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Abstract 

We develop a general numerical method for solving stochastic differential equa- 

tions by constmcting trinomial trees. The traditional trinomial tree is introduced and 

then a significant improvement is adapted to the method to create faster trees. The 

methods are illustrated by applying them to a class of mean reverting models suitable 

for modeling energy spot prices. We illustrate the models with crude oil, natural gas, 

and electricity data. The geometry of the trees is such that the futures prices match the 

expected future spot prices. This renders the probabilities risk neutral, in that invest- 

ment opportunities in the energey market have no net present value. Hence, the trees 

can and are used to evaluate derivative securities. Numerical methods are developed 

to estimate the parameters in the mean reverting equations. 
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CHAPTER 1 

INTRODUCTION 

This thesis offers a complete industrial application in financial modeling. The 

model is designed to capture the seasonal nature of the spot prices of commodities. For 

the purpose of illustration, it is specifically applied to the energies natural gas, crude 

oil, and electricity. The seasonal shape of the spot price fluctuations is obtained by 

matching the expected future spot prices with the futures prices quoted in the energy 

market. Thus the model is risk neutral and we can and do use it to evaluate derivative 

securities such as American style options. 

The idea of obtaining a risk neutral model by matching the seasonal shape was 

inspired by Hull & White in the context of modeling the term structure of interest 

rates. The objective of this thesis is to generalize their methods to the exciting arena 

of energy trading. We take the futures curve as the energy equivalent of the term 

structure of interest rates in order to create risk neutral probabilities. Furthermore, 

we use a variation of the mean reverting model developed by Pilipovic for the express 

purpose of modeling energy. The result is a coherent and ac ien t  means of modeling 

spot prices and evaluating options in the energy industry. 

We begin this thesis with a review of some basic elements of stochastic calculus 

in Chapter (2). We give the mat hematical definition of a Brownian motion and use this 

natural phenomena to create stochastic ditferential equations. We then see how random 

processes like energy spot prices can be described by stochastic Merentid equations. 
1 



CHcFPTER 1. INTRODUCTTON 2 

Next we introduce the concept of time varying mean reversion in Chapter (3) 

and explain why it is a suitable model for capturing the seasonal shape of energy prices. 

In essence, we hypothesize that the spot prices are influenced by a hidden economic 

factor called the long term mean. We introduce the mean reverting equations proposed 

by Pilipovic and extend them by choosing one of the parameters to be an unknown 

function of time. This allows us to dictate the shape of the expectation of future values 

to come. In this thesis we consider the following versions of the Pilipovic equation: 

(1) 1-Factor Model 

(2) 2-Factor (a) Model (Two Correlated Assets) 

(3) 2-Factor (b) Model (Single Asset with Stochastic Long Term Mean) 

In Chapter (4) we consider parameter estimation. Only one of the parameters in 

the Pilipovic equation is selected to be the unknown function of time that is calculated 

so that the futures prices are matched. The other parameters must be estimated using 

historical data. This involves the maximum likelihood estimation of unobservable de- 

terministic variables. Also, we develop a robust and efficient deconvolution technique 

for recovering hidden random variables using limited information. 

We f o d y  define the mechanics of futures contracts in Chapter (5). We inves- 

tigate a simple portfolio to establish an important relationship between futures prices 

and expected future spot prices. 

In Chapter (6) we extend the work of Hull & White, who developed a trinomial 

tree implementation together with a linear mean reverting model appropriate for inter- 



s t  rates. We extend and modify their procedures so that they may be applied to the 

area of energy modeling. In fact it is fair to say that this thesis attempts to do for the 

energy industry what Hull & White accomplished for interest rate derivative securities. 

The following list briefly describes the main innovations offered here: 

(1) Following a suggestion made in [Hull & White 19901, we develop a drift 

adapted method of arranging the geometry of trinomial trees that speeds convergence 

by minimizing errors near the median nodes of all the branches in a tree. 

(2) We introduce the notion of creating a forward looking model by match- 

ing the futures price curve a d a b l e  in the energy market. This is the energy equiv- 

alent of the method of matching the initial interest rate term structure discovered in 

[Hull & White 19931. 

(3) We extend the method of fast trees introduced in [Hull & White 1994 (a)] 

by generalizing the procedure to admit random processes with nonlinear drifts. This 

irlnovation decomposes a trinomial tree into a pr-q tree that is transformed into 

a final tree by arranging the geometry of each branch so that the futures prices are 

precisely matched. This has the pleasing effect of separating the deterministic and 

stochastic parts of the random process. Thus each component can be dealt with one at 

a time instead of tackling the whole problem a l l  at once. The fast trees are infinitely 

easier to understand and implement. Furthermore, they run faster (hence our name for 

them) and tend to converge more rapidly than ordinary trinomial trees. 

(4) The nonlinear Piiipovic Zfactor models are decoupled by making sub- 
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stitutions similar to the ones found in PulI & White 1994 (b)]. This completes our 

nonlinear analysis of all the linear methods developed by Hull & White. 

We illustrate the numerical methods by applying them to our mean reverting 

models in Chapter (7). We develop step by step algorithms of the various models under 

consideration for both ordinary and fast trees. 

In Chapter (8) we complete our industrial application by using our models to 

evaluate derivative securities and present an extensive numerical comparison. After 

giving a brief definition of a financial option, we compare the values calculated by 

o r d i n q  and fast trees. %hermore, we analyze their run times and convergence 

rates. To accomplish a l l  this, we use a broad range of New York Mercantile Exchange 

(NYMEX) data including natural gas, crude oil, and electricity over the period 1997- 

1999. The r d t s  are exciting and informative, not to mention the fact that they 

support everything we have said regarding the elegance and efficiency of fast trinomial 

trees. All computer programs were written in Matlab and executed on Pentium I11 

personal computers and Sun work stations. 



CHAPTER 2 

STOCHASTIC CALCULUS 

In this chapter we wiU review some of the elementary concepts from stochastic 

calculus. Our ultimate objective is to model the unpredictability of energy prices as 

stochastic differential equations. 

-4 Brownian motion is a particularly simple model that was originally applied to 

the motion of a particle undergoing random molecular collisions. For example, a mote 

of dust floating in water is thought to capture the essence of a Brownian motion. What 

is this essence? We imagine a random process that continuously exhibits unpredictable 

fluctuations in all possible magnitudes and directions. The idea was proposed by Brown 

and later analyzed by Einstein. 

2.1 Brownian Motion 

Let (a, A, P) be a probability space and consider the time interval [0, TI. 

Definition 2.1 A mndom (stochastic) process is a function x : Q x [0, T] so that 

x(-, t )  is measurable for all t E [0, T ]  (where the set of maZ numbers R is equipped with 

its Bore1 a-alge bra). 

We will usually write z(t) or xt instead of x ( -  , t) for the sake of brevity. 

Definition 2.2 A Bmumicrn motion is a real valued mndom process z satishng: 

5 
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(1) Az=c& 

where Ar = z(u) - z(t)  and At = u - t for some 0 5 t < u 5 T and e is a 

random ~~~~ng jnmr a standard nonnal random variable q5 (0 , l ) .  

(2) The values of Ar for any difiemnt small time intemals At aw zndepen- 

dent jbm one another (this implies that z follows a Markov process'). 

(3) z(t)  is a continuous finction of time t almost suely (a- s.). 

(4) z (O)=Oa.s .  

Recall that any linear combination of normal random variables is another normal 

random variable. Hence z (t) -z (0)  is normdy distributed with mean zero and variance 

t for all t E [0, TI. 

The limit as At - 0 describes the continuous motion and we write 

We are now in a position to examine the most basic instance of a stochastic 

differential equation. 

'A Markov process is one that has no memory. That is, the outcome realized in the next moment 

of time depends only on the present and not on the past. 
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2.1.1 Geometric Brownian Motion 

Definition 2.3 A random process x that follows a geometric B m i a n  motion 

satisfies the equation 

where t C a Bmvnian motion and a and b are constant parameters called the 

drift and standad deviation of the random process x. 

Then x (t) - x (0) is normally distributed with mean at and variance b2t. 

Observe that a stochastic differential equation is made up of 2 parts: 

(1) A deterministic part a dt that is representable by an ordinary diffaen- 

t iable equation. 

(2) A stochastic part b dz that involves an elementary Brownian motion. 

When b = 0 the variable x is no longer random and its evolution is governed 

by the ordinary differential equation xt(t)  = .z. Alternatively, when a = 0 the random 

process is commonly referred to as a (simple) di#Lsion. Figure (2.1) shows a typical 

realization of a geometric Brownian motion. 

An obvious generalization of a geometric Brownian motion is one where the 

parameters a and b are not constrained to be constants. The following excerpt is taken 

from Definition (1) of Section (3.2) in woeden & Platen 19991- 

Suppose we have a probability space (0, A, P) and a Brownian motion z ( t ) .  We 

imagine there is an increasing family {At : t E [0, TI) of sub o-algebras of A so that 
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Figure 2.1 : Geometric Brownian Motion 

z( t )  is At measurable where At may be thought of as a collection of events that are 

detectable prior to or at time t .  Let x ( t )  be a random variable that is At-measurable. 

In other words, the random process x( t )  is completely determined by the realizations 

of z( t )  for all t E [O,T]. 

Definition 2.4 Define L$ to be the set of jointly ( A  x L)-measu~able functions b : 

0 x [O, T] + R satisfymg 

q b 2 ( - , t ) ]  < oo for all t E [O,T] 

and b(-, t )  is At-meamruble for all t E [O,T] w h e ~  L is understood to be the set 

of Lebesgue subsets of the internal (0, T ]  . 
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In fact, under the Euclidean norm 

La is a Hilbert space (so long as we identify functions that are equal everywhere 

except possibly on a set of measure zero). 

2.1.2 Ito Process 

Definition 2.5 A variable x that follows an Ito pmcess satisfies an equation of the 

where z is a Brownian motion and and b ( - ,  t )  are functions in L$ 

that satisfy the usual qular i ty  conditions. For example, see [Hoeden d Platen 19991- 

Natumlly a and b are called the drift and standard deviation ficncticlw of the 

random process x. 

Then x (t) - x (0) need not be normally distributed. However, we will prove later 

that x (t) - x (0) is well approximated by a normal distribution with mean a (xo,  0) t 

and variance b2 (xO, 0 )  t for small t . 

It is also common to write Equation (2.3) in integral form 
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where the integral on the right involving the Brownian motion z (t) is referred 

to as an Ito integral and we write 

Before proceedmg further, we write down a theorem that establishes a couple of 

useful properties of It0 integrals. 

Theorem 2.6 For any b E L$ the Ito integml (2.5) satisfies 

(1) W ( b ) l  = 0 

(2) ~ ~ ( b ) l = l l b l 1 2  

Proof. This is Theorem 3.2.3 of [Kloeden & Platen 19991. 

The realization of a Brownian motion is everywhere continuous but nowhere 

differentiable. However, stochastic differential equations can still have solutions. As 

it happens, the solutions are themselves composed of Brownian motions. Of course - 

the same as with ordinaxy differential equations - an d y t i c  solution does not always 

necessarily exist. Indeed this is the case with the equations we will study in this thesis. 

When an analytic solution is impossible to obtain we turn to numerical methods. 

One such technique involves the approximation of the probability distribution (of the 

solution of a stochastic differential equation) by a trinomial tree. We will construct 

trinomial trees later when we have developed more tools. 

Let us now look at some of the ways that Ito processes can be used to model 

the uncertain evolution of energy prices. 
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2.2 Energy Prices 

The most basic model for energy prices is the s*called log normal distribution l ( t ) .  It 

assumes that the natural logarithm of the price process 1 ( t )  is normally distributed. 

We shall denote a log normal random variable by 1 ( t )  for reasons that will become clear 

later in this thesis. 

Definition 2.7 The stochcrstic differential equation describing a log n o m d  random 

variable I takes the form 

or equivalently 

The number T is known as the volatzlzt~ of the price process. Figure (2.2) shows 

a typical log normal distribution. 

Observe that this is an Ito process as the drift and standard deviation are both 

proportional to the energy price 1 (t) . An obvious question now poses itself to us: How 

can we prove that the log of 1 ( t )  is normal? We shall require the use of a fundamental 

result known as the Ito formula. 

Theorem 2.8 (Ito Formula) Let g ( I ,  t )  be a function of a variable x (that may also 

depend ezplzcitly on time t )  that satisfies the Ito pmcess 
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Log Nomul D i n  
, I I 

= ; o d o j , m  t b o  
Time (t) 

Figure 2.2: Log Normal Distribution 

Then g is another random variable that satisfies the Ito process 

u h e ~  the prime and dot symbols (~spectivelyl zndicate dlflerentzation with re- 

spect to x and t. 

Proof. This is the differential form of Theorem 3.3.2 (Ito Formula) of [Kloeden & Platen 19991. 

This result allows us to transform relatively complex stochastic differential equa- 

tions into ones that are simpler and easier to use. Eventually we will also require the 

use of a higher dimensional Ito formula. Refer to [Kloeden & Platen 19991 for a fully 
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generalized version of the higher dimensional Ito formula. The following relatively sim- 

ple specific case due to W h o t t  - see Equation (4.9) in [Wiiott 19981 - is sufEcient 

for our needs in this work. 

Theorem 2.9 (Higher Dimensional Ito Formula) Let g (x, u, t )  be a function of 

a pair of correlated i t o  pmcesses x and v (that may also depend ~ p l i c i t l y  on time t )  

that satisfg the system of stochastic diflemntial equations 

dx = a ( x , v , t ) d t  + b ( x , v , t ) d z  

dv = c (2, v, t )  dt + d ( x ,  v ,  t )  dy 

Denote the correlation between the Brownian motions z and y by p. Then g is 

another random variable that satisfies the i t o  process 

where the subscripts and dot symbol (nespectzvely) indicate dzffemtiation with 

respect to x, v, and t and we have neglected to unite the dependence of the standard 

deviation fvnctzons b and d ,  and all derivatives of g on x, v, and t for the sake of 

clarity. 

Observe that in the higher dimensional case, the random function g ( x ,  u, t ) 

evolves according to the Mliations of both Brownian motions z and y. 
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2.2.1 Log Normality 

Suppose we make the substitution L ( 1 )  = In (1) .  The required derivatives are L' ( I )  = i 
and L" ( 1 )  = -&. In Equation (2.6) the drift and standard deviation are a = PI and 

b = rl. Therefore b y  the Ito formula we have 

This reveals that the log of the price process 1 ( t )  is in fact a geometric Brownian 

motion. Hence L (T) - L (0)  is normally distributed with mean (P - $)T and variance 

r2T. 

It is now desirable to use our exact knowledge of the simplified process L ( t )  to 

predict the behavior of the energy price 1 (t). In other words 

where lo = 1 (0) .  

We can and will show that the mean and variance of I (t) are E[l (t)] = loeat and 

var[l ( t ) ]  = 1ge2Pt(er?' - 1). 

This means that the expected value of a log normal random variable I (t) exhibits 

exponential growth (provided f l  is positive). This is qualitatively correct behavior for 

a stock price. However, in realiw energy prices do not follow a log normal distribution. 

They are strongly affected by the temperature and in particular the changing of the 

seasons. A far more realistic equation for energy prices is the swx.lled mean reverting 

model. 
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2.3 Mean and Variance 

The expected value of a random process can be obtained by its associated stochastic 

differential equation in a particularly elegant way. As it happens the expected value of 

an Ito process is the solution of the ordinary differential equation obtained by ignoring 

the stochastic part. 

Definition 2.10 Consider a random pmcess s( t)  evolwing over the tzme internal [O, TI. 

We shall adopt the notation 

Similarly, when we am working with a short tzme internal of the form [t , t  +At ] ,  

we will write 

For the remainder of this thesis, when we mention the expectation of a random 

process, we really are referring to the expectation conditional on the value of the random 

variable at the left endpoint of the time interval under study. This should be obvious 

&om the individual contexts in which expectations arise. 

Theorem 2.11 Suppose a variable s satisfies an Ito process 

ds = a (s, t )  d t  + b (s, t )  dz 
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Put ~ ( t )  = B (t) fo r  the q e c t e d  valve of s (t).  Then p( t )  is the solution of the 

o~dinary integral equation 

where so = s (0). 

Furthemom, i f  a(s ,  t )  has the functional f o m  a(s ,  t )  = f ( t)s  + g (t) when? f (t) 

and g(t)  are deterministic fvractzons of time t ,  then (P ( t )  satisfies the ordinary dijfer- 

entia 1 equation 

Proof. The integral equation for s ( t)  is 

s ( t)  = so + a [s  (u) , u] du + b[s (u) , u] d z  
Jo 

By Theorem (2.6) the expectation of the Ito integral vanishes 

E { l t  b[s (u) , u] d l )  = 0 

We can use this result and take expectations across the stochastic integral equa- 

tion (2.4) to get 
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Now if a(s7 t )  is of the form a(s,  t )  = f ( t )s  + g(t), then 

Hence 

t 

P ( t )  = SO + a [ ~  (u) .u]du 

By the Fuadamental Theorem of Calculus we obtain an ordinary differential 

equation for the expected value 

Let us ~erif?~. this result by calculating the mean and variance of a log normal 

random variable directly. Suppose that in the stochastic differential equation for 1 ( t )  

the drift and standard deviation are given by a ( I ,  t )  = 81 and b ( 1 ,  t )  = T I .  

- 
Put $(t) = l ( t ) .  The solution of equation (2.8) rewals the expected value 

q5 ( t )  = lo@' 

Now consider the parabola la .  By the Ito formula we obtain 
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By Theorem (2.11) we similarly obtain an ordinary differential equation for the 

expected d - l e  E(Z2) 

The solution of this equation reveals the expectation of the square 

Finally the variance of s (t) is given by the formula 

This completes our analysis of the log normal distribution. 

Theorem 2.12 Let X ( t )  be an i to  process (2.3) 

Then X( t  + At) - X( t )  is approximated by a normal random variable with mean 

M and variance V given by 

- 
Proof. Put x (u) = X (u) for all u E [t, t + At]. Then x(t) = X ( t )  and by Theorem 

(2.11) the expected value of X(t  + At) is 

t+At 

z ( t  + At) = z(t) + 1 E{u[X(u), u]}du 
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The expectation of a continuous random variable is a continuous function. F'ur- 

thennore, it is obvious that E{a[X( t ) , t ] )  = a [ X ( t ) , t ] .  By the Fundamental Theorem 

of Calculus we obtain 

x(t + At)  = z ( t )  + E{a[X( t ) ,  t ] )A t  + O ( A ~ ~ )  

= z ( t )  +a[X( t ) , t ]A t  + 0(at2) 

Thus the mean is 

Now by Theorem (2.6) we find the variance to be 

V = E{[X( t  + At) - ~ ( t  + a t ) I 2 )  

s i m i l x l ~  E{b2 [ X ( t ) ,  t]  ) = b2 [ X ( t ) ,  t]  and SO by the Fundamental Theorem of 

Calculus and our previous remarks it follows that the variance is 

Finally we observe that X ( t  + At) - X ( t )  is well approximated by a normal 

random variable 4(M, V) since the basic building block of the stochastic differential 

equation (2.3) is a Brownian motion z. Therefore in the limit as At --t 0 the distribution 

of X ( t  + At)  - X ( t )  becomes perfectly normal. r 
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ENERGY PRICE DYNAMICS 

We now investigate a series of models appropriate for energy prices. The themes 

explored are mean reversion and seasonality. These are two of the main features ren- 

dering energy prices fundamentally different from relatively simple stock prices. 

