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Abstract A basic risk hypothesis, expressed as a risk equation, for system throughput capacity
(I), and governing all non-growth, non-evolving, agent-directed systems, is proposed and derived.
The equation relates throughput capacity, resources and risk relative to the system environment,
for efficient environments. The risk equation may be combined with, and thus enhances, a
resource-sharing equation relating throughput capacity, resources and the time required to execute
complex coordinated sharing procedures, an equation derived in an earlier paper.

The basic risk equationshows how expected | increases [decreases] linearly with
positive [negative] risk of loss of | in efficient environments. The conventiostahdard
deviation risk measure with respect to the me&om financial systems, may be used. A
proposed, new, usually equivalent measure, caltedmean-expected loss risk measure with
respect to the hazard-free cads shown to be more appropriate for systems in general. The
concept of arefficient system environmeistalso proposed.

All quantities used in the equation are precisely defined and their units specified. The
equation reduces to a numerical expression, and can be subjected to experimental test. The
equation clarifies and quantifies basic principles, enabling designers and operators of systems to
reason correctly about system risk.
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Introduction

In recent years, complex systems are increasingly having to cope with risk in their operating
environment. Some systems are exposed to risk whose source is intrinsic, for example risk of
deadlock [9, 11, 12], or risk of inter-process interference [13, 18], in computer operating systems
[21]. Other systems deal with risk whose source is external to the system, such as an on-board
aircraft database system using a terrian database to manage the risk of colliding with a mountain,
or merely the risk of loss of a database's integrity [6].

Such systems are all human-agent directed systems. Unfortunately, the responsible agents
may not always be able to reason clearly about the relationship between system throughput
capacity, resources, resource sharing procedures [2,3], environment risk, and risk-reducing
resources and procedures [2]. As a result, serious mistakes in system design and system operation
can occur, and particularly with systems whose throughput is human, not infrequently throughput
loss means loss of human life.

In this paper we present a hypothesis, expressed as a risk equation, that relates system
throughput capacity to resources and risk, and which governs all non-growth, non-evolving,
agent-directed systems. Agent-directed systems are systems that are designed, constructed and
operated by human agents; thus we exclude naturally occurring systems such as meteorological
systems and living organisms. Non-growth, non-evolving systems are systems where the output is
not fed back to alter, usually grow, the resources of the system; we therefore exclude, for
example, all living organisms, whose output is used to both grow and reproduce. This still leaves
a very large class of systems to which the proposed equation applies. The equation applies as well
to a chemical plant producing a polymer, as it does to a transportation system moving people or



freight from input locations to output locations, or to a computer system converting input data to
useful information, or retrieving data from a file or database [5]. The research leading to the risk
hypothesis was inspired by phenomena in complex computer systems, such as operating systems
[21] and database systems [5], and it is expected that it is in the computer systems arena that the
equations will throw the most light. Nevertheless the risk equation expresses a unity of principle

in a great diversity of system phenomena.

Although the risk equation can be used for precise numerical analysis, it is important to
grasp that its main virtue is that it clarifies and quantifies basic system principles. It thus enables
clarity of reasoning about specific costs and benefits of different system approaches and different
methods of system operation, and so enables avoidance of serious error.

In this paper every attempt has been made to ensure that concepts are clearly defined, and
that symbols appearing in the risk equation denote quantities that are measurable and expressible
in clearly defined units.

1.0 Overview of the risk hypothesis and risk equation

A system is considered to be any entity that converts inputs to outputs, and which may be
composed of subsystems, connected either in series or in parallel, each of which is also a system.
We also consider a system to be an entity that functions under the direction of one or more
agents, usually human. An agent employs essential resources R, often portable, in an environment
E, enabling the system to convert a set of inputs N, informational or material or both, to a set of
outputs U per unit time, so that U is the system throughput. A system environment will be defined
later.

If the maximum value for U is I, then | is said to be the throughput capacity of the
system, measured as the units of output per unit time when the system is operating at maximum
capacity. In general, if the system is operating at a fraction f of throughput capacity I, then the
throughput is U = fl.

In some cases there will be more than one type of throughput product. In such a case, we
can declare throughput capacity of one of them to be the main throughput product capacity I, in
units of product per time period. We can then treat each other product throughput capacity as a
byproduct capacity that is a function of I, in most cases a linear function. Accordingly, in this
paper, we deal only with I, considered to be either the only or the main throughput product
capacity.

1.1 Summary of equations

A reference summary for the equation relating throughput capacity | to resources and risk
is given below. First, however there is a summary of another system equation, the resource
sharing equation, to be published elsewhere [2, 3] for system throughput capacity I, when
subsystem threads share a common resource of the system [1, 19]. The risk equation is built on
this resource equation, but only on that elementary subset of the resource equation (I = KR) for
the case when there is no resource sharing. The resource-sharing equation can be used to evaluate
system performance in a wide variety of contexts [14].

1. The resource sharing equation:

| =KR(1-TgT)[1+ sk(Tg)] aA)
| =KR (1Aa) no resource sharing



Independent variables under the control of the agent are R ani€li$ a constant and R measures

resources available to the system, alterable only in valid units (basic harmonic units) of the type
comprising R. T is a constant and measures the time for which | is compwédsTunits of time

per basic resource unit, and measures the execution time, and thus resource-sharing complexity,
of anormally complex, coordinated, resource-sharing procedaresharing resources within R.
F(Tg) is a growth function that has value 0 wheg TS zero and increases at an decreasing rate

with increasing E to saturate at 1.0. The constant s is #ailable sharing-enhancement

potential where SR is the effective increase in R due to execution of a coordinated resource
sharing procedure sufficiently comprehensive to saturaf€gr at 1.0. Tg/T is a measure of the

resource capacity diverted from normal operations to carrying out the resource sharing procedure,
and is thus a measure of the negative impact of the sharing procedure on throughput capacity |.
When there is no resource sharing,ahd R(Tg) are zero, and the expression reduces to | = KR.

There is a value for dat which | is maximized, found by solving dI/dF O.

