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Abstract

We develop a general numerical method for solving stochastic differential equa-
tions by constructing trinomial trees. The traditional trinomial tree is introduced and
then a significant improvement is adapted to the method to create faster trees. The
methods are illustrated by applying them to a class of mean reverting models suitable
for modeling energy spot prices. We illustrate the models with crude oil, natural gas,
and electricity data. The geometry of the trees is such that the futures prices match the
expected future spot prices. This renders the probabilities risk neutral, in that invest-
ment opportunities in the energey market have no net present value. Hence, the trees
can and are used to evaluate derivative securities. Numerical methods are developed

to estimate the parameters in the mean reverting equations.
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CHAPTER 1
INTRODUCTION

This thesis offers a complete industrial application in financial modeling. The
model is designed to capture the seasonal nature of the spot prices of commodities. For
the purpose of illustration, it is specifically applied to the energies natural gas, crude
oil, and electricity. The seasonal shape of the spot price fluctuations is obtained by
matching the expected future spot prices with the futures prices quoted in the energy
market. Thus the model is risk neutral and we can and do use it to evaluate derivative
securities such as American style options.

The idea of obtaining a risk neutral model by matching the seasonal shape was
inspired by Hull & White in the context of modeling the term structure of interest
rates. The objective of this thesis is to generalize their methods to the exciting arena
of energy trading. We take the futures curve as the energy equivalent of the term
structure of interest rates in order to create risk neutral probabilities. Furthermore,
we use a variation of the mean reverting model developed by Pilipovic for the express
purpose of modeling energy. The result is a coherent and efficient means of modeling
spot prices and evaluating options in the energy industry.

We begin this thesis with a review of some basic elements of stochastic calculus
in Chapter (2). We give the mathematical definition of a Brownian motion and use this
natural phenomena to create stochastic differential equations. We then see how random

processes like energy spot prices can be described by stochastic differential equations.
1




CHAPTER 1. INTRODUCTION 2

Next we introduce the concept of time varying mean reversion in Chapter (3)
and explain why it is a suitable model for capturing the seasonal shape of energy prices.
In essence, we hypothesize that the spot prices are influenced by a hidden economic
factor called the long term mean. We introduce the mean reverting equations proposed
by Pilipovic and extend them by choosing one of the parameters to be an unknown
function of time. This allows us to dictate the shape of the expectation of future values
to come. In this thesis we consider the following versions of the Pilipovic equation:

(1) 1-Factor Model

(2) 2-Factor (a) Model (Two Correlated Assets)

(3) 2-Factor (b) Model (Single Asset with Stochastic Long Term Mean)

In Chapter (4) we consider parameter estimation. Only one of the parameters in
the Pilipovic equation is selected to be the unknown function of time that is calculated
so that the futures prices are matched. The other parameters must be estimated using
historical data. This involves the maximum likelihood estimation of unobservable de-
terministic variables. Also, we develop a robust and efficient deconvolution technique
for recovering hidden random variables using limited information.

We formally define the mechanics of futures contracts in Chapter (5). We inves-
tigate a simple portfolio to establish an important relationship between futures prices
and expected future spot prices.

In Chapter (6) we extend the work of Hull & White, who developed a trinomial

tree implementation together with a linear mean reverting model appropriate for inter-




CHAPTER 1. INTRODUCTION 3
est rates. We extend and modify their procedures so that they may be applied to the
area of energy modeling. In fact it is fair to say that this thesis attempts to do for the
energy industry what Hull & White accomplished for interest rate derivative securities.
The following list briefly describes the main innovations offered here:

(1) Following a suggestion made in [Hull & White 1990], we develop a drift
adapted method of arranging the geometry of trinomial trees that speeds convergence
by minimizing errors near the median nodes of all the branches in a tree.

(2) We introduce the notion of creating a forward looking model by match-
ing the futures price curve available in the energy market. This is the energy equiv-
alent of the method of matching the initial interest rate term structure discovered in
[Hull & White 1993].

(3) We extend the method of fast trees introduced in [Hull & White 1994 (a)]
by generalizing the procedure to admit random processes with nonlinear drifts. This
innovation decomposes a trinomial tree into a preliminary tree that is transformed into
a final tree by arranging the geometry of each branch so that the futures prices are
precisely matched. This has the pleasing effect of separating the deterministic and
stochastic parts of the random process. Thus each component can be dealt with one at
a time instead of tackling the whole problem all at once. The fast trees are infinitely
easier to understand and implement. Furthermore, they run faster (hence our name for
them) and tend to converge more rapidly than ordinary trinomial trees.

(4) The nonlinear Pilipovic 2-factor models are decoupled by making sub-
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stitutions similar to the ones found in [Hull & White 1994 (b)]. This completes our
nonlinear analysis of all the linear methods developed by Hull & White.

We illustrate the numerical methods by applying them to our mean reverting
models in Chapter (7). We develop step by step algorithms of the various models under
consideration for both ordinary and fast trees.

In Chapter (8) we complete our industrial application by using our models to
evaluate derivative securities and present an extensive numerical comparison. After
giving a brief definition of a financial option, we compare the values calculated by
ordinary and fast trees. Furthermore, we analyze their run times and convergence
rates. To accomplish all this, we use a broad range of New York Mercantile Exchange
(NYMEX) data including natural gas, crude oil, and electricity over the period 1997-
1999. The results are exciting and informative, not to mention the fact that they
support everything we have said regarding the elegance and efficiency of fast trinomial
trees. All computer programs were written in Matlab and executed on Pentium III

personal computers and Sun work stations.



CHAPTER 2
STOCHASTIC CALCULUS

In this chapter we will review some of the elementary concepts from stochastic
calculus. Our ultimate objective is to model the unpredictability of energy prices as

stochastic differential equations.

A Brownian motion is a particularly simple model that was originally applied to
the motion of a particle undergoing random molecular collisions. For example, a mote
of dust floating in water is thought to capture the essence of a Brownian motion. What
is this essence? We imagine a random process that continuously exhibits unpredictable
fluctuations in all possible magnitudes and directions. The idea was proposed by Brown

and later analyzed by Einstein.

2.1 Brownian Motion
Let (2, A, P) be a probability space and consider the time interval [0, T'].

Definition 2.1 A random (stochastic) process is a function z : Q x [0,T] so that
z(-,t) is measurable for allt € [0,T) (where the set of real numbers R is equipped with

its Borel o-algebra).
We will usually write z(¢) or z, instead of z(-,t) for the sake of brevity.

Definition 2.2 A Brownien motion is a real valued random process z satisfying:
5



CHAPTER 2. STOCHASTIC CALCULUS 6

(1) Az = eV/At

where Az = z(u) — 2(t) and At =u—t for some0 <t <u <T andeisa
random drawing from a standard normal random variable ¢ (0,1).

2) The values of Az for any different small time intervals At are indepen-
dent from one another (this implies that z follows a Markov process' ).

(3) z(t) is a continuous function of time t almost surely (a.s.).

(4) z(0) =0 a.s.

Recall that any linear combination of normal random variables is another normal
random variable. Hence z (t) —z (0) is normally distributed with mean zero and variance
tfor allt € [0,T].

The limit as At — 0 describes the continuous motion and we write
dz = eVdt (2.1)

We are now in a position to examine the most basic instance of a stochastic

differential equation.

1 A Markov process is one that has no memory. That is, the outcome realized in the next moment

of time depends only on the present and not on the past.
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2.1.1 Geometric Brownian Motion

Definition 2.3 A random process = that follows a geometric Brouwnian motion

satisfies the equation
dc=adt+bdz (2.2)

where z is a Brownian motion and a and b are constant parameters called the

drift and standard deviation of the random process .

Then z (t) — z (0) is normally distributed with mean at and variance 6%t.

Observe that a stochastic differential equation is made up of 2 parts:

(1) A deterministic part a dt that is representable by an ordinary differen-
tiable equation.

(2) A stochastic part b dz that involves an elementary Brownian motion.

When b = 0 the variable z is no longer random and its evolution is governed
by the ordinary differential equation z’(t) = 2. Alternatively, when a = 0 the random
process is commonly referred to as a (simple) diffusion. Figure (2.1) shows a typical
realization of a geometric Brownian motion.

An obvious generalization of a geometric Brownian motion is one where the
parameters a and b are not constrained to be constants. The following excerpt is taken
from Definition (1) of Section (3.2) in [Kloeden & Platen 1999).

Suppose we have a probability space (2, A, P) and a Brownian motion z(t). We

imagine there is an increasing family {A; : ¢ € [0,T]} of sub o-algebras of A so that
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Geometric Brownian Motion

Figure 2.1: Geometric Brownian Motion

z(t) is A: measurable where A, may be thought of as a collection of events that are
detectable prior to or at time ¢t. Let z(t) be a random variable that is A.-measurable.
In other words, the random process z(t) is completely determined by the realizations

of 2(t) for all ¢ € [0, T).

Definition 2.4 Define L2 to be the set of jointly (A x L)-measurable functions b :
Q x [0,T] — R satisfying
T
f HB (- t))dt < oo
0
E[b%(-,t)] < oo forallte[0,T)

and b(-,t) is A.-measurable for all t € [0,T] where L is understood to be the set

of Lebesgue subsets of the interval [0,T).
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In fact, under the Euclidean norm

ol =\/ / E[b2(-,£)]dt

L3 is a Hilbert space (so long as we identify functions that are equal everywhere

except possibly on a set of measure zero).

2.1.2 Ito Process

Definition 2.5 A variable = that follows an Ito process satisfies an equation of the

form
dr =a(z,t)dt +b(z,t)dz (2.3)

where z is a Brownian motion and +/|a(-,t)| and b(-,t) are functions in L%
that satisfy the usual regularity conditions. For ezample, see [Kloeden & Platen 1999)].
Naturally a and b are called the drift and standard deviation functicns of the

random process T.

Then z (t) — z (0) need not be normally distributed. However, we will prove later
that z (t) — = (0) is well approximated by a normal distribution with mean a (zo,0)¢

and variance b° (zg,0) ¢t for small £.

It is also common to write Equation (2.3) in integral form

z(T)=:z:o+_/0'Ta(a:,t)dt+/oTb(z,t)dz (2.4)
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where the integral on the right involving the Brownian motion z (t) is referred

to as an Ito integral and we write
T
I(b) = / b(z,t)dz (2.5)
0

Before proceeding further, we write down a theorem that establishes a couple of

useful properties of Ito integrals.

Theorem 2.6 For any b € L% the Ito integral (2.5) satisfies
(1)  E{I(®)=0
(2)  E*()] = [jp|?

Proof. This is Theorem 3.2.3 of [Kloeden & Platen 1999]. =

The realization of a Brownian motion is everywhere continuous but nowhere
differentiable. However, stochastic differential equations can still have solutions. As
it happens, the solutions are themselves composed of Brownian motions. Of course -
the same as with ordinary differential equations - an analytic solution does not always
necessarily exist. Indeed this is the case with the equations we will study in this thesis.

When an analytic solution is impossible to obtain we turn to numerical methods.
One such technique involves the approximation of the probability distribution (of the
solution of a stochastic differential equation) by a trinomial tree. We will construct
trinomial trees later when we have developed more tools.

Let us now look at some of the ways that Ito processes can be used to model

the uncertain evolution of energy prices.
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2.2 Energy Prices

The most basic model for energy prices is the so-called log normal distribution (). It
assumes that the natural logarithm of the price process [ (¢) is normally distributed.
We shall denote a log normal random variable by /(¢) for reasons that will become clear

later in this thesis.

Definition 2.7 The stochastic differential equation describing a log normal random

variable | takes the form
dl=pgldt+71ldy (2.6)

or equivalently

gl£=;6dt+1'dy

The number 7 is known as the volatility of the price process. Figure (2.2) shows
a typical log normal distribution.

Observe that this is an Ito process as the drift and standard deviation are both
proportional to the energy price [ (£). An obvious question now poses itself to us: How
can we prove that the log of ! (¢) is normal? We shall require the use of a fundamental

result known as the Ito formula.

Theorem 2.8 (Ito Formula) Let g (z,t) be e function of a variable z (that may also

depend explicitly on time t) that satisfies the Ito process

dz =a(z,t)dt +b(z,t)dz
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Log Normal Distribution

-t

a5+ a=0.01

b=0.1

50
Time (%)

Figure 2.2: Log Normal Distribution

Then g is another random variable that satisfies the Ito process

dg = [g (z,t) + a(z,t) ¢ (z,t) + i(;:—’t—)g” (z,t)]dt + b(z,t) g’ (z,t)dz

where the prime and dot symbols (respectively) indicate differentiation with re-

spect to x and t.

Proof. This is the differential form of Theorem 3.3.2 (Ito Formula) of [Kloeden & Platen 1999].

This result allows us to transform relatively complex stochastic differential equa-
tions into ones that are simpler and easier to use. Eventually we will also require the

use of a higher dimensional Ito formula. Refer to [Kloeden & Platen 1999] for a fully
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generalized version of the higher dimensional Ito formula. The following relatively sim-
ple specific case due to Wilmott - see Equation (4.9) in [Wilmott 1998] - is sufficient

for our needs in this work.

Theorem 2.9 (Higher Dimensional Ito Formula) Let g (z,v,t) be a function of
a pair of correlated Ito processes x and v (that may also depend explicitly on time t)

that satisfy the system of stochastic differential egquations

dr = a(z,v,t)dt+b(z,v,t)dz

dv = c(z,v,t)dt +d(z,v,t)dy

Denote the correlation between the Brownian motions z and y by p. Then g is

another random variable that satisfies the Ito process
. 1. 1,
dg=[g+ '2'b 9zz + pbdgz, + 'Q'd Gvv)dt + g-dz + gydv

where the subscripts and dot symbol (respectively) indicate differentiation with
respect to z, v, and t and we have neglected to write the dependence of the standard
deviation functions b and d, and all derivatives of g on z, v, and t for the sake of

clarity.

Observe that in the higher dimensional case, the random function g (z,v,t)

evolves according to the variations of both Brownian motions z and y.
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2.2.1 Log Normality

Suppose we make the substitution L (I) = In ({). The required derivatives are L' ([} = }
and L” (I) = —%. In Equation (2.6) the drift and standard deviation are a = (I and

b = 7l. Therefore by the Ito formula we have

T2
dL = (8- )dt +7dy

This reveals that the log of the price process I(¢) is in fact a geometric Brownian
motion. Hence L (T') — L (0) is normally distributed with mean (8 — -"23)T and variance
2T.

It is now desirable to use our exact knowledge of the simplified process L (¢) to

predict the behavior of the energy price { (t). In other words
2
r
Infl (£)] ~ ¢[ln (lo) + (B — ST Vi

where {5 = [ (0).

We can and will show that the mean and variance of  (t) are E[I (¢)] = lpe®* and
var(l (t)] = [2e*t(e™t — 1).

This means that the expected value of a log normal random variable [ (t) exhibits
exponential growth (provided S is positive). This is qualitatively correct behavior for
a stock price. However, in reality energy prices do not follow a log normal distribution.
They are strongly affected by the temperature and in particular the changing of the
seasons. A far more realistic equation for energy prices is the so-called mean reverting

model.
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2.3 Mean and Variance

The expected value of a random process can be obtained by its associated stochastic
differential equation in a particularly elegant way. As it happens the expected value of
an Ito process is the solution of the ordinary differential equation obtained by ignoring

the stochastic part.

Definition 2.10 Consider a random process s(t) evolving over the time interval [0,T).

We shall adopt the notation
3(t) = Efs(t) | s(0)]

Similarly, when we are working with a short time interval of the form [t,t + At],

we will write
5(u) = Efs(u) | s(¢)]

For the remainder of this thesis, when we mention the expectation of a random
process, we really are referring to the expectation conditional on the value of the random
variable at the left endpoint of the time interval under study. This should be obvious

from the individual contexts in which expectations arise.
Theorem 2.11 Suppose a variable s satisfies an Ito process

ds=a(s,t)dt +b(s,t)dz
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Put ¢(t) = 5(t) for the expected value of s(t). Then (t) is the solution of the

ordinary integral equation
¢
e (t) = s+ /0. F{a[s (u) ,u]}du (2.7)

where so = s(0).
Furthermore, if a(s,t) has the functional form a(s,t) = f(t)s + g(t) where f(t)
and g(t) are deterministic functions of time t, then ¢ (t) satisfies the ordinary differ-

ential equation
& (t) = alp (2) .4 (28)
Proof. The integral equation for s (t) is
t t
s(t) = so+/ als (u) ,u] du+/ b(s (u) ,u] dz
0 0
By Theorem (2.6) the expectation of the Ito integral vanishes
t
E{/ bls (u),u] dz} =0
0
We can use this result and take expectations across the stochastic integral equa-
tion (2.4) to get

o(®) = so+B{ [ als(w),ul du}
= so+/:E{a[s (u) ,u]}du
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Now if a(s, t) is of the form a(s,t) = f(t)s + g(t), then

E{a[s (v) ,u]} E[f(u)s(u) + g(u)]

= f(W)E[s(u)] +g(u)

= afp(u), 4]
Hence
@ (t) = s+ -/(; alp (u) ,u)du

By the Fundamental Theorem of Calculus we obtain an ordinary differential

equation for the expected value

@ () = alp (2) ,¢]

Let us verify this result by calculating the mean and variance of a log normal
random variable directly. Suppose that in the stochastic differential equation for I (¢)
the drift and standard deviation are given by a ({,t) = 8l and b(l,t) = 7i.

Put 9(t) = I(¢). The solution of equation (2.8) reveals the expected value
¥ (t) = loe™
Now consider the parabola (2. By the Ito formula we obtain

d (1) = (26 + %) iPdt + 2rl%dy
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By Theorem (2.11) we similarly obtain an ordinary differential equation for the
expected valne E(I2)

dE{2(t)]

——= = (28 + ) E[2(¢)]

The solution of this equation reveals the expectation of the square
E[lz(t)] = lge(23+1—2)z

Finally the variance of s (¢) is given by the formula

var(l(8)] = E[I*(t)] — % (1)

= BePt(e™t - 1)
This completes our analysis of the log normal distribution.
Theorem 2.12 Let X(t) be an Ito process (2.3)
dX =a(X,t)dt +b(X,t)dz

Then X (t+ At) — X (t) is approzimated by a normal random variable with mean

M and variance V' given by

M

a[X (t), t]At + O(A?)

14 b[X(t),t] At + O(At?)

Proof. Put z(u) = X (u) for all € [t,t + At]. Then z(t) = X(t) and by Theorem

(2.11) the expected value of X (t + At) is

z(t + At) = z(t) + /:-Mt E{a[X(u),u]}du (2.9)
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The expectation of a continuous random variable is a continuous function. Fur-
thermore, it is obvious that E{a[X(t),t]} = a[X(¢),t]. By the Fundamental Theorem
of Calculus we obtain
z(t+ At) = z(t) + E{a[X(2),t]}At + O(A?)
= z(t) + a[X(t), t]JAt + O(At?)
Thus the mean is
M = z(t+ At) — z(t)
= a[X(t),t]At + O(At?)
Now by Theorem (2.6) we find the variance to be
V = E{[X(t+At) - z(t + At)}]*}
= E({ /t e b[X (u),u]dz}?) + O(At?)
t+At
- /t E{b[X (1), u]}du + O(AL)
Similarly E{¥*[X(t),t]} = b?[X(t),t] and so by the Fundamental Theorem of
Calculus and our previous remarks it follows that the variance is
V = b?[X (t),1)At + O(At?)

Finally we observe that X (¢t + At) — X(¢) is well approximated by a normal
random variable ¢(M, V) since the basic building block of the stochastic differential
equation (2.3) is a Brownian motion z. Therefore in the limit as At — 0 the distribution

of X (t + At) — X(t) becomes perfectly normal. =



CHAPTER 3
ENERGY PRICE DYNAMICS

We now investigate a series of models appropriate for energy prices. The themes
explored are mean reversion and seasonality. These are two of the main features ren-

dering energy prices fundamentally different from relatively simple stock prices.