3.1 Mean Reversion 

A widely used class of models for energy prices consists of processes that are mean 

reverting. The Ito process that describes this behavior can take the form 

3.1.1 1-Factor Pilipovic Equation 

where the constant parameter a is called the strength of mean reversion. Observe 

that the noise term is proportional to s. This differentiates the Pilipovic equation born 

the Hull & White equation, which has what we call additive noise1 and is appropriate for 

modeling interest rates. In order to work with the Pilipovic equation, we will find out 

later that it is necessary to transform to a new random variable that does have additive 

noise. This new variable has an exponential term in the drift. It is in this sense that 

'The 1-Factor Hull & White equation for interest rates is dr = [ B ( t )  - ar]dt + a dz- Observe that 

the noise term is independent of the interest rate r .  

20 
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the Pilipovic equation is nonlinear and consequently it is much harder to analyze than 

the Hull & White equation. Refer to [Pilipovic 19971 for a more complete discussion of 

the Pilipovic equation and why it is appropriate for modeling energy prices. 

The number I is known as the long term mean and it represents the quantity 

that the price process s ( t )  is trying to revert to. It is easy to show that I is a fked 

point of the dynamical system + = a(2- p) . In all practical applications, the strength 

of mean reversion a is positive. If s ( t )  is above 2 then the drift is negative, while if s (t) 

is below 1 then the drift is positive. In both cases, the drift always acts to inexorably 

draw the energy price back toward the long term mean. 

Although the long term mean can be a constant parameter this is too simple 

to be of any use. In practice the long I ( t )  term mean is allowed to be an unknown 

function of time. Why unknown? The long term mean 1 ( t )  should be dowed to capture 

the essence of the economic trend driving the energy market. An important factor 

afkting 1 (t) is probably the temperature which is itself a function of the changing of 

the seasons. This highly realistic model for energy prices therefore exhibits one of the 

singular qualities that make energy prices unique: namely the concept of seasonality. 

3.1.2 Generalized 1-Factor Pilipovic Equation 

ds = a[Z (t)  - sjdt + os dz (3.2) 

For the remainder of this thesis, Equation (3.2) will be referred to a s  the 1- 
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factor model. Instead of growing exponentially as stock prices do, energy prices move 

up and down with the changing of the seasons. They tend to display peaks when the 

temperature is at an extreme value. For example energy prices tend to peak in Summer 

when it is hot and in Wmter when it is cold. The long term mean is specifically designed 

to capture this economic trend. Then the mean reverting model will successfully mimic 

the seasonalit3f clearly inherent in the prices of energy commodities like oil, natural gas, 

and electricity. 

Put p(t) = 3 (t ) . By Theorem (2.11) the expected value of a mean reverting 

random variable s (t) satisfies the ordinary differentid equation 

This is a linear equation and is easily solved to yield 

rp (t) = ae-" eP"l (u) du 
1 0  

Let us consider a suitable example for the sake of illustration. Put 1 (t) = 

a + bsin(9) where the period P = 1 year. This is perhaps the most basic seasonal 

function. Then the above solution becomes 

2?rt 27r 2nt 27rB 
p (t) = a + B[a sin(-) - - C O S ( ~ ) ]  + (so - a + p)e-a' 

P F (3.3) 

where B = " and so = s (0). s+e 
Figure (3.1) depicts the situation for a typical value of the strength of mean 

reversion a. 



CHAPTER 3- ENERGY PRICE D M V M C S  
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Figure 3.1: Expected Spot Price 

This gives a nice image of how the mean reverting model can also capture the 

natural behavior of energy prices. Observe that the expected spot price p(t)  follows 

along behind the long term mean l( t):  this is the nature of mean reversion. Now look 

at Figure (3.2) to see a sample path satisfying Equation (3.2) when the long term mean 

is 1 ( t )  = a + bsin(9).  

3.2 Systems of Equations 

We now move on to study systems of stochastic differential equations. In this thesis we 

consider systems involving only 2 stochastic variables. 

A system of stochastic differential equations is obtained by allowing the long 
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Figure 3.2: I-Factor Mean Reversion 

term mean 1 ( t )  to be a log normal random variable instead of an &own function of 

time. 

3.2.1 %Factor Pilipovic Equation 

For the sake of simplicity we aiu assume that the random components of s (t) 

and 1 ( t)  are uncorrelated2. The number can be a constant parameter. In this 

*To be more precise the Brownian motions z ( t )  and y (t) are uncorrelated (remember that the 

Brownian motions are the sources of unpredictability in a stochastic differential equation). 
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case I (t) is a standard log normal random variable and the expected value @(t) = 

- 
I (t) exhibits exponential growth. If we also put p(t) = S(t )  then it is derived in 

bari-Lavassani, Simchi & Ware 20001 that the trajectory of these expected values ad- 

mit a decomposition in terms of the stable and unstable manifolds of the system 

where so = s (0) and lo = I (0). Note that as t -+ oo , p(t) 4 &lo&t, or 

equivalently, ~ ( t )  -+ a@@). In other words, as t -r w, the expectation rp(t) tends to 

a multiple of the expected value +(t) of the long term mean, whence the term 'mean 

reversion'. 

Although this is a fine model, it is too simple to capture the seasonality of an 

energy price. Indeed we would like the long term mean to move up and down as the 

seasons change - just as energy prices do. This can be done by allowing the parameter 

,8 (t) to be an unknown hction of time. 

- 
Put p( t )  = 3 ( t)  and ~ ( t )  = 1 (t). By Theorem (2.11) the expected d u e  of the 

long term mean 1 (t ) is the solution of the ordinary differential equation 

Thus the function P(t) can be chosen so that the long term mean behaves 

precisely the way we want - and that is exactly what we do later in this thesis! 
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3.2.2 Generalized %Factor Pilipavic Equation 

For the remainder of this thesis, Equation (3.6) will be referred to as the 2- 

factor (b) model. If a mean reverting random variable s (t) and its (stochastic) long 

term mean 1 (t) satisfy Equation (3.6), then by Theorem (2.11) their expected values 

satisfy the ordinary system 

The solution is 

One can exogenously introduce seasonaliw by imposing an appropriate func- 

tional form for p ( t ) .  For example, this could be 

In this case, the expectation of the long term mean is @ (t) = a + b sin(%). 

Remember that this is the simple shape we used in Subsection (3.1.2) to illustrate the 
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Figure 3.3: 2-Factor (b) Mean Reversion 

concept of seasonality. Then the expected value of the energy price s ( t )  is given by 

Equation (3.3) and the relationship between ~ ( t )  and $ ( t )  looks the same as Figure 

(3.1) with Z(t) replaced by +(t) .  What is the difference? Remember we are considering 

expected values here: the long term mean 1 (t ) is actually a stochastic variable in Equa- 

tion (3.6). This does indicate that the 2-factor (b) model has a richer structure than 

the 1-factor model. Figure (3.3) shows a sample path satisfying Equation (3.6) when 

the drift parameter is given by Equation (3.8) 

We shall also consider systems of 2 correlated mean reverting energy prices later 

- this is the previously mentioned 2-factor (a)  model - but the details will not be given 

here. 
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This concludes our review of the elements of stochastic calculus. We shall now 

proceed to examine the mean reverting model for energy prices in greater detail, b e  

ginning with an expose on the statistical estimation of the parameters in the Pilipovic 

equation. 
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PARAMETER ESTIMATION 

An important and difficult problem that arises in the financial modeling of energy 

prices is the estimation of the parameters in the stochastic differential equations. If 

we have available historical data - and in practice we do - the parameters can be 

estimated by maximizing the likelihood (or minimiaing the variance) of the sample 

paths. The proportional noise in the Pilipovic equations precludes the possibility of 

using a traditional Kalman filter to estimate the parameters. Instead we propose some 

approximate solutions whose numerical implementations yield reasonably good and 

stable results. The data used as input arguments for the computer programs are natural 

gas, crude oil, and electricity spot prices quoted on NYMEX over the period 1997- 1999. 

Recall that in our generalized models, we d o w  one of the parameters to be an 

unknown function of time in order to capture the seasonal shape of energy spot prices. 

Although this unknown function of time is estimated along with the other parameters 

in the Pilipovic equations it is never used in the numerical solution of a stochastic 

differential equation. Why? The shape of the spot price distribution will later be 

designed to coincide with the futures prices quoted in the energy market. In other 

words, the models we are developing are fornard looking in that they incorporate the 

future beliefs of traders into the calculation of the unknown function of time. Therefore 

we focus on estimating the constant parameters with historical data. The techniques 

developed for calculating the unknown function of tirne will be used later, when we 

29 
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have built the theoretical kamework that enables futures curve matching in Chapter 

(5). Although it is interesting to observe what has gone before, we are really interested 

in what the future holds in store for us. This combination of historical calibration and 

forward Iooking c w e  alignment is one of the innovations of this thesis. 

4.1 1-Factor Model 

As a prelude to the relatively complex 2-factor (a) and (b) models we first look at the 

generalized 1-factor PiIipovic equation (3.2) 

ds = a [l ( t )  - s] dt + cs dz 

where 

s Spot price 

Z(t) Long term mean (unknown function of time) 

a Strength of mean reversion 

o Volatility 

z Brownian motion 

We assume that the discrete time series for the spot prices s ( t )  is a d a b l e  by 

whatever means. This sample path { s i )  represents the sum total of our knowledge of 

the energy price process. The long term mean i ( t )  is an unobservable deterministic 

variable. It is assumed to capture the economic trend in the energy market. Evidently, 

it is necessary to estimate this hidden quantity, by some statistical means. 
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4.1.1 Long Term Mean Estimator 

As it happens the underlying economic trend l ( t )  can be estimated by solving an ordi- 

nary differentia1 equation. Put q(t) = S ( t ) .  The behavior of the expected value of the 

spot price is given by Equation (2.8), which now becomes 

However, the expected value q ( t )  is not observable: we know only the spot price 

s ( t ) .  W e  now make an ergodicity type of assumption: the expected value 9 ( t )  may be 

approximated by taking a moving average of the sample path {si)- As it happens, a 

moving average is a special case of a convolution. 

Definition 4.13 A convolution jicnctwn c( t )  is an even, continuous, and real val- 

ued function that satisfies c(t) 2 0 and 

Definition 4.14 A convolution of a curve s ( t )  is another function p(t) defined by 

where c(t)  is a conuolution function. 

Assumption1 The expectation p( t )  can be (approzimately) calculated by taking 

a convolution of the sample path { s * )  
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E x p e a s d S p o t P r i c e ~ m  
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I 
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Time (t) 

Figure 4.1: Expected Spot Price Experiment 

When C j  = & for all m the convolution is a moving average of the data points. 

We find that a monthly moving average (m = 20 trading days) works well in practice. 

Figure (4.1) displays a sample path satisfying Equation (3.2) that was simulated by a 

random number generator', where the dashed line depicts the theoretical expect ation 

(3.3) and the dotted line represents the moving average (4.2) of the data points. This 

picture appears to justify the use of Assumption (I), at least for a mean reverting 

process. 

Before proceeding further, we mention in passing why a convolution of a random 

variable is a reliable approximator of its expected value. Recall that a random variable 

The long term mean used in the simulation was I (t) = a + b sin(9). 
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is composed of a determinitic part and a stochastic part that in some sense represent 

the expectation with an addition of noise. A convolution has the effect of eliminating 

the noise while leaving the expected value behind in its wake. Obviously the technique 

is not perfect because information is destroyed by the smoothing process. However, the 

Merences between the approximate expectation and the real one tend to cancel out - 

especially when the process moves up and down in a seasonal way. 

Ideally we would like to take a large number of random samples of the probability 

distribution of the spot price s(t). We realize that this probability distribution is a 

(seasonal) function of time. However, if the distribution varies slowly over time, then 

the probability distribution of s(t  + At) is approximately equal to that of s ( t )  for small 

values of At. This is the philosophy behind the convolution technique of estimating 

the expected value (~( t ) .  

By Taylor's theorem the derivative of p (t) at time index i is easily calculated 

to a high degree of accuracy by the formula 

for i = 3, . . . , (n - 2). The remaining derivatives are given by 

- cpn - 9%-2 - (Pn - Pn-1 
'Pn-1 - 2 At +n - At 

Note that we have adopted the (trading) day as our unit of time. Therefore the 

length of a small time interval is At = 1. 
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Long Term W n  E*perimsnt 

Figure 4.2: Long Term Mean Experiment 

Now it is possible to solve Equation (4.1) for the hidden quantity 

Then Equation (4.5) is a reliable estimator for the unobservable deterministic 

variable I ( t ) .  Figure (4.2) shows the long term mean (dotted line) resulting from this 

technique (4.5) compared to the sine curve (dashed line) that was used to generate the 

sample path. Again we perceive the close agreement between experiment and theory- 
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4.1.2 Discrete Time Series 

Before conducting the time series analysis proper it is necessary to discretize the l-factor 

model to get 

for z = l7 ..., (n - 1). 

The sequence of random variables {q) is assumed to be a normal stationary time 

series2 with an expected value of zero and standard deviation 06. The stochastic 

component of the random process can be isolated by solving (4.6) for ti 

Now by our earlier result (4.5) this becomes 

Recall that zi is a nonnd random variable with mean zero and standard deviation 

odAt. It is now an easy matter to compute the Mliance V of Y. 

Observe that the ~ ' s  and consequently V are functions only of the strength of 

mean reversion a. 

?DO not confuse I, which is a Brownian motion with mean zero and standard deviation a, with 

{&ti) ,  which is a simple diffusion with mean zero and standard deviation a&. The number a has 

been absorbed into the q ' s  because it is more convenient to estimate the parameters in this way. 
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4.1.3 Gaussian Likelihood 

The numbers 1%) are assumed to be independent random drawings from a normal 

distribution 4 (0, c a )  . Therefore the Gaussian likelihood of the realization {si) is 

Proposition 4.15 The likelihood L is mm-rnzzed when the variance V is mindmized. 

Proof. Put 0 = W(a)  = Jq. Then the likelihood L can be expressed purely as a 

function of a. 

e X p { - [ V ]  ~ ( 0 ) )  
L(a) = 

[ ~ T W  (a)] 9 

Observe that W > 0. Otherwise we would have si equal to some (constant) 

number for all i = 1, .. ., n: we tacitly assume that this a statistical impossibility. 

We maximize the likelihood by differentiating L with respect to cu 

Evidently the only way this derivative can equal zero is if W t ( a )  = 0 in which 

case we must also have Vt (a )  = 0. This is precisely the condition that minimizes V. 

I 

4.1.4 Mnirnum Variance Estimators 

The maximum likelihood estimators of a and o are obtained by minimidng the variance 

V. This can be done by merentiating (4.9) with respect to a and setting the derivative 



equal to zero 

Hence V'(a) = 0 has a unique solution 8. The variance V(Z) must then be a 

global minimum as we can make V arbitrarily large by picking negative values of a. 

Once the best estimator for a has been found, the best estimator for c is calculated by 

Tables (4.1) , (4.2), and (4.3) show the minimum variance estimators Z and for 

natural gas, crude oil, and electricity over the period 1997-1999. 

Table 4.1: 1-Factor Model Minimum Variance Estimators (1997) 

Table 4.2: 1-Factor Model Minimum Variance Estimators (1998) 

Natural Gas 

crude oil 

Electricity 

h 

Q! 

0.232 

0.141 

0.188 

Natural Gas 

Crude Oil 

Electricity 

A 

d 

0.0331 

0.0174 

0.0418 

i% 

0.151 

0.170 

0.172 

1 

h 

u 

0.0349 

0.0283 

0.0479 
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Table 4.3: 1-Factor Model bAinbum Variance Estimators (1999) 

At this point there is an obvious question: how do we know that our minimum 

variance estimators are accurate? Fiuthermore, what is the precision of our measure- 

ments? We now propose a numerical test as evidence of the validity of our work. We 

simulate sample paths satisfying Equation (3.2) (using a random number generator) 

with a specific set of parameters and then attempt to recover those parameters using 

our method. By repeating this experiment a large number of times and taking the mean 

and standard deviation of the recovered parameters, we can see whether our technique 

reveals unbiased estimators of the true parameters. Also, twice the standard deviation 

is evidently a good estimator of the absolute error. 

Table (4.4) show the results of this experiment wherein E and F are the sample 

means of Z and l? while s, and s, are their sample standard deviations. For all possible 

pairs of the parameter sets a = 0.15 and a! = 0.2 and a = 0.02, a = 0.03, and u = 0.04, 

100 sample paths consisting of 250 data points were simulated. 

We perceive that the measurements of are excellent while those for S are 

(on average) consistently too high by an amount approximately equal to 0.025. Also, 

Natural Gas 

Crudeoil 

Electricity 

h 

a 

0.158 

0.146 

0.154 

h 

0 

0.0301 

0.0212 

0.0454 



Table 4.4: I-Factor Model Parameter Estimation Experiment 
I I I 

we remark in passing that upper bounds on the absolute errors associated with the 

measurements of 5 and may be approximated by 2s, and 2s,. We will not do an 

analysis of the errors here although we display (approximate) error bars for interests 

sake. 



CHAPTER 4. P-TER ESTYMMTON 40 

4.2 %Factor (a) Model (Two Correlated Assets) 

Consider a pair of correlated 1-factor energy prices with each one individually obeying 

the generalized 1-factor Pilipovic equation 

where 

(s, u)  Spot prices of two correlated assets 

l ( t )  , m (t)  Long term means ( d o w n  functions of time) 

(a, 0) Strengths of mean reversion 

(a, r) Volatilities 

(2, w ) Correlated Brownian motions 

Let the correlation between the two related assets be denoted by p = m ( z ,  w). 

We shall henceforth refer to Equation (4.14) as the Zfactor (a) model. 

The parameters (a, a) and (0, r )  for s and u can obviously be estimated one at 

a time by minimizing the individual variances of the simple difhsions {q) and {w*} 

using the procedure we just developed in Subsection (4.1.4). 

Put $(t)  = B(t) .  Evidently the discrete equation for the simple diffusion (wi)  is 
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It merely remains to calculate the best estimator of the correlation p. 

