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Abstract

Designers of distributed algorithms typically assume strong memory consistency guarantees,
but system implementations provide weaker guarantees for better performance and scalability.
This motivates the study of how to implement programs designed for sequential consistency
on platforms with weaker consistency models. Typically, such implementations are impossi-
ble using only read and write operations to shared variables. For example, Sparc’s Total Store
Order machines (and their even weaker Partial Store Order and Relaxed Memory Order ma-
chines), the PowerPC, Alpha, Java and most variants of processor consistency all require the
use of strong and expensive built in hardware synchronization primitives to implement mutual
exclusion. One variant of processor consistency originally proposed by Goodman and called
here PC-G is an exception. It is known that PC-G provides just enough consistency to imple-
ment mutual exclusion using only reads and writes. This paper extends the study of Good-
man’s version of processor consistency from specific problems (such as mutual exclusion) to
arbitrary ones. That is, we investigate the existence of compilers to convert programs that use
shared read/write variables with sequentially consistent memory semantics, to programs that
use read/write variables with PC-G consistency semantics.

We first provide a simple program transformation, and prove that it compiles any 2-process
program with only single-writer variables from sequentially consistency to PC-G consistency.
We next prove that no similar simple compiler exists for even a very restricted class of 3-
process programs.

Even though our program transformation is not a general compiler for 3 or more processes,
it does correctly transform some specific n-process programs from sequentially consistency to
PC-G consistency. In particular, for the special case of the (necessarily randomized) Test&Set
algorithm of Tromp and Vitanyi, our transformation extends to any number of processes. Thus,
one notable outcome is an implementation of Test&Set on PC-G that uses only reads and writes
of shared variables. This is the first expected, wait-free implementation of Test&Set on any
weak memory model, and illustrates the use of randomization with a weak memory model.

Keywords: Memory consistency models, sequential consistency, processor consistency, pro-
gram transformation, expected wait-free Test&Set.



1 Introduction

Designers of distributed algorithms typically assume strong memory consistency guarantees, which
ensure a high degree of agreement between the processes’ views of the state of the shared objects.
One of the strongest models, Lamport’s sequential consistency [11], requires agreement on a sin-
gle view of the objects’ state between all the system processes. However, actual systems provide
weaker consistency guarantees than sequential consistency in order to achieve better scalability,
performance, and availability. While it is easier to design algorithms for strong consistency mod-
els, the systems with weaker consistency guarantees are more efficient. This motivates us to in-
vestigate how to implement algorithms that are designed assuming sequentially consistency on
systems that have weaker consistency guarantees.

Such an implementation can be complicated. Since, for most weak models, even mutual exclu-
sion is impossible using only reads and writes to shared variables, algorithms typically need to be
augmented with hardware specific synchronization primitives to maintain correctness. For exam-
ple, Sparc’s Total Store Order machines (and their even weaker Partial Store Order and Relaxed
Memory Order machines), the PowerPC, Alpha, Java and most variants of processor consistency all
require the use of strong and expensive built in hardware synchronization primitives to implement
mutual exclusion [6, 8]. Processor Consistency — Goodman’s version [2, 1] (abbreviated, PC-G) is
an exception®. Though weaker than sequential consistency, PC-G guarantees that processes have
just enough agreement about the current state of shared memory to support synchronization us-
ing only reads and writes of shared variables?. Some sequentially consistent algorithms that use
read/write operations are correct for PC-G without any modifications. For example, Ahamad et.
al. have shown that Peterson’s mutual exclusion algorithm [15] is correct for PC-G. Lamport’s
bakery algorithm [10], however, fails for PC-G [1]. Previously [7], in an effort to understand the
impact of weakening the consistency guarantees, we studied the implementation of mutual exclu-
sion algorithms on PC-G platforms®. We established tight bounds on the number and type (single-
or multi-writer) of variables that a mutual exclusion algorithm must use in order to be correct for
PC-G; we determined that most, but not all, of the well known mutual exclusion algorithms [16],
which were developed for sequential consistency, fail under only PC-G memory consistency; and
we showed that, in contrast to sequential consistency, multi-writer variables cannot be constructed
from single-writer variables in a PC-G memory [7].

