Gavrilov et. al. 99] (see Figure 3.1). One classical application of the MD model is to
the simulation of billiards (see Figure 3.2).

¢ o
.~

Figure 3.2. Billiard simulation.

3.1. System structure in the MD model

In the molecular dynamics model the simulation system includes objects of two types:
particles and boundaries. Particles are most commonly represented by disks or spheres.

Then, the collision detection equations can be solved analytically in many cases. When

27

the particles are represented by more complex shapes, the collision detection equations
can only be resolved numerically, which can be computationally expensive. The

equations of motion and the collision equations become more complicated as well.

Boundaries are usually represented by line segments or planar facets. In some cases,
curvilinear boundaries (such as circular arcs or spherical segments) can be introduced
without complicating the collision detection equations t0o much. Sometimes, it is
necessary to introduce moving boundaries. For example, in shaker ball mill simulations
[Gavrilov and Vinogradov 98a, Gavrilov et. al. 99], the boundaries are subjected to an
oscillatory motion. It is assumed that the motion of boundaries is predefined, i.e. it is not

affected by the collisions.

Assumption 3.1. The collisions between particles and boundaries are assumed to be

central, frictionless and instantaneous. Thus, the following conditions are satisfied:
1) the tangential velocity of particles is conserved during the collision;

2) the rotation of particies does not affect the collision and the angular velocity of

rotation is not changed due to a collision; and

3) the collisions are one-to-one only (i.e. three or more objects never participate in a

collision).

Since the collisions are assumed to be instantaneous, the probability of several collisions
happening simultaneously is zero. In practical implementations, however, several
collisions can occur simultaneously due to round-off errors. In this case, they are
processed in a random order, which is equivalent to an infinitesimal perturbation of

particle positions.

Note that a collision between three or more objects can not be resolved in the MD
framework in the general case (there are more unknowns than equations). In order to
obtain the correct distribution of momentum in such a collision, the dynamics of the

collision has to be considered.

28

3.2. Laws of motion

The equation governing the motion of a particle can be obtained from Newton’s second

law:
.. 1
X =—F(x,1,...), 3.1
m

where x =x(¢) is the position of the particle’s center of mass (the center of the disk or
sphere for circular/spherical particles), m is the particle mass and F(x,z,...) is the

external force field. F and x are either 2-dimensional or 3-dimensional vector functions.
In the general case, the external force field can depend on the position of the particle,
time and other parameters (e.g. the velocity of particle, the particle radius, etc.). Since the
collisions do not affect the angular velocity of the particles, it is not necessary to consider

particle rotation.

In the general case, in order to obtain the trajectory of the particle, the equation of motion
(3.1) has to be numerically integrated. In many applications, however, the force field is
constant. For example, in shaker ball mill simulations, it is the gravitational field

F(x,t,...)=mg , where g is the gravitational constant. In billiard simulation there are no
external forces at all, i.e. F(x,,..)=0. In these and some other cases it is possible to

obtain an analytical solution of the equation of motion.

3.2.1. Constant force field

For the case when the external force field is a constant F(x,z,...)= F, . the solution can be

written as
2
X(1) = Xo+ vo(t-to)+F°—('2_—'Q)—, V()= ¥t)=v, +M, (3.2)
m m

where xo =x(fo) and vy =x(ty) are the position and velocity of particle at the initial

moment of time £y, respectively. Note that when the velocity of a particle changes due to

29

a collision at a moment of time ., the laws of motion (3.2) can be used to predict the
trajectory of the particle for the infinite time interval [r.,+). In fact, the particle will

move along this parabolic (or linear) trajectory only until the next collision.

Note that if the particles move in a gravitational field, their relative velocities are only
linear in respect to time (because the second-degree term cancels out). This means that an
analytical solution for the collision detection equations can be obtained (see Section 3.3

below).

3.2.2. Variable force field

In the general case, the equation of motion (3.1) does not have an analytical solution. It
has to be solved numerically using some integration method [Burden et. al. 78]. Thus, the
solution is obtained as a sequence of values at fixed timesteps. In order to perform
collision detection, the trajectory has to be represented by a continuous curve. It is
possible to use cubic splines or another interpolation to obtain a smooth approximation.
In this case, however, the collision detection equations would add excessive
computational complexity. Instead, linear splines are used to represent the trajectory

during a time interval [ti,t;+l], where #;,, =1, +h and h is the timestep:

x(r; +1)=(1-o)x; +ox;,; v(r; +1~')=ﬁil—h—» 3.3)

where te [O,h], a=—hE, Xx; and x;,, are the solution values obtained by numerical

integration at times f; and ¢;,,, correspondingly. Note that the curve representing the

trajectory is continuous, but not smooth (see Figure 3.3). Indeed, the velocity is kept
constant during the timestep and is changed instantly at the beginning of the next

timestep.

30

Figure 3.3. Linear spline trajectory interpolation.

When the trajectory is approximated by a piecewise-linear function the collision
detection equations can be solved analytically. As in any numerical method, a greater
precision can be achieved by decreasing the value of the timestep h. The accuracy can
not be increased infinitely, however, because of the round-off errors in computations.

3.3. Collision detection equations

In order to detect a collision between a particle P, and an object Q ; (either a particle or a

boundary), the minimal positive root r. of the collision detection equation
d(P.Q;)=0 (3.4)
has to be found (if it exists). Here d (P,-,Q j) denotes the general distance function, which

is defined as

d(P,Q)= min |p-q]. 3.5
(P.Q) i Ql[p q] (3.5)

where ||| denotes the Euclidean norm. Note that the positions of P and Q are changing
with time and, consequently, the distance d(P,Q) is a function of time as well.

In the general case, when the trajectories of P and Q are given by some functions. the

equation (3.4) can only be solved numerically. Moreover, when particles and boundaries

have arbitrary shapes, this problem becomes a minimization problem.

In some cases the collision detection equation can be solved analytically.

31

3.3.1. Collision detection between two disks (spheres)

The distance function (3.5) between two disks (spheres) P and Q can be written as

d(P,0)=|x, - x|~ (r, +r,), (3.6)

r, and r, are the positions of the centers of P and Q and their radii,

where Xpr Xg, 1p

respectively (see Figure 3.4).

d(P.Q)

Figure 3.4. The distance between two disks (spheres).

Assume that the relative velocity v=v p — Vq is a constant. Note that this is the case for

both parabolic trajectories in a gravitational field (Eqn. (3.2)) and linearly interpolated
trajectories (Eqn. (3.3)). Denote the initial relative displacement of disks (spheres) by

X=X,0—Xg0- Then, the collision detection equation (3.4) can be rewritten as

Ix+vel* =r2, G.7)

where r=r, + r, - This is a quadratic equation in ¢, and the solution can be obtained as

ER)
fa=-At 12—"""—2', k:ﬁ‘z'—), (3.8)
M M

where (.;) denotes the scalar product. Note that the quantity A represents the length of
the projection of x onto v.
The minimum positive root of the equation is selected as the collision time t. . If the root

does not exist or if both roots are negative, then P and Q will not collide, i.e. t.=+co.

32

If the relative velocity v is zero, then the solution (3.8) does not apply. In this case,

however, P and Q will not collide as well (note that they do not intersect at the initial
state and do not move relatively to each other). If #, =¢,, then it is assumed that the
collision does not occur, since P and Q just touch each other (i.e. their relative velocity

at the time of the collision is zero).

3.3.2. Collision detection between a disk (sphere) and a line (plane) segment

The distance function (3.5) between a disk (sphere) P=(x p,rp) and a line (plane)
0= (xq,n 7), where x, is a reference point which belongs to Q and n, is the normal to

Q' (see Figure 3.5) can be written as

d(P,Q)=(x,-x,.n,)-r,. (3.9)

Figure 3.5. The distance between a disk (sphere) and a line (plane).
Assume that both P and Q move along parabolic trajectories, i.e.

a,r’ ar’
— P _ 9
xp(t)—xp0+vpot+—2—, xq(t)—xq0+vq0t+—2—, (3.10)

‘o usually represents a boundary. Then n, is selected as a normal to Q which points

out of the boundary.

33

where X0, X0, V0, V40, @ p and a, are the initial positions, initial velocities and the

accelerations of P and Q, respectively.

Then, the collision detection equation (3.4) can be rewritten as

2

x,,+v,,t+a,,£2——r,,=0, @G.11)

where x, = (xpo —xqo,nq), v, = (vpo - vqo,nq) and a, = (a,, —aq,nq), i.e. the problem
is transformed to a one-dimensional parabolic collision detection problem.

If a, =v, =0, then the equation does not have a solution, i.e. t. =+oo (note that P and

Q do not intersect at the initial position and do not move relatively to each other). If

X, =,
a, =0, v, #0, then the collision time r_ is found as 1. =-—2—" (pote that t. >0 only
v’l

if v, <0, i.e. when P moves towards Q).

If a, #0, then the equation has two solutions

fa =—Ai‘/).2-M, A=1n (3.12)
an an

Again, the minimum positive root of the equation is selected as the collision time t.. If
the root does not exist or both roots are negative, then P and Q will not collide, i.e.
t. =+ If 1y =1, then it is assumed that the collision does not occur, since P and Q

Just touch each other (i.e. their relative velocity at the time of the collision is zero).

3.4. Collision laws

Collision laws describe how the velocities of particles change after a collision occurs.
Note that it is assumed that the tangential components of particle velocities conserve in a

collision, i.e. only the normal components of velocities change (see Assumption 3.1).

34

Also recall that the collisions are assumed to be one-to-one only. The collision laws will
be obtained based on two fundamental conservation principles: energy conservation and

momentum conservation.

The energy loss due to a collision can be characterized by the coefficient of restitution €,

0<e<l. Itis defined as

€= [v2 v (3.13)
IVzo ‘Vlol ’

where v;p and v;, i=1,2 are the normal velocities of particles before and after collision,

respectively. When £ =1 the collision is said to be absolutely elastic, i.e. no energy is lost
in the collision. When £=0 the collision is said to be absolutely plastic, i.e. the
maximum possible amount of energy is dissipated. In this case, the normal velocities of
particles become equal after the collision. The values for the restitution coefficients are

determined experimentally for balls made of various materials [Metals 84].

The energy and momentum conservation laws are written as

2 2 2 2
mv msv mvy msy.

Vo , MV _ MyVi 2Y2 L AE, G.14)
2 2 2 2

mvig +myvy =myyv, +ms,v,, (3.15)

respectively, where m;, i =1,2 are the masses of particles and AFE is the energy lost in
the collision.

Solving the system of three equations (3.13), (3.14) and (3.15) for v;, v, and AE, the

following solution is obtained

(v,)z[a-e l—a+e:|(vlo}AE= mym; (1_82)(v20—2v,0)2’ (3.16)

12) a I-a |l vy m; +m,

35

(1+€)m,
ny +ms)

where o =

Note that the above solution was found for the case when two particles collide. The
solution for a particle-to-boundary collision can be obtained by assuming that the
boundary is represented by the second particle, which is assigned an infinite mass

m, =+eo. In this case oo =0 and the solution can be written as

2
1] =V20+8(V20-V,0), AE=ml(l"€2)'(vzo+O), (3.17)

where v, is the velocity of the boundary at the time of the collision. Note that according
to (3.16) v; =vy, i.c. the boundary is unaffected by the collision. If the boundary is

moving then the amount of energy C contributed to the system due to a collision can be

computed as
C=2le20(V20-V|0). (3.18)

Note that this amount can be of either sign.

If particles and/or boundaries made of different materials are present in the system, then

individual restitution coefficients €; can be defined for each pair of objects in the

system.

3.5. General simulation algorithm

The general scheme used for MD simulations is now defined. The simulations are carried
out using the discrete event-driven simulation scheme. The above formulas are used in

computations of particle trajectories and for detecting collisions.

3.5.1. Discrete event-driven simulation

The general algorithm used in discrete event-driven simulations is as follows.

36

initialize event queue:
insert initialization events for objects in the system
insert finish simulation event
while finish simulation event has not been encountered
retrieve the next event from the event queue
process the event:
advance the simulation clock to the time of the event
update system state depending on the type of event
cancel the events that have been invalidated by the update
detect and schedule new events
end (while)
stop

Each event is attributed with the following parameters: time of the event, event type, plus
additional parameters depending on the type of the event (e.g. a collision event contains
references to the colliding objects). The event queue contains a list of events, sorted

according to their time attribute.

The following types of events are used in MD simulations.

3.5.2. Predict-trajectory event

This event is scheduled for each particle individually. If the equations of motion are
numerically integrated and the trajectory is interpolated, then the predict-trajectory events
are scheduled regularly for each timestep. Note that the predict-trajectory events need not
be synchronized for all particles. Therefore, a variable timestep can be introduced, which
depends on the current state of each particle, a procedure, which, in turn, improves the

simulation efficiency.

When the law of motion is given in an explicit form, the predict-trajectory events are only

scheduled after the particle’s state changes due to a collision.

37

The handling of a predict-trajectory event for a particle includes canceling all pending
events scheduled for this particle (since the trajectory is being updated), detecting and
scheduling collisions with other particles and/or boundaries and also scheduling the next

predict-trajectory event (if needed).

Note that when a predict-trajectory event is handled, it is not necessary to advance all of
the objects in the system to the current time (this would be quite computationally
expensive). Indeed, only the object, whose predict-trajectory event is being handled,
needs to be advanced. This has certain implications related to the collision detection
formulas (equations (3.8) and (3.12)). Indeed, a pair of objects being tested for a collision
may not be synchronized at the initial state. This can be overcome by advancing the

second object to the current time before applying the formula.

When a collision detection optimization algorithm [Gavrilova 98] is used, not every pair
of objects is checked for collisions, but only the closest neighbors of the object. Then
only these closest neighbors are advanced to the current time during the collision

detection stage.

When detecting collisions, it is necessary to detect and schedule all possible collisions
with other objects, not the first one only. Consider an example in the Figure 3.6. Assume

that the trajectories are defined by explicit functions (billiard application).

D

& O
Figure 3.6. All possible collisions have to be scheduled.

Assume that a predict-trajectory event for particle A is being handled. Two collisions
involving A can be detected: AB and AC. Clearly, AB is the first collision. Consider what
will happen if the collision AC is left unscheduled. The particle D will collide with the
particle B and the predict-trajectory events will be scheduled for both of them. Assume

38

that neither B nor D will collide with A. Then the collision between 4 and B will be
canceled. The particles A and C will move towards each other unobstructed and will have
to collide eventually. This collision, however, will be missed because no more predict-
trajectory events are scheduled for either A or C and a new collision can only be detected

during handling a predict-trajectory event.

Note that for interpolated trajectories it is usually known when the next predict-trajectory
event will occur for each particle. Then it does not make sense to schedule any collisions
for this particle occurring after the predict-trajectory event because they will be

cancelled.

When a moving boundary is present in the system, it is possible that its motion is
described by a piecewise-defined function as well. In this case, predict-trajectory events
are also scheduled for this boundary. The same rules apply for scheduling collisions and

the following predict-trajectory events.

3.5.3. Collision event

The collision events are attributed with references to two colliding objects. One of them

is necessarily a particle, and the other one may be either a particle or a boundary.

When a collision event is handled, both objects participating in the collision are advanced
to the current time. Then the collision law (equation (3.16) or (3.17)) is applied to update
the current velocity of the particle(s) participating in the collision. Finally, a predict-
trajectory event is scheduled at a current time for each particle participating in the
collision. Note that it is not necessary to cancel any pending events or detect new

collisions because this will be done when the predict-trajectory events will be handled.

3.5.4. Timestep selection

When the laws of motion are not explicitly defined and the trajectories are interpolated,
the selection of a timestep value becomes a critical task. Introducing a timestep that is too

large may bring the simulation to an infinite loop. Consider an example in the Figure 3.7.

39

Q. O O

(a) (b) (c)

Figure 3.7. Infinite loop in a MD simulation.

Assume a collision between a particle and a boundary is being handled. The particle has a
relatively small normal velocity of approach (Figure 3.7a). After the collision is handled,
the particle is assigned a new velocity (Figure 3.7b). A predict-trajectory event is
scheduled for the particle and handled right away (Figure 3.7¢c). The predicted trajectory
is shown in a dashed line in the Figure 3.7c. Note that the predicted particle position is
below the boundary. The parabolic trajectory is interpolated by a straight line and the
velocity is updated such that it points toward the boundary again. The system ended up in
exactly the same state, as it was in the Figure 3.7a. A collision between the particle and
the boundary has to be scheduled at the current time. This brings the system to an infinite
loop: an infinite sequence of events (collision, predict, collision, predict, etc.) is being

processed.

Note that this situation can be dealt with by selecting a smaller timestep. Unfortunately,
such situations can neither be avoided nor predicted. The timestep might need to be
adjusted if an infinite loop is detected (i.e. when the simulation clock does not advance
after a considerably long sequence of events has been processed). Reducing the timestep,

however, might slow the simulation down considerably.

The root of the problem is that a lasting contact is about to be formed between the
particle and the boundary. The MD model is inapplicable in this case, because it can not
handle lasting contacts and tends to represent them by infinite sequences of low-velocity

collisions.

3.6. Application — shaker ball mill [Gavrilov et. al. 99]

The application of the molecular dynamics model is demonstrated by the simulations of

the shaker ball mill, which is used in mechanical alloying.

40

Mechanical alloying has been around since the late 1960’s; the principles are well
established and explained in [Benjamin 70]. Little information currently exists with
respect to the design and efficient operation of grinding equipment for the production of
this material [Metals 84). Commercial ball mills of a number of different types have
been constructed and used, but most design and operating information is obtained by trial
and error. A computer simulation approach can be a powerful tool in studying and

optimizing the grinding processes in shaker ball mills [Gavrilov et. al. 97].

The process of grinding in a shaker ball mill starts when two components in a granular
form are placed in a shaker and ends when the final size of granules of these components
becomes less then some specified level. The event of grinding takes place when a
material particle gets in between the colliding balls. The efficiency of grinding, defined
as the time needed to reduce the size of granules from the original to the final one,
depends on the frequency of shaking, the number and size of balls, and the geometry of
the shaker. The number of balls should be such that their relative density is small
compared to the shaker volume. The toughness of the material to be ground is usually
much smaller than that of the steel balls. During milling the energy supplied to the balls
from the moving walls is transferred to the material particles at each collision, and the
latter results in more particles with refined sizes. Thus the efficiency of milling is
determined by the number of collisions between the balls and the energy released in
collisions. The molecular dynamics model is well suited for simulating the process of
milling. The process of refinement, in terms of number of particles with a reduced size,
can then be deduced based on the rate of collisions. Both the rate of collisions and the

rate of refinement were investigated.

The simulation procedure includes two steps. The first step deals with the determination
of the number of collisions in a specified time for a given set of parameters. These
parameters include shaker geometry (radius, height, and lid configuration: flat or
spherical), number, diameters and materials of balls, and frequency and amplitude of

shaking.

41

The second step deals with the investigation of the grinding process in terms of the
distribution of particle radii during the milling process. Two approaches were developed:
one, based on the random sampling from all possible system states, and another, on the
conservation of mass after each event of collision. The first approach results in a discrete
Monte Carlo simulation model, while the second one in a continuous model. Both
approaches give similar distribution of particle sizes after a specified number of ball

collisions, and compare favorably with the corresponding experimental resullts.

The validity of simulation was confirmed when the optimum parameters were identified
based on numerical experiments so that the efficiency of grinding was increased almost

ten-fold.

3.6.1. Problem definition

The motion of balls inside the shaker ball mill is simulated in a 3-D space. The
simulation system consists of the objects representing the cylinder itself and the balls
moving inside the cylinder. Since the balls move in a gravitational field, their motion is
defined by explicit formulas (equation (3.2), where Fy=mg, m; is the mass of a
particle).

The motion of the cylinder is harmonic in the vertical direction z with an amplitude A
and a frequency f. For simplicity of calculations, it is assumed that the cylinder moves
with constant acceleration during each half-period of oscillations, i.e. along a parabolic

trajectory:

Z(t)=Vot+i;—, 3.19)

where for the first half-period (0<¢t<T/2, T=1/f is the period of vibrations)
a=-32Af, vy=8Af, and for the second half-period (T/2<1<T) a=324f2,
vo =—8Af . This approximation allows computing collision times directly (see equation

(3.17)), while in the case of a sinusoidal form, a numerical scheme would be required.

42

The purpose of the simulations was to investigate the energy-transfer properties of the
system, i.e. how efficient the external energy of shaker vibrations is transformed into the
internal energy of balls inside the shaker. With each collision the lost energy is
transformed into heating the balls as well as grinding. For a ball-to-ball collision this
energy is defined by equation (3.16) and for a ball-to-cylinder collision by equation
(3.17). When a ball collides with the moving lid of the cylinder, the energy is contributed
to the system of moving balls. One part of this energy is spent on Leating the ball and
grinding (equation (3.17)) and another one on changing the kinetic energy of the ball. The
energy contributed to the system as a result of a bali-to-cylinder collision is defined by

equation (3.18).

3.6.2. Statistical grinding model

The results of the simulation obtained using the molecular dynamics model are used to
simulate the grinding process occurring in the shaker ball mill. The objective is to
investigate how the parameters of the ground particles, namely, their radii, are changing

with time.

In a straightforward approach, one could try to simulate the system of material particles
and steel balls as one system in which the number of material particles (modeled by
spheres) grows in time. The split of a material particle takes place every time it is caught
between the two colliding balls. In this scenario, however, the number of particles
becomes so large with time (i.e., one 1-mm particle can be split into one million 0.01-mm
pieces during first seconds of shaking), that it becomes computationally inefficient to
keep track of position and velocity of each particle. In this respect, a statistical model
offers an alternative way of describing the distribution of particle radii during the milling
process.

The random process of grinding can be represented by a directed graph with system states

represented by the vertices and transition states by the edges. Each edge is weighted with

the probability of transition to another state, and the sum of weights of all edges going

43

out of a vertex is always equal to 1. This is demonstrated on a simple example shown in

Figure 3.8, where the numbers indicating the probabilities are given as illustrative.

Figure 3.8. An illustrative example of the graph describing the grinding process.

In this example a single particle in the state SO is transformed into a two-particle system
in the state S/, and then into a three-particle system (different particle sizes) in the state
52, and eventually into a four-particle system in the state S3 (final particle size in this
example). Note that different particle sizes are placed in different “baskets”. In this
example there are only three baskets: By, B; and B,. Thus the initial state SO has 1
particle in the basket By, and no particles in baskets B, and B,. When a collision
occurs, the particle in By may break up into two smaller ones with probability 0.2, and
then the system will move into the state §/ with O particles in basket B, , 2 particles in
basket By, and none in B,. The other possibility is to stay in the same state S0, i.e. the

particle was not involved in the collision. The probability of the latter event is 0.8.

When the system is in the state S/ with 2 particles in basket By, there are three possible
outcomes of a collision. In the first scenario, both particles are broken and moved into the

basket B,. The probability of this is 0.01. With this transition the system is moved into

44

the final state S3, when all particles are in the last basket B,. The second possible
outcome is when only one of two particles in basket By is broken. The probability of this
is 0.18, and with this transition the system moves into the state S2 with 1 particle in
basket B, and 2 particles in basket B,. The third outcome is when no particles are
broken due to a collision, and the system stays in the state S/. The probability of this is
the remaining 0.81. Finally, for the state $2, which has one particle in By, there are two
possible outcomes: one, when the particle is broken (with probability 0.1) and the system
is moved into the final state S3, or, second, when the particle is not broken (with

probability 0.9), and the system stays in the state S2.

The above example represents a graph of all possible outcomes during the grinding
process from the initial to the final state. It is clear that if the initial particle is to be
reduced by many orders of magnitude (e.g. from 4 mm to 1 pm), the graph becomes very
complicated, and the determination of all intermediate states becomes time consuming.
Instead, a random sampling technique can be used to obtain a statistically representative
sample of outcomes after a specified number of transitions from the initial to the final
state. A single simulation run then represents a random path from the initial (50) to the
final state (SN). The probabilities of transition from state to state can be found using the

Monte Carlo simulation technique.

The statistical approach is based on the assumption that the distribution of particles is
uniform in space for each particle size. It is also assumed that the condition for a particle
to be split is associated with the possibility of its location between the colliding balls
within the so-called “grinding volume” (see Figure 3.9, where the grinding volume is

shaded).

45

\/
é
7,

Figure 3.9. The grinding volume.

It follows then from these two assumptions that the probability of a particle of a specific
size r, to be inside the grinding volume is equal to the ratio of this volume V,r to the
total volume occupied by the particles in the shaker V,,,; = Vinaker = Vpans » where Vo0
is the volume of the shaker, and V,,; is the total volume of balls moving inside the

shaker. The grinding volume can be calculated approximately by the following formula

RR, >
V, =d4p—12 2 3.20
& R+R, * 320

where r, is the radius of the particle A, and R, and R, are the radii of two collided
balls.

Then, since it is assumed that the particle can be located at any point of the available
volume V., with equal probability, the probability that the particle A is located inside

the grinding volume is

V
P, =—5_ 3.21)

g"-v

avail

Equation (3.21) is used to calculate the probability of grinding for each particle in the

system. It can be seen that the probability of grinding decreases as the square of particle

46

radius. This is consistent with the experimental fact that the milling rate is greatly

reduced when particles become small (see Sections 3.6.4 and 3.6.5 below).