3.1 Mean Reversion

A widely used class of models for energy prices consists of processes that are mean

reverting. The Ito process that describes this behavior can take the form

3.1.1 1-Factor Pilipovic Equation

ds = a(l — s)dt + os dz (3.1)

where the constant parameter « is called the strength of mean reversion. Observe
that the noise term is proportional to s. This differentiates the Pilipovic equation from
the Hull & White equation, which has what we call additive noise! and is appropriate for
modeling interest rates. In order to work with the Pilipovic equation, we will find out
later that it is necessary to transform to a new random variable that does have additive

noise. This new variable has an exponential term in the drift. It is in this sense that

!The 1-Factor Hull & White equation for interest rates is dr = [f(¢) — ar]dt + o dz. Observe that

the noise term is independent of the interest rate r.

20
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the Pilipovic equation is nonlinear and consequently it is much harder to analyze than
the Hull & White equation. Refer to [Pilipovic 1997] for a more complete discussion of
the Pilipovic equation and why it is appropriate for modeling energy prices.

The number ! is known as the long term mean and it represents the quantity
that the price process s (t) is trying to revert to. It is easy to show that [ is a fixed
point of the dynamical system ¢ = a(l — ¢). In all practical applications, the strength
of mean reversion « is positive. If s (¢) is above [ then the drift is negative, while if s (t)
is below [ then the drift is positive. In both cases, the drift always acts to inexorably
draw the energy price back toward the long term mean.

Although the long term mean can be a constant parameter this is too simple
to be of any use. In practice the long ! (t) term mean is allowed to be an unknown
function of time. Why unknown? The long term mean ! (t) should be allowed to capture
the essence of the economic trend driving the energy market. An important factor
affecting [ (t) is probably the temperature which is itself a function of the changing of
the seasons. This highly realistic model for energy prices therefore exhibits one of the

singular qualities that make energy prices unique: namely the concept of seasonality.

3.1.2 Generalized 1-Factor Pilipovic Equation

ds = afl (t) — s]dt + os d=z 3.2)

For the remainder of this thesis, Equation (3.2) will be referred to as the 1-
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factor model. Instead of growing exponentially as stock prices do, energy prices move
up and down with the changing of the seasons. They tend to display peaks when the
temperature is at an extreme value. For example energy prices tend to peak in Summer
when it is hot and in Winter when it is cold. The long term mean is specifically designed
to capture this economic trend. Then the mean reverting model will successfully mimic
the seasonality clearly inherent in the prices of energy commodities like oil, natural gas,
and electricity.

Put ¢(t) = 5(t). By Theorem (2.11) the expected value of a mean reverting

random variable s (t) satisfies the ordinary differential equation
@ (t) = ofl(t) — o(t)]
This is a linear equation and is easily solved to yield
t
@ (t) = ae™ / e™l (u) du
0

Let us consider a suitable example for the sake of illustration. Put [(t) =
a + bsin(2%) where the period P = 1 year. This is perhaps the most basic seasonal

function. Then the above solution becomes

. 2t 27 2mt 2rB, _..
¢ (t) =a+ Bla sm(—I—__,-) -5 cos(?)] +(so—a+ ?)e (3.3)
= ba —
where B = poree: and sq = s(0).

Figure (3.1) depicts the situation for a typical value of the strength of mean

reversion .
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Expectad Spot Price

[A)

Figure 3.1: Expected Spot Price

This gives a nice image of how the mean reverting model can also capture the
natural behavior of energy prices. Observe that the expected spot price ¢(t) follows
along behind the long term mean [(¢): this is the nature of mean reversion. Now look
at Figure (3.2) to see a sample path satisfying Equation (3.2) when the long term mean

is [ (t) = a + bsin(2%).

3.2 Systems of Equations

We now move on to study systems of stochastic differential equations. In this thesis we
consider systems involving only 2 stochastic variables.

A system of stochastic differential equations is obtained by allowing the long
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1-Factor Mean Reversion
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s(t)

50
Time (t)

Figure 3.2: 1-Factor Mean Reversion

term mean [ (¢t) to be a log normal random variable instead of an unknown function of

time.

3.2.1 2-Factor Pilipovic Equation

ds = a(l—-s)dt+osdz (3.4)

dl = Bldt+7ldy

For the sake of simplicity we will assume that the random components of s ()

and ! (t) are uncorrelated?>. The number 8 can be a constant parameter. In this

2To be more precise the Brownian motions z(t) and y () are uncorrelated (remember that the

Brownian motions are the sources of unpredictability in a stochastic differential equation).
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case [ (t) is a standard log normal random variable and the expected value ¥(t) =
1(t) exhibits exponential growth. If we also put ¢(t) = 3(t) then it is derived in
[Lari-Lavassani, Simchi & Ware 2000] that the trajectory of these expected values ad-

mit a decomposition in terms of the stable and unstable manifolds of the system

(1) 1
= (sg — iﬂlo)e-at + lgePt

Y(t) « 0 1

= 2
a+f

where so = 5(0) and /o = 1(0). Note that as ¢ — oo, p(t) — zZzle”, or
equivalently, (t) — z35%(t). In other words, as ¢ — oo, the expectation ¢(¢) tends to
a multiple of the expected value (%) of the long term mean, whence the term ‘mean
reversion’.

Although this is a fine model, it is too simple to capture the seasonality of an
energy price. Indeed we would like the long term mean to move up and down as the
seasons change - just as energy prices do. This can be done by allowing the parameter
8 (t) to be an unknown function of time.

Put o(t) = 5(¢t) and ¥(t) = [ (t). By Theorem (2.11) the expected value of the

long term mean I(t) is the solution of the ordinary differential equation
Y (E) =B1)y(t) (3-5)

Thus the function G (t) can be chosen so that the long term mean behaves

precisely the way we want - and that is exactly what we do later in this thesis!
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3.2.2 Generalized 2-Factor Pilipovic Equation

ds

a(l — s)dt + os dz (3.6)

dl

B)ldt+ Tl dy

For the remainder of this thesis, Equation (3.6) will be referred to as the 2-
factor (b) model. If a mean reverting random variable s () and its (stochastic) long
term mean [ (t) satisfy Equation (3.6), then by Theorem (2.11) their expected values

satisfy the ordinary system

e(t) = afp(t) — e (t)] (3.7)
V() = BE)Y(¢)

The solution is

t
p(t) = sg+ae ™ / e Y (r)dr
0

Y(t) = lpelofna

One can exogenously introduce seasonality by imposing an appropriate func-

tional form for 3 (¢). For example, this could be

_ 21 beos(3E)
~ P a+bsin(Z)

B(t) (3.8)

In this case, the expectation of the long term mean is ¥ (t) = a + bsin(3g).

Remember that this is the simple shape we used in Subsection (3.1.2) to illustrate the
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50
Time (2)

Figure 3.3: 2-Factor (b) Mean Reversion

concept of seasonality. Then the expected value of the energy price s(t) is given by
Equation (3.3) and the relationship between ¢(t) and ¥ (t) looks the same as Figure
(3.1) with I(2) replaced by %(f). What is the difference? Remember we are considering
expected values here: the long term mean [(t) is actually a stochastic variable in Equa-
tion (3.6). This does indicate that the 2-factor (b) model has a richer structure than
the 1-factor model. Figure (3.3) shows a sample path satisfying Equation (3.6) when
the drift parameter is given by Equation (3.8)

We shall also consider systems of 2 correlated mean reverting energy prices later
- this is the previously mentioned 2-factor (a) model - but the details will not be given

here.
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This concludes our review of the elements of stochastic calculus. We shall now
proceed to examine the mean reverting model for energy prices in greater detail, be-
ginning with an expose on the statistical estimation of the parameters in the Pilipovic

equation.



CHAPTER 4
PARAMETER ESTIMATION

An important and difficult problem that arises in the financial modeling of energy
prices is the estimation of the parameters in the stochastic differential equations. If
we have available historical data - and in practice we do - the parameters can be
estimated by maximizing the likelihood (or minimizing the variance) of the sample
paths. The proportional noise in the Pilipovic equations precludes the possibility of
using a traditional Kalman filter to estimate the parameters. Instead we propose some
approximate solutions whose numerical implementations yield reasonably good and
stable results. The data used as input arguments for the computer programs are natural
gas, crude oil, and electricity spot prices quoted on NYMEX over the period 1997-1999.

Recall that in our generalized models, we allow one of the parameters to be an
unknown function of time in order to capture the seasonal shape of energy spot prices.
Although this unknown function of time is estimated along with the other parameters
in the Pilipovic equations it is never used in the numerical solution of a stochastic
differential equation. Why? The shape of the spot price distribution will later be
designed to coincide with the futures prices quoted in the energy market. In other
words, the models we are developing are forward looking in that they incorporate the
future beliefs of traders into the calculation of the unknown function of time. Therefore
we focus on estimating the constant parameters with historical data. The techniques

developed for calculating the unknown function of time will be used later, when we
29
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have built the theoretical framework that enables futures curve matching in Chapter
(5). Although it is interesting to observe what has gone before, we are really interested
in what the future holds in store for us. This combination of historical calibration and

forward looking curve alignment is one of the innovations of this thesis.

4.1 1-Factor Model

As a prelude to the relatively complex 2-factor (2) and (b) models we first look at the

generalized 1-factor Pilipovic equation (3.2)
ds=all(t) — sldt +os dz

where
s Spot price
I(t) Long term mean (unknown function of time)
a Strength of mean reversion
o Volatility
z Brownian motion
We assume that the discrete time series for the spot prices s (¢) is available by
whatever means. This sample path {s;} represents the sum total of our knowledge of
the energy price process. The long term mean [(t) is an unobservable deterministic
variable. It is assumed to capture the economic trend in the energy market. Evidently,

it is necessary to estimate this hidden quantity, by some statistical means.
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4.1.1 Long Term Mean Estimator

As it happens the underlying economic trend {(t) can be estimated by solving an ordi-
nary differential equation. Put ¢(t) = 5(¢). The behavior of the expected value of the

spot price is given by Equation (2.8), which now becomes

@(t) = a[l(t) — ¢(t)] (4.1)

However, the expected value ¢(t) is not observable: we know only the spot price
s(t). We now make an ergodicity type of assumption: the expected value ¢ (t) may be
approximated by taking a moving average of the sample path {s;}. As it happens, a

moving average is a special case of a convolution.

Definition 4.13 A convolution function c(t) is an even, continuous, and real val-

ued function that satisfies ¢(t) > 0 and

/m c(t)ydt =1

—Q0

Definition 4.14 A convolution of a curve s(t) is another function @(t) defined by

p(t) = /oo c(r)s(t — r)dr

-0

where c(t) is a convolution function.

Assumptionl The ezpectation p(t) can be (approrimately) calculated by taking

a convolution of the sample path {s;}

P = Z CjSi-j (4.2)

== —1T1
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]
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Expected Spot Price Experiment
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Figure 4.1: Expected Spot Price Experiment

When ¢; = 5= for all m the convolution is a moving average of the data points.
We find that a monthly moving average (m = 20 trading days) works well in practice.
Figure (4.1) displays a sample path satisfying Equation (3.2) that was simulated by a
random number generator!, where the dashed line depicts the theoretical expectation
(3.3) and the dotted line represents the moving average (4.2) of the data points. This
picture appears to justify the use of Assumption (1), at least for a mean reverting
process.

Before proceeding further, we mention in passing why a convolution of a random

variable is a reliable approximator of its expected value. Recall that a random variable

1The long term mean used in the simulation was I (£) = a + bsin(3gt).
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is composed of a deterministic part and a stochastic part that in some sense represent
the expectation with an addition of noise. A convolution has the effect of eliminating
the noise while leaving the expected value behind in its wake. Obviously the technique
is not perfect because information is destroyed by the smoothing process. However, the
differences between the approximate expectation and the real one tend to cancel out -
especially when the process moves up and down in a seasonal way.

Ideally we would like to take a large number of random samples of the probability
distribution of the spot price s(t). We realize that this probability distribution is a
(seasonal) function of time. However, if the distribution varies slowly over time, then
the probability distribution of s(t+ At) is approximately equal to that of s(t) for small
values of At. This is the philosophy behind the convolution technique of estimating
the expected value ¢(t).

By Taylor’s theorem the derivative of ¢ (t) at time index i is easily calculated
to a high degree of accuracy by the formula

b: = 8(qai+1 - 901'-1) s (80:‘4-2 - ‘Pi—z) (4_3)
* 12 At

for i =3,..., (n — 2). The remaining derivatives are given by

. Yo — P . Y3 — P
= rY2_¥1 =X3_ri 4.4
O = X ') 2 At ( )
: Pn — Pr . Ppn— Pn
Py n2 tn 2 @n n tn 1

Note that we have adopted the (trading) day as our unit of time. Therefore the

length of a small time interval is At = 1.
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Long Term Mean Experiment
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Figure 4.2: Long Term Mean Experiment

Now it is possible to solve Equation (4.1) for the hidden quantity

1(t) = o(t) + 2 (45)

a
Then Equation (4.5) is a reliable estimator for the unobservable deterministic
variable [(t). Figure (4.2) shows the long term mean (dotted line) resulting from this
technique (4.5) compared to the sine curve (dashed line) that was used to generate the

sample path. Again we perceive the close agreement between experiment and theory.
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4.1.2 Discrete Time Series

Before conducting the time series analysis proper it is necessary to discretize the 1-factor

model to get
Siy1 = S; + Cl(l,' - Si)At + 5;2; (46)

fori=1,..,(n—1).

The sequence of random variables {;} is assumed to be a normal stationary time
series® with an expected value of zero and standard deviation ov/At. The stochastic
component of the random process can be isolated by solving (4.6) for z;

Si —s,-—al,-—-s,—At
z; = +1 s.( ) (4.7)

Now by our earlier result (4.5) this becomes

z = Si41 — Si — [a(ji - si) + @;]At (4.8)

Recall that z; is a normal random variable with mean zero and standard deviation

oV At. It is now an easy matter to compute the variance V of z;.

1 n-1

S22 (4.9)

Observe that the z;’s and consequently V are functions only of the strength of

mean reversion ¢.

2Do not confuse z, which is a Brownian motion with mean zero and standard deviation v/At, with
{z:}, which is a simple diffusion with mean zero and standard deviation cv/At. The number ¢ has

been absorbed into the z;’s because it is more convenient to estimate the parameters in this way.
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4.1.3 Gaussian Likelihood

The numbers {z;} are assumed to be independent random drawings from a normal

distribution ¢ (0, oV At) . Therefore the Gaussian likelihood of the realization {s;} is

n—1
exp(—z5 2, #)
L(a,0) = = (4.10)

(2mo) "7

Proposition 4.15 The likelihood L is mazximized when the variance V is minimized.

Proof. Put o = W(a) = %%‘2. Then the likelihood L can be expressed purely as a

function of

Lia) = SR (@)
[2rW ()] T

Observe that W > 0. Otherwise we would have s; equal to some (constant)
number for all i = 1,...,n: we tacitly assume that this a statistical impossibility.

We maximize the likelihood by differentiating L with respect to o

n—1

2

YW'(0)[At + ——]L(c)

L'(a) = _( W(Q)

Evidently the only way this derivative can equal zero is if W/(a) = 0 in which
case we must also have V'(a) = 0. This is precisely the condition that minimizes V.

4.1.4 Minimum Variance Estimators

The maximum likelihood estimators of & and ¢ are obtained by minimizing the variance

V. This can be done by differentiating (4.9) with respect to a and setting the derivative
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equal to zero

n—-1

5= Z (S,.{..l - 8§ — ‘PzAt) (‘pz — 81) Z ((pt S,) At -1 (4.11)

=1 =1

Hence V'(a) = 0 has a unique solution @. The variance V(@) must then be a
global minimum as we can make V arbitrarily large by picking negative values of a.

Once the best estimator for a has been found, the best estimator for o is calculated by
c=W(a) (4.12)

Tables (4.1), (4.2), and (4.3) show the minimum variance estimators & and 7 for

natural gas, crude oil, and electricity over the period 1997-1999.

Table 4.1: 1-Factor Model Minimum Variance Estimators (1997)

a c

Natural Gas | 0.232 | 0.0331

Crude Oil | 0.141 | 0.0174

Electricity | 0.188 | 0.0418

Table 4.2: 1-Factor Model Minimum Variance Estimators (1998)

o~ ~
« (o

Natural Gas | 0.151 | 0.0349

Crude Oil | 0.170 | 0.0283

Electricity | 0.172 | 0.0479
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Table 4.3: 1-Factor Model Minimum Variance Estimators (1999)

a c

Natural Gas | 0.158 | 0.0301

Crude Oil | 0.146 | 0.0212

Electricity | 0.154 | 0.0454

At this point there is an obvious question: how do we know that our minimum
variance estimators are accurate? Furthermore, what is the precision of our measure-
ments? We now propose a numerical test as evidence of the validity of our work. We
simulate sample paths satisfying Equation (3.2) (using a random number generator)
with a specific set of parameters and then attempt to recover those parameters using
our method. By repeating this experiment a large number of times and taking the mean
and standard deviation of the recovered parameters, we can see whether our technique
reveals unbiased estimators of the true parameters. Also, twice the standard deviation
is evidently a good estimator of the absolute error.

Table (4.4) shows the results of this experiment wherein @ and 7 are the sample
means of @ and & while s, and s, are their sample standard deviations. For all possible
pairs of the parameter sets @ = 0.15 and ¢ = 0.2 and o = 0.02, ¢ = 0.03, and o = 0.04,
100 sample paths consisting of 250 data points were simulated.

We perceive that the measurements of & are excellent while those for & are

(on average) consistently too high by an amount approximately equal to 0.025. Also,
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Table 4.4: 1-Factor Model Parameter Estimation Experiment

o

0.02 0.03 0.04

@ | 0.175 | 0.175 | 0.178

a=0.15|s, | 0.028 | 0.032 | 0.029

o | 0.0198 | 0.0298 | 0.0397

ss | 0.0007 | 0.0009 | 0.0013

o | 0.226 | 0.226 | 0.226

a=02 |s,| 0.027 | 0.029 | 0.030

o | 0.0198 | 0.0298 | 0.0394

ss | 0.0007 | 0.0009 | 0.0013

we remark in passing that upper bounds on the absolute errors associated with the
measurements of @ and & may be approximated by 2s, and 2s,. We will not do an
analysis of the errors here although we display (approximate) error bars for interests

sake.

Aa=0.06 Ao =0.002 (4-13)
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4.2 2-Factor (a) Model (Two Correlated Assets)

Consider a pair of correlated 1-factor energy prices with each one individually obeying

the generalized 1-factor Pilipovic equation

ds = «afl(t)-s]dt+osdz (4.14)

dv = B[m(t) —v]dt+7v dw

where
(s,v) Spot prices of two correlated assets
I(t), m(t) Long term means (unknown functions of time)
(a,B) Strengths of mean reversion
(o,7) Volatilities
(z,w) Correlated Brownian motions
Let the correlation between the two related assets be denoted by p = corr(z, w).
We shall henceforth refer to Equation (4.14) as the 2-factor (a) model.
The parameters («, o) and (8, 7) for s and v can obviously be estimated one at
a time by minimizing the individual variances of the simple diffusions {z;} and {w;}
using the procedure we just developed in Subsection (4.1.4).

Put 1(t) = 7(t). Evidently the discrete equation for the simple diffusion {w;} is

i =

_ Ui — v — [B(Y; — v) + 9,]At (4.15)
v

1
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It merely remains to calculate the best estimator of the correlation p.

