
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-08-22

Optimal Policy for Blood Inventory

Management Problem

Grushevska, Iaryna

Grushevska, I. (2018). Optimal Policy for Blood Inventory Management Problem (Master's

thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/32830

http://hdl.handle.net/1880/107650

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Optimal Policy for Blood Inventory Management Problem

by

Iaryna Grushevska

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

AUGUST, 2018

c© Iaryna Grushevska 2018

Abstract

Blood units that are used for transfusion can be stored for a limited amount of time. The

blood that is older than 42 days must be discarded. In order not to face shortage usually

the oldest blood is used. But the risk of complications after surgery is growing as the age of

used blood is growing as well.

In this work we find the optimal policy to use blood for transfusion for two blood types.

The main goal is to find the policy that will reduce the shortage and minimize the risk of

complications at the same time. For this purpose, we use two methods (Linear Programming

and Approximate Dynamic Programming) and compare the results of two approaches.

ii

Acknowledgements

I would like to thank:

Dr. Elena Braverman, Dr. Alireza Sabouri and Dr. Yuriy Zinchenko for being awesome

supervisors, for their support, guidance and great patience during my Master’s program; for

never being busy to meet me and answer my questions; for their help with thesis preparation

and advice.

My parents Bohdan and Romana, my brother Taras, and all my friends for their support

and belief in me.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures and Illustrations v

List of Tables vi

List of Symbols, Abbreviations and Nomenclature vii

1 Introduction 1

2 Problem Formulation 4

3 Solution approach 9
3.1 Linear Programming approach . 9
3.2 Approximate Dynamic Programming approach 10

3.2.1 Calibrating approximate value function coefficients 11
3.2.2 Approximate Dynamic Programming - based optimal policy 18

4 Results 20
4.1 LP-based optimal policy . 20
4.2 ADP-based optimal policy . 22
4.3 Comparison of the results . 24

5 Conclusions 29

Bibliography 31

A Matlab code for LP approach 34

B Matlab code for ADP approach 39

iv

List of Figures and Illustrations

1.1 Blood substitution scheme . 2

2.1 Reduced substitution scheme . 4
2.2 Samples of state vectors . 6

4.1 Optimal cost for the case c < l . 21
4.2 Optimal policy for the case c < l . 21
4.3 Optimal cost for the case c ≥ l . 22
4.4 Optimal policy for the case c ≥ l . 22
4.5 Approximate optimal policy for the case c < l 23
4.6 ADP. Optimal cost for the case c < l . 23
4.7 Approximate optimal policy for the case c ≥ l 24
4.8 ADP. Optimal cost for the case c ≥ l . 24
4.9 Comparison of the results for the case c < l 25
4.10 Comparison of the results for the case c ≥ l 25
4.11 Comparison of the cost functions for the case c < l 26
4.12 Comparison of the cost functions for the case c ≥ l 26
4.13 Comparison of the average cost functions for growing ratio 0 < c/l < 1 . . . 27
4.14 Comparison of the average cost functions for growing ratio 0 < c/l < 10 . . . 28

v

List of Tables

3.1 Parameters of the approximated value function 18

vi

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
LP Linear Programming
ADP Approximate Dynamic Programming
AB+, AB-, A+, A-, B+, B-, O+, O- Types of blood
MDP Markov Decision Process
FIFO First-In First-Out Policy
LIFO Last-In First-Out Policy

vii

Chapter 1

Introduction

In a blood bank or in a hospital, if not frozen, blood can be stored for 42 days. All the blood

units that are older than 42 days must be discarded.

There are two main strategies of choosing the blood for transfusion [5]:

• First-In, First-Out (FIFO) - blood will be used starting from the oldest to the youngest;

• Last-In, First-Out (LIFO) - the youngest blood will be used first.

At this time in the hospitals the oldest blood is usually used for transfusions (FIFO).

But as the older blood is used, the risk of complications after surgery is higher [10]. On

the other hand if the newest blood would be used many units of older blood will need to be

discarded and it is more likely that the hospital will face the shortage of blood.

If a hospital does not have enough blood to satisfy demand for a day, some blood units

can be received from a secondary source (blood bank or another hospital). But the cost of

getting blood from the secondary source is usually significantly higher than the cost of using

a unit of blood that is available in the hospital.

There exist eight blood types: AB+, AB-, A+, A-, B+, B-, O+, O-. Here + and - denote

the rhesus factor of the blood. But specific blood for transfusion cannot be substituted by

any other type. Blood substitution can be done according to the following diagram (Figure

1.1). There are 27 possible donor-recipient connections.

1

AB+

AB-

A+

A-

B+

B-

O+

O-

AB+

AB-

A+

A-

B+

B-

O+

O-

D
O
N
O
R

R
EC
IP
IE
N
T

Figure 1.1: Blood substitution scheme

The main goal of this thesis is to solve a blood inventory management problem and to

find an optimal way to use the blood for transfusion. We will find the optimal policy using

LP approach and approximate optimal policy using the ADP method and compare those

two results.

The problem is formulated as a Markov Decision Process. In the first part, we will find

the optimal cost of using blood units by solving the Bellman equation. The cost of taking

a particular action includes the cost of using a unit of blood that is currently available in a

hospital multiplied by the age of the unit that can be also considered as a penalty for possible

risk of complications after the surgery. The cost also includes the penalty for getting the

unit of blood from the secondary source. Trying to minimize the penalty of getting the blood

unit from the secondary source, at the same time we minimize the amount of blood that

will be discarded. The Bellman equation will be solved using Linear Programming. Having

the optimal cost for each state-action pair we will find the optimal policy again by solving a

linear programming problem.

In the second part, we will use the Approximate Dynamic Programming techniques to

find an approximate optimal policy for using blood units for transfusion. That will include

building an approximate value function, Phase I method and column generation.

2

If we consider that the recipient can get a blood unit of any age (1 - 42 days) we have

the supply vector (that consists of the number of available blood units of every blood type

and every age) 8x42=336 long. For this project the problem was reduced, so it can be solved

using Linear Programming.

This work is based on research of A. Sabouri [19]. A similar algorithm as developed for

one type of blood will be used, but we will extend it to the case of two blood types.

Our problem is closely related to the models of inventory systems of perishable products

that we can see in works of Nahmias [13, 12].

Most of the studies of perishable inventory management are focused on finding optimal

ordering policies. Issuing policies are assumed to be FIFO (First-In, First-Out) or LIFO

(Last-In, First-Out). In particular, FIFO was shown to be an optimal policy by Pierskalla

[17]. But the researches Eikelboom [7], Offner [15], Koch [10] show that the use of older

blood can cause serious complications after the transfusion such as infections, morbidity and

even death. On the other hand, Dzik [5] and Sayers [20] in their studies show that if younger

blood are used for transfusions that will cause shortage of blood units that are available in

the hospitals.

There is also a threshold policy that was introduced by Atkinson [2]. The idea of a

threshold policy is that we use the youngest blood if the age of blood unit is older than

the threshold and the oldest blood if the age of blood unit is younger than that threshold.

Basically for the blood that is younger than the threshold FIFO policy is working and LIFO

policy for the blood that is older than the threshold.

3

Chapter 2

Problem Formulation

For simplicity, suppose we have only two blood types AB+ (AB positive) and AB- (AB

negative). Assume that the blood can be stored for 2 days. Blood that is older than two

days will be discarded. Blood can be substituted according to the following diagram.

DONOR RECIPIENT

AB +

AB -

AB +

AB -

Figure 2.1: Reduced substitution scheme

The following symbols will be used:

i ∈ {1, 2} is the age of blood.

4

si ∈ {s+1 , s−1 , s+2 , s−2 } - supply of blood of age i at the beginning of the day; plus or minus

denotes the rhesus factor of the blood. For simplicity we assume that only one unit of each

type of blood might be available every day.

xi - amount of blood of age i that was used to satisfy a demand. We can use no more

blood than it is available, so xi ∈ {0, 1}.

X = (x++
1 , x−−1 , x−+1 , x++

2 , x−−2 , x−+2) is an action. x++
1 denotes the number of blood units

of age 1 that will be transfused from the donor with positive rhesus factor to a recipient with

positive rhesus factor. The symbols ++ , −−, −+ denote the rhesus factor of a donor and

a recipient, respectively. Similarly, x++
2 , x−−2 , x−+2 denote the number of blood units of age

2 that will be transfused.

q+,q− - amount of blood that arrives at the end of the day q+, q− ∈ {0, 1}.

We assume that only fresh blood can arrive every day (we do not receive any blood of

age 2).

Q = (q+1 , q
−
1) describes new arrivals, here q+1 , q

−
1 denote the amount of new blood with

the rhesus factor + or −, respectively. q+1 , q
−
1 ∈ {0, 1}

d = (d+, d−) - demand. We assume that the maximum demand of each type of blood is

not more than 2 units. d+, d− ∈ {0, 1, 2}

Every day we observe the demand d and decide which action to take (form vector X) in

order to satisfy the demand. After a new blood arrives, the new vector of blood supply can

be formed:

(q+1 , q
−
1 , s

+
1 − x++

1 , s−1 − x−−1 − x−+1)

State description:

S = (s+1 , s
−
1 , s

+
2 , s

−
2 , d

+, d−)

As the first four variables s+1 , s
−
1 , s

+
2 , s

−
2 take two and the last two d+, d− three possible

values, the total number of states in the system is equal to 2432 = 144.

5

The action space is described by the inequalities:

1. x++
i ≤ s+i means that we cannot use more blood of age i with positive rhesus factor

than is available.

2. x−−i + x−+i ≤ s−i means that we cannot use more blood of age i with negative rhesus

factor than is available.