4.2.1 Minimum Variance Correlation 

Suppose (8, ii) and ( 3 , ~ )  are the minimum variance estimators given by Equations 

(4.11) and (4.12). Then the minimum variance estimator of the correlation is 

where s (Z) and ui (B) are calculated by Equations (4.8) and (4.15) - 

Tables (4.5), (4.6), and (4.7) show the correlations between various energies over 

the period 1997-1999. 

Table 4.5: 2-Factor (a) Model Minimum Variance Correlations (1997) 
I I I I I 
I I Natural Gas I Crude Oil I Electricity I 

I Electricity 1 0.283 1 -0.035 1 1 I 

Natural Gas 

This evidence suggests that natural gas is positively correlated with both crude 

oil and electricity while crude oil and electricity are prabably uncorrelated. 

1 0.203 0.283 



Table 4.6: 2-Factor (a) Model Minimum Variance Correlations ( 1998) 

I Natural Gas I 1 1 0.132 [ 0.138 1 

. . 

Crude Oil 0.132 1 -0.051 

I Electricity 1 0.138 1 -0.051 1 1 I 

Electricity Natural Gas 

Table 4.7: 2-Factor (a) Model Minim- Variance Correlations (1999) 
1 1 I I 

Crude Oil 

Natural Gas 

4.3 2-Factor (b) Model (Single Asset with Stochas- 

tic Long Term Mean) 

Consider next the more interesting generalized Zfactor Pilipovic equation (3.6) 

Crude Oil 

Electricity 

ds = a (1  - s) dt + 0s dz 

dl = P ( t )  I dt + rl dy 

Natural Gas 

1 

where 

s Spot price 

1 Long term mean 

0.167 

0.140 

Crude Oil 

0.167 

Electricity 

0.140 

1 

0.056 

0.056 

I 



a! Strength of mean reversion 

( t )  Drift of long term mean (unknown function of time) 

a Volatility of spot price 

7 Volatility of long term mean 

( r, y ) Uncorrelated Brownian motions 

The spot price obeys the same stochastic differential equation as before. However 

the long term mean is now also considered to be a stochastic variable and is ruled by 

an equation of its own. The spot price is still assumed to revert to the long term mean 

while the natural logarithm of the long term mean is a geometric Brownian motion 

(2.2). For the sake of simplicity we assume that the spot price and long term mean are 

uncorrelated3. 

Our objective is to estimate the parameters a, a, and T using historical data. 

The drift parameter 0 (t) is not necessary to model energy prices as it is selected in 

such a way that the expected value of the spot price evolves according to predictions 

made by insightful forecasting such as futures price matching. Now it will be necessary 

to calculate the best estimator of (t) in order to determine the volatility r of the long 

term mean l ( t ) .  

The important thing to keep in mind is that the long term mean is unobservable. 

It represents an underlying economic factor driving the market and we have no way to 
- -  

31.n other words the Brownian motions z and y that contribute to the unpredictability of s and I 

are uncorrelated. 
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measure it directly. In practice we only have a historical time series for the spot prices. 

- 
Put +(t) = 1 ( t ) .  We can use the same method we developed in Subsection 

(4.1.1) to estimate the expected value of the long term mean. We then replace i(t) by 

$(t)  in Equation (4.7) (hopefully) without altering the distribution of z(t)  too much. 

Hence we can find satisfactory estimators for Z and 5 by treating the Zfactor (b) 

system as though it were in fact 1-dimemiod4. Finally we attempt to recover the 

unobservable random Mliable l ( t )  using a deconvolution of $( t ) .  This enables us to 

find 3 by calculating the standard deviation of the Brownian motion y ( t ) .  

4.3.1 Average Long Term Mean Estimator 

By Theorem (2.11) the expected values (o ( t )  and $ ~ ( t )  of the spot price s ( t )  and long 

term mean Z(t) satisfy the ordinary system (3.7) 

Recall that the expected value rp (t) can be safely approximated by an appr* 

priate moving average of s ( t )  . Furthermore, the derivative 9 (t ) can be calculated by 

Equations (4.3) and (4.4). Hence we can solve Equation (3.7) for to reveal the expected 

'In other words, we obtain estimators for a! and a under the supposition that 7 = 0 even though 

we know that I(t) is a stochastic variable. This seems to work well in practice. 
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Figure 4.3: Expected Long Term Mean Experiment 

value of the long term mean l(t) 

We test the validity of Equation (4.17) by simulating a pair of sample paths 

{si) and {li) obeying the Zfactor (b) model. Figure (4.3) compares an experimental 

expected long term mean {$+} (dotted line) calculated by Equation (4.17), to the 

theoretical one (dashed line) calculated by taking a moving average of the realized 

long term mean {li). It would appear that Equation (4.17) does an excellent job of 

recovering the expected value +(t) of the unobservable stochastic variable 1 (t) . 
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4-3.2 Discrete Time Series 

The next step is to convert the continuous system (3.6) into an equivalent discrete 

model 

for i = l? - - - ?  (n - 1). 

The sequences of random variables { G )  and (yi) are assumed to be (uncorre- 

lated) normal stationary time series with expected values of zero and standard devia- 

tions of a& and 7 6 .  

We now replace l ( t )  by its expectation $(t) in Equation (4.8) to obtain an 

estimator of the simple diffusion { G )  

si+t - [si + ~ ( l / l i  - si)At] (4.19) 
Si 

Assumption 2 The estimator P defined by Equation (4.19) has ( ~ p p r o z i m a t e t ~ )  

the same probability distribution as r ,  namely &(O, am). 

Observe that 

Since s ( t )  and l (t)  are uncorrelated by our assumption, we see that the mean of 



z vanishes 

Next consider the variance of 

(1l j -kl Now by a purely heuristic argument it can be shown that the fraction 
Si 

is approximately equal to the simple diffusion of the long term mean yi. This is not 

precise; indeed, it is at this point that our attempted 'proof' of Assumption (2) breaks 

down. However, proceeding under the reasonable premise pi - By , get 
Si 

when At is small. This concludes our informal scrutiny of Assumption (2). 

4.3.3 Minimum Variance Estimators 

Working under Assumption-(O), the estimators 8 and ii may be found using precisely 

the same procedure that we developed in Subsection (4.1.4) for a 1-factor model. For 

the purpose of estimating the parameters cr and a in the Zfactor (b) model, the deter- 



ministic process @(t)  would seem to be a MLid substitution for the stochastic process 

l (t) - 

We still have to find the volatility T of the long term mean Z(t). We begin by 

solving Equation (4.18) for the simple diffusion {yi) 

The parameter P(t )  can be calculated by Equation (3.7) 

where the expected value @(t)  of the long term mean Z(t) is given by Equation 

(4.17) with the strength of mean reversion a replaced by its minimum variance estimator 

h 

a! 

That is, the drift parameter is 

where the derivatives at each discrete time i At are calculated by the finite 

difference equations written down in Subsection (4.1.1). It now remains to develop a 

method of recovering the hidden variable 1 ( t ) .  
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4.3 -4 Deconvolution 

Assumption 3 The eqectatzon +(t) is a wnvolutzon of the long tern mean l(t) 

This is essentially the same as Assumption (1) but for 1 ( t )  instead of s(t)  . How- 

ever, a moving average is no longer appropriate. Alternatively, we now require that 

the convolution function satisfy the condition c(u) < c ( t )  whenever lul > Itl. This 

will ensure that the linear transformation representing the convolution is diagonally 

dominant. It is then possible to do a deconvolution by inverting the transformation. 

Numerical investigations reveal that a suitable choice for c( t )  is the Euler distri- 

bution 

where 7 is a convolution parameter that may be selected to provide the most 

satisfactory results. We find that choosing 7 = 0.6 worla well in practice for the energy 

data sets we have. 
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The convolution (4.23) can be ~ t t e n  conveniently in matrix form 

where n is the number of data points in the sample path { s i ) .  

Observe that we have n + 1 equations for $o)  . .., $n in n + 2m + 1  unknown^ 

1 ,  . . . , 1 .  Evidently we are only really interested in solving for lo, . . . , l,. To this 

end, put 

and consider the numbers I,,, ..., 1,1 and lW1, ..., I , ,  to be control parameters 

that will be selected so that our solution is as well behaved as possible. 
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To be more precise, the control parameters will be chosen so that the distance 

11 1 - + [ I  between the solution and the expectation is minimiad. Why would we calcu- 

late the control parameters in this fashion? A deconvolution is notorious for exhibiting 

highly unstable behavior. Recall that a convolution has the &st of eliminating noise 

by a smoothing process. A deconvolution attempts to inject the lost noise back into i (t) 

by ampL&ng any abnormalities or irregularities present in $(t). The deconvolution has 

a tendency to magnify these deviations way out of proportion. Hence by constraining 

our solution l ( t )  to be as close as possible to @(t) ,  we ensure that we obtain the most 

desirable solution. 

Dehe a square matrix by 



along with vectors 

for j = 1: ..., m and 

for j = (m + I),  . . . ,2m and finally relabel the control parameters by identifying 

Cj = 

them with Lj = Lj for j = 1, ..., m and Lj = ln-m+j for j = (m + I),  ..., 2m. Then the 

c, 

system (4.24) can be written more succinctly as 

cj-m 

The solution of this matrix equation is 

where Bj = -A-'Cj for j = 1, ..., 2m. 
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Put D = 111 - +112 as it is more convenient to minimize the square of the distance 

rather than the norm itself- The derivative of D with respect to Lr is 

n 2m 

i=l j=l 

where D = A-'+ a d  Bij is ~ndetstood to be the ith component of Bj- Taking 

all of the derivatives D ( ~ )  for k = 1, . -. ,2m and setting them equal to zero we obtain a 

h e a r  system of equations for the control parameters M L  = N where 

n 

i=l 

Therefore by choosing L = M-lN we ensure that 111 - is minimized. 

4.3.5 Standard Deviation 

Now we can calculate the volatility T of the long term mean Z (t) . It is given by dividing 

the standard deviation of the simple diffusion { y i )  by At. If we denote the va.riance of 

the yiYs by U then 

where yi is calculated by Equation (4.20). The best estimator of 7 is 
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This procedure provides the desired estimators Z, 2, and 7. Figures (4.4), (429, 

and (4.6) show the minimum variance estimators Z,?, and 3 for natural gas over the 

period 1997-1999. Also included are plots of the expected value $(t) of the long term 

mean, along with an average value for the unknown function of time P(t). Remember 

that the P( t )  is responsible for the shape of the curve $ (t) via Equation (3-7). However, 

it is only an intermediary step in the calculation of the parameters a; a, and r .  W e  

do not use this P(t) for modeling purposes, and include it here purely for interests 

sake. The P( t )  used in option evaluation is found by matching the futures prices and 

the expected future spot prices. Hence our model is forward looking in that it takes 

advantage of the beliefk of traders in the energy market. The corresponding pictures 

for crude oil and electricity are located in Appendix A. 

Tables (4.8), (4.9), and (4.10) show the minimum variance estimators Z, 2, and 

3 for natural gas, crude oil, and electricity over the period 1997-1999. 

Table 4.8: 2-Factor (b) Model Minimum Variance Estimators (1997) 
4 

Crude Oil 1 0.141 1 0.0174 1 0.0162 1 
Natural Gas 

Electricity 1 0.188 1 0.0418 1 0.0377 1 

We now perform the simulation experiment described in Subsection (4.1.4) for 

the case of the 2-factor (b) model. For all possible combinations of the parameter sets 

0.232 0.0331 0.0240 
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Figure 4.4: Natural Gas 1997 Parameter Estimation 

Natuml Gas 1998 P8ramet8r Estimation 
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Figure 4.5: Natural Gas 1998 Parameter Mimation 
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Figure 4.6: Natural Gas 1999 Parameter Estimation 

a = 0.15 and a = 0.2, 0 = 0.02, a = 0.03, and a = 0.04, and r = 0.02, T = 0.03, and 

T = 0.04, 100 sample paths consisting of 250 data points were simulated. The results 

are displayed in Tables (4.11) and (4.12). 

Although the results vary for different combinations of the parameters, we find 

that on the whole they are satisfactory. Bearing in mind that we are attempting to 

reconstruct a hidden variable with limited information, we believe this to be a worthy 

achievement. According to Tables (4.11) and (4.12), the (approximate) error bars for 

the best estimators of the 2-factor (b) model are 
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Table 4.9: 2-Factor (b) Model 
t I I I 

I Natural Gas 1 0.151 1 0.0349 1 0.0331 
I Crude Oil 1 0.170 1 0.0283 1 0.0231 

I Electricity 1 0.172 1 0.0479 1 0.0437 

khimum Variance Estimators (1998) 

Table 4.10: 2-Factor (b) Model Minimum Variance Estimators (1999) 

Natural Gas 

Crude Oil 

Electricity 

z 

0.158 

0.146 

0.154 

h 

0 

0.0301 

0.0212 

0.0454 

h 

7 

0.0227 

0.0200 

0.0397 



Table 4.11: 2-Factor (b) Model Parameter Estimation Experiment (a = 0.15) 

ar = 0.15 T 



Table 4.12: 2-Factor (b) Model Parameter Estimation Ehperiment (a = 0.2) 
I I I 



CHAPTER 5 

FUTURES PRICES 

'Ikaders in the energy market want to cover their positions by entering into 

futures contracts. This is a simple agreement between a buyer and seller that an asset 

will be bought and sold at a certain price at a specific time in the future. Naturally 

the price that is agreed upon is related to the expected value of the energy price in 

the future. M h e r  the quoted futures prices in the market reflect the beliefs of an 

amalgamation of traders. We can use this extremely valuable information to calibrate 

the trinomial trees we use to model energy prices. In this chapter, we follow closely the 

excellent expose of futures contracts in [Hull 19991. 

5.1 Futures Contracts in the Energy Market 

Definition 5.16 A jictums contmct is an agreement between traders to buy or sell 

an asset at a fized price at a certain time in the fiturn. Let f (t, T )  denote the futu~.les 

price of a wntmc t  beginning at time t and ending at time T. The time T is known 

as the date of muturity of the f i t tum contract. We often write the futures price as 

a fvnctzon of a single variable f (s): in this case we shdl always assume that t = 0 (or 

t = t o )  and T = s. 

In natural gas, crude oil, and electricity markets the date of maturity is typically 

the first trading day of each month. In other words futures contracts are arranged on 

60 



a monthly basis. For example the February futures price is the price that traders agree 

now to exchange for the commodity at the beginning of February- 

At the time the futures contract is arranged no money is exchanged. A fu- 

tures contract costs nothing to either trader involved in the deal. This is because it 

is supposed to be equally valuable to both sides. The buyer gains protection from 

skyrocketing energy prices and the seller is guaranteed to be unaffected by plummeting 

energy markets. Of course it is entirely possible that one of the traders will be disap 

pointed by the actual outcome. If the energy price realized at time T is high above 

the futures price then the seller wil l  have missed an opportunity to make considerable 

profits. Alternatively if s(T) the is far below f (T) then the buyer will have missed 

the chance to save money. By reducing their mutual risk the traders have effectively 

removed the possibility of either of them making a killing (at the expense of the other). 

This poses an obvious question: Is the futures price equal to the expected future 

spot price? Let us examine this idea using a financial pricing argument. 

5.2 Financial Pricing Theory 

Axiom 1 All investment opportunities in energy markets have zem net present value. 

In other words it is impossible to enter into an arrangement that realizes a 

positive instantaneous profit with no risk of loss. 
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5.2.1 Risk and &turn 

It is an established fact that the higher the risk of an investment the higher the expected 

return demanded by an investor. There are aiso 2 types of risk in the economy: sys- 

tematic and nonsystematic. Nonsystematic risk is unimportant as it can be completely 

diversified away. Systematic risk is the result of a correlation between the returns fkom 

a particular investment and the returns horn the entire en- market. Therefore an 

investor requires higher returns than the risk free interest rate for bearing positive 

amounts of systematic risk. Alternatively an investor is prepared to accept lower ex- 

pected returns than the risk free interest rate when the systematic risk in an investment 

is negative. 

5.2.2 The Risk in a Futures Position 

Consider a speculator who takes a long position in a futures contract' in the hope 

that the energy price will be above the futures price at maturity. We suppose that 

the speculator puts the present value of the futures price into a risk hee investment at 

time while simultaneously taking a long futures position. The proceeds of the risk free 

investment are used to buy the asset on the delivery date. The asset is then immediately 

sold for its market price. This means that the cash flows to the speculator are 

Time 0: - f (T)e-rT 

'That is the speculator agrees to purchase the asset in the future at the agreed upon price. 



CHAPTER 5. FUTURES PRJCES 

Time T: +s (T) 

where r is the risk jhe interest rate. 

The present value of this investment is p (~)e-p= - f (T)e-rT where we have 

denoted the expected future spot price by p(t)  = S(t). 

As this financial opportunity can have no net present value, we set this quantity 

to zero and solve for the futures price 

f (T) = 9 (T) e('-'IT (5-1) 

or equivalently when t # 0 we have 

f (t, T) = p (T) e('-~)(~-') 

where p is the discount rate appropriate for the investment2. The number p 

depends on the systematic risk of the investment. Let p be the correlation between 

s (T) and the level of the energy market. Then there are 3 cases to consider: 

(1) p < 0: p < r and f (T) > 9 (T) (Contango) 

(2) p = O : p = r a n d f ( T ) = p ( T )  

(3) p > 0: p > r and f (T) < p (T) (Nonnal Backwardation) 

5.3 Stat istical Analysis 

We now explain the method of estimating the expected return p. This is the final piece 

in the puzzle of our energy price model. Once the best estimator has been obtained 

2That is y is the expected return required by investors on the investment. 



CHAPTER 5. FUZVRESPRICES 64 

we will have at our disposal all the necessary tools to price options. For the sake of 

simplicity, we will assume that p is a constant parameter that does not depend on the 

start and end times t  and T of the futures contract3. 

5.3.1 Hypothesis Testing 

The expected d u e  9 (T) can be taken to be the realization of the energy price s (T) 

at the date of maturity. The futures prices f (t ,  T) will be compared to the values of 

p (t). In essence we are observing the differences between what investors believed would 

happen and what actually occurred in the energy mazket. 

It is convenient to define a normalized parameter by X = p - r4. Then 

Let ivj) and { fii) be sample sets of futures prices and realized energy prices at 

start and end times {(t i ,  Tj)). These can be used in conjunction with Equation (5.2) to 

obtain a sample set of numbers {Xij). It is then possible to do a statistical analysis on 

{A,) to determine which of the 3 possible situations is realized for a particular energy 

price process: contango (A < O), no systematic risk (A = 0), or normal backwardation 

(A > 0). 

'In reality the expected return p is probably a (seasonal) function of both t and T but this issue 

will not be addressed in this thesis. 

41t is customary to call the market price of risk where a is the volatility of s(t ) .  



We perform a student t-test. For a thorough description of this procedure, we 

refer to [Weiss 19991. 

