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Abstract 

This thesis examines the computational complexity of the problem of finding 

the characters of finite groups and some associated problems. The central 

focus is how the complexity changes according to how the group is specified. 

We examine two extremes. Considering computations from Cayley tables, 

when the input size is quadratic in the order of the input group, we observe 

that we can efficiently invert Burnside's character table algorithm to find 

class matrices. 

We also consider computations involving the symmetric group with inputs of 

size polylogarithmic in the order of the input group. We show completeness 

and hardness results for computations of individual characters of the sym-

metric group. Examining the problem of decomposition of outer products 

of characters of the symmetric group, we show that a generalization of the 

problem is computationally hard. We show that lattice partitions can be 

enumerated efficiently. 

111 
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Chapter 1 

Introduction 

This thesis examines the computational complexity of the problem of find-

ing the characters of finite groups and some associated problems. The main 

theme is an examination of how the complexity of a problem changes accord-

ing to how the group is specified. 

In all cases, we will be concerned with exact computations using "sym-

bolic" representations of the input, the output, and quantities computed 

along the way. Computing with symbolic representations has an advantage 

over fixed precision numerical computations in that, with a bit of care, we 

can be guaranteed to be able to determine the signs of small numbers and 

perform equality tests with complete reliability. Further, symbolic represen-

tations can be converted to fixed precision numbers with any desired degree 

of precision. 

This approach has three principal disadvantages. The first is that we 

require symbolic representations of our input and this is unrealistic for some 

applications. The second is that numerical approximation algorithms may 

have a lower complexity than exact algorithms. For those problems where 
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the evidence suggests that there are no efficient (polynomial time) exact al-

gorithms, we must resort to some kind of approximation algorithm. Even 

for problems with polynomial time algorithms, numerical approximation al-

gorithms may still be sufficiently more efficient to be worthwhile. For more 

information on approximation algorithms in this area see [BF91]. The third 

disadvantage is that the manipulation of symbolic representations of numbers 

is not always straightforward. This is discussed in detail in [Loo83]. 

Numerical approximation algorithms are beyond the scope of this thesis. 

The choice to examine symbolic computations can be justified by the fact 

that some kind of analysis of the exact solution to a problem must be done 

before one can analyze an approximate solution. 

1.1 General Relevance of the Problems 

It is difficult to say exactly when group theory first came into being. Cer-

tainly some of the ideas associated with group theory, such as the investi-

gation of symmetry, date back before recorded history. We will be mostly 

concerned with only one small part of the theory of groups, namely, charac-

ter theory. The two most important fields contributing to the development 

of the theory of group characters are number theory and physics. 

Regarding applications in number theory, we can, not unreasonably, say 

that group theory started with Evariste Galois around 1830. Certain myths 

surround his life. Chapter 6 of [Rot89] debunks these myths and clearly 

demonstrates the presence of subtleties in historical investigations. In light of 

this, we gloss over the rest of the history of the theory of groups. Among oth-

ers, Niels Henrik Abel, Augustin-Louis Cauchy, Sir Arthur Cayley, Camille 

Jordan, Joseph-Louis Lagrange, Marius Sophus Lie, and Ludwig Sylow began 
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an investigation of Galois' groups, finding new and exciting structures along 

the way. Ferdinand Georg Frobenius, William Burnside, and Issai Schur are 

perhaps the most important names associated with the development of the 

representation theory of finite groups. Our work is directly dependent on 

the work of these three men and on the work of Alfred Young. 

The theory of group characters is used to examine the structure of finite 

fields by considering the group constructed from a field by omitting the ad-

ditive identity and considering only multiplication in the field. In particular, 

by evaluating the characters of such a multiplicative group, one can find the 

number of solutions to a wide range of equations over the field. For more 

information see [IR9O] or [Edw77]. 

Character theory has important applications in (at least) two areas of 

physics, namely, crystallography and quantum mechanics. The power and 

value of character theory is demonstrated by the duplication of effort across 

physics and pure mathematics. It was not uncommon for a physicist to 

work out the structure of some group only to find that a mathematician had 

already done so. In [Edd56], Sir Arthur Stanley Eddington describes how 

this happened to him. 

Both [McW63] and [Hoc66] discuss crystallographic applications. In 

quantum mechanics, n—fold degeneracies in the eigenvalues of the wave equa-

tion are directly related to the characters of n-dimensional representations of 

a group. Since the eigenvalues are directly related to observable quantities, 

determining group characters is very important. The symmetric group is 

especially important. The solutions to the wave equation for an n—particle 

spin system can be classified in terms .of their symmetries with respect to 

interchanges of particles. Here, individual character values, decompositions 

of inner products of characters, and decompositions of outer products of 
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characters are extremely useful. For a detailed discussion, see [Wey5O]. A 

modern treatment is contained in [DK85]. [Cot63] and [Ham89] are excel-

lent introductions to group theory. They provide physical intuitions for the 

interpretation of group theoretical statements and contain a wealth of appli-

cations. 

1.2 Summary and Readers' Guide 

Chapter 2 discusses background information. We give some combinatorial 

definitions. Then, we give definitions and notation for the relevant aspects 

of algebra. We provide a brief overview of complexity theory. We review a 

hardness proof for a known hard problem and give definitions and citations 

for others. Finally, we discuss the complexity of various useful computations 

on groups. The reader may freely skip this chapter, returning to it only upon 

encountering an unfamiliar term. 

Chapter 3 examines the complexity of finding complete character ta-

bles of finite groups from Cayley tables. We describe Burnside's algorithm 

for finding character tables from multiplication tables and note that it can 

be done in polynomial time. For more complete information on this topic, 

see [Ebe89]. We observe that all but the first step of Burnside's algorithm 

can be inverted efficiently. This result is not especially surprising but it is of 

some significance given the recent work done on computing characters from 

a partial tabulation of the "class matrices". 

Chapter 4 looks at computing individual characters of the symmetric 

group. This problem has very succinct inputs and integer outputs. We 

examine several versions of this problem and show completeness and hardness 

results (depending on the formulation of the problem). These are the most 
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significant new results in the thesis. As far as we are aware, they are the first 

completeness results in this area. The proof is especially satisfying since it 

uses only elementary techniques. 

We then turn our attention to decomposing outer products of characters. 

We had less success with this problem. We invent a generalization of the 

problem and demonstrate that it is computationally hard. Also, we show 

that an interesting subproblem has a polynomial time solution by framing a 

beautiful little theorem of Kreweras in computational terms. 

Chapter 5 contains a final summary of the results and a discussion of some 

related problems, including computations of character tables of arbitrary 

finite groups from representations that are more succinct than Cayley tables. 
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Chapter 2 

Background 

This chapter includes some necessary background information. It is intended 

to review relevant material and to familiarize the reader with our notation. 

It is divided into three sections: one containing combinatorial definitions, 

one on algebra, and one on the theory of computing. 

The first section gives definitions of permutations, partitions, and lattice 

partitions. 

The second section discusses groups. The symmetric group S3 is used 

as a running example for a brief description of Cayley' tables, permutation 

groups, matrix representations, and characters. 

The third section presents some aspects of the theory of computational 

complexity. We describe the classes F, NP, PP, and #P and discuss re-

ductions, hardness, and completeness. We give definitions of two problems 

with known complexity: 4-PARTITION and Boolean Permanent. 

The problems are used in chapter 4 to give a new classification of the 

computational complexity of computing characters of the symmetric group. 
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2.1 Three Combinatorial Definitions 

Permutations are used to represent groups. Partitions are used to specify 

cycle structures of permutations. In particular, the conjugacy classes in the 

symmetric group can be encoded using partitions (see Section 2.2.2). Also, 

the absolutely irreducible representation classes of the symmetric group can 

be specified by partitions. Lattice partitions are used by the Littlewood— 

Richardson rule (see Section 4.2). 

2.1.1 Permutations 

This material is standard. For example, see [Bur55]. 

A permutation ir of n objects is an invertible function from the set of 

objects onto itself. 

{ai, a2,.. . , a} - jai, a2,. . . , a,} 

Since the function is invertible, it assigns a unique object to each object. 

We will only be concerned with finite sets. Thus, we can specify a permu-

tation by-listing its value for each of the objects. Supposing that 7r(a) = 

we can write the permutation ir as 

(al,a2,... 

b1,b2,.. . b. ) 

We call the elements of the set points and say that a permutation acts on 

that set of points. 

Let us consider the images of a single symbol a as we repeatedly apply 

the same permutation ir. Since the set of possible images is finite and ir is 

a bijective function, there must be a smallest positive integer k such that 

irk (a) = a. A cycle in ir is a finite series of points obtained by repeatedly 
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applying a permutation ir to a single point until we return to that point. 

We write a single cycle (ai, ir(a), ir2(a),... , irc(ai)) where R.k+l(ai) = ai and 

there is no j < k such that 7r(a) = a. Cycles can be written starting at 

any point in the cycle. We will enclose cycles with parenthesis: '(' and T. 

It is possible to represent any permutation as a list of disjoint cycles. We 

call this representation the cycle form of a permutation. The representation 

of a permutation as a list of disjoint cycles is unique up to the order in which 

the cycles are written and the starting points of the cycles. For the sake of 

brevity and clarity, we will usually omit cycles of length one. 

The cycle structure of a permutation is a list of the lengths of the disjoint 

cycles needed to express the permutation. (The lengths of cycles of length 

one are always included in this list). The cycle structure for a permutation 

is unique up to the order in which the lengths are written. 

As a conceptual simplification, we use the term multiplication of permu-

tations to denote functional composition of permutations. Bearing this in 

mind, we read products of permutations from right to left rather than left 

to right. Since we will not be concerned with the nature of the symbols that 

are being rearranged, we can save ourselves some writing by always working 

with the symbols {1, 2,. .. A . 

Example 2.1.1: Multiplication of Permutations in Cycle Form 

Consider the set of points 1 = {l, 2, 3}. Multiplying the 

permutation a = (1,3,2) acting on Q by the permutation 'y = 

(2,3) gives yoa= (1, 2). I 

Any permutation can be written as a product of (not necessarily dis-

joint) cycles of length two (called two—cycles). This representation is not. 
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unique. However, for any particular permutation, the ways of writing that 

permutation as a product of two-cycles have the same parity. That is, if a 

permutation can be written as a product of an even number of two-cycles, 

then every way that that permutation can be written as a product of two-

cycles uses an even number of two-cycles. We call such a permutation even. 

Similarly, odd permutations are those permutations that can be written as a 

product of an odd number of two-cycles. For example, a cycle of length k is 

even if and only if k is odd since 

(al,u2, . . . ,clk) = . . . (0k_2,crk_1)(crk_1,crk). 

It is convenient to use a function to capture the above fact. We define 

the function: 

sign(7r) = 

2.1.2 Partitions 

1 if ir is even 

—1 otherwise (ir is odd). 

A partition of a positive integer n is a sequence A of positive integers 

(Al) A2, ... , Ak) 

such that Ai ≥ A+1) for 1 ≤ i ≤ k - 1 and such that ELj Ai = n. If for 

1 ≤ j <k, A 0 and A,.,.1 = 0, or if  = k and Ak 5A 0, then j is the length 

of A. We use the notation A I- n to say that A is a partition of n. We will 

use partitions of n to specify the cycle structures of permutations acting on 

n points. 

2.1.3 Lattice Partitions 

A lattice partition A corresponding to a partition 

A(Ai,...,Am)Hfl 
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is a string A = a1,... ,an of length n of m symbols 01,02,... ,0m such that: 

1. For 1 ≤ j < m, the string A has exactly Ai occurrences of the symbol o. 

2. For each prefix string AP" = al) ... , a, (1 ≤ i ≤ n), for each j and k, 

(1 ≤ j < k < m), there are at least as many occurrences of oj as of o. 

That is, letting #(crj, X) denote the number of occurrences of 0-i in a string X, 

re) ≥ #(o.k, A C) #(,A  (2.1) 

for all 1 < i n and 1 ≤ m, and #(cr,A) = 

For clarity and to save writing, we will write aj as just i. With this 

notation, we see that '1123212' is a lattice partition of A = (3, 3, 1) but 

'1132212' is not since the prefix string '113' contains one 3 but zero 2's. 

2.2 Background in Algebra 

This section contains a review of definitions and cites a few useful theorems. 

It is not intended as an introduction to the subject. The reader not famil-

iar with the definitions below should consult a textbook on modern algebra. 

[Bur55] is a good, though old, introduction to the subject. A more compu-

tationally oriented and modern introduction can be found in [Mig91]. Both 

[But91] and [Wie64] are good references for permutation groups. 

2.2.1 Groups 

The fundamental mathematical structure that we will consider is the group. 

We provide a definition for the sake of completeness and to familiarize the 

reader with our notation. 
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Definition 1 A group G is a set of objects for which an associative binary 

operation * is defined. The set must be closed with respect to the operation. 

The set must contain an identity element and each element must have an 

inverse. U 

A group is a finite group when the set of objects is finite. A finite group is 

said to have order ii when the set of objects has size n. 

In general, we will use G to stand for an arbitrary finite group and I 

to stand for the identity element in that group. Occasionally when we are 

considering several groups at the same time, we will write Ic to indicate the 

identity element in G. Frequently, we will drop the * sign and refer to the 

group operation as multiplication. Also, we will use the symbol G to refer to 

the set and let the operation be understood. We use the exponential notation 

gk to indicate a product of k copies of g. 

A finite group may be entirely specified by its multiplication table, with 

rows and columns indexed by group elements (a and b respectively) and with 

products (a * b) as table entries. The multiplication table for a group is often 

called its Cayley table. 

Example 2.2.2: A Small Group 

The set E = {I, a, ,6, 'y, 6, } together with the operation given 

by the Cayley table shown in figure 2.1 is a finite group. Later, 

it will be convenient to have such a table at hand. Again, for 

convenience later on, a table of the inverses of each element is 

given in Figure 2.2. 

The second table shows that each element has an inverse. 

It is an easy matter to verify that the set E together with the 
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a /3 -Y 5 

I*g I a /3 5 

a*g a /3 I S ( 
f3*g /3 I a ( y 5 

'y*g 'y S I 8 a 

5*g 5 'y a I /3 

C 5 y /3 a I 

Figure 2.1: The Cayley Table for E. 

g: I a /3 y5 C 
g': I /3 a 7S 

Figure 2.2: Inverses in E. 

operation * satisfies the other properties. U 

In the above example, it is not true that h * g = g * h, for each g, h € E. 

In particular, a * = 5 = * a. If we do have this additional property, 

called commutativity, then we say that the group is Abelian. 

The direct sum G = G2 of two groups G1 and G2 is the group of 

ordered pairs in G1 x G2 with the group operation defined componentwise. 

That is if g, h1 E G1 and 92,h2 E G2, then g = (gi, 92) and h = (h1, h2) are 

elements of G and their product is defined to be g * h = (g' * h1,g2 * h2). It 

is a straightforward exercise to verify that G1 G2 is a group whenever G1 

and G2 are groups. 
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A homomorphism from a group G1 to another group G2 is a function 

G1 -+ G2 that preserves group multiplication. That is, in order for 

to be called a homomorphism, for all gi, 92 e G1, it must be the case that 

= (gig). It follows that if qS : G1 -+ C2 is a homomorphism then 

= 1c2 and (g') = (g)' for all g € C1. If, in addition, 0 is one to 

one and onto, then 0 is called an isomorphism and the groups C1 and G2 are 

said to be isomorphic. 