It is assumed that if a particle with radius ry participates in a coilision, then it is split into

two equal particles with radii 3—:/"? (so that the total volume is conserved). Assuming that

initially all particles have equal radii ry, it is sufficient to keep track only of the number

of particles N; for each of the radii
n=r2™3 i=0.k. (3.22)

Here r; is the minimum particle radius, such that the particles with this radius do not
break into smaller particles anymore. Usually, this radius is about 1 um [Shaw et. al. 93].
As in the example of Figure 3.8, the distribution of particles according to their radii can
be viewed as their placement in the corresponding baskets so that each basket B; holds
particles of radius r;. Initially, all particles have radius rp and are placed into basket Bj.
Denote the number of particles in a basket B; as N;. If a particle from basket B; was
involved in a collision, then one particle is removed from basket B; and two particles are
added into basket B, (see Figure 3.10).

Since all particles in a basket have the same radius, the grinding probabilities are

calculated by the same formula (equation (3.21)). Then, the number of particles from the

same basket involved in the collision is described by the binomial distribution. Thus, the
number N of particles with radius r; participated in a collision is distributed as

N

[

P(Nf = X)=(* }J.-" (1= p; V=, x=0..N;, (3.23)

47

where p; is the grinding probability P, (r;) (see equation (3.21)) for a particular particle

radius r;. Note that the volume required for the number of crashed particles Nf can
exceed the grinding volume Ve, . For the binomial distribution, however, the probability

of such situation decreases with the number of particles.

SO |55 |83

Nin

ooOO

s o° I before collision

(o Me] . .
oOOO oo l after collision

50| o8] | LB

Ni—l N,'+|+2

Figure 3.10. Effect of collision on redistribution of particles in baskets.

In summary, when a collision between two balls takes place, the particles are

redistributed in baskets. For each basket B;, i=0.k -1, a random number of particles
0< N{ < N; involved in the collision is determined, and then N{ is deducted from N;,

and 2N; is added to Ng,;. Nf is a discrete random variable distributed by the binomial
law with parameters (pi,Ni). The process is stopped when all particles are in the last
basket By, i.e. all material is ground. The number of collisions, as well as the distribution

of particle sizes during the grinding, are the objectives of the simulation.

3.6.3. Analytical grinding model

Although the model described above is much more efficient than the analysis of the

complete graph of grinding events, it is still quite slow. In a normal run, the number of

collisions required to grind the material can be as large as 10'2. Since each collision must

48

be handled separately, the run time could be quite long even on a supercomputer. To
solve this problem, a continuous analytical model is introduced, which represents the

average-case behavior of the statistical model.

The analytical model also considers baskets containing balls with the same radii.
However, instead of recording the number of particles in a basket, the total mass of
particles in each basket is considered. Then the incremental mass balance equation for a

single basket is derived, which leads to a differential form of the mass flow equation.

Denote the mass in each basket by X;, i=0.k . Clearly, if a mass of one particle with

]

radius r; is m; (which is proportional to 1;3), then X; = N;m;. Consider how masses of

[
particles in baskets are redistributed after a collision. Since N is a discrete random
variable distributed according to the binomial law with parameters (pi-N;), its mean
value is p;N;, i.e., on average this many particles from basket B; are ground due to a

collision. Then the mass transferred from basket B; into basket B, is
p,-N,-m,- =piXi’ i=0..k—l, (3.24)

The mass transferred from the last basket B, is always zero, since particles in this basket

are not ground any further. Now a differential equation describing the change of mass of
the material in baskets in time will be obtained. Assume that collisions occur in the

system with frequency A. Then during a time interval dr there will be Ad:r collisions.
The mass transferred from basket B; into basket B;,; can be represented as Ap;Xdr. At
the same time, the mass Ap; X, ,dt is transferred into basket B; from basket B;_; for
all i=1..k (no mass is transferred into the first basket By). Then the total change of mass

in basket B; during the time dt is

dX,' = l(p,-_,X,-_, —piX,-)dt yi=l.k-1, (3.25)

49

Basket B, does not have any mass transferred into it, and therefore, dXy =-ApyXod .
The last basket B, does not have any mass transferred out, thus, dX, =Ap, X, _dr.

The resulting differential system describing the average-case behavior of the grinding

process is

X =APX, (3.26)

where X={X,—}T , i=0.k,and

[~ Do 0 0 0 0 0]
Po - D 0 s 0 0 0
O -p p . 0 0 0
P= . R 3.27
0 0 0 — P2 0 0
0 Y 0 Pr-2 — Pk 0
| 0 0 0 0 Pk 0 |
The initial conditions are set as
Xo(0)=M ,and X;(0)=0, i=1.k., (3.28)

This linear differential system has the following analytic solution:

m—| m e-lp,'l
Xn)=M[]p.Y— ,m=0.k. (3.29)
== T1(p;-p:)
Jj=0, j=i

The numerical results (see Sections 3.6.4 and 3.6.5 below) confirm that the continuous
analytical model provides a very good approximation of the discrete statistical model.
Moreover, by the law of large numbers, the average values of statistical model
parameters calculated for a large number of runs converge to the analytical solution.
Equation (3.29) gives an explicit dependence of the outcome of the grinding process on

the system parameters.

50

3.6.4. Numerical experiments

A number of numerical experiments have been made. In the first series of experiments
the effect of the external parameters of the shaker, such as the frequency and amplitude of
vibrations, on the internal parameters, such as the rate of energy dissipation due to the
heating of the balls, the number of collisions, the kinetic energy of the balls, and the rate
of energy flow into the system was investigated. One of the interesting results was that

the dissipation of energy inside the system H is proportional to the amplitude of shaker

vibrations A and to the third degree of frequency f, H ~ Af? (see Figure 3.11 and Figure
3.12, where the following data was used in experiments: 100 steel balls, each of radius

3.2 mm; cylinder: height 103 mm, radius 31.5 mm).

Energy dissipation [J*109sec]
800 LE L] T L J L L) T] 4 ¥

700 |

600 -

500

A L L 1

0 5 10 15 20 25 30 35 40 45 50
Amplitude [mm}

Figure 3.11. Energy dissipation vs. amplitude (f =52.6Hz).

51

Energy dissipation [J*10%sec]

4 LJ L| L} 1 L] T T T Lo Py
3500+ 2
3000 = o -t
2500 .
2000 -
1500 ® 4
1000+ % -
500 ° -
©
L A 1 1 Il 1 — X
10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

Figure 3.12. Energy dissipation vs. frequency of vibrations (A =10.9mm).

The result that the internal milling energy is proportional to the third power of the
operating frequency is consistent with the results of Streletskii [Streletskii 93], however

the linear behavior of the energy with the amplitude is not.

3.6.5. Validation

A model of an ideal gas was constructed to validate the simulation software. The ideal
gas was simulated by a system of perfectly elastic small balls representing molecules of
ideal gas moving inside the motionless cylinder. All collisions were elastic, i.e. there was
no energy loss in the system. Initially the all balls were assigned equal velocities in
random directions. The relationship between the kinetic energy of the balls (which
remains constant), pressure on the walls of the cylinder, and the volume of the cylinder
was investigated. Numerical experiments have shown that the PV =RT gas law is
satisfied. Here P is the pressure of the gas, V is the volume of the cylinder, T is the

temperature of the gas (which is assumed to be proportional to the internal energy of the

52

gas, i.e. the kinetic energy of balls), and R is a constant. This result is of a particular
interest, because this relationship does not depend on the shape of the cylinder, i.e. the

ratio between the height and the radius.

Frequency hystogram

300 L) T T T T

250 | : H' §

TTHH

200 |] §
H :

150 |} F (-
r g

100 + <

S0 | .

0 0 500 1000 1500 2000 2500 3000

Velocity [mmv/sec]
Figure 3.13. Distribution of velocities in an ideal gas model.

Another validating result is that the distribution of velocities of molecules, which are all
assigned equal values at the beginning of the simulation, soon converges to the Maxwell
distribution of velocities (see Figure 3.13). The initial magnitude of velocities in this

experiment was set to 1000 mm/sec for all balls.

In the second series of experiments the particle radii distribution during the milling
process was investigated. The results presented in the following figures were obtained for

the following shaker configuration: ball-to-ball coefficient of restitution €y, =0.98, ball-
to-wall coefficient of restitution € =0.95, shaker radius R; =31.5mm, shaker height

H;=103.0mm, shaking frequency f =52.6Hz, shaking amplitude A =10.9mm, ball

radius R=3.2mm, the number of balls N =125, ball density d =7850kg/ m® (steel).

53

For this set of parameters the collision rate of approximately 100,000 collisions/sec was
obtained. The collision rate becomes quite stable after 0.1 sec of shaking. For this reason
the simulation time to determine the number of collisions was 1 sec, and the computed
effective collision rate was A =100,000 collisions/sec.
Relative frequency
0.4 T
0.35 +

03¢

0251 —&— Experimen

~—@— Statistical
~—0— Analytical

02 <+

0.15 ¢

0.1+

0.05 +

o] 4 + -+ 4
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Radius, mm

Figure 3.14. Particle radii distribution after 24 hours of milling.

The distribution of radii of particles after 24 hours of milling is presented in the Figure

3.14. Since the effective rate of collisions for the simulation was set to 100,000 collisions

per second, the resulting distribution is obtained after approximately 8.64-10° collisions.
The experimental data in the Figure 3.14 is taken from [Shaw et. al. 93]. The close
correspondence between both simulation and experimental results is clearly seen. The

solutions obtained from statistical and analytical models are almost equivalent.

Another validating result is that the distribution of radii is almost independent of the
initial particle radius, i.e. the milling rate it significantly higher for larger particles, which
means that they are very quickly ground to the smaller ones. Another very interesting
result, which is also in agreement with the experiments [Shaw et. al. 93], is that the

milling rate is independent of the amount of material put into the mill.

54

3.7. Conclusions

The Molecular Dynamics (MD) model was introduced and described in this chapter. The
laws of motion, collision detection equations and collision laws were obtained. The

discrete event-driven simulation scheme together with the types of events was described.

The MD model use was demonstrated in application to the simulation of a shaker ball
mill used in mechanical alloying. The simulation allowed investigating the collision rate
and energy transfer parameters of shaker ball mills. The input parameters of the model
included geometry of the cylinder, filling ratios and ball characteristics. Discrete
statistical and continuous deterministic models of the grinding process were introduced

and compared favorably against each other and against experimental results.

CHAPTER 4. QUASI-STATIC MODEL

The Quasi-Static (QS) model is based on an approach similar to the Finite Element
Method approach. Thus, the model is best suited for simulating granular matter in a
steady or near-to-steady state, i.e. when dynamic changes in the system’s topology do not
occur frequently. Examples of such systems are silos, bins, piles [Claudin and Bouchaud
97], as well as many applications found in soil mechanics [Gudehus 96, Wan and Guo

98], fracture mechanics [Bazant and Ozbolt 90] and many other fields.

As opposed to the Molecular Dynamics approach, only long-range contacts between the
particles are taken into account. The motion of particles in the system is considered to be
very slow, so that the inertia forces are not taken into consideration. Moreover, the

system is simulated in a quasi-static mode, i.e., the model does not have a time scale.

The system of particles is, in fact, modeled by a truss system (or a beam systei:), where
each particle is represented by a node and each contact between two particles is
represented by a spring. It is then possible to determine the stress distribution in the
system under the influence of external forces (such as gravity forces) by solving a system
of linear equations. This system can be obtained by analyzing stress-strain relationships
in the nodes. Rather than solving the linear system each time when the external
conditions change, the inverse stiffness matrix of the system is found and maintained.
Thus, the stress distribution in the particle system can be obtained by direct matrix

multiplication.

The Recursive Inverse Matrix Algorithm (RIMA) is introduced. It is used to maintain the
inverse stiffness matrix as the topology of the system changes. Specifically, it defines the
formulas for updating the inverse matrix when a link is added or deleted from the system.
These operations are less expensive than recomputing the whole inverse matrix each time

the topology of the system changes.

Certain topological changes, such as slips or micro-avalanches, can occur in quasi-static
granular systems [Claudin and Bouchaud 97]. The algorithms for dealing with such

micro-changes are introduced and analyzed.

56

The main advantage of the Quasi-Static model is that it computes the stress distribution in
a quasi-static system directly using explicit formulas and it does not require solving

differential or algebraic equations.

The QS model has certain limitations. The main limitation of the model is that it does not
take into account inertia forces and. thus, is incapable of handling global topological
changes, which lead to physical redistribution of particles, such as avalanches on the
surface of the pile (as opposed to micro-avalanches related to slips). Another limitation of
the model is that it can not handle free-flowing systems, i.e. the simulated system must

contain at least one link to a fixed boundary.

4.1. Introduction

In many applications, such as fracture mechanics, granular mechanics, composite
materials with delamination, structures in the process of construction, etc., either the
connectivity between the discrete/finite elements or the number of these elements
changes as a function of time or load/deformation. The conventional way of handling
such systems is to generate and solve the governing equations each time the topology of

the system changes. For large systems such an approach is computationally expensive.

In [Vinogradov 86b] an algorithm was presented which constructs an inverse matrix for
an arbitrary finite element system by adding the elements one by one to an expanding
sequence of subsystems. In other words, if the inverse matrix for a subsystem j is known,
then the inverse matrix for an expanded system (j+1) formed by this subsystem plus a
new element is obtained by updating and expanding the inverse matrix for a subsystem j
taking into account the properties of the new element. The effect of element subtraction is
found in a similar manner. The algorithm thus is suitable for systems with variable
topology since it does not require the solution of the system of equations each time the

physical system changes.

In this chapter a customized version of this algorithm called the Recursive Inverse Matrix

Algorithm (RIMA) is considered in detail for granular mechanics applications. In

57

granular systems some particles may form clusters which remain geometrically invariant
during some time [Drescher and Josselin de Jong 72, Gustafson and Gustafson 96, Drake
90]. Such a cluster was called a Quasi-Rigid Body (QRB) in [Vinogradov and Springer
90] and further investigated in [Gavrilov and Vinogradov 96]. A QRB is thus an
overconstrained system of particles and its integrity remains intact as long as all internal
forces are compressive and no sliding between the particles takes place. In other words, a
QRB is a system of particles with no internal degrees of freedom. Any specific cluster
may have, however, a limited life span. Any attachment or detachment of particles
changes the cluster size or topological connectivity between the particles. Thus, a QRB is

a system with variable, in discrete moments of time, connectivity and size.

A similar approach for granular mechanics simulation was presented in [Takeuchi and
Kawai 88]. Their Rigid Bodies Spring Model was used to represent a cluster of
interconnected particles, and a customized incremental finite element scheme was

employed to calculate internal stresses in the system.

4.2. Recursive Inverse Matrix Algorithm [Gavrilov and Vinogradov 97a)
Consider an arbitrary subsystem O with k interconnected two-node elements and

assume that the inverse matrix Z* for this subsystem is known. The problem is to
express the inverse matrix for an expanded subsystem Q,,, through the matrix Z* and

the stiffness matrix for the r;,, element.

It is assumed that the force-displacement relationship for an arbitrary element r ; is given
in the form

P=S'u, (4.1)
where P and u are the 2m-order force and displacement vectors, respectively,

S/ = L," sz, s,.’,; are the mxm blocks of the stiffness matrix, and m is the number of

58

degrees of freedom of the node. It is assumed that S/ is symmetric, which also
guarantees that the inverse matrix Z* is also symmetric.

When a new element r;,; connecting two nodes a and B is added to the system, four

different cases are considered based on the topology of the new link (see Figure 4.1).

—-—

(case 0) (case 1) (case 2) (case 3)
Figure 4.1. New element attachment cases.

Case 0: a new free node B is connected to a fixed node «;

Case I: a new free node B is connected to a free node o already in the system;
Case 2: a fixed node B is connected to a free node o already in the system;
Case 3: two free nodes a and B already in the system are connected.

Note that in all cases the system is “grounded”, i.e. it has at least one fixed node.

Each of these cases is considered separately.

4.2.1. Element attachment case 0
The element r,, is not coupled with the subsystem Q. - In this case, the inverse matrix
is simply extended with an additional row as

Z§ ifi,j<n

Z;"' =40 ifi<n,j=n, (4.2)
siy ifi=j=n
where Z,,, is the updated inverse stiffness matrix and Z, is the known inverse stiffness

matrix for the original subsystem Q, .

59

4.2.2. Element attachment case 1

The element r,,, is coupled with the subsystem @, at the node a while the other node
B is unconstrained. The coupling of an element is accomplished by satisfying two

requirements: 1) the compatibility of node displacements, and 2) the equality of internal

node forces, whereas the latter, the vector q, is unknown. Treating this force as an

external one, the displacements of the nodes of the subsystem Q, are

Unty = Z*Fyy » (4.3)
where
. |F; if jzc¢
F;,={/ o (4.4)
/ {Fj -q, ifj=a

where ZF is the known inverse matrix, j=1.n, a<n, * denotes the subsystem Q, as

a free-body system, and the subscript in brackets indicates the order of the block vector.

The force-displacement relationship for the element I+ given by the equation (4.1) in

this case is

s s k+1 u
[qa:,=[1 12] [a]. 4.5)
Fn S S22 u,

Satisfying the compatibility requirements, namely, that at the node o u; =uy, the

displacement u is found from the equation (4.3) to be
=Z¢F, - Z* (4.6)
Uy a® (n-1) aala .

where Zé is the ot-th row of the matrix Z*.

Solving equations (4.5) and (4.6) together, the unknown forces and displacements are

obtained

60

ool

where a%*! = '&;'IL’. and b**' = """L" and the block elements ag;' and by are

given in the form

T k+lzlc
-1 Yl if j<n-1
_ k k
aj | _ [l 0}+ oSz | Zag 0 1))s3'Zg; 4.8)
b, 0 0] [s2 snf[0 -I [0 T
ub—I J

Using q, and u, from the equation (4.7), the solution for the expanded substructure

O+ can now be written in the form

U(n) =Zk+|F(n), (4-9)

and, as a result, the following recursive relations between the block entries of the two

inverse matrices associated with two consecutive substructures Q¢ and Q,,, can be

established:

Zi-Zoaky ifij<n
Zit = z,"aagj‘ ifi<n, j=n. (4.10)

bXH! ifi=n

4.2.3. Element attachment case 2
The element 1, is coupled with the subsystem @, at the node o while the other node

is fixed. In this case u**! is zero in the equation (4.7), and the latter is reduced to
n

4 =a4(F,...F,)T, @.11)

where T is the transposition sign, and the block components of a,, are defined by

61

(l +s1zZk TS 'z, j=1.n-1. (4.12)

Following the same procedure as before, the recursive relations between the block entries

of the two inverse matrices characterizing substructures Q. and @4, can be obtained in

the form

Z,l-j-H =Z‘ Z,aaaj, iLj=l.n-1. (4.13)

4.2.4. Element attachment case 3

The element ry,, is coupled with the substructure O, attwo nodes a and B (a<f).

The two unknown internal forces are found in a similar way, and they are equal to

e

where the block matrices a,; and ag; are given by

ag; | _ [I o]+[s,,] Ziy zmB siT Zg; +si5'Z; @.15)
ap; 0 I] [sy sn]|Zf, Zfg sgr'z§,+s,$‘zﬁj

where j=1..n-1.
In this case the recursive relations are as follows
Z;"' =25 -2 a,-2Kag;, i, j=1.n—1. (4.16)

Equations (4.2), (4.10), (4.13) and (4.16) can be used to compute an inverse matrix for
any irregular system consisting of two-node finite elements. Note that the size of the

inverse matrix at every step is equal to the current number of nodes in the system, and
that the resulting block matrix Z**! js symmetric. Therefore, it is sufficient to compute

only a lower diagonal half of Z**! in applications.

62

4.3. Cluster as an equivalent beam system

In a 2D (3D) cluster of disks (spheres) the center line connecting any two particles in
contact can be considered as a line of an equivalent beam system, i.e. each link has a
longitudinal and a transverse stiffness (two transverse stiffnesses). The latter property is
due to the tangential stiffness of two particles in contact, whereas the former is due to
their normal stiffness. In a planar case, a link is represented by a 2 degrees of freedom
beam, while in a most general case all 6 degrees of freedom of a 3D beam can be

considered.

Thus a link between two spheres is considered as a two-node element with d degrees of
freedom at each node. The stiffness of such an element in a global coordinate system is

characterized by a block matrix S

S=[c _C], 4.17)
-C C

where C is a dxd matrix, C=T$COT¢, Co is a diagonal matrix, and T, is the
coordinate transformation matrix (from local to global).

For a plane beam system,

C, = K, O T,= C?S(p —sin¢@ , 4.18)
0 K. sing@ cos®

where K, and K are the normal and tangential stiffnesses of the beam, respectively.

For a particular case of the element described by the equation (4.17), equations (4.2),
(4.10), (4.13) and (4.16) can be simplified.

The equation for case O is written as

k
Zk+1 =[ZO] 4.19)

63

When expression (4.17) is substituted into the equation (4.7), a,; and b, can be

obtained as solutions of the following linear systems:

-
Czt.
X Y | ifj<n-1
I+CZ,, C |aq J —CZaj
X =qL 4.20)
- Czcm -C b"j 0 :l e .
if j=n
L= I
The solution of the latter is found to be in the form:
[0 } .f - < l
a.. Zk) nHmjsn—
Y=L) 4.21)
b,,j

By substituting the equation (4.21) into the equation (4.10), the following expression for

the inverse matrix Z**' for the case I is obtained:

Z = [Z" (Z'fz)T} (4.22)

where ZX = [Z'&j] . j=l.n,is the a-th row of the matrix Z*.

Thus, the updated matrix Z**! is found by performing only one calculation for the
(k +1) -th diagonal block and copying the contents of the a -th row.

For the remaining two cases, the matrix updates are obtained in a similar fashion in the

form
ZFH = Zk AR A =[A’,‘-j] i j=ln, (4.23)

where for the case 2

A =z ' xzt, (4.24)

x=(c+zt,)", 4.25)

and for the case 3

o =z;) xz’, (4.26)
Z; =2}, -2f, 4.27)
X=(c"+(z5 -2z)" (4.28)

Note that for the first two cases the matrix is bordered with an additional row and a
column, and for the last two cases, the entire matrix is updated, while its size does not
change. It should be pointed out that the update is obtained by a simple cross-
multiplication of a row and a column, which can be performed very efficiently on a
parallel computer. Thus, the form of the updated matrix has a potential for an efficient
handling of the variability of the system. In addition, since the matrix Z is symmetrical,
it is sufficient to store and update only a half of it, for example, the lower left triangle

including the main diagonal.

4.4. Algorithm description

The particles are added to the system one by one. The addition of a particle may lead to a
sequence of slides and changes in the topology of the system of particles. The next
particle is added after the previous one has settled and no more slides and topological

changes have been detected.

The particles are represented by disks (spheres). The contact between two disks or
between a disk and a boundary is modeled by an elastic element connecting particle

centers. The element is defined by normal stiffness K, and tangential stiffness K.

Damping is not taken into account because the system is considered to be in a quasi-static

65

mode. The Coulomb friction is modeled by the friction coefficient p . In the following, a

contact between two particles or a particle and a boundary will be referred to as a link.

The simulation starts with addition of the first particle. It is connected to a boundary with
one or more links. The first link is inserted and the inverse stiffness matrix is computed
using equation (4.19) (case 0). The rest of the links are classified as case 2 and are
processed using equation (4.22). When each of the remaining particles is added to the
system, it is usually connected by 2 or more links. Each of the links is then classified and

processed using the appropriate formula.

4.4.1. Computation of stresses in links

By applying the above algorithm, the inverse stiffness matrix of the system is known at
each intermediate step. Assume now that n particles are added to the system. Then the
stresses in links are calculated as follows.

First, the particle displacements d; = (dx,-,d yi)T, i=1..n are found by multiplying the

inverse stiffness matrix by the vector of external forces:

D=ZF, (4.29)
d, f

where D=| 2|, and F= L is the column of external forces acting on the particles,
q, 3

fi =(-f.l'i’fyi)T7 i=l.n.

Let us consider a link / connecting two nodes o and B, and let us call ¢ as the left
node, and B as the right node. Then the relative displacement of two adjacent nodes is

found as

8=(8,.8,) = q-dg.dy-d,g) (4.30)

66
The vector 8 can be described in a coordinate system associated with the link:
8" =(8,.8.)F =T,3, 4.31)
where T, is the coordinate transformation matrix (see the equation (4.18)).
Finally, the normal and tangential stresses in the link are found as
s=(sq.5.)T =Cod" = (K,8,.k.5.)T, 4.32)

where C, is the normalized stiffness matrix (see the equation (4.18)). Note that both

normal and tangential stresses can be of both signs.

4.5. Slides and topology changes

A granular system is said to be in static equilibrium if none of the following conditions
apply:

1) there exists a link with a negative normal stress (stretched link);

2) there exists a pair of disks, which overlap (i.e. the distance between their centers is

less than the sum of their radii), but are not connected by a link;
3) there exists a link, where the absolute value of tangential stress |s¢| exceeds the

maximum value sz**, which is determined by the friction coefficient s™* = [TES

If at any step of the simulation the system leaves the static equilibrium state, then a
special algorithm is applied, which modifies the system topology so that it is returned to
the static equilibrium. This algorithm is described below.

The previous section described an algorithm, which allows computation of the stress
distribution in the system on each step provided that the topology remains invariant. This
is not the case, however, in granular systems, and the following three cases of topological

changes that occur in the system must be taken into account:

67

disconnection: a link with a negative normal stress (negative link) must be removed.
connection: if two disconnected nodes come into contact, a link must be inserted.

slide: if the ratio between the tangential and normal stresses exceeds the friction
coefficient, then a limitation on the tangential stress is imposed.

4.5.1. Detection of connections and disconnections

The disconnection of a link can be detected by analyzing the normal stresses in a link. A

link must be disconnected if the normal stress becomes negative (57 <0). When a

disconnected link is detected, it is removed from the system by attaching an imaginary
link with negative stiffness in parallel to the original link, which results in disabling of
the original link.

The connection is detected by analyzing the distances between the centers of particles.