3.
∑
i

x−−i ≤ d− - we won’t use more blood than we need to satisfy the demand of blood

with negative rhesus factor.

4.
∑
i

x++
i +

∑
i

x−+i ≤ d+ - we won’t use more blood than we need to satisfy the demand

of blood with positive rhesus factor.

(0 1 0 0 | 1 0)
(0 1 0 1 | 1 2)
(0 1 1 0 | 0 0)
(1 1 1 1 | 2 2)

Figure 2.2: Samples of state vectors. The vertical line is used to separate the supply and
the demand.

Figure (2.2) shows some samples of state vectors. First vector (0100|10) means that

we have one unit of blood with negative rhesus factor of age 1 (i.e., the second component

s−1 = 1) and the demand is one unit of blood with positive rhesus factor (i.e., the fifth

component d+ = 1).

Transition probabilities are introduced as:

6

p(S
′ | S,X) =

P (Q, d+

′
, d−

′
), if S

′
= (q+1 , q

−
1 , s

+
1 − x++

1 , s−1 − x−−1 − x−+1 , d+
′
, d−

′
),

0, otherwise,

(2.1)

where p(S
′ | S,X) describes the probability of transition from S to S

′
if action X is taken.

P (Q, d+
′
, d−

′
) is the probability that the vector of new arrivals of the next period of time

will be Q and the demand of new period will be (d+
′
, d−

′
).

Number of all possible combinations of vector Q is 4 and for the demand number of all

possible combination is 9 so we assume that all the probabilities are equal to 1/(4 ∗ 9).

P (Q, d+
′
, d−

′
) = 1/36

The immediate cost is

C(S,X) =
∑
i

ic(x++
i + x−+i + x−−i) + l((d+ −

∑
i

x++
i −

∑
i

x−+i) + (d− −
∑
i

x−−i)), (2.2)

where ic is the the cost of using a unit of blood available in the current hospital, l is the

cost of getting an additional unit of blood from the secondary source (blood bank or another

hospital). We multiply cost c by i as a penalty for using older blood. Obviously, as we use

older blood the penalty increases.

In order to find the minimal cost, we are supposed to solve the Bellman equation of the

form

V (S) = min
∀X

{
C(S,X) + λ

∑
S′

p(S ′ | S,X)V (S ′)

}
, (2.3)

where V is a value vector, V (S) is the current state, V (S ′) is the next state, C(S,X) is a

cost for being in state S and taking action X, p(S ′ | S,X) is a probability of transition from

S to S
′

if action X is taken, λ ∈ (0, 1) is a discount factor.

7

The discount factor does not effect the algorithm or the theoretical result. We account

for time preferences by including the discount factor [18].

V satisfies the following inequality:

V (S) ≥ C(S,X) + λ
∑
S′

p(S ′ | S,X)V (S ′), (2.4)

for all state-action pairs (S,X).

8

Chapter 3

Solution approach

3.1 Linear Programming approach

We solve the Bellman equation (2.3) using primal linear programming system:

maximize
∑
S

α(S) ∗ V (S)

subject to V (S)−
∑
S

λp(S ′|S,X) ∗ V (S ′) ≤ C(S,X)

Objective coefficients α(s) are all positive and
∑
S

α(S) = 1. We put λ = 0.8 as far as

we are working on the infinite horizon. Otherwise V (S) =∞.

Having optimal value vector V ∗(S), we can obtain the optimal policy solving the following

equation:

d(S) = min
X
{C(S,X) +

∑
S′

p(S ′ | S,X)V ∗(S)}, (3.1)

where d(S) is a particular action that is optimal to take in state S.

As far as we consider only two blood types and the maximum age is two days, there are

144 variables, because we have 144 states. The number of constraints is 645. The size of the

problem is small enough for solving this Linear Programming problem.

But if we consider all the blood types, and the age of blood up to 42 days, our problem

9

suffers from the curse of dimensionality.

3.2 Approximate Dynamic Programming approach

To solve a larger problem (for more blood types and consider the age of blood units up to

42 days) we can use the Approximate Dynamic Programming.

To be able to compare the results of Linear Programming and Approximate Dynamic

Programming approaches we solve the problem with the same number of states, as was

described in Chapter 2, using Approximate Dynamic Programming.

First we build the approximation to the value function of the form [19]:

V (S) ∼= Ṽ (S) = θ0+
2∑
i=1

θ+i u
+
i +

2∑
i=1

θ−i u
−
i +δ1d

++δ2d
−+σ1[d

+−u+2]++σ2[d
−−u−2]+, (3.2)

where

u+i =
i∑

j=1

s+j is a total number of available blood units of the age at most i with a positive

rhesus factor. Similarly, for the negative rhesus factor u−i =
i∑

j=1

s−j .

[d+−u+2]+ = max(0, d+−u+2) denotes the shortage, where d+ is a demand of the blood with

a positive rhesus factor. Similarly, for a negative rhesus factor [d−−u−2]+ = max(0, d−−u−2).

θ+i and θ−i represent the savings in cost for each additional unit of blood of age at most i.

δ1 and δ2 represent the cost of each additional unit of demand.

σ1 and σ2 denote the cost of each additional unit of shortage.

Now we will use approximate dynamic programming algorithms to find such coefficients

(θ0, θ
+
1 , θ

−
1 , θ

+
2 , θ

−
2 , δ1, δ2, σ1, σ2) that will make the equation (3.2) a good approximation for

the exact value function V(S).

10

3.2.1 Calibrating approximate value function coefficients

To calibrate the coefficients, we use the idea of Schweitzer and Seidmann [21] that is based

on linear programming.

We consider the linear programming problem of the form:

maximize
∑
S

α(S) ∗ V (S)

subject to V (S)−
∑
S

λp(S ′|S,X) ∗ V (S ′) ≥ C(S,X)

as in Section 3.1.

Now we replace V(S) by our approximation defined in (3.2):

maximize

θ0 +
2∑
i=1

Eα[u+i]θ+i +
2∑
i=1

Eα[u−i]θ−i + Eα[d+]δ1 + Eα[d−]δ2

+Eα[[d+ − u+2]+]σ1 + Eα[[d− − u−2]+]σ2

(3.3)

subject to

(1−λ)θ0+
2∑
i=1

Θ+
i (S,X)θ+i +

2∑
i=1

Θ−i (S,X)θ−i +∆1(S)δ1+∆2(S)δ2+Σ1(S,X)σ1+Σ2(S,X)σ2 ≤

C(S,X) ∀(S,X)

where

Eα[u+i] =
∑
S

α(S)u+i (S) i = 1, 2

Eα[u−i] =
∑
S

α(S)u−i (S) i = 1, 2

Eα[d+] =
∑
S

α(S)d+(S)

Eα[d−] =
∑
S

α(S)d−(S)

Eα[[d+ − u+2]+] =
∑
S

α(S)[d+(S)− u+2 (S)]+

Eα[[d− − u−2]+] =
∑
S

α(S)[d−(S)− u−2 (S)]+

and

Θ+
i (S,X) = u+i (S)− λ

∑
(Q,d′)

Pr(Q, d′)u+i
′(S,X,Q) i = 1, 2

11

Θ−i (S,X) = u−i (S)− λ
∑
(Q,d′)

Pr(Q, d′)u−i
′(S,X,Q) i = 1, 2

∆+(S) = d+(S)− λ
∑
(Q,d′)

Pr(Q, d′)d+′

∆−(S) = d−(S)− λ
∑
(Q,d′)

Pr(Q, d′)d−′

Σ+(S,X) = [d+(S)− u+2 (S)]+ − λ
∑
(Q,d′)

Pr(Q, d′)[d+′(S)− u+2 ′(S)]+

Σ−(S,X) = [d−(S)− u−2 (S)]+ − λ
∑
(Q,d′)

Pr(Q, d′)[d−′(S)− u−2 ′(S)]+,

where d′ = (d+
′
, d−

′
) denotes the demand of the next period of time.

There are much fewer variables, however the number of constrains is still large. But

to find the optimal solution we can start with the initial set of 9 constraints and add new

constrains by finding the most violated ones.

It is suitable to solve the dual problem using column generation.

The dual problem to (3.3) can be stated as follows:

minimize ∑
(S,X)

C(X,S)W (S,X) (3.4)

subject to

(1− λ)
∑
(S,X)

W (X,S) = 1∑
(S,X)

Θ+
i (S,X)W (X,S) = Eα[u+i] i = 1, 2∑

(S,X)

Θ−i (S,X)W (X,S) = Eα[u−i] i = 1, 2∑
(S,X)

∆1(S)W (X,S) = Eα[d+]∑
(S,X)

∆2(S)W (X,S) = Eα[d−]∑
(S,X)

Σ1(S,X)W (X,S) = Eα[[d+ − u+2]+]∑
(S,X)

Σ2(S,X)W (X,S) = Eα[[d− − u−2]+]

W (S,X) ≥ 0 ∀(S,X).

In the dual problem we have a variable for each state-action pair. We can use much less

12

variables to find an optimal value. We will use the Phase I method of linear programming

to find the initial set of columns, and then we will use column generation to add the most

violated constraints.

Phase I method of linear programming

We start with adding a slack variable to each constraint to the problem (3.4). Then, we

minimize the sum of the slack variables.

minimize
9∑
i=1

yi (3.5)

subject to

y1 = 1

y2 = Eα[u+1]

y3 = Eα[u+2]

y4 = Eα[u−1]

y5 = Eα[u−2]

y6 = Eα[d+]

y7 = Eα[d−]

y8 = Eα[[d+ − u+2]+]

y9 = Eα[[d− − u−2]+]

yi ≥ 0 for i = 1..9.