A subgroup H of a group C is a nonempty subset of G which is still a 

group under the binary operation * of C restricted to members of H. We 

write H ≤ C (or C ≥ H). In case H is strictly smaller than C, we say that 

H is a proper subgroup of C and write H < C (or G> H). In contrast to 

the case with rings, H ≤ C implies that 1c E H and is the identity element 

in H. Further, if h E H then the inverse of h in C, h', is also in H and is 

the inverse of h in H as well. 

The trivial subgroup of G is the set consisting only of the identity element 

in G. 

Example 2.2.3: Subgroups of E 

Our group E has four nontrivial proper subgroups. They are: 

Ea = {I,&,/3}, E7 = {I, 'y}, E5 = {I,6}, and E = {I,(}. The 

group properties are easily verified. I 

'The left coset of a subgroup H of C determined by g € G is: 

gH={gh:h€H}. (2.2) 

The element gxg', where g, x E G, is a conjugate of the element x in G. 

We say that gxg' is the conjugate of x with respect to g. 
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I a /3 -Y 5 

gag'aaa/3/3fi 

g/3g'/3/3/3aaa 

Figure 2.3: a and /3 are conjugates in E. 

Definition 2 The conjugacy class CG(x) of x E G is the set of all conjugates 

of x in G: 

Cc(x) = {gxg' : g E G}. * 

Example 2.2.4: Conjugacy Classes in E 

E has three conjugacy classes: 

{I} is a conjugacy class since glg' = I for all g E E. 

{ a, /3} is a conjugacy class. The conjugates for a and /3 
with respect to each element of E are shown in 

figure 2.3. 

{y, 5, } is easily seen to be a conjugacy class as well. • 

The set of all elements in G that commute with a particular element 

x E G is called the centralizer of x in G, is written Cc (x), and is a subgroup 

of G. The set of all elements in C that commute with every element of C is 

called the center of C and is an Abelian subgroup of G. 

A set S C G is said to generate a finite group C if every element of C 

can be expressed as a product of elements of S. The set S is then called a 

generating set for G and we write G = (S). 



15 

Element I a /3 'y 6 

Expression a3 a a2 y a')' a2'y 

Figure 2.4: E is generated by {a, 'y}. 

Example 2.2.5: A Generating Set for E 

The set S = {a, -y} generates E, since each element of E 

can be written in terms of elements of the set, as is shown in 

Figure 2.4. 

These expressions are not unique. • 

2.2.2 Permutation Groups 

A set of permutations acting on a set ≤) of size n generates a group where the 

group multiplication operation is defined to be permutation multiplication. 

Such a group is called a permutation group and is said to be of degree n. Every 

finite group is isomorphic to a permutation group. Proof of this statement 

may be found in any standard text (for example, see [Bur55]). 

Example 2.2.6: A Permutation Group 

Let the permutations a and y act on the set ) = {1, 2, 3}. 

The permutations: a = (1,3, 2) and 'y = (2,3) generate the 

permutation group {Ici,(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}. We 

have seen that 'y o a = (1, 2). Also, 'y o a o a = (1, 3), a o a = 

(1, 2,3), and 'y o 'y = Iç2, so all of the listed permutations can be 
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Element of E Permutation 

I (1)(2)(3) 

a (1,3,2) 

/3 (1,2,3) 

7 (2,3) 

5 (1,2) 

C (1,3) 

Figure 2.5: An Isomorphism Between E and S3 

generated from a and 'y. Since there are no other permutations 

on c≥, this is the group generated by a and y, as claimed. U 

Definition 3 The symmetric group S, is the permutation group containing 

all permutations of ri objects. U 

Example 2.2.7: The Symmetric Group 53 

The example group E is isomorphic to S3. An isomorphism 

is shown in figure 2.5. Recalling that products of permutations 

are read from right to left, it is an easy matter to verify that the 

group operation is preserved. I 

The symmetric group 5,, has a very simple generating set. Let 5,, act 

on Il = {1, 2,... , n}. The set {(1, 2), (1,2,... , ri)} (written in cycle form) 

generates S,,. 

The definitions given in the previous section can be carried over to per-

mutation groups. 
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The definition of direct sum can be conveniently reformulated for permu-

tation groups as follows. The direct sum G of two permutation groups G1 

acting on Q1 and G2 acting on 112, where 11 and 112 are disjoint, can be found 
by constructing all permutations ir acting on Q1 U 11 such that 7r(111) = 

ir(112) = 112 and such that the restriction of ir to 11 or 112 is a member of G1 

or G2, respectively. 

Next, consider the conjugacy classes of S3 and observe the relationship 

between conjugacy classes and cycle structures. 

Example 2.2.8: The Conjugacy Classes of S3 

From example 2.2.1, we have that the conjugacy classes in 

the group E are: {e}, {a, 8}, and {'y, 6, C}. Using the isomor-

phism shown in figure 2.5, we see that these translate into the sets 

{(1)(2)(3)}, {(1,2,3),(1,3,2)} and {(1)(2,3),(1,3)(2),(1,2)(3)}, 

having elements whose cycle structures are (1, 1, 1), (3), and (2, 1) 

respectively. U 

This is not a coincidence. In fact, the conjugacy classes of the symmetric 

group are characterized by their cycle structures. Any two elements of the 

symmetric 'group with the same cycle structure are conjugate and any two 

conjugates have the same cycle structure (see, for example, [CR62]). Thus, 

we can specify a conjugacy class in the symmetric group by giving a partition 

which specifies a cycle structure. In general, all elements of a single conjugacy 

class in a permutation group have the same cycle structures although two 

elements of a permutation group may have the same cycle structure without 

being conjugate. For example, in the group G = ((1, 2), (3,4)) acting on 

Il = {1, 2, 3, 4}, the elements (1, 2) and (3,4) have the same cycle structure, 
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A = (2, 1, 1), but are not conjugate. 

2.2.3 Representations and Characters 

There is much that can be said about representations of groups. We merely 

touch on a few of the theorems that are most useful to us. There are many 

texts on the subject and a large proportion of the introductory group theory 

texts contain several chapters on representation theory. The reader is referred 

to [Keo75], [FHG2], and [Ser77] for general treatments of the theory of matrix 

representations. For the representation theory of the symmetric group, see 

[JK81] and [dBR61]. [Led87] is a good introduction to character theory. 

Definition 4 A representation T of a group G is a homomorphism T: G -+ 

H. Since T is a homomorphism, there must be a binary operation defined 

on H such that 

T(x)T(y) = T(xy) E H 

for all x,y E G.m 

Representations are most useful when they are homomorphisms from an 

abstract group to a less abstract structure. This allows one to investigate 

an abstract group by examining a more easily understandable structure. 

In addition, using such concrete representations, one can specify a group 

considerably more succinctly than would otherwise be possible. 

The isomorphism between our example group E and the symmetric group 

S3 is a representation. The group E is abstract. The group S3 is a set of 

relatively less abstract objects, namely permutations. This type of repre-

sentation gave us a straightforward characterization of the conjugacy classes 

of the symmetric group. Whenever the codomain of a representation is a 
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set of permutations, we call the representation a permutation representation. 

Also, whenever a representation is injective, we say that the representation 

is faithful. 

Let K be a field. Let GL(n, K) be the group of invertible n x n matrices 

over K. 

Definition 5 A matrix representation of dimension (or degree) n over K is 

a representation T: G - GL(n, K) of G. • 

Example 2.2.9: Matrix Representations of S3 

We give three representations over C of S3. The first repre-

sentation is the trivial representation. All of the elements of S3 

are taken to the 1 by 1 identity matrix. For technical reasons 

(see [dBR61]), we call this representation A(3) and define it as 

follows: A(g) (lr) = def  [1]. 

The second representation that we will consider is called the 

alternating representation. The elements of the group are taken 

either to the 1 by 1 identity matrix or to the matrix [-1] depend-

ing on whether the permutations are even or odd. We call this 

representation A(i,i,i) and define it as follows: 

def [1] if ir is even 
A(l,l,l) 1r) = 

. i [-1] otherwise. 

The third representation is more interesting. We call it A(2,i) 

and define it with the table shown in figure 2.6. 0 
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ir E S3 

(1)(2)(3) 
0 1 ) 

(1,2)3) 
(i\ 

I _ 
2 

2 J 
2 / 

(1,3,2) 
( 1 
( 

2 

_\ 

I 
- / 

(1)(2,3) 
/ 1 

I •:; 
\2 

I 
2 ) 

(1,3)(2) 
/ 1 _\ 

2 

I 

(1,2)(3) 
11 

0 

0 

—1 ) 
Figure 2.6: A Matrix Representation of S3 
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The tensor product C = A ® B of two square matrices A and B, with 

dimensions m and n respectively, is obtained by replacing each entry in A 

with the product of that entry and the matrix B to get the mn x mn matrix 

C = A®B 

/ a11B a12B ajmB 

a21B a22B • 

a 1B am2B ammB I 

where A has (i, j)th entry aj for 1 < i, j ≤ m. 

The tensor product of two matrix representations A1 of degree rn and 

A2 of degree n of a group G is the matrix representation of degree mn 

of G in which each element x E G is represented by the tensor product 

A, (x) 0 A2(x). Since for m x m matrices A and C and n x n matrices B 

and D, (A(9B)(C(9D) = (AC) 0(BD), A = A1 0A2 is a indeed matrix 

representation. 

A representation TH of a subgroup H ≤ G induces a representation T T G 

of G. Since we do not make explicit use of the construction, it is not included 

here. For mdre information on induced representations see [Ser77] or [FH62]. 

Suppose A(x) is a representation of G over K and T is a nonsingular 

matrix (of the same degree) with coefficients in K. Then B(x) = T'A(x)T 

is also a representation of C. We say that A and B are equivalent over K 

and write A - B. 

A matrix representation A(x) is reducible over K if there exists a non— 

singular matrix T over K such that 

' ( C(x) 0 

B(x) = TA(x)T = E(x) D(x) for all x E )C. 
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In the above, C(s) and D(x) are both matrix representations of C over K. 

Theorem 1 (Maschke) Let C be a finite group of order g, and let K be 

a field whose characteristic is either zero or has no common factors with g. 

Suppose A(s) is a matrix representation of G over K such that: 

A(s) 
(C(X) 0 

'S-' 

E(x) D(s) 

Then 

A(x) (C(X) 0 r...I 
0 D(x)J 

A proof is given in [CR62]. 

The fields we are concerned with are the complex field and finite exten-

sions of the rationals. All of these have characteristic zero, so that Maschke's 

theorem (theorem 1) is applicable. 

A representation is said to be irreducible when it is not reducible. If A 

is a representation of a group C over a field K, and K is a subfield of a 

field L, then A can also be considered as a matrix representation over L. 

A representation over a subfield of the complex numbers C is said to be 

absolutely irreducible when it is an irreducible representation over C. 

Equivalent representations are said to belong to the same representation 

class. For any finite group, there are as many absolutely irreducible rep-

resentation classes as there are conjugacy classes (see [CR62]). This is an 

upper bound on the number of irreducible representation classes over smaller 

fields. When the upper bound is met, the field is called a splitting field for 

the group. 

The above implies that, since there is a one to one correspondence be-

tween partitions of n and the conjugacy classes in S,, there must also be a 
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one to one correspondence between the absolutely irreducible representation 

classes of S, and the partitions of n. There is a natural correspondence be-

tween the partitions of n and the absolutely irreducible representations of S, 

which is part of the "special" representation theory of the symmetric group. 

The reader is referred to [dBR61] for more information. 

The representations given for S3 in the example above are absolutely 

irreducible representations. The names we gave the representations reflect 

the natural correspondence between absolutely irreducible representations of 

Sn and partitions. 

Definition 6 The character of a group G with respect to a representation 

A of dimension n is the function 

n 
W(x) = Trace(A(x)) = 

i=1 

The character has two important properties: 

1 Equivalent representations have the same character. 

2 If g and h are conjugates in G then (g) = q5(h) for any character 0. 

Thus, it makes sense to write characters both as functions of the elements of 

a group and as functions of the conjugacy classes of a group. 

We say that a character is (absolutely) irreducible if it is the character 

of an (absolutely) irreducible representation. When a character is not irre-

ducible, we say that it is a compound character. Compound characters can 

be expressed as linear combinations of irreducible characters. The values of 

the absolutely irreducible characters for a group with m conjugacy classes 

can be tabulated in an m x m table. Unless otherwise specified, when we 

talk about the characters of a group, we mean the absolutely irreducible 

characters. 
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Conjugacy Class (1, 1, 1) (2,1) (3) 

Character in A(s) 1 1 1 

Character in A(2,1) 2 0 —1 

Character in A(i,i,i) 1 —1 1 

Figure 2.7: The Character Table for S3 

Example 2.2.10: The Character Table for 53 

We can read the characters directly from the absolutely irre-

ducible representations of S3 given in the example above. The 

results are shown in the figure 2.7. U 

2.2.4 Character Relations 

A more detailed examination of group characters yields some elegant rela-

tions among the characters of any group. Aside from being pretty, they can 

be used to generate the character tables of some very small groups. For 

example, they are used to compute the character tables of the groups S3, 

A4, and S4 (the symmetric group on three points, and the alternating and 

symmetric groups on four points) in [CR62]. We will have to use some addi-

tional facts in order to compute character tables for larger groups but these 

relations will be of use nonetheless. 

Let G be a finite group with n elements and k conjugacy classes C1, 

C2,..., Ck. Let hi be the number of elements of the conjugacy class C2 and 

let ('),. , (k) be the distinct absolutely irreducible characters of C. We 

denote the dimension of an absolutely irreducible matrix representation of G 



25 

with character ) by z. Finally, we use the symbol * on subscripts to refer 

to the conjugacy class containing the inverses of a given conjugacy class. 

That is, C. = {g ' : g E Q. We may now write down the orthogonality 

relations for group characters 

(hg)W(g_l) =  ()(h) . 

gEG 
zi 

i (g)W(gl) = 

gEG 

i hjXj  = n. bij 

1=1 

Xj* =  . '5ij 

oji 

for h E G, 1 ≤ j, j ≤ k and for öj the Kronecker delta. 

For proofs of these relations see [CR62] or [Led87]. 

2.3 Background in Complexity Theory 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

We quickly and informally describe some aspects of abstract complexity the-

ory and then present a few known hard problems. Those not already confi-

dent with this material are encouraged to consult [GJ79] and [11U79]. Fur-

ther information is contained in the first three of the chapters in the [vL9O], 

namely [vEB9O], [Joh9O], and [Sei9O]. These articles are extremely useful, in 

part, because of their extensive bibliographies. 

We show that Garey and Johnson's proof of the NP—hardness of the 

decision problem 4—PARTITION can be adapted to prove #P—hardness 

for the corresponding enumeration problem. While this is neither surprising 

nor difficult, we are unaware of the result appearing elsewhere. 
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For the most part, we follow the notation of [11U79}. Deviations from 

this notation are noted. 

2.3.1 Complexity Classes, Hardness, and Complete-

ness 

Informally, the complexity class P is the set of all decision problems with 

deterministic polynomial time solutions. The set P has been defined to 

formally capture the notion of the set of tractable problems. The class NP 

is the set of all decision problems whose positive instances can be verified in 

polynomial time and clearly contains P. It is unknown whether the classes 

P and NP are equal but it is widely conjectured that they are not. 

The class PP is also important. It may be roughly defined as the set 

of all decision problems with probabilistic polynomial time solutions. The 

only bound on the probability of error is that it must be strictly less than 1. 