The condition of connection between the two nodes o and B is
[po —pp|<re+5. (4.33)

where py, Pg. 7y and 73 are the coordinates of centers and radii of particles,

respectively. Note that for a fixed node the radius is assumed to be zero.

4.5.2. Slide detection and analysis

The condition of the slide in the link is as follows:
|s<| > psy . (4.34)

where u is the friction coefficient in the link, s, is the tangential stress, and Sy is the

normal stress.

68

The maximum value of the tangential stress is sy = jis,, . Consequently, the maximum

max
St

K
relative tangential displacement in the link is 8™ = =u—28,,. A slide in the link
T H K. on

T T

decreases the absolute value of the tangential stress to s™ and the absolute value of
tangential displacement to 87*. Thus, the slide distance Osige is determined as
13stide] =8| — 87>, and sgn(3,;,,)=—sgn(5.). Note that if a slide is detected then the
absolute value of the original displacement |5, is greater than the maximum
displacement 87, which ensures that |3,,4,|>0. Also note that the direction of the

slide is always opposite to the initial displacement &, . The slide in a link is illustrated in

the Figure 4.2.

S slide

N

Figure 4.2. Slide in a link.

One of the ways to handle a slide in a link is to remove the link and then insert the
updated link, which is a link with the same stiffness, but attached to a pair of shifted
nodes. Insert/remove operations of this sort are computationally expensive, because they
require a full matrix update. This operation can be simplified by taking into account that
the stiffness matrix C of the updated link is almost identical to that of the original link

because only small deformations are assumed in the analysis of a given truss system. It

69

follows that the link is rotated by a very small angle, since the slide distance is very small
compared to the length of the link. Then, instead of removing a link and inserting an
almost identical one, it is sufficient to introduce an internal force (a prestress), which is

equal to K84, . As a result, the force K5, is applied to the left end of the link and
the force — K84, is applied to the right end of the link (see Figure 4.2). Taking into

account these internal stresses, the equation (4.32) becomes
$= (sn,st)T = (quant(at —8/ide))T (4.35)

Note that the current value of the slide distance §,;,, is stored for each link and the

consecutive stress computations use this value.

The energy transformed to heat due to a slide is computed as

Eide =|K8:8ige] - (4.36)

4.5.3. Dependent topology changes

At each step, after a disk has been added to the system, the matrix is updated and the
stress distribution is recomputed. In the process, a number of potential topological
changes may be detected. In some cases, these topological changes are not independent
from each other and this leads to an algorithmic indeterminism. Consider the example

presented in the Figure 4.3.

[}
B

Figure 4.3. Dependent topological changes.

Assume that after attachment of the disk C the negative normal stresses are detected in

two links /; and [,. If both links are disconnected simultaneously, then the disk A

70

becomes completely disconnected from the system, thus “hanging in the air”, which is
not a correct configuration in this scenario. If the link I, is disconnected first, then the
disk A is left “hanging” on the link /;, which then will have to be disconnected on the
next iteration. Finally, the only reasonable action is to disconnect the link l,, thus letting
the disk A to rest on top of the disk B .

To resolve the indeterminism, it is necessary to consider the dynamics of the system in
order to find out how the stresses change in time after the addition of a new disk. Then, it
would be possible to detect which of the links became disconnected first and thus follow
the topological changes in time. Since the dynamic stress changes can not be computed in

a quasi-static formulation, a number of a priori algorithms for the topology updates were

considered. The following iterative algorithm was selected based on the best performance

and plausible results.

Assume that after a new link was inserted, a number of topological changes were
detected. As indicated above, there are three groups of topological changes:
disconnections, connections and slides. The candidate links for the topological changes
are placed in three lists: DisconnectionsList, ConnectionsList and SlidesList,

correspondingly. Then the iterative algorithm works as follows:
Step 1. If the ConnectionsList is empty, then proceed to Step 2.
Otherwise,

Select the link /,,, with the maximum projected stress from the list (the projected

stress is calculated based on the overlap between the disconnected disks).

Perform the connection for [, .

Recalculate stresses in the system.

Goto Step 1.
Step 2. If the DisconnectionsList is empty, then proceed to Step 3.

Otherwise,

71

Select the link /[, with minimum value of the normal stress sy from the list (note

that all links in the list have negative normal stress and thus the link with the
maximum absolute value of normal stress is selected).

Disconnect link /. .

Recalculate stresses in the system.

Goto Step 1.
Step 3. If the SlidesList is empty, stop (no more topological changes).
Otherwise,

Perform the slide operation for all links in the SlidesList.
Recalculate stresses in the system.

Goto Step 1.
The rationale for the suggested algorithm is as follows.

The first step finds a connected link with the maximum projected stress. The connection
of the link may introduce some additional support, and, as a result, some of the
disconnections and slides may be canceled. Only one link is selected because its

connection might cancel other connections.

The second step disconnects the most negatively stressed link. Again, there might have
been a chain of negative links “hanging” on the top one (as in the example in Figure 4.3).
The disconnection of the most stressed link (usually, the topmost one) allows the disks in
the whole chain to “slide” down and restore compressive contacts between the particles

in the chain. Often such a disconnection leads to a sequence of slides.

The third step only runs if there are no connections or disconnections left unhandled.
Unlike in the first two steps, the whole list of slid links is processed. This is because the
slides are not as dependent from each other as connections and disconnections. Note that
in most cases when a batch of slides is processed, it usually leads to more slides being

detected, often in the same place. Such slides may continue for several iterations, until

72

the system comes to a stable state. This phenomenon is noted in granular systems, and is

generally referred to as static avalanches or micro-avalanches or self-organization.

4.6. Limitations of the quasi-static model

The main limitation of the QS model is related to the fact that the dynamics of the
simulated system is not being considered. This may lead to the appearance of infinite

loops in simulation for certain configurations.

Consider the example presented in the Figure 4.4. After the particle A has been added to
the system, an infinite sequence of slides occurs in the links marked in bold in the Figure
4.4. The reason for that is that the system has arrived to an unstable state, where particles
A, B and C have to slide down the slope. This situation can not be handled by the
quasi-static model because it can only consider very small movements of particles
relative to their initial position. In this case, the dynamics of a cluster of particles has to

be taken into account.

Figure 4.4. Infinite sequence of slides.

Another limitation of the quasi-static model is also related to the model’s inability to
handle dynamic changes on a global scale. The model does not consider the dynamic
impact distribution in the system when a particle is dropped onto the pile with some

initial velocity.

4.7. Application ~ silo simulation [Gavrilov and Vinogradov 99]

The state of particles in a silo during the filling process is of interest from macro- and
micro-mechanical points of view. Both of these aspects were studied extensively using

different approaches.

73

The main macro-mechanical property of interest is the distribution of particle weight on
the walls and the bottom of the silo. It was long known [Janssen 1895] that the weight
supported by the bottom of the silo is only a fraction of the total weight of the silo
contents, while the most of the weight is supported by the silo walls [Brown and Richard
66, Nedderman 92]. A very interesting phenomenon is that the stress distribution can
change dramatically with minor fluctuations in temperature, which lead to small changes
in particle sizes [Liu and Nagel 92, Claudin and Bouchaud 97]. The stress distribution
can change in a wide range during the consecutive fillings of the silo [Claudin and

Bouchaud 97], i.e. it is strongly dependent on the history of the filling.

The micromechanics is associated with some local structural changes in the system,
which take place at some moments of time during the filling process. These local changes
are sudden and reflect the local instabilities, as such are often referred to as micro-
avalanches or static avalanches [Claudin and Bouchaud 97]. The topology changes result
in stress redistribution and are leading to a new equilibrium state, which means that the
total potential energy of the system jumps to a lower level, as particles slide down to a

more stable position.

There has been a number of models introduced for granular media in a silo, including
continuum-mechanics models [Janssen 1895, Bouchaud et. al. 95, Ragneau and Aribert
93], finite element analysis [Ooi and She 97, Meng et. al. 97], statistical analysis [Chen
et. al. 96], cellular automata models [Claudin and Bouchaud 97] and molecular dynamics
models [Ristow and Herrmann 95, Sakaguchi et. al. 93, Hirshfeld et. al. 97, Rong et. al.
97]. The experimental work on stress distribution in silos has also been done [Connelly

83, Eibl 84, Jarrett et. al. 96, Tejchman and Gudehus 93).

It is considered to be computationally expensive to model the dynamics of the filling of a
silo, because of a large number of topological changes occurring in the system, each
requiring the regeneration and solution of the equations describing the system. Therefore,

many of the models are somewhat simplified or limited in their applications.

74

Continuum-mechanics models (see [Schwedes and Feise 95] for an overview) were
introduced more than 100 years ago [Janssen 1895]. It is known [Wittmer et. al. 96], that
the generic formulation based on balance of forces acting on a small element can not be
used to describe the system completely — an additional physical postulate is required to
close the equations. There has been a number of approaches suggested, e.g. the
assumption that the stresses propagate along some fixed directions [Wittmer et. al. 97].
This particular approach explains the presence of “arches” and the pressure minimum
under the apex of a sandpile. However, the continuum-mechanics approach can not
model the micro-mechanical properties of contacts between particles. It also can not be
used to investigate the dynamics of slides and micro-avalanches during the filling of a

silo.

Finite element models can be used to model both macro- and micro-mechanical
properties of granulate medium in a silo. The accuracy of FE models is usually quite high
at the expense of the high computational effort required to solve large algebraic systems.
The most significant limitation of the FE models is that if the topology of the system
changes (e.g. due to a slide or micro-avalanche), the whole system must be reformulated
and solved. This may become very inconvenient for modeling of silo filling, since

frequent topology changes take place.

Statistical models attempt to find the appropriate values of undetermined parameters used
in continuum-mechanics models by analyzing the experimental data. Thus, while they
can be used to obtain statistically-correct results for some specific configurations, they
inherit the lack of ability to analyze the micro-mechanical properties of granulates in the

silo.

Cellular automata models can simulate very large granulate systems at very little
computational expense. When the evolution laws are appropriately selected, the models
can produce some feasible output. However, only macro-mechanical properties can be

modeled, since the micro-mechanics is predefined by a set of simple evolution laws.

75

Molecular dynamics models are based on the Distinct Element method (DEM) [Cundall
and Strack 79]. DEM has become a dominant tool in granular materials research due to
its flexibility and simplicity of implementation. It can model both micro- and macro-
mechanical properties of a granular solid. The main limitation of the approach is the lack
of error-control mechanisms. In order to obtain a reasonably accurate result, the timestep
of the algorithm should be very small, which can be quite computationally expensive for
a large system. Another limitation is that there is no explicit algorithm for timestep

selection, i.e. it has to be determined by trial-and-error for each particular configuration.

A more sophisticated tool to study micro events in a silo during its filling is developed.
The stress distribution is recomputed after each particle is dropped into the silo and
settled. The method is based on the maintenance of the inverse stiffness matrix of the
system, which allows exact computation of the forces acting in the system. Rather than
being recomputed explicitly on each step, the matrix is updated to reflect changes in the
system’s topology. The Recursive Inverse Matrix Algorithm (RIMA) [Gavrilov and

Vinogradov 97a] is applied to maintain the inverse matrix.

In order to account for the topological changes and slides in the system due to the stress
redistribution, the whole system is analyzed after each particle is dropped. When the
tangential stress in a contact between two adjacent particles exceeds the limit imposed by
the friction coefficient, a slide occurs in that contact. Usually, a slide triggers a sequence
of slides among the neighboring particles, thus leading to a micro-avalanche in the
system. Such avalanches result in global stress redistribution representing a more stable

system state, in which it remains until the next avalanche occurs.

4.7.1. Problem definition

A particle is dropped without initial velocity into a planar rectangular silo through the
orifice at its top (see Figure 4.5). The addition of a particle may lead to a sequence of

slides and changes in the topology of the system of particles. The next particle is dropped

76

after the previous one has settled and no more slides and topological changes have been

detected.

Figure 4.5. A silo with 500 particles.

The particles are represented by disks with normally distributed radii. The contact
between two disks or between a disk and a silo wall is modeled by an elastic element
connecting particle centers.

The mechanical properties of a link can be defined based [Mindlin and Deresiewicz 53].

Under small deformations, the stress-displacement relationship can be linearized:
s=K9§, 4.37)

where s is the stress in the contact (either normal or tangential), K is the constant
stiffness coefficient (either normal or tangential) and § is the displacement (again, either

normal or tangential).

Consider a contact between two spheres of the same radius R . Assume that a link is

subjected to a constant compressive normal stress Sy - The maximum absolute value of

77

the tangential stress is defined as s = s, where p is the friction coefficient. When

the computed value of the tangential stress s; exceeds s, a slide occurs in the link.

The maximum tangential displacement in the link is defined as

3(2-9
3T = ——(161‘))”“ [Mindlin and Deresiewicz 53], (4.38)
a

2 1/3
where a=[z(l4?v)snk] is the contact radius from Hertz theory [Timoshenko and

Goodier 51], v is Poisson’s ratio, E is Young’s modulus and 9 is the shear modulus of

the material. Then the tangential stiffness can be approximated as

max
= St _ 169a . (4.39)
3max 3(2-9)

And the normal stiffness of a sphere is

K, =204 (4.40)
I-v

The stiffnesses K, and K, define the contact properties of a link while lsrl <si e

until a slide occurs. If a slide takes place, to be correct, a rigid body motion should be
considered. Using this dynamic approach is beyond the scope of the QS model. Instead, a

quasi-static slide resolution algorithm is used (see Section 4.5).

The dimensions of the silo and the material properties are selected to match the generic
parameters provided in the CA-SILO Collaborative Action document [Rotter et. al. 95].
The main goal of this project is to compare various approaches to silo simulation. A
decision to use these parameters was made in order to compare our results with a number
of other implementations solving the same problem. The parameters provided include the
values for the normal and tangential stiffnesses characterizing the contacts between disks

and disks and the silo walls, friction coefficients and some other parameters.

78

The particles are randomly generated and dropped through an orifice above the silo. A
cellular-automata algorithm is used to find the position of the particle after it has been
dropped. The particle “rolls” down the slope of the heap until it finds a stable position,
i.e. a position where it is supported from left and right by the previously placed particles
or a silo wall. When a particle is added to the system, two new links are inserted (see

Figure 4.6).

Figure 4.6. A new particle is connected by two links.

A system of particles with the links connecting them can be interpreted as a truss system
with gravity forces applied to the centers of the particles. However, this “truss” system
changes with any slide or placement of a new particle or disconnection between any two
particles. Thus a system of particles during the filling is treated as a system with variable
topology.

The aim of the simulation is to obtain the history of stress distributions in the links, of the

slides and topology changes occurring in the system, and of the energy losses due to

slides during the filling of the silo.

4.7.2. Numerical experiments

The algorithms were implemented in Borland Delphi 3 and the numerical experiments
were run on a Pentium-166 with 32Mb of RAM. A silo filled with 500 disks was selected
as a sample problem (see Figure 4.5). The parameters of the silo are taken from [Rotter
et. al. 95]. The width of the silo is 0.3m and the depth is 1m. Radii of disks are distributed
normally with mean 0.01m and variance 5%. The density of disks is p =1190kg m™. For

a link between two particles the stiffness and friction coefficients are defined as

79

0.43. For a link between a particle

1.0x10°Nm™!, K. =1.0x10°Nm™!, and p

K,=

1.5x10° Nm™

and a silo wall the coefficients are defined as K, =1.5x10°Nm™', K

0.33.

and p

In the first series of experiments the stress distributions occurring during the filling of a

silo were investigated. The final distribution of normal and tangential stresses is

presented in the Figure 4.7. The thickness of the line represents the level of stress (to a

scale). The stress paths or “arches™ can be clearly seen. It can also be noted that the angle

of the stress paths is different from the angle of repose.

dynamic topology changes (such as micro-

In the second series of experiments,

avalanches) were investigated. The slides occurred after the 463" disk was dropped are

marked with bold in the Figure 4.8.

PSOOCAIE

EDL’QSDBI' 'Y Y '

Tangential stress

Normal stress

Figure 4.7. Final stress distributions.

80

Figure 4.8. Slides occurred after a new particle (marked in black) has been added.

The numerical experiments show that the micro-avalanches generally occur in the

following areas:

a) on the top levels of particles in the neighborhood of the dropped disk;
b) along the side walls of the silo, as the system is slowly moves down;
¢) in some critical regions, where the particles have formed an irregular pattern (see

Figure 4.9).

Figure 4.9. Irregular configuration.

The example in the Figure 4.9 represents an irregular configuration because the disk A is
supported from below by two almost parallel links. As the pressure on the disk A from

the top is increased, the disk will keep sliding down.

81

One of the parameters measured during the simulation is the energy transformed to heat
due to slides (see Equation (4.36)). The energy values for each slid link are recorded on
each iteration, as well as the total energy dissipated during the filling of the silo is
computed. The energy dissipated in the links after the 463" disk was dropped is presented
in the Figure 4.10a (compare with the Figure 4.8). As one can see, the most energy is

dissipated along the silo walls.

® = 1.4°10+

(a)
Figure 4.10. Energy dissipated due to slides.

The total energy dissipated during the filling of the silo is presented in the Figure 4.10b.
It can be clearly seen that the energy is dissipated uniformly throughout the volume of the
silo with the exception of the wall links, where a significant amount of slides were

occurring.

82

4.7.3. Validation

The relationship between the pressure on a silo wall' and the height of a contact was
investigated in order to validate the macro-mechanical properties of the model. The
dependence of the contact stresses on the height is presented in the Figure 4.11. The close
correspondence with both experimental results [Rong et. al. 97] and the Janssen theory

[Janssen 1895] can be clearly seen.

The evident presence of arches and stress paths (see Figure 4.7) is also a validating result.
The global distribution of slides (Figure 4.10b) seems to correspond to the general
understanding of a granular material being progressively compressed in vertical direction,

which explains the reoccurring of slides along the side walls of the silo.

600 -
500 -
400 -
g © Simuilation
§300 | & Experiment
g | —— Janssen fit
Teesen
200 -
Ao °
100 -
0 r —
0 1 2 3 4 5

Pressure, kPa

Figure 4.11. Silo wall pressure.

! The pressure on the wall was computed over an area of the wall of the height equal to

10 ball radii.

83

The micro-mechanical properties of the model are more difficult to validate, because it is
very hard to measure them experimentally. It is known [Jarrett et. al. 96], that the

presence of imperfections and inserts in silos leads to large stress fluctuations.

The following can be considered as a validation of the micro-mechanical properties. The
forces acting on a single particle are always balanced. This is guaranteed by the RIMA
algorithm, which computes the exact inverse stiffness matrix for the system. The
application of the algorithm handling slides and topology changes guarantees that only
compressive contacts are present in the system and there are no links, for which the

friction law is violated, i.e. the system is maintained in static equilibrium after each step.

4.8. Parallel implementation of RIMA

The structure of the Recursive Inverse Matrix Algorithm (RIMA) allows for a natural
parallel implementation. The state of the system is defined by a large symmetric matrix
Z, which has to be updated every time a new particle or link is added to the system.
These updates are defined by equations (4.19) — (4.28). Clearly, these updates can be
performed in parallel. For the cases 0 and 1 (equations (4.19) and (4.20)) the matrix is
bordered by an additional row and column. For the cases 2 and 3 (equations (4.21) -
(4.28)) the whole matrix is updated, however, each matrix element is updated

independently from others, which allows for effective parallelization.

The algorithm was implemented in C++ on a cluster of 30 DEC Alphas connected by a
fast Myrinet switch. The Message Passing Interface (MPI) [Gropp et. al. 94] was used in
implementation. MPI has become a de facto standard for implementing portable parallel
algorithms. It defines a set of generic routines for inter-process communication and
synchronization. Implementations of MPI are generally available for most parallel

computers, as well as for many sequential machines working in a multi-tasking mode.

The parallel implementation of RIMA assumes that one process is designated as master
and the rest of the processes are designated as slaves. The master process is responsible

for data input and output, as well as for coordinating the work of slave processes. The

84

slave processes are responsible for storing and updating the inverse matrix, as well as for

computing the displacements of particles given the vector of external forces.

4.8.1. Data storage

It is sufficient to store and update only a half of the matrix Z , since it is symmetric. The
lower left triangle of the matrix is distributed among the slave processes as illustrated in

the Figure 4.12, where n is the total number of slave processes.

1
2

—

Figure 4.12. Distribution of rows among slave processes.

The first row is stored at the first process, the second row at the second, the n-th row is
stored at the n-th process, the (n+1)-th at the first, the (n+2)-th at the second, and so
on. Such distribution scheme ensures that the processes are responsible for storing and
updating approximately the same amount of data. Note that the size of the matrix is equal
to the total number of particles in the system, which varies in time. In other words, the

matrix grows as more particles are added to the system.

B

a —_—

ol

Figure 4.13. sendRow(, P) primitive.

85

The implementation uses one basic primitive called sendRow(ct, P), which sends the
contents of the full o -th row of the matrix to the process number P . The elements of the
oc-th row are distributed among several processes in the general case (see Figure 4.13).
Note that the horizontal segment of the row belongs to a single process, while the vertical
segment is distributed among several slave processes. The elements of the vertical
segment have to be transposed before being sent to the process P . Each process gathers
all elements belonging to the ot-th row, encodes them into a single message and sends it
to the process P. The process P reconstructs the row after receiving messages from all

other slave processes.

4.8.2. Case 0

Case 0, when a new node is attached to a fixed node (see Section 4.2.1), involves the

least amount of processing. A new row is created at the corresponding process, filled with

zeros and the last element is assigned C! (see Figure 4.14).

0O 00 00 0 O

Figure 4.14. Case 0 matrix update.

4.8.3. Case 1

Case 1 (see Section 4.2.2) is also relatively computationally inexpensive. The a-th row

is sent to the process F,, which is responsible for storing the newly created row (see

Figure 4.15). The last element of the row is computed according to formula (4.22).

86

L

Figure 4.15. Case | matrix update.

4.8.4. Case 2
Case 2, when an existing node is connected to a fixed node (see Section 4.2.3) requires
the full matrix update. The o-th row is sent to the process Py, which stores the

horizontal segment of this row (see Figure 4.13). Note that this minimizes the inter-

process communication. Then the process P, sends the full a-th row to each of the other

slave processes, which use the row to update stored matrix elements (see Figure 4.16).

Figure 4.16. Case 2 matrix update.

4.8.5. Case 3

Case 3, like the previous case, requires a full matrix update (see Section 4.2.4). However,
now two rows are needed for the update. Both ot-th row and B -th row (o <) are sent

to the process B (this minimizes the inter-process communication). The process P

deducts one row from the other and then sends the resulting row to the rest of the slave

processes, which use the row to update stored matrix elements (see Figure 4.17).

87

="

Figure 4.17. Case 3 matrix update.

4.8.6. Numerical experiments

A series of numerical experiments was performed in order to estimate the performance of
the parallel implementation of RIMA. A planar silo with 1000 particles and 2000 links

was simulated. The results of the parallel runs are presented in the Figure 4.18.

Links/sec

§$ 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16 17 18 19 20
Number of processors

Figure 4.18. Parallel RIMA performance.

In the Figure 4.18, the one-processor version (marked with S) is, indeed, a sequential
implementation of the algorithm. The 2-processor version shows the same performance

as the sequential version because one of the processors hosts the master process and the

88

other one hosts the only slave process. As seen from the figure, the parallelism of this
implementation is about 12, i.e. the performance does not improve any more when the
number of processors reaches 12. This phenomenon can be explained by the observation
that for cases 2 and 3 a row is sent to all processes. So, the more processors are available,
the more communication is taking place. This causes an overflow of communications

and, when the number of processors exceeds 16, even slows down the computation.

4.9. Conclusions

The Quasi-Static (QS) Model was introduced in this chapter. This model is best suited for
modeling granular systems in steady or near-to-steady state, when no global topology
changes take place. The model is based upon the Recursive Inverse Matrix Algorithm
(RIMA), which maintains the inverse stiffness matrix of a truss (beam) system as the
topology of the system changes. The algorithm for handling slips and other micro-

changes in system’s topology was introduced.

The QS model use was demonstrated on the applied problem of stress distribution
simulations during the filling of a silo. The model can be used to investigate macro- and
micro-properties of the granular matter, which is practically impossible in physical
experimentation. Finally, a parallel implementation of RIMA was presented together with

the results of numerical experiments.

89

CHAPTER 5. MULTIBODY DYNAMICS MODEL

The Multibody Dynamics (MBD) model is the most complete and precise model for
simulating granular matter. Both dynamic behaviors of granular matter in high-energy
systems and steady-state granular problems can be investigated using this model.
Essentially, the MBD model includes both molecular dynamics (MD) model and quasi-
static (QS) model as submodels.

The MBD model can be considered as an extension of the MD model, which allows for
long lasting contacts between particles and considers forces in these contacts. If a quasi-
static subsystem is detected in a MBD simulation, then the QS model is invoked to
simulate the subsystem in steady or near-to-steady state. The internal properties of such
subsystem are constantly monitored and, if a global-scale dynamic change is detected
(which can not be handled by the QS model), the QS subsystem is disintegrated and the

simulation is carried on using the MBD model.

The model is constantly morphing depending on the current system’s parameters, thus
automatically adjusting to the system being simulated. This, in turn, achieves a better

simulation efficiency and improves the accuracy of simulation.

The MBD model is based upon the discrete-event simulation scheme. A hierarchy of
objects is introduced, which represents the subsystems at all levels. The hierarchy
consists of such objects as system, clusters, quasi-rigid-bodies (QRB), boundaries and
bodies. The topology of the system is represented by a hierarchical graph, which is

maintained throughout the simulation.