We add new constraints by solving the following sub-problem:

maximize

(1− λ)θ∗0 +
2∑
i=1

Θ+
i (S,X)θ+∗i +

2∑
i=1

Θ−i (S,X)θ−∗i + ∆1(S)δ∗1

+∆2(S)δ∗2 + Σ1(S,X)σ∗1 + Σ2(S,X)σ∗2

(3.6)

subject to

13

x++
1 ≤ s+1

x−+1 + x−−1 ≤ s−1

x++
2 ≤ s+2

x−+2 + x−−2 ≤ s−2
2∑
i=1

x++
i +

2∑
i=1

x−+i ≤ d+

2∑
i=1

x−−i ≤ d−

xi, si ≥ 0, integer i = 1, 2

d+, d− ≥ 0 , integer

where

Θ+
i (S,X) =

i∑
j=1

s+i − λ
∑
(Q,d′)

Pr(Q, d′)(
i∑

j=1

q+i +
i−1∑
j=1

(s+j − x++
j)) i = 1, 2,

Pr(Q, d′) denotes the probability that the new arrival vector will be Q and new demand will

be d′.

Θ−i (S,X) =
i∑

j=1

s−i − λ
∑
(Q,d′)

Pr(Q, d′)(
i∑

j=1

q−i +
i−1∑
j=1

(s−j − x−+j − x−−j)) i = 1, 2

∆1(S) = d+ − λ
∑
(Q,d′)

Pr(Q, d′)d+
′

∆2(S) = d− − λ
∑
(Q,d′)

Pr(Q, d′)d−
′

Σ1(S,X) = [d+ −
2∑
j=1

s+j]+ − λ
∑
(Q,d′)

Pr(Q, d′)[d+
′ − u+′

2]+

Σ2(S,X) = [d− −
2∑
j=1

s−j]+ − λ
∑
(Q,d′)

Pr(Q, d′)[d−
′ − u−′

2]+

u+
′

2 =
2∑
j=1

q+j + (s+1 − x++
1)

u−
′

2 =
2∑
j=1

q−j + (s−1 − x−+1 − x−−1)

and

(θ∗0, θ
+∗
1 , θ−∗1 , θ+∗2 , θ−∗2 , δ∗1, δ

∗
2, σ

∗
1, σ

∗
2) is the dual solution of the problem (3.5).

The solution to the problem (3.6) includes the state (s+∗1 , s−∗1 , s+∗2 , s−∗2 , d+∗, d−∗) and the

action (x++∗
1 , x−+∗1 , x−−∗1 , x++∗

2 , x−+∗2 , x−−∗2). The pair (S∗, X∗) that corresponds to the most

14

violated constraint will be added to the constraints of the problem (3.5).

But Σ(S,X) is not a linear function because of the part [d−−
2∑
j=1

s−j]+ that is a piecewise

linear function of the decision variables. We can make this function linear by introducing

new integer variables k++
0 , k+−0 , k++(Q, d′), k+−(Q, d′) and b+0 , b+(Q, d′) that are binary

variables. A similar set of variables we introduce for the part, where we consider the units

of blood with a negative rhesus factor k−+0 , k−−0 , k−+(Q, d′), k−−(Q, d′), b−0 , b−(Q, d′).

Here Σ1(S,X) = k++
0 − λ

∑
(Q,d′)

Pr(Q, d′)k++(Q, d′),

where k++
0 satisfies the constraints:

k++
0 + k+−0 −N = d+ −

2∑
j=)

s+j (3.7)

k++
0 ≤ Nb+0 (3.8)

k+−0 ≥ Nb+0 (3.9)

k+−0 ≤ N (3.10)

k++
0 , k++

0 ≥ 0, integer

b+0 ∈ {0, 1},

and N is a large integer.

If there is a shortage and d+ −
2∑
j=1

s+j > 0 then from equations (3.7) and (3.10) we have

k++
0 > 0 .

From the inequality (3.8) we have b+0 = 1.

Then, (3.9) and (3.10) imply k+−0 = N .

Finally, from (3.7) we have k++
0 = d+ −

2∑
j=1

s+j (i.e., k++
0 denotes the shortage).

15

If there is no shortage, d+ −
2∑
j=1

s+j 6 0, then from (3.7) - (3.10) we have k++
0 = 0.

Next, k++(Q, d′), k+−(Q, d′) must satisfy the following constraints:

k++(Q, d′) + k+−(Q, d′)−N = d+
′ −

2∑
j=1

q+j + (s+1 − x++
1) (3.11)

k++(Q, d′) ≤ Nb+(Q, d′) (3.12)

k+−(Q, d′) ≥ Nb+(Q, d′) (3.13)

k+−(Q, d′) ≤ N (3.14)

k++(Q, d′), k+−(Q, d′) ≥ 0, integer

b+(Q, d′) ∈ {0, 1}.

Now, the problem (3.6) is an integer problem. The solution (S∗, X∗) corresponds to the

most violated constraint that we add to the problem (3.5). Once the objective function of

(3.5) becomes 0, we stop. Then we remove the slack variables and end up with the initial

set of constrains for the problem (3.4).

Column Generation

Now, having the initial set of constraints, we can solve the dual problem

minimize ∑
(S,X)

C(X,S)W (S,X) (3.15)

subject to

(1− λ)
∑
(S,X)

W (X,S) = 1

16

∑
(S,X)

Θ+
i (S,X)W (X,S) = Eα[u+i] i = 1, 2∑

(S,X)

Θ−i (S,X)W (X,S) = Eα[u−i] i = 1, 2∑
(S,X)

∆1(S)W (X,S) = Eα[d+]∑
(S,X)

∆2(S)W (X,S) = Eα[d−]∑
(S,X)

Σ1(S,X)W (X,S) = Eα[[d+ − u+2]+]∑
(S,X)

Σ2(S,X)W (X,S) = Eα[[d− − u−2]+]

W (S,X) ≥ 0 ∀(S,X).

The solution to this problem does not satisfy all the constraints from the original problem

as we consider only the most violated constraints. To find the most violated constraints,

we will solve the sub-problem. In this sub-problem, in comparison to the one in Phase I

method, we add one more term C(S,X):

maximize

(1− λ)θ∗0 +
2∑
i=1

Θ+
i (S,X)θ+∗i +

2∑
i=1

Θ−i (S,X)θ−∗i + ∆1(S)δ∗1

+∆2(S)δ∗2 + Σ1(S,X)σ∗1 + Σ2(S,X)σ∗2 − C(S,X)

(3.16)

subject to

x++
1 ≤ s+1

x−+1 + x−−1 ≤ s−1

x++
2 ≤ s+2

x−+2 + x−−2 ≤ s−2
2∑
i=1

x++
i +

2∑
i=1

x−+i ≤ d+

2∑
i=1

x−−i ≤ d−

xi, si ≥ 0 i = 1, 2

d+, d− ≥ 0.

17

As well as in Phase I method, we have the parts that are not linear Σ1(S,X), Σ2(S,X).

Similarly, we introduce the set of variables k++
0 , k+−0 , k++(Q, d′), k+−(Q, d′), b+0 , b+(Q, d′),

k−+0 , k−−0 , k−+(Q, d′), k−−(Q, d′), b−0 , b−(Q, d′) to convert the problem into an integer prob-

lem.

We continue to add constraints to the problem (3.15) until the optimality gap is smaller

than 0.005.

Values of the parameters θ0, θ
+
1 , θ+2 , θ−1 , θ−2 , δ1, δ2, σ1, σ2 for two cases c < l and c ≥ l

are shown in the Table 3.1.

c < l c ≥ l
θ0 0.2 0.2
θ+1 0.9778 0.9778
θ+2 -0.0222 0.9778
θ−1 0.9778 1.9778
θ−1 0.9333 1.9778
δ1 1.9333 1.9333
δ2 1.9333 1.9333
σ1 1.0222 0.0889
σ2 1.0889 0.0889

Table 3.1: Parameters of the approximated value function

3.2.2 Approximate Dynamic Programming - based optimal policy

Now, to find the optimal issuing policy we need to solve the equation:

min
∀X
{C(S,X) + λ

∑
S′

p(S ′ | S,X)Ṽ (S ′)}, (3.17)

where S is an initial state, X denotes an action, C(S,X) is an immediate cost, Q is a vector

of new arrivals, d′ is a demand in a new period of time, λ is a discount factor.

We substitute Ṽ (S ′) with our approximation function:

V (S) ∼= Ṽ (S) = θ0+
2∑
i=1

θ+i u
+
i +

2∑
i=1

θ−i u
−
i +δ1d

++δ2d
−+σ1[d

+−u+2]++σ2[d
−−u−2]+ (3.18)

18

and solve the linear programming problem to find the approximate optimal policy in each

period of time:

minimize

∑
i

ic(x++
i + x−+i + x−−i) + l(d+ −

∑
i

x++
i −

∑
i

x−+i)

+l(d− −
∑
i

x−−i) + λ
∑
(Q,d′)

Pr(Q, d′)Ṽ (S ′)
(3.19)

subject to

x++
1 ≤ s+1

x−+1 + x−−1 ≤ s−1

x++
2 ≤ s+2

x−+2 + x−−2 ≤ s−2
2∑
i=1

x++
i +

2∑
i=1

x−+i ≤ d+

2∑
i=1

x−−i ≤ d−

xi, si ≥ 0, integer ∀i

d+, d− ≥ 0 , integer

In (3.19) we again have a part that is not linear, σ1[d
+ − u+2]+ + σ2[d

− − u−2]+. In

order to linearise those terms, we use the same approach as in Phase I method and Column

Generation method.