NP is contained in PP and it is widely conjectured that the containment is 

strict. In summary, we have 

PçNPçPP 

Clearly, P =A PP is a weaker assumption than P 0 NP. 

Definitions of P, NP, and PP can be found in [Joh9O] and [11U79]. For 

more detailed information on the relationships between P, NP, and PP, 

see [Joh9O]. 

We say that a decision problem A is many—one reducible to another de-

cision problem B if there exists a function M which maps instances of A to 

instances of B such that, for a an instance of A, M(a) is a positive instance 

of B if and only if a is a positive instance of A. Other kinds of reducibilities, 
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such as oracle reducibility, appear in the literature. We will be concerned 

only with many-one reducibility and thus will omit the modifier 'many-one' 

in further discussions. If the function M can be implemented in polynomial 

time, we say that M is a polynomial time reduction from A to B so that 

A is polynomial time reducible to B. The classes F, NP, and PP have 

the important property that they are closed with respect to polynomial time 

reducibility. 

Nondeterministic and probabilistic machines can be thought of as having 

a computation tree rather than a computation path. That is, at any given 

stage in a computation, nondeterminism arises when there are more than one 

possible next steps. Thus, rather than proceeding through a series of ma-

chine configurations, making a single path, a nondeterministic computation 

by a given machine on a given input is described by a set of computation 

paths. Since these paths all start out the same, it is more compact and 

more illuminating to consider this set as a tree. By allowing the machines to 

consider the best of these paths or all of the paths at once, we (likely) add 

power to the machine. 

The term hard is applied to a problem, a complexity class, and a type 

of reducibility when it has been shown that all problems in the complexity 

class can be reduced to the problem using the specified type of reducibility. 

Together with the fact that P is closed with respect to polynomial time 

reducibility, this implies that if a problem known to be hard for NP or for 

PP is in F, then P = NP or P = PP respectively. 

We say that a problem is NP-hard when it is hard for NP with respect 

to polynomial time reducibility. Similarly, we say that a problem is PP-hard 

when it is hard for PP with respect to polynomial time reducibility. If, in 

addition to being hard for a complexity class, a problem is a member of that 
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class, we say that it is complete for that class. For NP and PP, this is 

abbreviated to NP-complete and PP-complete respectively. 

Since we do not believe that P = NP, classifying a problem as NP-hard 

or NP-complete is highly indicative that the problem is intractable. Since 

PP contains NP, showing PP-hardness or PP-completeness for a problem 

is even stronger evidence for the intractability of a problem. 

We have used polynomial-time many-one reductions to define NP and 

PP-hardness. Some sources define NP-hardness with respect to a stricter 

form of reducibility, "log-space reducibility". This distinction is not impor-

tant for our results. 

The class #P is the set of all enumeration problems that can be solved in 

polynomial time by a counting Turing machine. A counting Turing machine 

is conceptually very similar to a probabilistic Turing machine or a nonde-

terministic Turing machine. The significant difference is that rather than 

returning a 'yes' or a 'no' based on. the existence of an accepting computa-

tion (as for a nondeterministic Turing machine) or a 'yes' or a 'no' based 

on the ratio of accepting computations to all computations (as for a proba-

bilistic Turing machine), a counting Turing machine returns the number of 

accepting computations. Since #P contains enumeration problems rather 

than decision problems, it includes the class FP of all enumeration problems 

that are computable by a deterministic Turing machine in polynomial time. 

It is widely believed, but unproved, that FP is a proper subset of 7LP - 

and it has been shown that FP = #P would imply P = NP. 

Since many-one reductions apply to decision problems, we need another 

kind of reduction in order to prove results about enumeration problems. 

We say that a function M from instances of an enumeration problem A to 

instances of an enumeration problem B is a polynomial time parsimonious 
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reduction from A to B if M is computable in deterministic polynomial time 

and there is a function f : N -+ N that is computable by a deterministic 

Turing machine using time polynomial in the length of its input and in the 

length of the instance a of A such that, for any instance a of A, if b = M(a) 

is the corresponding instance of B and m is the output of B on instance b, 

then f(in) is the output of A on instance a. 

An enumeration problem A is hard for #P, or "#P-hard", if there is a 

polynomial time parsimonious reduction from every enumeration problem in 

#P to A'. and A is :#P-complete if A is #P-hard and belongs to #P. 

Our definition of parsimonious polynomial time reduction is weaker (that 

is, less restrictive) than that found in the literature which requires that the 

output for the original instance a of A and for the derived instance b of B 

be identical. The reduction we call a "polynomial time parsimonious reduc-

tion" is frequently called a "polynomial time weakly parsimonious reduction." 

Since the relation "polynomial time weakly parsimonious reducibility" is a 

transitive relation on enumeration problems and since FP is closed with 

respect to weakly parsimonious reductions, membership of a #P-hard or 

+P-complete problem in FP implies that PP =:#P. Thus, #P-hardness 

or completeness is still very good evidence for the intractability of a prob-

lem even with the weaker notion of reduction. Since we only use weakly 

parsimonious reductions, we omit the modifier "weakly" in all that follows. 

Some problems involve numerical inputs. Normally, we assume that in-

puts are encoded efficiently. That is, numbers are represented using a place 

value system. When the structure of a problem is such that the problem 

remains complete or hard even when the numbers are represented in a tally 

system, we say those problems are strongly complete or hard. This is con-

ventionally said of NP hard problems. We will also use this terminology for 
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PP and #P hard problems. 

2.3.2 Computing with Algebraic Numbers 

We will be concerned with computations involving the complex numbers. 

Since most complex numbers do not have finite representations, some com-

ment is required. 

Whenever we are attempting to compute a value in C, we will always be 

concerned with problems with both finite specifications and unique solutions. 

Thus, the numbers are finitely represented by the specification of the prob-

lem. However, such a representation is of no use to us. It would be highly 

desirable if we could efficiently perform operations such as multiplication, 

addition, and zero testing on the representations of the numbers. 

In the cases that we are concerned with, this can be done by working 

with finite algebraic extensions of the rationals. First, we observe that such 

fields are subfields of the complex numbers. Furthermore, each can be ob-

tained by adjoining a single algebraic number (say, a) to Q. The generator 

a can be represented by its minimal polynomial over Q and by numerical 

approximation (to distinguish it from the other roots of this polynomial). 

This information identifies the field Q[a]. Second, any element /3 of a field 

Q[a] can be represented by a polynomial f E Q[x] with rational coefficients 

- namely, the polynomial f (with degree less than that of the minimal poly-

nomial of a) such that /3 = 1(a). Arithmetic operations over the field can 

be implemented in terms of operations on the polynomials used to represent 

elements of the field. For a detailed discussion see [Loo83]. 
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2.3.3 Problems 

The problems described below are used to prove hardness or efficiency results 

later in the thesis. 

2.3.3.1 4—PARTITION 

Carey and Johnson [GJ79] show that the problem 4—PARTITION is strongly 

NP—complete. Their transformation is parsimonious and so we immediately 

have #P—completeness for the corresponding enumeration problem and PP— 

completeness for the threshold problem. We follow their notation for 4— 

PARTITION, use their transformation, and extend their proof of correctness 

to show that the transformation is parsimonious. 

The NP—completeness proof in Gary and Johnson proceeds by reduc-

ing 3—Dimensional Matching to 4—PARTITION. We give a definition of 3— 

Dimensional Matching below: 

Decision Problem 1: 3DM 

3-Dimensional Matching 

Input: 

An integer q represented in unary and 

a set M C W x  x Y, where W,X and  are disjoint sets, 

each with q elements. 

Question: 

Does M contain a matching, that is, a subset M' C M such 

that IM'! = q and no two elements of M' agree in any 

coordinate? • 

The problem 3DM is shown to be NP—complete in Gary and Johnson. 

Also, it is shown that the corresponding enumeration problem #3DM and 
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the corresponding threshold problem T-3DM are #P and PP-complete 

in [Sim77] and [Gal74]. Although not included in the literature's definition 

of the problem, our inclusion of q represented in unary does not affect the 

cited results. In order for there to be a matching, M must contain at least 

q elements and thus, inclusion of q represented in unary does not cause a 

significant increase of the size of the input for the hard instances of the 

problem. We include q in the input to simplify statements made later. 

We give a definition of 4-PARTITION below: 

Decision Problem 2: 4-PARTITION 

Strongly NP-complete problem 

Input: 

m: an integer represented in unary, 

A: a finite set with 4m elements, 

B: a positive integer bound represented in unary, 

s: a function from A to the positive integers such that if 

a E A then B/5 < s(a) <B/3 and such that 

>aEA s(a) = mB. 

Question: 

Is there a valid -partition of A? That is, can A be 

partitioned into m disjoint sets Si, S2,.. . , Sm 

such that for 1 < i ≤ m: EaESi s(a) = B ? U 

Again, including m represented in unary in the input does not change the 

complexity of the problem since A has more than m elements. The fact that 

B can be represented in unary without affecting the NP-completeness of the 

problem is shown in [GJ79]. The demonstration of this fact is a significant 

portion of the proof that 4-PARTITION is strongly NP-complete. 
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In order to prove that 4—PARTITION is strongly NP—complete, Gary 

and Johnson give a transformation from 3DM to 4—PARTITION (see 

pages 97 to 99 of [GJ79]). They prove that the transformation can be done 

in polynomial time and that it yields an instance of 4—PARTITION which 

has element sizes that are bounded by a polynomial in the size of the original 

instance of 3DM. We describe the relevant aspects of their proof in order 

to show that their transformation is parsimonious, and provide a simple 

example. 

The transformation takes an instance W = {w1, W2.. .. , w}, X = {x1, 

X2,.. .,xq}, Y = {yl,y2,. .. ,yq} and M W x X x Y of 3DM to an instance 

(A, B, s) of 4—PARTITION with 41M1 elements. The set A contains one 

member for each element of each of the triples in M. These are indexed by 

their membership in W, X, or Y and by their position within whichever set 

they belong to. Thus, the elements of the set A are denoted w [1], x [1], and 

yk{lI where i, j, and k range from 1 to q and for each particular i, j, or 

the variable I ranges from 1 to the number N(z) of times that the element 

z of W, X, or Y is contained in a triple in M. Thus, by construction, there 

are exactly IMI elements of A with the form w1[l] (with 1 ≤ i ≤ q and 

1 <1 ≤ N(w)), IMI with the form x[l] (with 1 ≤ j ≤ q and 1 ≤ 1 ≤ N(x)), 

and IMI with the form yk[l] (with 1 < k < q and 1 < I ≤ N(yk)). Finally, 

the set A includes another IMI elements - denoted u1, U2,... , UIMI. 

The elements w[1], x[1], and yk[1] are called actual elements where i, j, 

and k have, the same ranges as before. All of the other elements of A except 

U1, U2,.. . , UIMI are called dummy elements. 

Gary and Johnson's construction includes formulas (on page 97) defining 

the sizes for the elements of A. The sizes of the elements depend on (and 

are computable deterministically in polynomial time from) the indices of the 
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corresponding elements in the set W, X, or Y and on which set they belong 

to. The actual elements all have different sizes. Each of the dummy elements 

for a particular element of W, X, or Y has the same size, and the size is 

different for each different element of W, X, or Y. Furthermore, none of 

the sizes of the actual elements is the same as any of the sizes of any of the 

dummy elements. 

Gary and Johnson give the following construction of a 4-partition from 

a matching. Suppose that M' C M is a matching. The corresponding 4-

partition is made up of IMI 4-sets, each containing a Uj, a w[.], an x5[.], and 

a yk[], where (Wj,Xj,yk) = mj E M. If 1 < I ≤ q and mj E M', we group u 

with the actual elements w{1], x[1], and Vk[1I. If m1 e M - M', we group 

Uj with dummy elements corresponding to w1, x, and Yk• Gary and Johnson 

show that for every matching M' C M, the above construction gives a valid 

4—partition of A. They also give a construction for a matching M' C M from 

a valid 4—partition of A, establishing that 4—partitions corresponding to the 

same matching M' M can only differ by having dummy elements for the 

same element of W U X U Y exchanged. 

We illustrate the transformation below. 

Example 2.3.11: Transforming an instance of 3DM to an instance 

of 4—PARTITION 

Let q = 2, W = {wi,w2}, X = {x1,x2}, Y = {yl,y2}, 

and M= {(w1,xi, YO, (w1,xi,y2),(w2,x2,y1)} be an instance of 

3DM. 

We construct an instance (m, A, B, s) of 4—PARTITION as 

follows. First, we count the number of occurrences of the elements 
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of W, X, and Y in the ordered triples of M, summarized below: 

N(wi) = 2 N(w2) = 1 

N(xi) = 2 N(x2) = 1 

N(yi) = 2 N(y2) = 1 

Now, letting r = 32q = 64 and m = 12, we define the size function 

s (and at the same time actual and dummy elements of the set 

A) for each of the elements of W U X U Y as follows: 

s(wi[1]) = br4 + ii' + 1 = 167772225 

s(w2[1J) = 10r4 + 2r +1 = 167772289 

s(w1[2]) = 11r  + ii' +1 = 184549441 

s(xj[1]) = 10r4 + li'2 + 2 = 167776258 

.S(X2{1]) = 10r4 + 2r2 + 2 = 167780354 

s(xi[2]) = hr4 + li'2 + 2 = 184553474 

s(yi[l]) = 10r4 +1'3 + 4 = 168034308 

s(y2[l]) = br4 + 2r3 + 4 = 168296452 

s(yi[2]) = 8r4 + hr3 + 4 = 134479876 

For each of the triples of M, we define the size function (and the 

rest of the elements of A) as follows: 

s(ui) = 10r4 - li'3 - li'2 - hr1 + 8 = 167505864 

S(U2) = iO, - 2r3 - li'2 - hr1 + 8 = 167243720 

S(U3) = 10r4 - hr3 - 2r2 - 2r' + 8 = 167501704 

Finally, we set B = 40r4+15 = 671088655 and the transformation 

is complete. 

We observe that the only matching in M is M' = { (w1, x1, y2), 
(w2, x2 ) y)} and the only valid 4—partition of (m, A, B, s) is: 
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S1 = {u1,w1[2],x1[2],y1[2]} 

52 = {u2,w1[1J,x1{1J,y2[1]} 

S3 {u3,w2[1],x2{1],yi[1]} 

up to interchange of the indices of the sets S. • 

We call two valid 4—partitions of A equivalent if one can be obtained 

from the other by interchange of elements with the same size. This defines 

an equivalence relation on the 4—partitions of A. 

Recall that, by the definition of s, two elements of A have the same 

size if and only if they are both dummy elements for the same element in 

W U X U Y. Thus, Gary and. Johnson's construction specifies a bijection 

between the equivalence classes of valid 4—partitions of A and the matchings 

for the instance of 3DM. 

We now show that these equivalence classes of 4—partitions all have the 

same size and that this size is easy to compute. Consider the 4—partitions in 

the equivalence class corresponding to some matching M' C M. The number 

of ways that the N(z) - 1 dummy elements corresponding to a member z in 

W U X U Y can be arranged in 4—sets corresponding to elements of M \ M' 
with z as an entry is (N (z) - 1)!. The dummy elements corresponding to 

different elements of W U X U Y can be placed independently. Thus the 

number of ways that we can place all of the dummy elements is exactly 

fJ III fJ ((N(w) - 1)!(N(x) - l)!(N(yk) - 1)!). (2.7) 
1≤i≤q 1≤j≤q 1≤k≤q 

Since the sizes of the actual elements are all distinct, this is the size of the 

equivalence class of 4—partitions of A corresponding to a matching M'. This 

size does not depend on the matching that is chosen so the total number of 
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4-partitions in the constructed instance is 

K. JJ fJ J] ((N(w) - 1)!(N(x) - 1)!(N(yk) - 1)!) (2.8) 
1≤i≤q1≤jq1≤kq 

where K is the number of 3-dimensional matchings M. 