In the general case, the MBD simulations are more computationally expensive than MD
and QS simulations. MBD simulations can involve numerical integration of systems of
ordinary differential equations (ODE) in addition to the tasks associated with the MD and
QS models and other general simulation tasks, such as collision detection. Since,
however, the model adjusts automatically to the system being simulated, the simulations

are always carried out in a most efficient manner.

90

The MBD model overcomes the limitations of both MD and QS models and, as such, can
be used to simulate any granular system without arriving to a deadlock or halt. This
makes the model an invaluable tool for evaluating and comparing other simulation
models and approaches. The MBD model can simulate granular matter with a greater

degree of accuracy than any other granular model known to the author.

The Distinct Element Method (DEM) [Cundall and Struck 79] has become a dominant
tool for granulates simulations due to its simplicity and the ease of implementation. In
this model, the particles are subjected to the restoring forces in the points of contact. The
magnitude of these forces is calculated based on the relative overlap between particles.
This scheme is roughly equivalent to solving a system of ODE using a first-order
numerical integration method (Euler’s method) [Burden et. al. 78]. The main limitation of
this approach is the lack of error-control mechanisms and the need to select many
simulation parameters (such as the timestep or the damping value) basing on some

heuristics.

This chapter is organized as follows. First, the notion of hierarchical graph is introduced
together with some basic primitives for manipulating the hierarchical graphs. Then, the
general simulation algorithm used by MBD model is presented, followed by the detailed
consideration of system components on all levels: bodies, links, clusters, quasi-rigid
bodies (QRBs) and the system. Finally, an application of the MBD model to the

simulation of hopper flow is considered.

5.1. Hierarchical graphs

A hierarchical graph (H-graph) is a generic topological data structure, which can be used
o represent a system constituting a hierarchy of objects connected by links. The
hierarchical graphs can be used naturally to represent the structure of granular systems.
An example of a granular system together with the corresponding hierarchical graph is

presented in the Figure 5.1.

91

Figure 5.1. Example of a hierarchical graph.

The hierarchical graph presented in the Figure 5.1 consists of the clusters, Quasi-Rigid
Bodies (QRBs) and disks. A QRB is an interconnected set of disks that has no internal
degrees of freedom (see Section 5.7 below for the detailed description). A QRB can
contain other QRBs as its members. A QRB is called fixed if it contains a boundary as
one of its members. A cluster is an interconnected set of disks and/or QRBs, that has

internal degrees of freedom (see Section 5.6 below for a detailed description).

The top-level graph represents the whole granular system. It contains two clusters and
one QRB. The cluster on the left contains a single QRB, which, in turn, consists of a 3-
disk QRB and a disk. The cluster on the right consists of a 3-disk QRB and a single disk.
The QRB (in the middle) is fixed, it contains a boundary and two disks. Both clusters are

connected to the fixed QRB.

A hierarchical graph essentially represents a tree of graphs. Indeed, nodes of a
hierarchical graph can be hierarchical graphs themselves. Such a node can be considered
as a “group” of nodes of a regular graph. A hierarchical graph can be converted to a
regular graph by “ungrouping” the nodes, represented by hierarchical graphs. A more

precise definition of a hierarchical graph is given in the following section.

5.1.1. Hierarchical graph definition
A hierarchical graph H =(V,E) is defined by a set of nodes V ={v;,vy....v }, k21

and a set of links E = {el,ez,...,em}, m20.

92

A node v;, i=1.k is represented by either an atomic element or a hierarchical graph.
The hierarchical graph H is called the owner of the node vi, H =owner(v;),and v; isa
member of H, v;e H. The function owner(v) is defined uniquely, i.c. any node has
only one owner. If H is a top-level graph, then the value of the owner function is null.

A node v is called a descendant of a hierarchical graph H (v < H), if either ve H or
owner(v)c H . Loops in owner chains are not allowed, i.e. a hierarchical graph can
never be a descendant of itself. A node v belongs to a hierarchical graph H (v H) if
either v=H orvc H.

Alink e; € E, i=1.m is defined as ¢; ={(v;;,vy).(a};.a5;)}, where v,;,v,; € V are two
distinct members of H and a;; and a,; are two atomic elements such that a;; < v;; and
@3 SVa;- vi; and vy; are called members of e;,and ay; and a,; are called nodes of e; .
The node v,; is called a peer of the node v); (and vice versa) in H, and the link e; is
called a peer link of the node v); in H . The hierarchical graph H is called the owner of
the link e;, H = owner(e;), and the link ¢; is called an internal link of H .

Figure 5.2. [llustration to the definition of a hierarchical graph.

The relationships between members of a hierarchical graph are illustrated in the Figure

5.2. The top-level graph is H,, it has two members: a hierarchical graph H, and an

atomic element a3. H, contains one link e, . The hierarchical graph H 1 has two atomic

members a; and a, and one link e;.

93

The link e, is defined as e, ={(a.a,).(a.a,)}, ie., a; and a, are both members and
nodes of e;. a; and a, are peers, and e, is a peer link of both a, and a,. H, is the

owner of g, a, and e,.
The link e, is defined as e, ={(H,,a3),(a2,a3)}. i.e. it connects H, and a3 in H,. The
link e, is a peer link of H\, and a3 is apeerof H, in H,.

Note. The owner H and members v, and v, of a link e are uniquely identified by the
nodes a; and a, of the link. Consider the owner chains of a, and a,:
aye H,eHye..eH,, and aye Hy e Hye..e H,,,,. Obviously, both chains

begin at different elements a; and a, and end at the same top-level graph H, ,. Then
there has to exist a common element H" in the chains such as aycH,eH cH root

and a; c H,; e H ¢ H, .o, where Hy; # H,; (see Figure 5.3). Then the element H"

is necessarily the owner of the link e and the graphs H,; and H 2 are the members of

this link because a) cHy;e H™ and a, cH,;€ H'. The element H" is called the

lowest common owner of a; and a, .

root

H‘
Hy; PH,,
ia,
all -

Figure 5.3. The lowest common owner.

TH

94

5.1.2. Basic primitives on hierarchical graphs

So far, only one basic primitive was introduced. It is the owner(v) function, which
returns the owner of a graph v. In addition, the following basic primitives can be defined

on hierarchical graphs.

5.1.2.1. FindMemberContaining

This primitive is defined as FindMemberContaining(H ,v). It returns a reference to a

member of the graph H , which contains the graph v, or null if v does not belong to H .
The primitive can be implemented by the following recursive function'.

Node FindMemberContaining(Node H , Node v) (

if (Vv == null) return null;

else if (H == owner(v)) retura v;

else return FindMemberContaining(H , owner{v)}):
}

Note that this algorithm will never enter an infinite loop because owner chains can never

have loops and any owner chain will end at the top-level graph, whose owner is null.

5.1.2.2. Depth

This primitive returns the depth of a graph v. If v is a top-level graph then it is assumed

that depth(v)=0. The primitive can be defined recursively as

int depth(v) (
if (owner(v) == null) retura 0;
else return (depth(owner(v)) + 1);
}

Again, this primitive will never enter an infinite loop because all owner chains end at the
top-level graph, whose owner is null. A simple non-recursive version of the algorithm

can also be written.

! A Java-like syntax is used to define the algorithm.

95

5.1.2.3. FindLowestCommonQOwner

This primitive is used to find the lowest common owner (see Figure 5.3) for a pair of
graphs (or atomic elements). It takes two parameters: references to graphs v; and v, and
returns their lowest common owner. Note that the lowest common owner always exists
when v; and v, belong to the same top-level graph. Also note that if v, < v, then
FindLowestCommonOwner(v,,v,)=v, (and vice versa). The primitive can be
implemented by the following recursive function.

Node FindLowestCommonOwner (Node v, Node v,) {
if (vy == v,) returm v;
if (depth(v|) < depth(v,))
return FindLowestCommonOwner(v,, owner(v,));
else
return FindLowestCommonOwner(owner(Vv;), v,);

}
Note that a more efficient (but longer) non-recursive implementation of the primitive can

be written.

5.1.2.4. InsertLink

This primitive is used when a new link has to be inserted into a hierarchical graph.
Usually, only the nodes of the link (i.e. the atomic elements which are connected by the
link) are known when a link is created. It is required to determine the owner and

members of the link. This primitive takes two parameters @, and a, and returns a triple

containing references to the owner of the link and two members of the link. The
InsertLink primitive can be implemented using the primitives already introduced.

LinkData InsertLink(Node a,, Node a,) ({
owner = FindLowestCommonOwner(a;,a,);
m; = FindMemberContaining(owner, a;);
my = FindMemberContaining(owner,a,);
return new LinkData(owner, m;, m,);

96

Again, it is possible to write a more efficient single-pass routine, which will determine

the owner and members of a link.

5.1.2.5. Group

This is a high-level primitive, which groups a set § =(v;,v5,...,v;) of members of a
graph H into a new graph H, e H (see Figure 5.4). The primitive returns a reference to

the newly created graph H,.

H H
Group A‘
g | AN
Ungroup

Figure 5.4. Group and Ungroup primitives.

First, a new graph H, is created inside H and all nodes in S are moved into H;. A
primitive setOwner(v,H) is used to set the owner of a node v as a graph H . Then, a set

of links E is computed, such that each link in E contains at least one member in S .
Then each of the links in the set is analyzed and reattached to the updated owner or

members. A primitive setOwner(l,H) is used to set the owner of a link / as a graph H .
The primitive attach(l,member,,member2) is used to attach a link / to a new pair of

members.

Node Group(NodeList §) {(

Node H, = new Node(); // create a new graph H,

setOowner (H,, H); // set the owner of H,

for each (v im §) // move all members in § into H,
setowner(v, H;);

// gather peer links of all elements of § into E

E = [];

for each (v in §)
for each (/! in peerLinks(v))

E = EU{l};

97

// analyze each of the peer links
for each (/ in E) {
my = lmember,; // retrieve the first member of /[
my = lmember,; // retrieve the second member of [
if (meH, and my,€ H))
setOowner(l, H;); // no need to reattach members
else if (meH,)
attach(l, m, Hy); // | is a peer link of m; and H,
else // mzeH,
attach(l, Hy, my): // |l is a peer link of H, and m,
}
return H,;
}

5.1.2.6. Ungroup

The Ungroup primitive is the inverse of the Group primitive. It is passed a reference to a

graph H . The primitive moves all the members of H ; into the owner H of H,.

First, all internal links of H, are moved into H . Then, the peer links of H ; are analyzed
and reattached to the updated members. Finally, all members of H ;| are moved into H
and H, is released. The primitive returns the list of members of H ; so that it is possible

to notify H that a set of new members has appeared in it.

NodeList Ungroup(Node H,) {(
NodeList updatedMembers = new NodeList():;
Node H = owner(H,);:
// move the internal links of H; into H
for each (/ in internalLinks(H;))
setOwner(l, H) ;
// analyze each of the peer links
for each (! in peerLinks(H,)) (
my = lmember;; // retrieve the first member of [
my = lmember,; // retrieve the second member of [
if (m == H|)
m; = FindMemberContaining(H,, l.node,) ;
else // m, == H,
m; = FindMemberContaining(H,, l.node,) ;

98

attach(l,my,my); // reattach [

}
// move the members of K, into H, add to the result

for each (v in members(H,)) (
setOwner(v, H);
append(updatedMembers, Vv);

}

free(H,); // release H,

return updatedMembers:;

}
5.2. General system structure

The MBD model represents the simulated granular system by a hierarchical graph. The
nodes on different levels of the hierarchical graph are represented by different objects.
The top-level object is called System and it is responsible for global-level functions, such
as maintaining the event queue, event routing, interaction with the collision optimization

engine, as well as other global-level functions.

The objects on the first level (members of System object) are called Clusters. Each
Cluster object represents an interconnected group of bodies. The System can contain
several Clusters, representing disconnected groups of bodies. The motion of each cluster
is defined by a coupled system of ODE, therefore, it is required to consider the motion of
a cluster as whole. It is possible, however, to consider each cluster separately from other
clusters. Thus, the most appropriate timestep can be selected when integrating each
particular ODE system. As the topology of the system changes when links between
bodies appear and disappear, new clusters can appear and existing clusters can merge or

disintegrate.

The ODE system defining the motion of a cluster is never formulated explicitly, but
rather the equations are “embedded” into the topology of the cluster, represented by the
links in the hierarchical graph representing the cluster. This allows for a natural
“distributed” representation of the ODE system, as well as saves time by not requiring to

regenerate the equations of motion each time the topology of the cluster changes.

99

Each cluster contains one or more member nodes representing Bodies in the system. The
main property of a Body object is that it represents a rigid body without internal degrees
of freedom. There are true bodies in the system, namely, the particles (they are
represented by objects of type Disk), and there are transient bodies, called Quasi-Rigid
Bodies (QRBs), which are formed by groups of interconnected particles and/or
boundaries (see Figure 5.5). While a QRB exists, it does not have internal degrees of
freedom and, as a result, it can be considered a rigid body. Note that as the external
conditions change, some of the links inside a QRB can break or become unstable. In this
case, the QRB is disintegrated and its members are merged into a higher-level cluster.
Conversely, if a group of bodies without internal degrees of freedom is detected inside a

cluster, then it is converted to a QRB.

A Body in the system can be either free or fixed. An example of a free body is a Disk
object, and an example of a fixed body is a Boundary object. A QRB is a body, which
can be either free or fixed (see Figure 5.5). A fixed QRB always contains a fixed body as
one of its members and, as a result, the whole QRB is fixed. Thus, a fixed QRB is not
considered a member of any cluster, but, rather, it is stored as a member of the System

object. Conversely, a free QRB is always a member of some cluster.

& oo

Figure 5.5. An example of a free and a fixed QRB.

Since a QRB does not have internal degrees of freedom, it can be defined by a static
model (note that the motion of a free QRB as a rigid body is handled by its owner, the
cluster object). Thus, the Quasi-Static model is used to define the interactions between
bodies inside a QRB. However, if a slip or break is detected in an internal link, then the
ORB is disintegrated and either converted to a cluster (if it was a fixed QRB) or its

members are merged into the owner cluster (if it was a free QRB).

100

The atomic elements in the hierarchy are represented by Disks and Boundaries. Another
important object in the system structure is the Link object, which is used to represent
links between objects in the hierarchical graph representing the system. A Link is always
attached to a couple of atomic bodies as its nodes (i.e. a link either connects a couple of
Disks or a Disk and a Boundary). Links can appear at all levels of the system hierarchy: a
link belonging to the System object connects a cluster to a boundary or to a fixed QRB,

links are also used in clusters as well as in QRBs.

A link is defined by a special model, which is used to compute the internal stress in the
link based on the state of the link’s nodes (see Section 5.5.2 below). This stress
computation routine is used both when integrating an ODE system defining the motion of
a cluster as well as when computing the internal stresses in links inside a QRB. The link
model also defines the conditions for detecting a break or a slip in the link (see Section

5.5.2 below).

Each of the objects constituting the system hierarchy will be discussed in detail in the

following sections. But first, the general simulation algorithm is presented.

5.3. General simulation algorithm

The general simulation algorithm used in MBD model is an extended version of the
algorithm used in the Molecular Dynamics model (see Section 3.5.1). The main
difference is related to the fact that the system is now represented by a set of different
objects responsible for different tasks. When an event has to be handled, it is routed to the
object, which is responsible for handling this event. Then, depending on the type of
object handling the event, different actions can be taken. For example, when a slip-link
event is handled, it is forwarded to the owner of this link. If the owner is a cluster object,
then the cluster updates its state and nothing is changed in the system’s structure. If the

owner is a QRB, then this QRB is disintegrated.

101

Also, the set of events is different: for example, instead of a single collision event type,
there are two distinct events types in MBD model: insert-link event and remove-link

event.

The following sections define the event types used by the MBD model. But first, several

important routines are defined.

5.3.1. FindConnectedGroup routine

The FindConnectedGroup routine is used to find a connected portion of a graph starting
from some node. The routine is passed a reference to the starting node and returns a list
of nodes connected to the starting node. The routine has an additional parameter — a flag,
which controls whether it is required to include fixed nodes into the resulting list. The
routine can be defined recursively as follows. The resulting list is collected in the variable

result.

void FindConnectedGroup(Node startNode, NodeList result,
boolean includeFixed)
{
Node peer;
append(result, startNode); // include the startNode
if (startNode.fixed) returm; // don’t grow fixed nodes
// scan through the list of peers
for each (peer im peers(startNode)) {
if (contains(result, peer))
continue; // visited this node already
if (!peer.fixed || includeFixed)
// make the recursive call
FindConnectedGroup (peer, result, includeFixed) ;

}
5.3.2. FindClusters routine

The FindClusters routine is used to detect clusters in a set of nodes. The routine is passed

a reference to a hierarchical graph, containing the set of nodes (this graph can be

102

considered just as a temporary container, it is usually ungrouped right after FindClusters

has returned the result). The routine searches for clusters inside the container using the

FindConnectedGroup routine and creates them (using the Group primitive).

void FindClusters (Node container) {

}

NodeList connectedGroup = new NodeList();
Node node;

boolean found;

while (true) (

// try to find a free body inside the container
found = false;
for each (node in members(container))
if ('node.fixed && node instanceof Body) (
found = true;
break;
}
if (!found) break; // no more free bodies left, leave
// find a connected group starting from the node
FindConnectedGroup (node, connectedGroup, false):
// group the result into a cluster
Group (connectedGroup) ;
connectedGroup.clear(); // clear the group

5.3.3. FindQRBs routine

The FindQRBs routine is used to detect QRBs inside a container. The QRBs are detected

by a pattern-matching process to the set of QRB templates. The QRB templates are the

basic QRB building “blocks” (for a detailed description of QRB templates, see the

Section 5.7.4 below). See the Figure 5.6 for the examples of basic QRB templates.

o o NS

loop hamburger triangle Big Mac

Figure 5.6. Basic QRB templates.

103

The algorithm proceeds by trying to find a subgraph, which is congruent to one of the
QRB templates. If such a subgraph is found, then it is converted to a QRB (using the

Group primitive). The process stops when no more matching templates can be found. An
example of the QRB detection process is presented in the Figure 5.7.

AO*&@%A—O
S Sl O N P

Figure 5.7. QRB detection process and the corresponding H-graph transformations.

— —>

Note that if the original set of nodes contains several fixed nodes, then all of them are
considered as a single fixed node during the pattern-matching process. Also, the
FindQRBs routine only takes into consideration the links which are stable (see Section

5.5.2 below for the detailed explanation of this term).

The MBD model is based on the discrete-event simulation approach. The following

sections define the types of events recognized by the simulation engine.

5.3.4. Predict-trajectory type events

Several types of events somewhat related to the predict-trajectory event are used in the

system.

5.3.4.1. Predict-trajectory event for clusters

The predict-trajectory events are used as a means of the timestep-based integration of
ODE describing the motion of a cluster. Thus, a predict-trajectory event is scheduled for

a cluster when the solution of the ODE has to be computed on the next timestep. Unlike

104

in the MD model, the equations of motion of a cluster can not be resolved analytically in
most cases (except, perhaps, for the case, when a cluster consists of a single body and
there are no internal or peer links — this is roughly equivalent to a single particle in the

MD model).

When a predict-trajectory event is handled by a cluster, the current states of the cluster’s
members and links are used to predict the trajectory of each member for the next
timestep. Different integration schemes can be used in order to compute the solution at
the next grid point. The single-step Euler’s method [Burden et. al. 78] is the simplest
method, however, it is quite inaccurate. The predictor-corrector method [Burden et. al.
78] is another choice, which offers a greater degree of accuracy at a slightly higher

computational cost.

After the solution at the next grid point is obtained, the trajectories of cluster’s members
are approximated by linear splines (see Section 3.2.2). Unlike in the MD model, the state
of a cluster in MBD model also includes the values of reaction forces acting in the links
of this cluster. The values of these forces are obtained in the course of numerical

integration. These values are also approximated by linear splines during the timestep.

Similarly to the MD method, a predict-trajectory event is also scheduled at any moment
of time, when the state of a cluster has changed for some reason. For example, a predict-

trajectory event is scheduled immediately after any insert-link or remove-link event.

Since handling of a predict-trajectory event involves updating the state of the cluster and
its members, all events pending for the cluster or any of its descendants (direct or
indirect) have to be cancelled. This includes collision events scheduled for any of the
disks inside the cluster, as well as any miscellaneous events (such as collision-detection

optimizer events) scheduled for the descendants of the cluster.

After a predict-trajectory event has been handled for a cluster, the analyze-internal-forces
events (see the next section) are scheduled for all QRBs inside the cluster as well as for

all peer QRBs of the cluster.

105

5.3.4.2. Analyze-internal-forces event for QRBs

Events of this type of event are scheduled for QRBs. They are roughly equivalent to
predict-trajectory events for clusters. Since the QRBs are not concerned about their
motion (this is taken care of by clusters), they do not have to store their trajectories as
such. The QRBs do, however, keep track of the values of the stresses in their internal
links, because they have to detect breaks and slips in these links. Obviously, the internal
forces in a QRB depend on the values of the external forces acting on this QRB. Thus,
the analyze-internal-forces event is scheduled for a QRB when it was determined that the
external forces acting on the bodies in this QRB have changed. Usually, this event is
scheduled by a cluster for a QRB once the cluster has completed the handling of a

predict-trajectory event and the forces in cluster’s links were computed.

When an analyze-internal-forces event is being handled, the QRB uses the values of
external forces to compute the values of internal forces acting in the internal links of the
QRB. After this has been done, each link is examined and, if instability was detected in a
link, a remove-link or a slip-link event is scheduled. Note that the event is scheduled
immediately, because the QRB model does not have a time-scale. In other words, it is
assumed that once the external forces change, the redistribution of internal forces
happens immediately. Thus, if it is determined that some links have broken or slipped,

the corresponding events are scheduled at the current time.

5.3.4.3. Predict-trajectory event for moving boundaries

If the system contains moving boundaries, whose motion is defined by a piece-wise
function, predict-trajectory events are scheduled for such boundaries at times when the
trajectory of the boundary has to be updated. Note that the motion of boundaries is

assumed to be predefined, i.e. it is unaffected by the motion of particles in the system.

106

5.3.5. Link events

There are several types of link events recognized by the system. All of them (with the
exception of the insert-link event) relate to an existing link and are handled by the object,

which owns the link.

5.3.5.1. Insert-link event

The insert-link event is scheduled when a collision between two atomic bodies (two disks
or a disk and a boundary) was detected. Since the trajectories of the bodies approximated
by linear splines are known, the time of the collision can be computed using the formulas

presented in the Section 3.3.

When an insert-link event is handled, a new link connecting the colliding bodies is
created. The InsertLink primitive (see Section 5.1.2.4) is used to determine the owner and
the members of the link. Then the link is attached to the owner and members and the

owner is notified of the change.

Note that the owner of the new link must be either the System object or a Cluster. A new
link can never appear in a QRB', because the members of a QRB are considered to be

rigidly linked together and can not move relatively to one another.

If a link appears inside an existing cluster, then a predict-trajectory event is scheduled for
the updated cluster. If the link’s owner was determined as the System object, then the
members of the link are either two clusters, or a cluster and a fixed body (a fixed QRB or
a boundary). In either case, the cluster topology in the system is changed and, therefore,
the FindClusters routine is invoked to update the topology. Then, the predict-trajectory

event is scheduled for the updated cluster.

' There are only three different types of compound objects (i.e. the objects, that can

contain other objects as members): the System object, Clusters and ORBs.

107

The newly created link is assumed to be slipping and unstable (see Section 5.5.2 below
for the detailed explanation of the terms), and, therefore, it can not be a part of a QRB.

Thus, the FindQRBs routine is not invoked as a part of handling of an insert-link event.

5.3.5.2. Remove-link event

The remove-link event is scheduled for an existing link when a negative normal stress is
detected in the link (i.e. the link is being “stretched”). The event is handled by the current

owner of the link.

If the link belongs to the System object, then it is necessarily a link between a cluster and
a fixed body. In this case, the link is simply removed and a predict-trajectory event is
scheduled for the updated cluster. If the link was connecting the cluster to a fixed QRB,

then an analyze-internal-forces event is also scheduled for the QRB.

If the link belongs to a cluster, then there are two possibilities: the cluster might remain
intact after the removal of the link or the cluster may be split into two independent
clusters (see Figure 5.8). It is generally impossible to determine which one is the case

without analyzing the full topology of the cluster. Therefore, the general FindClusters

O

routine is invoked in order to update the topology.

Figure 5.8. Removing a link from a cluster.

The FindClusters routine returns a list of found clusters. A predict-trajectory event is

scheduled for each of the returned clusters.

108

If the link belongs to a QRB, then this QRB has to be disintegrated. If this QRB was a
part of another QRB, then the owner is also disintegrated, until a cluster or the System
object is encountered in the owner chain. As a result, a set of bodies (disks, boundaries
and possibly other QRBs) is obtained. Then, the FindQRBs routine is run on this set
followed by the FindClusters routine. As a result, a set of new clusters and/or QRBs is

obtained (see Figure 5.9, where the link being removed is marked in bold).

System System System
QRB Cluster
A —> —» [{]°

QRB
ﬂ é

Figure 5.9. Removing a link from a QRB.

The predict-trajectory or analyze-internal-forces events are scheduled for each of the

returned objects.

5.3.5.3. Slip-link event

The slip-link event occurs when a slip has been detected in a link. A slip occurs when the
ratio between the tangential and the normal stresses acting in the link exceeds the friction
coefficient. The event is handled by the current owner of the link. When the event is

handled, the link is marked as unstable and slipping.

If the link is owned by a cluster then a predict-trajectory event is scheduled for this
cluster. If the link’s owner is the System object, then it’s a link connecting a cluster to a
fixed body. In this case a predict-trajectory event is also scheduled for the cluster. If the
link is owned by a QRB, then the QRB has to be disintegrated. The event is handled in

exactly the same manner as the remove-link event in a QRB.