4.2.1 Minimum Variance Correlation

Suppose (@,5) and (ﬁ, ?) are the minimum variance estimators given by Equations

(4.11) and (4.12). Then the minimum variance estimator of the correlation is

n—-1

S %@ wlB)
=T (4.16)

where z; (&) and w; () are calculated by Equations (4.8) and (4.15).
Tables (4.5), (4.6), and (4.7) show the correlations between various energies over

the period 1997-1999.

Table 4.5: 2-Factor (a) Model Minimum Variance Correlations (1997)

Natural Gas | Crude Oil | Electricity

Natural Gas 1 0.203 0.283
Crude Oil 0.203 1 -0.035
Electricity 0.283 -0.035 1

This evidence suggests that natural gas is positively correlated with both crude

oil and electricity while crude oil and electricity are probably uncorrelated.
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Table 4.6: 2-Factor (a) Model Minimum Variance Correlations (1998)

Natural Gas | Crude Oil | Electricity
Natural Gas 1 0.132 0.138
Crude Oil 0.132 1 -0.051
Electricity 0.138 -0.051 1

Table 4.7: 2-Factor (a) Model Minimum Variance Correlations (1999)

Natural Gas | Crude Oil | Electricity
Natural Gas 1 0.167 0.140
Crude Oil 0.167 1 0.056
Electricity 0.140 0.056 1

4.3 2-Factor (b) Model (Single Asset with Stochas-

tic Long Term Mean)
Consider next the more interesting generalized 2-factor Pilipovic equation (3.6)

ds = a(l—-s)dt+osdz

dl

B(t)ldt+7l dy

where
s Spot price

l Long term mean
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«a Strength of mean reversion
B (t) Drift of long term mean (unknown function of time)
o Volatility of spot price
T Volatility of long term mean
(z,9) Uncorrelated Brownian motions
The spot price obeys the same stochastic differential equation as before. However
the long term mean is now also considered to be a stochastic variable and is ruled by
an equation of its own. The spot price is still assumed to revert to the long term mean
while the natural logarithm of the long term mean is a geometric Brownian motion
(2.2). For the sake of simplicity we assume that the spot price and long term mean are
uncorrelated®.
Our objective is to estimate the parameters «, o, and T using historical data.
The drift parameter G (¢) is not necessary to model energy prices as it is selected in
such a way that the expected value of the spot price evolves according to predictions
made by insightful forecasting such as futures price matching. Now it will be necessary
to calculate the best estimator of 3 (¢) in order to determine the volatility 7 of the long
term mean I(t).
The important thing to keep in mind is that the long term mean is unobservable.

It represents an underlying economic factor driving the market and we have no way to

3In other words the Brownian motions z and y that contribute to the unpredictability of s and !

are uncorrelated.
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measure it directly. In practice we only have a historical time series for the spot prices.

Put ¥(t) = I(t). We can use the same method we developed in Subsection
(4.1.1) to estimate the expected value of the long term mean. We then replace [(t) by
¥ (t) in Equation (4.7) (hopefully) without altering the distribution of z(t) too much.
Hence we can find satisfactory estimators for & and & by treating the 2-factor (b)
system as though it were in fact 1-dimensional*. Finally we attempt to recover the
unobservable random variable [(¢) using a deconvolution of ¥(t). This enables us to

find 7 by calculating the standard deviation of the Brownian motion y(2).

4.3.1 Average Long Term Mean Estimator
By Theorem (2.11) the expected values ¢ (t) and 1¥(t) of the spot price s(t) and long
term mean [(t) satisfy the ordinary system (3.7)
@(t) = al¥(t) —e()]
Bt)v(t)

¥ (t)

Recall that the expected value ¢ (t) can be safely approximated by an appro-
priate moving average of s (t). Furthermore, the derivative ¢ (t) can be calculated by

Equations (4.3) and (4.4). Hence we can solve Equation (3.7) for to reveal the expected

iIn other words, we obtain estimators for o and ¢ under the supposition that 7 = 0 even though

we know that {(t) is a stochastic variable. This seems to work well in practice.
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4

Expected t.ong Term Mean Experiment

wtheoryl(t)

1
Time (1)

Figure 4.3: Expected Long Term Mean Experiment

value of the long term mean !(t)

o(t
9() = o(t) + 22 (417

We test the validity of Equation (4.17) by simulating a pair of sample paths
{s:} and {i;} obeying the 2-factor (b) model. Figure (4.3) compares an experimental
expected long term mean {1;} (dotted line) calculated by Equation (4.17), to the
theoretical one (dashed line) calculated by taking a moving average of the realized

long term mean {l;}. It would appear that Equation (4.17) does an excellent job of

recovering the expected value 1(t) of the unobservable stochastic variable ().
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4.3.2 Discrete Time Series

The next step is to convert the continuous system (3.6) into an equivalent discrete

model

Siv1 = 8 +a(ly — 5:)At + s;2; (4.18)

li;pm = (1 + 6,_—At)l,: + Ly

fori=1,..,(n—-1).

The sequences of random variables {2;} and {y;} are assumed to be (uncorre-
lated) normal stationary time series with expected values of zero and standard devia-
tions of ov/At and 7v/At.

We now replace l(t) by its expectation ¥(¢t) in Equation (4.8) to obtain an

estimator of the simple diffusion {2;}

Sig1 — [Si -+ Cl(‘(,bz- -_ Si)At]
Si

%= (4.19)

Assumption 2 The estimator Z defined by Equation (4.19) has (approzimately)
the same probability distribution as z, namely ¢(0,o0v At).

Observe that

o a(y; — L)At

Si

Since s(t) and [(t) are uncorrelated by our assumption, we see that the mean of
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Z vanishes

aly; — E(L)]At

BE) = E(=)- T

= 0
Next consider the variance of

var(z;) = var(z;) — aAtE[M] + a? AtzE[(?ﬁi -; li)2]

Si s;

Now by a purely heuristic argument it can be shown that the fraction g'ﬁxs—:ﬁl
is approximately equal to the simple diffusion of the long term mean y;. This is not
precise; indeed, it is at this point that our attempted ‘proof’ of Assumption (2) breaks

down. However, proceeding under the reasonable premise y; ~ (—"’—s"—'l, we get

var(z;) ~ var(z) — aAtE[y:z] + o®APE[y?]

var(z;) + a®At?var(y;)

~ var(z)

when At is small. This concludes our informal scrutiny of Assumption (2).

4.3.3 Minimum Variance Estimators

Working under Assumption.(2), the estimators @ and ¢ may be found using precisely
the same procedure that we developed in Subsection (4.1.4) for a 1-factor model. For

the purpose of estimating the parameters « and ¢ in the 2-factor (b) model, the deter-
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ministic process ¥(t) would seem to be a valid substitution for the stochastic process
I(t).

We still have to find the volatility 7 of the long term mean [(¢). We begin by

solving Equation (4.18) for the simple diffusion {y;}

¥ = l—“-[———é- — B;At (4.20)

The parameter 5(t) can be calculated by Equation (3.7)

b(E) =B@)v ()

where the expected value ¥(t) of the long term mean [(£) is given by Equation
(4.17) with the strength of mean reversion a replaced by its minimum variance estimator

o
w(t) = o(t) + £ (4.21)

That is, the drift parameter is

o(t) + &2

B(t) = o) + J:.Z (4.22)

where the derivatives at each discrete time i At are calculated by the finite
difference equations written down in Subsection (4.1.1). It now remains to develop a

method of recovering the hidden variable [(t).
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4.3.4 Deconvolution

Assumption 3 The expectation ¥(t) is a convolution of the long term mean I(t)

m

Y, = Z Cili—j (4.23)

j=—m

This is essentially the same as Assumption (1) but for [(t) instead of s(t). How-

ever, a moving average is no longer appropriate. Alternatively, we now require that

the convolution function satisfy the condition c(u) < c(t) whenever [u| > |t|. This

will ensure that the linear transformation representing the convolution is diagonally
dominant. It is then possible to do a deconvolution by inverting the transformation.

Numerical investigations reveal that a suitable choice for ¢(t) is the Euler distri-

bution

1

c(t) = g

where <y is a convolution parameter that may be selected to provide the most
satisfactory results. We find that choosing v = 0.6 works well in practice for the energy

data sets we have.
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The convolution (4.23) can be written conveniently in matrix form

(i)

( Yo \ ( €C-mn =+ Cm O . 0 \ lo
0 com cm O 0
= . . _ , (4.24)
0 0 com cm O
\¥) L0 0 em )]

o

where n is the number of data points in the sample path {s;}.
Observe that we have n + 1 equations for ¥, ..., ¥, in n + 2m + 1 unknowns
I_my--eslnim. Evidently we are only really interested in solving for lg, ..., ln. To this

end, put

(1)

\ &)

and consider the numbers I_,,, ...,{_; and l,.1, ..., ln4+m to be control parameters

that will be selected so that our solution is as well behaved as possible.
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To be more precise, the control parameters will be chosen so that the distance
[|]1 - 2)|| between the solution and the expectation is minimized. Why would we calcu-
late the control parameters in this fashion? A deconvolution is notorious for exhibiting
highly unstable behavior. Recall that a convolution has the effect of eliminating noise
by a smoothing process. A deconvolution attempts to inject the lost noise back into I(¢)
by amplifying any abnormalities or irregularities present in v(t). The deconvolution has
a tendency to magnify these deviations way out of proportion. Hence by constraining
our solution [(t) to be as close as possible to ¥ (t), we ensure that we obtain the most
desirable solution.

Define a square matrix by

/ Co em O 0 \
c-1 Co ¢cm O 0
A=
0 0 c_m Co C;
\ 0 0 com co)
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along with vectors

C;= Com
\ 0 )
for j=1,...,m and
(o)
C;= Cm

L &n )
for j = (m +1),...,2m and finally relabel the control parameters by identifying
them with L; ={_; for j =1,...,m and L; = l,—pmy; for j = (m + 1), ...,2m. Then the
system (4.24) can be written more succinctly as
2m
¥ =Al+ ) L;C;
i=1
The solution of this matrix equation is
2m
1=A"'%+Y L;B;
j=1

where B; = —A~!C; for j = 1,...,2m.
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Put D = ||1 — 9|} as it is more convenient to minimize the square of the distance

rather than the norm itself. The derivative of D with respect to Ly is

n 2m
DW®) =2 Z Bik(z L;B;; +D; — 9;)

i=1 j=1

where D = A~1% and B;; is understood to be the i*® component of B;. Taking
all of the derivatives D®*) for k = 1, ...,2m and setting them equal to zero we obtain a

lirear system of equations for the control parameters ML = IN where
Mjc =" Bi;By
=1
and

N; =Y By(s; — D))

=1

Therefore by choosing L = M ~!IN we ensure that ||l — v|| is minimized.

4.3.5 Standard Deviation

Now we can calculate the volatility 7 of the long term mean I(t). It is given by dividing
the standard deviation of the simple diffusion {y;} by At. If we denote the variance of

the y;’s by U then

n—-1

PR
U= =L (4.25)

n-1

where y; is calculated by Equation (4.20). The best estimator of 7 is

—UC)]
T=\"as (4.26)
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This procedure provides the desired estimators @, &, and 7. Figures (4.4), (4.5),
and (4.6) show the minimum variance estimators @, 7, and 7 for natural gas over the
period 1997-1999. Also included are plots of the expected value 1(t) of the long term
mean, along with an average value for the unknown function of time 3(¢). Remember
that the 5(t) is responsible for the shape of the curve ¥ (t) via Equation (3.7). However,
it is only an intermediary step in the calculation of the parameters a, o, and 7. We
do not use this 3(t) for modeling purposes, and include it here purely for interests
sake. The [(t) used in option evaluation is found by matching the futures prices and
the expected future spot prices. Hence our model is forward looking in that it takes
advantage of the beliefs of traders in the energy market. The corresponding pictures
for crude oil and electricity are located in Appendix A.

Tables (4.8), (4.9), and (4.10) show the minimum variance estimators @, &, and

T for natural gas, crude oil, and electricity over the period 1997-1999.

Table 4.8: 2-Factor (b) Model Minimum Variance Estimators (1997)

a o T

Natural Gas | 0.232 | 0.0331 | 0.0240

Crude Oil | 0.141 | 0.0174 | 0.0162

Electricity | 0.188 | 0.0418 | 0.0377

We now perform the simulation experiment described in Subsection (4.1.4) for

the case of the 2-factor (b) model. For all possible combinations of the parameter sets
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Natural Gas 1997 Parameter Estimation

T T

a=0.232 B=-0.0016 o=0.0331 t=0.G240
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Time (Trading Days)

Figure 4.4: Natural Gas 1997 Parameter Estimation

Natural Gas 1998 Parameter Estimation
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Figure 4.5: Natural Gas 1998 Parameter Estimation
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Natural Gas 1999 Parameter Estimation

a=0.158 B=0.0011 o= 0.0301 ©=0.0227

N

Price (DoMars)
Y

Y

100 150
Time (Trading Days)

Figure 4.6: Natural Gas 1999 Parameter Estimation

a=0.15and a =02, 0 =0.02, 0 = 0.03, and 0 = 0.04, and 7 = 0.02, 7 = 0.03, and
7 = 0.04, 100 sample paths consisting of 250 data points were simulated. The results
are displayed in Tables (4.11) and (4.12).

Although the results vary for different combinations of the parameters, we find
that on the whole they are satisfactory. Bearing in mind that we are attempting to
reconstruct a hidden variable with limited information, we believe this to be a worthy
achievement. According to Tables (4.11) and (4.12), the (approximate) error bars for

the best estimators of the 2-factor (b) model are

Aa =007 Ac=0003 Ar=0015 (4.27)
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Table 4.9: 2-Factor (b) Model Minimum Variance Estimators (1998)

a c T

Natural Gas | 0.151 | 0.0349 | 0.0331

Crude Oil | 0.170 | 0.0283 | 0.0231

Electricity | 0.172 | 0.0479 | 0.0437

Table 4.10: 2-Factor (b) Model Minimum Variance Estimators (1999)

o o T

Natural Gas | 0.158 | 0.0301 | 0.0227

Crude Oil | 0.146 | 0.0212 | 0.0200

Electricity | 0.154 | 0.0454 | 0.0397
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Table 4.11: 2-Factor (b) Model Parameter Estimation Experiment (o = 0.15)

a=0.15 T
o 0.02 0.03 0.04
a | 0.156 | 0.108 | 0.085

so | 0.034 | 0.030 | 0.023

0.02 | & | 0.0204 | 0.0213 | 0.0223

ss |{ 0.0008 | 0.0010 | 0.0010

7 | 0.0191 | 0.0287 | 0.0391

s- | 0.0044 | 0.0067 | 0.0123

@ | 0.183 | 0.155 | 0.127

s | 0.039 | 0.040 | 0.028

0.03 | = | 0.0299 | 0.0307 | 0.0315

ss | 0.0012 | 0.0015 | 0.0014

7 | 0.0245 | 0.0296 | 0.0370

sr | 0.0049 | 0.0068 | 0.0870

a | 0.204 | 0.179 | 0.151

Se | 0.038 | 0.038 | 0.033

0.04 (| 7 | 0.0394 | 0.0405 | 0.0407

ss | 0.0019 | 0.0021 | 0.0019

0.0269 | 0.0339 | 0.0408

=l

sr | 0.0056 | 0.0073 | 0.0104
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Table 4.12: 2-Factor (b) Model Parameter Estimation Experiment (a = 0.2)

a=0.2 T

o 0.02 0.03 0.04

a | 0.161 | 0.109 | 0.082

So | 0.040 | 0.028 | 0.024

0.02 | & | 0.0210 | 0.0221 | 0.0237

s. | 0.0009 | 0.0011 { 0.0010

7 | 0.0196 | 0.0297 | 0.0444

s- { 0.0049 | 0.0097 | 0.0231

a« | 0.212 | 0.158 | 0.123

sq | 0.038 | 0.039 | 0.030

0.03 | @ | 0.0303 | 0.0313 | 0.0328

se | 0.0015 | 0.0014 | 0.0015

7 | 0.0216 | 0.0295 | 0.0403

sy | 0.0041 | 0.0073 | 0.0096

o« | 0.226 | 0.192 | 0.158

So | 0.046 | 0.040 | 0.028

0.04 | 7 | 0.0402 | 0.0412 | 0.0420

so | 0.0020 | 0.0018 | 0.0018

0.0251 | 0.0325 | 0.0390

!

s- | 0.0054 | 0.0073 | 0.0075




CHAPTER 5
FUTURES PRICES

Traders in the energy market want to cover their positions by entering into
futures contracts. This is a simple agreement between a buyer and seller that an asset
will be bought and sold at a certain price at a specific time in the future. Naturally
the price that is agreed upon is related to the expected value of the energy price in
the future. Further the quoted futures prices in the market reflect the beliefs of an
amalgamation of traders. We can use this extremely valuable information to calibrate
the trinomial trees we use to model energy prices. In this chapter, we follow closely the

excellent expose of futures contracts in [Hull 1999].

5.1 Futures Contracts in the Energy Market

Definition 5.16 A futures contract is an agreement between traders to buy or sell
an asset at a fized price at a certain time in the future. Let f (t,T) denote the futuies
price of a contract beginning at time t and ending at time T. The time T is known
as the date of maturity of the futures contract. We often write the futures price as
a function of a single variable f(s): in this case we shall always assume thatt =0 (or

t=1ty)and T = s.

In natural gas, crude oil, and electricity markets the date of maturity is typically

the first trading day of each month. In other words futures contracts are arranged on
60
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a monthly basis. For example the February futures price is the price that traders agree
now to exchange for the commodity at the beginning of February.

At the time the futures contract is arranged no money is exchanged. A fu-
tures contract costs nothing to either trader involved in the deal. This is because it
is supposed to be equally valuable to both sides. The buyer gains protection from
skyrocketing energy prices and the seller is guaranteed to be unaffected by plummeting
energy markets. Of course it is entirely possible that one of the traders will be disap-
pointed by the actual outcome. If the energy price realized at time T is high above
the futures price then the seller will have missed an opportunity to make considerable
profits. Alternatively if s(T) the is far below f(T) then the buyer will have missed
the chance to save money. By reducing their mutual risk the traders have effectively
removed the possibility of either of them making a killing (at the expense of the other).

This poses an obvious question: Is the futures price equal to the expected future

spot price? Let us examine this idea using a financial pricing argument.

5.2 Financial Pricing Theory

Axiom 1 All investment opportunities in energy markets have zero net present value.

In other words it is impossible to enter into an arrangement that realizes a

positive instantaneous profit with no risk of loss.
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5.2.1 Risk and Return

It is an established fact that the higher the risk of an investment the higher the expected
return demanded by an investor. There are also 2 types of risk in the economy: sys-
tematic and nonsystematic. Nonsystematic risk is unimportant as it can be completely
diversified away. Systematic risk is the result of a correlation between the returns from
a particular investment and the returns from the entire energy market. Therefore an
investor requires higher returns than the risk free interest rate for bearing positive
amounts of systematic risk. Alternatively an investor is prepared to accept lower ex-
pected returns than the risk free interest rate when the systematic risk in an investment

is negative.

