BN H DADAHAHRY vRARDN COLLINRT'H TDMA/R

e dawese Wy aqd bey

fvie ot the wost dmpottant data bhame managemeapd b vin o
Pl murbul baday nee IUM s DATARABE2 and Callinet ol patal bon'n
FRMBE/ A b be Wtntory helpn to put these two Aavabelia T jebmped
Llve

I thee 1ta20m two typea of data bame mynten A v bead oo
metew Ahwne wnge hlerarehleal and CODABYL network nmenlom GHBATYE
Hysbamn v banod on tecommandal Tona publ Eahed by tliadar The
virbantary boody thar o tpinated COROL,

Mo far the mont common hiararchlienl mynteam v PRH 0 T
wid Uhe et ommonn CODAYYL aystam was Culliner ta YOMe whba e dTate
avolvead bgba LM /r e g that parlod 11 was cammon b ber b
CORAHYT wynblomen un network nystoma, to dint tngalah Vliem b
Itermer bl ayntomn

e bevm notwor ke o LD applion to CORAMYL igabim o
Phibw day Mondartunately, thin ean be very contuninp, Lor b1 aboen
mot ey driar tupatah CODASYL ayutems From relatlonal wesbamn e
DATAWARE S whloh hepnn Lo hecome Tmportant o the TRt Bl prob
Fam Co bt e lat tound wyntemn are Fandamentally nlao i bk oyn
leemn

Moo o linpon the bont way Lo compats DATARAR? TR B N L2 TE (e BT
Fo ot with what they hnve In common An we hnve donh It he oy
own e bondameotal by network syslema. What exnctly daio thin
monnt A batn honne I tundamentally a collectlion ol bbb bl are

pelatod MEEh 0 colat tonal datn bame the tHlen, An o ween Lo e,

2

are rather restricted in format - no variable length records and no
duplicate records are allowed. In more technical terms, the files
are of a restricted type known as relations. With a CODASYL system,
the files are not restricted to relations, and variable length
records are allowed, although they are not common; thus, in prac-
tice, most files in a CODASYL data base will often qualify as rela-
tions. Therefore, from a practical point of view, we can often ig-
nore the fact that relational data bases are made up of a more
restricted kind of file than CODASYL data bases.

We have said that the files of both types of data base
form a network. We mean here a network as opposed to a hierarchy.
If the files of a data base form a hierarchy, we have a pyramid
structure, with one file at the top called the root file. Call this
file A. At the next level down there could be files B and C. A will
be the parent of B and also the parent of C. This means that for
one A record there are many related B records, and also for one A
record many related C records. B is the child of A and so is C.
This means that for one B child record there is only one related
(parent) A record, and for one C child record only one parent A
record.

In the hierarchy, B will be the parent of some child files
at the next level down, perhaps P, Q and R; similarly C may be the
parent of child files W, and X, and so on.

In such a hierarchical structure, every file except the
root file has a parent, or equivalently, every file has zero or one
parent files. It was such structures that IBM's IMS was originally
designed to manage.

Very simply, if a structure of related files does not form

a hierarchy, it must form a network, for in a network, at least one

3

file will have more than one parent. Therefore any structure will
form a network, if it does not already form a hierarchy. Both rela-
tional and CODASYL systems can handle just about any data base
structure, and are therefore both network systems.

This last statement needs some qualifying, however. What
connects the files in a network structure, and also in a hierarhi-
cal structure, is relationships. We saw that with the hierarchical
structure, for one parent A record, there could be many child B
records. The relationship between files A and B is one—to—mahy, or
parent-child. One-to-many relationships are by far the most common
in all data bases, and they commonly connect the files of both
CODASYL and relational systems in a network.

But CODASYL systems are designed to handle only one-to-many
relationships, and they do this by means of a construct called a
CODASYL set, where each element of the set consists of a parent
record together with its child records. Commonly, such sets are im-
plemented by means of pointers embedded in the records of the
files, as with IDMS/R. With relational systems the one-to-many re-
lationships are handled by a variety of methods that may or may not
involve pointers. DATABASE2 does permit the use of pointers, al-
though these never have to be specified by the person defining the
data base; in contrast, an IDMS/R CODASYL data base definition re-
quires pointer specifications.

To summarize the discussion so far, what is common to rela-
tional systems like DATABASE2 and CODASYL systems like IDMS/R is
(a) both system types can manage data bases that have a network

structure, and (b) the files of the network are connected by one-

4

to-many relationships that are implemented differently in the two
system types.