109

5.3.5.4. Grip-link event

A grip-link event is scheduled for a slipping link when it is detected that the link has
stopped slipping. The owner of the link handles the event. Note that a slipping link is
considered to be unstable; therefore, it can never belong to a QRB. Thus, the link
necessarily belongs to a cluster or it is a peer link of a cluster. Then, a predict-trajectory

event is scheduled for this cluster.

5.3.5.5. Stabilize-link event

A stabilize-link event is scheduled when it was detected that a link has come to a stable
state. The owner of a stabilized link can only be a cluster or the System object because

CRBs can only contain links, which are already stable.

When a stabilize-link event is handled, the FindQRBs routine is run followed by the
FindClusters call. Note that stabilization of a link may or may not lead to the formation
of QRBs. This is because for a QRB to be created it is required that all links in it are

stable.

The stability condition (see Section 5.5.2 below for the definition) requires that the two
bodies in contact almost do not move relatively to each other and that the link is not
slipping. Another important condition of stability is the temporal parameter. It is required
that the link stays in a stable state for a certain period of time before a stabilize-link event
is fired. This prevents considering links in transitional states and cuts down an overhead

related to creating a QRB and destroying it almost instantly.

5.3.6. System events

The MBD model also recognizes several types of system events.

5.3.6.1. Visualize event

The visualize events are fired with a specified time interval. Scheduling these events over

a fixed time period allows making snapshots of the system, which can be later converted

110

to an animation, that can run in a real time scale. If the visualize time interval is set to

zero, then no visualization is performed.

5.3.6.2. Log-state event

The log-state events are also fired with a specific time interval so that the application
program could make periodic snapshots of the system state. The application program gets
an opportunity to output some system parameters (such as velocities of bodies, energy

levels, etc.), compute necessary statistics, and keep the simulation log.

5.3.6.3. Finish event

The finish event is scheduled to signal the simulation engine that the simulation run has

to be stopped after the specified period of time.

5.3.6.4. Add-body event

The add-body events are used to provide a random feed of bodies into the system (such as
in ice-flow simulations). The handling of such an event involves creating a new body and
inserting it into the system. The add-body events can be all scheduled up front, or added

one-by-one as they are being handled.

5.3.6.5. Collision-detection-optimizer event

The collision-detection-optimizer events are scheduled and handled by the Collision-
Detection-Optimization (CDO) engine. A particular implementation of CDO algorithm
introduces specific CDO events. These events are usually linked to bodies. Thus, when a
body changes its trajectory (e.g. due to a predict-trajectory event), all events related to

this body, including the CDO events, are cancelled.

111

5.4. Bodies

The Body class represents an object without internal degrees of freedom. The examples of
body objects are Boundary, Disk and QRB objects. The class diagram representing the

relationships between different Body objects is presented in the Figure 5.10.

Body
RigidBody Boundary
Disk QRB Segment

Figure 5.10. Body class diagram.

The Cluster object assumes that it contains body objects, without making assumptions
about each element being a particular subclass of Body. Note that in the MBD simulation
approach, a cluster can never contain a Boundary object as a member, but it can only be
connected to a boundary (or a fixed QRB) by a peer link. Thus, the main function of a
body object is to be able to operate as a part of a cluster. A detailed description of body’s
properties is given in the following sections.
5.4.1. Body properties
Each instance of the Body class has the following properties:

e aflag, indicating if it is a fixed body or a free body;

e the mass of the body;

e the moment of inertia of the body;

e the current position of the center of gravity of the body.

Each of the properties can be implemented differently in the descendants of the Body

class. For example, Boundary bodies are always fixed and have an infinite mass.

112

5.4.2. RigidBody properties

In addition to the above properties, the instances of RigidBody class include the following
properties. Each RigidBody maintains a list of states, each state representing a time
snapshot of the body’s dynamic attributes. The states are used by the cluster for
integrating the ODE describing the motion of the cluster, as well as for collision detection
and other tasks. Usually, a body only maintains several states, including the current state
(the state at the beginning of the current timestep), the predicted state (the state at the end
of the current timestep) and the previous state (the state at the beginning of the previous

timestep).
Each state is attributed with the following parameters:
e the time of the state snapshot;
e the position of the center of mass;
e the velocity of the center of mass;
e the angle of rotation;
e the angular velocity;
e the force acting on the body and
e the moment of the force acting on the body.

It is assumed that the body’s motion between two consecutive timesteps is interpolated
by linear splines (see Section 3.2.2). Indeed, during a timestep, all of the state parameters
are assumed to be changing according to the formulas similar to equation (3.3), except for

the velocity, which is kept constant during the timestep.

5.4.3. Disk properties

The Disk class is a concrete class, which is used to represent particles. In addition to the

properties inherited from the Body and RigidBody classes, it also has the radius property.

113

It also implements the properties for computing the position of the center of mass (which

2
is the center of the disk) and the moment of inertia (L";— in 2D, where m is the mass of

the disk and r is the radius of the disk).

The Disk class also contains the routines necessary for detecting collisions with other
disks and boundaries. The formulas (3.8) and (3.12) are used in computations. Note that it
is assumed that the disk moves along a straight-line trajectory between two consecutive
timesteps. Therefore, the collision detection equations can be resolved analytically (see

Section 3.3 for the discussion).

5.5. Links

The Link class is used to represent a link in the hierarchical graph of the simulated
system. Physically, a link represents a contact between a pair of particles or a particle and
a boundary. As noted above (see Section 5.1.1), a link is defined by four objects: two
nodes (the atomic elements, which are connected by the link) and two members (the two

hierarchical graphs connected by the link within the same owner graph).

Links play an important role in a MBD model. They are used for computing the RHS
(right-hand side) of the ODE system defining the motion of a cluster and for computing
stresses inside a QRB. Thus, the main function of the link object is to compute the
internal stress in the link based on the states of its nodes. Note that since bodies maintain
a list of available states, a link can compute the stresses in any of these states. Therefore,

the links also maintain a list of states corresponding to the states of their nodes.

5.5.1. Link properties

A Link object maintains the following properties (see the following Section 5.5.2 for the

detailed explanation of the properties):

¢ the normal and tangential stiffnesses K, and K;;

114
the normal and tangential damping coefficients Cy and Cg;

the friction coefficient pu.

In addition to these static properties, the link maintains two flags: the s7ipping flag and

the stable flag. Also, the link maintains a list of states, each state attributed with the

following parameters:

the time of the state snapshot;
the contact point coordinates;

the normal and tangent vectors defining the link coordinate system (n.t) (see Figure

5.11)

the relative displacement of link nodes in the link coordinate system (8TI 0);
the stress in the link coordinate system (sn'sr);
the stress in the global coordinate system (s‘t,s}.);

the slip indicator value (see Section 5.5.2 below);

the stability indicator value (see Section 5.5.2 below).

b

Figure 5.11. The link coordinate system and the global coordinate system.

115

5.5.2. Link model

All of the attributes in a link state are obtained from the attributes of the states of the

links’ nodes. The link model defines the rules for computing these values.

Figure 5.12. The link model.

The link model considers the relative displacement of two points p; and P2 belonging to
the nodes of the link (see Figure 5.12). The points are assumed to be in the close vicinity
of the contact point. It is assumed that the points are connected by an element e, which is

equivalent to two damped springs: one normal and another tangential.

The stress in the link connecting two disks is computed using the following formulas.

The normal displacement &, and the normal stress Sy in the link are computed as

6=xZ-xl,6v=V2‘vl, (5.1)
8y = (6.1)=(n + 1), (5:2)
sn =8n Ky +vCq, vy =(8,.m) (5.3)
where x;, v; and r;, i =1..2 are the coordinates of centers, velocities of centers and the

radii of two disks, correspondingly. Note that the normal stress should never assume
positive values, because the link is one-sided (i.e., it can not be stretched). If the
contribution to the normal stress due to damping exceeds the contribution due to

displacement, the normal stress is reset to zero. The physical meaning of this is that a

‘\,‘

116

compressed contact is getting relaxed so fast that the contact is lost even though the value

8, is still negative (i.e. the disks would be in contact if they were not moving).

When computing the tangential stress, it is necessary to take into account the rotation of
disks and rolling or sliding. Thus, it is necessary to consider the relative displacement of
the disks at the previous state and compute how the displacement at the current state

changed relatively to the previous value.

Consider the relative displacement of the contact points p, and P> in the tangential

direction (see Figure 5.13).

T
Py // T
5¢ i /
X, 'L/S‘(’h/ X
)\\pz rz
\

Figure 5.13. Relative tangential displacement computation.

The tangential displacements of the points p, and p, can be written as

81.1 = (xl _xl.prev’t)'*'s‘plrl ’ &pl =@ — Py, prev- (54
82 = (x2 —xz.prew")—&szz » 802 =@ — 0 ppeys (5.5)

where @;, i=1.2 is the angles of rotation of disks, and the prev subscript denotes the

values from the previous state. Thus, the following formula is used to compute the

relative tangential displacement.
8t = 8‘:,2 - 81:.l = (6 —sprev’ t) - 8(p2r2 - 8(plrl + 8t.prev ’ (5.6)

where &, ., is the relative tangential displacement taken from the previous timestep. It

is assumed that when the contact is formed the initial tangential displacement &, is zero.

117

Assume that there is no slipping in the link. Then, the tangential stress can be computed

by the following formula.
St =81K1+(Vt-mlrl ‘wzrz)crv ve =(8,,1), (5.1

where ®;, i =1..2 are the angular velocities of disks. Same as for the normal stress, the
contribution due to damping can not exceed the contribution due to displacement. If it

does, then the tangential stress is reset to zero.

Next, the model computes the SlipIndicator value and checks for possible slips. The

SlipIndicator value is computed as
SlipIndicator =s| - ulsnl . (5.8

If SlipIndicator >0 then the link is slipping and the tangential stress and tangential

displacement are updated as

s t.slipping
St.slipping = SEN (S T)‘lls ql ’ 8*t,.s'lipping = K ’ (5.9)
T

i.e. so that they have the maximum absolute values possible (note that the sign of the
values is kept).

The use of the angle of rotation ¢; for defining the current state of the disks yields more
accurate results than using angular velocity ®; only (the technique used in the DEM
approach [Cundall & Strack 79]). This is because the quantities 8;r; representing the
relative rotation of the disk during the timestep are more accurate than the expression
involving the angular velocity: w;r;h, where h is the timestep. The latter expression is
equivalent to a single-step integration of the equation ¢; = w;, i.e. 8¢; = ®;h, while the
former represents the actual values of the angle of rotation, which can be obtained using

the selected integration method (e.g. predictor-corrector), which will yield a result with

the desired accuracy.

118

Note that the slip-link and grip-link events are scheduled based on the current value of
SlipIndicator. Indeed, a slip-link event is scheduled when it is detected that

SlipIndicator > C,pjepance» Where Cppance i some small positive tolerance value.
Likewise, a grip-link event is scheduled when SlipIndicator < —-C tolerance - 1his approach

prevents infinite loops related to round-off errors.

Finally, the model computes the Stabilityindicator value using the following formula.

StabilityIndicator = 1 — M , (5.10)

stability

where v, and v, are the relative normal and tangential velocities of the contact points,

respectively, and Ciapiry is some small constant. The link is considered to be stable

when StabilityIndicator >0 (i.e. when Ivﬂl+lvf| < Csuapitin:)- The physical meaning of

the Stabilitylndicator value is that the link is assumed to be stable when the relative

velocity of two disks is small.

As it was noted above (see Section 5.3.5), a stabilize-link event is scheduled only after
the link has been in a stable state for some time. Thus, if it is detected that the link’s
Stabilitylndicator has changed sign from negative to positive (this is done by comparing
the values at the current and previous states) then the time of the event is recorded. Then,
if the link stays in a stable state for a specified period of time (say, 10 timesteps), then a

stabilize-link event is fired and the QRB detection is performed.

Similar formulas are obtained for a disk-to-boundary link. Indeed, a boundary segment

can be considered as a fixed disk with an infinite radius.

As was noted above, the main function of the link object is to compute the internal stress
in the link given the states of the link’s nodes. Indeed, this is a function that takes the
values of nodes states as parameters and returns the reaction force acting on the nodes as

a result. Note that the link object is able to compute and store the value of this function at

119

different states. The function computing the reaction forces acting on nodes is used by the
cluster object in computations of the right-hand-side of the ODE defining the motion of
the cluster. Also note that both positions and velocities of the link’s nodes are used in
computations along with the angle of rotation and angular velocities of nodes. The values

from the previous state are also used as reference points.

5.6. Clusters

This section considers the Cluster object in detail. The cluster objects are used at the first
level of the system hierarchy. They represent an interconnected group of particles with
internal degrees of freedom, or a single free particle. A cluster can contain disks and/or

QRBs, connected by links. The motion of a cluster is defined by a system of ODEs.

5.6.1. Definition

A Cluster is defined by a connected graph of bodirs, not containing any fixed bodies. If a
cluster contains more than one body, then it has internal degrees of freedom. A cluster’s
graph can not contain a subgraph, which can be classified as a QRB (see Section 5.7
below for a detailed definition of a QRB). A cluster can have peer links connecting it to

fixed bodies. Examples of clusters are presented in the Figure 5.14.

o @ B

Cluster Clucter Cluster Cluster
. . g}
-—
-lm

Figure 5.14. Examples of clusters.

Note that a cluster can not contain other clusters as its members (as opposed to QRBs,

which can contain other QRBs). When a link disappears in a cluster, the cluster can be

120
split into two clusters, and, conversely, two clusters can be merged into one if a link
connecting their members appears in the system.

Two or more clusters can be connected to the same fixed body, but they still will be

considered separately from each other (see Figure 5.15).

Cluster Cluster
[] L]

1 e

K QRB : Cluster

Figure 5.15. Multiple clusters connected to the same fixed body.

The decision not to include fixed bodies as a part of the cluster allows treating each of the
clusters individually, so that in each case appropriate integration timestep and error-

control scheme are selected.

The main property of a cluster is that it has three or more degrees of freedom. One can
argue that if a cluster is connected by a link to a fixed body (see, for example, the second
cluster in the Figure 5.14), then the number of degrees of freedom is decreased. Note,
however, that the links in a cluster are not considered as rigid elements restricting the
motion of the nodes they connect, but rather as flexible elements, which impose
additional reaction forces on their nodes. Thus, if a cluster contains n bodies, then the
total number of degrees of freedom in the cluster is exactly 3n, because each body has
two translational and one rotational degree of freedom. The links in the cluster are not
considered as constraints, but rather are used to compute the reaction forces acting upon

the bodies in the cluster.

5.6.2. Laws of motion

The motion of a cluster can be defined in terms of rigid body dynamics. Thus, the
problem can be represented as an initial-value Cauchy problem. The governing equations

can be obtained using different methods. One possibility, which yields a system with a

121

minimal number of unknown functions, is the Lagrange method [Vinogradov 92a,
Vinogradov 92b, Vinogradov 93]. In this approach, it is assumed that the links in the

cluster are, indeed, rigid and restricting the relative motion of the connected nodes.

The equations are obtained as follows. A spanning tree is selected in the cluster’s graph.
If the cluster is connected to a fixed body, then the tree is rooted at this node (see Figure
5.16). Note that if the graph contains loops, then the spanning tree does not cover the
whole graph and the additional links are regarded as “cuts” (see the link marked by a
dotted line in the Figure 5.16).

Figure 5.16. Lagrangian formulation of the equation of motion.

The rotational angles of links ©;, i=1.n are selected as independent variables. The

resulting differential system contains n second-order differential equations plus k >0
additional algebraic equations representing the constraints, which correspond to the “cut”
links. The system can be linearized and solved using an appropriate method [Vinogradov
and Sun 97]. However, the matrix of the system is quite dense and has to be updated
every time the topology of the cluster changes, which is a quite time consuming

procedure. Also, the matrix has to be computed and stored in an explicit form.

An alternative method, which yields a more natural representation of equations, is based
on the Newton-Euler formulation of the equations of motion. The resulting system of
ODE is sparse and can be efficiently stored in an implicit form right inside the data
structure (the graph representing the cluster). Another advantage of the approach is that
the resulting system is purely differential, as opposed to a differential-algebraic system

122

obtained using the Lagrangian approach. The disadvantage of the method is that it yields

a system with more unknown functions.

Consider a single member of a cluster. Its motion in 2D is defined by the following

differential equations.

) Pi . .
X; =;lj'[Fi(xi”-‘i’ei’eiv‘)*'ZR.'J:, (xiv*i,e,‘,e,-,xkj . PPN)Y)] (5.11)
i j=1

I & o . :
9,- = T(M,-F(x,-,xi,ei,e,-,l)‘l- ZM’.&j (xi,xl',e,',ei,ij ’xki ’eki ,ekj)]7 (5.12)
i j=l

where x; is the position of the center of mass of the i-th body, ©; is the rotational angle

of the body, i =1..n, m; and I; are the mass and the moment of inertia of the body, F;
and M ,-F are the external force and its moment acting on the body, R ik, and M "5*/ are

the reaction force and its moment acting in a peer link of the body and p; is the number

of peers of the body.

Note that the equations depend on both coordinates of the body and the coordinates of its
peers. Thus, the differential equations defining the motion of all members of a cluster
have to be solved simultaneously. The differential system contains 3n unknown

functions and 3n equations. The initial state of the system is given and there are no

algebraic constraints, since every link is represented by the reaction force R j acting in it.

The reaction force R; k; and its moment M ‘5‘1 are computed using equations (5.1) -

(5-10). Note that the expressions are linear in their arguments, except for the case when
the link is crossing the “slipping” boundary, where the function is continuous, but not

smooth. Also note that R; =R ;, i.e. the system is symmetric. If the external force is

123

given by a linear function (e.g. the gravitational force F; =m;g), then the differential

system is linear.

The 3D equations are the same, except that both x; and 0, are 3D vectors and thus the
system has the order of 6n.

Another important property of the system is that it is diagonally dominant. Consider the
reaction forces acting on the i-th body. Essentially, R,-j is proportional to (x,- —-X j)'.

Thus, a single equation in the system’s matrix can be written as?

ii=

(Fi +(Kj| +K12 +...+ij’_ %i —Kjlle —szsz —...—ijixj'pi), (5.[3)

L
m;
where K j; 1s the stiffness of the j;-th link. If the body is connected to a fixed body, then

there is an additional element in the x; multiplier. So, the matrix of the system is

diagonally dominant (or at least each row’s diagonal element is not smaller than the sum
of the off-diagonal elements). This has an important effect on the stability of the solution

of the system.

5.6.3. Numerical solution of the ODE system

The motion of a cluster is defined by a relatively simple system of ODEs. In most cases,
the system can not be resolved analytically (except, maybe, for clusters consisting of a
free single body). A numerical method has to be used to obtain the solution of the system
[Burden et. al. 78].

Generically, an ODE system can be written in the canonical form as

' It is also proportional to (i(,- -X j).

* The equation also contains the velocity member of a similar form, which has been

omitted for clarity.

124
x =F(x,1), (5.14)

where x is the vector of unknown functions and the F(x,r) is the a vector-function,

which is computed based on the value of x. Note that most numerical methods do not

require that F(x,z) is given in an explicit form, rather, they assume that a subroutine is
available, which computes the value of F(x,r) for a given x and ¢.
The equations (5.11) and (5.12) can be converted to the canonical form. Then, a system

containing 6n unknown functions is obtained. Note that half of the unknowns are just

derivatives of other half: the velocity v; =x; and the angular velocity ®; are the
derivatives of x; and ;, respectively.

Most numerical methods obtain the solution on a time-grid, i.e. the unknown functions
are represented by a sequence of values x(,), x(r,), x(¢,), etc. The difference between
two consecutive values of time is called the timestep, h; =t; . —t;, i 20. The majority of
methods use a fixed timestep throughout the integration.

The simplest numerical method, which can be used to solve the system (5.14), is the
Euler’s method [Burden et. al. 78). The method approximates the value of F (x) during a
timestep r€ [t;,1;,,] by a constant F; = F(x(r;)), which is calculated at the beginning the

timestep using the known value of x(z;). Then, the value of x(r;,,) is obtained as
X(ti01)= x(1;)+ Fh; . (5.15)

It is possible to show that the popular Distinct Element method (DEM) [Cundall & Strack
79] is equivalent to integrating the equations of motion using Euler’s method. Indeed, the
forces acting on bodies are computed at the beginning of each timestep and assumed to
be constant during the timestep. Then, the position and velocity of each particle are

computed using the following formulas.

125

F.h? F.h.
Xis] =X; +V;h; +‘L’, Visl =V, + 4=, (5.16)
2m m;

] i

where F; is the total force acting on the particle at the beginning of the timestep. Then,
then value of F;,; is computed using the obtained values for X;+; and v, ., and the
procedure is repeated.

The Euler’s method can be used to carry out the simulation at the minimal computational
cost. Also, no additional storage is required to record the intermediate states. However,
the method is not too accurate [Burden et. al. 78]. There are many alternative methods,
which provide a better accuracy at a slightly higher computational and storage cost. One

of these methods is the 2-step predictor-corrector method [Burden et. al. 78]. The

integration is performed using the following formulas.

x’,, =x; + F(x;)h; (predictor step), (5.17)
F(x;)+F{x?”
X =X; + (x;) 5 (x“")h,- (corrector step). (5.18)

The predictor-corrector integration scheme achieves a higher accuracy (second crder, as
compared to the first order in Euler’s method) at the cost of two RHS calculations per
timestep (instead of one in the Euler’s method). Note that no extra storage is required,
since the reaction force computation requires that two consecutive states are stored.

Note that the structure of the MBD model can incorporate any integration method with a
desired accuracy. This is achieved by storing several states per body or link. For a
detailed review of various numerical integration methods, including some very accurate
iterative methods, see [Vinogradov and Sun 97]. The error-control scheme based on the
energy-conservation law can be used to control the accuracy of the integration

[Vinogradov and Sun 97].

126

5.6.4. Timestep selection

Varying the timestep in integrating ODE can be used in order to reduce the computational
effort when the system goes through a stable state by increasing the timestep and to
maintain the desired accuracy when the system undergoes rapid dynamic changes by
decreasing the timestep. There exist various techniques for adjusting the timestep based
on either the system parameters or by analyzing the behavior of the solution itself
[Burden et. al. 78]. These methods, however, assume that a single system of ODE:s is
being solved. The MBD model has to deal with a transforming set of ODE systems, as
the topology of the simulated system changes. Consider an example presented in the

Figure 5.17.

Figure 5.17. Timestep selection.

The cluster has detected that the disk A (shaded in the picture) is disconnecting from the
cluster (it is moving upwards). So, the cluster has to disintegrate into two clusters, one
containing the disk A and the other containing the rest of the disks. The original cluster
was large and the selected timestep was quite small. Thus, if the integration continued
with the same timestep, then it would take the disk A 10 timesteps to arrive at the point

B . Note that when the disk arrives to the point B, the two clusters will have to merge.

When the disk A is disconnected from the large cluster, a new cluster containing only
this disk is formed. This cluster has its own system of ODE, so an appropriate timestep
should be selected. Since the cluster contains a single disk only, the ODE has an

analytical solution (assume that the disk moves in a gravitational field), and, thus, a much

127

larger timestep can be selected without sacrificing the accuracy. Assume that a timestep
is selected, which is 10 times larger than the timestep of the original cluster. Then, the

disk will arrive at the point B in a single timestep.

Thus, once the clusters are separated, and the new cluster has predicted the trajectory of
the disk A, it is detected that the disk A is moving towards the cluster. An insert-link
event is scheduled at the current time and, thus, the system has arrived to the original
state. This leads to an infinite sequence of events (remove-link, insert-link, remove-link,
insert-link, etc.). Note that this situation is quite similar to the deadlock described in the

Section 3.5.4.

The situation can be dealt with by conserving the timestep for a period of time after the
original cluster has disintegrated. Therefore, the disk A physically separates from the
cluster so that when the timestep is increased, the collision with the cluster is not

scheduled right away.

5.7. Quasi-Rigid Bodies

The Quasi-Rigid Body (QRB) object is a special object, which has both properties of a
rigid body and, as such, can be a part of a cluster, and also the properties of a compound
object, which consists of other objects. Another important property of a QRB is that it

can contain other QRBs as its members. A QRB can be either free or fixed.

The QRBs are not simulated on a dynamic scene, but rather considered as static objects,

which can respond to changing external conditions.

5.7.1. Definition of Quasi-Rigid Body

A Quasi-Rigid Body is a group of n>2 objects (disks and/or boundaries) without
internal degrees of freedom. This means that if a QRB contains a boundary, then the
whole group is fixed, and if a QRB only contains disks, then the whole group has only 3
degrees of freedom (6 degrees of freedom in 3D), i.e. it behaves as a single rigid body.

128

Figure 5.18. Examples of Quasi-Rigid Bodies.

Several examples of QRBs are presented in the Figure 5.18.

Since a QRB can not have internal degrees of freedom, it can not contain any links that
are slipping or rolling. The main property of a QRB is that no part of it can move without

breaking, slipping or rolling one or more links.

5.7.2. Non-slipping link model

Consider a non-slipping link connecting two bodies B, and B,. Assume that the point of

contact is P (see Figure 5.19).

Figure 5.19. Non-slipping link.

The motion of the point P can be expressed as a function of coordinates of either B, or
B, . Clearly, the basic condition imposed by the link is that the velocity of the point P
expressed either way has to be the same.

This can be formalized as follows. Consider displacements of bodies (6x,.80,) and

(8x,,80,). The following kinematic conditions must be satisfied:

129
d+8{=r +r,, (5.19)

where d = x, —x;, 8 =8x, —8x,, and
86,r; +80,r, =36(r, +r,) [Vinogradov and Sun 97), (5.20)

where 80 is the relative rotation of the vector x, -X,,le.