5.2.2 The Risk in a Futures Position

Consider a speculator who takes a long position in a futures contract! in the hope
that the energy price will be above the futures price at maturity. We suppose that
the speculator puts the present value of the futures price into a risk free investment at
time while simultaneously taking a long futures position. The proceeds of the risk free
investment are used to buy the asset on the delivery date. The asset is then immediately
sold for its market price. This means that the cash flows to the speculator are

Time 0: —f (T)e~"T

1That is the speculator agrees to purchase the asset in the future at the agreed upon price.
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Time T: +s(T)
where r is the risk free interest rate.
The present value of this investment is o (T)e *T — f (T)e~"" where we have
denoted the expected future spot price by ¢(t) = 5(¢).
As this financial opportunity can have no net present value, we set this quantity

to zero and solve for the futures price
f(T) =@ (T)elT (5.1)
or equivalently when ¢ # 0 we have
f(6.T) = o (T) er=0@-0

where u is the discount rate appropriate for the investment?. The number u
depends on the systematic risk of the investment. Let p be the correlation between
s (T) and the level of the energy market. Then there are 3 cases to consider:

(1) p<0:pu<rand f(T)>¢(T) (Contango)

(2) p=0:p=rand f(T)=¢(T)

(3) p>0:pu>rand f(T) <e(T) (Normal Backwardation)

5.3 Statistical Analysis

We now explain the method of estimating the expected return g. This is the final piece

in the puzzle of our energy price model. Once the best estimator z has been obtained

2That is u is the expected return required by investors on the investment.



CHAPTER 5. FUTURES PRICES 64
we will have at our disposal all the necessary tools to price options. For the sake of
simplicity, we will assume that u is a constant parameter that does not depend on the

start and end times ¢t and T of the futures contract®.

5.3.1 Hypothesis Testing

The expected value ¢ (T") can be taken to be the realization of the energy price s (T')
at the date of maturity. The futures prices f (¢, T) will be compared to the values of
@ (t). In essence we are observing the differences between what investors believed would
happen and what actually occurred in the energy market.

It is convenient to define a normalized parameter by A = p — r*. Then

@ - 5 ol e (5.2)

A FED)

Let {©,} and {f;;} be sample sets of futures prices and realized energy prices at
start and end times {(¢;, T;)}. These can be used in conjunction with Equation (5.2) to
obtain a sample set of numbers {);;}. It is then possible to do a statistical analysis on
{Aij} to determine which of the 3 possible situations is realized for a particular energy
price process: contango (A < 0), no systematic risk (A = 0}, or normal backwardation

(A >0).

3In reality the expected return u is probably a (seasonal) function of both ¢ and T but this issue

will not be addressed in this thesis.
%1t is customary to call £2° the market price of risk where o is the volatility of s(t).
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We perform a student t-test. For a thorough description of this procedure, we
refer to [Weiss 1999].
For the sake of simplicity we shall form a null hypothesis of no systematic risk
and make no assumptions about the alternative choices.
Null Hypothesis: A =0
Alternative Hypothesis: A # 0 (2-tailed)
Suppose that the parameter A is normally distributed with mean 0. Then, for

samples of size n, the studentized version of A

A
sx/vn

t =

has the student ¢ distribution with n — 1 degrees of freedom where A and s, are

the sample mean and standard deviation of A defined by

1= 22
n

and

= \/z X = (S AP/

n—1
By elementary statistics we know that the ¢-test is robust to moderate violations
of the normality assumption.

We shall consider samples of size n = 101 under a significance level o = 0.05.

Then for a particular value of the test statistic t we will accept the null hypothesis if
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t € [—1.984,1.984] and reject it otherwise. We refer to Table IV in [Weiss 1999] to see
that £9g25(100) = 1.984.

The resuits for natural gas, oil, and electricity are displayed in Table (5.1). The
sample sets were taken from spot prices and futures prices over the period 1997 — 1999.

Table 5.1: Null Hypothesis ¢-Test

X S t

Natural Gas | -0.000819 | 0.006 | -1.408

Crude Oil | -0.000395 | 0.0042 | -0.927

Electricity | 0.000834 | 0.0046 | 1.877

In each case, there is no evidence to suggest that the futures price is not an
unbiased estimator of the expected future spot price. That is, we can safely assume
that on average A = 0 for all energy commodities under consideration. Thus we assume

that there is no systematic risk for the remainder of this thesis and simply put

w(t) = f(2) (5.3)

Equation (5.3) is the condition that, if satisfied, will render our numerical solu-
tions risk neutral, by ensuring that all investment opportunities in the energy market,

have no net present value.
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January 1, 1997 Natural Gas Futures
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Figure 5.1: January 1, 1997 Natural Gas Futures

May 1, 1999 Crude Qil Futures
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Figure 5.2: May 1, 1999 Crude Oil Futures
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May 1, 1899 Electricity Futures
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Figure 5.3: May 1, 1999 Electricity Futures

5.3.2 Futures Prices and Expected Future Spot Prices

Now we examine the relationship between futures prices and the realizations of spot
prices for natural gas, crude oil, and electricity. According to what we just discussed,
traders are obviously trying to predict what is actually going to happen in the future
when they agree on the price in a futures contract. Figures (5.1)-(5.3) show the futures
prices over a period of 3 months along with the spot prices that were later realized over
this same period. In the diagrams, the solid lines depict the realized spot prices, while
the circles show quoted monthly futures prices and the dashed line represents a cubic
spline interpolation of missing values. Note that a circle located at time ¢, represent

the delivery price of a futures contract entered into at time zero, and expiring at time
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It is clear from the pictures that although sometimes the futures prices end up
being above and below the realized spot prices, on average the futures prices do an
admirable job of guessing future spot prices. In a highly volatile energy market, this is
probably the best that one can hope for. Refer to Appendix B to see more pictures of

futures prices and realized spot prices for natural gas, crude oil, and electricity.



CHAPTER 6
NUMERICAL SOLUTIONS

Some stochastic differential equations can be solved by providing an analytic ex-
pression of the probability distribution of the random variable. It occurs often in prac-
tice that analytic solutions are impossible to arrive at. Furthermore, even when analytic
solutions are available, they are unsuitable for evaluating path dependent derivative se-
curities such as American style options. Therefore we investigate the possibility of
solving stochastic differential equations by numerical methods that involve the con-
struction of trinomial trees.

In this chapter, we extend the work of Hull & White, who have developed a
trinomial tree implementation of a linear mean reverting model appropriate for interest
rates. We extend and modify their procedures so that they may be applied to 1 and
2 factor nonlinear models applicable the exciting area of energy modeling. In fact it is
fair to say that this thesis attempts to do for the energy industry what Hull & White
accomplished for interest rate derivative securities. The following list briefly describes
the main innovations offered here:

(1) Following a suggestion made in [Hull & White 1990], we develop a drift
adapted method of arranging the geometry of trinomial trees that speeds convergence
by minimizing errors near the median nodes of all the branches in a tree.

(2) We illuminate the notion of creating a risk neutral calibrated model by

matching the futures price curve available in the energy market.
70
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(3)  We extend the method of fast trees introduced in [Hull & White 1994 (a)]
by generalizing the procedure to admit random processes with nonlinear drifts. This
innovation decomposes a trinomial tree into a preliminary tree that is subsequently
transformed into a final tree by arranging the geometry of each branch so that the
futures prices are precisely matched. This has the pleasing effect of separating the
deterministic and stochastic parts of the random process. Thus each component can
be dealt with one at a time instead of tackling the whole problem all at once. The fast
trees are infinitely easier to understand and implement. Furthermore, they run faster
(hence our name for them) and tend to converge more rapidly than ordinary trinomial
trees.

(4) The nonlinear Pilipovic 2-factor models are decoupled by making sub-
stitutions similar to the ones found in [Hull & White 1994 (b)]. This completes our

nonlinear analysis of the linear methods developed by Hull & White.

6.1 Trinomial Trees

We begin with a few geometric definitions.

Definition 6.17 A directed graph (G, R) is a set of nodes G together with a relation

R on the node set.

Every element (a, d) in the relation R can be interpreted as a ray (directed line

segment) connecting a to b. For the sake of convenience, we will often refer to a graph
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(G, R) as simply G when it is unnecessary to specify the relation R.

Definition 6.18 A path is a subset of rays in R of the form {(a, 8;), (@1, 5:), ---, (@r, b) }

where a is the start node and b is the end node in the path.

The path can be interpreted as one of the possible ways of getting from a to b.

Definition 6.19 A circuit is a path whose start and end nodes are identical

Definition 6.20 A tree T is a directed graph G that has no circuits.

Definition 6.21 A trinomial tree is a tree where every node has precisely 8 rays

emanating from it.

By our definition, a trinomial tree always has a unique node called the root with
the property that there is no ray arriving at the root. The root can be thought of as the
start node of all possible paths throughout the tree. For the remainder of this thesis,
all trees that are mentioned are understood to be trinomial trees.

The fact that our trees have no circuits has a natural interpretation. Consider
the time interval [0, T]. In our construction, a ray from a to b allows for the possibility
of branching from a to b in the next moment of time. That is, rays in our trees point
in the direction of increasing time. The existence of a circuit would then indicate the
potential to travel back through time. In this thesis, we tacitly assume that reverse

time travel is impossible for trading purposes!
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Suppose that a random variable s(t) satisfies an Ito process of the form
ds = a[s,w(t)]dt + b (s) dz (6.1)

where 7(¢) is an unknown function of time.
The parameter 7(t) will be selected so that the expected value of at every branch

in the tree satisfies Equation (5.3)

w(t)=f(t)

This renders the probabilities in the tree to be risk neutral by the zero net present
value argument explained in Chapter (5). Hence the tree can be used to evaluate
derivative securities.

In order to construct an additive trinomial tree, we require that the standard
deviation be a constant number o. To this end, it may be necessary to transform to a

new random variable

S=a/%

We assume the antiderivative exists so that we can write S = S(s). Furthermore,
we suppose the transformation is invertible and we denote the inverse function by
s = s(S).

By the Ito formula

dS = A[S, m(t)]dt + o dz (6.2)
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where the new drift is

a[s(S),w(t)] _ ¥[s(S)]
bs(S)] = 2 } (63)

A[S, m(t)] = o{
Note that the above framework is valid for the two cases of primary interest to
us, namely b(s) = o (Hull & White) and b(s) = os (Pilipovic), as s(t) never reaches

zero in finite time according to [Wilmott 1998].

6.1.1 Tree Structure

We first select the number of time steps n. Then the length of a time step is At = %

It is desirable that At € (0,1). The length of a small change in S is then chosen to be
AS =0V3 At

[Hull & White 1990] suggest that this is a good choice for AS in that it mini-
mizes errors and speeds convergence.

Define (z, 7) as the node where the time is £; = 7 At and the transformed random
variable is S;; = ®; +j AS where &; = Sy is the position of the median node of the i**
branch in the tree. We adopt this unusual notation for the median nodes &, as we will
see later that they are approximately equal to the expected values ®(t) of the random
process S(t) at the discrete times t; = i At for 2 = 0, ...,n. We assume that the spot
price of the energy is known at time 0 and put Sy = S(sp). We imagine that we are

creating a probability distribution that will represent the future evolution of the spot
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S@®

@, =5

Figure 6.1: Ordinary Trinomial Tree Structure

price. Hence the median node at time O is 30 = Sp. Observe that the root node is
labelled (0,0) although we write S; in place of Sy as a matter of style. Figure (6.1)

shows the geometry of an ordinary trinomial tree.

By Theorem (2.12) the mean and variance of S(t; + At) — S(t;) are

Mi]' = A(S{j,ﬂ'{)At (6.4)

V = o2At

at node (%, j) in the tree for S defined by Equation (6.2).
Let the drifts of the median nodes be denoted by M;, = A(:I;,-,fr,-)At. The

median nodes for i = 1, ...,n are defined recursively by

i—-1

6,’ = ao + ZMO (6'5)
k=0
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Then the median nodes are all precisely connected by their drifts as dictated by
Equation (6.3). This structure makes the computer program particularly elegant. Also,
we propose (without proof) that it probably speeds convergence. Why? Normally,
the error of convergence associated with a node is O(At) as we are using a linear
approximation in the tradition of Euler. However, it is stated in [Hull & White 1990}
that when the ray emanating from a node (%, j) lands directly on another node, the error
of convergence associated with that node is O(At?). Furthermore, we shall demonstrate
later that the median nodes are located near the expected values of the random process
S(t). This means that most of the discrete probability distribution is concentrated in
the vicinity of the median nodes. Therefore, by minimizing the errors near the median
nodes, we aim to significantly enhance the convergence rate of the trinomial tree. This
leads to the phrase drift adapted mesh, which we will simply refer to as an ordinary
trinomial tree.

We now turn our attention to the calculation of the branching probabilities.
By choosing the branching probabilities so that the mean M;; and variance V of the
random process (6.2) are imitated at every node (7,j), we ensure that the discrete
process created by our trinomial tree will approach (in a sense that will be clarified

later) the continuous process as At — 0.
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Figure 6.2: Trinomial Tree Node Branching Process

6.1.2 Branching Probabilities

Suppose we are at node (z,7). Let (¢ + 1, h;;) be the closest node to the drift M;;

bearing in mind that each branch is adapted by the drift M, of the median node ®;

M;; - M

h;; = [j + AS } (Closest Integer) (6.6)

Then, starting from node (,j), it is possible to branch to one of the nodes
(t+1,hi; +1), (¢+1,hy), or (¢+1,h;; —1). We shall respectively call these nodes
the up, middle, and down nodes associated with node (i, j). Hence each node in the
tree has three rays emanating from it, with the exception of all nodes of the form (n, j)
at time T = n At, which have none (they are at the top of the tree).

Let 8;; = M;; — Mo — (hij — j)AS be the offset between the adapted drift and
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this closest node. Then the positions of the up, middle, and down nodes are related to

the location of their source node (%, ) by

Sisthg+r = S+ Mg+ (My; — My + 1)AS —6;;
Sivrn; = Sij+ Mo+ (My; — My)AS — 6;;

Si+1,h.,-,-—1 = Sij + Mo + (Mij - Mo - I)AS - 9{_-,'

Denote the probabilities of branching to the up, median, and down nodes by pg-‘) ,

p.g"), and pff) respectively. We will also respectively write these branching probabilities

as pg), pg-n, and pf; 1), or possibly as p,, pm, and ps, when it is convenient to do so.
Then the linear system of equations satisfied by the branching probabilities is obtained

by calculating the mean and variance of the discrete process and setting them to M;;

and V, together with the universal condition that all probabilities must add up to 1.

[P (hes = 5+ 1) + 2 ey = ) + 8P (hy — 5~ 1] AS = M,
P (AS — 0,5)2 + P64 + PP (AS + 652 = V

u d
PP +p5 +p = 1

I

The solution reveals the desired probabilities

2
@ _ 1. 1.6 65
Pij YNNG 6.7)
2
m _ 2_ 8
Pi T 37 As?
2
@ _ 1, L 8% 6
p;' = 5+3(XsF A
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Figure (6.2) shows a picture of the branching probabilities at a typical node

(2, 5)-

Theorem 6.22 The branching probabilities (6.7) are always between 0 and 1.

Proof. It is easily shown that pg) and pf:) are always positive for all values of 6;;. To
see this let z = %‘S’-. By the quadratic formula, we have

-1-2:2-+-lz:+1
2 2 6

for pg-‘) . The discriminant of this parabola is evidently negative.

b? — 4ac

(30 - 43)(3)

1
3

(= N

<

Hence pg.‘) is positive for all values of z. A similar result holds for pg).
It now suffices to show that pg-‘) + pE;" < 1. By our method of selecting the

integer h;; we know that

Therefore

IA
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By our construction, the offset 6,4 is zero for the median node 3, of every branch
in the tree, see Figure (6.2) for clarification. This means that the branching probabilities
emanating from any median node are always given by Equation (6.7) to be ¢, 2, and
for moving to the up, middle, and down nodes. According to [Hull & White 1990] this
means that the errors of convergence associated with the median nodes are O(At?).
Remember that the median nodes are located near the expected values ®(¢) of the
transformed price process S(¢). This means that we have succeeded in minimizing

the errors of convergence in the region of the tree where most of the probability is

accumulated. Hence we have developed what we call a drift adapted mesh.

6.1.3 Discrete Probability Distribution

The maximum and minimum values of 7 are different at each branch in the tree. It is
easiest to calculate these boundary values recursively by setting jm;ax(0) = jmin(0) =0

and defining
Jmax(®) = hiyj -1y +1 (6.8)
Jmin(?) = hicgjna-1 —1

for i = 1,...,n. This is guaranteed to work as long as the drift function A is

continuous.

Denote the probability of reaching node (i, j) by P:;. These cumulative proba-
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bilities are easy to calculate recursively provided we know the branching probabilities

at every node in the tree - and we do by Equation (6.7).

Py =1

Pj = ) Piisgl(i—1,k) — (3,5
k

for i = 1,...,m and j = jmin(2),-..: jmax(?) where q[(i — 1,k) — (3,j)] is the

probability of branching from node (i — 1, k) to node (z,j). Observe that ZPi:i =1
7

for i = 0,...,n. The probabilities P,; define a discrete probability distribution that
approximates the continuous solution of the stochastic differential equation (6.2).

This completely specifies the tree construction. Note that a trinomial tree is
numerically efficient if the number of nodes does not grow exponentially in time. For
instance, the trees constructed in the sequel are such that jmax(Z) and jmin(7) are O(n)
for all ¢ = 0, ...,n. Therefore the computer programs that construct these trinomial
trees run in time O(n?). Let Q(s,t) be the continuous probability distribution that is
the solution of the stochastic differential equation (6.2). The discrete probabilities P;;
are approximations of the integrals of Q(s,t) over small neighborhoods of the points

(Sij,t,;) where ] = ]m(Z), ---:jmax(i) fori = O, ey .

Definition 6.23 A numerical method of solving a stochastic differential equation con-

verges weakly for a class of functions C if

Eqly(s,t)] = lim Ep(g;)
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for all g € C, where Ep and Eq are the discrete and continuous ezpectations

under the probability distributions P;; and Q(s,t).

Conjecture 6.24 (Trinomial Tree) The trinomial tree converges weakly to the so-

lution of Equation (6.1) for the purpose of evaluating derivative securities.

[Hull & White 1990] outline a proof by establishing the equivalence of the tri-
nomial tree with a corresponding explicit finite difference method for solving a partial
differential equation describing the value of a derivative security. The finite difference

method is then assuredly consistent and stable as long as the branching probabilities

()  (m)

Pi; » Pi; > and pg-i) are positive - and they are by Theorem (6.22).

6.1.4 Matching Futures Prices
Once the tree is ready, the spot price at node (%, j) is given by the inverse transformation
si = $(Si)
= s(r; +jAS)

The expected value of s at time i At is given by

p; = Z Fjs;; (6.9)

F=Imin(3)

Let f(t) be the futures price of the energy in the market. Then the expected

future spot price is related to the futures price by Equation (5.3)

p&)=1(@)
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We suppose that the unknown function of time 7 (t) dictates the shape of ¢ (¢). In
the special case when a[s, 7(t)] is a linear function of s this can be done by a theoretical
calculation. By Theorem (2.11) the expectation p(t) is the solution of the ordinary

differential equation

o(t) = alp(t), =(t)]

Thus, the unknown function of time is found by solving for 7(t) in the equation
f(t) = a[f(t),n(t)] where the derivative can be approximated by a finite difference
method. This is guaranteed to work as long as a is a linear function of s. Indeed
this is the case for all of the energy models we go on to study later’. The result is a

particularly elegant tree with risk neutral probabilities.

6.2 Log Normal Distribution

We now apply our numerical methods to the specific example of a log normal dis-
tribution. This simple model will provide a stepping stone to the relatively complex
mean reverting models that we use to describe energy prices. Furthermore, the unique

structure of a trinomial tree with constant drift and constant volatility illuminates the

1That is, their drifts are linear before the transformation that renders the standard deviation
constant, after which they become nonlinear, as we mentioned before. It is the original drift afs, 7 (t)]

- not the transformed one A[S,7(t)] - that is used in the calculation of the unknown function of time

7(t).
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relationship between the deterministic and stochastic parts of a random process. This
knowledge can be exploited to create trees that are a full order of magnitude more
efficient than before.