For the sake of simplicity we shall form a null hypothesis of no systematic risk 

and make no assumptions about the alternative choices. 

Null Hypothesis: X = 0 

Alternative Hypothesis: X # 0 (Ztailed) 

Suppose that the parameter A is normally distributed with mean 0. Then, for 

samples of size n, the studentized version of X 

has the student t distribution with n - 1 degrees of heedom where X and s~ are 

the sample mean and standard deviation of X defined by 

and 

By elementary statistics we know that the t-test is robust to moderate violations 

of the normality assumption. 

We shall consider samples of size n = 101 under a si@cance level a = 0.05. 

Then for a particular value of the test statistic t we will accept the null hypothesis if 
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t E [-1.984,1.984] and reject it otherwise. We refer to Table N in [weiss 19991 to see 

that to.025(100) = 1.984. 

The results for natural gas, oil, and electricity are displayed in Table (5.1). The 

sample sets were taken from spot prices and futures prices over the period 1997 - 1999. 

Table 5.1: Null Hypothesis t-Test 

In each case, there is no evidence to suggest that the futures price is not an 

unbiased estimator of the expected future spot price. That is, we can safely assume 

that on average X = 0 for all energy commodities under consideration. Thus we assume 

that there is no systematic risk for the remainder of this thesis and simply put 

Natural Gas 

Crude Oil 

Electricity 

Equation (5.3) is the condition that, if satisfied, will render our numerical solu- 

tions risk neutral, by ensuring that all investment opportunities in the energy market, 

have no net present value. 

- 
X 

-0.000819 

-0.000395 

0.000834 

SA 

0.006 

0.0042 

0.0046 

t 

-1.408 

-0.927 

1.877 
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Figure 5.1: January 1, 1997 Natural Gas Futures 
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Figure 5.2: May 1, 1999 crude oil Futures 



Figure 5.3: May 1, 1999 Electriciw Futures 

5.3.2 Futures Prices and Expected Future Spot Prices 

Now we examine the relationship between futures prices and the realizations of spot 

prices for natural gas, crude oil, and electricity. According to what we just discussed, 

traders are obviously trying to predict what is actually going to happen in the future 

when they agree on the price in a futures contract. Figures (5.1)-(5.3) show the futures 

prices over a period of 3 months along with the spot prices that were later realized over 

this same period. In the diagrans, the solid lines depict the realized spot prices, while 

the circles show quoted monthly futures prices and the dashed line represents a cubic 

spline interpolation of missing values. Note that a circle located at time t, represent 

the delivery price of a futures contract entered into at time zero, and expiring at time 
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t. 

It is clear fiom the picture. that although sometimes the futures prices end up 

being above and below the realized spot prices, on average the futures prices do an 

admirable job of guessing future spot prices. In a highly volatile energy market, this is 

probably the best that one can hope for. Refer to Appendix B to see more pictures of 

futures prices and realized spot prices for natural gas, crude oil, and electricity. 



CHAPTER 6 

NUMERICAL SOLUTIONS 

Some stochastic differential equations can be solved by providing an analytic ex- 

pression of the probabiliw distribution of the random variable. It occurs often in prac- 

tice that analytic solutions are impossible to amve at. Furthermore, even when analytic 

solutions are available, they are unsuitable for evaluating path dependent derivative se- 

curities such as American style options. Therefore we investigate the possibility of 

solving stochastic differential equations by numerical methods that involve the con- 

struction of trinomial trees. 

In this chapter, we extend the work of Hull & White, who have developed a 

trinomial tree implementation of a linear mean reverting model appropriate for interest 

rates. We extend and rno* their procedures so that they may be applied to 1 and 

2 factor nonlinear models applicable the exciting area of energy modeling. In fact it is 

fair to say that this thesis attempts to do for the energy industry what Hull & White 

accomplished for interest rate derivative securities. The following list briefly describes 

the main innovations offered here: 

(1) Following a suggestion made in [Hull & White 19901, we develop a drift 

adapted met hod of arranging the geometry of trinomial trees that speeds convergence 

by minimizing errors near the median nodes of all the branches in a tree. 

(2) We illuminate the notion of creating a risk neutral calibrated model by 

matching the futures price curve available in the energy market. 

70 
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(3) We extend the method of fast t reg  introduced in [Hull & White 1994 (a)] 

by generalizing the procedure to admit random processes with nonlinem drifts. This 

innovation decomposes a trinomial tree into a preliminary tree that is subsequently 

transformed into a final tree by arranging the geometry of each branch so that the 

futures prices are precisely matched. This has the pleasing effect of separating the 

deterministic and stochastic parts of the random process. Thus each component can 

be dealt with one at a time instead of tackling the whole problem all at once. The fast 

trees are infinitely easier to understand and implement. Furthermore, they run faster 

(hence our name for them) and tend to converge more rapidly than ordinary trinomial 

trees. 

(4) The nonlinear Pilipovic 2-factor models are decoupled by making sub- 

stitutions similar to the ones found in [Hull & White 1994 (b)]. This completes our 

nonlinear analysis of the linear methods developed by Hull & White. 

We begin with a few geometric definitions. 

Definition 6.17 A directed gmph (G,  R) is a set of nodes G together a relation 

R on the node set. 

Every element (a, b) in the relation R can be interpreted as a ray (directed line 

segment) connecting a to b. For the sake of convenience, we will often refer to a graph 
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(G, R) as simply G when it is unnecessary to specify the relation R. 

Definition 6.18 Aptzthisasubset o fmys inR  ofthe fom((a,P,),(al,Pl), ...,( a,,b)) 

where a is the start node and b is the end node in the path. 

The path can be interpreted as one of the possible ways of getting fkom a to b. 

Definition 6.19 A cimuit is a path whose start and end nodes are identical 

Definition 6.20 A tme T is a diwted graph G that has no czrcuzts. 

Definition 6.21 A trinomial tm is a tree where every node has precisely 3 rays 

emanating from it. 

By our definition, a trinomial tree always has a unique node called the root with 

the property that there is no ray atriving at the root. The root can be thought of as the 

start node of all possible paths throughout the tree. For the remainder of this thesis, 

aU trees that are mentioned are understood to be trinomial trees. 

The fact that our trees have no circuits has a natural interpretation. Consider 

the time i n t e d  [0, TI. In our construction, a ray from a to b allows for the possibility 

of branching from a to b in the next moment of time. That is, rays in our trees point 

in the direction of increasing time. The d t e n c e  of a circuit would then indicate the 

potential to travel back through time. In this thesis, we tacitly assume that reverse 

time travel is impossible for trading purposes! 
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Suppose that a random variable s ( t )  satisfies an Ito process of the form 

ds = a[s ,  *(t)]dt + b (s) d z  (6-1) 

where ~ ( t )  is an unknown function of time. 

The parameter a(t ) will be selected so that the expected value of at every branch 

in the tree satisfies Equation (5.3) 

This renders the probabilities in the tree to be risk neutral by the zero net present 

value argument explained in Chapter (5). Hence the tree can be used to evaluate 

derivative securities . 

h order to construct an additive trinomial tree, we require that the standard 

deviation be a constant number u. To this end, it may be necessary to transform to a 

new random variable 

We assume the antiderivative exists so that we can write S = S ( s )  . Furthermore, 

we suppose the transformation is invertible and we denote the inverse function by 

s = s (S) .  

By the Ito formula 
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where the new drift is 

Note that the above kamework is valid for the two cases of primary interest to 

us, namely b(s) = o (Hull & White) and b(s) = us (Pilipovic), as s ( t )  never reaches 

zero in finite time according to w i o t t  19981. 

6.1.1 n e e  Structure 

We first select the number of time steps n. Then the length of a time step is At = f . 

It is desirable that At E (0,l). The length of a small change in S is then chosen to be 

[Hull & White 19901 suggest that this is a good choice for AS in that it mini- 

mizes errors and speeds convergence. 

Define ( 2 ,  j) as the node where the time is t, = i At and the transformed random 

variable is Si, = si + j AS where gi = Sa is the position of the median node of the ith 

branch in the tree. We adopt this unusual notation for the median nodes gi as we will 

see later that they are approximately equal to the expected values 6(t) of the random 

process S ( t )  at the discrete times ti = i At for i = 0, ..., n. We assume that the spot 

price of the energy is known at time 0 and put So = S(so). We imagine that we are 

creating a probability distribution that will represent the future evolution of the spot 
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Figure 6.1: Ordinary Trinomial n e e  Structure 

price. Hence the median node at time 0 is go = So. Observe that the root node is 

labelled (0,O) although we write So in place of Soo as a matter of style. Figure (6.1) 

shows the geometry of an ordinary trinomial tree. 

By Theorem (2.12) the mean and variance of S(ti + At) - S(ti) are 

at node (2, j )  in the tree for S defined by Equation (6.2). 

Let the drifts of the median nodes be denoted by Mio = A ( S ~ ,  ri)At. The 

median nodes for i = 1, ..., n are defined recursively by 
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Then the median nodes are all precisely connected by their drifts as dictated by 

Equation (6.3). This structure makes the computer program particularly elegant. Also, 

we propose (without proof) that it probably speeds convergence. Why? Normally, 

the error of convergence associated with a node is O(At )  as we are using a h e a r  

approximation in the tradition of Euler. However, it is stated in [Hull & White 19901 

that when the ray emanating &om a node (i, j) lands directly on another node, the error 

of convergence associated with that node is 0 ( h t 2 ) .  Furthermore, we shall demonstrate 

later that the median nodes are located near the expected d u e s  of the random process 

S ( t ) .  This means that most of the disaete probabiliiy distribution is concentrated in 

the vicinity of the median nodes. Therefore, by minimizing the errors near the median 

nodes, we aim to sigdicantly enhance the convergence rate of the trinomial tree. This 

leads to the phrase drift adapted mesh, which we will simply refer to as an ordinary 

trinomial tree. 

We now turn our attention to the calculation of the branching probabilities. 

By choosing the branching probabilities so that the mean Mu and variance V of the 

random process (6.2) are imitated at every node ( 2 ,  j), we ensure that the discrete 

process created by our trinomial tree will approach (in a sense that will be clarified 

later) the continuous process as At --, 0. 
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Figure 6.2: n-inomial nee Node Branching Process 

6.1.2 Branching Probabilities 

Suppose we are at node (i, j). Let (i + 1, k j )  be the closest node to the drift Mij 

bearing in mind that each branch is adapted by the drift Mio of the median node 6i 

h, = [ j  + - (Closest Integer) 
A S  

Then, starting from node (i, j) , it is possible to branch to one of the nodes 

(2 + 1 + 1 ,  (2 + 1 ,  or (2 + 1 h i  - I )  We shall respectively call these nodes 

the up, middle, and down nodes associated with node (2, j). Hence each node in the 

tree has three rays emanating from it, with the exception of a l l  nodes of the form (n, j) 

at time T = n At, which have none (they are at the top of the tree). 

Let Bij = Me - Mio - (h, --)AS be the offset between the adapted drift and 
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this closest node. Then the positions of the up, middle, and down nodes are related to 

the location of their source node (2, j) by 

Denote the probabilities of branching to the up, median, and down nodes by pi;', 

', and p:? respectively. We will also respectively write these branching probabilities 

as pi:), and pj;'), or possibly as pu, pm, and pd, when it is convenient to do so. 

Then the linear system of equations satisfied by the branching probabilities is obtained 

by calculating the mean and variance of the discrete process and setting them to Mij 

and V, together with the universal condition that all probabilities must add up to 1. 

The solution reveals the desired probabilities 

2 1 1 0, 0, '"1 = -+-(-+-I Pi j 6 2 AS2 AS 

2 @:j (m) = - - - 
Pi j 3 AS2 

1 1 02, (4 = - +-(- - ei j 
Pij 6 2 AS2 as) 
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Figure (6.2) shows a picture of the branching probabilities at a typical node 

Theorem 6.22 The branching pmbabzlztzes (6.7) are always between 0 and 1. 

Proof. It is easily shown that and are always positive for all values of O i j -  TO 

see this let I = &. By the quadratic formula, we have 

for pi;). The discriminant of this parabola is evidently negative. 

Hence is positive for all values of z. A similar result holds for 

It now sufEices to show that + pi;) 1 - By OUT method of selecting the 

integer hij we know that 

Therefore 

1 a:,- (4 (4 = _ + - Pij + Pij 3 AS2 
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I 

By our construction, the ofket Bio is zero for the median node Si of every branch 

in the tree, see Figure (6.2) for clarification. This means that the branching probabilities 

emanating from any median node are always given by Equation (6.7) to be i, 3 ,  and 
for moving to the up, middle, and down nodes. According to [Hull k White 19901 this 

means that the errors of convergence associated with the median nodes are 0(At2). 

Remember that the median nodes are located near the expected values @(t)  of the 

transformed price process S(t). This means that we have succeeded in minimizing 

the errors of convergence in the region of the tree where most of the probabiliv is 

accumulated. Hence we have developed what we call a drift adapted mesh. 

6.1.3 Discrete Probability Distribution 

The maximum and minimum values of j are different at each branch in the tree. It is 

easiest to calculate these boundary values recursively by setting jmw(0) = j ~ n ( 0 )  = 0 

and defining 

for i = 1, ..., n. This is guaranteed to work as long as the drift function A is 

continuous. 

Denote the probability of reaching node (2, j) by Pi,. These cumulative proba- 



bilities are easy to ca ldate  recursively provided we h o w  the branching probabilities 

at every node in the tree - and we do by Equation (6.7). 

for i = 1, ..., n and j = j-(i) ,  ..., j,,(i) where q[(i - 1, k) + (i,j)] is the 

probability of branching from node (i - 1, k )  to node ( 2 ,  j )  . Observe that P, = 1 
j 

for i = 0, ..., n. The probabilities 4 define a discrete probability distribution that 

approximates the continuous solution of the stochastic differential equation (6.2). 

This completely specifies the tree construction. Note that a trinomial tree is 

numerically &cient if the number of nodes does not grow exponentially in time. For 

instance, the trees c o n ~ t ~ c t e d  in the sequel are such that j- ( i )  and j&(i) are O(n) 

for all i = 0, . . . , n .  Therefore the computer programs that constmct these trinomial 

trees run in time 0 ( n 2 ) .  Let Q(s ,  t )  be the continuous probability distribution that is 

the solution of the stochastic differential equation (6.2). The discrete probabilities Pi 

are approximations of the integrals of Q ( s ,  t )  over small neighborhoods of the points 

(si,, t i )  where j = j-(21, ..., j-(i) for i = 0, ..., n. 

Definition 6.23 A numerical method of solving a stochastic diffemntial equation con- 

verges weak@ for a class of functions C if 
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for dl g E C, whem Ep and EQ am the d i smte  and wntinvow expectations 

under the probabzlity distributions % and Q(s, t ) .  

Conjecture 6.24 (Dinomid nee) The trinomial tree converges weak& to the so- 

lution of Equation (6.1) for the purpose of evaluating derivative securities. 

[Hull & White 19901 outline a proof by establishing the equivalence of the trt 

nomial tree with a corresponding explicit finite difference method for solving a partial 

differential equation describing the value of a derivative securiw. The finite difference 

method is then assuredly consistent and stable as long as the branching probabilities 

("I (m), and are positive - and they are by Theorem (6.22). Pij 7 Pij 

6.1.4 Matching Futures Prices 

Once the tree is ready, the spot price at node ( 2 ,  j) is given by the inverse transformation 

The expected value of s at time i At is given by 

Let f (t) be the futures price of the energy in the market. Then the expected 

future spot price is related to the futures price by Equation (5.3) 

9 ( t )  = f ( t )  
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We suppose that the unknown function of time ~ ( t )  dictates the shape of (t). In 

the special case when a[s , ~ ( t ) ]  is a linear function of s this can be done by a theoretical 

calculation. By Theorem (2.11) the expectation p( t )  is the solution of the ordinary 

differential equation 

Thus, the unknown function of time is found by solving for ~ ( t )  in the equation 

f (t)  = a[f  (t), n(t)] where the derivative can be approximated by a finite difference 

method. This is guaranteed to work as long as a is a linear function of s. Indeed 

this is the case for a l l  of the energy models we go on to study later1. The result is a 

particularly elegant tree with risk neutral probabilities. 

6.2 Log Normal Distribution 

We now apply our numerical methods to the specific example of a log normal dis- 

tribution. This simple model will provide a stepping stone to the relatively complex 

mean reverting models that we use to describe e n w  prices. Furthermore, the unique 

structure of a trinomial tree with constant drift and constant volatility illuminates the 

'That is, their drifts are linear before the transformation that renders the standard deviation 

constant, after which they become nonlinear, as we mentioned before. It is the original drift a[s,  ~ ( t ) ]  

- not the transformed one A[S, n(t)] - that is used in the calculation of the unknown function of time 
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relationship between the detenninistic and stochastic parts of a random process. This 

knowledge can be exploited to create trees that are a full order of magnitude more 

efficient than before. 

Consider a generalized log normal random variable that satisfies the stochastic 

differential equation (2.6) 

where P ( t )  is the drift parameter (taken to be an unknown function of time), 

and T is the volatiliw. 

Recall that in the standard log normal distribution the drift parameter is a con- 

stant number. We will demonstrate our procedure by allowing B ( t )  to be an unknown 

- 
function of time. Put +(t) = Z(t) . Evidently we can choose P(t )  so that the expected 

value $(t) of the random process i(t ) assumes any shape we desire. We begin by doing 

a log transformation so that the standard deviation is constant. Substitute L = In@). 

Then 

We proceed to construct a trinomial tree for L. Specify Lo = ln(lo). Pick the 

length of a small time intend At. Then a small change in L is AL = TI/-. Denote 

the median nodes in the tree for L by gi. Then the median nodes are calculated 
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recursively by go = Lo and Formula (6.5), to yield 

for i = 1, ..., n. 

Since the drift P ( t )  - $ does not depend on L have Mij = Mio = (Pi - $)at 

for all i and j. By Equation (6.6) the closest node to the drift emanating horn the 

source node ( 2 ,  j )  is always (i + 1, j) (in other words, hj = j for all i and j )  and the 

offkt of every node in the tree is Oi j  = 0. It follows that the branching probabilities 

are constant throughout the tree and we write 

The structure of the Ltree can be visualized as a diffusion centered around the 

median nodes Si. This suggests that it would have been conceptually simpler to build 

a preliminary tree representing the diffusion and then transform to the final tree by 

shifting the median nodes of the branches onto the expected values of L(t).  

The first phase is to construct a preliminary tree for L by setting P ( t )  = f and 

choosing an initial value of Lo = 0. This is perfectly valid: we are in effect ignoring 

the deterministic part and concentrating on the stochastic part of the random process. 

The deterministic part can be easily injected back into the final tree by shifting the 

central nodes of each branch to the proper level. The actual process assumed for the 



prelimhry tree is therefore a simple -ion. 