Previous work has not addressed the more general problem of determining necessary and suf-
ficient conditions for implementing an arbitrary sequentially consistent algorithm on a given weak
platform with just read/write variables. This paper reports progress towards this more general goal.
Since PC-G is known to support at least mutual-exclusion, while most other models cannot, we
begin our study with the PC-G model. Specifically, using the addition of only one multi-writer
variable, we provide a simple implementation on a PC-G platform of any 2-process sequentially
consistent program that uses only single-writer variables. We also prove that our transformation,
and any other meeting some specific constraints, can fail to correctly implement even a restricted

1The term processor consistency has been used to refer to a range of similar but subtly different memory models
[19]. The one referred to in this paper is due to Ahamad et. al.’s [1] interpretation of Goodman’s original work.

2Even among all the processor consistency variants, only PC-G is strong enough to support a solution to mutual
exclusion without strong synchronization primitives.

3We use platform to mean a collection of shared objects together with their consistency guarantees. The PC-G
platform has read/write variables and PC-G consistency.



class of 3-process sequentially consistent systems on PC-G platforms (Section 3). Our transforma-
tion is therefore restricted to just 2 processes. However, there are potentially practical applications
because there are 2-process algorithms that use only single-writer variables and solve synchroniza-
tion problems in sequentially consistent systems. One example is Lamport’s bakery algorithm for
mutual exclusion [10]. We have addressed its correctness for PC-G previously [7]. Another is
Tromp and Vitanyi’s remarkable randomized algorithm for expected wait-free Test&Set [18]. In
Section 4 we use our transformation to implement the 2-process expected wait-free Test&Set of
Tromp and Vitanyi on a PC-G platform. Then we exploit additional properties of the Test&Set
problem to extend it to the n-process case (even though this method is shown to fail even for 3-
processes for some other programs.) So, as a consequence of our investigation, we achieve an
implementation of Test&Set on a model weaker than sequential consistency using only read/write
variables. This is the first expected wait-free Test&Set on a consistency model that is weaker than
sequential consistency.

In order to make our results precise, we begin by providing a framework for modeling and
comparing systems with different memory consistency models (Section 2). The framework is of
independent interest because it allows us to define transformations between systems at various
levels of abstraction and provides the strategy for proving their equivalence. The remainder of the
paper is simplified by exploiting the tools and methods of this framework.

Our goal is to ensure that computations of our transformed algorithms are indistinguishable
from sequentially consistent computations of the original algorithms. It may be asked why we
do not, instead, strive to ensure the even stronger guarantee of Linearizable memory consistency,
which was formalized by Herlihy and Wing [4]. Linearizability requires that the sequentially
consistent total order also agrees with the real time order when operations actually occurred. This
requires some notion of the real time interval of an operation, which is not available to processors in
a fully asynchronous system. Since there is no notion of global time in weak memory consistency
models, we restrict our correctness requirement to sequential consistency.

2 Framework

2.1 Multiprocess systems

A multiprocess system can be modeled as a collection of processes operating on a collection of
shared data objects under some partial order constraints called a memory consistency model. To
define a system, we specify each of these components.
Objects: A shared data object is defined by providing its initial state and the operation invoca-
tions that can be applied to the object, and specifying the set of allowable sequences of operations
that arise from a sequence of such invocations. An arbitrary sequence of operations applied to
object X is valid for X if and only if it is in the specification of X. An arbitrary sequence S of
operations (applied to possibly several objects) is valid if and only if, for each object X, the subse-
quence of S consisting of exactly those operations applied to X is valid for X. All sections except
Section 4 consider only variables that can be written and read, and which are defined as follows.
A read/write variable, x, is initially undefined, and supports the operations: write(x, V), which
assigns a value v to variable x, and read(x) = v, which returns the value v for variable x. A sequence



of read and write operations to x, is valid if the value returned by each read operation is the same
as the value written by the most recent preceding write operation in the sequence.

A read/write variable is a single-writer variable if it can be written by only one process, other-
wise it is a multi-writer variable.