Consider a generalized log normal random variable that satisfies the stochastic

differential equation (2.6)
dl = B(t)l dt + 71 dy

where B(t) is the drift parameter (taken to be an unknown function of time),
and 7 is the volatility.

Recall that in the standard log normal distribution the drift parameter is a con-
stant number. We will demonstrate our procedure by allowing 3(¢) to be an unknown
function of time. Put v(t) = I(t). Evidently we can choose 3(t) so that the expected
value 9(t) of the random process I(t) assumes any shape we desire. We begin by doing
a log transformation so that the standard deviation is constant. Substitute L = In(l).

Then
1..2
dL = [ﬂ(t) - —2-]dt +T dy

We proceed to construct a trinomial tree for L. Specify Lo = In(lp). Pick the
length of a small time interval At. Then a small change in L is AL = 7v3 At. Denote

the median nodes in the tree for L by fli. Then the median nodes are calculated
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recursively by ¥ = Lo and Formula (6.5), to yield
= 22
¥ =To+) (B —5)At
k=0

fori=1,..,n.

Since the drift 5(t) — -%2- does not depend on L we have M;; = M = (8; — ’;—Q)At
for all 7 and j. By Equation (6.6) the closest node to the drift emanating from the
source node (3, j) is always (¢ + 1,7) (in other words, h;; = j for all < and j) and the
offset of every node in the tree is 6;; = 0. It follows that the branching probabilities

are constant throughout the tree and we write

Qu %
am | =] 2 (6.10)
da é

The structure of the L-tree can be visualized as a diffusion centered around the
median nodes ¥;. This suggests that it would have been conceptually simpler to build
a preliminary tree representing the diffusion and then transform to the final tree by
shifting the median nodes of the branches onto the expected values of L(t).

The first phase is to construct a preliminary tree for L by setting 5(t) = 323 and
choosing an initial value of Lo = 0. This is perfectly valid: we are in effect ignoring
the deterministic part and concentrating on the stochastic part of the random process.
The deterministic part can be easily injected back into the final tree by shifting the

central nodes of each branch to the proper level. The actual process assumed for the



CHAPTER 6. NUMERICAL SOLUTIONS 86

preliminary tree is therefore a simple diffusion.
dL =1 dy

Put W¥(t) = L(t). Observe that the preliminary tree has the special property
that ¥(¢) = 0. In other words, the median nodes U; are all zero. Also, the position
of node (%, 7) is L;; = j AL and does not depend on i. Consequently the drifts M;;
and the branching probabilities g, ¢m, and g; do not depend on . We will capitalize
on this fact in a moment when we generalize this procedure. Figure (6.3) shows the
decomposition into preliminary and final trees.

The final tree is formed by shifting the median nodes of each branch onto the

expected value of L(t). By Theorem (2.11) this expectation is
i At 2
%=a+/ [8(¢) — T lat
0

Then the position of node (z, j) in the final tree is L;; = ¥;+j AL. Evidently the
median nodes ¥; are the linear approximations of the expected values ¥;. Therefore the
trinomial tree obtained by transforming the preliminary tree into the final one is exactly
the same as before. Although this trick does not really improve the discretization of a
log normal random variable, it will vastly enhance the efficiency of other types of Ito

processes.
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Ly Q=72

Ly=j A
Preliminary Tree

Final Tree

Figure 6.3: Log Normal Fast Tree Construction
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6.3 Fast Trinomial Trees

We now extend the above procedure to the general case. We call this development
the method of fast trinomial trees for reasons that will soon become apparent. These
so-called fast trees originally appeared in {Hull & White 1994 (a)] and signaled a major
breakthrough in the efficient construction of trinomial trees.

Suppose that a random variable s(t) satisfies a stochastic differential equation

of the form
ds = a[s,w(t)]dt + b(s)d=z

and imagine that we have transformed to a new random variable S(t) with

constant standard deviation
dS = A[S,n(t)|dt + o dz
We now introduce another random variable S (t) that satisfies the Ito process
dS = A(S,\)dt+odz (Sp=0) (6.11)

Definition 6.25 The ordinary trinomial tree for S is called the preliminary tree for

S.

The preliminary tree turns out to have some extremely desirable properties,

that make it unusually fast and easy to implement. Put &(t) = E[§(t) | So = 0].
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Then we are choosing the parameter 7(t) to be a number A so that ®(¢t) = 0. This is

accomplished by solving for the number A in the equation

A(0,)) =0 (6.12)

If a solution A exists, we say that the random process s(t) is preliminarizable.
Hence our construction applies to the class of Ito processes whose transformed drifts A

admit a solution of Equation (6.12).
Claim 6.26 The expected value B(t) of the random process S(t) is approzimately zero.

By Theorem (2.11), we have

At

B(At) =g+ [ E{A[S(t),\]}dt
0

Now by choosing the preliminarization parameter according to Equation (6.12),
we are assured that if we start at §o = 0, in which case 30 = 0, then over the next
small time interval At we will arrive at ®(At) = O(At?) by the Fundamental Theorem
of Calculus. By resetting the expectation at time t, = At to zero, that is, 3(At) =0,
we are committing an error of order O(At?). Under the assumption @, = 0, it then
follows by an argument similar to the one we just made that 32 = O(At?). By resetting
the expectation at time ¢, = 2 At to zero, we commit another error of order O(At?).

Continuing in this fashion, we have a total error of nO(At?) = O(At). This heuristic
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construction supports the fact that calculating A by Equation (6.12) means that a(t)
is approximately zero, as required. This is important, as the median nodes of the
preliminary tree are all zero by Equation (6.5), and these median nodes will later be
moved onto the expected values ®(t) of the actual process S(t), when the final tree is

formed.

Definition 6.27 Tke final tree, also called the fast tree, for S(t) is obtained by
retaining all of the relative connections and branching probabilities of the preliminary
tree, and merely shifting all median nodes ;I;,- of the preliminary tree onto the expected
values ®; of the random process S(t) at the discrete times t; = i At fori = 0,...,n,

maintaining the vertical spacing between all nodes in the same branch.

The final tree is found by moving all branches so that their median nodes coincide
with the expected values of S(t). Then the position of node (7,5) in the final tree is
S;j = ®; + j AS Note that in practice it is not necessary to solve the analytic form
of the expectation ®(¢). Rather, the numbers ®(t) are calculated by Equation (6.9) so
that the futures prices f(t) coincide with the expected value of s(¢) at every branch in
the tree.

Figure (6.4) shows the geometry of a preliminary tree. Observe that the position
of all nodes in the preliminary tree depend only on j (and not on ¢). The final tree is
obtained by moving the median nodes of each branch so that the expected values of

the spot prices satisfy the zero net present value condition (1). The geometry of the
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Figure 6.4: Preliminary Trinomial Tree Structure

final tree looks the same as that for an ordinary tree depicted in Figure (6.1) except
that the symbol ® is replaced by ®. This is because the median nodes in the final tree
resulting from the fast construction are located at precisely the expected values ®; by
definition. This is another aspect that makes fast trees more desirable than ordinary
ones.

The position of node (%, j) is §ij = j AS and does not depend on i. Consequently
the drifts M; and the branching probabilities p_S-") , p§-m), and p‘.(,-d) do not depend on i
either. This means that we only need to calculate Jpax — Jnin sets of probabilities where
Jmax = ier{l(}fi(n} Jmax(?) and Jpin = ie{lj&?&n} Jmin(Z). Hence the computer programs for
fast trinomial trees are guaranteed to run faster than those for ordinary trees. We will

do an experimental analysis of the run times of ordinary and fast trees in Chapter (8).
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Conjecture 6.28 (Fast Trinomial Tree) The fast trinomial tree converges weakly

to the solution of Equation (6.1) for the purpose of evaluating derivative securities.

[Hull & White 1994 (a)] outline a proof in the special case when A[S,8(¢)] is a
linear function of S. Consider the drift of the median nodes at time 7 At in the final

tree
D11 — P, = A(®:, m)AL
Dividing both sides of this equation by At¢ and taking the limit as At — 0 reveals
() = A[®(t), 7(2)]

and this equation is true when A[S, 0(t)] is linear in S by Theorem (2.11).

In fact the transformed drift functions we apply the fast trinomial tree method to
are nonlinear. We offer an experimental proof of the conjecture for the class of Pilipovic
equations by evaluating derivative securities using fast and ordinary trinomial trees and

demonstrating that the results are approximately equivalent.

6.4 3 Dimensional Trees

We now introduce a method for creating a 3D trinomial tree that approximates the so-
lution of a system of two correlated stochastic differential equations. This breakthrough

idea was proposed by [Hull & White 1994 (b)].
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Suppose we have a decoupled system of stochastic differential equations of the

form

dR = A(R,t)dt+ o dz

dU = B(U,t)dt+rdy

where the Brownian motions z(t) and y(¢) have correlation p. The requirement
that the equations be decoupled is essential as it allows for the construction of trinomial
trees for each random variable alone (as though the other one did not exist).

Suppose that we have constructed ordinary trinomial trees for the random vari-
ables R(t) and U(t). Denote nodes in the R-tree by (¢,j) and those in the U-tree by

(i, k). Also, write the branching probabilities in the R-tree by p’, p{T”, and p’ and

those in the U-tree by q§,‘;), q,.(,'c"), and q§,f’. Then it is possible to interweave the separate
trees into a single 3D tree so that the desired correlation is induced. We review this

construction next.

6.4.1 Induce the Correlation

Now imagine creating a 3D tree by combining the separate trees for R and U?. Each
pair of nodes (%, j) and (%, k) give rise to a node (%, j, k) in the (R, U)-tree. Suppose
that we are at node (,j,k). Then there are 9 possible nodes that can be branched

into. These are obtained by combining all possible pairs of branchings in the individual

2In essence, we are taking the direct product of two trinomial trees.
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trinomial trees. If the random processes were independent of one another the branching
probability matrix G would be calculated by simply multiplying the corresponding
probabilities together
Pu4d Pudm Pudu
G=| Pm@u Pmim Pmdu (6.13)
Pddd Pddm Pd9u
where we have neglected to indicate the dependence of G on %, j, and k for the
sake of brevity.
We now examine the adjustments necessary to induce the desired correlation.
If the assets are positively correlated (p > 0) then the correct branching probability
matrix is obtained by adjusting the probabilities in the following way
Pudd —€ Pufm =4 Pufu +5€
G=| pm@a— 45 Pmdm +8 DPmqu —4e (6.14)
Pd9d + 5  Pagm — 4  Paqu — €
where € = £.
Note that the probability adjustments add up to zero along each row and column.
This ensures that the means and variances of the individual trees for S and U are not

affected. The only visible effect is to induce a correlation of exactly p between the two

assets. Furthermore, if p = 1 then by Equations (6.7) and (6.14) we would observe the
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following effect
001
AZC=10 50
100

This is precisely the kind of behavior we would expect if the assets were perfectly
positively correlated.

We now state and prove a theorem from [Hull & White 1994 (b)] in which we
make use of some elementary laws of probability which can be found in any fundamental

text on probability theory. For example, see [Grimmett & Stirzaker 1995].
Theorem 6.29 If G is given by (6.14) with ¢ = £ positive then p = corr(S,U).
Proof. Let the matrix of probability adjustments be denoted by

€ = (Emn)

—& —4s B3¢

—4s 8 —4¢
5¢ —4e -—¢
Let the median nodes of the trees for R and U be denoted by ®; and 8;. Also,

let the closest nodes to the drifts at nodes (¢,j) and (i, k) be written as h;; and gi-

Suppose we are at node (3, j, k) in the (R, U)-tree. Then over the next interval of time
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the covariance is given by

cov(R,U) = E (RU) — E(R)E(U)

= Z E @D + emn) Rits poyemUit1.gm — E (R) E (U)

m=-—1n=-1

= Z Z @542 + mn)[@is1 + (hij + m)AR]

m=—1n=-1

[ei+1 + (9& + n)AR} — E(R) E (U)

Recall that the branching probabilities p(m) and q,(: ) add up to one while the

probability adjustments &, add up to zero along any row or column. Hence

1 1
cov(RU) = 3 [Bis1+ (hj+m)AR] 3 [Bis1 + (9 + n)AR] +

m=-1 n=-1
1 1

> Y emn(hij+m)AR(gi +n) AU — E(R) E (U)

m=-1n=-1
= E(R)E(U)-E(R)E(U)+
1 1

ARAU 3 3" emn (hijgix + hin + mgsx + mn)

m=—1n=-~1

= ARAU Z Z Emn (M)

m=-1n=-1

= ARAU(5+1+1+5)¢

= 12¢ AR AU

This clearly demonstrates that cov(R,U) is independent of the node (¢, j, k).
Consequently the correlation of R and U is also independent of our position in the tree.
Indeed this is a well known property of a system of stochastic differential equations

with constant standard deviations.
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The standard deviations of R and U over an interval of time are respectively

oV At and 7V At. Thus the correlation we desire is

cov(R,U)
or At
12¢e AR AU
or At

= 36¢

Now suppose that the assets are negatively correlated (p < 0). Then the correct
matrix is given by
Pugd +5€ PuGm —4€  DuGu — €
G= Pmdd — 4 DmQm + 8¢ pmq, — 4€ (6.15)
Pd9d — €  Pddm —4€  Pdgu + 5€
where ¢ = 13%. The proof of this result is similar to Theorem (6.29).

Similarly if p = —1 then Equations (6.7) and (6.15) would reveal

00

O

im G=] ¢

At—0 0

Wi

00

D=

Again this satisfies our natural intuition of the way that perfectly negatively
correlated assets are supposed to behave.
Equations (6.14) and (6.15) also induce the required correlation between a pair

of fast trees for R(t) and U(t) by proofs similar to Theorem (6.29), except that the
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probability matrix G ceases to depend on 7, and depends only on j and k. Hence we
have a nice and neat 3D tree that accurately predicts the behavior of two correlated

random variables simultaneously. We are now in a position to evaluate spread options

among other things.




CHAPTER 7
MEAN REVERTING MODELS

Energy spot prices fluctuate randomly over time. In fact the spot prices are
conveniently modeled by systems of stochastic differential equations. [Pilipovic 1997]
has proposed a number of models that might be appropriate for the unique behavior
of energy commodities. As it happens, these equations are too complex to be solved
analytically. However, the continuous processes can be implemented numerically as
trinomial trees with great success.

We now develop algorithms for constructing ordinary and fast trinomial trees
for the mean reverting models put forward in [Pilipovic 1997]. In Section (6.3) we
constructed fast trinomial trees that were more elegant than the ordinary trinomial trees
we developed in Section (6.1). We intend to show numerically that the fast trinomial
trees can be successfully used to evaluate derivative securities. We will do this by
comparing results obtained using both fast and ordinary trees and demonstrating that
their differences are within acceptable tolerance levels. This will justify the use of fast

trinomial trees for the purpose of option evaluation.

7.1 1-Factor Model

We begin by dissecting the simplest variation of the Pilipovic equation; namely, the
1-factor model. This will pave the way toward understanding the relatively complex

2-factor models we will study in Sections (7.2) and (7.3).
99
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Consider the 1-factor generalized Pilipovic equation (3.2)

ds=all(t) — sjdt + os dz

In the standard 1-factor Pilipovic equation ! is a constant parameter. In order
to more accurately capture economic trends we allow [(t) to be an unknown function
of time. The parameter I(t) will be chosen to make the model consistent with the term
structure of futures prices observed in the market. This scheme also has the additional
benefit of greatly enhancing the efficiency of the numerical implementation when we
switch from ordinary to fast trees.

The spot price s is the average daily price of an energy commodity such as nat-
ural gas or oil. The long term mean [(t) represents the economic trend of the market.
Although it is unobservable, this quantity will be chosen so that the expected value of
the model coincides with the futures prices agreed upon by a conglomeration of buyers
and sellers. This, along with the condition that the market price of risk is zero, will en-
sure that the probabilities are risk neutral. In other words, we will arrange the geometry
of the tree so that the central node of each branch always corresponds to the expected
value of s as dictated by popular market opinion. This leads to eminently faster tree
construction and significantly more accurate option evaluation. The parameters o and
o are estimated using historical data as explained in Section (4.1).

We begin by constructing the ordinary trinomial tree and then proceed to de-

velop the corresponding procedure for a fast trinomial tree.
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7.1.1 Log Transformation

We begin by doing a log transformation so that the standard deviation in the stochastic

differential equation (3.2) is constant.

L(t) =1n[i(t)] S =In(s)
By the Ito formula we have

2
dS = [a(et®-S — 1) - %]dt +odz (7.1)

7.1.2 Separation of Deterministic and Stochastic Parts

It is now convenient to substitute another random variable that will enable us to easily

separate the deterministic and stochastic parts of the random process.
R=L(t)-S (7.2)

Put ¢(t) = 3(t), ®(t) = S(t), and w(t) = R(t). Taking the expected value of
Equation (7.2) we obtain the expectation relation L(t) = w(t) + ®(t).

Then by the Higher Dimensional Ito Formula!

dR = afa(t) — e®dt + o dz (7.3)

!Note that the actual process obtained is dR = afa(t)—e®]dt — o dz; however, rather than intro-
ducing another Brownian motion to replace —z (which would complicate notation) we have simply

taken advantage of the fact that the probability distribution of —z is indistinguishable from that of z.



CHAPTER 7. MEAN REVERTING MODELS 102
where a(t) is given by

Lty + 2

a(t) =1+ _(2‘;'_2

Observe that we now have an exponentially mean reverting process. That is ef

is bound to inexorably drift toward a(t) at a mean reversion strength of a. At this
point we mention that the analytic form of a(t) as it involves L(£) is unimportant. The
unknown function of time /() will be revealed as the numerical solution of an ordinary
differential equation derived under the assumption that the futures prices f(¢) match
the expected values of s(t) at every branch in the tree.

Using Equation (4.21) with ¢(t) replaced by f(¢) we obtain

(¢
1) = 1) + L8 (74)

Recall that the futures prices in the energy market are quoted on a monthly
basis. Hence it is necessary to interpolate missing values of f(¢). This is easily done
using a cubic spline. Next, finite difference formulas similar to the ones mentioned in

Subsection (4.1.1) yield f(t) 2at all discrete times ¢; = i At for i =0, ..., n. Finally, the

required derivative in the exponential mean reversion level a(t) is

L(t)= % (7.5)

Recall that an attractive feature of the trinomial tree was the fact that the drift

of the median node at time ¢ At landed precisely on the median node of the next branch

2Whenever derivatives appear in any formula in this thesis, they are understood to be obtained by

finite difference methods, for numerical implementation purposes.
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at time (7 + 1)At. This attribute is desirable from an algorithmic point of view and we
desire to capture it here. To this end, we denote the median nodes by &; = Ry and

their drifts by M;. The median nodes are calculate by Equation (6.5)

i—1

W; = Wo + Z Mo
k=0
By Theorem (2.12) the mean and variance of R(t+ At) — R(t) are approximately
M;; = afa; — %7 AR At and V = o2At

at node (z,j) in the trinomial tree for R, defined by Equation (7.3).

The tree construction begins by selecting an initial value for Ry. Then @Wg = Ry
and the median nodes are precisely connected by their drifts according to Equation
(6.5). Then, the branching probabilities are calculated by Equation (6.7).

This completely specifies the ordinary tree construction. Once the tree is ready,

the spot price at node (i, 7) is given by the inverse transformation

= le=@+iaR)

where the parameter [(t) has been calculated by Equation (7.4) so that the
probabilities are risk neutral. Thus the tree can be used to evaluate options. We

summarize the construction process of the 1-factor model (3.2) for the sake of clarity.