2. The basic risk equation

I = R[K + (bpbr )r(E)] = RK + Rippr(E) - Rr(E) (1Ba) /* for positive risk */
= R[K + bpr(E)]
I =R[K + (bpnp- L)r(E)] = RK + Rbhpr(E) - Rr(E) (1Bb) /*for negative risk */

= RIK - bnr(E)]

Independent variables under the control of the agent are R and r(E). | is now a mean or expected
throughput capacity. r(E) is risk per unit R; the risk r(E) is risk of loss of throughput capacity, and

is a function of the environment E relative to the system; the risk can be varied for constant R, by
varying the environment E relative to the systerppb bp, bnp, and k, are constants. Positive

risk is risk it can pay to take on average; negative risk is risk it can not pay to take on average.
Allowed risk measures are statistical measures, for example standard deviation (SD) risk with
respect to the mean I, or a new proposed measure, more suitable for systems in general, called
mean expected loss (MEL) risk with respect to the hazard-free I. Positive and negative risk, using
statistical risk measures, cannot occur together. The environments allowable to the system must
be efficient environmentsas explained later, otherwisg) bp, bnb, and k are not constants.
Rbphr(E) is the gross extra throughput capacity generated by exposure to the risk if the hazard
risked does not occur; Rr(E) is the average loss in throughput capacity due to the hazard actually
occuring. The difference is the net extra throughput capacity added (if positive risk), on average,
by exposure to the risk.

1.2 Axiomatic foundation

In deriving the risk equation we employ an axiomatic proposition: Where there is no
coordinated sharing of resources by a system among different threads, then for valid changes to R

= KR (1Aa)

must hold true. This equation is implicit in the resource sharing equation (1A) above. Note that
we cannot prove this assertion from any more fundamental proposition. It seems to be implicit in
the nature of things and so we take it as axiomatic. Space does not permit a discussion of this
proposition here; a thorough discussion examining its implications more closely can be found in
[2, 3].



2.0 Risk and Resources

Risk of loss of anything of value is normally run to secure some gain in a value, and is
therefore of primary interest to humans. Consequently, the concept of risk has been thoroughly
studied in the financial industry. A major result is that we have a sound statistical measure of
risk, at least in a financial context [7, 8], that ke standard deviation risk measure with respect
to the meanprimarily due to Markowitz [17]. Risk is, however, known to be a slippery concept,
and interested readers unfamiliar with the statistical concept of risk may need to become familiar
with some of the literature on the subject. When systems in general are considered, we find that
a new measure, somewhat different from the conventional standard deviation risk measure used
in finance, but still often equivalent to it, is very useful, as will be developed shortly,

One key to understanding risk is grasping the distinction between exposuhe to
certaintyof future loss and exposure to meréhe possibilityof future loss. In both cases there is
exposure to future loss. Bainly exposure to the possibility of future loss is a source of tisk
some cases there is exposure to future loss consisting of both exposure to the certainty of future
loss and to the possibility of an additional future loss. For example, if exposure to a future loss of
20 where a future loss of 16 is certain and a future loss of 4 is additionally possible, there is only
risk of loss of 4. Thus there has to be a variability aspect to risk, since risk has to do with only a
possibility of future loss: in some future periods the loss will occur fully, in others partly and in
others not at all. Failure to grasp these distinctions has caused many fruitless arguments and
debates about correct measures of risk

In this paper we are primarily concerned with risk of loss of system throughput capacity
I, the system being considered to be financial only if throughput capacity | is in actual currency
entities, such as dollars, and not in other physical units valued in currency units. But first we
need to consider risk measures, both the conventional standard deviation measure from financial
systems, and a new proposed mean-expected-loss measure for systems in general.

2.1 Risk measures: SD-risk and MEL-risk

In general, risk of loss of throughput capacity has two components, namely the
probability of a hazard occurring and the size of the loss in throughput, with respect to some
standard level, should the hazard occur. However, in a system situation, where there is exposure
to possible loss with respect to some standard level of throughput capacity, there will often be
exposure to possible gains in addition, depending on the standard level used. An accurate risk
measure must therefore combine these different aspects of risk, but must not include any measure
of certain future loss.

Suppose the system is exposed to unpredictable losses and gains in throughput capacity,
that the statistics of these fluctuations are constant (or stationary [4], in statistical terminology),
and that over a long enough period of time to be representative of these statistics, the mean, and
thus expected, throughput capacity jig, land in n fully representative time periods the actual
capacity values are:

Im-L, Im-La ... Im-Li, Im+* G, Im+ Gy, ...orim+ Gj
where L, L, ... are deviations downward (losses) from the averggeand G, G,, ... are
deviations upward (gains) frongy with n =i +j, so that
(L2 +L,+ L|) = (Gl +G, + Ci)
The same throughput capacity deviations can then be expected to occur in the future in
unpredictable order, all equally likely.

[Note that the above quantities should be interpreted as follows: Suppose n =10, i =6

and j = 4, and the losses L Lj are 30, 20, 20 10, 10, 10, and the gainls..(I;j are 40, 20, 20,



and 20. Then imagine an urn containing 10 balls: 6 red balls each with one of the losses marked,
and 4 green balls each with one of the gains marked, and thus the distribution of future (and past)
losses and gains; to simulate what will happen in the next time period, select a ball randomly
from the urn, the number on the ball giving the amount; to simulate for the subsequent time
period the ball removed must first be replaced, i.e. we must use selection with replacement. The
sum of the numbers on green balls divided by 10 is the average or expected gain, equal to the red
ball sum divided by 10, the expected or average loss. Nevertheless, suppose the period involved
was 1 week; then in some weeks there would be a gain, in others a loss, and in few weeks a
severe loss or a large gain. Thus the observed result is merely a sequence of unpredictable losses
and gains per time period, with respect to the mean, that is, | will fluctuate from one period to the
next. In terms of probabilities, the risk is due to probabilities 0.1. 0.2, 0.3 of losses 30, 20 and 10
respectively, and probabilities 0.1, 0.3 of gains 40 and 20, all with repeat to the mean.]