Each operation has an invocation and a response component. For the operation read(x) = v the
invocation component is read(x) and the response is v. For the operation write(x,Vv), the invocation
component is also write(x,v) and the response is an acknowledgement that is ignored for this paper.
Processes: A process in a multiprocess system is just sequential code whose (non-local) oper-
ation invocations are applied to objects in the system. The order of the operation invocations by
any process induces a total order (per process) on its resulting operations, and a partial order called
program order on any collection of operations, O. This partial order is denoted (O, @).

Let P be a set of processes whose operation invocations are applied to shared objects in J. Then
the pair (P,J) is called a (multiprocess) program and P is consistent with J.

This section and Section 3 are concerned with processes whose non-local operation invocations
are applied to shared read/write variables.

Memory consistency models: A computation of a multiprocess program (P,J) is a collection
of sequences of operations, one for each process p € P, where the operation invocations in p’s
sequence arise from p’s code and are in p’s program order.

Notice that the response components of the operations in a computation are not constrained

by the preceding definitions. Rather, the possible responses to the invocations are determined by
the architecture, which we model as a set of memory consistency constraints. Thus a memory
consistency model is a set of partial order constraints on the operations of a computation. These
partial orders are usually defined on subsets of all the operations. Given a set O of operations, a
process p and an object x, the notation O|p denotes the subset of O that are operations invoked by
p, O|x denotes the operations that are applied to x, and O|w denotes those that are write operations.
Subsection 2.2 defines the three memory consistency models used in this paper.
Systems: Let J be a set of objects and P a set of processes consistent with J, and let M be
a memory consistency model. Then the triple (P,J,M) is called a (multiprocess) system. The
computations of a multiprocess system (P,J,M) are all the computations of the program (P,J) that
satisfy the memory consistency constraints M.

2.2 ThreeMemory Consistency M odels

This section presents the three widely cited memory consistency models, sequential consistency,
P-RAM, and PC-G, and an architecture that gives rise to each*.

The weakest of these, P-RAM, due to Lipton and Sandberg [12], captures the basic architecture
of a fully-replicated, fully-distributed memory. Architectures that implement the P-RAM model
are very common in distributed systems [17]. An example architecture with four processes is given
in Figure 1. Processes are connected by direct, reliable, FIFO channels, such as TCP connections.
Each process has a complete copy of memory. A process reads from its local copy of memory.
A write is applied to the local copy, and is propagated to all other processes, which apply it lo-

4The framework of Subsection 2.3 can be used to prove that these intuitions are correct (see [9, 5] for the tech-
niques).



cally. The propagation of writes to the processes could cause writes to arrive in different orders at
different processes [14].
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Figure 1. An implementation of P-RAM with four processes.

P-RAM consistency orders operations from each process’ point of view. Each process only
“sees” all of its own operations and other processes’ writes. In P-RAM there must be, for each
process, a linear ordering of its operations and all others’ write operations that maintains program
order and is valid. This does not mean that all processes will order all operations in the same way
since the interleaving of the operations by different processes can be perceived differently by each
process. The following definition is based on that of Ahamad et. al.[1] but reformulated using our
framework.>

Definition 2.1 Let O be all the operations of a computation C of a multiprocess program (P,J).
L
Then C is P-RAM if for each process p € P there is a valid total order (O|puUOQO|w, —p>) satisfying
L
(Olpuolw,*®) c (0|puOw, —).

Sequential consistency requires a single linear ordering of all the operations that agrees with
each process’s view.

Definition 2.2 Let O be all the operations of a computation C of a multiprocess program (P,J).
Then C is sequentially consistent, abbreviated SC, if there is a valid total order (O, #) such that
prog L

An equivalent definition of sequential consistency is [9]:

Definition 2.3 Let O be all the operations of a computation C of a multiprocess program (P,J).
Then C is sequentially consistent if for each process p € P there is a valid total order (O|pU

Olw, i) satisfying:

1. (O[puO|w, ™) C (O|pUO|w, —%) and 2. Vq € P, (Ofw, =) = (Ofw, —%).

From the second definition it is clear that sequential consistency requires P-RAM consistency plus
agreement on the order of writes by all processes. Such agreement can be achieved in a P-RAM
machine by requiring the processes of Figure 1 to perform their writes in a critical section. One

SOther interpretations of the original intentions of Lipton and Sandberg are also possible [19].
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(inefficient) way to achieve this is to circulate a token on a logical ring of all the processes.® To
perform a write, a process must wait for the token. The process passes the token after receiving
acknowledgements from all other processes that its write has been applied everywhere.