The values N(z) can be determined in polynomial time from the de-

scription of M. Furthermore, this description has length at least linear in 

1(N(w) + N(x) + N(y)), so the values (N(z) - 1)! can be computed 

efficiently as well. We can find the product given in equation (2.7) in poly-

nomial time and then, in time polynomial in the size of M, find K using the 

product just computed, equation (2.8), and the number of valid 4-partitions 

in the constructed instance of 4-PARTITION. 

We now give explicit definitions of the threshold and enumeration prob-

lems associated with 4-PARTITION so that we may summarize our results 

in a single theorem. 

Decision Problem 3: T-4-PARTITION 

Threshold 4-PARTITION 

Input: 

m: an integer represented in unary, 

A: a finite set with 4m elements, 

B: a positive integer bound represented in unary, 

s: a function from A to the positive integers such that if 

a E A then B/5 < s(a) <B/3 and such that 

>aEA s(a) = mB, 

x: a threshold value represented in binary. 

Question: 

Do there exist strictly more than x valid 4-partitions of A? 
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Number Problem 4: #4-PARTITION 

4-PARTITION Enumeration 

Input: 

m: an integer represented in unary, 

A: a finite set with 4m elements, 

B: a positive integer bound represented in unary, 

s: a function from A to the positive integers such that if 

a E A then B/5 < s(a) <B/3 and such that 

>-IZEA s(a) = mB. 

Output: 

The number of valid 4-partitions of A. U 

Note that the values of the function s can b.e represented in unary with 

no significant increase in the input size since m and B are both represented 

in unary. 

Theorem 2 The decision problem T-4-PARTITION is PP-complete. 

The enumeration problem #4-PARTITION is #P-complete. U 

Proof: It is easy to adapt Gary and Johnson's proof of membership of 

4-PARTITION in NP in order to show that T-4-PARTITION be-

longs to PP and #4-PARTITION belongs to #P. We have demon-

strated that Gary and Johnson's transformation (establishing NP-hardness 

of 4-PARTITION) is parsimonious; this implies PP-hardness of T-4-

PARTITION and #P-hardness of #4-PARTITION. U 

2.3.3.2 Boolean Permanent 

The problem BOOLEAN PERMANENT is shown to be #P-complete 

in [Va179}. We formally define the problem below. 
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Number Problem 5: BOOLEAN PERMANENT 

#P-complete problem 

Input: 

An n x n matrix M of 0's and l's. 

Output: 

The value of the permanent of M, given by: 

n 

Perm(M) = E fl 
ES i=1 

where, as shown, the sum runs over all n! permutations u of the n 

integers {l,2,. ,n}. U 
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Chapter 3 

Characters of Finite Groups 

There are several sensible ways that a finite group may be specified. The 

least succinct is to give the complete multiplication table, or Cayley table, 

for the group. In this chapter, we consider the computational complexity of 

finding the absolutely irreducible character table for a finite group that is 

represented by a Cayley table. 

Burnside's algorithm is one known method (of several) for computation 

of a character table from a Cayley table. It is efficient - see [Ebe89] for 

an analysis. We summarize the algorithm and its analysis. Then, we show 

that a significant part of Burnside's algorithm can be inverted efficiently 

using a well known theorem - see [CR81]. In particular, we show that the 

structure constants used by the algorithm can be found efficiently from an 

absolutely irreducible character table. This is motivated by some work by 

Schneider (see for example [Sch90]) on finding characters from incomplete 

sets of structure constants. 
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3.1 Computing Characters from Cayley Ta-

bles 

The problem of finding the character table of a finite group given its Cayley 

table has a long history and has been the subject of extensive work. For 

numerous examples, see the surveys [Fel78] and [Neu83]. 

There has been considerable recent interest in Dixon's modification to 

Burnside's algorithm ([Dix67]). In particular, Schneider ([Sch9O]) has ex-

plored the removal of wasted computation in Dixon's algorithm caused by 

redundancies in the structure constants. In the next section, we demonstrate 

that the structure constants are entirely recoverable from the character table. 

Although this is only a minor extension of the work of Burnside, Dixon, and 

Schneider, it is important in that it shows that the 0 structure constants 

contain exactly the same amount of information as the k x k absolutely ir-

reducible character table. Further, it shows that these pieces of information 

are equivalent in terms of polynomial time computations. 

In order to prove the result in the next section, we now describe Burn-

side's algorithm. The algorithm is derived in, among other places, [CR62]. 

Although the details of the correctness proof are interesting, they are rather 

long and widely available. Thus, a proof is not included here. The algorithm 

(and two modifications) are analyzed in [Ebe89]. 

To begin with, let us formally define the problem under consideration. 

Problem 6: x from x 
Computation of Character Table from Cayley Table 

Input: 

A multiplication table for a finite group G = {g1, g2,. .. . g}. 
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Output: 

The character table for C over C. I 

Intuitively, Burnside's algorithm works as follows. First, we compute a 

set of values expressing connections between conjugacy classes - the class 

matrices of the group. It can be shown using the character orthogonality 

relations given in section 2.2.4 that the components of the common elgen-

vectors of the class matrices are directly related to the characters. After 

computing these common eigenvectors, only a minor amount of rearranging 

and arithmetic remains in order to obtain the characters. 

It is worth noting that Burnside's algorithm and Dixon's modification 

can be used to compute character tables over some fields other than the 

complex numbers. In order to simplify matters, we will only be concerned 

with characters over C. 

We now review our notation and state the algorithm formally. Let C be 

a finite group with order n. As in section 2.2.4, we denote the k conjugacy 

classes of C by C1,. . . Ck, with a convention that C1 = {I}. Aside from 

this convention, ordering of the conjugacy classes is arbitrary. We use the 

superscript * on the indices of the conjugacy classes to refer to the conjugacy 

class containing the inverses of a given conjugacy class. That is, C. = {g _1 

9 E C}. 

Let hi be the number of elements of the conjugacy class C2 and let XM 

be the distinct absolutely irreducible characters of C. We use subscripts 

to denote the value of the character for members of a particular conjugacy 

class. That is, XV is the value of the ith irreducible character at an element 

of the conjugacy class C. In a fashion similar to our notation for conju-

gacy classes, we adopt the convention that XM be the character of the trivial 
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representation (so = 1 for 1 < j ≤ k) and that the order of the other 

representations is arbitrary. We denote the dimension of an absolutely ir-

reducible matrix representation of G with character ) by z. Note that 

Zi = x since Ia E C1. 

For 1 ≤ r, s, t ≤ k, the structure constant C,.3t is the number of solutions 

(x, y) to the equation xy = z with x E Cr, y E C3, for some fixed z € C. 

The number of solutions is easily shown to be independent of the particular 

Z E C, that is picked. Define V3 to be the matrix whose (r, t)th entry is c,.. 

The matrices V1, V2,. . . V are called the class matrices. 

It can be shown, using the character orthogonality relations (given in 

section 2.2.4), that if 

zi  forl≤i,j≤k 

then the w's are both eigenvalues and components of the eigenvectors of 

the class matrices. In particular, 

for 1 ≤ ij ≤ k. 

It can be shown using linear independence of the characters XM x2•• , 

that these relations uniquely determine the values w. The character values 

can then be recovered from W using the orthogonality relations and the 

fact that X' = 1 for 1 ≤ i ≤ k. This method for computing character tables 

is stated in more detail below. 
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Algorithm 1: Burnside's Character Algorithm 

Input: 

A multiplication table for a finite group G = {gl, 92, . . , 

Output: 

The character table for C over C. 

Step 1: 

Identify a representative x of each conjugacy class Ci in G and find 

the size of the conjugacy class containing that element. Call the 

sizes of the k conjugacy classes h1, . . . hj. The order is 

not important other than that C1 = {1}. 

Step 2: 

For each triple (r, s, t) where 1 ≤ r, s,t ≤ k, count the number c,. 

of solutions of xy = z such that x E Cr, y E C, for any 

fixed z E C. 

Step. 3: 

For each i where 1 ≤ i ≤ k, find the index i of the conjugacy 

class C. containing the inverses of the elements of the class C2. 

Step 4: 

For each s where 1 ≤ S ≤ k, let V, E Mkxk(C) be the class 

matrix given by (V,)rt = c,.,t for 1 ≤ r, t ≤ k. 

Find the eigenvalues and bases for the eigenspaces of each of 

the matrices V,. Find bases 

w1= W2 = 

(k) 
Wi 

(k) 
W2 

(k) 
Wk 
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for the intersections of the eigenspaces, such that these are 

common eigenvectors of V1,... , V, span Mk1(C), and 

each has first component 1. 

Step 5: 

For 1 ≤ i ≤ k, compute the integer 

=  (i) 
w1 w1. 

(i) 
n 1 

xS 

Step 6: 

For each pair (r, s) such that 1 ≤ r, s ≤ Ic, the (r, s)thl entry 

in the character table of G is given by: 

Zr  

where is the rt component of the vector w3. 

Step 7: 

Output the values X for 1 ≤ r, s ≤ k. U 

Since G is finite, the elements of its character table are algebraic numbers 

in Q[i] where i is a kt primitive root of unity and k divides the order of G. 

See section 2.3.2 for a discussion of the representation of these numbers. 

The fact that this algorithm can be implemented in polynomial time was 

used in [Ebe89] to prove the following theorem. 

Theorem 3 x from x E FP. 0 
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3.2 Inverting Part of Burnside's Algorithm 

In this section, we observe that most of Burnside's algorithm (described in 

section 3.1) is invertible. More specifically, the "structure constants" found 

in step 2 of Burnside's algorithm can be found efficiently from a character 

table. 

As before, we restrict ourselves to talking about the character table of a 

finite group G over C. We carry over the notation of the last section. That 

is, we write G for a finite group of order n. The k conjugacy classes in G 

are written C, where i ranges from 1 to k, and their sizes are written h. 

Once again, C1 = JIG}. By i we mean the index of the class C. containing 

the inverses of the elements of the class C2. The value zi is the dimension 

of the it' irreducible representation. Finally, x is value of the character of 
the representation class i at the conjugacy class C3. Columns in character 

tables correspond to conjugacy classes in the group and rows correspond to 

the equivalence classes of absolutely irreducible representations. 

We now define a new problem. 

Problem 7: Cr$t from x 
Structure Constants from Character Table 

Input: 

An absolutely irreducible character table xt of a finite group G. 

Output: 

A "table" of structure constants Cr8t for the group G where 

C,-.t is the number of solutions to xy = z for any fixed z 

in the conjugacy class with index t (denoted C) and x and 

y are in C and C3 respectively. • 
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This problem can be solved in polynomial time by using a few identities 

to find the size m of the group, the sizes h2 of the conjugacy classes, the 

values i' of the indexes of the conjugacy classes C. containing the inverses 

of the members of the class C1, and the values zi of the dimensions of the 

absolutely irreducible representations of G, and then using the formula 

h k (m) (m) (m) 
r1&s 'cç Xr X Xt  

L.d Zm 
(3.1) 

proved on page 216 of [CR81] to invert the last stages of Burnside's algorithm. 

We begin by observing that we can locate the column in x corresponding 
to the class consisting of only the identity element, since it will be the only 

column with only positive integers as entries: this column must have posi-

tive integer entries since any matrix representation with dimension zi must 

represent the identity element of C by the z1 x z1 identity matrix. Consider 

the fourth orthogonality relation (equation (2.6)) 

k 
(1) (1) 71 

Xz Xj hij6i 
1=1 j 

If there is a second column with index j in the character table whose entries 

are all positive then the value of the left hand side of the orthogonality 

relation is positive when i and j" are the indexes of these columns. Since 

C1 is the conjugacy class containing the identity element, i i. So, if i 

and j are distinct then i and j are distinct. Thus, the right hand side of 

the relation is zero when i j. This is a contradiction, so there are no 

other cOlumns whose entries are il positive. Therefore, since the "identity" 

column is easily locatable, we can assume without loss of generality that it 

is the first column X, in the character table. 

Since degree z of the jth irreducible character equals for 1 ≤ i ≤ k, 

we can now directly read these degrees from the character table. 
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We can now use the identity n = z12 to find n. (The identity is 

simply equation (2.6) with i = j = 1.) 

We use the fourth orthogonality relation (equation (2.6), again), to find 

the values j by computing the sum L for pairs of rows i and j 

and observing that j = i if and only if the sum is non-zero. At the same 

time, we can find the values of the hi's using n and the non-zero sums above. 

We now have all of the values on the right hand side of equation (3.1) 

and thus can use it to evaluate the structure constants C,.t. 

The above is summarized in the algorithm below. 

Algorithm 2: Inversion of Burnside's Character Algorithm 

Input: 

A character table x (1 ≤ j,≤ k) for a finite group G. 
Output: 

The structure constants c,. (1 ≤ r, s, t ≤ k) for G. 

Step 1: 

Identify the column in the character table corresponding to the 

conjugacy class containing the identity element in the group 

by finding a column with only positive integer entries. Call 

this column Xi• 

Step 2: 

Read the dimensions of the irreducible representation classes z 

from the column located in step 1: zi = for 1 ≤ i < k. 

Step 3: 

Compute the size of the group, m = z2. 

Step 4: 

For each 1 ≤ i ≤ k, find the values i' and hi by computing sums 
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k 

= X1 X3 for 1 ≤ i ≤ k 
1=1 

and setting i = j and hi = n/X, for the unique index j 

such that the sum is nonzero. 

Step 5: 

Output the values C3t found using equation (3.1): 

hrhs (m)X(m)X (rn) 
Crst = 

m=1 Zm 

for l≤r,s,t≤k. I 

Theorem 4 crg from x E FP. N 

Proof: Each of the steps of the above algorithm can be accomplished in 

polynomial time. Steps 1 and 2 involv simply searching the input and 

copying part of it. Step 3 is a sum over Ic values and step 4 involves at most 

0(k2) sums over k values. Step 5 involves k3 summations, each of which can 

be done with k - 1 additions, 2(k - 1) multiplications, and Ic - 1 divisions. 

Thus, we need no more than 0(k4) field operations for the entire algorithm. 

N 

The inversion process cannot proceed any further. There are finite groups 

which are non-isomorphic and have the same character table. For example, 

the fourth dihedral group D4 and the quaternion group Q of order eight are 

non-isomorphic and have the same character table. 

It is interesting to consider the inversion problem for special classes of 

groups. There are no known examples of non-isomorphic simple non-abelian 
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groups with the same character table (see [CR81]). It seems possible that 

Cayley tables could be found from character tables of these groups or some 

large subclass of these groups. This takes us well beyond the scope of this 

thesis. We end the discussion on this topic by noting that since the size of 

the multiplication table can be superpolynomial in the size of the character 

table, the standard definitions of efficiency are not directly applicable to the 

complete inversion problem. 

Some comments on the analysis remain. We have counted arithmetic op-

erations rather than Boolean operations. Since our inputs are algebraic num-

bers, it is not immediately clear that only a polynomial number of Boolean 

operations are needed. This subject is beyond the scope of this thesis. For 

now, it will suffice to say that the proof that Burnside's algorithm could be 

implemented in polynomial time explicitly counted the number of Boolean 

operations required (see [Ebe89]). Since we are dealing with the same alge-

braic numbers, our proof carries over. For more information on the complex-

ity of arithmetic for algebraic numbers see [Loo83]. 