The expected or averagg lactually rarely occurs if at all. In reality all we have is the

unpredictable sequence of lossesg (r L,, ...) and gains (g or G,, ...) with respect to an average
or expected throughput capacity lin a given time unit, and it is such losses and gains with

respect to expected throughpgi that must be used in the measure of risk of loss of throughput.

For a meaningful measure of risk there are now two choices, the traditional standard
deviation measure, and a new measure that in many cases is more suitable for systems in general.

Choice 1.Take the standard deviation of the deviations, (L, ... G, G, ...) from the mean
throughput capacitynh, asa standard deviation measure of possible loss with respect to (or down

from) the meang, to give theStandard Deviation (SD) riskneasure.

If we use twice the standard deviation we have an even stronger risk measuge, the
Standard Deviations (2-SDijsk measure.

Interpretation: A SD-risk of s means that in the next time unit, there is a 50% chance or
possibility of a loss down from the expecteg,land a 34.1% chance of a loss between 0 and s

down from the expectedy], and a 15.9% chance of a loss > s. In addition there a 47.7% chance
of a loss between 0 and 2s with respect to the megn This implies, that there is a 13.6%

chance of a loss between s and 2s, and a 2.3% chance of a loss >2s, both losses with reference to
the mean throughput capacityy! In specifying an SD riskwe must both specify the standard

deviation of the variations in throughput and specify with respect to what standard level of
throughput A 2-SD-risk of 2s means that in the next time unit, there is a 50% chance of a loss
with respect to the expectegh) and 47.7% chance of a loss between 0 and 2s and a 2.3% chance

of aloss > 2s.

The percentages used are from a normal distribution function table, and assume that
losses and gains in each time unit are distributed normally. The numbers needed are different if
the distribution departs from normal.

[The SD-risk measure is the one widely used in finance, particularly for stock and bond
portfolio management, for which it is both correct and adequate [8, 15, 17], since stock and bond
prices follow close to a random walk, which gives rise to a near-normal distribution of price
changes [4]. Notice that where there is exposure to future loss, where the future loss includes a
certain loss and a possible loss, the SD-risk measure selects out only the possible loss, that is, the
true risk. For example, suppose a system where ideally | = 400 if there were no future loss
exposure, but where actually the system has exposure to a future loss in | whose mean is 100 and
whose standard deviation is 14, where the least loss is always greater than 70. That means a
certain loss of 70 plus a loss whose mean is 30 that can be as small as 0 and as large as about 60,
with a standard deviation of 14. That means a certain loss of 70 plus a standard deviation of 14



about the mean of the loss variations of 30, that is, a certain loss of 70 -- plus an SD-risk of 14
with respect to a mean of 300.]

To deal with the problems and possibilities in arbitrary systems, where the distribution of
gains and losses is not anything like normal, an additional and complementary risk measure is
very useful. This is the MEL-risk measure defined below. [The reader who is expert in financial
risk analysis using the SD-risk measure may be want to immediately dismiss this additional risk
measure as nothing but an intellectual crutch; the author asks such readers to suspend judgement
until after studying the measure. It is particularly useful where the variations in throughput depart
significantly from the normal distribution, and makes practical sense, even in a financial context.]
The author therefore proposes:

Choice 2 Suppose that for a system exposed to risk, there is at least one hazard-free time period,
in which, by chance, the hazard risked does not occur, and where the gain with respect to the
mean throughput capacitynlis Gp in this hazard free time period, and where a gain exceeding
Gp is thus not possible (but a gain undeg IS very possible). Thus, in the best case scenario, the
total hazard-free throughput capacity jg + Gp. Then all other throughput capacitigs F L4,
Im—Lz ..., Im* Gy, Im+ G, ..., each in a time period where the hazard does occur in varying
degrees of intensity, may be considered as exhibiting losses, or loss deviatiphd,;G...Gp —
G; ... down from, or with respect to, the value of | in the hazard-free time period. We may use
the mean of these loss deviations (down) from | for the hazard-free time period as a measure of
the risk, that is, a measure of expected losses in the future with respect to the throughput capacity
for a hazard-free time period, that is, tMean Expected Loss (MEL) with respect to, or down
from, the throughput capacity in any hazard-free time peradMEL-risk.

Note that in specifying a MEL-riskie must both specify the mean deviation, and specify
with respect to what level.

Interpretation. An MEL-risk of L means that the average loss, with respect to the (best) value for
I in a time period where the hazard does not occur, is exactly L. However, there are two extreme
possibilities with regard to what is to be considered as | for a hazard-free time period.

(a) Natural, or explicit, hazard-free cashn this case, we can find a naturally-occurring, best-
case, hazard-free throughput capacpyy+ Gp that cannot be exceeded for the value of R.
This hazard free throughput capacity will thus occur in a time period when all goes well and
no hazard occurs. Such a time period is certain to occur sometime. Thus, over a long period
of time, there will be a distribution of n gains and losses about the mean for the time period,;
and in at least one of the n time periods there will occur a gain deviatip(w@h respect to

the mean) up to the hazard-free case. However, no gain deviation excegglindl Gver

occur -- the concept of a hazard free throughput capacity level implies (1) that no variation in
throughput capacity can occur leading to a throughput capacity above the hazard-free level
level, and (2) that the only variations in throughput capacity that can occur must lead to a
throughput capacity at or below that hazard-free level. This ensurealtipaissible variation

is included in, and certain loss is excluded from, the MEL-risk measure

(b) Artificial or implicit hazard-free caseln this case, the values in each time period
fluctuate about the meannl and distribution of the per-period deviations from the mean
follows some reasonably bell-shaped distribution, where large but usually improbable gain
deviations from meanph do sometimes occur, and where no explicit hazard-free throughput
capacity can be determined. In such a case, we may defiagtifinial hazard-free casdor
throughput capacityph + Gp, by defining an imaginary hazard-free time period where the



gain & is 2 standard deviations up from the mean. For this case, we then define the MEL-
risk as the mean expected loss with respectyorl Gp for this imaginary hazard-free time

period, with the throughput capacity in each time period being considered as exhibiting a loss
with respect to the hazard-fregm i+ Gp, except for the rare time period with a throughput

capacity value lying beyond 2 standard deviations above the mean, which is taken as a
negative loss (a gain) with respect to the hazard-free |.