Algorithm 7.30 (1-Factor Model Ordinary Trinomial Tree) 1. Specify the

parameters a, o, T, and n and define the futures prices f(t) fort € [0,T].
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2 Transform to a new variable R(t) that satisfies the stochastic differential
equation (7.3).
3. SetAt:% and AR =o0v3 At.
4. Calculate the unknown function of time l(t) by solving the ordinary dif-
ferential equation (7.4).
5. Pick a value for so. Then Ry = ln(i%) and the median node at time 0 is
Wo = Ry. Also, put jmax(0) = Jmin(0) = 0.
6. Fori=0,..,(n—-1)
(a)  Forj = jmin(i), ... Jmax(%)
Calculate the branching probabilities p;; by Equation (6.7).
End For
(b) Calculate W;,1 by Equation (6.5).
(c) Calculate jmax(i + 1) and juin(t + 1) by Equation (6.8).
End For

7. Calculate s;; by Equation (7.6).

Next we consider the construction of the fast trinomial tree for the same random

process (3.2).
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7.1.3 Preliminary Tree

We follow the construction of Section (6.3). The first phase is to construct a preliminary
tree for a noise variable B by setting a(t) = 1 and choosing an initial value of Ry=0.
This is perfectly valid: we are in effect ignoring the deterministic part and concentrating
on the stochastic part of the random process. The deterministic part is then easily
injected back into the final tree by shifting the central nodes of each branch to the

proper level. The actual process assumed for the preliminary tree is therefore
dR = a(l — ef)dt + o dz (7.7)

Recall that a stochastic differential equation is made up of a deterministic part
and a stochastic part. The essences of these components are captured by the mean and
variance of the probability distribution that is the solution of the stochastic differential
equation. By forcing our trinomial tree to match the mean and variance of the solution
we guarantee that our discrete scheme will converge to the continuous process.

By Theorem (2.12) the mean and variance of ﬁ(t+At) —ﬁ(t) are approximately

M; = a(l — & 2R)At and V = At

at node (3, j) in the trinomial tree for R (7.7). Note that this is a linear approx-
imation for the mean and variance. Figure (7.1) shows the preliminary and final trees

for a mean reverting random variable.
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R4 a@)=1
Jmxx
R,=0 > ¢
Jmin R,=j R
Preliminary Tree

Final Tree

Figure 7.1: Mean Reverting Fast Tree Construction
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Further, by rendering a (¢) constant in the preliminary tree, we have ensured
that the drift M; depends only on j and not on i. Now the median node in the branch
at time i At is assumed to be located at Ry, = 0, and in general, R;; = j AR in the
preliminary tree. In other words, we suppose that the expected value of B (t) vanishes.
However, this is merely an approximation and by Claim (6.26) the deviation of w(t)
from zero is negligible. We recall that this is a sufficient condition the process must

satisfy for this construction to work.

7.1.4 Branching Probabilities

As it happens, following [Hull & White 1994 (a)] only three kinds of branching pro-
cesses need to be considered for the mean reverting models we consider. Branching
process A will dominate in the interior of the tree while branching processes B and C
designate the boundary of mean reversion and ensure that the process is not allowed to
drift too far away from the line of attraction. Figure (7.2) illustrates these alternatives.

Our objective now is to construct a trinomial tree that mimics the behavior
of the random process. This entails deciding which of the three alternative branching
processes will apply at each node. Then the branching probabilities must be calculated.
This is done by matching the mean and variance of the small change in R over the next
time interval At¢. Together with the well known fact the probabilities must add up to
one gives us a total of three equations in the three probabilities.

The mean reversion of the random process dictates that at some point the drift




CHAPTER 7. MEAN REVERTING MODELS 108

2

Figure 7.2: Alternative Branching Processes

of R toward 0 will cause the branching process to shift inward. From this time onward,
the nodes in the tree will be forever trapped inside a band of mean reversion. Define
Jmax as the value of 7 where we switch from branching process A to branching process
C and jpi, as the value of j where we switch from branching process A to branching

process B.

1 AR )1 29

Jmax = [‘A—R Y
. 1 AR
Jumin = [ﬁ‘“‘_zaARJ

Theorem 7.31 The mazimum and minimum values of j obtained by a mean reverting

process obeying (7.7)

dR = a(l — ef)dt + o dz
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are given by Equation (7.8).

Proof. We consider first the case when 7 > 0. In this case the drift is negative - the
process is inevitably drawn back toward the line of attraction. Suppose we are at node

(i,7)- The switch from branching process A to C occurs when the drift is closer to node

(i+1,7—1) than (i +1,7)

1+ B

AR R+ 577

Therefore

ne AR )]

2a At
Now assume that j < 0. Then the drift is positive and if we are at node (%, j)

then the switch from branching process A to B occurs when the drift is closer to node

(:+1,7+1) than (z+1,7)
M; >

a(l—¢ 3R)Aat > —

1 AR
arn -5 A

)

J] <

Thus

) 1 AR
e = | 37120~ 74 At)J
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=

The probabilities associated with the three possible branching processes are given

by substituting the appropriate values of h in (6.7). If we are at an interior node, A = j

and branching process A is adopted with branching probabilities calculated by

_ 2 M
Pm = 37 AR

1,1 MM
Pa = 5*5(ARz‘m)

Similarly if we are at the lower bound of the band of mean reversion, h = j + 1

and branching process B is adopted with branching probabilities calculated by

1 1/ M M

Po = 572 AR2_AR) (7.10)
1 M M;

P = 37 2m T’2AR

—_ Z+1 M2 -3&
Pé = % AR " 3AR

Finally if we are at the upper bound of the band of mean reversion, h = j — 1
and branching process C is adopted with branching probabilities calculated by

P = i +35%) (7.11)

______2£
Pm = T3 AR “AR

_ l+ M2+.f‘ﬁ
Pe = B AR’ T AR

Recall that the probabilities depend only on j. Hence the probabilities at ev-

ery node in the tree are specified by calculating a total of (jmax — Jmin + 1) sets of
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probabilities!

This completes the construction of the preliminary tree. It merely remains to
choose the right values for i(t). Then the preliminary tree will be shifted onto the final

tree.

7.1.5 Final Tree

The final tree is formed by shifting the median nodes of the preliminary tree onto the
expected values of the random process R(¢). To this end the nodes in the branch at
time ¢ At are displaced by an amount w; equal to the expected value of R(t) at time

t;. The position of node (%, 7} in the final tree is therefore

Rj=w:+j AR (7.12)

Therefore, the spot price at node (%, ) is given by the inverse transformation

sij oLi—(wi+iAR) (7.13)

— e®i—iAR

We assumed that w(t) was (effectively) zero for the purpose of constructing the
preliminary R-tree, but this is not (generally) true. In fact it is the solution of an

ordinary integral equation involving the unknown function of time I(¢). The expected
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value of s at time 7 At is given by

min(4,jmax)
p; = Y. Pysy (7.14)
Jj=max(i,jmin)
min(i,jmax)
= e‘bi Z I’,-,-e‘jAR

Jj=max(,jmin)
where P;; is the probability of reaching node (7, j). These cumulative probabil-

ities are easily calculated as follows, provided we know the branching probability at

each node in the tree.
Ppo =1 (7.15)
P; = Y Piyimgli—1,m)— (3,5)]
m

fori=1,..,n and j = max(—%, jmin), ---, MR (Jmax, ) where q[(i — 1,m) — (3, j)]
is the probability of branching from node (i —1, m) to node (¢, 7). It remains to compute

®; by an equation given in the next subsection.

7.1.6 Matching Futures Prices

Let f(¢) be the futures price of the energy commodity in the market. Then the expected

future spot price is related to the futures price by Equation (5.3)
o (t) = f(t)

The unknown parameter ®; is found by setting the futures price equal to the
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expected future spot price in Equation (7.14) and solving

fi
min(i,jmax ) .
Pje-iaR
¥ -:max(itjmin)

$; = In( ) (7.16)

This ends the construction of the fast trinomial tree for the 1-factor model (3.2),

which we summarize next.

Algorithm 7.32 (1-Factor Model Fast Trinomial Tree) 1. Specify the param-
eters a, o, T, and n and define the futures prices f(t) fort € [0,T).
2. Transform to a new variable R(t) that satisfies the stochastic differential
eguation (7.3).
3. Set At=Z and AR =oV3 At.
4. Calculate jmax and juin by Equation (7.8).
5. For 7 = Jmin, .-+ Jmax
Calculate the branching probabilities p; by Equation (6.7).
Fnd For
6. Set Py = 1.
7. Fori=0,..,(n—1)
(a) Calculate P;; by Equation (7.15).
(b) Calculate ®; by Equation (7.16).
End For

8. Calculate s;; by Equation (7.13).
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7.2 2-Factor (a) Model (Two Correlated Assets)

It is often advantageous to model two correlated assets simultaneously. This enables
one to evaluate such exotic financial derivatives as portfolios and spread options. We
will do this by constructing separate trinomial trees for each of the two assets. Then
we will combine them into a single 3D tree. The desired correlation will be induced by
a neat mathematical trick In this way, the evolution of both random processes can be

modelled at once.

Consider a pair of correlated 1-factor energy prices satisfying the 2-factor (a)

model

ds = all(t)—-sldt+osdz

dv = B[m(t)—v]dt+rvdy

Let the correlation between the two related assets be written as p = corr(z,y).
Then we have a decoupled system of stochastic differential equations and we follow the
procedure outlined in Section (6.4). Again we start with an ordinary trinomial tree and

then move to the fast one.
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7.2.1 Construct Separate Trees

We begin by doing log transformations on the random processes to render their standard

deviations constant. The substitution for the first asset is the same as before
L(t) =In[l(t)] S =In(s)
while the substitution for the second asset is
M(t) =In[m(t)] V =In(v)

Similarly we introduce new random variables by the substitutions

R=Lt)-S U=M@t)-V

to facilitate tree construction. Then the system of stochastic differential equa-

tions for R and U is

dR = ofa(t) —eRdt+ o dz

dU = plb(t) —eYldt + 7 dy

where
. 2 . 2
a(t)=1+L(t%L b(t)=1+_lw(_t')6.+_2.
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We observe that the correlation between R and U is given by p as the Brownian
motions z(t) and y(t) of the stochastic differential equations for R and U are the same
as those for S and V.

The ordinary trees for R and U are constructed according to the procedure
described in Section (7.1). These trees are formed individually, as though the other
random process in the system were not present. Let the nodes in R-tree be denoted
by (Z,7) as before and let the nodes in the U-tree be denoted by (7, k). Note that the
7 index represents time for both assets. The length of a time interval At is the same
for both trees. The length of a small change in R is AR = 0v/3 At and the length of a
small change in U is AU = 7v/3 At. Furthermore we denote the branching probabilities

(w) (m) (w) _(m)

in the R-tree by p&), p{7, and p{? and those in the U-tree by ¢, ¢, and ¢fp .

Let the futures prices of s(t) and v(¢) be respectively written as f (¢t) and g (¢).
The unknown functions of time [ (t) and m (¢) are obtained by matching the futures
prices f(t) and g (t) for each asset separately. This is done by solving the system of

ordinary differential equations

)
&
m(t) = g(t)+%

i) f@&) +
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7.2.2 Induce the Correlation

The complete 3D tree for R and U is created in precisely the same way as we did in
Subsection (7.4.1). Each pair of nodes (%, §) and (i, k) give rise to a node (2, j, k) in the
(R,U)-tree. Suppose that we are at node (%, j, k). Then there are 9 possible nodes that
can be branched into. These are obtained by combining all possible pairs of branchings
in the individual trinomial trees. By Theorem (6.29) it follows that for p > 0 the

branching probability matrix is given by Equation (6.14)

Pudd — € DuQm — 4  Duqy + 5¢
G= PmQa — 46 PmQm + 86 Dmqu — 4
Pdqd + 9  Pdgm —4€  DdQu — €

where € = £ and for p < 0 we have the matrix (6.15)

Puqd + 5e Pulm — 4c DPuGQy — €
G = Pmdd — 4 DPmGm + 8 DPmGy — 4

Pd9d — €  Pd9m — 4€ P4 + €

where £ = %.
This provides us with an ordinary 3D tree that converges to the system (4.14).
We are now in a position to evaluate spread options for the purpose of authenticating

the approximate tree. This will be done in Subsections (8.1.2) and (8.2.2).

Algorithm 7.33 (2-Factor (a) Model Ordinary Trinomial Tree) I. Construct

ordinary trinomial trees for s and v by Algorithm (7.30).
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2. Combine the trees and induce the correlation p by Eguation (6.14) or

(6.15).

7.2.3 Fast Trinomial Tree

The fast 3D tree follows precisely the same construction pattern as the ordinary one
except that we build separate fast trinomial trees for each asset before combining them

into a single tree.

Algorithm 7.34 (2-Factor (a) Model Fast Trinomial Tree) 1. Construct fast
trinomial trees for s and v by Algorithm (7.32).

2. Combine the trees and induce the correlation p by Equation (6.14) or

(6.15).

7.3 2-Factor (b) Model (Single Asset with Stochas-

tic Long Term Mean)

‘We now move on to consider the 2-factor (b) model

ds = a(l—s)dt+osdz

dl

B(t) dt + Tl dy

In the standard 2-factor (b) Pilipovic equation 3 is a constant parameter. In

order to more accurately capture economic trends, we allow (3(t) to be an unknown
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function of time. The parameter 3(t) will be chosen to make the model consistent with
the futures prices observed in the market. This is nearly identical to our development
of the 1-factor model in Section (7.1). However, there are a few subtle differences that
must be addressed. Although it is possible for the Brownian motions z and y to be

correlated, we assume that they are not, for the sake of convenience.

7.3.1 Constant Standard Deviations

The first step in our operation is a log transformation that renders the standard devi-

ations in the system of stochastic differential equations constant.
S=In(s) L =In()
By the Ito formula we have

ds [a(efF=5 —1) — 92—2]dt +odz

2

dL = [ﬂ(t) 2]dt+'rdy

7.3.2 Decouple the Equations

It is now desirable to eliminate the dependence of S on L. This can be done by

introducing a new random variable

R=L-S (7.17)



CHAPTER 7. MEAN REVERTING MODELS 120
Then by the Higher Dimensional Ito Formula it follows that

dR = afA(t) - efjdt +v dw (7.18)

2
dL = [ﬂ(t)—--z—] dt + T dy

where w is a new Brownian motion with the standard deviation of R implicitly

defined by

V=g +7°

and B(t) is some unknown function of time given by
B(t) +=5=

Al®) =1+

Observe that a linear combination of two Brownian motions is also a Brownian

motion. Indeed by the Higher Dimensional Ito formula we have
vdw=1dy—odz

Even though S and L are uncorrelated by our assumption, the random processes

R and L are positively correlated by an amount

©
I
AR

7.3.3 Construct Separate Trees

The construction of an ordinary trinomial tree for R proceeds precisely as in Section

(7.1). We let the nodes in the R-tree be denoted by (, j), denote the length of a small
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change in R by AR = vv/3 At, and write the branching probabilities in the R-tree
by pg-‘), pg"), and pf,d) The median nodes are denoted by &; and are calculated by
Equation (6.5). It is interesting to note that the median nodes are not equal to the
expected values w; (except at time 0 when Wy = wq). However, they are approximately
by our Claim (6.26).

The random process for L is a geometric Brownian motion and the trinomial tree
is easy to construct. In fact we already did the analysis of I(¢) in Section (6.2). Nodes

in the L-tree will be written as (i, k) and a small change in L is given by AL = 7v/3 At.

The probabilities in the L-tree are given by Equation (6.10)

1

Qu 6
= 2

dm 3
1

dd 3

and the position of node (i,k) is ¥; + k AL where

-1 2
¥=Lo+Y (B — 5)At (7.19)
k=0

7.3.4 Induce the Correlation

This done the preliminary trees for R and L are combined according the procedure

explained in Subsection (6.4.1) to form a 3D (R, L)-tree. Since R and L are positively
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correlated the branching probability matrix is given by Equation (6.14)

Pudd — € DPugm —4€  Dufu + 3¢
G= PmGd — 4€ Pm@m + 8¢ pmq. —4e

Dddd + 9 PaGm —4E  DdQu — €

= £
where € = 25-

7.3.5 Matching Futures Prices

Once again the unknown function of time 3 (¢) can be theoretically calculated by solving

the ordinary system of differential equations (3.7)

@) = afp(t) — @)
V() = BE)Y (@)

with the expected future spot price ¢(t) replaced by the futures price f(t). This
provides a satisfactory method of calculating the drift parameter 3 (¢). The solution is

_fey+ 12

- , (7.20)
fle) + £2

B(¢)
The spot price at node (¢, j, k) is recovered by the inverse transformation

and the tree can be used to evaluate options.
Remember that the remaining parameters «, o, and 7 are estimated by historical

data using the procedure explained in Section (4.3).
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Algorithm 7.35 (2-Factor (b) Model Ordinary Trinomial Tree) 1. Specify
the parameters a, o, T, and n and define the futures prices f(t) for t € [0,T].

2 Transform to the decoupled system (7.18).

3. SetAt=ZI, AR=vV3 At, and AL=T1V3 At.

4. Calculate the unknouwn function of time B(t) by solving the ordinary dif-
ferential equation (7.20).

5. Pick a value for so and set ly = so + 452, Then Ry = In(2) and
Lo =In(lp) and the median nodes in the trees for R and L at time 0 are Wo = Ry and

Vo = Lo. Also, put jmax(0) = jmin(0) = 0.

Ol

6. Set q =

[A][V]

1
6
7. Fori=0,...,(n-1)

()  For j = jmin(Z), s Jmax(3)
(2) Calculate the branching probabilities p;; by Equation (6.7).
(iz) Calculate the matriz G;; by Equation (6.14)
End For

(b) Calculate Wi4+; and ¥, by Equations (6.5) and (7.19).

(c) Calculate jmax(? + 1) and jmin(i + 1) by Equation (6.8).

End For

7. Calculate sijx by Equation (7.21).
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7.3.6 Fast Trinomial Tree

The fast trinomial trees for R and L are constructed using the procedure in Section
(6.3). Furthermore, the correlation is induced by adjusting the branching probability
matrix according to Equation (6.14). Then the nodes in the preliminary trees for R

and L are found at
Rij=jARand Ly =k AL

while the shifted nodes in the final trees for R and L are located at

Rij =w;+J ARand Ly =V; +k AL

It merely remains now to (implicitly) select the parameter G (t) so that the
expected value of s (t) matches the futures prices f (¢). The spot price at node (z, 7, k)

is recovered by the inverse transformation

Sijk = e‘p”i'f'k AL—(wi+j AR) (7-22)

— ¥tk AL—j AR

where ®&(t) = S(t), ¥(t) = L(t) and w(t) = R(t).

Observe that we do not directly solve for 3(t). Rather we find the parameter
®; = ¢, — w; which is a function of 3 (¢). It is not necessary to solve ®; as a function
of 3 (t) in order to match the futures prices f (¢). This is indeed fortunate and we do

not concern ourselves with the analytic form of ®; here.
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The expected value of s at time ¢ At is given by

min(f,jmax) i

> D Pasi (7.23)

F=max(i,jmin) k=—i

@
min(i,jmax) i

e‘l’i E : § :}Dijkek AL-;AR

j=max(i,jmin) k=—1

where P,j; is the probability of reaching node (%, j, k). These cumulative proba-

bilities are easily calculated provided we know the branching probability at each node

in the tree.
Poo = 1 (7.24)
Pj. = Y Piimagl(i—1,m,n) — (3,5, k)]
mn
fori=1,..,n, j = max(—¢, jmin), ---, MiN (Jmax, ), and k = —1, ..., where ¢[(i —

1,m,n) — (4,7 k)] is the probability of branching from node (¢ — 1,m,n) to node
(4,7, k).
Let f(t) be the futures price of the energy commodity in the market. Then the

expected future spot price is related to the futures price by Equation (5.3)

@(t) = f ()

The unknown parameter ®; is found by setting the risk discounted futures price

equal to the expected future spot price in Equation (7.23) and solving

fi
min(igme) i A

J=max(i,jmin) k=—1

®; = In( ) (7.25)
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The following algorithm summarizes the construction of the fast trinomial tree

in pseudocode style.