In addition to P-RAM, processor consistency [2] requires that writes to the same variable are
seen by all processes in program order. The following definition is due to Ahamad et. al.[1].

Definition 2.4 Let O be all the operations of a computation C of a multiprocess program (P,J).
: . : : L L
Then C is PC-G if for each process p € P there is a valid total order (O|p U O|w, —) satisfying:

L L L
1. (O]puojw, X2 ¢ (0|puO|w,—%) and 2. Vg e P and ¥x €J, (OjwNO|x, —=) = (OjwNOlx, —%).

PC-G can be obtained from the architecture of Figure 1 by creating, for each variable, a log-
ical ring with a circulating token. Writes are performed similarly to the sequentially consistent
implementation except there is a token for each variable. A write by process p to variable x can be
performed only when p receives the token for x, thus guaranteeing Condition 2 of Definition 2.4.
Notice that for single-writer variables, Condition 2 follows from the preservation of program order
guaranteed by Condition 1, so circulating tokens are only required for multi-writer variables.

The simulation of sequential consistency on a P-RAM machine requires one critical section in
which processes can perform their writes. However, the PC-G simulation requires as many critical
sections as variables, allowing two processes to engage in their critical sections simultaneously
as long as they are writing different variables. Hence, for a given program, P-RAM admits more
computations than both PC-G and sequential consistency, and PC-G admits more computations
than sequential consistency.

2.3 Transformations, | nterpretations, |mplementations and Compilers

Call a collection of objects and a memory consistency model a platform. To investigate the possi-
bility of implementing one system on a weaker platform, we first make precise what it means to
transform one system, called the specified system (with corresponding specified objects, processes
and memory consistency) into another system that uses a different platform, called the target plat-
form (with corresponding target objects, and memory consistency). See Figure 2. An operation on
a specified object is transformed to the target platform by providing a subroutine for the operation
invocation that uses only operation invocations on the target objects. If the specified operation
invocation has an accompanying response, then the subroutine must return a value of the same
type as this response. An object is transformed to the target platform by transforming each of its
operations. A transformation of all the objects of the specified system to the target objects can be
naturally extended to a process transformation by replacing each of its operation invocations with
the subroutine for that operation. The transformed processes together with the target platform com-
prise the transformed system. The transformed system gives rise to a collection of computations
— exactly those that arise from the transformed processes interacting with the target objects and
satisfying the target memory consistency constraints. Any such computation can be interpreted as
a computation of the specified program by attaching to each operation invocation of the specified
program, the value returned by the corresponding subroutine.

6Another way is to use timestamps to implement what Tanenbaum and Steen call totally-ordered multicasting [17].
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Figure 2: Program transformation and computation interpretation ( If ¢’ C C, then the transforma-
tion is an implementation.)

A transformation of a specified program will be called an implementation of the specified
system, if, informally, in Figure 2, the set ¢’ of computations produced by traveling the long way
around is a non-empty subset of the computations C allowed by the specification. More precisely,
let C be the set of computations of a multiprocess system (P,J,M). Let P be the processes of a
transformation of (P,J, M) to a platform (J,M). Let D be any computation of system (P,J,M) and
let D’ be the interpretation of D for (P,J). Then the transformation is an implementation of the
system (P,J,M) on the platform (J,M) if D’ € ¢ for any such D’. If, for every set of processes
P consistent with J a given transformation is an implementation of the system (P,J,M) on the
platform (J, M), then that transformation is a compiler from platform (J,M) to platform (J,M).

For the rest of this paper, operations on specified objects are enclosed in angle brackets; oper-
ations on target objects are not bracketed.

3 Compiling SC Platformsto PC-G Platforms

Our goal is to provide a compiler that transforms sequentially consistent systems with read/write
shared variables to equivalent systems with only read/write variables and PC-G consistency (hence-
forth called a PC-G platform). Subsection 3.1 achieves this for any 2-process sequentially consis-
tent system provided its shared objects are all single-writer variables. The compiler is extremely
simple and uses only one additional variable — a bounded multi-writer variable that is written (but
never read!) by each of the two processes. In fact, the multi-writer variables need have only one
possible value, though for clarity we use two values. We have been unable to find such a general
compiler for more than two processes. However, as shown in Subsection 3.2, if there is one it must
be substantially more involved than the simple one that works for two processes.