In both cases MEL-risk can therefore be quite simply viewed as the hazard-free deviation, either
natural or artificial, up from the mean, but also equal to the average loss to be expected in the
future with respect to, or down from, throughput capacity | for the hazard-free time period (real or
artificial).

2.2 Comparison of SD-risk and MEL-risk measures

When there is no natural hazard-free case, and the deviations from the mean follow a bell
shaped distribution, a common situation in finance and many physical systems, the SD-risk
measure and the MEL-risk measure are equivalent, since MEL-risk is exactly twice SD-risk or
equal to 2-SD-risk, although they each are with respect to different standard levels.

If there is an actual hazard-free throughput capacity, with only deviations down from the
hazard-free |, the distribution of deviations about the mean will tend to be skewed on the left (or
truncated on the right), since upward fluctuations are blocked by the hazard-free | that cannot be
exceeded, and yet very large, if rare, downward deviations from the mean of | can occur. In such
a situation there seems to be no simple equivalence between the SD and MEL-risk measures. But
the MEL-risk measure has an obvious advantage here, since it is precisely equal to the average
loss that can be expected with respect to the hazard-free or best-case situation, and since the SD-
risk measure would now be applied to a skewed distribution, something for which it is really not
designed, and means very little. This situation can be expected to occur frequently in systems in
general, but rarely in financial systems involving stocks and bonds (but it does occur in insurance
related systems); hence the need for the MEL-risk measure.

Notice that where there is exposure to future loss, where the future loss includes a certain
loss and a possible loss, then the MEL-risk measure also selects out only the possible loss, that is,
the true risk. Suppose again a system with ideally | = 400 if no future loss exposure, but which is
actually exposed to a future loss in | whose mean is 100 and whose standard deviation is 14
where the least loss is always greater than about 70. Once more this means a certain loss of 70,
plus a loss whose mean is 30 that can be as small as about 0 and as large as about 60, with a
standard deviation of 14. Applying the MEL-risk measure, we have an artificial hazard-free
throughput capacity 2 standard deviations up from the mean, that is at | = 328. Thus there is a
certain loss of 70, or an almost certain loss of 72, plus a mean loss of 28, the MEL-risk, down
from the hazard-free level of 328, giving a mean throughput capagijtefl 328 — 28 = 300.

Occasionally a fluctuation up from the mean of 300 may reach | = 330, just slightly above the
supposedly (but artificial) hazard-free best case of 328, but this may be simply considered as a
“loss” of —2.

If, on the other hand, there is only exposure to possible loss, and never to certain loss,
there is no need for an artificial hazard-free throughput capacity. In the example above, if for | =
400 with no loss exposure, there is exposure only to a possible loss whose mean is 30, this means
the average loss down from the true hazard free | of 400 is 30, the MEL-risk, for a mean |
370.

The true advantage of the MEL-risk measure is that it continually forces the user to think
in terms of the distinction between certain loss and possible loss (so arguablgnérely an
intellectual crutch), whereas the SD-risk does not. As a result, although SD-risk is absolutely



correct as a risk measure whre there is a normal (or near-normal distribution), in the author’s
opinion it can lead to both confusion in thinking about risk and to obscuring some of the
fundamental attributes of risk with aspects of systems in general.

2.3 System environments, non-limiting resources and risk

As pointed out in an earlier paper, if resources R of a system can be divided,iatwdR
R, for subsystems in series, then &an be operating at full capacity and Rot at full capacity,
so that R is the non-limiting resource (for the non-limiting subsystem). {fi®non limiting then
throughput capacity | for the total system obeys | fRKfor increases in Rup to the point where
R: has started to operate at full capacity. However ,ifds0 far away from full capacity that the
normal range of changes upwards inWRIl never cause Rto operate at full capacity, then we
can neglect Rin figuring the effect of changes in system resources on throughput capacity I. In
such a casee can regard very non-limiting resourcesas part of the system environment.

Every system operates somewhere, and it is always possible to consider the whole Earth
as comprising the system. However, most of the Earth, often even the building housing, or
geographic area containing, the system, will behave as a non-limiting serial subsystem, whose
resources can consequently be neglected from the system. wausan define the system
environment as a collection resources that are non-limiting, very far from full capacity, but
necessary for operation of the systeFhus what is considered part of the system and what is part
of the environment will be somewhat arbitrary. As an example, consider a computer system
doing infrequent information retrieval from a small <1.0 Mbyte file on a 3 Gigabyte hard disk.
Because the disk is so far from being used at full capacity it would be legitimate to regard it as
part of the system environment, although most computer systems specialists would probably
include it as part of the system. As another example, if a double-track railroad is currently being
used infrequently by only a few trains each with exclusive control of the track, then the track is so
far from being used at full capacity that it would be legitimate to consider it as part of the
environment.

For a given system, risk depends on the system relative to the environment, which we
denote by r(E) in this paper. If we move the system from one environment to another, the risk
may change, or if we keep it in the same environment but alter the layout of the system without
changing each subsystem’s functionality, or if we change the subsystem functionality, risk may
also change. Thus if we have different risks j)(Bnd r(E) we may either have two different
environments Eand E, or we may have the same environment but a different environment
relative to the system. In the following discussian environment g always means a specific

environment relative to the systemlso, Equations 1Ba and 1Bb is valid only for systems
operating irefficient environmenis concept to be defined later.