- 
Put q(t) = L(t) .  Observe that the preliminary tree has the special property 

that @(t )  = 0. In other words, the median nodes 8i are all zero. Also, the position 

of node (2, j )  is Lij = j AL and does not depend on i. Consequently the drifts M, 

and the branching probabilities q,, q,, and qd do not depend on i. We will capitalize 

on this fact in a moment when we generalize this procedure. Figure (6.3) shows the 

decomposition into preliminary and final trees. 

The final tree is formed by shifting the median nodes of each branch onto the 

expected value of L(t) .  By Theorem (2.11) this expectation is 

Then the position of node (2, j) in the final tree is Lii = !Pi + j AL. Evidently the 

median nodes gi are the linear approximations of the expected values Bi- Therefore the 

trinomial tree obtained by transforming the preliminary tree into the final one is exactly 

the same as before. Although this trick does not really improve the discretization of a 

log normal random variable, it will vastly enhance the efficiency of other types of Ito 

processes. 
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Figure 6.3: Log Normal Fast Tree Construction 
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6.3 Fast Trinomial Dees 

We now extend the above procedure to the general case. We call this development 

the method of fast trinomial trees for reasons that will soon become apparent. These 

s-called fast trees originally appeared in [Hull & White 1994 (a)] and signaled a major 

breakthrough in the efficient construct ion of trinomial trees. 

Suppose that a random variable s ( t )  satisfies a stochastic differential equation 

of the form 

ds = a [s ,  ?r(t)]dt + b (s) dz 

and imagine that we have transformed to a new random variable S(t) with 

constant standard deviation 

We now introduce another random Mliable g(t) that satisfies the Ito process 

Definition 6.25 The ordinary trinomial h e  for 3 is called the preliminary tsee for 

S .  

The preliminary tree turns out to have some extremely desirable properties, 

that make it unusually fast and easy to implement. Put G(t)  = ~ [ 3 ( t )  I go = 01. 
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Then we are choosing the parameter r(t) to be a number X so that G(t) = 0. This is 

accomplished by solving for the number X in the equation 

If a solution X exists, we say that the random process ~ ( t )  is preliminarizable. 

Hence our const~ction applies to the class of Ito processes whose transformed drifts A 

admit a solution of Equation (6.12). 

Claim 6.26 The qected value s(t) of the landom process g(t) is approximately zero. 

By Theorem (2.11) , we have 

Now by choosing the prehnharization parameter according to Equation (6.12), 

we are assured that if we start at so = 0, in which case so = 0, then over the next 

small time interval At we will arrive at 8 ( ~ t )  = 0(At2) by the Fundamental Theorem 

of Calculus. By resetting the expectation at time tl = At to zero, that is, g ( ~ t )  = 0 ,  

we are committing an error of order O(&t2). Under the assumption 51 = 0, it then 

follows by an asgument similar to the one we just made that g2 = 0(At2) .  By resetting 

the expectation at time t2 = 2 At to zero, we commit another error of order 0(At2) .  

Continuing in this fashion, we have a total error of nO(At2) = O(At) . This heuristic 
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construction supports the fact that calculating X by Equation (6.12) means that 6 (t) 

is approximately zero, as required. This is important, as the median nodes of the 

preliminary tree are aJl zero by Equation (6.5), and these median nodes will later be 

moved onto the expected values O(t )  of the actual process S(t),  when the final tree is 

formed. 

Definition 6.27 The final tme, also called the fast tree, for S(t)  is obtained by 

retaining all of the relative connections and bmnching probabiZities of the p ~ l i m i n a r y  

tree, and merely shifiing all median nodes Si of the pdiminary  tree onto the q e c t e d  

values Qi of the random process S(t)  at the discmte times ti = i At for  i = 0, . . . , n, 

maintaining the vedical spacing between all nodes in the same branch. 

The find tree is found by moving a l l  branches so that their median nodes coincide 

with the ~tpected d u e s  of S( t ) .  Then the position of node ( i , j )  in the final tree is 

Sij = Qi + j AS Note that in practice it is not necessary to solve the analytic form 

of the expectation @(t). Rather, the numbers 8(t) are calculated by Equation (6.9) so 

that the futures prices f (t) coincide with the expected value of s(t) at every branch in 

the tree. 

Figure (6.4) shows the geometry of a preliminary tree. Observe that the position 

of all nodes in the preliminary tree depend only on j (and not on i). The final tree is 

obtained by moving the median nodes of each branch so that the expected values of 

the spot prices satisfy the zero net present value condition (1).  The geometry of the 
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Figure 6.4: Preliminary 'Enomial n e e  Structure 

final tree looks the same as  that for an ordinary tree depicted in Figure (6.1) except 

that the symbol 8 is replaced by O. This is because the median nodes in the final tree 

resulting from the fast construction are located at precisely the expected values <Pi by 

definition. This is another aspect that makes fast trees more desirable than ordinary 

ones. 

The position of node (i, j )  is gj = j AS and does not depend on i. Consequently 

the drifts Mj and the braaching probabilities P!u), p:m), and py) do not depend on i 

either. This means that we only need to calculate J,, - J- sets of probabilities where 

J' = max jma(i) and J- = min j-(2). Hence the computer programs for 
i € { O ,  ..., n) i € {O ,  ..., n) 

fast trinomial trees are guaranteed to run faster than those for ordinary trees. We will 

do a n  experiment a1 analysis of the run times of ordinary and fast trees in Chapter (8). 
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Conjecture 6.28 (Fast Zkinomial The)  The fast trinomial tree eonverges weakZy 

to the solution of Equation (6.1) for the puvose of evaluating derivative securities. 

[Hull & White 1994 (a)] outline a proof in the special case when A[S, O ( t ) ]  is a 

linear function of S. Consider the drift of the median nodes at time i At in the final 

tree 

Dividing both sides of this equation by At and taking the limit as At --, 0 reveals 

and this equation is true when A[S, 0 ( t ) ]  is linear in S by Theorem (2.11). 

In fact the transformed drift functions we apply the fast trinomial tree method to 

are nonlinear. We offer an experimental proof of the conjecture for the class of Pilipovic 

equations by evaluating derivative securities using fast and ordinary trinomial trees and 

demonstrating that the results are approximately equivalent. 

6.4 3 Dimensional Tkees 

We now introduce a method for creating a 3D trinomial tree that approximates the s* 

lution of a system of two conelated stochastic differential equations. This breakthrough 

idea was proposed by [Hull & White 1994 (b)]. 
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Suppose we have a decoupled system of stochastic differential equations of the 

form 

where the Brownian motions z(t) and y(t) have correlation p. The requirement 

that the equations be decoupled is essential as it allows for the construction of trinomial 

trees for each random variable alone (as though the other one did not exist). 

Suppose that we have constructed ordinary trinomial trees for the random vari- 

ables R(t)  and U(t) .  Denote nodes in the R-tree by ( i ,  j) and those in the U-tree by 

( i ,  k )  Also, write the branching probabilities in the R-tree by p$), Pjy), and and 

(4 (m) those in the U-tree by q, , q,, , and qjf) .  Then it is possible to interweave the separate 

trees into a single 3D tree so that the desired correlation is induced. We review this 

construction next. 

6 -4.1 Induce the Correlation 

Now imagine creating a 3D tree by combining the separate trees for R and U2. Each 

pair of nodes ( i ,  j )  and ( 2 ,  k )  give rise to a node ( i ,  j, t) in the (R, U)-tree. Suppose 

that we are at node (i, j ,  k). Then there are 9 possible nodes that can be branched 

into. These are obtained by combining all possible pairs of branchings in the individual 

*In essence, we are taking the direct product of two trinomial trees. 
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trinomial trees. If the random processes were independent of one another the branching 

probability matrix G would be calculated by simply multiplying the corresponding 

probabilities toget her 

where we have neglected to indicate the dependence of G on i, j, and k for the 

sake of brevity. 

We now examine the adjustments necessary to induce the desired correlation. 

If the assets are positively correlated ( p  > 0) then the correct branching probabiliw 

matrix is obtained by adjusting the probabilities in the following way 

Puqd - E Puqm - 4~ Puqu + 5~ 

Pmqd - p& + 8~ pmqu - 4e 

Pd% + 5~ PdQm - 4~ pdqu - & 

where E = &. 
I 

Note that the probability adjustments add up to zero along each row and column. 

This ensures that the means and variances of the individual trees for S and U are not 

affected. The only visible &ect is to induce a correlation of exactly p between the two 

assets. Furthermore, if p = 1 then by Equations (6.7) and (6.14) we would observe the 
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following effect 

This is precisely the kind of behavior we would expect if the assets were perfectly 

positively correlated. 

We now state and prove a theorem from [Hull & White 1994 (b)] in which we 

make use of some elementary laws of probability which can be found in any fundamental 

text on probability theory. For example, see [Grimmett & Stirzaker 19951. 

Theorem 6.29 If G is given by (6.14) with E = 5 positive then p = cmr(S, U). 

Proof. Let the matrix of probability adjustments be denoted by 

Let the median nodes of the trees for R and U be denoted by Gi and 6i. Also, 

let the closest nodes to the drifts at nodes ( 2 ,  j )  and (i, k) be written as hij and gik. 

Suppose we are at node ( 2 ,  j ,  k) in the (R, U)-tree. Then over the next interval of time 
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the covariance is given by 

cov (R, U) = E (RU) - E (R) E (U) 

[Gi+l+ (gik + n)AR] - E (R) E (U) 

Recall that the branching probabilities and add up to one while the 

probability adjustments E,, add up to zero along any row or column. Hence 

AR AU C C E~~ ( h g i k  + k j n  + mgik + mn) 

= AR AU C C E,, (mn) 

This clearly demonstrates that cov(R, U) is independent of the node ( 2 ,  j ,  k) . 

Consequently the correlation of R and U is also independent of our position in the tree. 

Indeed this is a well known property of a system of stochastic differential equations 

with const ant standard deviations. 
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The standard deviations of R and U over an interval of time are respectively 

a& and T@- Thus the correlation we desire is 

cov (R, U) 
P = ar At 

- - 12e AR AU 
ar At 

Now suppose that the assets are negatively correlated (p  < 0). Then the correct 

matrix is given by 

where E = t. The proof of this result is similar to Theorem (6.29). 

Similarly if p = - 1 then Equations (6.7) and (6.15) would reveal 

Again this satisfies our natural intuition of the way that perfectly negatively 

correlated assets are supposed to behave. 

Equations (6.14) and (6.15) also induce the required correlation between a pair 

of fast trees for R(t) and U ( t )  by proofs similar to Theorem (6.29), except that the 
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probability matrix G ceases to depend on i ,  and depends only on j and k. Hence we 

have a nice and neat 3D tree that accurately predicts the behavior of two correlated 

random variables simultaneously. We are now in a position to evaluate spread options 

among other things. 



CHAPTER 7 

MEAN REVERTING MODELS 

Energy spot prices fluctuate randomly over time. In fact the spot prices are 

conveniently modeled by systems of stochastic differential equations. [Pilipovic 19971 

has proposed a number of models that might be appropriate fcr the unique behavior 

of energy commodities. As it happens, these equations are too complex to be solved 

analyticaUy. However, the continuous processes can be implemented numerically as 

trinomial trees with great success. 

We now develop algorithms for constructing ordinary and fast trinomial trees 

for the mean reverting models put forward in [Pilipovic 19971. In Section (6.3) we 

constructed fast trinomid trees that were more elegant than the ordinary trinomial trees 

we developed in Section (6.1). We intend to show numerically that the fast trinomial 

trees can be successfully used to evaluate derivative securities. We will do this by 

comparing results obtained using both fast and ordinary trees and demonstrating that 

their differences are within acceptable tolerance levels. Tbis will justify the use of fast 

trinomial trees for the purpose of option evaluation. 

7.1 1-Factor Model 

We begin by dissecting the simplest variation of the Pilipovic equation; namely, the 

1-factor model. This will pave the way toward understanding the relatively complex 

Zfactor models we wiU study in Sections (7.2) and (7.3). 
99 
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Consider the l-factor generalized Pilipovic equation (3.2) 

ds = a [I ( t)  - s] dt + 0s dz 

In the standard l-factor Pilipovic equation 1 is a constant parameter. In order 

to more accurately capture economic trends we allow l ( t )  to be an unknown function 

of time. The parameter l ( t )  will be chosen to make the model consistent with the term 

structure of futures prices observed in the market. This scheme also has the additional 

benefit of greatly enhancing the efficiency of the numerical implementation when we 

switch &om ordinary to fast trees. 

The spot price s is the average daily price of an energy commodity such as nat- 

ural gas or oil. The long term mean l ( t )  represents the economic trend of the market. 

Although it is unobservable, this quantity will be chosen so that the expected value of 

the model coincides with the futures prices agreed upon by a conglomeration of buyers 

and sellers. This, along with the condition that the market price of risk is zero, will en- 

sure that the probabilities are risk neutral. In other words, we will arrange the geometry 

of the tree so that the central node of each branch always corresponds to the expected 

value of s as dictated by popular market opinion. This leads to eminently faster tree 

construction and significantly more accurate option evaluation. The parameters a and 

a are estimated using historical data as explained in Section (4.1). 

We begin by constructing the ordinary trinomial tree and then proceed to de- 

velop the corresponding procedure for a fast trinomial tree. 
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7.1.1 Log Xkansformation 

We begin by doing a log transformation so that the standard deviation in the stochastic 

differential equation (3.2) is constant. 

By the Ito formula we have 

7.1.2 Separation of Deterministic and Stochastic Parts 

It is now convenient to substitute another random variable that will enable us to easily 

- .  separate the determuustic and stochastic parts of the random process. 

- - 
Put d ( t )  = 5(t) ,  O(t )  = S( t ) ,  and w(t)  = R(t ) .  Taking the expected value of 

Equation (7.2) we obtain the expectation relation L(t)  = w(t )  + O(t).  

Then by the Higher Dimensional Ito Formula1 

'Note that the actual process obtained is dR = a[a(t)-eR]dt - o dz; however, rather than intr* 

ducing another Brownian motion to replace -2 (which would complicate notation) we have sirnply 

taken advantage of the fact that the probability distribution of -2 is indistinguishable from that of z. 
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where a(t) is given by 

Observe that we now have an exponentially mean reverting process. That is eR 

is bound to inexorably drift toward a(t) at a mean reversion strength of a. At this 

point we mention that the analytic form of a(t) as it involves ~ ( t )  is unimportant. The 

unknown function of time l ( t )  will be revealed as the numerical solution of an ordinary 

differential equation derived under the assumption that the futures prices f (t) match 

the expected values of s ( t )  at every branch in the tree. 

Using Equation (4.21) with ~ ( t )  replaced by f ( t )  we obtain 

f ( t )  l ( t )  = f ( t )  + - 
a! 

Recall that the futures prices in the energy market are quoted on a monthly 

basis. Hence it is necessary to interpolate missing values of f (t). This is easily done 

using a cubic spline. Next, finite difference formulas similar to the ones mentioned in 

Subsection (4.1.1) yield f ( t )  2at al l  discrete times ti = i At for i = 0, ..., n. Finally7 the 

required derivative in the exponential mean reversion level a ( t )  is 

Recall that an attractive feature of the trinomial tree was the fact that the drift 

of the median node at time i At landed precisely on the median node of the next branch 

2Whenever derivatives appear in any formula in this thesis, they are understood to be obtained by 

finite difference methods, for numerical irllplementation purposes. 
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at time ( 2  + 1)At. This attribute is desirable kom an algorithmic point of view and we 

desire to capture it here. To this end, we denote the median nodes by Gi = and 

their drifts by Ma. The median nodes are calculate by Equation (6.5) 

By Theorem (2.12) the mean and variance of R(t + At) - R(t) are approximately 

Mij =a(% - &+j AR )At and V = o * ~ t  

at node (2, j) in the trinomial tree for R, defined by Equation (7.3). 

The tree construction begins by selecting an initial value for &- Then Go = Ro 

and the median nodes are precisely connected by their drifts according to Equation 

(6.5). Then, the branching probabilities are calculated by Equation (6.7). 

This completely specifies the ordinary tree construction. Once the tree is ready, 

the spot price at node (i, j )  is given by the inverse transformation 

where the parameter 1 (t) has been calculated by Equation (7.4) so that the 

probabilities are risk neutral. Thus the tree can be used to evaluate options. We 

s- the construction process of the 1-factor model (3.2) for the sake of clariQc 

Algorithm 7.30 (I-Factor Model Ordinary Xkin0mia.l nPe) I .  Specify the 

pameters  a, a, T ,  and n and define the fituses prices f ( t )  for t E [0, TI. 
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2. Tmnsfon to a new variable R(t) that satisfies the stochastic d2fferentid 

equation (7.3). 

3. S e t A t = f  a n d A R = c d m .  

4- Calculate the unknown f indion of time Z(t) by solving the ordinary dzf- 

ferential equation (7-4). 

5. Pick a value for so. Then & = h($) and the median node at time 0 is 

A 

wo = & . Also, put jma(0) = jmh (0) = 0. 

6. Fori=O, ...,( n - 1 )  

(a) For j=j - ( i ) ,  ...:j-( 2 )  

Calculate the branching pm babilzties pi, Q y Equation (6.7). 

End For 

(b) Calculate ii,+l by Equation (6.5). 

(c) Calculate j-(i + 1) and j- (i + 1) by Equation (6.8). 

End For 

7. Calcdate sij by Equation (7.6). 

Next we consider the construction of the fast trinomial tree for the same random 

process (3.2). 
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7.1.3 Preliminary Dee 

We follow the construction of Section (6.3). The first phase is to construct a preliminary 

tree for a noise variable R by setting a(t) = 1 and choosing an initial value of & = 0. 

This is perfectly valid: we are in effect ignoring the determinktic part and concentrating 

on the stochastic part of the random process. The deterministic part is then easily 

injected back into the final tree by shifting the central nods of each branch to the 

proper level. The actual process assumed for the preliminary tree is therefore 

Recall that a stochastic differential equation is made up of a deterministic part 

and a stochastic part. The essences of these components are captured by the mean and 

variance of the probability distribution that is the solution of the stochastic differential 

equation. By forcing our trinomial tree to match the mean and variance of the solution 

we guarantee that our discrete scheme will converge to the continuous process. 

By Theorem (2.12) the mean and variance of g(t + bt) - g(t) are approximately 

at node (i, j) in the trinomial tree for a (7.7). Note that this is a linear approx- 

imation for the mean and variance. Figure (7.1) shows the preliminary and final trees 

for a mean reverting random variable. 
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R 4 u(t)=l 

& = O  + t 

R g = j  LR 

Preliminary Tree 

I 
t 

Final Tree 

Figure 7.1 : Mean Reverting Fast nee  Construction 
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Further, by rendering a (t) constant in the preliminary tree, we have ensured 

that the drift Mj depends only on j and not on i. Now the median node in the branch 

at time i At is assumed to be located at Ro = 0, and in general, gj = j AR in the 

preliminary tree. In other words, we suppose that the expected value of (t) mnishes. 