The application of the theorem to Schneider's strategy for computing 

characters from an incomplete set of structure constants [Sch90] allows the 

derivation of a lower bound on the number of structure constants that must 

be used. That is, since the entire set of structure constants can be recovered 

from the character table, one can only find the character table if one has 

enough information to construct all of the structure constants. However, it 

is still not clear how exactly the structure constants depend on one another. 

As well, the inversion algorithms provides an efficient reduction from the 

problem "given a specification of a finite group G (in some form), find the 

structure constants for G" to the problem "given (the same) specification 

of G, find the absolutely irreducible character table of G". That is, finding 
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all of the structure constants of a group does not require substantially more 

resources than finding the group's character table. 
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Chapter 4 

Characters of the Symmetric 

Group 

In this chapter, we examine two problems in the character theory of the 

symmetric group. The hardness and completeness results (for computing in-

dividual characters of the symmetric group and for a generalization of com-

puting coefficients in the decomposition of the outer product of characters of 

the symmetric group) in this chapter are new. The character and decompo-

sition algorithms are standard parts of the literature but the analysis is new. 

The algorithm for counting lattice partitions is a straightforward application 

of Kreweras' Theorem. We are unaware of any previous publication of this 

algorithm but it seems likely that the algorithm has been known for some 

time. 

For general groups, there is no known way to sensibly and succinctly 

specify a particular class of absolutely irreducible representations and thus 

we cannot formulate a good version of the problem of computing individual 

entries in the character table of a general group. However, for the symmetric 
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groups, we can sensibly and succinctly specify both conjugacy classes and 

classes of absolutely irreducible representations. Thus, we can formulate 

computational problems about individual entries in the character table of 

the symmetric group. 

These problems are quite old. Frobenius gave a formula for the characters 

and subsequent researchers have used the formula and related results to 

produce correct algorithms for the problem. Littlewood and Richardson gave 

a rule for finding the coefficients in the decomposition of the outer product 

of characters of symmetric groups. 

We formulate two numerical versions of the character problem. The first 

is simply the problem of finding the character of a representation at a conju-

gacy class. For technical reasons connected with giving a good classification 

of the complexity of the problem, we need to be able to work with positive 

numbers. Thus, we define a second version of this problem where we find the 

sum of the character and a sufficiently large number. We define a decision 

problem by adding a threshold value to the above and asking if the character 

is larger than the threshold. 

We use a known algorithm to show that the second version of the nu-

merical problem is in #P and that the decision problem is in PP. We then 

show that the counting problems are hard for #P and the decision problem 

is hard for PP. 

We have less success with the outer product problem. Again, we show 

membership in #P and PP for number and decision versions of the problem. 

We were unable to show hardness results for the problem. We do show that 

a generalization of computing outer products is hard and we identify an 

interesting class of easy instances of the problem. 
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4.1 Characters of the Symmetric Group 

A variant of the Murnaghan—Nakayama rule for computing characters (fol-

lowing [Keo75]) is presented. There is a strong connection between the Frobe-

nius formula (see, for example, [Ham89]) and the Murnaghan—Nakayama 

rule. When the algorithm is recursive, it is called the Murnaghan—Nakayama 

rule. Otherwise, it is an application of the Frobenius formula. 

Correctness proofs of various formulations of the algorithm are contained 

in [Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. Using the correctness of 

this algorithm, we establish reductions from appropriate formulations of the 

hard problem 4—PARTITION (see section 2.3.3) to the problem of finding 

individual entries in the character table of the symmetric group. Finally, 

we use the algorithm to show that the character problems can be solved 

within certain resource constraints. These resource bounds, together with 

the hardness results, imply completeness results. 

The reader may recall (from Definition 3) that the symmetric group S 

is the group of all permutations of n objects and has size n!. The conjugacy 

classes of S are directly identifiable with the partitions of n (partitions are 

described in section 2.2.2). The classes of irreducible representations of S, 

(described in section 2.2.3) have a natural one—to--one correspondence with 

the partitions of n. This is a consequence of the special representation theory 

of the symmetric group. The description of the correspondence can be found 

in [Ker91], [JK81], and [Sag91]. 

We will write A = [A1, A2,... , A,] for a partition of ri specifying a class 

of irreducible representations of S, and /2 = [m /22,. .. , j] for a partition 

of m specifying a conjugacy class in S,,. Further, we adopt as a convention 

that the entries in the partitions are given in non-increasing order and only 
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positive entries are included in the specification of a partition. 

We now have the capability to ask: 'for the symmetric group S,, what 

is the value of the character of an irreducible representation given by A at a 

conjugacy class j.L?' Throughout this chapter, we will denote this value by 

We formally define several problems related to the above question. The 

first problem is a restatement of the question above. The inputs for each of 

these problems are essentially the same. 

Number Problem 8: #CSG 

Individual Character of the Symmetric Group 

Input: 

ri: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of S, 

1: a partition of n specifying a conjugacy class in S. 

Output: 

The value of the character of an irreducible representation 

in A at the conjugacy class u: xA(,L). U 

Since the value x () can be negative and we will be concerned with 
computations on a counting Turing machine, we give a definition of the 

same problem offset so that all values are positive and thus not trivially 

uncomputable in this model. 
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Number Problem 9: #CSG+ 

Sum of an Individual Character of the Symmetric Group and r 

Input: 

n: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of Sn, 

u: a partition of n specifying a conjugacy class in S. 

Output: 

The value of sum of character of an irreducible representation 

in A at the conjugacy class j and n: x(f.L) + n' 

This variation of the problem allows us to give a good characterization 

of the complexity of the problem. 

Decision Problem 10: TCSG 

Threshold for Individual Characters of the Symmetric Group 

Input: 

n: expressed in unary, 

A: a partition of ii specifying a class of equivalent irreducible 

representations of S,, 

p: a partition of n specifying a conjugacy class in S,. 

x: an integer threshold value expressed in binary. 

Question: 

Is the value of the character of an irreducible, representation 

in A at the conjugacy class i greater than or equal to x? 

That is, is ≥ x? 

All of the above problems include an input of ri in unary. This means 

that the way that we express the numbers in the partitions is inconsequential. 
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We may express them in binary or unary without a significant change in the 

input size. Furthermore, our hardness results hold with this padding of the 

input and our membership results are not affected. Thus, the padding allows 

us to state the results in the strongest possible manner. 

4.1.1 A Graphical Version of the Murnaghan—Nakayama 

Rule 

The graphical version of the algorithm inspired the polynomial transforma-

tion given in section 4.1.3. Also, it is useful for visualizing the steps of the 

hardness proof. 

The extended diagram for a partition A = [A1, A2,... , A] can be formally 

defined as the set of points {(i, j) E Z2 such that 1 ≤ j ≤ A + k - i}. 

We draw the diagrams using the same indexing conventions as are used 

with matrices. The first coordinate i designates the row and increases from 

top to bottom. The second coordinate is for columns and increases from left 

to right. Thus, the extended diagram corresponding to [3, 2, 1, 1] is the set 

of points: 

{ (1, 1), (1, 2), (1 ) 3), (1) 4), (1 ) 5), (1, 6) , (2) 1), 

(2,2),(2,3), (2, 4), (3,1),(3,2), (4, 1)} 

and is drawn: 

The first operation on extended diagrams that we will consider is the 

removal of a cycle. We remove a cycle of length 1 from some row m of an 

extended diagram by colouring in the rightmost boxes of the row rather than 
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erasing the boxes from the row. The advantage of this is that we can see 

what operation we are performing on a single diagram. 

Thus, the extended diagram for [3,2, 1, 1] with a 2-cycle removed from 

the second row is: 

(4.1) 

Further cycles can be removed from that row by colouring the appropriate 

number of the rightmost uncoloured boxes. Whenever we remove a cycle 

from an extended diagram, all of the boxes that we colour for that cycle 

must be removed from only one row. 

The second operation is row transposition. This can be done to extended 

diagrams that have had cycles removed. Transposing rows i1 and i2 can be 

thought of as a simple exercise with scissors. Simply cut both rows from the 

diagram and replace the rows in the diagram in opposite order. In terms of 

the formal definition, this means replacing all occurrences of i1 with i2 and 

i2 with i1 in the first (row) position of the elements of the extended diagram. 

Thus, transposing the second and third rows of the diagram shown in 4.1 

results in: 

(4.2) 

A sequence of transpositions can be viewed as a permutation of the rows of a 

diagram. This allows us to talk about the sign of a sequence of transpositions. 

Bearing in mind that colouring boxes is shorthand for erasing boxes, we 

say that two extended diagrams are equivalent if their uncoloured boxes are 

in the same positions. From this point of view, the diagrams shown in 4.1 

and 4.2 are equivalent. 
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There is one special diagram that we need. The k-staircase is the diagram 

consisting of the points (i,j) E z2 such that 1 ≤ j < k and 1 ≤ j ≤ k - i. 

The 5-staircase looks like this. 

The bottom row of the staircase is empty. That is, the widths of the rows 

are (4, 3, 2, 1, 0). 

Now that we have established the notation, we proceed with the algo-

rithm. 

Algorithm 3: The Graphical Murnaghan-Nakayama Rule 

Input: 

n: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of S, 

: a partition of n specifying a conjugacy class in S,. 

Output: 

The value of the character of an irreducible representation 

in A at the conjugacy class : 

x GL) . 
Step 1: 

counter - 0 

for i - 1 to m do 

z 4- 1 

endfor 

jm 
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Step 2: 

while (j 5A 0) do 

continue - True 

h extended diagram(A) 

while ((continue) and (i <m)) do 

remove Mi from row zi of the extended diagram h 

(to get a new h) 

if ((row i of h is negative) or 

(h has two equal rows) then 

continue - False 

j4—i 

endif 

increment i 

endwhile 

if (continue) then 

if (h is an even row permutation of the k-staircase) then 

increment counter 

else 

decrement counter 

endif 

j4—m 

endif 

increment z 
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while ((zj > k) and (j> 1)) do 

decrement j 

endwhile 

increment z 

for i 4- j + 1 to m do 

Zi - 1 

endfor 

endwbile 

Step 3: 

Output counter 

Note that we can rearrange the initial order of the pi's without affecting 

correctness although this can affect the efficiency of the algorithm. 

We now present an example of using the graphical Murnaghan-Nakayama 

rule. 

Example 4.1.12: Graphical Evaluation of X[3,2,1,11 ([2,2,2, 1]) 

We let A = [3, 2, 1, 1] and p = [2,2, 2, 1]. We have already 

determined h from A to be the diagram 

- We start with z1 = 1, z2 = 1, z3 = 1, and z4 = 1. Thus, we 

remove the first cycle of it from the first row of h to get 
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Since the first and second rows in the diagram are now the same 

size, we continue with z1 = 2, z2 = 1, Z3 = 1, and z4 = 1. 

Removing the first cycle of p from the second row of h gives 

This time, the second and third rows in the diagram are the 

same size. We continue with z1 = 3, z2 = 1, z3 = 1, and Z4 = 1. 

Removing the first cycle of it from the third row of h gives 

This diagram does not violate the constraints given in step 2 of 

the algorithm, so, since z2 = 1, we remove the second cycle of p 

from the first row of the diagram to get 

Again the first and second rows are the same. This leads to 

considering z1 = 3, Z2 = 2, z3 = 1, and z4 = 1. Removing the 

constituents of p from h according to these z's gives the diagram 

The permutation taking the diagram to a staircase is odd so we 

decrement the counter to —1. 
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Having seen the details of each step, we proceed through the 

rest of the execution of the algorithm more quickly. 

Continuing with z1 = 3, z2 = 2, z3 = 1, and z4 = 2 gives 

a diagram in which the second and fourth rows have the same 

length. Thus, without changing the counter, we continue with 

= 3, z2 = 2, z3 = 1, and z4 = 3. The third row in the diagram 

for this case has a negative width so we continue with z1 = 3, 

2, z3 = 1, and z4 = 4. In this case, the third and fourth 

rows are the same so we jump to z1 = 3, Z2 = 2, z3 = 2, and 

= 1. After removing the third cycle of from h, we see that 

the second and third rows have .the same size. Thus, we continue 

with z1 = 3, z2 = 2, z3 = 3, and z4 = 1. Removing the third 

cycle of tz from the third row yields a row with negative size and 

so we continue with z1 = 3, Z2 = 2, z3 = 4, and Z4 = 1. Again 

we get a negative row upon removing the third cycle so we set 

= 3, z2 = 3, z3 = 1, and Z4 = 1. This yields a negative row 

upon removing the second cycle, as does z1 = 3, z2 = 4, z3 = 1, 

and z4 = 1. This takes us to z1 = 4, z2 = 1, z3 = 1, and z4 = 1 

which gives a negative fourth row on removing the first cycle of 

p. At this point, the algorithm terminates, returning a value 

of —1 since we have not incremented the counter and we have 

decremented it only once. I 
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4.1.2 A Concise Version of the Murnaghan-Nakayama 

Rule 

We translate the graphical algorithm into a form more amenable to symbolic 

manipulation. 

We use the following notation. The extended diagram for A is denoted 

by h = [h1, h2,.. . , h] where the components h, called the principal hooks, 

are given by: 

h=A-j-k—i (1≤i<k) (4.3) 

This is equivalent to the definition of extended diagram earlier but is more 

succinct. The extended diagram h completely determines the class of ir-

reducible representations A and each can easily be found from the other in 

deterministic polynomial time. A hook structure is an extended diagram that 

may have had cycles removed from it. 

We use tJ to denote multiset union (adding multiplicities). We use angle 

brackets () to denote multisets. We define the action of a cycle fLi on a hook 
structure h = [h1, h2.. .. h,] to be the multiset 

k 

= tj ([h1,h2) . 
M=1 

and the action of a cycle on a multiset of hook structures to be the multiset 

union of the action of the cycle on each of the members of the multiset. 

Note that we are using superscripts to differentiate between hook structures, 

and not to indicate exponentiation. 
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The value of a hook structure h = [h1, h2,. , h,} is defined to be 

IhI= 

o ifai such that h<O 

o if 2i,j (i 4i) such that Ii2 
1 if an even permutation sorts h1, h2,. . . , h, into descending order 

—1 if an odd permutaion sorts h1, h2,.. . , h, into descending order 

The value of a multiset of hook structures is the sum of the values of the 

individual hook structures in the multiset. 

II(h',h2,...,h)II =IhI. 
i=1 

With this notation in place, we can see that the value of the character 

X (p ) given by the graphical algorithm is the value of the multiset formed 
by allowing each of the cycles of i to act on the extended diagram h formed 

from A. 

The algorithm is stated below. 

Algorithm 4: The Concise Murnaghan—Nakayama Rule 

Input: 

ri: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of S,, 

j: a partition of n specifying a conjugacy class in S,. 

Output: 

The value of the character of an irreducible representation 

in A at the conjugacy class v: xA(1). 
Step 1: 

Determine the extended diagram h for A 
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Step 2: 

Evaluate xAOL) = JJ/L1(p2... (,Umh). . .))JJ 
and return the value. • 

Equivalent versions of the above algorithm are shown to be correct in 

[Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. The notation and exact 

formulation of the algorithm is different in each of the sources. With the 

appropriate translation and possibly some rearrangement of the order of the 

steps, each of them yields the following theorem. 