3. The influence of risk on throughput capacity

We now derive the basic risk equation (1B), and show that, for a risk measure r(E) -- the
risk of a system in an efficient environment E relative to the system, the expected throughput
capacity | is given by:

I =R[K +(bpb- Dr(E)] = RK +RIpp(E) - Rr(E) (1Ba)
= R(K + bpr(E))
where the independent variables are R and r(E), and where the risk is positive, that is, it is risk it

can pay to take (on average), and where, it is crucial to realize, risk measure r(E) is a measure of
possible throughput capacity loss, per time period, per (basic harmonic resource) unit R, that is,



measured as a fraction of R, and not as a fraction of throughptihé risk r(E) is SD-risk or
MEL-risk per unit R
We also show that for negative risk:

I=R[K+ (bpnp- D)r(E)] = RK+RMp(E) - Rr(E) (1Bb)
= R(K - bnr(E))

Expression (1Ba) is a statement of the following rule: throughput capacity for a given system
resource level R increases linearly with R (for valid R changes, as specified in Equation 1A) and
alsolinearly with increases in the risk measure r(E) of distinct system environments relative to
the system, provided the risk is positive and the environments are efficient. If the risk is negative,
throughput capacity will decrease linearly with increasing r(E) (expression (1Bb)). If the
environments are not efficient, the equation’s constapts,bp, bnb, and th will no longer be

constant.
3.1 Efficient environments and linear relationship between throughput and risk

Consider now two environments; Bnd E relative to the system. Supposei& a risk-
free environment in which the system has an unvarying throughput capacity | = KR per time unit
for a system with resources R, in accordance with expression (1A) with no sharing procedure. E
is the same as;Eexcept that in Ethe system is in a positive risk environment.

Suppose gross throughput capacity ni€KR + G per time unit, in each of one (or
more) time periods in which the risk i run but where it just happens (by good luck) that the
hazard does not occur. Thus KR + G can be viewed as the hazard-free throughput capacity in the
presence of risk but where the hazard does not occur. However, when a risk is run repeatedly,
throughput capacity losses must occur over time. If the average throughput capacity loss per time
unit, due to the hazard occurring, ig, lthen the net throughput capacity from running the risk in

reality will on average be KR + G -fper time unit.
But expression KR + G - Lmust also give the expected or average throughput capacity
I, so that we can takerlas the MEL-risk with respect to the hazard-free capacity of | = KR + G.

In general there are now two possibilities for this risk: it can is& which it can pay to run
repeatedly (positive riskvhere G > g, or it can beisk it cannot pay to run repeatedly (negative

risk), where G < .
Assume now for Ethat G-Ly is positive, so that Eexposes the system to a risk it can

pay to run repeatedly. Now recall that environmentas risk free, with | = KR at full capacity

for resources R applied. It is clear that there will be an increase in throughput capacity by shifting
R from an environment Ewith no risk and throughput capacity KR, to environmentviith
average throughput capacity KR + G r, Ithat differs only in & having a risk it can pay to run

repeatedly.

But out of & and & we can construct an arbitrary number of synthetic environments,
each with risk it can pay to run repeatedly, intermediate between the zero rigslaimdEhe MEL-
risk Ly in E;. We can do this in actual practice by taking a (valid) fraction of R and applying it to

E; and the remainder of R to,B-or example, suppose such a synthetic environmemitien the
fraction is 0.5. In E, for the resources R/2 operating risk free, the throughput capacity | will be
KR/2, and for the remaining resources in risky operations, it will be (KR + @@/2Lfor a total of

KR + G/2 - Ly/2, on average. Thus indEhe MEL-risk, with resources R applied, will bg/R,

and the increased throughput capacity in excess of KR, due to running the risk, will b )3, - L
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on average. We can repeat this with any fraction, so that it is clear that for such synthetic
environments, expected throughput capacity | will increase linearly with MEL-risk.

We can even have a synthetic environmegtwhere the average throughput loss, and
thus MEL-risk, exceedsy.if we include the case where additional resources are borrowed and

applied to g; for example, if we borrow an additional R resources (at the cost KR of the risk-free
throughput from the borrowed R), and apply them tptRe throughput capacity | is now (2KR +
2(G - Ly) - KR) for the system, or KR + 2G - 2i. on average, so that the extra throughput

capacity for agent's resources R is 2(G), lon average, with the MEL-risk being glLconsistent

with throughput capacity increasing linearly with risk. Thus in general, average or expected
throughput capacity | is given by:

I=KR +nG -nlLy

where nlg is the MEL-risk, R and n are independent agent-controlled variables, and n >= 0 and
may vary with the synthetic environment chosen for the system by the agent.

Now, the above expression should be pondered over, for it is absolutely correct,
regardless of the distribution of losses over time, provided the following condition holds: There
must exist, among all the hazard-occurring loss-generating time periods, a time period where no
hazard occurs; in this loss free time period, we must have an extra throughput capacity nG. In
addition, we must have an average lossg,rder time period, averaged over all the time periods,
and measured with respect to the throughput capacity in the best-case hazard-free time period,
where throughput capacity is KR + nG.

Now suppose that for a given system, out of the set of all non-synthetic naturally
occurring environments in which the agent is free to operate the system, that is, accessible
environments, we select an environment for which (G4 the highest, and let us call that
environment theaeference environmere. We call G/Ly the risk efficiency coefficientor the
reference environment. Using that environment and the risk free environment we can now
construct any number of accessible synthetic environments for which the gross extra gain per
time period is nG , for an average loss per time periog mthere n is > 0, so that in every one
of these synthetic environments the gross extra throughput capacity per unit of average loss, or
risk efficiency coefficient, is the highest and the same as in the reference environment. Thus there
will exist a set of environments, made up of synthetic environmemdsnatural environmentsn
which the system could operate, and in each of which, for that system, the risk efficiency
coefficient is the same as that of the reference environmgniVe call this set of environments
the efficient sebased on a specificdzand call each of its members afficient environmen#n

efficient environment can thus be either natural or synthetic.
3.2 Derivation of the risk equation

From this it follows that average throughput capacity | must increase linearly with the
environment MEL-risk nk, for all efficient environments in which the system could run, and not

all merely synthetic environments, where it is positive risk (meaning nGg}. ccordingly :

I = KR +nG - nly
also holds for efficient environments. [Notice that if the agent chooses, irrationally, a range of
environments in which to operate the system, some of which are inefficient, the equation will not
hold; instead we willhave | = KR +mG - nlLwhere n/m can vary from one environment to

another.]
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Now it is clear that if we have a valid increase in R to Rf, where fis a positive real value,
for example, 2.0, it is clear that this is equivalent to adding a parallel system with resources R(f-
1). Hence throughput capacity | will increase to If, and throughput capacity for the risk free
environment will be KRf, and gross extra throughput capacity due to the presence of risk will be
nGf, and the risk will be nfk. From this consideration it is clear that we may legitimately be

concerned with gross extra throughput capacity per (basic harmonic resource) unit R, namely ng,
where g = G/R, and MEL-risk per unit R, namely mihere | = L{/R, so that we can rewrite the

above expression as:

I = KR +ngR - nkR
= R(K+ng-nt)
= R(K +ng -r(E))

if we define MEL-risk per unit R as r(E) = plSince, for positive risk, ng > r(E), we can rewrite
ng as (g/hr(E), where gi is greater than 1.0. Hence, for average throughput capacity I

I =R(K + (g/lp)r(E) -r(E))

=R(K +bppr(E) -r(E)) (2b)
Hence I =R(K+ (Bb-1)r(E)) (1Ba)
or I'=R(K + bpr(E)) (20)

where Ipp is the gross gain per unit of risk, aisk efficiency coefficienfor any member of the

set of efficient environments, and is a constant that measures the extra gross throughput obtained
for the best case of no hazard actually occurring, that is, the constant IGfhractice it can be

expected that while Lis smaller than G for risks it can pay to take, it is not much smaller, so that
bpb will be only a little greater than 1.0, anghimuch less than 1.

Expression (1Ba) is the basic risk equation for positive risk, where r(E) is the risk of an
efficient environment relative to the system. If some of the environments in which the agent
(irrationally) operates the system are not efficient, equation (1Ba) still holds, gyitvil no

longer hold constant as the system is shifted from one inefficient environment, and therefore one
risk, to another, each with a different risk efficiency coefficiegipb= nG/nLy. It obviously
behooves the agent to discover the set of efficient environments for the system and select from
that set. Since agents can be assumed to be rational and risk averse, they are not likely to run the
system in an accessible risky natural environment for a smaller gross extra throughput capacity
nG than could be obtained from a synthetic environment with the same rigtonistructed using

the reference environmentegEthat is, they are likely to run the system only in efficient

environments. This principle might be called ttigk equivalence principldt is self-evident, we
believe, because its converse makes no sense. In the literature there is no sign of any research
having been done into efficient system environments, a neglect it could clearly pay to remedy.
For what it is worth, the author suspects, based on anecdotal evidence, that efficient system
environments are highly orderly.

[K is assumed constant over long periods of time, although the expression allows for K
varying (slowly in the long run) independently of the benefit of running the risk r(E), that is,
independently of net addition to mean throughput capacity per unit R as measuregi(By. b

Such independence happens in financial systems where K corresponds to the risk free (per unit)
interest rate, which does change over the long run, independently of the benefits of risk taking
[10]. Expression (1Ba) assumes such independence of K grfdrsystems in general. If for

some system it can be shown that the benefits of risk-taking have a long-run linear variation with
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K, as might sometimes happen, then we could wrge=tapK, giving | = KR(1+g)r(E)) = KR[1
+ (apb— adr(E)], which is a possible variant of the risk equation.]

The quantities Rpr(E) in (2c) and KR(pb-1)r(E) in (1Ba) are each expressions for the
average net extra throughput capacity achieved by taking the risk r(E) of the environment,
measured as MEL-risk per unit R. Where SD-risk is preferred, so that typically SD-risk is 0.5
times MEL-risk, one can convert from MEL-risk by inserting the corresponding SD-risk measure
r(E) into the equations of risk and adjusting the constapgsand k.

In (1Ba) KR is the unvarying throughput capacity | for a risk-free environment, and
which therefore induces no fluctuations in | due to hazards. Particularly when using MEL-risk,
but ultimately also with SD-risk, Ripr(E) corresponds to the gross extra throughput capacity nG
in a time period where the risk is present but the hazard does not occur, and Rr(E) corresponds to
the average throughput losspver all time periods due to the hazard occurring.

Financial risk equation

In the finance arena, SD-risk r(E) is used; the equivalent of equation (2c) is also used [16, 20], but
equation (1Ba) is unknown. With financial systems, using:

I'=R(K + bpr(E)) (2¢)
the system resources R become the principal sum invested, and K becomes the risk-free per-unit
interest rate obtainable from (risk-free) Treasury bills, so tixatH) is the extra per-unit return

gained by exposure to risk, that is, in percentage terms if K is 1@#Epmight be 3%, for a

total return of 13%. If the principal R is invested in common stocks, that would put the system in
one risky environment with one r(E) value, if R is invested in bonds that would put the system in
another risky environment with a different (smaller) r(E) value, and if R is in Treasury bills that
would put the system in a risk-free environment; if we distribute R over stocks, bonds and
Treasury bills that puts the system in a synthetic environment with a further r(E) vgjveries

from decade to decade, but is of the order of 0.3; this means, crudely, that a lot of fluctuation in
return has to be endured to get an small increase in mean return, i.e. to get an extra 3.0 percentage
points of return (of R) on averageptE) must be 0.03 so that r(E) must be 0.1, so that about 10%

(of R) standard deviation fluctuations in overall return must be endured. Similarly to get an extra
6.0 percentage points on average, 20% standard deviation fluctuations must be endured, and so on
[20]. For financial systems, the SD-risk r(E) is the standard deviation in annual return per unit
time per unit R, thus, the standard deviation risk is expressed as a fraction of R, and not as a
fraction of the mean or expected return itself.