19

Chapter 4

Results

Three types of experiments were run:

1. The cost of using one unit of blood is lower than the cost of getting the unit of blood

from the secondary source;

2. The cost of using one unit of blood is higher than the cost of getting the unit of blood

from the secondary source;

3. Both costs are equal.

4.1 LP-based optimal policy

Let us first consider the results obtained by using the Linear Programming approach.

All the states S and possible actions X were enumerated. There are 144 possible states

and 57 possible actions. The transition probabilities between states are all equal to 1/36.

On every optimal policy graph x-axes represent the number of a state and y-axes represent

the number of an action. On every graph of an optimal cost, y-axes represent the cost.

Figures 4.1 and 4.2 show the optimal cost and the optimal policy for in the case when

penalty for using older blood c is smaller than the cost of using the blood from some secondary

source l (a blood bank or another hospital).The c/l ratio in this case is 0.1 (c = 10,l = 100).

20

Numerical experiments were run for different values c and l but the same optimal policy was

obtained for all cases where 0 < c/l < 1.

Figure 4.1: Optimal cost for the case c < l (c = 10,l = 100)

Figure 4.2: Optimal policy for the case c < l(c = 10,l = 100)

On the figures 4.3 and 4.4 we can see the optimal cost and optimal policy for the second

case (i.e., the cost of using one unit of blood c is higher than the cost of getting the unit of

blood from the secondary source l). The c/l ratio in this case is equal to 10 (c = 1000,l =

100). The same result was obtained for the third case where the cost of using one unit

of blood c is equal to the cost of getting the unit of blood from the secondary source l

(c = l = 100).

21

Figure 4.3: Optimal cost for the case c ≥ l(c = 1000,l = 100),(c = l = 100)

Figure 4.4: Optimal policy for the case c ≥ l(c = 1000,l = 100),(c = l = 100)

4.2 ADP-based optimal policy

Finally, we show the results obtained by using Approximate Dynamical Programming ap-

proach.

As in the previous section (4.1), all the states S and possible actions X were enumerated.

There are as well 144 possible states and 57 possible actions. On every optimal policy graph

x-axes represent the number of a state and y-axes represent the number of an action.

Figures 4.5 and 4.6 show the approximate optimal policy and optimal cost in the case

22

when the cost of using one unit of blood is lower than the cost of getting the unit of blood

from the secondary source.

Figure 4.5: Approximate optimal policy for the case c < l(c = 10,l = 100)

Figure 4.6: Optimal cost for the case c < l(c = 10,l = 100)

Figures 4.7 and 4.8 show the approximate optimal policy and optimal cost for the case

when using one available unit of blood is more expensive than getting the unit of blood from

the secondary source. Again, the same result is for the case when two costs are equal.

23

Figure 4.7: Approximate optimal policy for the case c ≥ l(c = 1000,l = 100),(c = l = 100)

Figure 4.8: Optimal cost for the case c ≥ l(c = 1000,l = 100),(c = l = 100)

4.3 Comparison of the results

In this section, we compare the results obtained by two approaches we considered. On each

figure there are two graphs. The blue graph represents the result obtained by LP approach,

and the red one shows the result for ADP.

So we can see that our LP-based and ADP-based optimal policies do not match for all

states in the system. This is happening because in Approximate Dynamic Programming

algorithm we use not the original value function but the approximated one. The difference is

24

Figure 4.9: Comparison of the results for the case c < l(c = 10,l = 100)

Figure 4.10: Comparison of the results for the case c ≥ l(c = 1000,l = 100),(c = l = 100)

in which demand to satisfy first. ADP-based policy usually suggests to satisfy the demand

of positive blood first. LP-based policy more often assigns the blood units equally for the

demand of blood with positive and negative rhesus factor.

Both policies suggest to use younger blood first (i.e., to use LIFO policy) even if there

is no younger blood with the same rhesus factor (i.e., it is suggested to use younger blood

of the type AB- rather than older blood of the type AB+ for the patient with AB+ blood

type). The fresher blood is suggested to use first in this small instance of the problem mostly

because we face shortage only in 17% of the time so discarding an older blood does not effect

25

the supply much.

Also we can observe the comparison of cost functions obtained by two methods. We can

see that the value of the cost function that was calculated using LP is higher in both cases

for all states.

Figure 4.11: Comparison of the cost functions for the case c < l(c = 10,l = 100)

Figure 4.12: Comparison of the cost functions for the case c ≥ l(c = 1000,l = 100),(c = l =
100)

On the following Figures 4.13 and 4.14 we can see the comparison of value functions as

parameters c and l change.

26

The first graph 4.13 shows how the average cost over all states changes as c increase from

1 to 100, l = 100 remains constant. The average cost obtained by ADP method grows much

slower. As ratio c/l is getting bigger the difference between two values obtained by different

approaches grows as well.

Figure 4.13: Comparison of the average cost functions for growing ratio 0 < c/l < 1

Next Figure 4.14 shows the comparison of average values as c increases from 1 to 100

and l decreases from 100 to 1 simultaneously. We can see the same tendency for the part

where 0 < c/l < 1. After the point where c = l average cost decreases for both methods as

the policy to use the blood from the secondary source starts to work. And as the price for

getting each additional unit of blood from the secondary source decreases the average cost

is getting smaller respectively.

All the results presented in this thesis are the results of the reduced problem. In a full-size

problem where we consider the blood units of any age up to 42 days and all the blood types

the supply vector is 336 long, the vector of an action is 1,134 long, vector of new arrivals

is 336 long that make the problem impossible to solve using Linear Programming. Also the

computational time for using Approximate Dynamic Programming increases significantly in

comparison to 14.5 seconds computational time for reduced problem.

27

Figure 4.14: Comparison of the average cost functions for growing ratio 0 < c/l < 10

28

Chapter 5

Conclusions

In this work, we studied the problem of finding the optimal policy for using blood units

for transfusion. The main goal was to reduce shortage and the number of blood units that

should be discarded (i.e., the number of outdated units of blood). Also we tried to reduce

the risk of complication by assigning a penalty for using older blood. We used two different

approaches to find the solution and compared the obtained results.

In the first part we used the Linear Programming (LP) approach to find the optimal

policy. As far as the size of the problem was very big, in order to be able to solve the

problem using LP, we considered only two blood types and assumed that blood can be

stored only for 2 days.

In the second part of the work, in order to find the solution to the problem we used

Approximate Dynamic Programming techniques. First we approximated the value function,

and then we used the Phase I method and column generation to solve the linear programming

form of dynamic programming.

We ran three types of experiments: for the penalty cost of using older blood bigger than

using the unit of blood from the secondary source (a blood bank or another hospital), for the

penalty cost of using older blood smaller than using the unit of blood from the secondary

source, and for two costs being equal. So we saw that the approximated optimal policy

29

obtained by ADP approach and the one we obtained by using LP are similar for some states.

The main goal for future is to expand the problem for all blood types and consider the full

period of possible blood storing of 42 days. It is highly likely that the dependence between

the age of blood and complications that appear after transfusion is not linear. So there is a

need to study that dependence and find a function that describes it.

30

Bibliography

[1] H. Abouee-Mehrizi, O.Baron, O.Berman, V. Sarhangian, Allocation Policies in Blood

Transfusion. University of Waterloo.

[2] M.P. Atkinson, M.J. Fontaine, L.T. Goodnough, A novel allocation strategy for blood

transfusions: investigating the tradeoff between the age and availability of transfused blood.

Transfusion. 2012.

[3] D.P. De Farias and B. Van Roy, The Linear programming Approach to Approximate

Dynamical Programming,Operation Research, Vol.51, No. 6, pp.850-865, 2003.

[4] J. Desrosiers, M.E. Lubbecke, M.M. Solomon, Column Generation. Springer, 2005.

[5] W.H. Dzik, N. Beckman, M.F. Murphy, M. Delaney, Factors affecting red blood cell

storage age at the time of transfusion. Transfusion. 2013.

[6] M. Ehrgott, J. Tind, Column Generation in Integer Programming with Applications in

Multicriteria Optimization. University of Auckland, University of Copenhagen, 2007.

[7] J.W. Eikelboom, R.J. Cook, Y. Liu, N.M. Heddle, Duration of red cell storage before

transfusion and in-hospital mortality. American Heart Journal, 2010.

[8] R.Haijema, J. van der Wal, N.M van Dijk, Blood platelet production: Optimization byy

dynamic programming and simulation,Computer and Operation Research, Vol.34, pp.760-

779, 2007.

31

[9] I.Z. Karaesmen, A. Scheller-Wolf, B. Deniz, Managing perishable and ageing inventories:

review and future research directions. Planning production and inventories in the extended

enterprise. pp.393-436, Springer, 2011.

[10] C.G. Koch, L. Li, D.I. Sessler, P. Figueroa, G.A. Hoeltge, T. Mihaljevic, E.H. Black-

stone, Duration of Red-Cell Storage and Complications after Cardiac Surgery. The New

England Journal of Medicine, 312, 2008.

[11] M.S.Maxwell, M.Restrepo, S.G. Henderson, H.Topaloglu, Approximate Dynamic Pro-

gramming for Ambulance Redeployment. Informs Journal on Computing, Vol. 22, No.2,

pp.266-281, 2010.

[12] S. Nahmias, Perishable Inventory Systems. Vol. 160, Springer, 2011.

[13] S. Nahmias, Perishable inventory: A review. Operation research, Vol. 30(4), pp.680-708,

1982.

[14] S. Nahmias, W.P. Pierskalla, Optimal ordering policies for a product that perishes in

two periods subject to stochastic demand. Naval Research Logistics Quarterly, 1973.