Theorem 5 The Concise Murnaghan—Nakayama Rule on input n, A, and 

returns the value of the character of an absolutely irreducible representation 

of S, in A at p. That is, the Concise Murnaghan—Nakayama Rule correctly 

finds xA().0 

4.1.3 A Polynomial Time Transformation 

Consider an instance (A, B, s) of 4—PARTITION (see Section 2.3.3) where 

A = {a1, a2,. . . a4m }, s : A -+ Z, and B Z is polynomially bounded in 

m = Al. Without loss of generality, suppose 

s(al) ≥ s(a2) ≥ ... ≥ s(a4,). 

We construct an instance (n, A, i) of #CSG from (A, B, s). Let 

n = m 2 . B, 

(44) 

and p = [m. s(ai),.. . , m s(a4m)]. 

This transformation can be done in polynomial time whenever B is bounded 

by a specific polynomial p(m). 
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Intuitively, we use the rows of the extended diagram for A to hold 4—sets 

and the partition p to encode the sizes in the 4—PARTITION instance. The 

sizes are scaled up so that any valid 4—set S2 (withE aES s(a) = B) will fit 

into a row. Furthermore, with the row i filled by a valid 4-set, there will be 

m - i boxes left unfilled in that row. Thus, if all rows are filled with valid 

4-sets, then we are left with a staircase which is counted as one. Any other 

way to fill the diagram with the cycles of p will result in at least one row 

taking elements (in the instance of 4—PARTITION) whose sizes sum to more 

than B and thus, whose sizes (in the instance of #CSG) sum to more than 

m - (B + 1). Since none of the rows in the diagram for A are that big, the 

resulting hook structure has a negative component. Thus, the resulting hook 

structure cannot be a permuted staircase and so it is not counted. 

LemMa 1 If there are N valid 4—partitions of (A, B, s) then the value of 

the character xA(p) of S,, at A and p given by equation (4.4) is N m! a 

Proof: The extended diagram h resulting from A is given below. 

h= [mB+m— 1,mB+m-2,...,mB] 

That is, the components hi of h are given by 

h=mB+m — i (1<i<m). 

For any subset S C A let D(S) be defined by 

D(S)=B — >s(a) 
aES 

If we remove only the cycles j such that aj E S C A from the jth row of 

h we get a resulting extended diagram where the value of the th component, 
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which we denote by H(S, i), is 

H(S, i) = h - aES ms(a) 

=mB+m — i+m(B — YaEss(a) — B) 

= mB + m — i + mD(S) — mB 

=m—i+mD(S). 

IfD(S) = 0, then H(S,i)=m—i. IfD(S) <0, then 

H(S,i) =m—i+mD(S) 

m—i—m<0. 

Thus, if S, S2,... , S, is a valid 4—partition of A then D(S) = 0 for 1 ≤ 

i ≤ m and so we can remove the Itj's corresponding to the Si's from h, 

by removing p.j from hi whenever btj E S, to get {H(S, 1),. .. , H(S, m)] = 

[m - 1, rn - 2,... ,0], which contributes one to the value of the character. 

Now, from an expression S, 5 2,. . . , 5m for a valid 4—partition, any permu-

tation ir of m objects applied to the subscript in the expression gives another 

expression S11(i), Sir(2),... , Sir(m) for the same 4—partition. Since there are m! 

such expressions for each such 4—partition and each of these expressions con-

tributes one to the value of the character, if there are N valid 4—partitions 

of A, we get a contribution of N - m! to the character. 

We now prove that there are no further contributions to the character. 

Given any sequence z = (z1,.. . Zk) € {1, 2, . . . m}', we can reverse the process 

described above by putting ai into S; to get a partition Si, S2... . , Sm of A. If 

the resulting partition is a valid partition then we have a contribution of one 

as described above. Now, consider the case where the resulting partition is 

not a valid partition of A. In such a partition, there must be an Sisuch that 

the sum of the sizes of the elements is greater than B. If not, the partition 

would be valid. Let Sibe such a set and consider what happens to the jth 
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row when we remove the j's from h following z. Since 

s(a)>B 
aES1 

we have D(S) < 0. This, in turn, implies that H(S, i) < 0 and so the 

contribution to the value of the character is zero. • 

4.1.4 A Probabilistic Polynomial Time Version of the 

Murnaghan—Nakayama Rule 

Recall that a probabilistic Turing machine is a non—deterministic Turing ma-

chine that accepts a string if strictly more than half of the possible compu-

tation paths on that string are accepting computations. For a more detailed 

description see [Joh90]. 

Informally, we use the phrase 'generate n accepting computations' to in-

dicate a process where we allow the computation tree to branch [log2 n] 

times by writing [1092 nl 0's or l's to the tape. For all of the sequences of 

U's and l's that correspond to a number less than n, the machine jumps 

immediately to an accepting state. For those greater .than or equal to n, 

the machine writes another 0 or 1 and rejects if it wrote a 0 and accepts if 

it wrote a 1. After this process, there will be n more accepting computa-

tions than rejecting computations and, since the balance of the number of 

accepting computations versus the number of rejecting computations is all 

that matters .for overall acceptance in this model of computation, we can ig-

nore the matching acceptances and rejections produced for numbers greater 

than or equal to n. We use the phrase 'generate ri accepting computations 

and continue' to indicate that the process should be prefaced by a single 

branching of the computation tree where one branch generates n accepting 
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computations and the other continues. Similar definitions apply to generat-

ing rejections. 'Nondeterministically generate' means produce a branch in 

the computation tree for each of the things specified. 

We describe a probabilistic polynomial time version of the Murnaghan-

Nakayama rule. 

Let h = [h1,. . . , h,] be an extended diagram. Let = . . , jtz] be a 

partition (specifying a conjugacy class) and let z E {1, 2,. .. , k}1. We define 

the symbol (h - as the value of the extended diagram resulting from 

removing g from h according to z. That is, let 

= h = [hi,. . . 

and 

- -' - . L 1 hZi  k 

The value of (h - , is the value of the resulting extended diagram 

Algorithm 5: PP Algorithm for TCSG 

Input: 

n: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of S, 

: a partition of n specifying a conjugacy class in Si,. 

x: an integer threshold value expressed in binary. 

Question: 

Is the value of the character of an irreducible representation 

in A at the conjugacy class greater than or equal to x? 

That is, is ,X(1) ≥ x? 
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Step 1: 

if (x> 0) then 

generate 2x - 1 rejecting computations and continue 

else 

generate 21x1 + 1 accepting computations and continue 

endif 

Step 2: 

Non-deterministically generate a z E {1, 2, .. . , 

(ie. for each z do): 

Step 2.1: 

if(h—p)--0 then 

generate an accepting computation 

and a rejecting computation 

else if ((h - p) 1) then 

generate two accepting computations 

else 

{(h—u)-- —1} 

generate two rejecting computations 

endif 

We show below that correctness of this algorithm is implied by that of 

the Concise Murnaghan-Nakayama rule. 

Let P' (y) be the number of ways that A can be removed from the 

principle hook structure h for representation class A so that the resulting 

hook structure h' evaluates to y. That is, P'(y) = I{z: (h - = y} I. 
Now from the Concise Murnaghan-Nakayama rule, we see that 

xA(/) = P"(1) - PA1L(_1). (4.5)• 
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So X' (p) ≥ x if and only if 

PA1L(1) - P"(—l) ≥ x; 

that is, 

PAP(1) - P(_1) - x ≥ 0. 

We now examine the possible outputs from the algorithm in two cases. 

Case 1: If x> 0, the algorithm gives: 

From step 1: 2x - 1 rejections and 

From step 2: 

P1&(0) acceptances, 

PAP(0) rejections, 

2P)"(1) acceptances, and 

2P"(— 1) rejections 

so the total number of accepting computations is P"(0) + 2P'"(1) and the 

total number of rejecting computations is 2x - 1 + P"(0) + 2P>"(-1). 

The algorithm accepts the input if and only if the number of acceptances 

is larger than the number of rejections. If x> 0, this is true if and only if 

P.12(0) + 2P?.1L(1) > 2x - 1 + P"(0) + 2P>""(-1) 

Consolidating terms involving P>h12 yields 

2P>.1h(1) - 2P"(-1) > 2x - 1 

and from equation (4.5), we have 

2X"(/,t) > 2x - 1. 
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Since X' (p) and x are integers, this is equivalent to the condition 

2) ≥ 2x 

or 

X, (A) >_ x. 

Similarly, the algorithm rejects the input if and only if the number of rejec-

tions is at least as big as the number of acceptances. Again, when x> 0 we 

get 

P>"(0) + 2pAIL(1) < 2x - 1 + PL (0) + 2P(-1) 

and again consolidating terms and applying equation (4.5) gives 

x"(i) <s. 

Thus, when x> 0 the algorithm accepts if xA (ii) ≥ x and it rejects otherwise. 

Case 2: If x < 0, then by a similar calculation to the above, the number of 

accepting computation paths is 

21x1 + 1 + PA12(0) + 2P(1) 

and the number of rejecting computation paths is 

p"(0) + 2PA1L(_l). 

Now if xt) ≥ x, then 

2XA(p) ≥ 2x = —21x1. 

Applying equation (4.5) and subtracting 1 from the right hand side to get 

an inequality, we have 

2P\1L(1) - 2P", (-1) > -21x1 - 1. 
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Adding P"(0) to both sides and rearranging terms gives 

2P'(1) + PAL(0) + 21x1 + 1 > 2P''(-1) + PA1L(0) 

which implies that the number of accepting computation paths is larger than 

the number of rejecting computation paths. Similarly, if xA(p) <x, then 

2 >'(,t) < 2x— 1. 

Again adding P(0) to both sides and rearranging terms gives 

2PA(1) + PA1L(0) + 21x1 + 1 < 2PAz(..1) + P(0) 

which implies the number of accepting computation paths is smaller than 

the number of rejection computation paths. 

Lemma 2 TCSG E PP. • 

Proof: As we have just seen, the algorithm is correct. Furthermore, each 

branch of the algorithm is of polynomial length. The paths terminating in 

step 1 are of length O(log(x)) which is clearly bounded by a polynomial in 

the input size. The paths terminating in step 2 are of length O(log(n) . k. 1) 

which is polynomial in the input size even when the input is not written in 

unary. N 

4.1.5 The Murnaghan-Nakayama Rule on a Counting 

Turing Machine 

Recall that a counting Turing machine (CTM) is structurally the same as a 

probabilistic machine except that the value returned by a CTM is the num-

ber of accepting computations, rather than just a 'yes' or 'no' depending on 
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whether there are more accepting computations than rejecting computations. 

The class #P is the set of all problems solvable by a CTM in polynomial 

time. Since we do not care at all about the number of rejecting computations, 

when we say 'generate m accepting computations' we mean generate exactly 

n accepting computations. This is easily done by nondeterministically gen-

erating flog2 nj 0's and l's and accepting only if the resulting number (in 
binary) is less than n. For a more detailed 'discussion of counting Turing 

machines see [Joh90]. 

Since a CTM cannot return a negative number, instead of directly evalu-

ating the character, we consider the problem of evaluation of the sum of the 

value of a character and an easily computable large positive number. This 

allows us to give an exact classification of the problem. From this, we can 

easily compute the desired character value and thus we have a good classi-

fication of computing the character as well. We choose the large number to 

be fl since it is both easily computable and is always at least as large as the 

absolute value of the character of Sn. 

We now present a CTM version of the Murnaghan-Nakayama Rule. 

Algorithm 6: CTM Version of the Murnaghan-Nakayama Rule 

Input: 

n: expressed in unary, 

A: a partition of n specifying a class of equivalent irreducible 

representations of S,,, 

: a partition of n specifying a conjugacy class in S,. 
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Output: 

The value of the character of an irreducible representation 

in A at the conjugacy class p, plus n: 

x"(i4+n. 

Step 1: 

Step 1.1: 

Find kt and n'. 

Step 1.2: 

Generate TlZ - k' accepting computations and continue. 

Step 2: 

for each zE kJI do 

if(h—p)=1 then 

generate two accepting computations 

else if ((h - = —1) then 

reject 

else 

{(h—/2)2 --O} 

accept 

endif 

endfor • 

The number of accepting computations is 

2P"(1) + PA1L(0) + nn + k1 = PAL(1) + P1L(0) + P(-1) 

+ P1a(1) - PA1L(_1) + n n 
- kt 

and, since 

PA(1) + P(0) + PA1L(_1) = k1 
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and 

x = PAh2(l) - 

the number of accepting computations is 

k1 + xA(iz) + nn - k' = xA(,L) + nn 

We observe that, since k, 1 ≤ n, we have that n'2 ≥ k'. Thus step 1 above 

can always be done since the value n" k1 is always non-negative. 

Lemma 3 #CSG+ E #P. I 

Proof: Counting operations on hook structures as unit cost, each branch of 

the algorithm takes O(n. k - 1) time and the n" branches can be generated in 

O(n log(n)) time. Thus the total running time is O(n log(n) + nkl). N 

4.1.6 Completeness Theorems 

We are now in a position to prove the main theorems of this section. 

Theorem 6 TCSG is PP—complete. I 

Proof: We recall from section 2.3.3 that the problem T-4—PARTITION 

is PP—complete. The transformation given in section 4.1.3 was shown to be 

parsimonious so TCSG is PP—hard. Combining this with lemma 2 immedi-

ately implies the result. I 

Theorem 7 #CSG is #P—hard. I 

Proof: We recall for section 2.3.3 that the problem #-4—PARTITION is 

+P—complete. The transformation given in section 4.1.3 was shown to be 

parsimonious so #CSG is #P—hard. 0 



78 

Theorem 8 #CSG+ is #P—complete. • 

Proof: Theorem 7 and the fact that r n is easily computable (in binary from 

unary input n) implies #P—hardness. Lemma 3 shows membership in #P. 

Combining these implies the result. 

Theorem 8 shows that #CSG fails to be#P—complete only by virtue of 

having some negative answers. 

4.2 Outer Products, Schur Functions, and The 

Litt lewood-Richardson Rule 

In this section, we describe problem of decomposition of outer products of 

characters of the symmetric group. There is a well known connection between 

this problem and computing coefficients of Schur polynomials. Namely, both 

are solved by the Littlewood—Richardson rule. We analyze the Littlewood— 

Richardson rule as it stands and use it to define several related problems to 

get a better picture of the complexity of the above problems. Schur polyno-

mials and outer products of characters are discussed at length in [Mac79], 

[Sag9l], [JK81] and [Ker91]. 

Other work has been done in this problem. The Littlewood—Richardson 

rule is modified to produce another combinatorial algorithm in [RW84]. 

[Ee82J documents an implementation of the Littlewood—Richardson rule 

with pruning. [ER85] contains a table of Littlewood—Richardson coefficients 

for two special cases up to n = 30. 
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4.2.1 Outer Products of Characters of the Symmetric 

Group 

Given two matrix representations over the same field, T1 of S0 and T2 of Sm 

of dimensions ft and 71h respectively, we can construct the tensor product of 

these representations T1 ® T2 of Sn Sm for any g1 E S,, and any 92 E Sm. 

The dimension of this representation is ii x r1i.. 

Recalling the definition of the direct sum of groups, we see that Sn @ Sm 

is a subgroup of 5n+m• The matrix representation T1 0 T2 of S0 Sm can be 

extended to the whole of Sn+m - in particular, to the induced representation 

(defined, for example in [Ser77] and [FH62] and mentioned in Section 2.2.3). 