3.1 Two-Process Case

Transformation: Let J be any collection of shared single-writer variables. We construct a
transformation of any 2-process program P = {p,q} that is consistent with J to a PC-G platform
with one additional variable, m, which is a multi-writer variable. Let y denote either process in



{p,q}. The (oblivious) transformation a for any single-reader read/write variable sy that is written
by process y is defined by:

a((write(sy,v))) = write(m,id(y)),write(sy,v), write(m, id(y))

Transformation 1 { a((read(sy))) = read(sy)

That is, each write invocation by y is replaced by a sequence of three writes, a write of the
process id to m, the original write, and another write of the process id to m. Read invocations are
not changed. The extension of this transformation to a process y is denoted a(y). The transformed
program (P, J) is constructed by setting J = J U{m} and P = {a(p),a(q)}. Any computation of
(P,J) can be interpreted as a computation of (P,J) by simply ignoring all the writes to m.

Theorem 3.1 shows that any computation of (I5, J, PC-G) has an interpretation as a computation
of (P,J,SC). That is a is a compiler from sequentially consistent platforms with single-writer
variables to PC-G platforms, under the restriction that it is applied to 2-process programs.

Theorem 3.1 Let J be any collection of single-writer variables. Let P = {p,q} be any 2-process
program consistent with J. Then the transformation a defined by Transformation 1, is a compiler
from the sequentially consistent system (P,J,SC) to the PC-G platform (JU{m},PC-G) where m
is a two-valued multi-writer variable shared by a(p) and a(q).

Proof: Lety denote either of a(p) or a(q) (chosen arbitrarily) and y denote the other. Denote
the single writer variables written by process y by sy for i from 1 to the number of these variables.

Any write operation o to s‘y is enclosed in the program of y by a matching pair of writes to m. For

any such pair, denote the preceding write by uj"(o) and the following write by p)‘}og(c).

Let C be a PC-G computation of the system ({a(p),a(q)},JU{m}), and let Ly and Ly be the
valid total orders that are guaranteed by PC-G for y and y respectively. Our goal is to construct a
single sequence £ containing all the operations of C that is valid and maintains program order.

According to the definition of PC-G, the order of all writes to m are the same in both Ly and Ly
and this order preserves program order. Denote this order by p1, Ua,. . ., and call the subsequences of
Ly or Ly from p; to pj 1 the ith segments. (The Oth segments are the sequences of operations before
the first writes to m.) Form a sequence, S, on all the read operations and all the operationsto minC
by simply concatenating’ the read subsequence in the kth segment of Ly with the read subsequence
in the kth segment of Ly and then concatenating these combined segments in order with the corre-
sponding writes to m separating successive combined segments. That is, let Ry(k) denote the sub-
sequence of all the reads in the kth segment of Ly. Then S = Ry(0),Ry(0), u1, Ry(1),Ry(1), Ho, ...

For any write, 0, to the single-writer variable s, the subsequence of S from p®(a) to W™ (o)
is denoted I(a). Construct £ by inserting into S all writes to any s‘y or s)&. Each single-writer

operation, say ay, is placed within the interval I(ay) of S as follows. If there is any read of the

’If a process is allowed to read its own single-writer variable, a more careful merge must be done to ensure that
reads of old values precede reads of new values. This is straightforward. However, we can always assume that a
process does not read the variable that it writes, but instead keeps a local copy. This simplify the proof slightly.



value written by oy in I(oy) then oy is placed immediately before the first such read. Otherwise,
oy is placed immediately before p)'?os(oy). Observe the following about L.

all operations S contains all operations on m (these are only writes) and all reads. Every write
to any siy or sk was inserted into S to construct £. Thus £ contains all operations of C.