(d.d+8) (d,s)
00 = arccos —+~ = I+ —— . 5.2hH)
dia+a U G) ‘

When the displacements are very small, the equations can be linearized:
(3.n)=0, (5.22)
86, +80,r, =(8,1), (5.23)
where 1 and t are the normal and tangent unit vectors of the original link.

Thus, the condition can be represented by 2 linear equations relating the displacements of

B, and B, (in 3D a non-slipping link is represented by 3 equations).

5.7.3. Graph-theoretical properties of QRBs
Each QRB satisfies the following important property.

Property 5.1. For a planar QRB with n nodes and e links the following inequality is

satisfied:3n —2e < 3.

Proof. Assume that the QRB is fixed. If it is not fixed, then we can impose an artificial
condition that the first body is fixed, this will not affect the topology of a QRB. Consider
a system of equations representing the system of bodies. Clearly, each link is represented
by 2 linear equations. Also since the first body is fixed, there are three additional
equations restricting the motion of that body. Thus, the system has 2e+3 linear

equations and 3n variables.

130

Since the QRB does not have internal degrees of freedom, the linear system has only one

solution: 8x; =0, 80; =0, i.c. the bodies can not move. Therefore, the rank of the
system is 3n (otherwise, the solution would contain free variables and would not be
unique). So, the total number of equations in the system has to be is at least 3n, i.e.

3n—-2e<3.
a

Note 1. The above property is a custom form of the Gruebler’s equation [Shigley and
Uicker 95].

Note 2. ForaQRB in 3D 6n—3e <6 (or 2n—e <2).

Note 3. The condition is in the form of an inequality, because some of the equations in
the system can be linearly dependent. The physical meaning of this is that some links can
impose redundant conditions, i.e. the QRB would still be intact if these links were

allowed to slip. Consider an example presented in the Figure 5.20.

Figure 5.20. Overconstrained system.

Clearly, it is enough that just one link is not slipping, this will guarantee that the other
one will not slip. Note that for this example 3n —2e¢ =3-2—-2-2=2. This does not mean
that the QRB has just 2 degrees of freedom (it is still 3), but only indicates that one of the

links imposes a redundant condition, i.e. the system is overconstrained.

Note 4. The Property 5.1 is a necessary but not sufficient condition. If for some graph
3n—2e <3, it does not necessarily mean that the graph represents a QRB. Consider an

example presented in the Figure 5.21.

131

7N

Figure 5.21. Property 5.1 is not a sufficient condition.

Clearly, n=3 and e=3, so 3n—2e=3. However, the system has one degree of

freedom: the ball can roll on top of the boomerang.

The following condition is conjectured. If for a graph with n nodes in general positions

and e links the inequality 3n —2e < 3 is satisfied, then the graph contains a QRB.

There exist certain examples, where this condition does not apply. These examples,
however, represent improbable cases, since they only work for very special arrangements

of bodies of specific sizes. Several such examples are presented in the Figure 5.22.

P B =55

Figure 5.22. Examples of irregular configurations.

The body configurations in the examples turn into regular QRBs if any small perturbation

is applied to disk sizes.

Property 5.2. If a graph does not contain loops shorter than 6 (i.e. each face of the graph
contains at least 6 edges), then the graph does not contain a QRB.

Proof. Since the graph is planar, Euler’s formula is satisfied: f —e+n =2, where [is

the total number of faces in the graph (including the external face), e is the number of
edges and n is the number of nodes. Walking around each face, count every edge. Then

the total number of edges counted will be at least 6f (because each face has at least 6

edges). Also, each edge will be counted exactly twice (because it belongs to two faces).

Thus, 2¢26f or f sg. Note that this inequality is also true for any subgraph of the

original graph because any subgraph is also a planar graph, which does not contain loops

132

shorter than 6. Then, for any subgraph the Euler’s formula can be written as
g—e+n 22. Then, 3n—2e¢ 26 for any subgraph of the original graph. Therefore, the

original graph could not contain a QRB, because due to the Property 5.1 in a QRB the

following inequality must be satisfied: 3n—2e < 3.

5.7.4. ORB detection

The abstract problem of QRB detection is as follows. Given a graph, it is assumed that all
links in the graph are non-slipping. It is required to detect all subgraphs of the original
graph, which represent QRBs, and are maximal, i.e. a QRB is not a subgraph of some
other QRB.

The problem of QRB detection is not easy to solve. A straightforward approach would be
to consider all possible subgraphs of the original graph. Note that it is not enough to
check that 3n—2e <3 for a subgraph, since this does not guarantee that the subgraph in
consideration is a QRB. Indeed, the system of equations representing the system of links
has to be considered and the groups of linearly dependent equations have to be separated.

Such an approach would require an exponential time to complete the search.

An alternative approach based on pattern matching is suggested. The al gorithm is correct,
i.e., it returns a list of true QRBs present in the original graph. It is conjectured that the
algorithm is complete, i.c., that it returns the full set of QRBs.

The approach is based on the following observation.

133

Property 5.3. Assume that a graph G with m nodes is a subgraph of a graph H with
n>m nodes and that both G and H represent QRBs. Then, if the graph G is collapsed
to asingle node in A obtaining the reduced graph H,, then H, is also a QRB'.

Proof. Since H is a QRB, the system of linear equations Sy representing the
displacements of nodes in H has a single trivial solution. Consider a subset S G of Sy,
which corresponds to the links in G. S; is a linear system of 3m variables
(8x;,8y;,80;), i=1..m. Since G is a QRB, S; also has a unique trivial solution.
Compute the coordinates of the center of mass of G (xg,ys5.85) and perform a
substitution in the original system such that the displacements (3x;,8y;,80;) are
expressed through the displacement of the center of mass of G (&G,SyG,SGG). Then,
the resulting system containing 3n —3m +3 variables still has a unique trivial solution,
ie. H; is a QRB.

(]

The physical analogue of the proof is that since G is a QRB, it is virtually replaced with
a real rigid body (or, equivalently, every link in G is “welded”). This will not add any
degrees of freedom to H ; thus, the resulting graph H, will remain a QRB.

The property enables detecting QRBs by looking for basic “QRB templates” in the
original graph and collapsing them to single nodes (by applying the Group primitive).
The QRB detection process is terminated when no more templates can be found in the
graph. An example of QRB detection process is presented in the Figure 5.7. Note that for
the QRB detection purposes, all fixed nodes in the graph are represented by a single fixed

node.

' In other words, if Group primitive is applied to G then the resulting hierarchical graph

H, is also a QRB.

134

5.7.5. ORB templates

The ORB template is defined as a minimal graph representing a QRB, i.e. a graph that

does not contain another QRB template as a subgraph.

The three basic QRB templates are the “loop”, “hamburger” and “triangle” (see Figure

5.23).
I VAN

loop hamburger triangle
Figure 5.23. Basic QRB templates.

Note that it is quite easy to detect the first three templates by simply analyzing the faces
of the original graph. Each template corresponds to a single face with either 1, 2 or 3
edges. Note that the “loop” template does not appear in practice (although it is listed here
for completeness), because a configuration when a link appears between two nodes
belonging to the same QRB is improbable. The “hamburger” and “triangle” templates are
the most common ones and the majority of QRBs are constructed using only these two

templates.

Note that to continue the list of QRB templates, it is necessary to look for graphs that do
not contain loops, double edges and triangles, because a QRB template can not contain
another QRB template as a subgraph. Note that due to the Property 5.2 a QRB template
must contain a face with 4 or 5 edges. Thus, it does not make sense to search for QRB

templates among graphs only containing 6-faces or higher.

It will be shown that there exist an infinite number of different QRB templates. Consider

a graph shown in the Figure 5.24.

135

Figure 5.24. A QO template, f, =8.

The graph represents a QRB template Q r, » Which consists of f; 4-faces, f, 22. The
graph has 2 f, +1 nodes and 3f; edges. Thus, the total number of degrees of freedom is
3(2f4 +1)=2-3f, =3.

Are there QRB templates containing S-faces or higher? Consider a graph consisting of

f4 4-faces and fs 5-faces around a common central point (see Figure 5.25).

S\
o

Figure 5.25. Building a template with 5-faces.

The graph contains 1+2f, +3f5 nodes and 3f, +4 fs edges. Obviously, the graph has
3(1+2f,+3f5)-2(3f4 +4fs)-3=fs internal degrees of freedom. It is possible,

however, to obtain a QRB template from the graph by adding several 4-faces (see Figure
5.26).

N

o

Figure 5.26. A QRB template obtained from a graph with S-faces.

By adding a 4-face on the outside boundary of the graph one additional node and two

edges are introduced, i.e. the total number of degrees of freedom is decreased by one. So,

136

by adding fs 4-faces, a new QRB template can be obtained. Note that it is not allowed to

attach the 4-faces on top of each other (see Figure 5.27), because the resulting graph

would contain a subgraph congruent to Q fo» fa=2.

Figure 5.27. Attaching 4-faces on top of each other.

Adding a 5-face to the graph can either add 1 node and 2 edges, 2 nodes and 3 edges or 3
nodes and 4 edges (see Figure 5.28). Correspondingly, the total number of degrees of

freedom is either decreased by one, not changed, or increased by one.

/NN

Figure 5.28. Adding a 5-face.

Likewise, adding a 6-face may change the total number of degrees of freedom from
minus one to plus two, and so on. Thus, it is possible to build different QRB templates
using various faces. Note that while building a QRB template, one must keep in mind that
it is not allowed to obtain graphs that contain templates, which were already obtained.
Thus, it is not very straightforward to build a template, which does not contain 4-faces. It
is possible, though, and the example of such template is presented in the Figure 5.29. The

template contains 11 nodes and 15 edges.

137

Figure 5.29. A 5-face only QRB template.

A generic formula can be obtained as follows. Assume that the graph contains f; loops

(1-faces), f, double edges (2-faces), f3 triangles (3-faces) and so on. Then, counting

faces and edges, one can obtain the following relationships: f = Z fi. 2e= Z:f, . From

i i

Euler’s formula, n =2 +e— f . Thus, the following formula is obtained.
3n—2e=6+e-3f=6+2(é—3)[,—. (5.24)

Property 5.2 follows from equation (5.24). Since fi=0 for i=1..5, all negative

multipliers are absent and, consequently, 3n—2e>6.

Note that it is quite difficult to perform pattern matching with a large template. In the
general case, the problem can be as difficult as the original straightforward QRB
detection approach, which checks all possible subgraphs. Thus, it makes sense to perform
pattern matching with small templates only. This might potentially leave some QRBs
undetected, but the probability that such QRBs will appear is very low. It is usually
sufficient to perform matching only with two basic templates: “hamburger” and

“triangle” (see Figure 5.23).

5.7.6. Dynamic maintenance algorithms

An algorithm maintaining a QRB must watch the forces in the QRBs links and detect
slips and disconnections. Note that a connection can not occur inside a QRB because it is
assumed that the bodies in a QRB do not move relatively to each other. Likewise, a grip
event can not occur in a link in a QRB because all links in the QRB are already stable.

138

If a slip or a disconnection is detected then the fundamental property of a QRB, which
states that the QRB does not have internal degrees of freedom, is violated. Therefore,
such QRB has to be disintegrated. If the owner of the link is a QRB, which is a member
of another QRB, then this parent QRB has to be disintegrated too, and so on. As a result
of this disintegration process, a set of QRBs, representing the intact subtrees of the

original tree, is obtained (see Figure 5.30, where the original disintegrated QRB is

WY SR %)

Figure 5.30. Disintegrating a QRB.

marked with a larger dot).

Then, the QRB detection algorithm FindQRBs is applied to the obtained set of bodies and
their neighbors, and, possibly, a different QRB configuration is constructed. Note that it
is possible that the new QRB contains all the bodies of the QRB, which Jjust got
disintegrated. The reason for this is that many links in the original QRB might be
redundant. Consider an example presented in the Figure 5.31, where n=7, e=11 and

thus 3n—-2e=1.

B K_}(\;;@ B

Figure 5.31. Removing a redundant link from a QRB.

Note that the original tree was built as the disks were settling one-by-one, such that the
left triangle was formed first, and then the remaining three disks were added one after
another. Assume that the link marked as dotted line in the left picture is removed. Then
the tree is disintegrated; however, once the FindQRBs routine is run, all six disks are

connected into a single QRB once again. Note that the new QRB has a different topology.

139

The FindQRBs routine first detected a triangle consisting of three disks. Then, the two
remaining QRBs were connected into a single fixed QRB, because the triangle is
connected to the first QRB (the one which did not get disintegrated) by two links. The
QRB detection process is not defined uniquely, because at any moment of time in the
detection process it is possible that several QRB templates are found in the graph. Then,
the resulting structure might depend on the order, in which these templates are Grouped

(collapsed into single nodes).

Generally speaking, it is more efficient to build wide and shallow QRB trees (as opposed
to narrow and deep trees), because when a QRB is disintegrated. the resulting set of
bodies, which is passed to the FindQRBs routine, is smaller. When a link is removed,
every node on the path from the QRB being disintegrated to the root of the QRB tree has
to be disintegrated as well. Thus, if the length of the path from a QRB to the root of the

tree is minimized, then the total number of disintegrated QRBs is also minimized.

The goal of “balancing” the QRB tree can be achieved by analyzing the total number of
disks in each of the found templates. A template with the least total number of disks has
to be Grouped first. The alternative approach is minimizing the maximum depth of the

trees comprising the template.

5.7.7. Forces in QRBs

The primary function of the QRB object is computing the internal stresses in the links of
the structure. One of the possible approaches is to maintain the inverse stiffness matrix of
the QRB as it is done in the QS model (see Chapter 4). This allows computing the
internal forces in links by directly multiplying the inverse matrix by the vector of external
forces, acting on the members of the QRB. Note that for this approach, the tree-like
structure of the QRB is not used. Rather, the hierarchical graph represented the QRB is
“flattened” into a regular graph. The methods presented in this section assume that the

QRB is fixed. The case, when the QRB is free, will be considered in the next section.

140

5.7.7.1. RIMA-based force computation

The Recursive Inverse Matrix Algorithm (RIMA, see Chapter 4) can be used to compute
the internal stresses in a QRB. The method is based on maintaining the inverse stiffness
matrix of the system. The internal stresses are computed by multiplying the inverse

matrix by the vector of external forces.

The inverse stiffness matrix has to be maintained as the topology of QRB changes.
Obviously, the only way a new QRB is formed is by a QRB template. Thus, two or more

QRBs are merged into one.

Z, z K
Ep L=

Figure 5.32. Combining two inverse matrices.

Assume that the inverse stiffness matrices are maintained for each of the smaller QRBs.
When the smaller QRBs are merged into a larger QRB, their inverse matrices are used as
the blocks of the resulting inverse matrix. This matrix is then updated as the links

connecting the smaller QRBs are added to the system (see Figure 5.32).

5.7.7.2. Conjugate Gradient iterative method

The alternative approach is not to maintain the inverse matrix, but rather to solve the
linear system describing the stresses in QRB links each time the external forces or the
QRB topology changes. The linear system possesses nice properties: it is symmetric and
diagonally dominated. Some efficient iterative algorithms can be employed, which can
obtain the solution in a time comparable with the RIMA approach. Moreover, the values
from the previously obtained solution can serve as good approximations of the new

solution in the case, when the external forces do not change too much.

141

One of the iterative methods, which can be used to solve the system, is the Conjugate
Gradient method [Burden et. al. 78]. This method uses the fact that the system is

symmetric and positive definite.

Assume that the linear system is defined as Ax =b. The solution x and the residual

r) =p- Ax®) are updated on each iteration as follows.

x® = x60 4., p@ | o) 2 pl) _ gy) (5.25)

where P(i) =rl 4 Bi—lp(i—l) is the search direction vector, B; = rl)Tr(") / r(i“)Tr(i-') and

AT ¢ AT .
a; =r) r(‘)/ p® Ap(') , PV =r©@_ The iterations are stopped when the norm of the
residual becomes smaller than some given tolerance value.

A preconditioner can be used to improve the convergence of the iterative method. The
preconditioner M is usually computed somehow from the original matrix A before the
iterations begin. Then, the search vector is computed based on the value of
z® =M@ The simplest preconditioner is M =1, i.e. 28 =) n this particular

implementation, the preconditioner was selected as the main diagonal of the matrix A .

5.7.7.3. Comparison of RIMA and CG methods

Both methods have their advantages and disadvantages. The RIMA-based method
computes the forces very quickly by simple matrix-vector multiplication. However, it has
the overhead of updating the inverse matrix each time the topology of the QRB changes.

Also, when the QRB is large, the matrix occupies a lot of memory.

The iterative method does not require any additional storage. It can be as efficient as
RIMA when the external conditions don’t change too much, thus, the previous solution
provides a good approximation to the current solution. In some cases, however, the
stresses in a QRB are redistributed significantly. An illustrative example of such a

situation is the “closing of a bridge” configuration (see Figure 5.33).

Wm

Figure 5.33. “Closing of a bridge” configuration.

The stresses in the QRB links change considerably once the right end of the bridge comes
into contact with the support. This is because originally the whole weight of the bridge
was supported by the left end only, while after the right end of the bridge comes into
contact with the support, the weight becomes redistributed evenly between the two
supports. Note that even though this configuration rarely appears in the simulation,

similar stress redistributions can occur in real QRBs.

Each of the methods has its own applicability domain. A series of computational
experiments was performed to compare the models. A single QRB representing a silo
configuration (see Chapter 4) was simulated using both methods (note that micro-
topological changes, such as slips, were not considered). The experiments were
conducted for silo configurations containing up to 1000 disks. The results of the

experiments are presented in the following figures.

Time/disk

—eo— RMA
—a—CG

Time, msec

Number of disks

Figure 5.34. Internal stress computation time.

143

The comparison of the two methods in respect to the computing the internal stresses in
QRB links from the external forces is presented in the Figure 5.34. Note that the time was
scaled by the number of disks in the system. It can be clearly seen that the RIMA time
per disk grows linearly (note that the total time, therefore, grows as a quadratic function).

This is in correspondence to the fact that to compute internal stresses RIMA multiplies an

nxn inverse stiffness matrix by a Ixn vector of external forces, i.e. O(nz) operations is
performed in total.

The Conjugate Gradient (CG) iterative method run time does not grow as fast as RIMA’s.
Note that for small QRBs the computation time can be almost 6 times larger than the

RIMA time. However, as the size of QRB grows, the method shows a good performance

and it clearly outperforms RIMA for configurations containing 500 disks or more.

Another important factor is the overhead related to maintaining the inverse stiffness
matrix by RIMA. Consider the Figure 5.35, which show the time spent for updating the

inverse matrix after a single link is added to the system.

RIMA link update time

0.12

0.1 {

0.08 -

0.06

Time, sec

0.04

0.02

Number of disks

Figure 5.35. RIMA matrix maintenance overhead.

144

Such updates need to be performed each time the topology of a QRB changes. Note that
usually only a few links need to be added to the system, because the QRB matrix is
created from several known smaller blocks corresponding to QRB members (see Figure
5.32). Still, the updates are quite computationally expensive. Note that there is no

maintenance overhead associated with the CG iterative method.

Another interesting point is demonstrated in the Figure 5.36, which shows the number of

iterations the method required to arrive to a stable solution.

Number of iterations

180

lterations

0 200 400 600 800 1000
Number of disks

Figure 5.36. Number of iterations in CG method.

Clearly, the number of iterations almost does not increase as the number of disks grows
over 500. Apparently, this is the reason for the good performance of the CG method for
larger QRBs. This behavior can probably be explained by the fact that in the particular
QRB configuration tested (silo) each node affects only a small number of neighbors'.
Thus, the particles at the top and the bottom of the silo almost do not affect each other,

thus, the iterative method converges faster. Such phenomenon is, however, related to the

! The average number of neighbors is usually referred to as the cardinality of the system.

145

particular topology of the QRB. The results probably would not be as good for the
“closing bridge” configuration (see Figure 5.33).

5.7.7.4. Selecting which method to use

In each particular case, a decision must be made on which of the two methods has to be
used based on the anticipated properties of the simulated system. RIMA is preferable for
smaller QRBs and stable systems (so that the inverse matrix is not updated too often). CG

method is better for large QRBs and variable systems.

It is possible to use the two methods interchangeably in a simulation. One could set up a
threshold value for the number of disks in a QRB that would control which of the models
is used. Another possibility is to control the number of iterations the CG method takes to

achieve the desired accuracy.

It would not be efficient, if the RIMA inverse matrices were computed from scratch each
time the method is switched. Thus, it makes sense to store the inverse matrices of smaller
QRBs for future reuse, if a decision is made to switch to RIMA method. It is conjectured
that these small inverse matrices can serve a certain purpose even in the iterative method.
Indeed, it would probably improve the convergence if they were used as preconditioners
in iterations. Indeed, each of these matrices represents the inverse matrix of a part of the

larger system.

5.7.8. Free-flowing QRBs

Both stress computation methods defined in the previous section require that the QRB be
fixed. Indeed, it is impossible to resolve the linear system defining the displacements of
the nodes when the QRB is free, because the matrix of the system is indefinite (in other
words, the system’s equations are linearly dependent). The physical meaning of this is as
follows. Assume that a set of external forces is applied to the disks of a QRB. Then, if the
total sum of forces is non-zero, then the QRB will start moving. In a static declaration

this means that the displacements of the nodes are infinite. If the total sum of forces is

146

zero, then the QRB will not move. However, in this case the linear system has an infinite
number of solutions, because the whole QRB can be essentially translated as whole into
any point in space, which gives an infinite number of valid values for node

displacements.

This can be formulated algebraically as follows. The stress in each link is represented by
the equation K,-j(d,- -d j)= R, where d; are the displacements of nodes, K;; is the
stiffness of the link and R;; is the stress in the link. Thus, a row in the matrix

corresponding to an element i has ZK ij as the diagonal element and -K;; as off-
diagonal elements'. Note that the sum of all rows is zero, i.e. the equations are linearly
dependent. Assume that A is the nxn block matrix of the system (where n is the
number of nodes). Clearly, rank(A)<n because the equations are linearly dependent.
Denote the vector of external forces by b. Assume that the total sum of external forces is
zero. Then, the sum of all equations in the system Ax=b is 0=0. Thus,
rank(A) = rank(A |b) < n and, thus, the system has an infinite number of solutions. Note
that every solution can be obtained as a translation of some selected solution: x = xg +C.
If the sum of external forces is not zero, then rank(A)< rank(A Ib) and the system does

not have a solution.

Despite the fact that the straightforward approach does not yield an acceptable result, the
problem can, indeed, be solved in a static formulation. A free-flowing QRB is a part of
some cluster. Thus, its motion is defined in terms of the motion of its center of mass and
the rotational displacement. Associate a non-inertial system of coordinates with the QRB.

By D’Alembert’s principle, it is necessary to apply the inertia force —m;X and the

' When the QRB is fixed, the diagonal element has additional members in the sum,

corresponding to the links to fixed nodes.

147

centrifugal force m;y ,-62 to each disk, where m; is the mass of disk, y; is the coordinate

of the disk in the local coordinate system, X is the acceleration of the QRB, and 0 is the
angular velocity of the QRB [Shigley and Uicker 95]. Note that since the QRB is stable

in the local coordinate system, the total sum of forces acting on the QRB is zero.

Although the linear system can be solved, the solution is not unique. Note that it is not
required to determine the actual values of node displacements. Rather, relative node
displacements are of interest (because they define the stresses in the links). Thus, it is
enough to find some solution of the system, that can be used to obtain the reaction forces

in the links.

The system can be solved using the regular approach with the technique called
“grounding”. Consider a free QRB such that the total sum of forces acting on its nodes is

zero (see Figure 5.37).

Figure 5.37. “Grounding” a free QRB.

It is possible to attach one of the nodes of the QRB to a fixed node (ground) by a
“fictional link” (spring). Then, the system becomes determinate and a unique solution can
be found using either RIMA or CG method. Note that since the total sum of forces acting
on QRB is zero, in the resulting QRB the stress acting in the fictional link is always zero.

Algebraically, the attachment of the fictional link introduces a missing equation into the
system, so that now a unique solution can be found. Also note that this solution is also a
solution of the original system, thus it can be used to determine the correct stresses in
QRB links. The stiffness of the fictional link can be selected arbitrarily, it will not affect

the solution. It is possible to require that the link is “absolutely stiff”, in other words, to

148

impose an exact condition on the displacement of the “grounded” disk (d grounded =0).

This approach works well for the CG method, however, it is not acceptable for the RIMA
method, because RIMA requires that the stiffness matrix of a link must be explicitly

given.

If two free QRBs are getting merged into a single QRB then one of the fictional links has

to be disconnected so that the results of computations are not falsified.

5.7.9. ORB stiffness computation

The cluster object uses the link model to compute the stresses in the links connecting its
members. If a QRB is a member of a cluster, then it is necessary to define how to

compute the stress in a link between a QRB and another body.

~
- .

Figure 5.38. Link between two QRBs.
Consider two QRBs connected by a link (see Figure 5.38). The centers of mass of the two
QRBs are x; and x,, and the two disks in contact are d, and d,. Then the link between
the QRBs can be modeled as three sequential elements: x,d;, d,d, and d,x,. The

_ _ 1
stiffness of the combined link can be computed as K,‘I,‘2 =(;xldn +Kd:d2 +Kd'2x2)_ .

The stiffness Kgq 4, of the link connecting two disks is known. It is required to be able to

compute the “internal stiffness” of a QRB, specifically, the stiffness of a “virtual link”
connecting the center of mass of the QRB to any disk in this QRB.