The resulting matrix representation T' = (T1 0 T2) I S0 ,,j is called the outer 

product ofT1 and T2. We shorten the notation to T' = T1 01'2 so that we can 

more easily generalize the above notation to characters. 

This gives us a well defined operation on the characters of the symmetric 

groups since if T1 and T1' are similar representations and T2 and T2' are 

similar representations then T1 T2 and T1' 1'2' are similar. Using n and m 

and the superscripts (1) and (2) rather than subscripts, we write X () o 

for the character of the (reducible) representation T' = T1 oT2 of 5,,+m• Since 

T' may be reducible, we can decompose T' into its irreducible constituents. 

Thus we write x'x'2  cAXA where the cA's are to be determined. 

We now have the notation necessary to define the problem of computing 

the coefficients of the irreducible constituents in the outer product. 

Number Problem 11: DecOutSym 

Decomposition of Outer Products of the Symmetric Group 

Input: 

Integers n, m > 0 (expressed in unary). 
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Partitions a, -y, and A of n, in and n + m respectively, 

specifying absolutely irreducible characters of Sn, Sm, 

and 5,,+m respectively. 

Output: 

The coefficient c), in the decomposition 

x = >qM-n+m N 

4.2.2 The Littlewood—Richardson Rule 

The standard diagram for a partition 

(Al, A2,. .. , 

is the set of points 

{(x,y) : :1. ≤ x ≤ A}. 

The standard diagram for (6,4,2, 1) is shown below. 

(4.6) 

For visually obvious reasons, we will often call the points boxes. 

Given two partitions A I- n + m and 'y I- m, we make the diagram A\-y by 

erasing the standard diagram for 'y from the upper left corner of the standard 

diagram for A. Thus, to make (6,4,2, 1)\(2, 2) we remove the diagram for 

(2,2) 

from the diagram for (6,4,2, 1) shown in (4.6) above to get the diagram 
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shown below. 

This operation is only well defined, if for all applicable i, Ai ≥ 'y2. 

The Littlewood-Richardson rule can now be stated. Given three parti-

tions A I- ri. + m, 1a I- n and y F- m, we make a diagram of X\'y and count the 

ways that we can fill the boxes with symbols directly identified with positive 

integers according to the following rules. 

1. One and only one integer is written in each box. 

2. If = (ELi,... , /2k), then exactly jij boxes contain i. 

3. The symbols are entered into the boxes in numerical order. That is, we 

start by adding l's and continues such that all symbols i are entered 

before we add any of symbol i + 1. 

4. No symbol is added directly to the right of an empty box. 

5. No symbol is added directly below an empty box. 

6. No symbol is added to a row that is above a row already containing 

that symbol. 

7. No two boxes in the same column contain the same integer. 

8. The sequence of integers obtained by reading each row from right to 

left and reading the rows from top to bottom is a lattice partition (see 

section 2.1.3). 
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If it is impossible to make the diagram A\'y then there are no ways to fill the 

diagram. 

Example 4.2.13: Using the Littlewood—Richardson Rule 

Let us consider the partitions A = (6,4,2, 1) and 'y = (2, 2) as 

above, and let p = (5,3, 1). We must fill the diagram A\'y with 

five l's, three 2's and one 3. We observe that the first row of A\y 

must be filled entirely with l's, otherwise we would violate either 

condition 4 or condition 8. The remaining 1 cannot be placed in 

the second row lest we violate condition 7. It can be placed in the 

first box of the third row, but not in the second box of the third 

row by condition 4, and not in the fourth row by condition 5. 

The second row must be completely filled with 2's for the 

same reasons that forced us to fill the first row with l's. At this 

point, we have the diagram: 

and we have one 2 and one 3 left to place. 

The remaining 2 can be placed in either of the remaining open 

boxes. The 3 must be placed in the other box. Both alternatives 

are shown below. 

Thus, there are two ways that the diagram A\'y can be filled 

in accordance with p. I 
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Since we have not been able to determine the complexity of the the prob-

lems solved by the Littlewood—Richardson rule, we do not present a more 

formal version of the rule. 

The fact that the Littlewood—Richardson Rule solves DecOutSym is 

proved, among other places, in [Sag91]. 

4.2.3 Analysis of the Littlewood—Richardson Rule 

There are a number of pruning techniques which allow one to avoid filling 

the boxes in all possible ways and then checking conditions 1 through 8. 

However, since the result of the algorithm can be superpolynomial in the 

input size (see section 4.2.5) and since the algorithm generates every valid 

placement of integers in )\'y, so that its running time is at leat linear in the 

value it returns as output, even with perfect pruning, the algorithm still has 

superpolynomial time complexity. Still, the above algorithm does allow us 

to observe the following. 

Theorem 9 DecOutSym E #P. 

Proof: Each of conditions 1 through 8 above can easily be checked by a 

Turing machine in polynomial time. Thus, a counting Turing machine, which 

generates all functions from the set of allowable symbols to the set of boxes 

in the standard diagram and then accepts only if the placement of symbols 

satisfies the conditions, solves DecOutSym. Further, each branch takes 

only polynomial time. U 

4.2.4 The Complexity of Associated Problems 

The description of the Littlewood—Richardson Rule is only dependent on A 

and y being partitions for determining the diagram A\-y. The conditions 
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given above can be used on a diagram even if it is not obtainable as a 

difference of standard diagrams. We define a problem based on the above. 

Number Problem 12: L—R/GenDiag 

Littlewood-Richardson Problem on Generalized Diagrams 

Input: 

Two vectors: Xm, Ym, E N with components 

Xjj such that x ≤ yj for 1 ≤ i ≤ m. 

These specify the left and right boundaries of the diagram. 

One vector: Z E (z with components zj such 

that zj ≥ for 1 ≤ j ≤ n - 1 and such that 

E1(v - x) = E=1 z2. 

This specifies the number of each symbol used to fill the diagram. 

Output: 

The number of ways that the diagram specified by Xm and Ym 

can be filled with symbols from Z satisfying conditions 1 

through 8 in the Littlewood—Richardson Rule. U 

If the components of Xm and Ym when listed by their order in the vec-

tors, are in descending order, then the diagram is a difference of standard 

diagrams. In this case, Xm and Ym correspond to 'y and A (respectively) in 

the definition of DecSymOut. Z corresponds to p. 

Unfortunately, this new problem is an extreme generalization of the 

Littlewood—Richardson problem so we are unable to draw any strong con-

clusions about the Littlewood—Richardson problem from an analysis of the 

new problem. However, we are able to give a precise classification of its 

complexity. The result indicates that if there is a polynomial time algorithm 

solving the Littlewood—Richardson problem, then the algorithm must make 
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use of the fact that the input diagram is a difference of standard diagrams 

(unless FP = #P). 

The following lemma follows immediately from Theorem 9 since there is 

no mention of the dropped input requirements in the proof. 

Lemma 4 L—R/GenDiag E #.P. 

Now, we give a transformation from Boolean Permanent (see sec-

tion 2.3.3.2) to L—R/GenDiag. 

Given an instance of Boolean Permanent B = [b], an n x n boolean 

matrix, we construct an instance (X, Y, Z) of L—R/GenDiag by defining a 

set of components and then saying how these components are to be combined 

to produce an instance of L—R/GenDiag. 

We construct an initialization component using the first n + 1 rows of the 

diagram. For 0 ≤ j ≤ n, we denote the left and right boundaries of row j by 

xr and y1it respectively. The values are as follows. 

Wit X0 (n+ 1)2 

fl1t +- (n+ 1)2+2 

x1t+..(n+1)2+1 (1≤j≤n) 

ynit4-(n+1)2+3 (1≤j≤n). 

This gives the following shape. 
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We construct components for each row of the matrix in three parts. We 

call the parts the upper triangular control component, the selection com-

ponent, and the lower triangular control component. The two triangular 

components are each made using n + 1 rows in the diagram. For now, we 

will denote the left and right boundaries of the th row of the component for 

the i' row of B with superscript Vi (for the "upper triangular component") 

or Ai (for the "lower triangular component") and subscript j. The selection 

component for each row of the matrix takes only one row in the diagram. 

The left and right boundaries for the selection component for the row of 

the matrix are denoted by xr' and yel, respectively. 

For 1 ≤ i ≤ n and 0 ≤ j ≤ m, the values of x7' Y7' and x are assigned 

as follows. 

4- i(n+ 1) 

y72 (i+ 1)(n+ 1)— 1—bik 

and 

For 1 <i< nand 0≤j ≤ n—i, 

- (i+ 1)(n+ 1) 

and for 1 :; i ≤ n, 

For l≤i≤n, 

and 
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For each row of the matrix, we place the upper triangular component 

above the selection component and the selection component above the lower 

triangular component. This gives a shape of-

F-1 

We now explicitly construct the vectors X = (XI... . x2fl2+4fl+1) and Y = 

(yi,.. . Y2,2  from the components made so far. Both X and Y are 

constructed in the same manner. The initialization component comprises 

the first part of the vector: 

xj — x for (1 ≤i≤ri+1) 

yj — y for (1 ≤i≤n+1). 

Then, we add the upper triangular component, the selection component, and 

the lower triangular component for each row i, consecutively: 

and 

Xi(2n+3)+j_n_1 4— xr for (1 ≤ i ≤ n and 0 ≤ j ≤ n), 

Yi(2n+3)+j—n-1 - Yj for (1 ≤ ≤ n and 0 ≤ j 

Xj(2n+3) xseI for (1 ≤ i ≤ n), 

Yi(2n+3) __ yCI for (1 i ≤ n), 

Xi(2n+3)+j+l - xr for (1 ≤ i < n and 0 < j ≤ n), 

Yi(2n+3)+i+1 - y for (1 <i< n and 0 ≤ j <n). 
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Finally, we make the vector Z. Z is of dimension n + 1 and each component 

is n(n+ 1) + 2. 

For example, the transformation can be applied to the boolean matrix 

0 

B = 010 

1 11 

to get the diagram shown in figure 4.1. 

We now describe how to fill figure 4.1 following the Littlewood-Richardson 

rule (see section 4.2.2). 

Following condition 3, we begin by inserting l's into the boxes. There are 

boxes in fifteen columns (columns 4 through 18). By condition 7, each of the 

fourteen l's must be placed in a different column. We cannot place a 1 in 

column 18 because condition 5 forbids placing it to the right of an empty box. 

Therefore, one 1 must be placed in each of columns 4-17. By condition 8, a 

1 must be placed in column 17 of the top row; by conditions 3 and 4, this 

must occur after a 1 has been placed in column 16 of this row. Now, the 

remaining twelve l's must be placed in columns 4-15 - and, therefore, in 

rows 5-31. Again, by conditions 4, 5, and 8, all three boxes in row 5 (columns 

5-7) must be filled with l's. Remaining l's must be placed in columns 8-15 

and, therefore, rows 10-31. Continuing to use conditions 4, 5, and 8 in this 

manner, one can argue that there is only one valid placement of the fifteen 

l's in this diagram. 

We can proceed more quickly if we place symbols in any convenient order 

and verify that we could have followed the order constraints to obtain the 

same placements when we are done. 

Rows 1-4 include eight boxes, exactly two of which contain l's. Condi-

tion 8 can be used to conclude that the remaining six boxes must be filled 
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by exactly two 2's, two 3's, and two 4's. Similarly, the sixteen boxes in rows 

5-13 must be filled by exactly four l's, four 2's, four 3's, and four 4's. The 

sixteen boxes in rows 14-22 and the sixteen boxes in rows 23-31, must then 

each be filled by exactly four l's, four 2's, four 3's, and four 4's as well. 

Condition 8 now forces two 2's, 3's, and 4's to be placed into rows 2-4 in 

the positions shown in the diagram. We also have no choice (by condition 5) 

in the placement of entries in the remaining three boxes in column 4. Con-

dition 8 (and, at the end, condition 7) can then be used to determine the 

placement of the remaining entries in column 5. 

Only three entries - in row 9 and column 16, row 11 and column 7, and 

row 12 and column 17, remain to be filled. As in the diagram, let a denote 

the number assigned to row 9 and column 16. Since there is already a 1 in 

column 16, a 54 1. As well, a 0 3, since this would violate condition 8 - so 

a E {2, 4}. Denote the entries in column 17 and rows 11 and 12 by c and d 

respectively. Since rows 5-13 must include exactly four l's, 2's, 3's, and 4's, 

fa, c,d} = {2,3,4}. If a = 2 then, by conditions 3 and 5, c = 3 and d = 4; 

otherwise a = 4 and, by the same conditions, c = 2 and d = 3. 

Now consider rows 14-22. Again, condition 5 determines the place of 

entries in column 8; conditions 7 and 8 then determine the placement of 

entries in rows 14, 15, 16, and 17. The remaining entries (in rows 21 and 22) 

of column 10 are then fixed by conditions 5 and 7. Once again, since all l's 

have already been placed, the entry in row 18 and column 16 must either be 2, 

3, or 4.' However, (since the entries in rows 1-17 are now fixed) condition 8 

is violated if this entry is either 2 or 4 - so there is a 3 in this position. Now, 

only a 2 and a 4 remain to fill the remaining boxes in column 7; condition 5 

forces us to fill the boxes as shown in the diagram. 
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Now, only rows 23-31 remain. Conditions 4, 5, and 8 force the placement 

of entries in the upper triangular component in rows 23-25. Conditions 5 

and 7 then fix the entries for the remaining boxes in columns 12-14. The 

entry b in row 26 and column 16 must be whichever of 12,41 is not equal to 

the entry a above it in the same column, in order to satisfy condition 7. Now, 

only entries e and f in rows 28 and 29 and column 15 must be determined. 

Since {b, e, f} = {2, 3, 4} and the integer e must be less than the integer f, 

e and f are determined by the choice of a (since b is).. 

Thus, there are two ways that we can fill the diagram. All of the boxes 

that are filled with numbers are forced by the conditions. Those with letters 

can be filled either with a = 2, c = 3, d = 4, b = 4, e = 2, and f = 3 or with 

a = 4, c = 2, d = 3, b = 2,e = 3, and f = 4. This is to be expected since 

the permanent of B is two. 

We will now show that the transformation works. That is, the result of 

applying the Littlewood—Richardson rule to the instance of L—R/GenDiag 

given by the transformation acting on a Boolean matrix B is the permanent 

of the matrix B. 

We can think of the permanent of a Boolean matrix as the number of 

paths through the matrix, starting on the top row and proceeding row by 

row to the bottom row, such that we use exactly one element from each row 

and exactly one element from each column, under the constraint that we use 

only elements whose value is 1. 

• For each such path through the Boolean matrix B, there is one way that 

we can fill the diagram (X, Y) with symbols given by Z according to the 

Littlewood—Richardson rule. Further, there are no other ways that we can 

fill the diagram according to the Littlewood—Richardson rule. 
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Figure 4.1: The diagram for B. 
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Specifically, suppose that E = (b1,1,... , is a path through B con-

tributing to the permanent of B. That is, all bj,ij = 1 and for each j k, 

ii 54 ik. Then we can fill the diagram (X, Y) as follows: for 1 ≤ i ≤ n + 1, 

row i of the initialization component is filled with symbol i + 1 (see rows 

1-4 in Figure 4.1). Each row i of each of the upper triangular components 

is filled with symbol i (as is the case for the components in rows 5-8, 14-

17, and 23-25 in the example). The jt selection component is filled with 

symbol i + 1 (specified in the definition of b above). Note the entries in 

column 16 in Figure 4.1. All but the rightmost column of the lower triangu-

lar components are filled in same way that the upper triangular components 

are filled. That is, the i1h row of each component is filled with the symbol 

i + 1 except possibly for the box in the rightmost column. The rightmost 

column of each lower jth triangular component is filled, in numerical order 

from top to bottom, with symbols 1 through n +1 leaving out symbol i +1. 