program order Ly and Ly are in program order and S maintains those orders for its elements.
So S maintains program order for all writes to m and for all reads. Again, because Ly maintains
program order, for any write o to any s{,, the only operation by y between pj"(c) and u{;‘ﬂ(o)
in Ly and hence in S is a. Therefore, any placement of o within I(o) is consistent with program
order. Thus L is a total order that extends program order.

validity  Consider a read operation r of any s‘y by process y that returns the value written to s‘y

by the write operation o by y . Also, let & be any other write to s that follows o in the program
order of y. Then r must occur after o and before & in Ly because Ly is valid. Since Ly preserves
program order, r must therefore occur after ugre(c) and before u{;’og(c“f) in Ly. The order of Ly

for all reads and all writes to m is maintained by S and hence by £. Therefore, r must occur after

u&re(o) and before u{;’og(é) in £. Because of where o was inserted into S, r must occur after g in

L. Furthermore, r could also occur after 6 in £ only if there was another read f of siy by y that
preceded r and returned the value of &, causing G to be inserted before f. But then in Ly, f must

also precede r . So in Ly, F and r return values of s‘y in the opposite order to the order in which

these values were written to siy according to program order of y. This is impossible because Ly is
valid and maintains program order. Thus r must occur in £ after o and before 6. Therefore, L is
valid.

Since L contains all the operations of C, extends program order and is valid, it is a valid total
order of the operations of C. Hence, by Definition 2.2, C is sequentially consistent, and so is its
interpretation for the system (P,J,SC). |

A few observations are in order. Theorem 3.1 establishes that the interpretation of every PC-G
computation of the transformed system is a possible sequentially consistent computation of the
original system. We would like to conclude that the transformed system meets the same spec-
ification as the original system. Progress is clearly preserved because a computation cannot be
stalled or changed by the addition of writes that are never read. Some care is needed to guarantee
that safety is preserved. Specifically, for deterministic programs, we need to check that for any
computation of the transformed program, its sequentially consistent interpretation was actually
permitted by the original system. This holds as long as the original program was assumed to run
under an arbitrary scheduler. If, however, the scheduler was somehow constrained by additional
assumptions of the specified platform, it is conceivable that the transformed program will produce
a computation that, though sequentially consistent, could not have happened under the constrained
scheduler. For randomized programs, we also need to check that the probabilities of computations
have not been altered. Suppose, for example, in the specified system it is assumed that the sched-
uler cannot intervene between a random choice and the next operation. Then, in the transformed
system, the addition of extra writes would allow the scheduler to intervene, and thus gain some
power that it did not originally have. However, as long as the assumptions of the original sys-
tem assumed both an arbitrary scheduler and atomic random choices (as is generally assumed for
sequential consistency) then Theorem 3.1 provides the desired correctness. These conditions are
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met in our application of the theorem in Section 4. Also, because a is simple straight line code, it
preserves properties of the original program. For example, the transformed program is wait-free if
the original is.

The code produced by the compiler a could be inefficient because the accesses to the multi-
writer variable must appear to be sequential. However, it describes a general method that can
be applied to any two-process program. Further optimization of the number of introduced writes
could be achieved by analyzing the properties of the specific program to which it is applied.

3.2 Threeor more processes

Transformation 1 is not a compiler for more than 2 processes. Theorem 3.2 shows that this failure is
quite general. Call a transformation write-adding if all it does is insert additional write operations
(to new or existing variables) into the original program.

Theorem 3.2 No write-adding program transformation is a compiler from sequentially consistent
systems to PC-G platforms with three or more processes.

Proof: Suppose there is such a compiler, and suppose it introduces writes to more than one new
variable. Since these writes are never read, the only way they can constrain the set of possible
PC-G computations is because all processes must agree on the order of operations to each of these
variables. By replacing all these writes with writes to one new muliwriter, the set of possible com-
putations is further constrained. Thus, there is also a write-adding compiler, say a, that uses only
one new multi-writer variable. Observe that any write-adding transformation that adds writes that
are a superset of the writes added by a is also an implementation, because, again this can only
further constrain the set of computations and does not eliminate any computation that happens to
be sequentially consistent. We conclude that if there is a write-adding compiler, then the trans-
formation a* that inserts a write to a single multi-writer variable, say m, before and after every
operation must be one. It remains only to show that a* fails to implement some program.
Program 1 is a simple 3-process program ({p,q,r}, {Sp,Sq})-

p: write(sp,1);read(sq)
Program1 < q: write(sq,2)
r: read(sq);read(sp)