If investors are never irrational, then for the same return in two different environments
the risk should be the same, otherwise the environment with the lower risk would be preferred
and securities price levels will adjust. If one environment, say the common stock environment S,
has a fluctuation level and thus SD-risk r(S) that is q times the SD-risk r(B) of another
environment, say the bond environment B, so that r(S) = gr(B), then the extra return s in S above
the risk free return K must be g times the extra return b in B above K, or s = gb, and securities
prices will adjust to make it so. Typically g > 1.0, since stocks are riskier than bonds. This s = gb
must hold, since when principal sum R is in stocks (say the S&P500 index), it is possible to
construct a synthetic environment (T) with R consisting of a principal sum gR in bonds with a
sum (g-1)R borrowed at the Treasury bill rate K, for which the risk r(T) is qr(B), the same as for
the stock portfolio. The stock and synthetic bond-based portfolios must now each give the same
return s = gb, otherwise the environment S or T with the lower risk will be preferred and
securities prices will adjust to make the returns identical. It is this principle of equivalent risks
giving the same return that was used originally to derive the relation (2c¢), which is probably the
fundamental expression of finance [20]. This method was not used earlier in this paper, and
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indeed cannot be used, to derive the basic risk equations (1C) and (2c) for systems in general,
since this method is based on the assumption that markets will adjust their price levels to force all
financial environments, stock, bonds, treasury bills, and combinations of these, to form a single
set of efficient environments for investment. In this paper the basic risk equations were derived
for all non-growth non-evolving agent-directed systems only from considerations of the
fundamental nature of risk.

3.3 Risk equation for negative risk

It should also be clear from a similar analysis of a set of efficient environments based on a
reference environment for which the ratio nGfrig& maximal but less than 1, that is, containing

only risks it can not pay to run, that we must also have

I = R[(K + (bnp- 1)r(E)] (1Bb)

= R(K - bnr(E))
This is the basic risk equation where r(E) is a measure of negative risk for an efficient
environment, or risk it can not pay to run (that iggs 1 or In is positive). Thus pp, for positive

risk, is greater than 1, anghp, for negative risk, is fractionally less than 1.

3.4 A sample application of the risk equation

A numerical example of the use of the positive risk equation will give the reader a better
understanding of its implications. Suppose a system with R = 1000, with K = 0.075 or 7.5%, so
that in a risk free environment, | is 75 x-units per week. Suppose we place the system in an
efficient environment E with a MEL-risk r(E) of 0.02 x-units per week per unit R, and this
placement raises mean throughput capacity from 75 to 80 x-units per week. In that case

| =R[0.075 + 1.25 r(E) —r(E)] = R[ 0.075 + 0.25 * 0.02]

=1000[ 0.075 + 0.005] = 75 + 5 = 80 x-units per week
The best case throughput capacity is:
R(0.075 + 1.25r(E)) =1000[ 0.075 + 0.025] = 75 + 25 = 100 x-units per week

from which level there are downward throughput capacity fluctuations, with a mean of 20, to
mean | = 80 on average, with a minimum downward fluctuation of zero, and a maximum
probably of 40, to a minimum throughput capacity of 60. If we shift the system to another
efficient environment with double the MEL-risk r(E) of 0.04 x-units per week per unit R, the
mean of | will be raised to 85, and the hazard free case to | =125, for a mean fluctuation of 40
down from125 to a mean | = 85. If instead the system is placed in an environment with an SD-
risk of 0.02 x-units per week per unit R, throughput capacity rises from 75 to a mean of 80 as
before, but with the standard deviation of fluctuations about the mean of 80 being 20 x-units per
week, instead of the maximum fluctuation about the mean of 80 being about 20 if the risk of 0.02
were MEL-risk.

3.5 Risk combining and destructive interference

Readers are cautioned about naively using the risk equation to combine parallel systems
with risks from different efficient environments. Suppose a composite system C made up of two
parallel identical systems in two different efficient environments, with the same risk per unit R,
and the same gross extra throughput per unit R, except that the risks are not well, or are
negatively, correlated. Suppose throughput capacities arsllb such that total average system
throughput capacity for Cis | 5 k I,, where

I:=R(K+dr(E)) and b=R(K + dr(&))
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Although the mean throughput capacities are additive the risks are not, since throughput capacity
fluctuations in opposite directions will cancel, and thus destructively interfere. Thus for the
composite system we must have

| = 2RK + dRr(E) ~(+)~ dRr(E)
where the tilde+ notation indicates that risk addition to give a composite risk is based on the
underlying statistics, allowing for destructive interference, where:

Rr(E) ~(+)~ Rr(E) = 2Rx + 2Rr(E)
and where r(E) is risk per unit R for the composite (and necessarily efficient) environment E
derived from E and B, and Rx isa positive certain loss, with respect to the hazard free
throughput capacity, due to destructive interference between the capacity fluctuations of the two
constituent systemblence for the composite system we must have:
I = 2R(K + bpr(E))

for any environment E, where,fcan be a valid value for E, whergyb d(r(Ey) + r(E))/2r(Es2),
that is, a value pthat will be larger than d.

A numerical example is instructive. Suppose the two systems obey
[,=R(0.075+ 0.25r(F ) = R(0.075+ (1.25 - 1)r(B)

and b=R(0.075+ 0.25r(F) = R(0.075 + (1.25 - 1)r(§)

Suppose R =500, and HE= r(E;) = 0.02, giving mean throughput capacity of 40, and a total
risk of 10, with best case of 50, for each system, and throughput capacity of 37.5 for each system
in a risk free environment, so that the extra throughput capacity of 2.5 is the benefit of running
the risk in each system.

If we combine the systems, the mean throughput capacity will be 80 no matter what, but
if the total risks destructively interfere, so that instead of adding to 20, suppose they add to only
2, so that when Rr(B and Rr(E) are each 10, 2Rr(g) is 2. The composite system will therefore
be described by:

I = 2R(0.075 + 2.5r(E)) = 2R(0.075 + (3.5 - 1)r(E))
And for 2R = 1000, and r(E) = r() = 0.002, the best case throughput capacity is 82, the mean is
80, and the total risk is 2. [This is not what would be the case if there were no destructive
interference, but instead perfectly correlated risks, allowing simple addition of the risks, so that
the best case is 100, the mean is 80, the total risk is 20, gnemains unchanged (same as d) at

0.25.] For this combined case with the destructive interference:

bp= 2.5 =d(r(E) + r(E))/2r(E.2) = 10d =10*0.25

As a result of the above analysis, it is clear that if a given system is exposed to a future
loss consisting of two distinct riskg and &, equal in magnitude, measured as MEL-risks, the
resultant future loss exposure consists of a certain loss x(c) plus a risk or possibleJdeyre

r~(+)~nr=Xx(C)+n

where Xx(c) is zero only when the correlation coefficient ¢ for the two underlying risks is +1. The
certain loss factor x(c) will increase with decreasing c, wittecreasing to zero as ¢ approaches
—1, the point at which all possible loss is converted entirely to certain loss and risk is zero! This
is the principle of risk reduction by means of investment diversification in finance, although the
fact that it merely involves converting possible loss to certain loss is rarely discussed [16].