Thus, Figure 4.1 corresponds to the "path" b11, b22, b33 through the matrix 

B if a = 2, and corresponds to the "path" b13, b22, b31 when a = 4. 

For the sake of comprehensibility of the description, the above does not 

make explicit use of the order constraints (conditions 3, 4, 5, and 6 in sec-

tion 4.2.2). By examining the results of the above description, we can see 

that it satisfies all of the constraints. We give demonstrations below. 

1. This condition is trivially satisfied. 

2. Two copies of each symbol are used by the initialization component. 

Each group of upper triangular, lower triangular, and selection compo-

nents contains n+1 copies of each symbol. Summing, we get n(n+ 1) + 2 

copies of each symbol, which is what is required by Z. 

3. This condition can be trivially satisfied. 
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4. This condition is satisfied in the initialization component, the upper 

triangular components, and the selection components since the rows 

in these components are each filled with one symbol. Now consider a 

single row in a lower triangular component. Each box except for the 

one in the last column is filled with the same symbol. The symbol 

in the last column is either the same or larger than the one in the 

rest of the row. Since the above is true for each row in each lower 

triangular component and values in boxes increase as one moves down 

a column within any of these components, condition 4 can be satisfied 

in conjunction with condition 3. 

5. This is clearly satisfied for the selection components- since there are no 

boxes directly above any of them. Each column in other components 

is filled from top to bottom with symbols in increasing order and thus 

this condition can be satisfied in conjunction with condition 3. 

6. This condition can be trivially satisfied. 

7. Examining each column and referring to the construction and to the 

proof-for condition 5, we see that the only place where this could be 

violated is in the selection components, which are all contained in a 

single column. By the construction from the path E, it immediately 

follows that the constraint is satisfied there as well. 

8. This is clearly satisfied by the placement of values in the initialization 

component. Also, the prefix string associated with the initialization 

component contains an equal number of each of the symbols, so the 

entire string will be a lattice partition if and only if removing the pre-

fix string leaves us with a lattice partition. Each group of contiguous 
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upper triangular component, selection component, and lower triangu-

lar component has the same property, so we need only show that the 

inverse row word for each one of the groups is a lattice partition. 

Consider the i' such group. Clearly, the prefix string corresponding to 

the upper triangular component causes no trouble. The symbol in the 

selection component can follow this prefix string since if there is a 1 in 

the boolean matrix in the (j)th position then there is one more box 

in the jth row of the upper triangular component than in the (j + i)tI 

row. Similarly, there can be no problems with the lower triangular 

component. 

Only a few additional comments need be made to show that there are 

no other ways to fill the diagram in accordance with the rules (given in sec-

tion 4.2.2). Since there can be no duplicates in any column (condition 7), 

the initialization component must be filled as described above or the cor-

responding inverse row word would not be a lattice partition (condition 8). 

Because of the insertion order constraints (conditions 3, 4, 5, and 6), the 

first upper triangular component must be filled as given above or we would 

violate either the column constraint (condition 7) or the lattice partition 

constraint (condition 8). The selection component for the first row must be 

given a symbol corresponding to a 1 in the first row of B or we violate the 

lattice partition constraint (condition 8), because of the construction of the 

upper triangular component. For the same reasons guiding the filling of the 

upper triangular component, the lower triangular component must be filled 

as described. 

Again, since we are forced to fill each group of upper triangular, selection 

and lower triangular components with the same number of copies of each 
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symbol, the same reasoning can be applied to the each of the components 

in turn. Finally, all of the selection components are in the same column so 

they must contain different symbols. They are not vertically adjacent to one 

another, so the symbols do not need to be in numerical order. 

Thus, the result of applying the modified Littlewood—Richardson rule 

to the constructed instance of L—R/GenDiag is the same as evaluating 

the permanent of the original matrix. Since the transformation can easily 

be accomplished in polynomial time, we have demonstrated the following 

lemma. 

Lemma 5 L—R/Genfliag is #P—hard. 

By combining lemmas 4 and 5, we have the following result. 

Theorem 10 L—R/GenDiag is #P—complete. 

4.2.5 Counting Lattice Partitions 

An important nontrivial restriction of the Littlewood-Richardson problem 

can be solved in polynomial time. We restrict the input so that the difference 

of diagrams has at most one box per row and at most one box per column. In 

this case, the only constraints that have any effect are conditions 1, 2, and 8. 

Thus, the problem reduces to counting the lattice partitions corresponding 

to the partition i in the input of DecSymOut. 

We do not use the full power of Theorem 11 (Kreweras' theorem, which 

follows) in dealing with this case. The theorem gives a formula for counting 

lattice paths with any start point and any end point. The lattice paths that 

we consider always start at the origin. By considering other start points, our 

method can be extended to give efficient solutions to larger subproblems of 
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DecSymOut. However, it appears that these subproblems are still extreme 

restrictions of DecSymOut. 

The problem of counting lattice paths has important applications in 

statistics. Since this is far beyond the scope of this thesis we provide only 

two pointers to other work in this area: [Rap87] and [Nar79]. 

Now, we formally define the problem under consideration. 

Number Problem 13: CLP 

Count Lattice Partitions 

Input: 

Al- n 

n: given in unary. 

Output: 

The number of lattice partitions corresponding to A. U 

Kreweras theorem (theorem 11 below) is used to count paths in a lattice. 

Before we prove our result, we describe a way of envisaging a lattice partition 

(see section 2.1.3) in terms of the type of lattice used by Kreweras. Let 

a= (ai,a2, ... ,am)beapoint in Z"' such that ai ≥ a+1≥ Ofor 1≤ i ≤ rn—i 

and let b = (0,0,. . . , 0) E Zm. Geometrically, we think of a lattice path from 

b to a as a (finite) sequence , s(k) of points in zm. For convenience of 

notation, let us write b = (0) and a = s. Now, we can imagine a point 

moving from b and ending at a, following the sequence given by the s's. 

if , 5(k) describes a path which involves only moves towards a 

by a distance of 1 in only one dimension at a time and, further, never crosses 

above any of a set of diagonal hyperplanes passing through the origin (with 

lower indexed coordinates taking priority in measuring height), then the s's 

describe a lattice partition. The diagonal hyperplanes that we consider are 
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diagonal on only two coordinates. That is, the (i, j)lh diagonal hyperplane 

is completely specified by xi = x5. 

More formally, let a = (a1,.. . , am) and b = (0,... , 0) as above, let n = 

FT a, and let S= (s(°),. . . , .s(')). For 1 ≤ i ≤ m let ej denote the jth unit 

vector, whose jth component is öj, for 1 ≤ j ≤ m. If for each i, 0 ≤ i ≤ n, 

= 8(i) + f(i + 1) 

where f is a function from the first n positive integers to the set of unit 

vectors in zm 

and if 
(i) (i') 
S3 ≥ Sj, (0≤i'i) (4.7) 

for 1 < i ≤ n and 1 ≤ j <k ≤ m, then we say that the sequence S is a valid 

lattice path. 

Since ai ≥ a+i for 1 ≤ i ≤ m - 1, we can think of a as a partition. 

We now construct a one-to-one mapping between the valid lattice paths 

from (0,. . . , 0) to a = (a1,. .. ,am) and the lattice partitions of a. Let A = 

(A1, A2,. . . , A,) E {1, 2,3,. . . Mjn be a lattice partition of a. Now, let 

(1<i<n). 

For 1 < i ≤ n, let f(i) = eA3. In this light, equation 2.1 and equation 4.7 

express the same condition using different notation. Thus, for any a e zm we 

have a bijective mapping between lattice paths and lattice partitions and so 

we know that the number of valid lattice paths from the origin to a is equal 

to the number of lattice partitions of a. 
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Kreweras' theorem gives an expression for counting lattice paths allowing 

duplicate points and jumps in the path. We give the theorem without proof 

below. Among other places, the theorem is proved in [Nar79]. 

Theorem 11 (Kreweras 1965) Let 0 < a1 < ... < a, and 0 < b1 ≤ 

b be two sets of integers satisfying b a (1 ≤ i < n). Let = 

(s 2) ,.. . , sw)), j = 1, 2,. . . , r, be a set of vectors satisfying the inequalities 

0 ≤ s < ... ≤ s (1 ≤ j ≤ r) (4.8) 

and 

b ≤ s ≤ a (1 ≤ j <r, 1 ≤ i ≤ n). (4.9) 

Let I (b, a; r) I denote the number of n x r matrices [3)] satisfying equations 4.8 

and 4.9. For r ≥ 1 

I(b,a;r)I = detc (r) 

where 

(1 ≤ i,jn) (r) 

\ r+j — i ) 
and, as usual, if y < z or z <0 then 

By applying the law of inclusion—exclusion, we obtain the following algo-

rithm for CLP. 

Algorithm 7: Count Lattice Partitions 

Input: 

n: given in unary. 
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Output: 

The number of lattice partitions corresponding to A. 

Step 1: 

Let 1 be the length of A. 

for s - 1 t n+ 1 do 

Let C(s) be the 1 x 1 matrix 

whose (j,j)th entry is 

) 
D) +- det(C()) 

endfor 

Step 2: 

Let L(1) = 

for s - 2 to n+ 1 do 

Evaluate 

L(s) = - (: 1 )) 
Step 3: 

Output L(n+1) R 

We observe that the algorithm is correct. Let L(s) denote the number of 

paths of length s from the origin to A where there are no duplicate points. 

Since includes duplicate points, in order to find in terms of L, we 

count the shorter paths and then account for duplicate points. Suppose there 

are L(t) distinct paths to A of length t < s. For each of these paths, we can 

construct some number Q(s, t) of paths of length s by duplicating points in 
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the path. Now, s - t points must be added to the path and they, can be 

added to t locations thus, so we have 

Q(s,t) = 
(t+s_t_ i.) 

s — t 
Then L(1) = I(0,A; 1)1 = D' and for .s>1 

s-i 

( s—i 

.s—t 

= (0, A; s)I = L(s) + E L(t). ( s—i 

s—t 

Solving this for L(n + 1) gives the algorithm. 

Since the arguments for the binomial coefficients involve values given in 

unary and determinants can be evaluated in polynomial time (see [AVATJ74]), 

the entire algorithm runs in polynomial time. Thus, we have the following 

theorem. 

Theorem 12 Count Lattice Partitions E FP. • 

The number of lattice partitions can be superpolynomial in the input. 

Consider the number of lattice partitions that can be made corresponding to 

the partition A = (2m, m) I- 3m. Clearly, this is at least 

(2m) 

if we put the first m copies of the first symbol at the beginning of the 

string, we are free to arrange the remaining m symbols any way we like. This 

number is superpolynomial in m and thus superpolynomial in 3m. 

Now, let A = (3m,3m— i,...,1), let ji = (2m, m), and let 'y = (3m-

1, 3m - 2, . .. , 1); then the coefficient c,\ of x in the decomposition 

 = 
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is the number of lattice partitions corresponding to (2m, m) I- 3m. Thus, 

DecSymOut has instances with solutions that are superpolynomial in the 

input size. 

This means that a counting algorithm (which computes a value by in-

crementing a counter and thus requires time at least linear in the value it 

returns) cannot solve DecSymOut in polynomial time. If a polynomial time 

algorithm exists, it must do more than just count. Thus, at the very least, 

major modifications to the Littlewood-Richardson rule will be required in 

order to find an efficient algorithm for DecSymOut. 
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Chapter 5 

Conclusions and Additional 

Problems 

5.1 Summary of Results 

We have examined the computational complexity of finding the characters 

of finite groups. It was known that the problem can be solved efficiently by 

Burnside's algorithm when the group is given by its complete multiplication 

table. The first step of Burnside's algorithm is the computation of "structure 

constants". Recent work to improve the algorithm has involved reduction 

of the number of these constants that are computed. We have shown how 

to efficiently compute a complete set of these "structure constants" from a 

character table. 

Considering the other end of the spectrum of representation sizes, we 

have shown that finding individual entries in the character table of the sym-

metric group is computationally hard (under standard complexity theoretic 

assumptions). 
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We had limited success in classifying the problem of decomposing outer 

products of characters of the symmetric group. We defined a generalization 

of this problem and showed that it was computationally hard (under stan-

dard complexity theoretic assumptions). We gave an efficient solution to an 

important subproblem, namely counting lattice partitions. 

5.2 Related Problems 

5.2.1 Succinct Specifications of Groups 

Giving the multiplication table for a group is not a space efficient method 

for specifying a group. In particular, a Cayley table requires size quadratic 

in the order of the group. There are methods for specifying groups where, 

for many groups, the space required is polylogarithmic in the order of the 

group. The character table may have size superpolynomial in the input size 

if a concise specification of the input group is given. In general, there is no 

natural way to 'index' into the character table as we do with the symmetric 

group. Thus, the complexity theoretic question becomes, can one compute 

the character table of a group in time polynomial in the maximum of the 

input size and the output size? 

The problem of finding character tables from such succinct specifications 

of groups is presently unclassified with regards to its computational complex-

ity. Considerable work has been done on computations with permutation 

groups (see [But91] for a good introduction). However, even the apparently 

very special case of finding characters for p-groups has not been analyzed 

(see [Con90a] and [Sla86]). The state of affairs is similar for matrix groups 

and finitely presented groups. Groups specified by permutations can be ef-
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ficiently converted to finitely presented groups or to matrix groups. Thus, 

finding the character tables of matrix groups or of finitely presented groups 

is at least as (computationally) hard as the corresponding problem for per-

mutation groups. 

5.2.2 Characters Over Other Fields 

We have only considered finding character tables over C. All of the problems 

asking for complete character tables can be generalized so that a specification 

for a field K is included in the input and then the question becomes 'what 

is the character table over K for the group?' There has been extensive work 

on algorithms in this area. For example, see [Con90b]. 

5.2.3 Decomposition of Inner Products of Characters 

of the Symmetric Group 

Let T1 and T2 be absolutely irreducible matrix representations of S,. Con-

sider the tensor product T = T1 ® T2 (see section 2.2.3). T is also a repre-

sentation of S, but it is not generally irreducible. Like all representations of 

finite groups over fields of characteristic zero, it is similar to a direct sum of 

irreducible representations. 

Define the inner product of the characters x' and x2 of the representations 
T1 and 1'2 to be the character of the representation T = T1 0 222. We denote 

this character by q = x' x x2. The characters of tensor products of similar 
representations are the same. That is, if T1 T'1 and 222 ".' T'2 then T1 ®1'2 

T'1®T'2. So, the characters of T1 0 T2 and T'1®T'2 are the same. 

Since 0= X1 x x2 is a well defined character of S, it is expressible as a 
linear combination of the irreducible characters of Sn. We recall that for the 
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symmetric group, we can succinctly specify irreducible representation classes 

using partitions. Thus, we may ask, 'given partitions A1, A2, p I- n, what is 

the coefficient c of x in the decomposition 

X X A2 = 

#1-n 

It is known (see [Ebe89]) that the coefficients can be found from such 

inputs using polynomial space. At present, nothing more is known aboul the 

complexity of this problem. It seems quite plausible given the hardness of 

computing individual characters that this problem is hard as well. 
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