[15] P.J. Offner, E.E. Moore, W.L. Biffl, J.L. Johnson, Increased Rate of Infection Associated

With Transfusion of Old Blood After Severe Injury. Arch Surg. 2002.

[16] P.Q. Pan, Linear Programming Computation. Springer, 2014.

[17] W.P. Pierskalla, C.D. Roach, Optimal issuing policies for perishable inventory. Manage-

ment Science, Vol. 18, pp.603-614, 1972.

[18] M. L. Puterman, Markov Decision Processes: discrete stochastic dynamic programming.

Wiley-Interscience, New York, 1994.

[19] A. Sabouri, Applications of Stochastic Optimization Models in Patient Screening and

Blood Inventory Management. PhD Thesis, University of British Columbia, Vancouver,

2014.

32

[20] M. Sayers, J. Centilli, What if shelf life becomes a consideration in ordering red blood

cells? Transfusion. 2012.

[21] P.J.Schweitzer and A.Seidmann, Generalized polynomial approximations in markovian

decision processes. Journal of mathematical analysis and applications, 110(2):568-582,

1985.

[22] Warren B. Powell, Approximate Dynamical Programming: Solving the Curse of Dimen-

sionality,Wiley, 2011.

[23] G. Zallen, P.J. Offner, E.E. Moore, J. Blackwell, D.J. Ciesla, J. Gabriel, C. Denny C.C.

Silliman, Age of Transfused Blood is an Independent Risk Factor for Postinjury Multiple

Organ Failure,The American Journal of Surgery, Vol.178, 1999.

[24] D. Zhang, D. Adelman, An Approximate Dynamic Programming Approach to Network

Revenue Management with Customer Choice, Transportation Science, Vol. 43, No.3,

pp.381-394, 2009.

33

Appendix A

Matlab code for LP approach

1 n = (0 : 1 5) ’ ;

2 S = de2bi (n) ; % matrix o f a l l the p o s s i b l e supply ve c t o r s

3

4 n=(0:63) ’ ;

5 X= de2bi (n) ; % matrix o f a l l the p o s s i b l e a c t i o n s

6 A=sum(X, 2) ;

7 %−−−−−−−−−−−−−−−−−−−− d e l e t i n g a l l the a c t i o n s with the sum >4

8 f o r k=1:59

9 i f A(k)>4

10 X(k , :) = [] ;

11 A=sum(X, 2) ;

12 k=k−1;

13 end

14 end

15 X(5 8 , :) = [] ;

16

17 X; % matrix where each row i s a p o s s i b l e ac t i on . t o t a l number o f

34

a c t i o n s in the system i s 57

18 %−−−−−−−−−−−−−−−−−−−−

19 [x , y] = ndgrid ([0 , 1 , 2]) ;

20 D=[x (:) , y (:)] ; % matrix o f a l l the p o s s i b l e demands

21

22 %−−−−−−−−−−−−−−−−−−c r e a t i n g matrix o f a l l s t a t e s

23 ST=ze ro s (144 ,7) ;

24 n=1;

25 f o r i =1:16

26 f o r j =1:9

27 T= [n S(i , :) D(j , :)] ;

28 ST(n , :)=T(:) ;

29 n=n+1;

30 end

31 end

32 ST;

33 %−−−−−−−−−−−−−−−−−

34 %−−−−−−−−−−−−−−−−−check ing every ac t i on i f i t s a t i s f i e s the

c o n s t r a i n t s and

35 %i f yes , c a l c u l a t e the co s t

36 c =1000;

37 l =100;

38 n=1;

39 C=ze ro s (1 , 3) ;

40 f o r j =1:57

41 f o r i =1:144

42 i f X(j , 1)<=ST(i , 2)

35

43 i f X(j , 4)<=ST(i , 4)

44 i f (X(j , 2)+X(j , 3))<=ST(i , 3)

45 i f (X(j , 5)+X(j , 6))<=ST(i , 5)

46 i f X(j , 1)+X(j , 3)+X(j , 4)+X(j , 6)<=ST(i , 6)

47 i f (X(j , 2)+X(j , 5))<=ST(i , 7)

48 co s t=c ∗(X(j , 1)+X(j , 2)+X(j , 3))+c ∗(X(j

, 4)+X(j , 5)+X(j , 6))+l ∗ ((ST(i , 6)−X(j

, 1)−X(j , 3)−X(j , 4)−X(j , 6))+(ST(i , 7)

−X(j , 2)−X(j , 5))) ;

49 C1=[i j c o s t] ;

50 C(n , :)=C1 (:) ;

51 n=n+1;

52 end

53 end

54 end

55 end

56 end

57 end

58 end

59 end

60 C; %matrix o f s ta te−act ion−co s t

61 %−−−−−−−−−−−−−−−−−−−−−−−−−

62 %−−−−−−−−−−−−−−−−−−−−−−−−Creat ing a t r a n s i t i o n matrix

63 F=ze ro s (645 ,144) ;

64 F1=ze ro s (645 ,144) ;

65 f o r i =1:645

66 s=C(i , 1) ;

36

67 a=C(i , 2) ;

68 d1=ST(s , 4)−X(a , 4) ;

69 d2=ST(s , 5)−X(a , 5)−X(a , 6) ;

70 f o r j =1:144

71 i f ST(j , 4)==d1

72 i f ST(j , 5)==d2

73 F(i , j) =(−1/36) ∗ 0 . 8 ;

74 F1(i , j) =1/36;

75 end

76 end

77 end

78 F(i , s)=F(i , s) +1;

79 end

80 F;

81 % f i l ename =’matixF . xlsx ’ ;

82 % x l s w r i t e (f i l ename , F, 1 , ’ A1 ’) ;

83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 %−−−−−−−−−−−−−s o l v i n g LP to f i n d optimal co s t

85 n=144;

86 cvx beg in

87 v a r i a b l e v (n)

88 maximize sum(v)

89 sub j e c t to

90 F∗v<=C(: , 3) ;

91 cvx end

92 v ;

93 p lo t (v) ;

37

94 %−−−−−−−−−−−−−−−

95

96 % %−−−−−−−−−−−−−−− s o l v i n g Belman equat ion to f i n d an optimal

p o l i c y

97 d=ze ro s (144 ,1) ;

98 f o r i =1:144

99 z =99999999;

100 f o r j =1:645

101 i f C(j , 1)==i

102 c=C(j , 3)+F1(j , :) ∗v ;

103 i f c<z

104 z=c ;

105 d(i)=C(j , 2) ;

106 end

107 end

108 end

109 end

110 d ;

111 p lo t (d , ’∗ ’)

112 hold on

113 p lo t (g (2 : end , 2) , ’ squarer ’)

38

Appendix B

Matlab code for ADP approach

1 n = (0 : 1 5) ’ ;

2 S = de2bi (n) ; % matrix o f a l l the p o s s i b l e supply ve c t o r s

3

4 n=(0:63) ’ ;

5 X= de2bi (n) ; % matrix o f a l l the p o s s i b l e a c t i o n s

6 A=sum(X, 2) ;

7 %−−−−−−−−−−−−−−−−−−−− d e l e t i n g a l l the a c t i o n s with the sum >4

8 f o r k=1:59

9 i f A(k)>4

10 X(k , :) = [] ;

11 A=sum(X, 2) ;

12 k=k−1;

13 end

14 end

15 X(5 8 , :) = [] ;

16

17 X; % matrix where each row i s a p o s s i b l e ac t i on . t o t a l number o f

39

a c t i o n s in the system i s 57

18 %−−−−−−−−−−−−−−−−−−−−

19 [x , y] = ndgrid ([0 , 1 , 2]) ;

20 D=[x (:) , y (:)] ; % matrix o f a l l the p o s s i b l e demands

21

22 %−−−−−−−−−−−−−−−−−−c r e a t i n g matrix o f a l l s t a t e s

23 ST=ze ro s (144 ,7) ;

24 n=1;

25 f o r i =1:16

26 f o r j =1:9

27 T= [n S(i , :) D(j , :)] ;

28 ST(n , :)=T(:) ;

29 n=n+1;

30 end

31 end

32 ST;

33 %−−−−−−−−−−−−−−−−−

34 %−−−−−−−−−−−−−−−−−check ing every ac t i on i f i t s a t i s f i e s the

c o n s t r a i n t s and

35 %i f yes , c a l c u l a t e the co s t

36 c =1000;

37 l =100;

38 n=1;

39 C=ze ro s (1 , 3) ;

40 f o r j =1:57

41 f o r i =1:144

42 i f X(j , 1)<=ST(i , 2)

40

43 i f X(j , 4)<=ST(i , 4)

44 i f (X(j , 2)+X(j , 3))<=ST(i , 3)

45 i f (X(j , 5)+X(j , 6))<=ST(i , 5)

46 i f X(j , 1)+X(j , 3)+X(j , 4)+X(j , 6)<=ST(i , 6)

47 i f (X(j , 2)+X(j , 5))<=ST(i , 7)

48 co s t=c ∗(X(j , 1)+X(j , 2)+X(j , 3))+c ∗(X(j

, 4)+X(j , 5)+X(j , 6))+l ∗ ((ST(i , 6)−X(j

, 1)−X(j , 3)−X(j , 4)−X(j , 6))+(ST(i , 7)

−X(j , 2)−X(j , 5))) ;

49 C1=[i j c o s t] ;

50 C(n , :)=C1 (:) ;

51 n=n+1;