However, this is merely an approximation and by Claim (6.26) the deviation of w( t )  

from zero is negligible. We recall that this is a sufEcient condition the process must 

satisfy for this construction to work. 

7.1.4 Branching Probabilities 

As it happens, following [Hull & White 1994 (a)] only three kinds of brzulching pro- 

cesses need to be considered for the mean reverting models we consider. Branching 

process A will dominate in the interior of the tree while branching processes B and C 

designate the boundary of mean reversion and ensure that the process is not allowed to 

drift too far away &om the line of attraction. Figure (7.2) illustrates these alternatives. 

Our objective now is to construct a trinomial tree that mimics the behavior 

of the random process. This entails deciding which of the three alternative branching 

processes will apply at each node. Then the branching probabilities must be calculated. 

This is done by matching the mean and variance of the small change in R over the next 

time interval At. Together with the well known fact the probabilities must add up to 

one gives us a total of three equations in the three probabilities. 

The mean reversion of the random process dictates that at some point the drift 
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Figure 7.2: Alternative Branching Processes 

of R toward 0 will cause the branching process to shift inward. Fkom this time onward, 

the nodes in the tree will be forever trapped inside a band of mean reversion. Define 

j,, as the value of j where we switch from branching process A to branching process 

C and jmh as the value of j where we switch fkom branching process A to branching 

process B. 

Theorem 7.31 The maximum and minimum values ofj obtazned by a mean reverting 

process obeying (7.7) 
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am Men by Equation (7.8). 

Proof. We consider first the case when j > 0. In this case the drift is negative - the 

process is inevitably drawn back toward the line of attraction. Suppose we are at node 

( 2 ,  j). The switch kom branching process A to C occurs when the drift is closer to node 

(i + 1, j - 1) than (i + 1 7 j )  

Therefore 

Now assume that j c 0. Then the drift is positive and if we are at node (2, j) 

then the switch from branching process A to B occurs when the drift is closer to node 

(if 1, j + 1) than (i+ 1 , j )  

Thus 



The probabilities associated with the three possible branching processes are given 

by substituting the appropriate dues of h in (6.7). If we are at an interior node, h = j 

and branching process A is adopted with branching probabilities calculated by 

Similarly if we are at the lower bound of the band of mean reversion, h = j + 1 

and branching process B is adopted with branching probabilities calculated by 

Finally if we are at the upper bound of the band of mean reversion, h = j - 1 

and branching process C is adopted with branching probabilities calculated by 

7 Mi' 

Recall that the probabilities depend only on j. Hence the probabilities at ev- 

ery node in the tree are specified by calculating a total of (j,,  - jmi, + 1) sets of 



CHAPTER 7. MEANREVERTTNG MODELS 

probabilities! 

This completes the construction of the prdiminary tree. It merely remains to 

choose the right values for l(t). Then the preliminaxy tree will be shifted onto the final 

tree. 

7Jm5 Final n e e  

The final tree is formed by shifting the median nodes of the preliminary tree onto the 

expected values of the random process R(t)  . To this end the nodes in the branch at 

time i At are displaced by an amount wi equal to the expected value of R(t) at time 

ti. The position of node (2, j) in the final tree is therefore 

Therefore, the spot price at node (i, j )  is given by the inverse transformation 

We assumed that w (t) was (effectively) zero for the purpose of constructing the 

preliminary R-tree, but this is not (generally) true. In fact it is the solution of an 

ordinary integral equation involving the &own function of time i(t). The expected 
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value of s at time i At is given by 

where Pij is the probability of reaching node (2, j). These cumulative probabil- 

ities are easily calculated as follows, provided we know the branching probability at 

each node in the tree. 

for i = 1, ..., n and j = max(-i, j-), ..., min (j,,, i) where q[(i - 1 , n )  4 (2: j ) ]  

is the probability of branching fiom node (i - 1, m) to node ( 2 ,  j). It remains to compute 

Gi by an equation given in the next subsection. 

7.1.6 Matching Futures Prices 

Let f (t) be the futures price of the energy commodity in the market. Then the expected 

future spot price is related to the futures price by Equation (5.3) 

The unknown parameter ai is found by setting the futures price equal to the 



CKAPTER 7. M E W  REVERTING MODELS 113 

expected future spot price in Equation (7.14) and solving 

This ends the comtruction of the fast trinomial tree for the 1-factor model (3.2), 

which we summarize next. 

Algorithm 7.32 (1-Factor Model Fast n-inomial nee)  1. Specif;J the pamm- 

eters a, a, T ,  and n and define the futures prices f ( t )  for t E [0, TI. 

2. l b n s f o m  to a new variable R ( t )  that satisfies the stochastic difle~entzal 

equation (7- 3). 

3. Set A t  = n and AR = o d a .  

4- Calculate j,, and j,, by Equation (7.8). 

5. F ~ r j = j - ~ . - . , j ~ ~  

Calculate the bmnchzng probabilities p j by Equation (6- 7). 

End For 

6. Set Poo = 1. 

7. For i = 0, . . . y  (n - 1 )  

(a) Calculate Pij by Equation (7.15). 

(b) Calculate *i by Equation (7.16). 

End For 

8. Calculate sij by Equation (7.13). 
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7.2 %Factor (a) Model (Two Correlated Assets) 

It is often advantageous to model two correlated assets simultaneously. This enables 

one to evaluate such exotic financial derivatives as portfolios and spread options. We 

wiU do this by constructing separate trinomial trees for each of the two assets. Then 

we will combine them into a single 3D tree. The desired correlation will be induced by 

a neat mathematical trick In this way, the evolution of both random processes can be 

modelled at once. 

Consider a pair of correlated 1-factor energy prices satisfying the 2-factor (a) 

model 

ds = n [ I  ( t)  - s] dt + os dz 

dv = ,B[m(t) - v ] d t + r u  dy 

Let the correlation between the two related assets be written as p = corr(z, y). 

Then we have a decoupled system of stochastic differential equations and we follow the 

procedure outlined in Section (6.4). Again we start with an ordinary trinomial tree and 

then move to the fast one. 
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7.2.1 Construct Separate l kees  

We begin by doing log traasformations on the random processes to render their standard 

deviations constant. The substitution for the first asset is the same as before 

L(t) = ln[l (t)] S = h(s) 

while the substitution for the second asset is 

M ( t )  = ln[m(t)] V = h ( v )  

Similarly we introduce new random variables by the substitutions 

to facilitate tree construction. Then the system of stochastic differential equa- 

tions for R and U is 

where 
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We observe that the correlation between R and U is given by p as the Brownian 

motions z ( t )  and y( t )  of the stochastic differential equations for R and U are the same 

as those for S and V. 

The ordinary trees for R and U are comtructed according to the procedure 

described in Section (7.1). These trees are formed individually, as though the other 

random process in the system were not present. Let the nodes in R-tree be denoted 

by (i, j) as before and let the nodes in the U-tree be denoted by ( 2 ,  k). Note that the 

i index represents time for both assets. The length of a time intenml At is the same 

for both trees. The length of a small change in R is AR = ad- and the length of a 

small change in U is AU = ~Jmt. Furthermore we denote the branching probabilities 

(4 (4 (4 in the R-tree by pjy), and and those in the U-tree by q, , qik , and q, . 

Let the futures prices of s ( t )  and v ( t )  be respectively written as f ( t )  and g (t) . 

The &own functions of time 1 (t) and m (t)  are obtained by matching the futures 

prices f (t) and g (t) for each asset separately. This is done by solving the system of 

ordinary differential equations 
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7.2.2 Induce the Correht ion 

The complete 3D tree for R and U is created in precisely the same way as we did in 

Subsection (7.4.1). Each pair of nodes (i, j) and (i, k) give rise to a node (2, j, k) in the 

(R, U)-tree. Suppose that we are at node (i, j, k) . Then there are 9 possible nodes that 

can be branched into. These are obtained by combining all possible pairs of brmchbgs 

in the individual trinomial trees. By Theorem (6.29) it follows that for p > 0 the 

branching probability matrix is given by Equation (6.14) 

Puqd - E Puqm - 4~ Puqu + 5& 

pmqd - 4~ ~ m q m  + 8~ pmqu - 4~ 

pdqd + 5~ pdqm - 4e pdqu - E 

where E = 6 and for p < 0 we have the matrix (6.15) 

l PI where E = g. 

This provides us with an ordinary 3D tree that converges to the system (4.14). 

We are now in a position to evaluate spread options for the purpose of authenticating 

the approximate tree. This will be done in Subsections (8.1.2) and (8.2.2). 

Algorithm 7.33 (2-Factor (a) Model Ordinary Tkinomial nee) 1. Construct 

ordinary trinomial t m s  for s and v by Algorithm (7.30). 
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2- Combine the t7ees and induce the comlution p by Equation (6.14) or 

(6.15). 

7.2.3 Fast Trinomial Tkee 

The fast 3D tree follows precisely the same construction pattern as the ordinary one 

except that we build separate fast trinomial trees for each asset before combining them 

into a single tree. 

Algorithm 7.34 (%Factor (a) Model El& Thomial nee) 1. Construct fast 

trinomial trees for s and v by Algorithm (7.32). 

2. Combine the trees and induce the correlation p by Equation (6.14) or 

(6.1 5). 

7.3 ZFactor (b) Model (Single Asset with Stochas- 

tic Long Term Mean) 

We now move on to consider the 2-factor (b) model 

In the standard 2-factor (b) Pilipovic equation ,8 is a constant parameter. In 

order to more accurately capture economic trends, we allow P(t)  to be an unknown 
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function of time. The parameter P ( t )  will be chosen to make the model consistent with 

the futures prices observed in the market. This is nearly identical to our development 

of the 1-factor model in Section (7.1). However, there are a few subtle differences that 

must be addressed. Although it is possible for the Brownian motions r and y to be 

correlated, we assume that they are not, for the sake of convenience. 

7.3.1 Constant Standard Deviations 

The first step in our operation is a log t rdormat ion that renders the standard devi- 

ations in the system of stochastic differential equations const ant. 

By the Ito formula we have 

7.3.2 Decouple the Equations 

It is now desirable to eliminate the dependence of S on L. This can be done by 

introducing a new random variable 
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Then by the Higher Dimensional Ito Formula it follows that 

where zu is a new Brownian motion with the standard deviation of R implicitly 

defined by 

and B(t )  is some unknown function of time given by 

Observe that a bear combination of two Brownian motions is also a Brownian 

motion. Indeed by the Higher Dimensional Ito formula we have 

Even though S and L are uncorrelated by our assumption, the random processes 

R and L are positively correlated by an amount 

7.3.3 Construct Separate Tkees 

The construction of an ordinary trinomial tree for R proceeds precisely as in Section 

(7.1). We let the nodes in the R-tree be denoted by ( 2 ,  j )  , denote the length of a small 
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change in R by AR = and write the branching probabilities in the R-tree 

by $), P ~ ~ ) ,  and The median nodes are denoted by tii and are calculated by 

Equation (6.5). It is interesting to note that the median nodes are not equal to the 

expected values wi (except at time 0 when 4 = w a )  However, they are approximately 

by our Claim (6.26). 

The random process for L is a geometric Brownian motion and the trinomial tree 

is easy to construct. In fact we already did the d y s i s  of 1 (t) in Section (6.2). Nodes 

in the Gtree will be written as (i, k) and a small change in L is given by AL = r d m .  

The probabilities in the L-tree are given by Equation (6.10) 

and the position of node (2, k) is Qi + k AL where 

7.3.4 Induce the Correlation 

This done the preliminary trees for R and L are combined according the procedure 

explained in Subsection (6.4.1) to form a 3D (R, L)-tree. Since R and L are positively 
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correlated the branching probabiiity matrix is given by Equation (6.14) 

P u q d - E  p u h - k  pu& +5€ 

P m q d - 4 E  Prnqmf 8~ pmqu-& 

p d q d + 5 ~  % q m - 4 ~  p d q t ~ - E  

where E = $. 

7.3.5 Matching F'utures Prices 

Once again the unknown function of time /3 (t) can be theoretically calculated by solving 

the ordinary system of differential equations (3.7) 

with the expected future spot price p( t )  replaced by the futures price f ( t )  . This 

provides a satisfactory method of calculating the drift parameter ,8 (t). The solution is 

i ( t )  + + 
P(t )  = 

f ( t )  + @ 
The spot price at node (2 ,  j, k) is recovered by the inverse transformation 

and the tree can be used to evaluate options. 

Remember that the remaining parameters a, a, and s are estimated by historical 

data using the procedure explained in Section (4.3). 
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Algorithm 7.35 (2F'actor (b) Model Ordinary Dinomid Dee) 1. Specih 

the parameters cr, a, T ,  and n and define the fiturns prices f ( t )  for t E [O, TI. 

2. ~ n s f o m  to the &coupled system (7.18). 

3. Set At = $, AR = v d n t ,  and AL = rdmt. 

4. Colcvlate the unknown jbnction of time P( t )  by solving the ordinary dif- 

feratial equation (7.20). 

5. Pick a value for so and set b = so + s- Then & = h($) and 

Lo = ln(lo) and the median nodes in the trees for R and L at time 0 am Go = & and 

(a) For j = jmh ( 2 )  , - - . , jmu ( 2 )  

() Calculate the bmnching probabilities pij by Equation (6.7). 

(ii) Cdalcvte the matrix Gij by Equation (6.14) 

End For 

) Calculate Zcl and lPi+t by Equations (6.5) and (7.19). 

(c) Calculate jma (i + 1) and j-(i + 1)  by Equation (6.8). 

End For 

7. Calculate sijk by Equation (7.21). 
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7.3.6 Fast Tkinomial n e e  

The fast trinomial trees for R and L are constructed using the procedure in Section 

(6.3). Furthermore, the correlation is induced by adjusting the branching probability 

matrix according to Equation (6.14). Then the nodes in the preliminary trees for R 

and L are found at 

% = j A R a n d L i k = k A L  

while the shifted nodes in the final trees for R and L are located at 

It merely remains now to (implicitly) select the parameter f l  ( t )  so that the 

expected value of s (t) matches the futures prices f (t) . The spot price at node ( 2 ,  j, k) 

is recovered by the inverse transformation 

- e+i+k U - ( w i i - j  AR) 
S i j k  - 

- - eQi+k AL-j AR 

- 
where @ ( t )  = S(t) , @ ( t )  = Z(t) and w ( t )  = x( t ) .  

Observe that we do not directly solve for P (t) . Rather we find the parameter 

bi = $ J ~  - wi which is a function of 0 ( t ) .  It is not necessary to solve Oi as a function 

of 0 ( t )  in order to match the futures prices f (t) . This is indeed fortunate and we do 

not concern ourselves with the analytic form of Qi here. 
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The expected value of s at time i At is given by 

i d )  i 

'Pi = C C Pijksijis 
j=max(i,jh,) k=-i 

min(i,jmu) i 

where Pijk is the probabiliw of reaching node (i, j, k) . These cumulative proba- 

bilities are easily calculated provided we know the branching probability at each node 

in the tree. 

for i = 1, ..., n, j = mat(-iyj-), ..., mi. (jma, i), and k = -it ..., i where q[(i - 

1 , )  (i,j, k)] is the probability of braaching &om node (i - l,m,n) to node 

Let f (t) be the futures price of the energy commodity in the market. Then the 

expected future spot price is related to the futures price by Equation (5.3) 

The unknown parameter @i is found by setting the risk discounted futures price 

equal to the expected future spot price in Equation (7.23) and solving 



CZiUPTER 7. MEAN REVERTRVG MODELS 126 

The following algorithm summarizes the construction of the fast trinomial tree 

in pseudocode style. 

Algorithm 7.36 (2-Factor (b) Model Fast Dinomial Dee) 1. Specify the pa- 

mmeters a, n, T ,  and n and defirae the fntures pn'ces f ( t )  for t € [0, TI. 

2. Thrqform to the decoupled system (7.18). 

3. Set A t  = $, AR = vd-, and AL = ~ d m t .  

6. F ~ r j = j - , . . . ~ j ~ ~ ~  

(a) Calculate the bmnching pmbabilzties p j by  Equation (6.7). 

(b) Calcdate the rnatriz Gj by Equation (6.14) 

End For 

7. Set Pm = 1. 

8. For z = O7 ..., (n - 1) 

(a) Calculate ejk by Equation (7.24). 

(6) Calculate 8i by Equation (7.25). 

End For 

8. Caicuiate s i j k  by Equation (7.22). 



CHAPTER 8 

ENERGY OPTIONS 

'Ikaditionally, there has been a market for options on some energy futures con- 

tracts on NYMEX. There is, however, a sizable over-the-counter market for options on 

actual spot prices, utilized by large energy fkms and users. We propose and implement 

trinomial methodologies for the valuation of these options, based on mean reverting 

price processes. n-inomial trees provide an efficient and accurate way of pricing these 

options. We will examine a subset of derivative securities known colloquially as -Amer- 

ican and European style options. There are two basic kinds of these options: call and 

put. 

Definition 8.37 A call (putJ option gives the holder the right to buy (sell) an asset 

by a certain date T for a f ied  price K .  The price K in the conttact is known as the 

strike price and the date T is known as the ezpimtion date or maturity. Amer- 

ican options can be exercised at any time up to maturity. Eumpean options can be 

exercised only on the expiration date itself. The values of E u p e a n  call and put options 

will be denoted by c(t ,  T )  and p ( t , T )  while the values of American call and put options 

will be matten as C(t, T) and P(t ,  T )  where t is the start time of the contract. We 

often write the option price as a finction of a single variable s: in this ease we shall 

always assume that t = 0 (or t = to) and T = s.  

We now describe a practical scenario for evaluating options. In each case, the 

127 
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Constant Parameters Unknown Function 

Figure 8.1: Option Evaluation Procedure 

parameters a, a, and (possibly) T are estimated using the year of historical data b e -  

diately preceding the start date of the contract. As usual, the uakaown function of time 

l ( t )  or P ( t )  is selected so that the geometry of the tree is consistent with the futures 

prices over the period of the option. Figure (8.1) shows a picture of this procedure. 

Also, the duration is taken to be T = 3 months and the strike price is K = 0 . 7 5 ~ ~  

where so is the spot price on the start date. Remember that futures prices are only 

available for each monthly contract and missing values are interpolated using a cubic 

spline. Last but not least, we assume that the risk free interest rate is r = 3.5% for the 

sake of simplicity. We shall adopt this procedure for the evaluation of all options for 

the remainder of this thesis. 
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8.1 European Option Evaluation 

We suppose that the asset underlying the options is an energy spot price s ( t ) .  Consider 

a European call option on a single unit of energy. If the energy spot price s(T) exceeds 

the strike price K at maturity, the trader can exercise the option by purchasing the 

energy at the strike price and immediately selling it on the market, realizing a profit 

of s(T) - K. On the other hand, if s(T) < K then the option will expire unused. 