But there are other types of relationships besides the com-
mon one-to-many relationships. There are also many-to-many rela-
tionships. But both relational and CODASYL systems can handle
these, since a many-to-many relationship always breaks down into a
pair of one-to-many relationships.

However, a reasonably common but poorly understood type of
relationship called a co-relationship can be handled easily by re-
lational systems, but not at all by CODASYL systems. The problem
with a co-relationship is that it has no one-to-many aspect that
will allow the CODASYL set structure for one-to-many relationships
to be used.

Relational systems handle relationships by equating field
values in related files, so that essentially any kind of rela-
tionship can be handled, one way or another. Thus the network
structure for a relational data base can have files connected by
relationhips, such as co-relationships, that would not be permitted
with the CODASYL approach. And incidently, although it is beyond
the scope of this article, co-relationships are important, for
recent research has shown convincingly that they are the source of
the ubiquitous connection trap.

This brings us to the essence of the difference between
CODASYL and relational data base systems. Even though both systems
permit the management of network data bases, the network data base
in the relational case may be made of up files that are connected
by a richer variety of relationships than in the CODASYL case.

This richness, and the flexibility that results, has made

it possible to design non procedural languages of great power for
manipulating relational data bases. The SQL language for DATABASE2,
which has been widely implemented in other relational systems as
well, is the best example. CODASYL systems have no language that
can compare. However, to meet the competition, Cullinet has added a
relational front end to its CODASYL IDMS system, calling the
resulting hybrid system IDMS/R. However, IDMS/R does not permit the
use of SQL,, which is rapidly becoming the standard non procedural
data base language.

[With a non procedural language, you specify the process-
ing required, instead of constructing a routine to specify how the
processing should be carried out. With relational systems the re-
quired processing routine is generated automatically from the spec-
ification, in SQL . of the processing required.]

If the relational front end of IDMS/R does not permit the
use of SQL,. what does it do? It permits the use of views, something
that is easily possible with relational systems, but not CODASYL
systems. Remember that systems like DATABASE2 permit use of the non
procedural language SQL. With an SQL expression you can specify the
construction and retrieval of what is essentially a new file formed
from data in multiple files of the data base. If this new file is
specified as a view (with SQL), it can then in turn be used for
further manipulation by SQL. This facility can be very useful when
a quite complex SQL expression is needed to construct the view, but
only simple SQL expressions are needed afterwards to manipulate it.
Without the view facility, complex SQL expressions would be needed
with every manipulatiuon of the data involved.

IDMS/R provides two facilities for handling views. One is

6
the logical record facility (LRF) that permits a view to be formed
from a CODASYL data base. The other is Automatic System Facility
(ASF), which permits a data base to be defined with files that are
relations, with no need for CODASYL set definitions for the one-to-
many relationships. This type of ASF-relational data base is
manipulated procedurally within a program, and can be manipulated
non procedurally at a terminal, in a somewhat restricted fashion,
by a language called OnLine Query.

In summary, IDMS/R is fundamentally a CODASYL system, with
some facilities of a limited nature akin to those commonly found in
relational systems. In contrast, DATABASE2 is close to being a true
relational system, with all the flexibility that that entails.
Nevertheless, both can handle a network structured data base whose
files are connected by common one-to-many relationships.

It might look from this discussion that DATABASE2 is undis-
putedly the better system. But better is a subjective term, and we
would be wise to ask better for what. There is no doubt that DATA-
BASE2 rests on a superior foundation, whereas IDMS/R clearly rests
on a more ad hoc foundation. But the superior foundation and power-
ful facilities in DATABASE2 take their toll when it comes to or-
dinary transaction processing. For processing transactions with a
few data base files connected by the common one-to-many rela-
tionships, DATABASE2 is currently significantly slower than IDMS/R,
mainly because of the sheer amount of DATABASE2 code that has to be
executed per transaction. Thus for ordinary transaction processing
with ordinary data bases, IDMS/R will do the job, and do it very
well. The point about DATABASE2 is that it will do things that are

either very difficult or even impossible with IDMS/R, such as non

7
procedural manipulation involving off-beat relationships. If that
is the kind of thing you require then DATABASE2 is indeed the bet-

ter system.

About the author

Dr. Bradley specializes in data base management at the Uni-
versity of Calgary. He is the author of File & Data Base Techni-
ques, 1982, Introduction to Data Base Management in Business, 2nd
Edition, 1987 (January), and Case Studies in Business Data Bases

(fall 1987), all published by Holt, Rinehart & Winston, New York.