Algorithm 7.36 (2-Factor (b) Model Fast Trinomial Tree) 1. Specify the pa-
rameters a, o, T, and n and define the futures prices f(t) fort € [0,T].
2. Transform to the decoupled system (7.18).

3. SetAt=-£-, AR =vV3 At, and AL = 17v3 At.

(-1

4. Set q =

win

1

6
5. Calculate jmax and jmin by Equation (7.8).

6. For j = jmin, ..., jmax
(a) Calculate the branching probabilities p; by Equation (6.7).
(b) Calculate the matriz G; by Equation (6.14)
FEnd For
7 Set Py = 1.
8. Fori=0,...,(n—1)
(a) Calculate P, by Equation (7.24).
(b) Calculate ®; by Equation (7.25).
End For

8. Calculate s;jx by Equation (7.22).



CHAPTER 8
ENERGY OPTIONS

Traditionally, there has been a market for options on some energy futures con-
tracts on NYMEX. There is, however, a sizable over-the-counter market for options on
actual spot prices, utilized by large energy firms and users. We propose and implement
trinomial methodologies for the valuation of these options, based on mean reverting
price processes. Trinomial trees provide an efficient and accurate way of pricing these
options. We will examine a subset of derivative securities known colloquially as Amer-
ican and European style options. There are two basic kinds of these options: call and
put.

Definition 8.37 A call (put) option gives the holder the right to buy (sell) an asset
by a certain date T for a fixed price K. The price K in the contract is known as the
strike price and the date T is known as the expiration date or maturity. Amer-
ican options can be ezercised at any time up to maturity. Eurcpean options can be
ezercised only on the expiration date itself. The values of European call end put options
will be denoted by c(t,T) and p(t,T) while the values of American call and put options
will be written as C(¢t,T) and P(t,T) where t is the start time of the contract. We
often write the option price as a function of a single variable s: in this case we shall

always assume thatt =0 (ort=1¢;) and T = s.

We now describe a practical scenario for evaluating options. In each case, the
127
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Unknown Function
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Historical Spot Prices Futures Prices
] [] J:
0 T

Figure 8.1: Option Evaluation Procedure
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parameters «, o, and (possibly) 7 are estimated using the year of historical data imme-

diately preceding the start date of the contract. As usual, the unknown function of time

I(t) or B(t) is selected so that the geometry of the tree is consistent with the futures

prices over the period of the option. Figure (8.1) shows a picture of this procedure.

Also, the duration is taken to be T = 3 months and the strike price is K = 0.75s¢

where sg is the spot price on the start date. Remember that futures prices are only

available for each monthly contract and missing values are interpolated using a cubic

spline. Last but not least, we assume that the risk free interest rate is r = 3.5% for the

sake of simplicity. We shall adopt this procedure for the evaluation of all options for

the remainder of this thesis.
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8.1 European Option Evaluation

We suppose that the asset underlying the options is an energy spot price s(t). Consider
a European call option on a single unit of energy. If the energy spot price s(T') exceeds
the strike price K at maturity, the trader can exercise the option by purchasing the
energy at the strike price and immediately selling it on the market, realizing a profit
of s(T) — K. On the other hand, if s(T') < K then the option will expire unused.
Evidently the payoff of a European call realized at maturity is [s(7T) — K]*. Similarly
the payoff of a European put option at maturity is [K — s(T)]*.

In a risk neutral world, the payoff is discounted to the present by the risk free

interest rate r (this is the time value of money). Therefore

oT) = e TE([s(T) - KI*} (8.1)
p(T) = e TE{[K - s(T)]*}

where the expectation is taken under a risk neutral probability distribution. For

a complete discussion of risk neutral option evaluation, refer to [Hull 1999).

8.1.1 1-Factor Model

Let s(t) be a spot price satisfying the 1-factor generalized Pilipovic equation (3.2).
Suppose that we have constructed a risk neutral trinomial tree for s(¢) by matching

the futures prices f(t) over the duration of the contract [0, T]. As usual, we denote the
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probability of reaching node (%, j) by P;;. Then

Jmax
oT) = e Y Py(sy — K)* (8.2)
I=Jmin
Jmax
p(T) = T Y Py(K ~s;)*
J=Jmin

Throughout this entire section, we display equations only for fast trees. The
corresponding equations for ordinary trees are almost identical except that the upper
and lower bounds jmin, Jmax; Kmin, a0d kmax depend on i.

We now compare the European call option prices revealed by ordinary and fast
trinomial trees. We calculate typical natural gas, crude oil, and electricity options
from 1997, 1998, and 1999. Tables (8.1), (8.2), and (8.3) show that both methods are
converging to the same values for these typical options. Also, we display the errors for
reference. The actual option price is approximated by executing the ordinary and fast
trinomial trees for a very large number of time steps (n = 1600). These (pseudo) exact
values are shown in brackets beside the words Fast and Ordinary in the tables below.
Furthermore, the computation times are given in seconds. These times are the result
of running the programs on a PC that is capable of executing 1 000 000 floating point
operations (flops) per second. Also, the ratios between their CPU times are displayed
as a percentage so that we can see how much faster the fast trinomial trees really are.

It would appear that on average the fast trinomial trees require only (approxi-
mately) 45% the number of flops that the ordinary ones do. Furthermore, the fast trees

seem to be converging at about the same rate in that they achieve the same errors as




CHAPTER 8. ENERGY OPTIONS 131

Table 8.1: 1-F European Call Natural Gas (January 1, 1997)

Fast (0.1686) Ordinary (0.1687) CPU Ratio
n | Value | Error | Time (s) | Value | Error | Time (s) (%)
100 | 0.1688 | 0.0002 0.06 0.1691 | 0.0003 0.12 45.2
200 | 0.1702 | 0.0017 0.21 0.1704 | 0.0017 0.47 45.2
400 | 0.1686 | 0.0000 0.86 0.1688 | 0.0000 1.87 46.0
800 | 0.1687 | 0.0001 4.08 0.1689 | 0.0001 9.16 44.7

Parameters a = 0.167 and o = 0.0446. Strike K = 2.17.

Spot so = 2.89. Futures f(1) = 2.89, f(2) = 2.62, and f(3) =2.35.

the ordinary trees for similar values of n. This means that the fast trinomial trees are
doubly effective in the 1-factor case!

Since both types of trees use Euler methods, we expect their errors £ to be
O(At), or equivalently O(2), as At = Z. In other words, we suppose that the error
is a linear function of At. It is easy to see this linear relationship by plotting log,(E)
as a function of log,(n). Why? Well, because if E = At for some number v then
logy(E) = logy(vT) — log,(n). For the sake of conciseness, we only consider the crude
oil (May 1, 1998) data. Figure (8.2).shows the results.

Now consider the run times tg of our programs. Evidently the space and time

requirements of the 1-factor model are proportional t0 (jmax—-jmin + 1)n where the
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Table 8.2: 1-F European Call Crude Oil (May 1, 1998)

Fast (5.790) Ordinary (5.789) CPU Ratio
n | Value | Error | Time (s) | Value | Error | Time (s) (%)
100 | 5.712 | 0.078 0.06 5.707 | 0.083 0.12 45.2
200 | 5.753 | 0.037 0.21 5.750 | 0.039 0.46 46.0
400 | 5.774 | 0.016 0.83 5.773 | 0.017 1.78 46.5
800 | 5.784 | 0.005 3.23 5.784 | 0.006 7.05 46.7
Parameters a = 0.154 and ¢ = 0.0209. Strike K = 12.10.
Spot sp = 16.13. Futures f(1) = 16.13, f(2) = 16.09, and £(3) = 17.05.

upper and lower bounds are given by Equation (7.8)

. 1 AR
Jmax = [ﬁm(1+2a At)-‘

1 AR
[zﬁ‘n 1-% At)J

Recall that AR = ov3 At. This fact together with the linear approximation

jmin

In(1 + z) ~ z reveals that jmax ~ 557 and jmin ~ —505- Therefore we predict that our
programs run in time C(n2?). To view this relationship, we plot log,(tr) as a function
of logy(n). The result should be a straight line of slope 2. Figure (8.3) displays these
lines for the crude oil (May 1, 1998) data. The picture clearly shows that both types
of trees do indeed run in time O(n?). Of course, the fast tree has a smaller constant of
proportionality than its ordinary counterpart.

We now demonstrate the seasonal nature of option prices under the 1-factor
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Table 8.3: 1-F European Call Electricity (September 1, 1999)

Fast (7.894) Ordinary (7.893) CPU Ratio

n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 | 7.649 | 0.245 0.06 7.625 | 0.267 0.14 43.0
200 | 7.778 | 0.117 0.25 7.765 | 0.127 0.55 45.3
400 | 7.844 | 0.050 1.03 7.837 | 0.055 2.31 448
800 | 7.877 | 0.017 7.76 7.874 | 0.019 30.7 25.2
Parameters a = 0.142 and ¢ = 0.0456. Strike K = 24.83.
Spot so = 33.10. Futures f(1) = 33.10, f(2) = 29.97, and f(3) = 31.35.

model. This is done by calculating the option values at the beginning of each month
in a sample year and plotting them. Although we could evaluate options on every
day throughout the year, this is unnecessarily time consuming. Instead, we interpolate
between the monthly values using a cubic spline. This shows the seasonal shape of
the curve. Naturally we use ordinary and fast trinomial trees in these calculations for
comparison. Once again we consider natural gas, crude oil, and electricity options from
1997, 1998, and 1999. To save space, we show only the crude oil 1998 option prices in
Figures (8.4). The remaining pictures have been relegated to Appendix C.

The pictures clearly show the need for a time varying parameter model for the
risk neutral evaluation of energy options. It is also interesting to note that ordinary and

fast trees calculate option prices that are so close to one another that the difference is



CHAPTER 8. ENERGY OPTIONS 135
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Figure 8.4: Crude Oil 1998 1-Factor Model European Call Options

not noticeable by graphing. This is strong supporting evidence for the Fast Trinomial

Tree Conjecture in the case of the 1-factor model.

8.1.2 2-Factor (a) Model (2 Correlated Assets)

We continue our analysis by evaluating European spread options. If our assets are
denoted by s(t) and »(t) and v(t) > s(t) thep the payoff function of a European call
option at maturity is [v(T) — s(T) — K|*. The European option evaluation equations

are similar to (8.2) and we will not bother to derive them again although we write them
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down for reference.

oT) = e Z Z Pijk[(vix — ;) — KI* (8.3)
J=Jjmin k-km.n

Jmax

p(T) = e Ty Z PyilK — (v — s5)]*

J=JImin k=Kmin

We proceed to evaluate spread options among all possible pairs of natural gas,
crude oil, and electricity. Their correlations - like the rest of the parameters - are
calculated using the year of historical data immediately prior to the option period.
This is a typical scheme used by financial modelers. The actual option values are
calculated using n = 400 and are shown in brackets for the ordinary and fast trees.

Table (8.4), (8.5), and (8.6) display the results.

Table 8.4: 2-F (a) European Spread Oil-Electricity (January 1, 1999)

Fast (0.3665) Ordinary (0.3614) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 | 0.3720 | 0.0055 0:03 0.3671 | 0.0057 0:04 66.4
141 | 0.3690 | 0.0025 0:06 0.3639 | 0.0025 0:10 65.6
200 | 0.3675 | 0.0009 0:17 0.3624 | 0.0010 0:26 65.0
283 | 0.3666 | 0.0000 0:45 0.3615 | 0.0000 1:12 63.0

Parameters a = 0.170, 8 = 0.172, o = 0.0283, 7 = 0.0479, and p = —0.051.

Strike K = 8.59. Spots so = 12.05 and vp = 23.50. Futures f(1) = 12.05,

£(2) = 12.09, £(3) = 12.40, g(1) = 23.50, g(2) = 21.50, and g(3) = 20.00.
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Table 8.5: 2-F (a) European Spread Electricity-Gas (May 1, 1997)

Fast (9.945) Ordinary (9.951) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 { 10.02 | 0.072 0:03 10.04 | 0.090 0:05 57.7
141 | 9.990 | 0.045 0:07 10.01 | 0.056 0:11 65.5
200 | 9.970 | 0.025 0:20 9.982 | 0.031 0:31 62.7
283 | 9.955 | 0.010 0:54 9.964 | 0.013 1:27 61.3

Parameters a = 0.176, 8 = 0.140, o = 0.0410, 7 = 0.0444, and p = 0.388.

Strike K = 13.02. Spots sop = 2.24 and vo = 19.60. Futures f(1) = 2.24,

f(2) =2.26, £(3) = 2.33, g(1) = 19.60, g(2) = 23.76, and g(3) = 25.73.

gas (May 1, 1997) data.
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Figure (8.5) shows the linear convergence rates for the electricity and natural

Evidently the space and time requirements of the 2-factor (a) model are pro-

portional t0 (jmax—-Jmin + 1)(Kkmax — -Kmin + 1)n. By an analysis similar to the one

we did in Subsection (8.1.1), this indicates that the computer programs should run in

time O(n3). We can view this relationship by plotting log,(tr) as a function of log,(n).

The result should be a straight line of slope 3. Figure (8.6) displays these lines for the

electricity and natural gas (May 1, 1997) data.

Figure (8.7) shows the seasonal shape of the option prices for the correlated

pair electricity and natural gas in the year 1997. The corresponding pictures for the
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Table 8.6: 2-F (a) European Spread Gas-Oil (September 1, 1998)

Fast (3.438) Ordinary (3.438) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 | 3.424 | 0.013 0:03 3.425 | 0.0013 0:04 66.3
141 | 3.430 | 0.008 0:07 3.430 | 0.008 0:11 65.5
200 | 3.433 | 0.005 0:18 3.433 | 0.004 0:29 62.5
283 | 3.436 | 0.002 0:49 3.436 | 0.002 1:16 64.5

Parameters a = 0.140, 8 = 0.175, ¢ = 0.0311, 7 = 0.0257, and p = 0.065.

Strike K = 8.69. Spots sg = 1.75 and vg = 13.34. Futures f(1) = 1.75,

£(2) = 1.98, £(3) = 2.25, g(1) = 13.34, g(2) = 13.59, and g(3) = 14.18.
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remaining energy pairs may be found in Appendix C. The pictures show that ordinary

and fast trees reveal virtually identical option values in the 2-factor (a) model. Again

this supports the Fast Trinomial Tree Conjecture.

8.1.3 2-Factor (b) Model (Single Asset with Stochastic Long

Term Mean)

The European option prices for the 2-factor (b) model are

Jmax

(T) = e'7T Z

F=Jmin k=—n

p(T)

Jmax

n
Z Pjx(sije — K)*

kmax

J=Jmin k=Kmin

e T Z z Pijx(K — sie)™

(8.4)
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Figure 8.7: Electricity-Gas 1997 2-Factor (a) European Call Options

We evaluate typical natural gas, crude oil, and electricity options from 1997,
1998, and 1999. The actual option values are calculated using n = 200 and are shown
in brackets for the ordinary and fast trees. The results are shown in Tables (8.7), (8.8),
and (8.9).

Figure (8.5) shows the linear convergence rates for the crude oil (May 1, 1998)
data.

Evidently the space and time requirements of the 2-factor (b) model are pro-
portional t0 (jmax—-Jmin + 1)(2n + 1)n. By an analysis similar to the one we did in
Subsection (8.1.1), this indicates that the computer programs should run in time O(n3).

We can view this relationship by plotting log,(tr) as a function of log,(n). The result
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Table 8.7: 2-F (b) European Call Natural Gas (January 1, 1997)

Fast (0.2988) Ordinary (0.4010) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 0.3020 | 0.0032 0:03 0.4052 | 0.0042 0:03 96.7
71 | 0.3005 | 0.0017 0:07 0.4033 | 0.0022 0:08 87.4
100 | 0.2997 | 0.0009 0:19 0.4022 | 0.0012 0:21 89.6
141 | 0.2991 | 0.0004 0:49 0.4015 | 0.0005 0:54 91.4

Parameters a = 0.167, o = 0.0446, and = = 0.0315. Strike K = 2.17.

Spot s = 2.89. Futures f(1) = 2.89, f(2) = 2.62, and f(3) = 2.35.

should be a straight line of slope 3. Figure (8.9) displays these lines for the crude oil
(May 1, 1998) data.

Figure (8.7) shows the seasonal shape of the option prices for crude oil in the
year 1998. The corresponding pictures for natural gas and electricity may be found in
Appendix C.

By looking at Figure (8.10), we perceive that ordinary and fast trees clearly
deviate from one another in the 2-factor (b) model. Although this would seem to
discredit the Fast Trinomial Tree Conjecture, bear in mind that the relative complexity
of the 2-factor (b) model - as it involves a spot price s(t) mean reverting to a diffusion
l(t) - makes it more difficult to obtain perfect results. However, we maintain that the

procedure is still satisfactory from a practical point of view. In an industrial application,
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2-Factor (b) European Call Convergence Rates
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Table 8.8: 2-F (b) European Call Crude Oil (May 1, 1999)

Fast (5.754) Ordinary (6.102) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 5.633 | 0.121 0:03 5.974 | 0.128 0:03 96.7
71 | 5.680 | 0.074 0:08 6.023 | 0.079 0:08 96.8
100 | 5.713 | 0.041 0:18 6.058 | 0.044 0:19 96.8
141 | 5.737 | 0.017 0:52 6.083 | 0.019 0:54 96.8

Parameters o = 0.154, o = 0.0209, and T = 0.0176. Strike K = 12.10.

Spot sp = 16.13. Futures f(1) = 16.13, f(2) = 16.09, and f(3) = 17.05.
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the parameters «a, o, and 7 have errors associated with them given by Equation (4.27)

Aa =007

Ac = 0.003

AT =0.015

Furthermore, the highly volatile nature of the energy market renders extreme

accuracy in option calculations redundant. Remember that the futures prices are in

some sense the best predictors of the way spot prices will evolve. However, the futures

prices - which determine the geometric shape of our trees - are still guesses, albeit good

ones. Therefore the discrepancy between ordinary and fast trees is actually well within

acceptable tolerance levels. Also, in the case of European option evaluation under the

2-factor (b) model, we notice that fast trees run only slightly faster than ordinary trees®.

!Look at the CPU ratios in Tables (8.7), (8.8), and (8.9).
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Table 8.9: 2-F (b) European Call Electricity (September 1, 1997)

Fast (8.585) Ordinary (11.543) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 8.280 | 0.306 0:03 11.157 | 0.386 0:03 96.7
71 | 8395 | 0.190 0:09 11.304 | 0.240 0:09 96.9
100 | 8.478 | 0.108 0:22 11.409 | 0.134 0:22 96.8
141 | 8.540 | 0.045 1:01 11.485 | 0.058 1:06 92.9

Parameters a = 0.142, & = 0.0456, and 7 = 0.0394. Strike K = 24.83.

Spot so = 33.10. Futures f(1) = 33.10, £(2) = 29.97, and f(3) = 31.35.

8.2 American Option Evaluation

American style options are more complicated to evaluate than their European coun-
terparts. However, they are much more popular in the market place, and so we now
analyze the effectiveness of our trees in handling them. Throughout this entire section,
we develop equations only for fast trees. The corresponding equations for ordinary trees
are almost identical except that the branching probabilities p and transition probability
matrix G depend on ¢ as well as j, and the upper and lower bounds jmin, Jmax; Kmins
and k., depend on i.