52 end

53 end

54 end

55 end

56 end

57 end

58 end

59 end

60 C; %matrix o f s ta te−act ion−co s t

61 %−−−−−−−−−−−−−−−−−−−−−−−−−

62 %−−−−−−−−−−−−−−−−−−−−−−−−Creat ing a t r a n s i t i o n matrix

63 F=ze ro s (645 ,144) ;

64 F1=ze ro s (645 ,144) ;

65 f o r i =1:645

66 s=C(i , 1) ;

41

67 a=C(i , 2) ;

68 d1=ST(s , 4)−X(a , 4) ;

69 d2=ST(s , 5)−X(a , 5)−X(a , 6) ;

70 f o r j =1:144

71 i f ST(j , 4)==d1

72 i f ST(j , 5)==d2

73 F(i , j) =(−1/36) ∗ 0 . 8 ;

74 F1(i , j) =1/36;

75 end

76 end

77 end

78 F(i , s)=F(i , s) +1;

79 end

80 F;

81 %−−−−forming the r i g h t hand s i d e o f the o r i g i n a l dual problem

82 b=ze ro s (9 , 1) ;

83 b (1 , 1) =1;

84 f o r i =1:144

85 b (2 , 1)=b (2 , 1)+ST(i , 2) ∗(1/144) ;

86 b (3 , 1)=b (3 , 1)+ST(i , 3) ∗(1/144) ;

87 b (4 , 1)=b (4 , 1)+ST(i , 2) ∗(1/144)+ST(i , 4) ∗(1/144) ;

88 b (5 , 1)=b (5 , 1)+ST(i , 3) ∗(1/144)+ST(i , 5) ∗(1/144) ;

89 b (6 , 1)=b (6 , 1)+ST(i , 6) ∗(1/144) ;

90 b (7 , 1)=b (7 , 1)+ST(i , 7) ∗(1/144) ;

91

92 d1=ST(i , 6)−ST(i , 2)−ST(i , 4) ;

93 i f d1<0

42

94 d1=0;

95 end

96 b (8 , 1)=b (8 , 1)+d1 ∗(1/144) ;

97

98 d2=ST(i , 7)−ST(i , 3)−ST(i , 3) ;

99 i f d2<0

100 d2=0;

101 end

102 b (9 , 1)=b (8 , 1)+d2 ∗(1/144) ;

103 end

104 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105

106 %−−−−−−−−−−s o l v i n g the sub−problem o f the Phase 1 method

107

108 I=eye (9) ;

109 a c t i o n s =[0; 0 ; 0 ; 0] ;

110 D1=[0; 1 ; 2 ; 0 ; 1 ; 2] ;

111 Q1=[0; 0 ; 0 ; 1 ; 1 ; 1] ;

112

113 n=1;

114

115 cvx beg in

116 c v x s o l v e r gurobi ;

117 v a r i a b l e s y (9) ;

118 dual v a r i a b l e s t ; %thetas , de l ta s , gammas

119 minimize sum(y) ;

120 sub j e c t to

43

121 t : I ∗y==b ;

122 y>=0;

123

124 cvx end

125

126 N=10;

127

128 cvx beg in

129 c v x s o l v e r gurobi ;

130 i n t e g e r v a r i a b l e s x (6) s (6) k11 K121 K122 K123 K124 K125

K126 K221 K222 K223 K224 K225 K226 K111 K112 K113 K114

K115 K116 k21 K211 K212 K213 K214 K215 K216 k12 k22 ;

%s , x − s ta te−ac t i on

131 binary v a r i a b l e s b01 b02 b11 b12 b13 b14 b15 b16 b21 b22

b23 b24 b25 b26 ;

132 maximize ((1−0.8)∗ t (1)+t (2) ∗(s (1) −0.8∗1/12)+t (3) ∗(s (2)

−0.8∗1/12)+t (4) ∗(s (1)+s (3) −0.8∗(1\6) ∗(s (1)−x (1))

+0.8∗(1/12))+t (5) ∗(s (2)+s (4) −0.8∗(1/12+(1/6) ∗(s (2)−x

(2)−x (3))))+t (6) ∗(s (5) −0.8∗1/6)+t (7) ∗(s (6) −0.8∗1/6)+t

(8) ∗(k11−0.8∗(K111/36+K112/36+K113/36+K114/36+K115/36+

K116/36))+t (9) ∗(k21−0.8∗(K211/36+K212/36+K213/36+K214

/36+K215/36+K216/36))) ;

133

134 sub j e c t to

135 x (1)<=s (1) ;

136 x (2)+x (3)<=s (2) ;

137 x (4)<=s (3) ;

44

138 x (5)+x (6)<=s (4) ;

139 x (1)+x (2)+x (4)+x (5)<=s (5) ;

140 x (3)+x (6)<=s (6) ;

141 x>=0;

142 s>=0;

143 k11+k12−N==s (5)−s (1)−s (3) ;

144 k21+k22−N==s (6)−s (2)−s (4) ;

145 k11<=N∗b01 ;

146 k21<=N∗b02 ;

147 k12>=N∗b01 ;

148 k22>=N∗b02 ;

149 k12<=N;

150 k22<=N;

151 k11>=0;

152 k12>=0;

153 k21>=0;

154 k22>=0;

155

156 K111+K121−N==s (1)−x (1) ;

157 K112+K122−N==1+s (1)−x (1) ;

158 K113+K123−N==2+s (1)−x (1) ;

159 K114+K124−N==s (1)−x (1)−1;

160 K115+K125−N==s (1)−x (1) ;

161 K116+K126−N==1+s (1)−x (1) ;

162

163 K211+K221−N==s (2)−x (2)−x (3) ;

164 K212+K222−N==1+s (2)−x (2)−x (3) ;

45

165 K213+K223−N==2+s (2)−x (2)−x (3) ;

166 K214+K224−N==s (2)−x (2)−x (3)−1;

167 K215+K225−N==s (2)−x (2)−x (3) ;

168 K216+K226−N==1+s (2)−x (2)−x (3) ;

169

170 K111<=N∗b11 ;

171 K112<=N∗b12 ;

172 K113<=N∗b13 ;

173 K114<=N∗b14 ;

174 K115<=N∗b15 ;

175 K116<=N∗b16 ;

176

177 K211<=N∗b21 ;

178 K212<=N∗b22 ;

179 K213<=N∗b23 ;

180 K214<=N∗b24 ;

181 K215<=N∗b25 ;

182 K216<=N∗b26 ;

183

184 K121>=N∗b11 ;

185 K122>=N∗b12 ;

186 K123>=N∗b13 ;

187 K124>=N∗b14 ;

188 K125>=N∗b15 ;

189 K126>=N∗b16 ;

190

191 K221>=N∗b21 ;

46

192 K222>=N∗b22 ;

193 K223>=N∗b23 ;

194 K224>=N∗b24 ;

195 K225>=N∗b25 ;

196 K226>=N∗b26 ;

197

198 K121<=N;

199 K122<=N;

200 K123<=N;

201 K124<=N;

202 K125<=N;

203 K126<=N;

204

205 K221<=N;

206 K222<=N;

207 K223<=N;

208 K224<=N;

209 K225<=N;

210 K226<=N;

211

212 K111>=0;

213 K112>=0;

214 K113>=0;

215 K114>=0;

216 K115>=0;

217 K116>=0;

218

47

219 K211>=0;

220 K212>=0;

221 K213>=0;

222 K214>=0;

223 K215>=0;

224 K216>=0;

225

226 K121>=0;

227 K122>=0;

228 K123>=0;

229 K124>=0;

230 K125>=0;

231 K126>=0;

232

233 K221>=0;

234 K222>=0;

235 K223>=0;

236 K224>=0;

237 K225>=0;

238 K226>=0;

239 0<=s (5)<=2;

240 0<=s (6)<=2;

241 0<=s (1)<=1;

242 0<=s (2)<=1;

243 0<=s (3)<=1;

244 0<=s (4)<=1;

245

48

246 0<=x (1)<=1;

247 0<=x (2)<=1;

248 0<=x (3)<=1;

249 0<=x (4)<=1;

250 0<=x (5)<=1;

251 0<=x (6)<=1;

252 cvx end

253 a c t i o n s =[a c t i o n s ; s] ;

254 O1=s (1) −0.8∗(1/36) ;

255 O2=s (2) −0.8∗(1/36) ;

256 O3=s (1)+s (3) −0.8∗((1/36) ∗(s (3)−x (4)) +(1/36)∗(1+ s (3)−x (4))) ;

257 O4=s (2)+s (4) −0.8∗((1/36) ∗(s (4)−x (5)−x (6)) +(1/36)∗(1+ s (4)−x (5)−x (6)

)) ;

258 D1=s (5) −0.8∗1/12;

259 D2=s (6) −0.8∗1/12;

260

261 e1=s (5)−s (1)−s (3) ;

262 i f e1<0

263 e1 =0;

264 end

265 e2=s (6)−s (2)−s (4) ;

266 i f e2<0

267 e2 =0;

268 end

269 e11=0−(s (1)−x (1)) ;

270 i f e11<0

271 e11 =0;

49

272 end

273 e12=1−(s (1)−x (1)) ;

274 i f e12<0

275 e12 =0;

276 end

277 e13=2−(s (1)−x (1)) ;

278 i f e13<0

279 e13 =0;

280 end

281 e14=0−(1+s (1)−x (1)) ;

282 i f e14<0

283 e14 =0;

284 end

285 e15=1−(1+s (1)−x (1)) ;

286 i f e15<0

287 e15 =0;

288 end

289 e16=2−(1+s (1)−x (1)) ;

290 i f e16<0

291 e16 =0;

292 end

293

294 e21=0−(s (2)−x (2)−x (3)) ;

295 i f e21<0

296 e21 =0;

297 end

298 e22=1−(s (2)−x (2)−x (3)) ;