Computation 1 is a computation of the transformation by a* of Program 1 assuming s, and sq are
initially 0. For clarity the writes to m are called pre-write and post-write with each matching pair
writing a distinct value.

p: pre-writep(m,pl);write(sp,1); post-writep(m, pl);
pre-writep(m, p2); read(sq) = 0; post-writep(m, p2)

Computation1 ¢ §: pre-writeq(m,ql);write(sq,2); post-writeq(m,ql)
F: pre-write;(m,rl);read(sq) = 2;post-writer(m,rl);

pre-writey (m, r2); read(sp) = 0; post-writer (m, r2)

9



Consider the following orders for operations of Computation 1

(O]puO|w, i) = (pre-writep(m, pl); pre-writeq(m, q1); write(sp, 1); pre-write, (m,r1);
post-write, (m, r1); pre-write, (m, r2); post-write, (m,r2); post-write,(m, pl);
pre-writep(m, p2); read(sq) = 0; post-write, (m, p2); write(Sq, 2);
post-writeq(m,ql))

(OlquO|w, i) = (pre-writep(m, pl); pre-writeq(m, g1); write(sp, 1); pre-write, (m,r1);
post-write; (m, r1); pre-write, (m, r2); post-write, (m, r2); post-write,(m, pl);
pre-writep (m, p2); post-write, (m, p2); write(sq, 2); post-writeq(m, 1))

(OJrUO|w, i>) = (pre-writep(m, pl); pre-writeq(m, ql); write(sq, 2); pre-write, (m,r1);read(sq) = 2;
post-write, (m,r1); pre-write, (m,r2); read(sp) = 0; post-write, (M, r2)write(sy, 1);
post-write,(m, pl); pre-write, (m, p2); post-write, (m, p2); post-writeq(m, q1))

Each of these orders contains all write operations and the reads of one process. Each order is
valid. Each has the same ordering on writes to m. Each maintains program order. So Computation
1 satisfies PC-G.

The interpretation of Computation 1 as a computation of ({p,q,r},{sp,Sq}) is Computation 2,
which is clearly not sequentially consistent.

p: write(sp,1); read(sq) =0
Computation 2 ¢ q: write(sg,2)
r: read(sq) = 2; read(sp) =0

We conclude that there is no write-adding compiler to PC-G platforms for even very restricted
3-process systems. So any potential compiler for more than 2 processes, even for just single-writer
variables, must read some multi-writer variables. Furthermore, a similar proof technique can be
used to also eliminate the possibility of an implementation that both reads and writes a single
additional multi-writer variable.

Theorem 3.3 No program transformation that uses only one additional variable and any number
of reads and writes is a compiler from sequentially consistent systems to PC-G platforms.

4 Expected Wait-Free Test-and-Set

Since a Test&Set object has consensus number two [3], Test&Set has no deterministic waitfree im-
plementation using read/write variables even with sequentially consistent memory. In this section,
the transformation of Section 3 is used to implement a randomised wait-free Test&Set program in
a system that is not sequentially consistent, namely PC-G, using only read/write variables. This
is the first (expected) wait-free Test&Set implementation for a weak consistency model. First we
specify a Test&Set multiprocess system.
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A Test&Set object, y, has initial value 0 and supports the operations: (test&set(y)) = b, which
returns the value b € {0,1}, and (reset(y)) which set the value of y to 0. A sequence of (test&set)
and (reset) operations to y, is valid if the first operation in the sequence and the first operation after
each (reset(y)) is (test&set(y))= 0 and all other (test&set(y)) operations are (test&set(y))= 1.
For the operation (test&set(y))= b the invocation component is (test&set(y)) and the response is
b. The response to the operation invocation (reset(y))} is an acknowledgement.

A Test&Set process, p has the code structure:

repeat
if (test&set(y)) = 0 then
(exclusion section(p))
(reset(y))
else
(remainder(p))
end-if
until done

where y is a Test&Set object and the operations of (remainder(p)) and (exclusion section(p)) are
any operations applied to any objects other than'y.