In this case, we suppose that the holder of the option is able to exercise the
option at any of the times ¢ At for i =0, ...,n. That is, at each node, the option value

is calculated to be the maximum of the profit realized by immediate exercise and the
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Crude Oil 1998 2-Factor (b) European Calis
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Figure 8.10: Crude Oil 1998 2-Factor (b) European Call Options

expected payoff of holding onto the option. The present value of the option is then set

to the price calculated at the root (0, 0).

8.2.1 1-Factor Model

Evidently, if time T is reached, it is the traders last chance to exercise the option. Hence
the value of an American call or put option at node (n, j) is (sp; — K)¥ or (K — sn;)7

for 5 = Fmin, ---» jmax- We proceed backward through the tree for z = (n — 1), ...,0 and
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calculate the option value at node by the recursive formulas
1
Cy; = max((sy; —K)*,e 2% 3" p™Ciripim]
m=—1

1
P; = max[(s;; — K)¥,e™" At Z P_g-m)Pi-e-1,hj+m]

m=-1
- .. PR : @) () ) - _
for j = max(%, jmin),-...min(%, jmax) Where the notation p;’’, py’, and p”; is un
derstood to indicate py, pm, and p4 at node (z, 7). Then the option prices are the values
located at the root C(T") = Cyo and P(T') = Py.
We evaluate typical natural gas, crude oil, and electricity options from 1997,

1998, and 1999. The results are shown in Tables (8.10), (8.11), and (8.12).

Table 8.10: 1-F American Call Natural Gas (January 1, 1997)

Fast (0.9296) Ordinary (0.9289) CPU Ratio
n | Value | Error | Time (s) | Value | Error | Time (s) (%)
100 { 0.9380 | 0.0084 0.10 0.9380 | 0.0091 0.20 52.0
200 | 0.9326 | 0.0029 0.39 0.9321 | 0.0033 0.76 51.7
400 | 0.9312 | 0.00016 1.59 0.9306 | 0.0017 3.04 52.4
800 | 0.9300 | 0.0004 7.54 0.993 | 0.0005 14.8 50.8

Parameters a = 0.167 and o = 0.0446. Strike K = 2.17.

Spot so = 2.89. Futures f(1) = 2.89, f(2) = 2.62, and f(3) = 2.35.

Figure (8.11) shows the convergence rates for the crude oil (May 1, 1997) data.

Again we observe the linear relationship between the errors E and the lengths of a
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Table 8.11: 1-F American Call Crude Oil (May 1, 1998)

Fast (5.825) Ordinary (5.826) CPU Ratio
n | Value | Error | Time (s) | Value | Exrror | Time (s) (%)
100 | 5.758 | 0.067 0.10 5.757 | 0.069 0.20 52.0
200 | 5.793 | 0.031 0.39 5.794 | 0.033 0.75 52.6
400 | 5.811 | 0.014 1.53 5.812 | 0.015 2.89 53.0
800 | 5.820 | 0.005 6.10 5.821 | 0.005 11.5 53.2

Parameters o = 0.154 and ¢ = 0.0209. Strike K = 12.10.

Spot so = 16.13. Futures f(1) = 16.13, f(2) = 16.09, and f(3) = 17.05.

small interval of time At.
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Figure (8.12) shows the O(n?) run times for the crude oil (May 1, 1997) data.

Figure (8.13) shows the seasonal shape of the option prices for crude oil in the

year 1998. The corresponding pictures for natural gas and electricity may be found in

Appendix C.

8.2.2 2-Factor (a) Model (2 Correlated Assets)

The value of an American call or put option at node (n, j,k) is [(vnk — Snj) — K] or

[K — (Vnk — Snj)]T fOr § = jmin, ---) jmax @and k = kmin, ..., kmax- The recursion equations
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Table 8.12: 1-F' American Call Electricity (September 1, 1999)

Fast (0.9296) Ordinary (0.9289) CPU Ratio
n | Value | Error | Time (s) | Value | Error | Time (s) (%)
100 | 0.9380 | 0.0084 0.10 0.9380 | 0.0091 | 0.20 52.0
200 | 0.9326 | 0.0029 0.39 0.9321 | 0.0033 0.76 51.7
400 | 0.9312 | 0.0016 1.59 0.9306 | 0.0017 3.04 52.4
800 | 0.9300 | 0.0004 7.54 0.9293 | 0.0005 14.8 50.8

Parameters o = 0.142 and o = 0.0456. Strike K = 24.83.

Spot so = 33.10. Futures f(1) = 33.10, £(2) = 29.97, and f(3) = 31.35.

for the American option prices at node (3, j, k) are

1

1
Cie = max{[(vak —s55) —K[*,e™ % 3~ 3" GI™Ciiinemgusn}

m=-1ln=-~1

11
Pjr = max{[K — (vi — s;;)]",e7" at Z Z G§mn)13i+1,h,-+rn,gk+n}

m=~1n=—1
for j = max(Z, jmin);---,MiN(%, Jmax) and k = max(%, kmin),---,min(z, kmax) and the
option prices are given by the values Cygg and Py at the root.
We evaluate all possible pairs of energy options from 1997, 1998, and 1999. The
results are shown in Tables (8.13), (8.14), and (8.15).
Figure (8.14) shows the linear convergence rates for the electricity and natural
gas (May 1, 1997) data.

Figure (8.15) shows the O(n®) run times for the electricity and natural gas (May
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Table 8.13: 2-F (a) American Call Oil-Electricity (January 1, 1999)

Fast (4.845) Ordinary (5.301) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 | 4.899 | 0.054 0:02 5.344 | 0.043 0:03 66.0
141 | 4.878 | 0.032 0:05 5.328 | 0.027 0:07 65.0
200 | 4.864 | 0.018 0:12 5.316 | 0.015 0:19 64.2
283 | 4.853 | 0.008 0:33 5.307 | 0.006 0:33 62.1

Parameters a = 0.170, 8 = 0.172, ¢ = 0.0283, 7 = 0.0479, and p = —0.051.

Strike K = 8.59. Spots so = 12.05 and vy = 23.50. Futures f(1) = 12.05,

£(2) =12.09, £(3) = 12.40, g(1) = 23.50, g(2) = 21.50, and g(3) = 20.00.

1, 1997) data.
Figure (8.16) shows the seasonal shape of the option prices for the correlated
pair electricity and natural gas in the year 1997. The corresponding pictures for the

remaining energy pairs may be found in Appendix C.

8.2.3 2-Factor (b) Model (Single Asset with Stochastic Long

Term Mean)

The value of an American call or put option at node (n, j, k) is (spjxr—K)* or (K —snjc)™

for 5 = jmin, ---» Jmax and k = —n, ...,n. The recursion equations for the American option
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Table 8.14: 2-F (a) American Call Electricity-Gas (May 1, 1997)

Fast (11.64) Ordinary (13.40) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
100 | 11.66 | 0.023 0:02 13.40 | 0.001 0:04 57.4
141 | 11.65 | 0.014 0:05 13.40 | 0.000 0:08 64.9
200 | 11.65 | 0.008 0:14 13.40 | 0.000 0:23 61.9
283 | 11.64 | 0.003 0:39 13.40 | 0.000 1:04 60.4

Parameters o = 0.176, 8 = 0.140, o = 0.0410, 7 = 0.0444, and p = 0.388.

Strike K = 13.02. Spots so = 2.24 and vo = 19.60. Futures f(1) = 2.24,

f(2) =226, f(3) =2.33, g(1) = 19.60, g(2) = 23.76, and g(3) = 25.73.

prices at node (¢, j, k) are

1 1
Coyr = max((si—K)*, €72 D 3 G Cuirpyimgesn]

m=—1n=-—1
1

Pijx = max[(K — si), e E Zl: G\™™ Pey 1 h+m,geen)
m=—1n=—1
for j = max(%, jmin),-.-.,Min(z, jmax) and & = —i,..., and the option prices are
given by the values Cggo and Ppgo at the root.
We evaluate typical natural gas, crude oil, and electricity options from 1997,
1998, and 1999. The results are shown in Tables (8.16), (8.17), and (8.18).
Figure (8.17) shows the linear convergence rates for the crude oil (May 1, 1998)

data.
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Table 8.15: 2-F (a) American Call Gas-Qil (September 1, 1998)

Fast (3.945) Ordinary (3.934) CPU Ratio
n | Value | Error | Time (m:s) | Value { Error | Time (m:s) (%)
100 | 3.951 | 0.006 0:02 3.939 | 0.005 0:03 65.9
141 | 3.949 | 0.004 0:05 3.941 | 0.006 0:08 64.9
200 | 3.947 | 0.003 0:13 3.937 | 0.003 0:22 61.8
283 | 3.945 | 0.001 0:36 3.935 | 0.001 0:56 63.5

Parameters o = 0.140, 8 = 0.175, ¢ = 0.0311, 7 = 0.0257, and p = 0.065.

Strike K = 8.69. Spots sg = 1.75 and vp = 13.34. Futures f(1) = 1.75,

F(2) = 1.98, £(3) =2.25, g(1) = 13.34, g(2) = 13.59, and g(3) = 14.18.

154

Figure (8.18) shows the O(n3) run times for the crude oil (May 1, 1998) data.

Figure (8.7) shows the seasonal shape of the option prices for crude oil in the

year 1998. The corresponding pictures for natural gas and electricity may be found in

Appendix C.
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Table 8.16: 2-F (b) American Call Natural Gas (January 1, 1997)

Fast (0.9876) Ordinary (1.0425) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 1.0036 { 0.0159 0:04 1.0594 | 0.0169 0:05 80.7
71 | 0.9962 | 0.0086 0:11 1.0523 | 0.0098 0:16 72.3
100 | 0.9941 | 0.0065 0:30 1.0476 | 0.0051 0:40 74.7
141 | 0.9895 | 0.0018 1:20 1.0424 | 0.0001 1:45 76.2

Parameters a = 0.167, ¢ = 0.0446, and 7 = 0.0315. Strike K = 2.17.

Spot so = 2.89. Futures f(1) = 2.89, f(2) = 2.62, and f(3) = 2.35.

Table 8.17: 2-F (b) American Call Crude Oil (May 1, 1999)

Fast (5.898) Ordinary (6.214) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 5.803 | 0.095 0:04 6.130 | 0.085 0:05 80.7
71 | 5.857 | 0.041 0:13 6.164 | 0.050 0:16 80.8
100 | 5.862 | 0.036 0:30 6.189 | 0.026 0:37 80.8
141 | 5.884 | 0.014 1:25 6.202 | 0.013 1:45 80.8

Parameters a = 0.154, ¢ = 0.0209, and 7 = 0.0176. Strike K = 12.10.

Spot so = 16.13. Futures f(1) = 16.13, f(2) = 16.09, and f(3) = 17.05.
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Table 8.18: 2-F (b) American Call Electricity (September 1, 1997)

Fast (12.373) Ordinary (14.168) CPU Ratio
n | Value | Error | Time (m:s) | Value | Error | Time (m:s) (%)
50 | 12.339 | 0.0345 0:05 14.171 | 0.0035 0:06 80.7
71 | 12.369 | 0.0046 0:14 14.274 | 0.1064 0:17 80.9
100 | 12.455 | 0.0815 0:35 14.130 | 0.0372 0:44 80.7
141 | 12.408 | 0.0343 1:40 14.188 | 0.0200 2:09 774

Parameters a = 0.142, 0 = 0.0456, and 7 = 0.0394. Strike K = 24.83.

Spot s = 33.10. Futures f(1) = 33.10, f(2) = 29.97, and f(3) = 31.35.

Crude Qil 1998 2-Factor (b) American Callis

Price (Dollars)

Figure 8.19: Crude Oil 1998 2-Factor (b) American Call Options
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CHAPTER 9
CONCLUSION

This thesis started with a review of the elements of stochastic calculus in Chap-
ter (2). We saw that random variables can be decomposed into a deterministic part
and a stochastic part. The deterministic part is determined by the ordinary part of the
differential equation while the stochastic part is the result of a Brownian motion. The
deterministic part is responsible for the mean of a random process and the stochastic
part reveals the standard deviation. Although this is a simple structure, stochastic dif-
ferential equations can be used to model a wide range of natural phenomena, including
the unpredictable fluctuations of energy spot prices.

We then defined the concept of mean reversion in Chapter (3) and explained
why it was a suitable model for capturing the inherent seasonality of energy prices.
We introduced the Pilipovic equations and generalized them to suit our own purposes
by allowing the seasonal parameter to be an unknown function of time. We went on
to explain how choosing this parameter to match futures prices has the desired effect
of rendering the probabilities risk neutral; that is, all investment opportunities in the
energy market, have no net present value. In this thesis, we considered three versions
of the generalized Pilipovic equation:

(1) 1-Factor Model

(2) 2-Factor (a) Model (Two Correlated Assets)

158
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(3) 2-Factor (b) Model (Single Asset with Stochastic Long Term Mean)

In Chapter (4), we developed reliable methods for estimating the parameters
in the Pilipovic equations. We applied these methods to natural gas, crude oil, and
electricity data from the period 1997-1999. Also, we demonstrated the correctness of
our routines by simulating random sample paths with known sets of parameters and
then using our programs to recover them. In all cases, the sample means were close
to the original parameter values in that they were within tolerance levels established
by examining the sample standard deviations. Of particular interest was the successful
recovery of the volatility of the long term mean - an unobservable stochastic variable!

The fundamental relationship of futures prices and expected future spot prices
was stated and proved in Chapter (5). We verified by statistical analysis that the
systematic risk in the energy markets under consideration is small enough to be ignored.
This allowed us to identify futures prices and expected future spot prices for the purpose
of option evaluation.

In Chapter (6) we derived numerical methods for constructing what we have
termed ordinary and fast trinomial trees. The fast tree splits a trinomial tree into a
preliminary tree that represents the stochastic part of the random process, and shifts it
branch by branch onto a final tree according to the flow of the deterministic part. This
is done so that the median nodes of all the branches coincide with the corresponding
futures prices. The fast trees tend to be more elegant in form and function. That is,

they are easier to implement and the resulting programs run faster.
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We set the stage for energy derivatives in Chapter (7) by applying our numerical

methods to the mean reverting models. We wrote down concise algorithms of the

implementations for the Pilipovic variations for both ordinary and fast trees.

In Chapter (8) we did a thorough numerical analysis of the ability of our pro-
grams to evaluate European and American style call options. We focused our attention
on three aspects of performance:

(1) Consistency: Do ordinary and fast trees give the same results?

Table (9.1) answers this question.

Table 9.1: Ordinary and Fast Tree Option Price Accuracy

European | American
1-Factor Yes Yes
2-Factor (a) Yes No
2-Factor (b) No No

In the 1-Factor model, European and American options calculated by ordinary
and fast trees were virtually identical, giving strong supporting evidence to the Fast
Trinomial Tree Conjecture. The 2-factor (a) model produced similar European option
prices while American option values differed significantly. In the case of the 2-factor
(b) model, the ordinary trees revealed option prices that were consistently higher than
those for fast trees. However, in all cases the option prices calculated by fast trees were

within acceptable tolerance levels. So although ordinary and fast trees do not agree
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in all cases, the fast trees can be safely used for the purpose of evaluating derivative
securities under all three of the models under study.

(2) Convergence: Do ordinary and fast trees have similar convergence rates?

We used an Euler method in the construction of our ordinary and fast trinomial
trees. Therefore we expect their errors to be a linear functions of the length of a
small time interval At. This linear relationship was verified numerically. Furthermore,
ordinary and fast trees were demonstrated to have the same rates of convergence in
that similar errors were revealed for both types of trees for equal numbers of time steps
n.

(3) Speed: Are fast trees computationally faster than ordinary ones?

The CPU time ratios between fast and ordinary trees are displayed as percent-

ages in Table (9.2).

Table 9.2: Ordinary and Fast Tree CPU Time Ratios

European | American

1-Factor 45 50
2-Factor (a) 65 65
2-Factor (b) 95 80

In all cases, the fast trees were indeed faster than ordinary ones. The outcome
was most dramatic in the 1-factor model, where the fast trees were twice as fast as their

slow counterparts! The 2-factor (a) model showed a significant improvement for fast
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trees, while the 2-factor (b) model spead increase for fast trees was barely satisfactory.
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APPENDIX A.
PARAMETER ESTIMATION

Here are some more pictures of parameter estimation of the 2-factor (b) model
using historical data. Note that although the drift 5(t) of the long term mean is actually
an unknown function of time, we display a single number 3 (obtained by taking the
average of ((t) over the year) in the diagrams that represents the yearly trend in the
energy market. Also, bear in mind that this 5(t) is merely a side effect of the calculation
of the parameters a, o, and 7. We do not use this §(¢) for modeling purposes, and
include it here purely for interests sake. The 3(t) used in option evaluation is found by
matching the futures prices and the expected future spot prices. Hence our model is

forward looking in that it takes advantage of the beliefs of traders in the energy market.
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Crude Qil 1997 Parameter Estimation
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Figure A..1: Crude Oil 1997 Parameter Estimation

Crude Qil 1998 Parameter Estimation
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Figure A..2: Crude Oil 1998 Parameter Estimation
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Crude Qil 1989 Parameter Estimation
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Figure A..3: Crude Oil 1999 Parameter Estimation

Electricity 1997 Parameter Estimation
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Figure A..4: Electricity 1997 Parameter Estimation
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Electricity 1998 Parameter Estimation
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Figure A..5: Electricity 1998 Parameter Estimation

Electricity 1999 Parametar Estimation
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Figure A..6: Electricity 1999 Parameter Estimation



APPENDIX B.
FUTURES PRICES

Here are some more pictures of futures prices and realized spot prices for natural
gas, crude oil, and electricity. Remember that in Section (5.3) we did a statistical
analysis that revealed no evidence to deny the simple hypothesis that futures prices
are good estimators of expected future spot prices. Figures (B..1)-(B..6) illustrate this

fundamental relationship.
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Figure B..1: September 1, 1998 Natural Gas Futures
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Figure B..2: May 1, 1999 Natural Gas Futures
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Figure B..3: March 1, 1998 Crude Oil Futures
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Figure B..4: July 1, 1998 Crude Oil Futures
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November 1, 1997 Electricity Futures
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Figure B..5: November 1, 1997 Electricity Futures

July 1, 1998 Electricity Futures
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APPENDIX C.
OPTION VALUES

Figures (C..1)-(C..12) show the seasonal shapes of option prices for natural gas,
crude oil, and electricity over the period 1997-1999 under all three of the models under
consideration. Feel free to compare the option prices revealed by the i-factor and 2-
factor (b) models for corresponding data sets. These should be similar since the model

we select for the energy price process should not greatly affect the option values.
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Natural Gas 1997 1-Factor European Calls
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Figure C..1: Natural Gas 1997 1-Factor Model European Call Options
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Figure C..2: Natural Gas 1-Factor Model American Call Options (1997)
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Figure C..4: Electricity 1999 1-Factor Model American Call Options
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Figure C..5: Oil-Electricity 1999 2-Factor (a) Model European Call Options
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Figure C..6: Oil-Electricity 1999 2-Factor (a) American Call Options
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Gas-Oil 1998 2-Factor (2) European Calls
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Figure C..7: Gas-Oil 1998 2-Factor (a) Model European Call Options
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Figure C..8: Gas-Oil 1998 2-Factor (a) American Call Options
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Natural Gas 1997 2-Factor (b) European Cails
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Figure C..9: Natural Gas 1997 2-Factor (b) European Call Options
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Naturai Gas 1997 2-factor (b) American Calls
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Figure C..10: Natural Gas 1997 2-Factor (b) American Call Options
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Electricity 1999 2-Factor (b) European Calls
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Figure C..11: Electricity 1999 2-Factor (b) European Call Options
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Figure C..12: Electricity 1999 2-Factor (b) American Call Options