50

299 i f e22<0

300 e22 =0;

301 end

302 e23=2−(s (2)−x (2)−x (3)) ;

303 i f e23<0

304 e23 =0;

305 end

306 e24=0−(1+s (2)−x (2)−x (3)) ;

307 i f e24<0

308 e24 =0;

309 end

310 e25=1−(1+s (2)−x (2)−x (3)) ;

311 i f e25<0

312 e25 =0;

313 end

314 e26=2−(1+s (2)−x (2)−x (3)) ;

315 i f e26<0

316 e26 =0;

317 end

318 E1=e1 +0.8∗(e11∗1/36+e12∗1/36+e13∗1/36+e14∗1/36+e15∗1/36+e16 ∗1/36) ;

319 E2=e2 +0.8∗(e21∗1/36+e22∗1/36+e23∗1/36+e24∗1/36+e25∗1/36+e26 ∗1/36) ;

320

321 a = [0 . 2 ;O1 ;O2 ;O3 ;O4 ;D1 ; D2 ; E1 ; E2] ;

322 A=[a] ;

323

324 Y=sum(y) ;

325 B=[s ’ , x ’] ;

51

326

327 whi le n<=12

328 cvx beg in

329 c v x s o l v e r gurobi ;

330 v a r i a b l e s y (9) w(n) ;

331 dual v a r i a b l e s t ; %thetas , de l ta s , gammas

332 minimize sum(y) ;

333 sub j e c t to

334 t : A∗w+I ∗y==b ;

335 y>=0;

336 w>=0;

337 cvx end

338

339 N=10;

340

341 cvx beg in

342 c v x s o l v e r gurobi ;

343 i n t e g e r v a r i a b l e s x (6) s (6) k11 K121 K122 K123 K124 K125

K126 K221 K222 K223 K224 K225 K226 K111 K112 K113 K114

K115 K116 k21 K211 K212 K213 K214 K215 K216 k12 k22 ;

%s , x − s ta te−ac t i on

344 binary v a r i a b l e s b01 b02 b11 b12 b13 b14 b15 b16 b21 b22

b23 b24 b25 b26 ;

345 maximize ((1−0.8)∗ t (1)+t (2) ∗(s (1) −0.8∗1/12)+t (3) ∗(s (2)

−0.8∗1/12)+t (4) ∗(s (1)+s (3) −0.8∗(1\6) ∗(s (1)−x (1))

+0.8∗(1/12))+t (5) ∗(s (2)+s (4) −0.8∗(1/12+(1/6) ∗(s (2)−x

(2)−x (3))))+t (6) ∗(s (5) −0.8∗1/6)+t (7) ∗(s (6) −0.8∗1/6)+t

52

(8) ∗(k11−0.8∗(K111/36+K112/36+K113/36+K114/36+K115/36+

K116/36))+t (9) ∗(k21−0.8∗(K211/36+K212/36+K213/36+K214

/36+K215/36+K216/36))) ;

346

347 sub j e c t to

348 x (1)<=s (1) ;

349 x (2)+x (3)<=s (2) ;

350 x (4)<=s (3) ;

351 x (5)+x (6)<=s (4) ;

352 x (1)+x (2)+x (4)+x (5)<=s (5) ;

353 x (3)+x (6)<=s (6) ;

354 x>=0;

355 s>=0;

356 k11+k12−N==s (5)−s (1)−s (3) ;

357 k21+k22−N==s (6)−s (2)−s (4) ;

358 k11<=N∗b01 ;

359 k21<=N∗b02 ;

360 k12>=N∗b01 ;

361 k22>=N∗b02 ;

362 k12<=N;

363 k22<=N;

364 k11>=0;

365 k12>=0;

366 k21>=0;

367 k22>=0;

368

369 K111+K121−N==s (1)−x (1) ;

53

370 K112+K122−N==1+s (1)−x (1) ;

371 K113+K123−N==2+s (1)−x (1) ;

372 K114+K124−N==s (1)−x (1)−1;

373 K115+K125−N==s (1)−x (1) ;

374 K116+K126−N==1+s (1)−x (1) ;

375

376 K211+K221−N==s (2)−x (2)−x (3) ;

377 K212+K222−N==1+s (2)−x (2)−x (3) ;

378 K213+K223−N==2+s (2)−x (2)−x (3) ;

379 K214+K224−N==s (2)−x (2)−x (3)−1;

380 K215+K225−N==s (2)−x (2)−x (3) ;

381 K216+K226−N==1+s (2)−x (2)−x (3) ;

382

383 K111<=N∗b11 ;

384 K112<=N∗b12 ;

385 K113<=N∗b13 ;

386 K114<=N∗b14 ;

387 K115<=N∗b15 ;

388 K116<=N∗b16 ;

389

390 K211<=N∗b21 ;

391 K212<=N∗b22 ;

392 K213<=N∗b23 ;

393 K214<=N∗b24 ;

394 K215<=N∗b25 ;

395 K216<=N∗b26 ;

396

54

397 K121>=N∗b11 ;

398 K122>=N∗b12 ;

399 K123>=N∗b13 ;

400 K124>=N∗b14 ;

401 K125>=N∗b15 ;

402 K126>=N∗b16 ;

403

404 K221>=N∗b21 ;

405 K222>=N∗b22 ;

406 K223>=N∗b23 ;

407 K224>=N∗b24 ;

408 K225>=N∗b25 ;

409 K226>=N∗b26 ;

410

411 K121<=N;

412 K122<=N;

413 K123<=N;

414 K124<=N;

415 K125<=N;

416 K126<=N;

417

418 K221<=N;

419 K222<=N;

420 K223<=N;

421 K224<=N;

422 K225<=N;

423 K226<=N;

55

424

425 K111>=0;

426 K112>=0;

427 K113>=0;

428 K114>=0;

429 K115>=0;

430 K116>=0;

431

432 K211>=0;

433 K212>=0;

434 K213>=0;

435 K214>=0;

436 K215>=0;

437 K216>=0;

438

439 K121>=0;

440 K122>=0;

441 K123>=0;

442 K124>=0;

443 K125>=0;

444 K126>=0;

445

446 K221>=0;

447 K222>=0;

448 K223>=0;

449 K224>=0;

450 K225>=0;

56

451 K226>=0;

452 0<=s (5)<=2;

453 0<=s (6)<=2;

454 0<=s (1)<=1;

455 0<=s (2)<=1;

456 0<=s (3)<=1;

457 0<=s (4)<=1;

458

459 0<=x (1)<=1;

460 0<=x (2)<=1;

461 0<=x (3)<=1;

462 0<=x (4)<=1;

463 0<=x (5)<=1;

464 0<=x (6)<=1;

465 cvx end

466 a c t i o n s =[a c t i o n s ; s] ;

467 O1=s (1) −0.8∗(1/36) ;

468 O2=s (2) −0.8∗(1/36) ;

469 O3=s (1)+s (3) −0.8∗((1/36) ∗(s (3)−x (4)) +(1/36)∗(1+ s (3)−x (4))) ;

470 O4=s (2)+s (4) −0.8∗((1/36) ∗(s (4)−x (5)−x (6)) +(1/36)∗(1+ s (4)−x (5)−x (6)

)) ;

471 D1=s (5) −0.8∗1/12;

472 D2=s (6) −0.8∗1/12;

473

474 g=[s ’ x ’] ;

475 B=[B; g] ;

476

57

477 e1=s (5)−s (1)−s (3) ;

478 i f e1<0

479 e1 =0;

480 end

481 e2=s (6)−s (2)−s (4) ;

482 i f e2<0

483 e2 =0;

484 end

485 e11=0−(s (1)−x (1)) ;

486 i f e11<0

487 e11 =0;

488 end

489 e12=1−(s (1)−x (1)) ;

490 i f e12<0

491 e12 =0;

492 end

493 e13=2−(s (1)−x (1)) ;

494 i f e13<0

495 e13 =0;

496 end

497 e14=0−(1+s (1)−x (1)) ;

498 i f e14<0

499 e14 =0;

500 end

501 e15=1−(1+s (1)−x (1)) ;

502 i f e15<0

503 e15 =0;

58

504 end

505 e16=2−(1+s (1)−x (1)) ;

506 i f e16<0

507 e16 =0;

508 end

509

510 e21=0−(s (2)−x (2)−x (3)) ;

511 i f e21<0

512 e21 =0;

513 end

514 e22=1−(s (2)−x (2)−x (3)) ;

515 i f e22<0

516 e22 =0;

517 end

518 e23=2−(s (2)−x (2)−x (3)) ;

519 i f e23<0

520 e23 =0;

521 end

522 e24=0−(1+s (2)−x (2)−x (3)) ;

523 i f e24<0

524 e24 =0;

525 end

526 e25=1−(1+s (2)−x (2)−x (3)) ;

527 i f e25<0

528 e25 =0;

529 end

530 e26=2−(1+s (2)−x (2)−x (3)) ;

59

531 i f e26<0

532 e26 =0;

533 end

534 E1=e1 +0.8∗(e11∗1/36+e12∗1/36+e13∗1/36+e14∗1/36+e15∗1/36+e16 ∗1/36) ;

535 E2=e2 +0.8∗(e21∗1/36+e22∗1/36+e23∗1/36+e24∗1/36+e25∗1/36+e26 ∗1/36) ;

536

537 a = [0 . 2 ;O1 ;O2 ;O3 ;O4 ; D1 ; D2 ; E1 ; E2] ;

538 A=[A, a] ;

539 n=n+1;

540 %Y=y (1)+y (2)+y (3)+y (4)+y (5)+y (6)+y (7)+y (8)+y (9) ;