This can be done as follows. Assume that the QRB is considered separately from the rest
of the system (i.e. it is singled out as a rigid body with its own internal stiffness

properties). The stiffness is defined as the displacement of a spring under the influence of

149

a unity force. Consider a “grounded” QRB. Apply a unity force to the disk in question.
Note that it is required to apply the inertia and centrifugal forces to all disks the QRB, so
that the total force is zero. Under the influence of external forces all nodes will be
displaced according to the applied force (note that if RIMA is used, then it is sufficient to
take a single row of the inverse matrix). Given the displacements of nodes, it is possible
to compute the “virtual displacement” of the center of mass of the QRB. Then, the
difference between the displacements of the center of mass and the disk in question will

give the desired stiffness value.

5.8. System

This section defines the System object, which is used as the root of the hierarchical graph
representing the simulated granular system. The main functions of the System object
include maintenance of the event queue, routing events, dynamic creation and deletion of
bodies, statistics and logs maintenance, as well as interfacing with the Collision Detection

Optimizer (CDO) module and the External Forces Computation (EFC) module.

5.8.1. Description of the System object

The System object is the top object in the hierarchical graph of the granular system. This
compound object is persistent throughout the simulation, i.e. it is not dynamically created
or deleted during the simulation (unlike the other compound objects: Cluster and QRB).
The System object is responsible for driving the simulation and coordinating the actions

of its members and the communication between them.

The System object is also responsible for maintenance and storage of global-scope data.
This includes the event queue, which is shared among all objects. The event queue is the
means of synchronizing all objects in the simulation and making sure that the events are
happening in the proper order. The System object is also responsible for writing

simulation logs and for input/output of data.

150

Being the top-level object in the hierarchy, the System object contains all of the other
objects as its members or descendants. The System object’s immediate members can
include clusters and fixed bodies (boundaries or QRBs). The object can also be the owner
of some links. These are the links, which connect clusters to fixed bodies. The System

object does not maintain these links; this is done by the clusters.

The System object implements the main simulation loop, which retrieves the events from
the head of the event queue and routes them to the objects, which are responsible for their
processing. The System object itself is capable of handling certain types of events,
including insert-link and remove-link events, as well as all of the system events (see

Section 5.3.6).

5.8.2. Dynamic creation and deletion of bodies

One of the System object’s responsibilities is dynamic creation and deletion of bodies.
This is required in certain cases, for example, when the flow of particles through a pipe is

simulated (see Figure 5.39).

flow o
creation o

0 deletion

Figure 5.39. Pipe flow simulation.

The particles are created dynamically and fed into the pipe from the left end. The
particles, which reach the right end of the pipe, are dynamically deleted, as they leave the

simulation space.

Note that in some cases, no dynamic creation and deletion of particles is required. For
example, if a ball mill is simulated, then all particles are placed into the simulation space
in the beginning of the simulation, and no particles leave the simulation space during the

simulation. In other cases, only dynamic deletion is required. For example, in hopper

151

simulations, all particles are loaded into the system in the beginning of the simulation,

and then they are allowed to leave the simulation space as they flow down the hopper.

5.8.2.1. Dynamic creation of bodies

The dynamic creation of particles is managed via the new-body events, which are
scheduled periodically. The System object handles the event and creates a new body with
parameters in the specified ranges. Note that the new body is created at a random
position, such that it does not intersect any of the existing bodies. This is achieved by
random “shooting” into a specified “particle creation” area of the simulation space. If
such a position can not be found, then the new-body event is postponed for a specified
period of time (in other words, a new new-body event is scheduled after that period of
time). If the particle can not be placed again, the creation is postponed, etc. If the particle
can not be placed after a specified number of tries, a jam condition is reported and the

simulation is halted.

After a successful placement of a new particle, the next new-body event is scheduled.
There are several approaches for dynamic scheduling of new particle appearances. One
simple approach is to schedule them at fixed periods of time. The flow will still be

random because the position and radius of each new particle is selected randomly.

The alternative approach is to model the flow using the Poisson distribution [Burden et.
al. 78]. Thus, a random stream with an average frequency A can be modeled by

generating new bodies at random intervals A; using the following formula.

Ing
A, =——2, 5.26

where & is a random variable uniformly distributed in [0,1].

Note that all new-body events can be scheduled at once at the beginning of the

simulation. It is also possible to schedule the next new-body event only when a current

152

new-body event is being processed. The latter approach is more efficient, since the event

queue length is smaller in this case.

5.8.2.2. Dynamic deletion of bodies

The dynamic deletion of bodies is achieved by scheduling delete-bodies events at
specified fixed periods of time. The System object scans all bodies in the system and
determines if they have left the simulation space. Those bodies that have left the
simulation space are marked for deletion. Note, however, that the bodies are not deleted
right away. Rather, the System object is looking for the whole clusters of bodies, such that
all their members are marked for deletion. If such a cluster is found, then it is deleted
from the system as a whole. This approach ensures that there are no sudden changes in

system’s topology, which would lead to the falsification of the simulation results.

5.8.3. Input/output, statistics and state logging

The System object is also responsible for loading the simulation model initially into
memory. The simulation model is defined by the set of fixed boundaries, the set of
particles, which are initially loaded into the simulation space, as well as definitions of the
various system parameters, such as stiffness coefficients, external force field definitions,
etc. Before the main simulation loop is started, the System object loads all model
definitions and creates the initial model. Then it schedules the initial set of events (such
as the initial predict-trajectory events for clusters and the finish-simulation event) and

then runs the main simulation loop.

The output is performed via two mechanisms: state logging and event logging. The state
logging is achieved by firing the log-state events periodically at a specified fixed rate
(such as every second of virtual time). The application program can handle the log-state
event and output selected system state parameters, such as total kinetic or potential
energy of the system, average velocities of particles, pressures on the boundaries, events

rate during the log interval, and many other parameters. The state logging mechanism

153

obtains periodic snapshots of the system state, which can be used, for example, to create

an animation.

The event logging provides a more granular approach to monitor the changes in system
state. Thus, two log-event application events are fired for each simulation event, as it is
being handled. One log-event event is fired just before the simulation event is handled,
and the other one is fired after the simulation event is handled. This allows tracking
micro-changes in the system state due to each simulation event. The application program
must be careful with processing log-event events and not to include any time-expensive
operations, such as writing to a file, since it would have a significant effect on the
simulation performance. Note that hundreds of thousands of events are processed during

a usual simulation run.

5.8.4. External forces

The computation of external forces acting on the bodies in the simulated system is
performed by a separate External Force Computation (EFC) module. The System object
has a handle to the EFC module, thus enabling clusters and all other objects to query it

and compute the external forces acting on each particle.

The EFC module is implemented as a separate component, which can be easily
exchanged for a different one. The EFC module must implement a single function
GetExternalForce(Body, State), which must compute the external force and the moment
acting on the Body. Since a body can maintain several different states, the index of the
state is also passed to the function. Note that a body state contains all information about
the body, including its position, velocity, angular displacement and velocity, and the time
of the state snapshot. Also, Body contains static information, such as the mass and the
radius of the particle. Thus, by querying Body, the EFC module can perform complex

computations involving the current state of the body, if needed.

The simplest EFC module is the GravitationEFC, which models the gravitational field.

Thus, the external force acting on a body is computed as F,,, = mg , where m is the mass

154

of the body and g is the gravitation constant. The moment of the gravitational force is
always zero. Note that the GravitationEFC can be initialized with g =0, which can be

used to represent weightless models.

Another simple EFC models the friction force based on the current velocity of a body.
This EFC can, perhaps, be used in billiard simulations. The external force is computed as

F,u =—kv, where v is the velocity of the body and & is the viscosity coefficient.

A number of more complex EFCs can be introduced. For example, an EFC can be used to
model dragging forces in a pipe flow simulation (see Figure 5.39). Thus, the position of
the body will be taken into account when computing the force acting on the body (this
will be used to compute the flow velocity, which can be different in different points of
the simulation space). Then, the difference between the velocity of the flow and the body
velocity will be used to compute the drag force. A more complex flow EFC might
consider the influence of the bodies on the flow, i.e. introduce the “feedback” into the

model. Such a model requires maintaining the internal state.

A more complex EFC might need to evolve over time. To achieve this, the EFC is given
access to the global event queue, which is maintained by the System object. Thus, the
EFC can define its own events and schedule them in order to update the internal state of
its model. The System object will route the EFC events to the EFC module. Note that
using a common event queue is crucial to ensure that the simulation objects (including

the EFC module) are synchronized.

Various EFC modules can be developed and “plugged-in” into the system without
changing the rest of the model. This is achieved by using a standard interface into an EFC
module. Thus, an EFC module has to be able to compute the external force acting a body,
and the MBD model does not need to know how this is done. The EFC module, in turn,
has access to the event queue, as well as to the states of all bodies in the system, which it

can use if needed. For example, in a simulation of a planetary system the EFC module

155

will compute the gravitation force acting on a planet based on the current positions of

other planets in the system.

5.8.5. Collision detection optimization

The collision detection optimization is a crucial task in almost any granular system
simulation. It has been shown [Gavrilova 98] that collision detection can take up to 90%
of the processing time, when collision detection optimization is not used. Indeed,
collision detection has to be performed each time when a state of a body changes
(usually, after a predict-trajectory event). If collision detection is not optimized then the
body has to be checked for collisions with the rest of the bodies, which results in O(n)
collision checks, where n is the total number of particles in the system. Note that a
collision check usually involves solving a quadratic equation (see Section 3.3 for a more
detailed discussion). Thus, the collision detection procedure can be very computationally

expensive, taking into account that the predict-trajectory events are very frequent.

A Collision Detection Optimizing (CDO) algorithm implicitly maintains a list of
neighbors for each body, thus reducing the total number of collision checks that need to
be performed. For an overview and comparison of different CDO methods see [Gavrilova
98]. Note that the CDO algorithm has to maintain the neighborhood information as the
bodies move, which introduces a certain computational overhead. This overhead,
however, is usually not too high and in some cases the simulation efficiency can be

improved by an order of magnitude by employing a CDO algorithm.

The MBD model defines a standard CDO interface, which can be used to plug in
different CDO modules, depending on the type of granular system being simulated. This

interface is defined as follows.

First of all, the CDO module must be able to return a list of neighbors of a particular
body on a request. These requests are usually done by clusters once they have computed

the trajectories of their bodies (after a predict-trajectory event has been handled) and are

156

detecting collisions. Thus, a CDO module must implement a function GetNeighbors,

which passed a reference to a body and has to return the list of neighbors of the body.

The CDO module also gets notified of dynamic additions and deletions of particles so
that it could update its internal data structures. Thus, a CDO module must implement two
functions AddObject(Body) and RemoveObject(Body), which are getting called by the

System object once a body is added or removed from the system.

The CDO module needs to keep track of current positions and velocities of particles.
Thus, it is notified when a cluster has computed the trajectories of its members for the
next timestep. This notification is implemented by the function TrajectoriesUpdated,

which is passed the list of the bodies, whose trajectories were updated.

Finally, a CDO module may define its own events, which are scheduled into the global
event queue. Most CDO algorithms do define their own events, which are usually called
topological events (because the topology of the system changes when such an event
occurs). When the System object retrieves a topological event from the event queue, the
event is routed to the CDO module, which has to handle it. For this purpose, the CDO

module must implement a method called ProcessEvent.

Usually, when a topological event occurs, the topology of the neighboring graph changes.
This results in new neighbor pairs being created. The CDO algorithm must notify the
MBD model that the set of neighbors has been updated. The notification is implemented
via an event, which is fired by the CDO module and has to be caught by the System
object. The event contains a reference to an object and a list of updated neighbors of this
object. The System object handles the event by detecting the collisions in the newly

created neighbor pairs.

5.9. Program architecture

This section describes the internal architecture of the MBD model simulation software.

The program was developed in a form of object-oriented library of software components,

157

representing various components of the model at different abstraction levels. The
program was written in object-oriented Pascal, in Borland Delphi 3.02 environment. The

executable runs on a Windows 95/98/NT platform.

The MBDS (Multi-Body Dynamics Simulation) library consists of three abstraction
layers: the base layer, the model layer and the implementation layer (see Figure 5.40). A

particular application must also include the application layer.

MBDS library
Hierarchical graphs Utilities Base layer
Abstract MBD objects (Cluster, QRB, Body, ...) Model layer

Concrete MBD objects (SpringLink, SpringQRB...) | Implementation layer

Application Application layer

Figure 5.40. Abstraction layers.

The objects at the base layer include SimObject and Link objects, which are used to
represent generic hierarchical graphs, as well as several utility objects, such as Vector
object responsible for vector operations and IDList object, which is used to store indexed

lists of bodies or links.

The objects at the model layer represent various model components found in the MBD
model. These objects include Cluster, QRB, Body, Boundary and System. Note that the
objects of this layer do not implement any numerical algorithms (such as a particular
integration method used by the Cluster object). Rather, they are only concerned about
graph-theoretical aspects of MBD algorithms, such as the transformation of clusters,
QRB detection and so on. Also, the event processing is not implemented at this layer, i.e.
the objects are not tied to any particular event set. This functionality is open for

implementation at a lower layer.

158

The objects at the implementation layer implement a particular set of numerical
algorithms as well as define a set of events and rules for their processing. Thus, various
approaches, such as different integration methods, can be implemented. The library
includes an implementation of MBD objects, based on “spring-like” links, i.e. the links
represented by elastic elements. This, in particular, determines the system of ODE
defining the motion of a cluster, as well as the stiffness matrix of a QRB. Note that a
different approach can be implemented without affecting the objects on higher layers. For
example, a “hard-body” approach can be implemented, which is based on the Lagrange
formulation, which yields an algebraic-differential system of equations (see Section

5.6.2).

The implementation layer also includes the objects representing the “plug-in”
components, such as various ForceField objects (see Section 5.8.4) and the CDO

(Collision Detection Optimizer) implementations (see Section 5.8.5).

Finally, a particular application has to include implementations of various input/output,
visualization and logging functions. The System object exposes a set of events, which can
be handled by the application, such as visualize, log-state, log-event, new-body and
delete-bodies events. The application also is responsible for supplying the initial system

configuration, as well as handling the statistics and logging.

5.10. Application - hopper flow

The model of hopper flow was implemented based on the MBD model. A set of

numerical experiments was conducted to validate the developed approach.

Hoppers (see Figure 5.41) are used in many industries, including mining, chemical,
agricultural and many others. They are commonly used as a device for storage and
discharge of granular materials. Hoppers have been a subject of study for many years,

starting from a pioneering work by Janssen [Janssen 1895].

159

It is quite difficult to investigate the internal properties of granular matter in a hopper
because this granular system is quite sensitive to the presence of external bodies. Thus, it
is only practical to investigate such parameters as the discharge rate, velocities of

particles moving inside the hopper or the stresses on the walls.

Figure 5.41. A hopper with 500 particles.

Many simulation models have been introduced to investigate the micro-properties of the
granular matter in a hopper. Most of the models are based on the continuum approach
[Jenike and Shield 59, Pariseau 69, Davidson and Nedderman 73, Brennen and Pearce 78,
Jackson 83, Savage 84, Nedderman 92). Discrete models include cellular-automata based
methods [Claudin and Bouchaud 97], molecular-dynamics methods [Ristow and
Herrmann 95, Sakaguchi et. al. 93, Hirshfeld et. al. 97, Rong et. al. 97] and the distinct
element method [Potapov and Campbell 96].

5.10.1. Problem description

A two-dimensional hopper is simulated. The hopper geometry is defined by the height of
the hopper H, the width W, the orifice W, and the angle a (see Figure 5.42). The

160

hopper is loaded with n disks with normally distributed radii. Then, the orifice at the
bottom of the hopper is opened and the disks flow down under the influence of the

gravitation force.
e b

H

< v
Figure 5.42. Hopper geometry.

The contacts between the disks and hopper walls are modeled by links with friction

coefficient pu, normal stiffness K. tangential stiffness K., normal damping C, and
tangential damping C..

The Quasi-Static model (see Chapter 4) is used to initially place the disks into the hopper
and to compute the micro-displacements that bring the system to an equilibrium state.
This configuration is then loaded into the MBD model as an input dataset. The disks start
to flow down the orifice. They are removed from the simulation space if their top point is

below the orifice. The simulation is stopped once there are no more disks left in the

hopper.

5.10.2. Numerical experiments

A series of numerical experiments were performed. The following parameters were used
in the simulations: W =0.3m, H =0.8m, W, =0.08m, o=60°, planar disk density
p=1190kg/m? and the gravitation constant g =9.8m/sec. For a link between two
disks the stiffness, damping and friction coefficients were defined as
Ky =1.0x10°Nm™, K. =10x10°Nm™, C, =C, =1.0x10* N(m/sec)™, p=043.

For a link between a disk and a boundary the coefficients were defined as

161

Kq=15x10°Nm™, K. =1.5x10°Nm™, C, =C, =1.5x10° N(m/sec)™", p=033.

In the first experiment, a monosized set of 500 disks was used; all disks had the radius of
0.0lm . In the second experiment, a polysized set of 500 disks was used; the radii had

mean of 0.0lm and variance of 5%. The timestep for cluster ODE integration was

selected as 107> sec . The original configurations are shown in the Figure 5.43. The disks

are “dyed” in layers to better illustrate the flow process.

P

CX CXence
2 :

Figure 5.43. Initial configurations for the monosized and polysized datasets.

In both experiments, the total simulation time was set to 5 seconds. The elapsed
computation time was about 8 hours in both cases. The experiments were conducted on a

PC with a 350 MHz Pentium-II CPU and 128 MB of RAM running Windows NT 4.0.

The full system states were logged every 0.005 seconds of virtual time. A state included
the coordinates of each disk (including position, velocity, angular displacement and
velocity, the force and moment acting on the disk), the state of every link in the system
(including contact point, direction of the link, internal stresses and displacements). A

state also included the information about system topology (i.e. the current state of the

162

hierarchical graph representing the system) as well as energy parameters. The logs were

then used to produce real-time animations of hopper flow.

Average discharge rate, diske/sec
250 -

200 -
150 4
100

50 4

0.0 0.5 1.0 15 20 2s 3.0 3s 4.0
Time, sec
Figure 5.44. Average discharge rate, monosized configuration.

Average discharge rate, diske/sec
250 -

200 -
150 -

100 -

0.0 0.5 1.0 1.5 2.0 25 3.0
Time, sec

Figure 5.45. Average discharge rate, polysized configuration.

The average discharge rate graphs for the monosized and polysized hoppers are presented

in the Figure 5.44 and Figure 5.45, respectively. The value for the discharge rate was

163

computed as a moving average over a time interval of 0.1sec. The average discharge rate

stayed approximately in 100-200 range for both configurations.

As it can be clearly seen from the figures, the flow rate was not uniform in both cases. An
oscillating pattern is seen in both graphs. Also, “near-jams” were experienced at around
2.1sec in both cases. While the monosized configuration managed to flow out of the
hopper entirely, the polysized configuration jammed completely at approximately 2.8sec.

The jam occurred when the disks formed an “arc” across the orifice (see Figure 5.46).

Figure 5.46. Jam in the polysized configuration.

The next two figures show the effective event rate occurring in the simulation. As can be
seen from the figures, a very large amount of events is being processed, which explains
why it takes so long to do a simulation run. Note that the total number of events
processed was about 14 million for the monosized hopper and over 12 million for the
polysized hopper. The oscillating pattern of the flow also appears in the event rate graphs.
Some increases in the discharge rate correspond to the increases in the event rate
(consider, for example, the humps in the monosized graphs at 0.4, 0.7 and 1.7 seconds).
Apparently, as the discharge rate increases, the disks are moving faster, and more
topological changes take place, which result in an increased event rate. However, some
event rate increases (such as the 1.5sec one in the polysized configuration) do not

correspond to changes in the discharge rate.

164

Events rate, eventy/sec
20000000 -
18000000 -
16000000 1
14000000 -
12000000 -
10000000 -

6000000 -

0 +—r———— -7 ————

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time, sec

Figure 5.47. Effective event rate, monosized configuration.

Events rate, eventa/sec

20000000 -
18000000
16000000
14000000
12000000
10000000 |
8000000 -
6000000
4000000 1
2000000 -

0.0 05 1.0 15 20 25 3.0

Time, sec

Figure 5.48. Effective event rate, polysized configuration.

The following two figures show the event processing rate, or, in other words, how fast the
program was processing events. Unlike the previous two figures, which used the virtual

time for computing the rate, these two figures are related to the actual elapsed time.

165

Event processing rate, events/sec
8000 -

7000 -

0.0 0.5 1.0 1.5 20 25 3.0 3.5 40
Time, sec

Figure 5.49. Event processing rate, monosized configuration.

Event processing rate, eventa/sec
8000 -

7000 -
6000 -
5000 -
4000 -
3000 -

2000 -

1000

r -

0.0 0.5 1.0 1.5 20 25 3.0
Time, sec

Figure 5.50. Event processing rate, polysized configuration.

As it can be seen from the figures, the event processing rate was fluctuating in a pattern
almost identical to that of the effective event rate. Near the end of the simulation, the
event processing rate of the monosized configuration significantly increased. The sudden

increase in the event processing rate corresponds to the stage when the hopper only

166

contains disks in its lower part (see Figure 5.51, monosized configuration at r =3.53). In
this configuration, most disks move independently from others and only small clusters

are formed. This speeds up the simulation significantly.

Figure 5.51. Last stages of the simulation, monosized configuration.

In the polysized configuration, at the end of the simulation the event processing rate is
considerably decreased. This corresponds to the formation of a jam (see Figure 5.46). The
Jammed system is represented by a single QRB. Since a QRB does not have to schedule
frequent predict-trajectory events (as opposed to a cluster), most event processed by the
system were log-state and visualize events, which are quite expensive in terms of time.
This explains the drop in the event-processing rate for the jammed polysized

configuration.

Finally, Figure 5.52 and Figure 5.53 show the simulation efficiency, measured as the
ratio between the elapsed time and the virtual time. Note the logarithmic scale of the
vertical axis. Clearly, the efficiency is lowest at the beginning of the simulation, when the
total number of disks in the system is the largest. It starts as low as 0.0001, i.e., 10000

seconds of computation time is required to process a single second of simulation.

167

Simulation efficiency, Virtual time/Elapsed time

0.1 -
0.01
0.001 -
0.0001 ¢ -
0.00001 *¥———r————— —
0.0 0.5 1.0 15 20 2s 30 35 4.0
Time, sec
Figure 5.52. Simulation efficiency, monosized configuration.
Simulation efficiency, Virtual time/Elapsed time
0.1 -
0.01 -
0.001 -
-
0.0001 | e
o.c0001 —mMmM8Mm ——+ i ‘ —
0.0 0.5 1.0 15 20 2s 3.0

Time, sec

Figure 5.53. Simulation efficiency, polysized configuration.

Also note that the effective event rate is at its highest at the beginning of the simulation.
As the amount of disks in the system decreases and the effective event rate decreases, the
simulation efficiency increases. In fact, the efficiency can reach | or even exceed it (i.e.,
it can run in real-time or faster) when the number of disks in the system is small and there
is no overhead related to visualizing the system and logging the state. In these
experiments, the system state was logged 200 times a second, plus the system was
visualized 200 times a second, which affected the maximum achievable efficiency of the
simulation. Note that a too detailed visualization rate or log-state rate can bring the

simulation efficiency down.

168

5.10.3. Validation

To validate the simulation, the energy conservation law was checked. The “energy flow”

in the system is shown in the following figures.

Energy flow

@ Dissipated Energy
0 Deleted Energy
O internal energy

100

3.0 3.5 4.0

Time, sec

Figure 5.54. Energy flow, monosized configuration.

Energy flow

B Dissipated Energy
0 Deleted Energy
0 hternal energy

Time, sec

Figure 5.55. Energy flow, polysized configuration.

169

The figures illustrate how the energy is redistributed in the system during the simulation
run. Three main components of energy value are the internal energy of the system, the
energy of deleted bodies, and the dissipated energy. The internal energy of the system
consists of the kinetic energy of disks, their potential energy, and the potential energy of
compressed links. The deleted bodies energy consists of the kinetic energy of the disks
that were removed from the system (note that the snapshot of their state is made at the
time of their removal). The dissipated energy consists of the energy spent during slips in

links, as well as the energy dissipated due to damping in links.

Another validating result is related to the patterns of discharge in planar hoppers. It has
been reported in both experimental papers [Blair-Fish and Bransby 73, Lee et. al. 74] and
computer simulations [Potapov and Campbell 96] that hoppers exhibit an interesting
pattern of discharge, when the flow alternates from the left and right sides of the hopper.
A similar pattern was observed in our simulations. Note that [Potapov and Campbell 96]
in their DEM simulation only observed the phenomenon in the monosized hopper, while

in our simulations it was clearly seen in both monosized and polysized hoppers.

\ |

/ ;, 7'1’1:7:9:9,
AL L 1'1'7'?
:107'?1?19 X0
i , X ,':':', ,9,7’9:7'7
in 9 q'w 1 X v'v,r;r,r’ y

-o-“-co

Figure 5.56. Alternating flow, monosized configuration.

170

A/

o A
3.-0
)
.“ n
oM
-.-C-‘:'.-.‘
-0-0-0-000 ¢

Py

$.%0

-c‘“
N ey
NN
Y3TRee
ey

-9

)
*\13. e

>

_ote

EALY D s

Figure 5.57. Alternating flow, polysized configuration.

In Figure 5.56 and Figure 5.57, the instantaneous velocity fields for disks in a hopper are

presented. The flow paths can be clearly seen.

5.11. Conclusions

The Multi-Body Dynamics (MBD) model was presented in this chapter. This model is the
most complete model and it can be used to simulate any granular system. The MBD
model comprises both MD (Molecular Dynamics) and QS (Quasi-Static) models as its
submodels. Switching between models is performed automatically based on the current

properties of the system.