Evidently the payoff of a European call realized at maturiv is [s(T) - K]+. Similarly 

the payoff of a European put option at maturiv is [K - s(T)]+. 

In a risk neutral world, the payoff is discounted to the present by the risk free 

interest rate r (this is the time value of money). Theretore 

where the expectation is taken under a risk neutral probability distribution. For 

a complete discussion of risk neutral option evaluation, refer to [Hull 19991. 

8.1.1 1-actor Model 

Let s ( t )  be a spot price satisfying the 1-factor generalized Pilipovic equation (3.2). 

Suppose that we have constructed a risk neutral trinomial tree for s ( t )  by matching 

the futures prices f (t) over the duration of the contract [0, TI. As usual, we denote the 
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probability of reaching node (2, j) by F&. Then 

j= j- 

Throughout this entire section, we display equations only for fast trees. The 

corresponding equations for ordinary trees are h o s t  identical except that the upper 

and lower bounds j,i,, j,,, k i n ,  and &, depend on 2. 

We now compare the European call option prices revealed by ordinary and fast 

trinomial trees. We calculate typical natural gas, crude oil, a ~ d  electricity options 

from 1997, 1998, and 1999. Tables (8. I), (8.2), and (8.3) show that both methods are 

converging to the same d u e s  for these typical options. Also, we display the errors for 

reference. The actual option price is approximated by executing the ordinary and fast 

trinomial trees for a very large number of time steps (n = 1600). These (pseudo) exact 

d u e s  are shown in brackets beside the words Fast and Ordinary in the tables below. 

Furthermore, the computation times are given in seconds. These times are the result 

of running the programs on a PC that is capable of executing 1 000 000 floating point 

operations (flops) per second. Also, the ratios between their CPU times are displayed 

as a percentage so that we can see how much faster the fast trinomial trees really are. 

It would appear that on average the fast trinomial trees require only (approxi- 

mately) 45% the number of flops that the ordinary ones do. Furthermore, the fast trees 

seem to be converging at about the same rate in that they achieve the same errors as 
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Table 8.1: 1-F European Call Natural Gas (January 1, 1997) 
C I I I I 
I I Fast (0.1686) I Ordinary (0.1687) 1 CPU Ratio I 

I Parameters a = 0.167 and 0 = 0.0446. Strike K = 2.17. 

n 

100 

200 

400 

800 

I Spot so = 2.89. Futures f (1) = 2.89, f(2) = 2.62, and f (3) = 2.35. 

the ordinary trees for similar values of n. This means that the fast trinomial trees are 

doubly effective in the 1-factor case! 

Since both types of trees use Euler methods, we expect their errors E to be 

O(At) ,  or equivalently O(!), as At = $. In other words, we suppose that the error 

is a linear function of At. It is easy to see this linear relationship by plotting log, (E) 

as a function of log2(n). Why? Well, because if E = ?At for some number 7 then 

log2 (E) = log, (yT) - log2 (n). For the sake of conciseness, we only consider the crude 

oil (May 1, 1998) data. Figure (8.2) .shows the results. 

Now consider the run times tR of our programs. Evidently the space and time 

requirements of the 1-factor model are proportional to (jma-.j- + 1)n where the 

(%) 

45.2 

45.2 

46.0 

44.7 

Value 

0.1688 

0.1702 

0.1686 

0.1687 

Error 

0.0002 

0.0017 

0.0000 

0.0001 

T i e  ( s )  

0.06 

0.21 

0.86 

4.08 

Time (s) 

0.12 

0.47 

1.87 

9.16 

I 

Vdue 

0.1691 

0.1704 

0.1688 

0.1689 

Error 

0.0003 

0.0017 

0.0000 

0.0001 
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Table 8.2: 1-F European CaII Crude Oil (May 1, 1998) 
I I I I 

I Parameters a = 0.154 and a = 0.0209. Strike K = 12.10. I 

n 

100 

200 

400 

800 

I Spot so = 16.13. Futures f (1) = 16.13, f (2) = 16.09, and f (3) = 17.05. 

upper and lower bounds are given by Equation (7.8) 

Recall that AR = ad=. This fact together with the lineas approximation 

In(1 + x) - x reveals that j,, - & and j- -- -A 2 ~ 2 ~  - Therefore we predict that our 

Fast (5.790) 

programs run in time 0(n2). To view this relationship, we plot as  a function 

of log2(n). The result should be a straight line of slope 2. Figure (8.3) displays these 

lines for the crude oil (May 1, 1998) data The picture clearly shows that both types 

Value 

5.712 

5.753 

5.774 

5.784 

Ordinary (5.789) CPU Ratio 

of trees do indeed run in time 0(n2).  Of course, the fast tree has a smaller constant of 

proportionality than its ordinary counterpart. 

(%I 

45.2 

46.0 

46.5 

46.7 

Error 

0.078 

0.037 

0.016 

0.005 

Value 

5.707 

5.750 

5.773 

5.784 

We now demonstrate the seasonal nature of option prices under the 1-factor 

Time (s) 

0.06 

0.21 

0.83 

3.23 

Error 

0.083 

0.039 

0.017 

0.006 

Time (s) 

0.12 

0.46 

1.78 

7.05 
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Figure 8.2: 1-Factor Model European C d  Option Errors 

1-hcaor Europsan Call Run Times 

3t 

Figure 8.3: 1-Factor Model European Call Option Run Times 



CHAPTER 8. ENERGY OPTTONS 

Table 8.3: 1-F European Call Electricity (September 1, 1999) 
r I I t 

I Fast (7.894) I Ordinary (7.893) CPU Ratio I 
n 

100 

200 

400 

800 

I Parameters a = 0.142 and a = 0.0456. Strike K = 24.83. I 

I Spot so = 33.10. hrtures f (1) = 33.10, f (2) = 29.97, and f (3) = 31.35. / 
model. This is done by calculating the option d u e s  at  the beginning of each month 

in a sample year and plotting them. Although we could evaluate options on every 

day throughout the year, this is unnecessarily time consuming. Instead, we interpolate 

between the monthly values using a cubic spline. This shows the seasonal shape of 

the curve. Naturally we use ordinary and fast trinomial trees in these calculations for 

comparison. Once again we consider natural gas, crude oil, and electricity options fiom 

1997, 1998, and 1999. To save space, we show only the crude oil 1998 option prices in 

Figures (8.4). The remaining pictures have been relegated to Appendix C. 

The pictures clearly show the need for a time varying parameter model for the 

risk neutral evaluation of energy options. It is also interesting to note that ordinary and 

fast trees calculate option prices that are so close to one another that the difference is 

Time (m:s) 

0.14 

0.55 

2.31 

30.7 

Value 

7.649 

7.778 

7.844 

7.877 

Error 

0.245 

0.117 

0.050 

0.017 

Error 

0.267 

0.127 

0.055 

0.019 

Time (m:s) 

0.06 

0.25 

1.03 

7.76 

Value 

7.625 

7.765 

7.837 

7.874 
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Cnda Oil 1998 1 - F e  EUr0p.m CIlls 
7 

2 4 6 8 10 12 
T i m  (Months) 

Figure 8.4: Crude Oil 1998 1-Factor Model European Call Options 

not noticeable by graphing. This is strong supporting evidence for the Fast Thinomial 

nee Conjecture in the case of the 1-factor model. 

8.1.2 %Factor (a) Model (2 Correlated Assets) 

We continue our analysis by evaluating European spread options. If our assets are 

denoted by s ( t )  and u(t )  and u( t )  > s ( t )  then the payoff function of a European c d  

option at maturiiy is [v(T) - s(T) - K]+. The European option evaluation equations 

are similar to (8.2) and we will not bother to derive them again although we write them 



CliDWTER 8. ENERGY OPTTONS 

down for reference. 

We proceed to evaluate spread options among all possible pairs of natural gas, 

crude oil, and electricity. Their correlations - like the rest of the parameters - are 

calculated using the year of historical data immediately prior to the option period. 

This is a typical scheme used by financial modelers. The actual option values are 

calculated using n = 400 and are shown in brackets for the ordinary and fast trees. 

Table (8.4), (8.5), and (8.6) display the results. 

I Strike K = 1.50. Spots so = 12.05 and uo = 23.50. Futures f (1) = 12.05, 

Table 8.4: 2-F (a) European Spread Oil-Electricity (January 1, 1999) 

I f (2) = 12.09, f (3) = 12.40, g(1) = 23.50, g(2)  = 21-50, and g(3) = 20.00- 

n 

1 

Ordinary (0.3614) CPU Ratio Fast (0.3665) 

Time (m:s) Value Error Time (m:s) Value Error 
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Table 8.5: 2-F (a) European Spread Electricity-Gas (May 1, 1997) 

I Parameters a = 0.176, P = 0.140, a = 0.0410, r = 0.0444, and p = 0.388. 

Fast (9.945) 

n 

100 

141 

200 

283 

/ Strike K = 13-02. Spots so = 2.24 and uo = 19.60. Futures f (1) = 2.24, 1 

Ordinary (9.951) CPU Ratio 

Figure (8.5) shows the linear convergence rates for the electricity and natural 

gas (May 1, 1997) data. 

Evidently the space and time requirements of the 2-factor (a) model are p re  

portional to (j,,-.j- + l)(k, - .& + 1)n. By an analysis similar to the one 

we did in Subsection (8.1. I), this indicates that the computer programs should run in 

time 0(n3) .  We can view this relationship by plotting log2(tR) as a function of log2(n). 

The result should be a straight line of slope 3. Figure (8.6) displays these lines for the 

electricity and natural gas (May 1, 1997) data- 

Figure (8.7) shows the seasonal shape of the option prices for the correlated 

pair electricity and natural gas in the year 1997. The corresponding pictures for the 

(w) 
57.7 

65.5 

62.7 

61.3 

Value 

10.02 

9.990 

9.970 

9.955 

Error 

0.072 

0.045 

0.025 

0.010 

Error 

0.090 

0.056 

0.031 

0-013 

Time (m:s) 

0:03 

0:07 

0:20 

0:54 

Time (m:s) 

0:05 

0:ll 

0:31 

1:27 

Value 

10.04 

10.01 

9.982 

9.964 
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Figure 8.5: 2-Factor (a) Model European Call Errors 

2-Factor (a) Empan Call Run Times 
7 

Figure 8.6: 2-Factor (a) Model European Call Option Run Times 
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Table 8.6: 2-F (a) European Spread Gasoil  (September 1, 1998) 
I I I I 

I Parameters a = 0.140, 4 = 0.1'75, o = 0.0311, r = 0.0257, and p = 0.065. 1 

I 
n 

100 

141 

200 

283 

I Strike K = 8.69. Spots so = 1.75 and u, = 13.34. Futures f (1) = 1.75, 1 

remaining energy pairs may be found in Appendix C. The pictures show that ordinary 

and fast trees reveal virtually identical option values in the 2-factor (a) model Again 

this supports the Fast Tkinomial nee Conjecture. 

8.1.3 %Factor (b) Model (Single Asset with Stochastic Long 

Fast (3.438) 

Term Mean) 

Ordinary (3.438) CPU Ratio 

The European option prices for the Zfactor (b) model are 

Time (m:s) 

0:03 

0:07 

0: 18 

0:49 

Value 

3.424 

3.430 

3.433 

3.436 

(%I 

66.3 

65-5 

62.5 

64.5 

Value 

3.425 

3.430 

3.433 

3.436 

Error 

0.013 

0.008 

0.005 

0.002 

&or 

0.0013 

0.008 

0.004 

0.002 

Time (m:s) 

0:04 

0:ll 

0:29 

1:16 
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Figure 8.7: Electricity-Gas 1997 2-Factor (a) European Call Options 

We evaluate typical natural gas, crude oil, and electricity options fiom 1997, 

1998, and 1999. The actual option d u e s  are calculated using n = 200 and are shown 

in brackets for the ordinary and fast trees. The results are shown in Tables (8.7), (8.8), 

and (8.9). 

Figure (8.5) shows the linear convergence rates for the crude oil (May 1, 1998) 

data. 

Evidently the space and time requirements of the Zfactor (b) model are pr* 

portional to (jma--j& + 1)(2n + l)n. By an analysis similar to the one we did in 

Subsection (8.1. I), this indicates that the computer programs should run in time 0 (n3). 

We can view this relationship by plotting log2 (tR) as a function of log2 (n) . The result 
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Table 8.7: 2-F (b) European Call Natural Gas (January 1, 1997) 
1 I I i 
I 1 Fast (0.2988) I Ordinary (0.4010) CPU Ratio I 

I Parameters u = 0.167, o = 0.0445, and r = 0.0915. Strike K = 2.17. I 

I n 

I Spot so = 2.89. Futures f (I) = 2.89, f (2) = 2.62, and f (3) = 2.35. I 
should be a straight line of slope 3. Figure (8.9) displays these lines for the crude oil 

(May 1, 1998) data- 

Figure (8.7) shows the seasonal shape of the option prices for crude oil in the 

year 1998. The corresponding pictures for natural gas and electricity may be found in 

Appendix C. 

By looking at Figure (8.10), we perceive that ordinaq and fast trees clearly 

deviate from one another in the 2-factor (b) model. Although this would seem to 

discredit the Fast Tkinomial nee Conjecture, bear in mind that the relative complexity 

of the 2-factor (b) model - as it involves a spot price s ( t )  mean reverting to a ditfusion 

1 (t) - makes it more difficult to obtain perfect results. However, we maintain that the 

procedure is still satisfactory from a practical point of view. In an industrial application, 

' Value (%I Error Time (m:s) Time (m:s) Value Ekror 
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2-Flclor @) European Call Convsqence Rates 

m 

Figure 8.8: 2-Factor (b) Model European Call Errors 

2-Facmr @) European Wl Run Times 
6 1 

Figure 8.9: 2-Factor (b) Model European Call Optoin Run Times 
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Table 8 

I Fast (: 

n t-T Value Error 

-8: 2-F (b) European Call Crude Oil (May 1, 1999) 

-754) Ordinary (6.102) CPU Ratio 
I 
Time (m:s) V ' e  Error Time (m:s) (%I 

I Parameters a = 0.154, a = 0.0209, and r = 0.0176. Strike K = 12.10. I 
I Spot so = 16.13. Futures f (1) = 16.13, f (2) = 16.09, and f (3) = 17-05. 

the parameters a, 0, and T have errors associated with them given by Equation (4.27) 

Aa = 0.07 Aa = 0.003 AT = 0.015 

Furthermore, the highly volatile nature of the energy market renders extreme 

accuracy in option calculations redundant. Remember that the futures prices are in 

some sense the best predictors of the way spot prices will evolve. However, the futures 

prices - which determine the geometric shape of our trees - are still guesses, albeit good 

ones. Therefore the discrepancy between ordinary and fast trees is actually well within 

acceptable tolerance levels. Also, in the case of European option evaluation under the 

2-factor (b) model, we notice that fast trees run only slightly faster than ordinary trees1. 

ILook at the CPU ratios in Tables (8.7), (8.8), and (8.9). 
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Table 8.9: 2-F (b) European C d  Electricity (September 1, 1997) 
I I I I 

I 1 Fast (8.585) I Ordinary (11.543) CPU Ratio I 

I Parameters a = 0.142, a = 0.0456, and i = 0.0394. Strike K = 24.83. 

n 

50 

71 

100 

141 

--- I Spot so = 33.10. Futures f (1) = 33.10, f (2) = 29.97, and f (3) = 31.35. 

8.2 American Option Evaluation 

American style options are more complicated to evaluate than their European coun- 

terparts. However, they are much more popular in the market place, and so we now 

analyze the effectiveness of our trees in handling them. Throughout this entire section, 

we develop equations only for fast trees. The corresponding equations for ordinary trees 

are almost identical except that the branching probabilities p and transition probability 

matrix G depend on i as well as j, and the upper and lower bounds j-, jma, kmin, 

and &, depend on i .  

In this case, we suppose that the holder of the option is able to exercise the 

option at any of the times i At for i = 0, ..., n. That is, at each node, the option value 

is calculated to be the maximum of the profit realized by immediate exercise and the 

Value 

8.280 

8.395 

8.478 

8.540 

(%I 

96.7 

96.9 

96.8 

92.9 

Error 

0.306 

0.190 

0.108 

0.045 

Value 

11.157 

11.304 

11.409 

11.485 

Time (m:s) 

0:03 

0:09 

0:22 

1:Ol 

Error 

0.386 

0.240 

0.134 

0.058 

Time (rn:s) 

0:03 

0:09 

0:22 

1:06 
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CNds Oil 1998 2-hdor @) E m  W l s  
7 r 1 

t 

Figure 8.10: Crude Oil 1998 2-Factor (b) European Call Options 

expected payoff of holding onto the option. The present value of the option is then set 

to the price calculated at the root (0,O). 

8.2.1 1-Factor Model 

Evidently, if time T is reached, it is the traders last chance to exercise the option. Hence 

the value of an American call or put option at node (n, j) is (snj - K)+ or (K - snj)+ 

for j = , . , j We proceed backward through the tree for i = (n - I), . .. , 0 and 
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calculate the option value at node by the recursive formulas 

% = max[(sij - K)', e" At C p:m)fi+l,h,h~ 

ti) for j = max(i, j*J,. . . ,min(i, jmu) where the notation P?), P:), and p-, is un- 

derstood to indicate pu, pm, and pd at node ( 2 ,  j )  . Then the option prices are the values 

located at the root C(T) = Coo and P(T) = Pao. 

We evaluate typical natural gas, crude oil, and electricity options from 1997, 

1998, and 1999. The results are shown in Tables (8.10), (8. ll), and (8.12). 

Table 8.10: 1-F American Call Natural Gas (January 1, 1997) 
I 1 

Fast (0.9296) I Ordinary (0.9289) CPU &ti0 I 

I Parameters a = 0.167 and o = 0.0446. Strike K = 2.17. I 
I Spot so = 2.89. Futures f(1) = 2.89, f (2) = 2.62, and f (3) = 2.35- 

Value 

0.9380 

0.9326 

0.9312 

0.9300 

Figure (8.11) shows the convergence rates for the crude oil (May 1, 1997) data. 

Again we observe the linear relationship between the errors E and the lengths of a 

(%I 

52.0 

51.7 

52.4 

50.8 

Error 

0.0084 

0.0029 

0.00016 

0.0004 

Value 

0.9380 

0.9321 

0.9306 

0.993 

Time (s) 

0.10 

0.39 

1.59 

7.54 

Error 

0.0091 

0.0033 

0.0017 

0.0005 

Time (s) 

0.20 

0.76 

3.04 

14.8 
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Table 8.11: 1-F American C d  Crude Oil (May 1, 1998) 

I I Fast (5.825) 1 Ordinary (5.826) CPU Ratio 1 

I Parameters u = 0.154 and c = 0.0209. Strike K = 12.10. 

n 

100 

200 

400 

800 

I Spot 4 = 16.13. Futures f (I) = 16.13, f (2) = 16.09, and f (3) = 17.05- 1 
small interval of time At. 