A Test&Set system is a system (P,{y},SC) where P is a collection of Test&Set processes
and y is a Test&Set object. The requirement that any computation of the Test&Set system be
sequentially consistent, together with the definition of the Test&Set processes and object, is enough
to ensure that any interleaving of the operations of the processes into a valid total order, will
never have more than one process whose most recent operations was (test&set(y)) = 0. So our
system provides what we expect from a Test&Set object (no two processes can “simultaneously”
be in (synchronized section)). The definition however is time-independent; it does not rely on
a global clock. In addition to the safety requirement, which is captured by the definition of a
Test&Set object combined with sequential consistency, the system must also satisfy the Progress
and Expected Wait-Freedom properties.

Progress:  Whenever some process, p, has its program counter at (test&set(y)) eventually, some
process g will have its program counter at (reset(y)) under the assumption that (exclusion section(p))
is finite. Expected Wait-Freedom:  With probability one, each process p completes (test&set(y))
in a finite number of steps.

In this section we show how to implement the Test&Set system on a PC-G platform.

Two-process case

Wait-free Test&Set cannot be deterministically implemented with just read/write variables even
on a Linearizable platform [13]. However, Tromp and Vitanyi [18] gave a 2-process randomized
algorithm that uses only two single-writer variables. Hence, by Theorem 3.1, Transformation 1
applied to their solution provides an implementation of expected wait-free Test&Set on a PC-G
platform.

Figure 3 reproduces Tromp and Vitany’s Test&Set algorithm [18] (all non-boxed operations).
In this figure, sj,sj € {me,you,choose, rst} and random(me,you) denotes a fair coin flip to choose
between me and you. The original algorithm corresponds to the program ({i, j},{si,sj}). The
figure also shows the transformation to ({a(i),a(j)}, {si,sj,m}), using Transformation 1.
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define (test&set(Q,i)) define (reset(Q,i))

if (5 = youand s; # rst) then return 1 m«— i
repeat S «—rst
s « choose
m« i
case sj is
you, rst:
§«—me
me lme—i
S <« Yyou
choose: m
s « random(me, you)
end-case
m« i
until (s # sj)

if (5 = me) then return 0
else return 1

Figure 3: Waitfree Test-and-Set program for a PC-G platform
The program of process i is shown; process j’s is symmetric (j = 1 —i). The invocations that are enclosed in boxes
correspond to the transformation. Note that each write to the single-writer variable s; is preceded and followed by a
box.

Corollary 4.1 The program given in Figure 3 is an implementation of expected wait-free Test&Set
on a PC-G platform with 2 processes.

The general case

Since we only require sequential consistency (versus Linearizability) for Test&Set programs, a
general solution for any number of processes can be achieved using a classical tournament tree
construction. Informally, the processes are arranged at the leaves of a balanced binary tree. A
successful 2-process (test&set) (returning 0) advances the winner to the parent node. A successful
n-process (test&set) completes at the root. The winning process executes the n-process (reset) by
executing a 2-process (reset) for each node along its reversed path from the root to its original
leaf. To complete their failed Test&Set operation. losing processes must also execute reset on the
reversed path from the last node they won to their original leaf position,

The single-writer variables needed for the 2-process Test&Set are no longer single-writers in
the general-case construction. Each process can potentially write variables associated with any
node on the path from the process’s leaf node to the root. However, by the correctness of the
2-process program, only one “winner” is allowed to advance to a parent node. That is, by the
nature of 2-process Test&Set, there cannot be more than one process competing at the same node
“simultaneously”.

This particular algorithm is an example of a n-process program that uses multi-writer variables
that is implemented on a PC-G platform by transformation a even though the same transformation
fails for some 3-process single-writer algorithms.
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5

Conclusion

The question remains whether there is a “simple” compiler that converts any sequentially consistent
program (or a large class of them) to an equivalent one for a PC-G platform. It is possible that
reading and writing several multi-writers breaks the impasse, though we conjecture that any such
solution will not provide wait-freedom. The partial progress reported in this paper has substantial
implications. There are important 2-process programs that use only single-writer variables, which
can be compiled for the PC-G platform. Tromp and Vitanyi’s expected wait-free Test&Set is an
example.
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