The MBD model uses the notion of hierarchical graph, which was introduced together
with some basic operations for transforming hierarchical graph. The core objects of the
MBD model ~ Body, Cluster, ORB and System — were then discussed in detail. The
general architecture of the object-oriented implementation of the model was discussed

next. Finally, the application of the model was demonstrated on the hopper flow example.

171

CHAPTER 6. CONCLUSIONS AND FUTURE WORK DIRECTIONS

A unique methodology for simulating granular systems has been developed and presented
in this thesis. The currently available approaches to granulate materials simulations are
limited in their applicability domains or are being misused. The main property of the
developed methodology is that the simulation model contains three submodels with
different applicability limits. The model dynamically adjusts to the system being
simulated and switches from one submodel to another based on the current properties of

the system.

The core of the model is the MBD (Multi-Body Dynamics) simulation approach, which
was originally developed by Vinogradov [Vinogradov 92a, Vinogradov 92b, Vinogradov
93, Vinogradov and Sun 97]. This approach provides a numerically stable alternative to
the popular DEM (Distinct Element Method) approach [Cundali and Strack 79]. Unlike
the DEM, the MBD method provides explicit means of controlling the numerical error, as

well as allowing the implementation specify the most appropriate integration method.

In this research, the MBD model was extended with a comprehensive link model, which
introduced rotational parameters to equations of motion and provided a better means of
modeling friction. Also, an extensible software object model was developed and

implemented for the MBD approach.

The MBD model was extended with two additional submodels: the Molecular Dynamics
model, which is used to simulate high energy systems, and the Quasi-Static Model, which
is best suited for simulating static or nearly-static systems. Each of these models can be

used as a stand-alone simulation model, with certain applicability limits.

The stand-alone MD model was implemented and used for simulating shaker ball mills.
In addition to the basic MD model, two models, specific to the milling application, were
developed. They were used to represent milling properties of a shaker-ball mill. The use
of the developed application increased the milling efficiency of an experimental shaker

ball mill by an order of magnitude.

172

A unique model for simulating quasi-static granular systems was developed. It is based
on the original idea by Vinogradov [Vinogradov 86b], which was extended and applied to
the incremental construction of the inverse stiffness matrix for a granular system. The
Recursive Inverse Matrix Algorithm (RIMA) [Gavrilov and Vinogradov 97a] was
developed for dynamic maintenance of this matrix. A special algorithm dealing with
micro-topological changes occurring in the granular system as it is being built was
developed. Thus, the process of filling of a silo was modeled in an efficient manner while
providing an accurate tool for measuring the stress field in the silo and for investigating
the topological properties of the granular system (such as micro-avalanches and slides).
With the application of the QS model to simulating the silo filling process, it has been
shown that the granular material in a silo possesses many interesting properties, such as
that the stress field in the silo is heavily dependent on the history of filling. Indeed, the
pressures on the silo walls can vary in a quite large range for two consecutive fillings of a
silo. The developed model also was used to investigate the self-organized criticality

(SOC) properties of the granular matter in a silo.

Finally, the three models were integrated into a unified simulation environment, which
adjusts to the system being simulated and selects the most appropriate model depending
on the system’s parameters. Moreover, various parts of the system can be simulated using
different models. For example, in a sand pile simulation, the topmost layer of the pile,
which is subjected to wind drag, would be simulated with the MD model; the core of the
pile, which is relatively stable, would be simulated using the QS model; and the transient
layer near to the surface of the pile would be simulated using the MBD model. To the
best of author’s knowledge, this represents the most flexible granulates simulation model
currently available. Also, the model can dynamically adjust the accuracy of the
simulation and employ some strong error-control mechanisms. This makes the developed

model an invaluable tool for measuring the performance of other models.

The following can be outlined as the future directions of research. One area, which has

yet to be investigated thoroughly, is the conditions that control the switching between

173

models. It is not very clear how to select the parameters that are used for determining the
stability of a link (this ultimately controls the switching between MBD and QS models).
Similarly, it is not very clear how to determine whether a collision between two objects
can be considered using the MD model (i.e. as an instantaneous collision) or the MBD

model (i.e. the dynamics of the collision is taken into consideration).

Another very interesting area of research is the study of the properties of nearly-static
granular systems, such as sand piles or silos. Various results are being reported regarding
whether such systems can be classified as self-organized criticality systems. The most
currently available tools for simulating such systems are very basic (which perhaps
explains the range of the reported results). The QS model is perfectly suited for
simulating this class of granular systems and can provide valuable insights into the

physics and mechanics of these systems.

Other directions of research may include investigating various integration methods in
application to MBD simulations and utilizing different iterative and error-control
schemas and comparing their performance. Another very important area of research is
developing effective collision-detection optimization (CDO) algorithms and determining
their applicability limits and perhaps developing a dynamic approach, which would
switch between the CDO methods depending on the current conditions (similarly to the

way the switching between the three simulation models is done).

174
REFERENCES

Baezner, D., Lomow, G. and Unger, B. 1994. “Parallel Simulation Environment Based on
Time Warp,” International Journal in Computer Simulation, vol. 4, no. 2, pp. 183-
193.

Bak, P, Tang, C. and Wiesenfeld, K., 1988. “Self-organized criticality”, Physical Review
A, vol.38, no.1, pp. 364-374.

Bazant, Z.P. and Ozbolt, J., 1990. “Nonlocal Microplane Model for Fracture, Damage,
and Size Effect in Structures,” Journal of Engineering Mechanics, vol. 116, no. 11,

pp. 2485-2505.

Benjamin, J.S., 1970. “Dispersion Strengthened Superalloys by Mechanical Alloying”,
Metallurgical Transactions, vol. 1, pp. 2943-2951.

Bickford, W.B., 1994. Finite Element Methods, Irwin Publishing, Homewood, IL.

Blair-Fish, P.M. and Bransby, P.L., 1973. “Flow Patterns and Wall Stresses in a Mass-
Flow Bunker,” Journal of Engineering for Industry, vol. 95, pp- 17-25.

Bouchaud, J.-P. and Cates, M. E., 1998. “Triangular and uphill avalanches of a tilted
sandpile,” Granular Matter, vol. 1, no. 2, pp. 101-103.

Bouchaud, J.-P., Cates, M.E. and Claudin, P., 1995. “Stress Distribution in Granular
Media and Nonlinear Wave Equation.” Journal de Physique I (France), vol. 5, no. 6,

pp- 639-656.

Bouchaud, J.-P., Claudin, P., Cates, M.E. and Wittmer, J.P. 1998. “Models of Stress
Propagation in Granular Media,” in Physics of Dry Granular Media, eds. Herrmann,
H.J., Hovi, J.P. and Luding, S., NATO Advanced Study Institute, Kluwer, pp. 97-122.

Brennen, C. and Pearce, J.C., 1978. “Granular Material Flow in Two-dimensional

Hoppers,” Journal of Applied Mechanics, vol. 43, pp- 43-58.

175

Briscoe, B.J.,, Luckham, P.F. and Ren, S.R., 1993. “Settling of Spheres in Clay
Suspensions,” Powder Technology, vol. 76, no. 2, pp. 165-174.

Brown, R.L. and Richard, J.C., 1966. Principles of Powder Mechanics, Pergamon, New
York, NY.

Burden, R.L., Faires, J.D. and Reynolds, A.C., 1978. Numerical Analysis, Prindle, Weber
and Schmidt.

Carreras, B. A., Newman, D. and Diamond, P. H., 1996. “Self-Organized Criticality as a
Paradigm for Transport in Magnetically Confined Plasmas.” Plasma physics reports,
vol. 22, no. 9, pp. 740-751.

Chen, JF., Ooi, J.Y. and Rotter J.M., 1996. “A Rigorous Statistical Technique for
Inferring Circular Silo Wall Pressures from Wall Strain Measurements.” Engineering

Structures, vol. 18, no. 4, pp. 231-331.

Claudin, P. and Bouchaud, J.-P., 1997. “Static Avalanches and Giant Stress Fluctuations
in Silos.” Physical Review Letters, vol. 78, no. 2, pp. 231-234.

Claudin, P. and Bouchaud, J.-P., 1998. “Stick-slip transition in the Scalar Arching
Model,” Granular Matter, vol. 1, no. 2, pp. 71-74.

Connelly, LM., 1983. “Wall-Pressure and Material-Velocity Measurements for the
Flow of Granular Material under Plane-Strain Conditions.” In Mechanics Applied to
the Transport of Bulk Materials, ASME, pp. 35-59.

Cundall, P.A. and Strack, O.D.L., 1979. “A Discrete Numerical Model for Granular
Assemblies,” Geotechnique, vol. 29, pp. 47-65.

Davidson, J.K. and Nedderman, R.M., 1973. “The Hour-Glass Theory of Hopper Flow,”
Transactions of the Institute of Chemical Engineering, vol. 29, pp. 29-39.

Dendy, R.O. and Helander, P., 1997. “Sandpiles, Silos and Tokamak Phenomenology: a
Brief Review.” Plasma Physics and Controlled Fusion, vol. 39, no. 12, pp. 1947-
1961.

176

Drake, T.G., 1990. “Structural Features in Granular Flows,” Journal of Geophysical
Research, vol. 95, no. B6, pp. 8681-8696.

Drescher, A. and de Josselin de Jong, G. 1972. “Photoelastic Verification of a
Mechanical Model for the Flow of a Granular Material,” Journal of Mechanics and
Physics of Solids, vol. 20, pp. 337-351.

Eibl, J., 1984. “Design of Silos — Pressures and Explosions.” The Structural Engineer,
vol. 62A, pp. 169-175.

Fuji, M., Ueno, S., Takei, T., Watanabe, T. and Chikazawa, M., 1998. “Conformation
study of normal alkoxy groups introduced on to a silica surface,” Advanced Powder

Technology, vol. 9, no. 3, pp- 261-272.

Gavrilov, D. and Vinogradov O., 1994. “Object-Oriented Library for Simulation of
Granular-Type Materials,” in Proceedings of the 1994 Summer Computer Simulation
Conference, San Diego, CA., pp. 51-56.

Gavrilov, D. and Vinogradov, O., 1995. “Object-Oriented Programming and Object-
Oriented Simulation,” in Proceedings of 1995 Summer Computer Simulation
Conference, Ottawa, ON, 1995, pp.143-148.

Gavrilov, D. and Vinogradov, O., 1996. “On Analysis of Discrete Systems With Variable
Structure,” in Recent advances in solids/structures and application of metallic
materials, ASME, eds. Kwon, Y. W., Davis, D. C. and Chung, H. H., pp. 63-66.

Gavrilov, D. and Vinogradov, O., 1997a. “Recursive Inverse Matrix Algorithm in
Granular Mechanics Applications,” Computational Mechanics, vol. 20, pp- 407-411.

Gavrilov, D. and Vinogradov, O., 1997b. “A Cluster in Granular Systems as a
Topologically Variable Structure,” in Mechanics of deformation and flow of
particulate materials, ASME, ed. Chang, C.S., pp. 299-307.

177

Gavrilov, D. and Vinogradov, O., 1998a. “Simulation of Grinding of Particles in a Shaker
Ball Mill,” in Engineering Mechanics: A Force for the 21" Century, eds. Murakami,
H. and Luco, J.E., ASCE, pp. 1716-1719.

Gavrilov, D. and Vinogradov, O., 1998b. “Micro Instabilities in a System of Particles in
Silos During Filling Process,” in Recent advances in solids and structures, ASME,
vol. 381, pp. 47-54.

Gavrilov, D. and Vinogradov, O., 1999. “Micro Instabilities in a System of Particles in
Silos during Filling Process,” Computer Modeling and Simulation in Engineering, in

press.

Gavrilov, D., Vinogradov, O. and Shaw, W.J.D., 1995. “Computer Simulation of
Mechanical Alloying in a Shaker Ball Mill.” In Proceedings of the 10" International
. Conference on Composite Materials, Whistler, BC, 1995, pp. 1 1-17.

Gavrilov, D., Vinogradov, O. and Shaw, W.J.D., 1997. “Simulation of Mechanical
Alloying in a Shaker Ball Mill with Variable Size Particles,” in Proceedings of 1 1"
International conference on composite materials, Gold Coast, Australia, vol. 4, PP-

370-378.

Gavrilov, D., Vinogradov, O. and Shaw, W.J.D., 1999. “Simulation of Grinding in a
Shaker Ball Mill,” Powder Technology, vol. 101, no. 1, pp- 63-72.

Gavrilova, M., 1998. Proximity and Applications, Ph.D. dissertation, University of
Calgary, Calgary, AB.

Gera, D., Gautam, M., Tsuji, Y., Kawaguchi, T. and Tanaka, T., 1998. “Computer
Simulation of Bubbles in Large-Particle Fluidized Beds,” Powder Technology, vol.
98, no. 1, pp. 38-47.

Goles, E., Gonzalez, G., Herrmann, H. and Martrinez, S., 1998. *“Simple Lattice Model
with Inertia for Sand Piles,” Granular Matter, vol. 1, no. 3, pp. 137-140.

Gropp, W., Lusk, E. and Skjellum, A., 1994. Using MPI, The MIT Press.

178

Gudehus, G., 1996. “Constituive Relations for Granulate-Liquid Mixtures with a Pectic

Constituent,” Mechanics of Materials, vol. 22, pp. 93-103.

Gustafson L. and Gustafson, P., 1996. “Studying Mixed Granular Flows by Image
Analysis,” in Proceedings of the 11" Conference on Engineering Mechanics, Fort
Lauderdale, FL, vol. 1, pp. 100-103.

Herrmann, H. J., Hovi, J.-P. and Luding, S., 1998. Physics of dry granular media, NATO
ASI Series, Vol. E 350, Kluwer Academic Publishers, Dordrecht.

Hirshfeld, D., Padzyner, Y and Rapaport, D.C., 1997. “Molecular Dynamics Studies of
Granular Flow through an Aperture,” Physical Review E, vol. 56, no. 4, pp. 4404-
441S5.

Jackson, R., 1983. “Some Mathematical and Physical Alpects of Continuum Models for
the Motion of Granular Materials,” in Theory of Dispersed Multiphase Flow, ed.
Meyer, R.E., Academic Press, N.Y.

Janssen, H.A., 1895. “Versuche ueber Getreidedruck in Silozellen,” Zeitschr. Vereines

deutscher Ingenieure, vol. 39, no. 35, pp- 1045-1049.

Jarrett, N.D., Brown, C.J. and Moore, D.B., 1996. “Pressure Measurements in a

Rectangular Silo,” Geotechnique, vol. 45, no. 1, pp. 95-104.

Jenike, A.W. and Shield, R.T., 1959. “On the Plastic Flow of Coulomb Solids beyond
Failure,” Journal of Applied Mechanics, vol. 26, pp. 599-608.

Kano, J. and Saito, F., 1998. “Correlation of Powder Characteristics of Talc during
Planetary Ball Milling with the Impact Energy of the Balls Simulated by the Particle
Element Method,”

Karlsson, T., Klisinski, M. and Runesson, K., 1998. “Finite Element Simulation of
Granular Material Flow in Plane Silos with Complicated Geometry,” Powder

Technology, vol. 99, no. 1, pp. 29-39.

179

Kawaguchi, T., Tanaka, T. and Tsuji, Y.. 1998. “Numerical Simulation of Two-
dimensional Fluidized Beds Using the Discrete Element Method (Comparison
Between the Two- and Three-dimensional Models),” Powder Technology, vol. 96, no.
2, pp. 129-138.

Ktitarev, D.V. and Wolf, D.E., 1998. “Stratification of Granular Matter in a Rotating
Drum: Cellular Automaton Modelling,” Granular Matter, vol. 1, no. 3, pp- 141-144.

Lee, J., Cowin, S.C and Templeton, J.S. I, 1974. “An Expermiental Study of the
Kinematics of Low through Hoppers,” Transactions of Society of Rheology, vol. 18,
pp- 247-257.

Li, E. and Bagster, D.F., 1993. “Idealized Three-dimensional Model of Heaped Granular
Materials,” Powder Technology, vol. 74, no. 3, pp- 271-278.

Liu, C.-H. and Nagel, S.R., 1992. “Sound in Sand.” Physical Review Letters, vol. 68,
no. 15, pp. 2301-2304.

Luding, S. and McNamara, S., 1998. “How to Handle the Inelastic Collapse of a
Dissipative Hard-Sphere Gas with the TC Model,” Granular Matter, vol. 1. no. 3, pp.
113-128.

Matuttis, H.-G. and Schinner, A., 1999. “Influence of the Geometry on the Pressure
Distribution of Granular Heaps,” Granular Matter, vol. 1, no. 4, pp. 195-201.

McCarthy, JJ. and Ottino, J.M., 1998. “Particle Dynamics Simulation: a Hybrid
Technique Applied to Granular Mixing,” Powder Technology, vol. 97, no. 2, pp- 91-
99.

Meng, Q.G., Jofriet, J.C. and Negi. S.C., 1997. “Finite Element Analysis of Bulk Solids
Flow. 1. Development of a Model Based on a Secant Constitutive Relationship.”

Journal of Agricultural Engineering Research, vol. 67, no. 2, pp- 141-150.

Milling of Brittle and Ductile Materials, 1984. Metals Handbook, Ninth Edition, Powder
Meiallurgy, vol. 7, ASM, 1984, pp. 57-70.

180

Mindlin, B.R. and Deresiewicz, H., 1953. “Elastic Spheres in Contact under Varying
Oblique Forces,” Journal of Applied Mechanics, vol. 20, no. 1, pp- 327-344.

Nedderman, R.M., 1992. Sratics and Kinematics of Granular Materials, Cambridge

University Press, Cambridge.

Nuebel, K. and Karcher, C., 1998. “FE Simulations of Granular Material with a Given
Frequency Distribution of Voids as Initial Condition,” Granular Matter, vol. 1, no. 3,
pp. 105-112.

Ooi, J.Y. and She, K.M., 1997. “Finite Element Analysis of Wall Pressure in Imperfect
Silos.” International Journal of Solids and Structures, vol. 34, no. 16, pp- 2061-2072.

Pariseau, W.G., 1969. “Gravity Flows of Ideally Plastic Materials through Slots,”
Transactions of ASME, vol. 91, pp. 414-421.

Potapov, A.V. and Campbell, C.S., 1996. “Computer Simulation of Hopper Flow,”
Physics of Fluids, vol. 8, no. 11, pp. 2884-2894.

Potapov, A.V. and Campbell, C.S., 1998. “A Fast Model for the Simulation of Non-
Round Particles,” Granular Matter, vol. 1, no. 1, pp. 9-14.

Ragneau, E. and Aribert, J.M., 1993. “Analytical Solutions for the Prediction of Loads in
Silos during Filling and Emptying Stages.” In Powder and Grains 93, Balkema,
Rotterdam, pp. 469-475.

Rapaport, D.C., 1995. The Art of Molecular Dynamics Simulation, Cambridge University

Press.

Ristow, G.H. and Herrmann, H.J., 1995. “Forces on the Walls and Stagnation Zones in a
Hopper Filled with Granular Material.” Physica A, vol. 213, no. 4, pp. 474-481.

Rong, J., Ooi, J.Y. and Rotter, J.M., 1997. “Discrete Element Modeling of Particulate
Solids in Silos,” in Mechanics of Deformation and Flow of Particulate Materials,

eds. Chang, C.S., Misra, A., Liang, R.Y. and Babic, M., ASCE, pp. 321-334.

181

Rotter, J.M., Rong, G.H., Ooi, J.Y. and Holst, JM.F.G., 1995. “CA-SILO Collaborative
Action: WGS5. Comparative evaluation of numerical methods for predicting flow and

stress fields in silos,” http://www civ.ed.ac.uk/research/silo/demfem/

Sakaguchi, H., Ozaki, E. and Igarashi, T., 1993. “Plugging of the Flow of Granular
Materials during the Discharge from a Silo.” International Journal of Modern
Physics, vol. 7, no. 9-10, pp. 1949-1963.

Savage, S.B., 1984. “The mechanics of rapid granular flows,” Advanced Applied
Mechanics, vol. 24, pp. 289-304.

Schwedes, J. and Feise, H., 1995. “Modelling of Pressures and Flow in Silos.” Chemical
Engineering and Technology, vol. 18, no. 2, pp. 96-109.

Shaw, W.J.D., Pan J. and Gowler, M.A., 1993. “Property Relationships of Some New
MA Polymers,” in Proceedings of the 2" International Conference on Structural
Applications of Mechanical Alloying, Vancouver, B.C., Canada, September 1993, pp.
431-437.

Shigley, J.E. and Uicker J.J., Jr., 1995. Theory of Machines and Mechanisms, 2™ ed.,
McGraw-Hill.

Stadler, J., Mikulla, R. and Trebin, H.-R., 1997. “IMD: A Software Package for
Molecular Dynamics Studies on Parallel Computers,” International Journal of
Modern Physics, vol. 8, pp. 1131-1140.

Streletskii, A.N., 1993. “Measurements and Calculation of Main Parameters of Powder
Mechanical Treatment in Different Mills,” in Proceedings of the 2™ International
Conference on Structural Application of Mechanical Alloying, Vancouver, B.C.,
September 20-22, 1993, pp. 51-58.

Sun, Y., Vinogradov, O., Gavrilova, M. and Rokne, J., 1994. “An Algorithm of Updating
System State in Simulation of Dynamics of Granular-Type Materials,” In

Proceedings of 1994 Summer Computer Simulation Conference, pp- 45-50.

182

Takeuchi, N. and Kawai, T., 1988. “A Discrete Limit Analysis of Granular Materials
Including Effects of the Solid Contact,” Micromechanics of Granular Materials, eds.
Satake, M. and Jenkins, J.T., Elsevier, pp. 103-112.

Tejchman, J., 1998. “Numerical Simulation of Filling in Silos with a Polar Hypoplastic
Constitutive Model,” Powder Technology, vol. 96, no. 3. pp. 227-239.

Tejchman, J. and Gudehus, G., 1993. “Silo Music and Silo-quake Experiments and a
Numerical Cosserat Approach,” Powder Technology, vol. 76, pp. 201-209.

Timoshenko, S. and Goodier, J.N., 1951. Theory of Elasticity, McGraw-Hill, N.Y. p-372.

Vinogradov, O.G., 1986a. “Simulation Methodology for a Flow of Interacting Floes
Around an Obstacle,” International Journal of Modeling and Simulation, vol. 7, no.

1, pp. 28-31.

Vinogradov, O.G., 1986b. “Algorithm of Stiffness Matrix Inversion Based on
Substructuring Concept,” Computers and Structures, vol. 22, no. 3, pp. 253-259.

Vinogradov, O.G., 1992a. “Explicit Equations of Motion of a Discrete System of Disks in
2-D,” Journal of Engineering Mechanics, ASCE, vol. 118, no. 9, pp. 1850-1858.

Vinogradov, O.G., 1992b. “Explicit Equations of Motion of Interacting Spherical
Particles,” Recent Advances in Structural Mechanics, PVP — vol. 248, eds. Kwon,

Y.W. and Chung, H.H., book no. GOO775, pp. 111-115.

Vinogradov, O.G., 1993. “Dynamic Equations for System of Irregularly Shaped Plane
Bodies,” Journal of Engineering Mechanics, ASCE, vol. 119, no. 11, pp. 2226-2237.

Vinogradov, O.G., 1999. “On the Accuracy and Efficiency of Simulation of an Impact
Problem in Granular Mechanics,” Computer Modeling and Simulation in

Engineering, in press.

Vinogradov, O. and Springer, A., 1990. “Simulation of Motion of Multibody System with
Interactions,” in Proceedings of 1990 Summer Computer Simulation Conference,

Calgary, AB, pp. 51-55.

183

Vinogradov, O.G. and Sun, Y., 1997. “A Multibody Approach in Granular Dynamics
Simulations,” Computational Mechanics, vol. 19, no. 4, pp. 287-296.

Wan, R.G. and Guo, P.J., 1998. “Simple Constitutive Model for Granular Soils: Modified
Stress-Dilatancy Approach,” Computers and Geotechnics, vol. 22, no. 2, pp- 109-133.

Wan, R.G., Chan, D.H. and Morgenstern, N.R., 1990. “Finite element method for the
analysis of shear bands in geomaterials,” Finite Elements in Analysis and Design, vol.

7, no. 2, pp. 129-143.

Wang, Y. and Hutter, K., 1999. “A Constitutive Model of Multiphase Mixtures and Its
Application in Shearing Flows of Saturated Solid-Fluid Mixtures,” Granular Matter,

vol. 1, no. 4, pp. 163-181.

Wierzba, P. and Vinogradov, O.G., 1991. “Simulation of Topologically Variable
Multibody System in Plane Motion,” in Proceedings of 1991 European Simulation
Multiconference on Modeling and Simulation, SCS, San Diego, CA, pp. 935-940.

Wittmer, J.P., Cates, M.E. and Claudin, P., 1997. “Stress Propagation and Arching in
Static Sandpiles,” Journal de Physique I (France), vol. 7, no. 1, pp. 39-80.

Wittmer, J.P., Claudin, P., Cates, M.E. and Bouchaud, J.-P., 1996. “An Explanation for
the Central Stress Minimum in Sand Piles,” Nature, vol. 382, no. 6589, pp- 336-338.

Xie, H.-Y., 1997. “Role of Interparticle Forces in the Fluidization of Fine Particles,”
Powder Technology, vol. 94, no. 2, pp. 99-108.

Zhang, D. and Whiten, W.J., 1998. “Efficient Calculation Method for Particle Motion in
Discrete Element Simulations,” Powder Technology, vol. 98, no. 3, pp. 223-230.