3.6 Risk as a function of system environment relative to the system

The basic risk equation states that R may be altered independently of the risk r(E) (per
unit system resource) of the efficient environment relative to the system. However, it should be
recalled that, with equation (1A), R can be validly altered only by decreasing or increasing R in
valid (basic harmonic resource) units of the existing resource type of R, so that if we n-fold
increase the value of R we n-fold replicate the system. Only with such an alteration of R will r(E)
not change and expression (2A) hold. If an addition of another type of resources is made we may
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bifurcate the system into two systems, the original system and a new one consisting of the new
type of resources, and although the environment of the two systems may be identical, the
environment relative to that new systemay well be different, so that the risk per unit R may be
different for the new system. In addition the environment relative to the new system may not be
efficient either; it would have to be analyzed to find out.

A simple physical example should illustrate these points where risk is involved. Suppose
a trucking system with resources R that ships disk drives from A to B over a gravel road designed
to take 10 ton trucks at the heaviest (so that the risk of a truck being delayed because of the
wheels sinking into the highway is zero), and suppose that R consists of 4 10-ton trucks each
carrying 20 disk drives from A to B per day, so that | is 80 disk drives per day, and the basic
harmonic resource unit is 1 10-ton truck. If we increase R by 6 10-ton trucks the risk of the
efficient environment relative to the system remains zero, and throughput capacity | climbs by
6*20 to 200 disk drives per day. If instead we had added 2 20-ton trucks each capable of carrying
60 drives per day, throughput capacity | would also increase to 200 drives per day, except that the
increase in R is not valid, and worse, the 2 20-ton trucks on a road designed to carry 10-ton trucks
will be exposed to risk of delay due to getting stuck. Thus there are two systems, a risk-free
system where R consists of 4 10-ton trucks, for which the risk of the efficient environment
relative to the system is zero, and a system where R consists of 2 20-ton trucks, with the same
efficient environment (the road), but for which the environmeatative to the systens risky,
and which may or may not be efficient. In this practical context, “not efficient” would mean that
there is an alternate road for the heavy trucks with less risk for the same extra throughput capacity
benefit.

3.7 Combination of risk with a resource-sharing procedure.

Sometimes a system exposed to risk in an efficient environment will also have an active
resource-sharing procedure [2, 3] at the same time to better utilize the available resources. For
this case we must combine the efficiency equation (1A) and the basic risk (1B) giving, for the
case of just positive risk:

I = R[K + (bpb- Dr(E)I(1-TT)[1+ sk(Tg)]
or I'= R(1-TgT)[1+ sR(TYIK + (bpb- 1)r(E)]

This indicates that system resources R, in use in the risky efficient environment before
application of the sharing procedure, have effectively been increased todR[1F sF(Tg)] by

the use of the coordinated resource sharing procedure, independently of the prior existing risk per
unit R in the efficient environment. Note however, that total risk is increased to BT+
sFT(T9Ir(E), so that the absolute size of losses when a hazard does occur will increase
proportionally. A simple example would be a computer system with an unshared cpu executing
20 jobs per hour but exposed to the risk of corrupt input data that can cut throughput capacity to
10. If we alter the system by increasing the level of sharing, so that capacity is 100 jobs per hour,
the risk is now of having capacity cut to 50, for the same level of risk r(E) per unit R of corrupt
input data.

4. Future Research
Since the risk equation and resource sharing equation are valid only for agent-directed, non-

growth, non-evolving systems, an obvious area for future research is development of similar
equations for agent-directed systems that allow for system growth and evolution. There is every
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reason to believe that such a set of equations could be developed. An even more challenging
project, however, would be to develop a set of equations for naturally occurring, growing and
evolving systems such as biological systems. The obvious problem here is the absence of any
directing agent other than nature, whose impressive organizing capabilities with regard to
biological systems remain to be fully explained.

5. Concluding Remarks

A basic risk equation, valid for all non-growth, non-feedback agent-directed systems, but
especially for computer and information systems, has been presented and justified. This basic
equation may be combined with a resource-sharing equation, developed in a separate paper [2, 3],
enabling expressions for a very wide variety of system situations (1F).

The resource sharing equation (1A) states (a) that throughput capacity increases linearly
with valid increases in resources, and (b) that for a given throughput capacity, as system
resources are decreased, system operating complexity must increase and vice versa. The basic
risk equation (1B) states that for a given system resource level, mean throughput capacity
increases linearly with the risk in an efficient environment relative to the system. Many obvious
examples of the use of these expression are to be found in multiprogramming operating systems
and file and database systems.

The risk equation holds only for specific classes of environments, namely efficient
environments. The risk equation is new, except that there is a version of the risk equation that is
widely used in financial systems, and which was derived by Sharpe and others in the 1960s on the
basis of the behavior of financial markets and their participants; however the basic risk equation
presented here was derived from the basic nature of risk, and applies to all agent-directed no-
growth, non-evolving systems in efficient environments.

In the equation the constants and variable parameters can be reduced to numbers and
measurable quantities, so that the equation is subject to experimental verification. Nevertheless,
the reader who has taken care to fully grasp the equation will no doubt see that it fits with his or
her own experience of practical functioning systems, especially real-time systems. However, the
major benefit of the equation, together with the resource sharing equation, to system designers
and operators, is that they promote and simplify clear thinking and accurate reasoning about
complex system situations and possibilities that have hitherto been in shrouded in nebulous
obscurity and complexity.

Although beyond the scope of this paper, three additional variations of the risk equation
are possible, each one for one of three practical methods for reducing or eliminating a quick
without significantly impairing the benefits of running the risk. These equations will be presented
in later papers, but information is currently available in a research report [2].
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