541 end

542 %B = B(2 : end , :) ;

543

544 f o r i =1:13

545 co s t (i)=c ∗(B(i , 7)+B(i , 8)+B(i , 9) +2∗B(i , 7) +2∗B(i , 7) +2∗B(i , 7))+l ∗(B(

i , 5)−B(i , 7)−B(i , 8)−B(i , 1 0)−B(i , 1 1)+B(i , 6)−B(i , 9)−B(i , 1 2)) ;

546 end

547 n=13;

548 j =2;

549 Opt=[0 1 0 0] ;

550 cr =1;

551 whi le cr >0.0005

552 cvx beg in

553 c v x s o l v e r gurobi ;

554 v a r i a b l e s w(n) ;

555 dual v a r i a b l e s t ; %thetas , de l ta s , gammas

556 minimize sum(co s t ∗w) ;

60

557 sub j e c t to

558 t : A∗w==b ;

559 w>=0;

560 cvx end

561

562 cvx beg in

563 c v x s o l v e r gurobi ;

564 i n t e g e r v a r i a b l e s x (6) s (6) k11 K121 K122 K123 K124 K125

K126 K221 K222 K223 K224 K225 K226 K111 K112 K113 K114

K115 K116 k21 K211 K212 K213 K214 K215 K216 k12 k22 ;

%s , x − s ta te−ac t i on

565 binary v a r i a b l e s b01 b02 b11 b12 b13 b14 b15 b16 b21 b22

b23 b24 b25 b26 ;

566 maximize ((1−0.8)∗ t (1)+t (2) ∗(s (1) −0.8∗1/12)+t (3) ∗(s (2)

−0.8∗1/12)+t (4) ∗(s (1)+s (3) −0.8∗(1\6) ∗(s (1)−x (1))

+0.8∗(1/12))+t (5) ∗(s (2)+s (4) −0.8∗(1/12+(1/6) ∗(s (2)−x

(2)−x (3))))+t (6) ∗(s (5) −0.8∗1/6)+t (7) ∗(s (6) −0.8∗1/6)+t

(8) ∗(k11−0.8∗(K111/36+K112/36+K113/36+K114/36+K115/36+

K116/36))+t (9) ∗(k21−0.8∗(K211/36+K212/36+K213/36+K214

/36+K215/36+K216/36))+(c ∗(x (1)+x (2)+x (3)+2∗x (4)+2∗x (5)

+2∗x (6))+l ∗(s (5)−x (1)−x (2)−x (4)−x (5)+s (6)−x (3)−x (6))))

;

567

568 sub j e c t to

569 x (1)<=s (1) ;

570 x (2)+x (3)<=s (2) ;

571 x (4)<=s (3) ;

61

572 x (5)+x (6)<=s (4) ;

573 x (1)+x (2)+x (4)+x (5)<=s (5) ;

574 x (3)+x (6)<=s (6) ;

575 x>=0;

576 s>=0;

577 k11+k12−N==s (5)−s (1)−s (3) ;

578 k21+k22−N==s (6)−s (2)−s (4) ;

579 k11<=N∗b01 ;

580 k21<=N∗b02 ;

581 k12>=N∗b01 ;

582 k22>=N∗b02 ;

583 k12<=N;

584 k22<=N;

585 k11>=0;

586 k12>=0;

587 k21>=0;

588 k22>=0;

589

590 K111+K121−N==s (1)−x (1) ;

591 K112+K122−N==1+s (1)−x (1) ;

592 K113+K123−N==2+s (1)−x (1) ;

593 K114+K124−N==s (1)−x (1)−1;

594 K115+K125−N==s (1)−x (1) ;

595 K116+K126−N==1+s (1)−x (1) ;

596

597 K211+K221−N==s (2)−x (2)−x (3) ;

598 K212+K222−N==1+s (2)−x (2)−x (3) ;

62

599 K213+K223−N==2+s (2)−x (2)−x (3) ;

600 K214+K224−N==s (2)−x (2)−x (3)−1;

601 K215+K225−N==s (2)−x (2)−x (3) ;

602 K216+K226−N==1+s (2)−x (2)−x (3) ;

603

604 K111<=N∗b11 ;

605 K112<=N∗b12 ;

606 K113<=N∗b13 ;

607 K114<=N∗b14 ;

608 K115<=N∗b15 ;

609 K116<=N∗b16 ;

610

611 K211<=N∗b21 ;

612 K212<=N∗b22 ;

613 K213<=N∗b23 ;

614 K214<=N∗b24 ;

615 K215<=N∗b25 ;

616 K216<=N∗b26 ;

617

618 K121>=N∗b11 ;

619 K122>=N∗b12 ;

620 K123>=N∗b13 ;

621 K124>=N∗b14 ;

622 K125>=N∗b15 ;

623 K126>=N∗b16 ;

624

625 K221>=N∗b21 ;

63

626 K222>=N∗b22 ;

627 K223>=N∗b23 ;

628 K224>=N∗b24 ;

629 K225>=N∗b25 ;

630 K226>=N∗b26 ;

631

632 K121<=N;

633 K122<=N;

634 K123<=N;

635 K124<=N;

636 K125<=N;

637 K126<=N;

638

639 K221<=N;

640 K222<=N;

641 K223<=N;

642 K224<=N;

643 K225<=N;

644 K226<=N;

645

646 K111>=0;

647 K112>=0;

648 K113>=0;

649 K114>=0;

650 K115>=0;

651 K116>=0;

652

64

653 K211>=0;

654 K212>=0;

655 K213>=0;

656 K214>=0;

657 K215>=0;

658 K216>=0;

659

660 K121>=0;

661 K122>=0;

662 K123>=0;

663 K124>=0;

664 K125>=0;

665 K126>=0;

666

667 K221>=0;

668 K222>=0;

669 K223>=0;

670 K224>=0;

671 K225>=0;

672 K226>=0;

673 0<=s (5)<=2;

674 0<=s (6)<=2;

675 0<=s (1)<=1;

676 0<=s (2)<=1;

677 0<=s (3)<=1;

678 0<=s (4)<=1;

679

65

680 0<=x (1)<=1;

681 0<=x (2)<=1;

682 0<=x (3)<=1;

683 0<=x (4)<=1;

684 0<=x (5)<=1;

685 0<=x (6)<=1;

686 cvx end

687 a c t i o n s =[a c t i o n s ; s] ;

688 O1=s (1) −0.8∗(1/36) ;

689 O2=s (2) −0.8∗(1/36) ;

690 O3=s (1)+s (3) −0.8∗((1/36) ∗(s (3)−x (4)) +(1/36)∗(1+ s (3)−x (4))) ;

691 O4=s (2)+s (4) −0.8∗((1/36) ∗(s (4)−x (5)−x (6)) +(1/36)∗(1+ s (4)−x (5)−x (6)

)) ;

692 D1=s (5) −0.8∗1/12;

693 D2=s (6) −0.8∗1/12;

694

695 g=[s ’ x ’] ;

696 B=[B; g] ;

697 i=i +1;

698 co s t (i)=c ∗(B(i , 7)+B(i , 8)+B(i , 9) +2∗B(i , 7) +2∗B(i , 7) +2∗B(i , 7))+l ∗(B(

i , 5)−B(i , 7)−B(i , 8)−B(i , 1 0)−B(i , 1 1)+B(i , 6)−B(i , 9)−B(i , 1 2)) ;

699

700 e1=s (5)−s (1)−s (3) ;

701 i f e1<0

702 e1 =0;

703 end

704 e2=s (6)−s (2)−s (4) ;

66

705 i f e2<0

706 e2 =0;

707 end

708 e11=0−(s (1)−x (1)) ;

709 i f e11<0

710 e11 =0;

711 end

712 e12=1−(s (1)−x (1)) ;

713 i f e12<0

714 e12 =0;

715 end

716 e13=2−(s (1)−x (1)) ;

717 i f e13<0

718 e13 =0;

719 end

720 e14=0−(1+s (1)−x (1)) ;

721 i f e14<0

722 e14 =0;

723 end

724 e15=1−(1+s (1)−x (1)) ;

725 i f e15<0

726 e15 =0;

727 end

728 e16=2−(1+s (1)−x (1)) ;

729 i f e16<0

730 e16 =0;

731 end

67

732

733 e21=0−(s (2)−x (2)−x (3)) ;

734 i f e21<0

735 e21 =0;

736 end

737 e22=1−(s (2)−x (2)−x (3)) ;

738 i f e22<0

739 e22 =0;

740 end

741 e23=2−(s (2)−x (2)−x (3)) ;

742 i f e23<0

743 e23 =0;

744 end

745 e24=0−(1+s (2)−x (2)−x (3)) ;

746 i f e24<0

747 e24 =0;

748 end

749 e25=1−(1+s (2)−x (2)−x (3)) ;

750 i f e25<0

751 e25 =0;

752 end

753 e26=2−(1+s (2)−x (2)−x (3)) ;

754 i f e26<0

755 e26 =0;

756 end

757 E1=e1 +0.8∗(e11∗1/36+e12∗1/36+e13∗1/36+e14∗1/36+e15∗1/36+e16 ∗1/36) ;

758 E2=e2 +0.8∗(e21∗1/36+e22∗1/36+e23∗1/36+e24∗1/36+e25∗1/36+e26 ∗1/36) ;

68

759

760 a = [0 . 2 ;O1 ;O2 ;O3 ;O4 ; D1 ; D2 ; E1 ; E2] ;

761 A=[A, a] ;

762 n=n+1;

763 j=j +1;

764 Opt(j)=cvx optva l ;

765 cr=abs (Opt(j)−Opt(j−1)) ;

766 end

69