Figure (8.12) shows the 0(n2) run times for the crude oil (May 1, 1997) data. 

Figure (8.13) shows the seasonal shape of the option prices for crude oil in the 

year 1998. The corresponding pictures for natural gas and electricity may be found in 

Appendix C. 

8.2.2 2-Factor (a) Model (2 Correlated Assets) 

The value of an American call or put option at node (n, j ,  k) is [(v& - snj) - K]+ or 

[K - (v* - snj ) ]+  for j = jmin, ..., jmu and k = k., ..., k,. The recursion equations 

Time (s) 

0.10 

0.39 

1.53 

6.10 

Value 

5.758 

5.793 

5.811 

5.820 

(%I &or 

0.067 

0.031 

0.014 

0.005 

Value 

5.757 

5.794 

5.812 

5.821 

Error Time (s) 

0.069 

0.033 

0.015 

0.005 

0.20 

0.75 

2.89 

11.5 

52.0 

52.6 

53.0 

53.2 
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Figure 8.11: l-Factor Model American Call Option Errors 

1 -Factor American Call Run Times 

Figure 8.12: l-Factor Model American Call Option Run Times 
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Table 8.12: l-F American Call Electricity (September 1, 1999) 
I I I I 

I Parameters a = 0.142 and a = 0.0456. Strike K = 24.83. I 

n 

100 

200 

400 

800 

I Spot so = 33.10. Futures f (1) = 33.10, f (2) = 29.97, and f (3) = 31.35. 

for the American option prices at node ( 2 ,  j, k) are 

for j = max(i , j~,) , . . . ,min(i , j-) and k = max(i, &) , . . . ,min(i, &,) and the 

Fast (0.9296) 

option prices are given by the values Cooo and Pooo at the root. 

Ordinary (0.9289) CPU Ratio 

We evaluate all possible pairs of energy options from 1997, 1998, and 1999. The 

Time (s) 

0.10 

0.39 

1.59 

7.54 

Value 

0.9380 

0.9326 

0.9312 

0.9300 

results are shown in Tables (8.13), (8.14), and (8.15). 

(%I 

52.0 

51.7 

52.4 

50.8 

Error 

0.0084 

0.0029 

0.0016 

0.0004 

Value 

0.9380 

0.9321 

0.9306 

0.9293 

Figure (8.14) shows the linear convergence rates for the electricity and natural 

gas (May 1, 1997) data- 

Error 

0.0091 

0-0033 

0.0017 

0.0005 

Figure (8.15) shows the 0(n3)  run times for the electricity and natural gas (May 

Time (s) 

0.20 

0.76 

3.04 

14.8 
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Crude Oil 1998 1-huor &nerian C.Us 
7 

3. 
%I 2 4 6 8 10 12 

Time (Months) 

Figure 8.13: Crude Oil 1998 1-Factor Model American Call Options 

2-Factor (a) American Call Convergence Fiaws 
-5 

I 

Figure 8.14: 2-Factor (a) Model American Call Errors 
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Table 8.13: 2-F (a) American Call Oil-Electricity (January 1, 1999) 
I I I t 

I I Fast (4.845) I Ordinary (5.301) CPU Ratio I 

I Parameters o = 0.170, P = 0.172, a = 0.0283, r = 0.0479, and p = -0.051. 1 

n 

100 

141 

200 

283 

- - - - - - - - - - - - I Strike K = 8.59. Spots so = 12.05 and va = 23.50. Futures f (I) = 12.05, 1 

1, 1997) data- 

Figure (8.16) shows the seasonal shape of the option prices for the correlated 

pair electricity and natural gas in the year 1997. The corresponding pictures for the 

remaining energy pairs may be found in Appendix C. 

8.2.3 ZFador (b) Model (Single Asset with Stochastic Long 

Term Mean) 

Value 

4.899 

4.878 

4.864 

4.853 

The d u e  of an American call or put option at node (n, j, k) is (snjk-K)+ or (K-snjk)+ 

for j = j- , - . , j- and k = -n, . . . , n. The recursion equations for the American option 

(%I 

66.0 

65.0 

64.2 

62.1 

Error 

0.054 

0.032 

0.018 

0.008 

Time (m:s)  

0:02 

0:05 

0: 12 

0:33 

Time (m:s) 

0:03 

0:07 

0: 19 

053 

Value 

5.344 

5.328 

5.316 

5.307 

Error 

0.043 

0.027 

0.015 

0.006 
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2-hcaPr (a) American Call Run T ' I  

'7 

Figure 8.15: 2-Factor (a) American Call Option Run Times 

. . EkacqGm 1997 BFactor (a) American Calls 
r I 

41 1 
0 2 4 6 8 10 12 

Time (Months) 

Figure 8.16: Electricity-Gas 1997 2-Factor (a) American Ca U Options 
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Table 8.14: 2-F (a) American Call Electricity-Gas (May 1, 1997) 
I I I I 
I 1 Fast (11.64) 

( n 1 Value 1 &or 1 Time (m:s) I Value 1 Error 

(13.40) CPU Ratio 

I Parameters u = 0.176, ,O = 0.140, 0 = 0.0410, T = 0.0444, and p = 0.388. 

I Strike K = 13.02. Spots s o  = 2.24 and vo = 19.60. Futures f (1) = 2.24, I 

prices at node (2, j, k) are 

for j = max(i, jme) ,..., min(i, j,,) and k = -i ,..., i and the option prices are 

given by the values CW and Pooo at the root. 

We evaluate typical natural gas, crude oil, and electricity options from 1997, 

1998, and 1999. The results are shown in Tables (8.16), (8.17), and (8.18). 

Figure (8.17) shows the linear convergence rates for the crude oil (May 1, 1998) 

data. 
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Table 8.15: 2-F' (a) American Call Gas-Oil (September 1, 1998) 
1 I 

I Parameters a = 0.140, 8 = 0.175, a = 0.0311, r = 0.0257, and p = 0.065. 

I Strike K = 8.69. Spots so = 1.75 and vo = 13.34. Futures f (I) = 1.75, 

Figure (8.18) shows the 0(n3)  run times for the crude oil (May 1, 1998) data. 

Figure (8.7) shows the seasonal shape of the option prices for crude oil in the 

year 1998. The corresponding pictures for natural gas and electricity may be found in 

Appendix C. 
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2-hcax @) A m r i m  -1 Cowergonce a t a s  

Figure 8.17: 2-Factor (b) Model American Call Errors 

BFaUor @) American Call Run Tms 

'7 

Figure 8.18: 2-Factor (b) Model American Call Option Run Times 
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Table 8.16: 2-F (b) American Call Natuml Gas (January 1, 1997) 
I I I I 

I Parameters a = 0.167, a = 0.0446, and r = 0.0315. Strike K = 2.17. 

n 

50 

71 

100 

141 

I Spot so = 2.89. Futures f(1) = 2-89. f(2) = 2-62, and f (3) = 2.35. 

1 Pmameters u = 0.154, a = 0.0209, and r = 0.0176. Strike. K = 12.10. 

Fast (0.9876) 

Table 8.17: 2-F (b) American Call Crude Oil (May 1, 1999) 

I spot SO = 16.13. Futures f (I) = 16.13, f (2) = 16.09, and f (3) = 17-05. 

ordinary (1.0425) CPU Ratio 

Value 

1.0036 

0.9962 

0.9941 

0-9895 

Fast (5.898) Ordinary (6.2 14) CPU Ratio 

(%I 

80.7 

72.3 

74.7 

76.2 

Error 

0.0159 

0.0086 

0.0065 

0.0018 

Value 

1.0594 

1.0523 

1.0476 

1.0424 

Time (m:s) 

0:04 

0:ll 

0:30 

1:20 

&or 

0.0169 

0.0098 

0.0051 

0.0001 

Time (m:s) 

0:05 

0: 16 

0:40 

' 1:45 
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Table 8.18: 2-F (b) American Call Electricity (September 1, 1997) 

I ~arameters a = 0.142, a = 0.0456, and T = 0.0394. Strike K = 24-83. I 

Fast (12.373) 

n 

50 

71 

100 

141 

I Spot SO = 33-10. Futures f (1) = 33.10, f (2) = 29.97, and f (3) = 31.35. 

Ordinary (14.168) CPU Ratio 

Crucle Oil 1998 2-Fador @) American Calls 
7 

41 I 
0 2 4 6 8 10 12 

Time (Months) 

Figure 8.19: Crude Oil 1998 2-Factor (b) American Call Options 

Time (m:s) 

0:05 

0: 14 

Value 

12.339 

12.369 

(%) 

80-7 

80.9 

80.7 

77.4 

Error 

0.0345 

0.0046 

Value 

14.171 

14.274 

14.130 

14.188 

12.455 

12.408 

Error 

0.0035 

0.1064 

Time (m:s) 

0:06 

0: 17 

0.0815 

0.0343 

0:35 

1:40 

0.0372 

0.0200 

0:44 

2:09 



CHAPTER 9 

CONCLUSION 

This thesis started with a review of the elements of stochastic calculus in Chap 

ter (2). We saw that random variables can be decomposed into a deterministic part 

and a stochastic part. The deterministic part is determined by the ordinary part of the 

differential equation while the stochastic part is the result of a Brownian motion. The 

deterministic part is responsible for the mean of a random process and the stochastic 

part reveals the standard deviation. Although this is a simple structure, stochastic dif- 

ferential equations can be used to model a wide range of natural phenomena, including 

the unpredictable fluctuations of energy spot prices. 

We then defined the concept of mean reversion in Chapter (3) and explained 

why it was a suitable model for captwing the inherent seasonality of energy prices. 

We introduced the Pilipovic equations and generalized them to suit our own purposes 

by allowing the seasonal parameter to be an unknown function of time. We went on 

to explain how choosing this parameter to match futures prices has the desired effect 

of rendering the probabilities risk neutral; that is, all investment opportunities in the 

energy market, have no net present value. In this thesis, we considered three versions 

of the generalized Pilipovic equation: 

(1) 1-Factor Model 

(2) 2-Factor (a) Model (Two Correlated Assets) 

158 
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(3) 2-Factor (b) Model (Single Asset with Stochastic Long Term Mean) 

In Chapter (4), we developed reliable methods for estimating the parameters 

in the Pilipovic equations. We applied these methods to natural gas, crude oil, and 

electricity data from the period 1997-1999. Also, we demonstrated the correctness of 

our routines by simulating random sample paths with known sets of parameters and 

then using our programs to recover them. In all cases, the sample means were close 

to the original parameter dues  in that they were within tolerance levels established 

by examining the sample standard deviations. Of particular interest was the successful 

recovery of the volatility of the long term mean - an unobsexvable stochastic variable! 

The fundamental relationship of futures prices and expected future spot prices 

was stated and proved in Chapter (5). We verified by statistical analysis that the 

systematic risk in the energy markets under consideration is small enough to be ignored. 

This allowed us to identify futures prices and expected future spot prices for the purpose 

of opt ion evaluation. 

In Chapter (6) we derived numerical methods for constructing what we have 

termed ordinary and fast trinomial trees. The fast tree splits a trinomial tree into a 

preliminary tree that represents the stochastic part of the random process, and shifts it 

branch by branch onto a final tree according to the flow of the deterministic part. This 

is done so that the median nodes of all the branches coincide with the corresponding 

futures prices. The fast trees tend to be more elegant in form and function. That is, 

they are easier to implement and the resulting programs run faster. 
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We set the stage for energy derivatives in Chapter (7) by applying our numerical 

methods to the mean reverting models. We wrote down concise algorithms of the 

implementations for the Pilipovic variations for both ordinary and fast trees. 

In Chapter (8) we did a thorough numerical analysis of the ability of our p r e  

grams to evaluate European and American style call options. We focused our attention 

on three aspects of performance: 

(1) Consistency: Do ordinary and fast trees give the same results? 

Table (9.1) answers this question. 

Table 9.1: Ordinary and Fast n e e  Option Price Accuracy 
I I I I 

i 
I-Factor 

I 

I 2-Factor (b) / No / No 1 

European 

2-Factor (a) 
= 

In the 1-Factor model, European and American options calculated by ordinary 

American 
I 

Yes 

and fast trees were virtually identical, giving strong supporting evidence to the Fast 

Yes 

Yes 

Tkinomial nee  Conjecture. The 2-factor (a) model produced similar European option 

No 

prices while American option values differed significantly. In the case of the 2-factor 

r 

(b) model, the ordinary trees revealed option prices that were consistently higher than 

those for fast trees. However, in all cases the option prices calculated by fast trees were 

within acceptable tolerance levels. So although ordinary and fast trees do not agree 
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in aU cases, the fast trees can be safely used for the purpose of evaluating derivative 

securities under all three of the models under study. 

(2) Convergence: Do ordinary and fast trees have similar convergence rates? 

We used an Euler method in the construction of our ordinary and fast trinomial 

trees. Therefore we expect their errors to be a linear functions of the length of a 

small time interval At. This linear relationship was verified numericallyY Furthermore, 

ordinary and fast trees were demonstrated to have the same rates of convergence in 

that similar errors were revealed for both types of trees for equal numbers of time steps 

n. 

(3) Speed: Are fast trees computationally faster than ordinary ones? 

The CPU time ratios between fast and o r d i n q  trees are displayed as percent- 

ages in Table (9.2). 

Table 9.2: Ordinary and Fast Dee CPU Time Ratios 
I I 1 I European I American I 

%Factor (b) 1 95 1 80 1 
2-Factor (a) 

In all cases, the f ~ t  trees were indeed faster than ordinary ones. The outcome 

was most dramatic in the I-factor model, where the fast trees were twice as fast as their 

slow counterparts! The 2-factor (a) model showed a s i w c a n t  improvement for fast 

65 65 
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trees, while the 2-factor (b) model sped increase for fast trees was barely satisfactory. 
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APPENDIX A. 

PARAMETER ESTIMATION 

Here are some more pictures of parameter estimation of the 2-factor (b) model 

using historical data. Note that although the drift P(t) of the long term mean is actually 

an unknown function of time, we display a single number 0 (obtained by taking the 

average of P( t )  over the year) in the diagrams that represents the yearly trend in the 

energy market. Also, bear in mind that this P (t ) is merely a side effect of the calculation 

of the parameters a, o, and T.  We do not use this P( t )  for modeling purposes, and 

include it here purely for interests sake. The @(t) used in option evaluation is found by 

matching the futures prices and the expected future spot prices. Hence our model is 

forward looking in that it takes advantage of the beliefs of traders in the energy market. 
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CNde Oil 1997 Paramem Esinutkn 
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Figure A.. 1: Crude Oil 1997 Parameter Estimation 

Crude Oil 1998 Parameter Estimation 

50 100 Time (Tmdiing Days) 150 200 250 

Figure A..2: Crude Oil 1998 Parameter Estimation 



CHAPTER A.. P . U T E R  ESTIMATION 

Crude Oil 1999 Pamsdsr Esthmtion 

I 

1 do I 
50 100 150 200 250 

Time CTmding Days) 

Figure A..3: Crude Oil 1999 Parameter Estimation 

Bemi&y 1997 Parameter Estimation 

I 
50 100 150 200 250 

Time (Trading Days) 

Figure A. -4: Electricity 1997 Pa,r meter Estimation 
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50 100 150 200 250 
Time (Trading Days) 

Figure A.. 5: Electricity 1998 Parameter Estimation 

Oectriciry 1999 Parameter Estimation 
BSr I 

50 100 150 200 250 
Tme (Tmdii Days) 

Figure A. .6: Electricity 1999 Parameter Estimation 



APPENDIX B. 

FUTURES PRICES 

Here are some more pictures of futures prices and realized spot prices for natural 

gas, crude oil, and electricity. Remember that in Section (5.3) we did a statistical 

analysis that revealed no evidence to deny the simple hypothesis that futures prices 

are good estimators of expected future spot prices. Figures (B.. 1)-(B. -6) illustrate this 

fundament a1 relationship. 
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1. 
10 20 30 00 50 60 70 

T i m  (Trading Days) 

Figure B..1: September 1, 1998 Natural Gas Futures 

May 1.1999 Nalural Gas Futures 

22 

1 
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Figure B..2: May 1, 1999 Natural Gas Futures 
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Much 1.1998 Crude Oil Fuhws 

I 1 
10 20 30 40 50 80 70 

Tim (Trading Days) 

Figure B..3: March 1, 1998 Crude Oil Futures 

July 1.1998 Crude Oil Futures 
16. I 5 

I 

Figure B. .4: July 1, 1998 Crude Oil Futures 
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Figure R.5: November 1, 1997 Electricity Futures 

1 I 
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Figure B-6: July 1, 1998 Electricity Fbtures 



APPENDIX C. 

OPTION VALUES 

Figures (C.. 1)-(C.. 12) show the seasonal shapes of option prices for natural gas, 

crude oil, and electricity over the period 1997-1999 under all three of the models under 

consideration. Feel fiee to compare the option prices revealed by the I-factor and 2- 

factor (b) models for corresponding data sets. These should be similar since the model 

we select for the energy price process should not greatly &ect the option values. 
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Figure C..l: Natural Gas 1997 l-Factor Model European Call Options 

Natural Gas 1997 1 -factor Ameriern Calls 

0. 
2 4 T i m  6 (Months) 8 10 12 

Figure C.2: Natural Gas 1-Factor Model American Call Options (1997) 
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Figure C. -3: Electricity 1999 1-Factor Model European Call Options 

I 
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Figure C..4: Electricity 1999 1-Factor Model American Call Options 
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Figure C.. 5: Oil-Electricity 1999 2-Factor (a) Model European Call Options 

OiCE&trWy 1999 2-Factor (a) American Cans 

Figure C. -6: Oil-Electricity 1999 2-Factor (a) American Call Options 



CHAPTER C.. OPTTON VALUES 

Gu-On 1 998 2-hcbr (a) Empan Calls 

Figure C.3: Gas-Oil 1998 2-Factor (a) Model European Call Options 

Gas-Oil 1998 2-Fa~or (a) American Calls 
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Figure C..8: Gasoil 1998 2-Factor (a) American Call Options 
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Figure C.9: Natural Gas 1997 2-Factor (b) European Call Options 
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Natural Gas 1997 Pfactor (b) American Calls 
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Figure C.. 10: Natural Gas 1997 2-Factor (b) American Call Options 
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Figure C..11: Electricity 1999 2-Factor (b) European Call Options 

oscaicity 1999 2-Factor @) American Calls 
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Figure C..12: Electricity 1999 2-Factor (b) American Call Options 




