
THE UNIVERSITY OF CALGARY

On the Complexity of Computing Characters of Finite Groups

by

Charles Thomas Hepler

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 1994

©Charles Thomas Hepler 1994

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1 0N4

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
KIAON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR.
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your (lie Voire réIErence

Our (lie Noire ré(érence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETANT A LA BIBLIOTHEQIJE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MAN[ERE ET
SOUS QIJELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUB STANTIELS DE CELLE-
CI NE DOT VENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN O-315-99374-X

Cana c!

9

Name
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the ntent of your dissertation. Enter the corresponding four-digit code in the spaces provided.

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
BuSiness 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Lan guage

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Agriculture

General
Agronomy
Animal Culture and

Nutrition 0475
Animal Pathology 0476
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777
Wood Technology 0746

Biology
General 0306
Anatomy 0287
Biostotistics 0308
Botany 0309
Cell 0379
Ecology. 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Geodesy 0370
Geology 0372

0473 Geophysics 0373
 0285 Hydrology 0388

Mineralogy 0411
Paleobotany 0345
Paleoecalogy 0426
Paleontology 0418
Paleozoology 0985
Palynology 0427
Physical Geography 0368'
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION.AND
THEOLOGY
Philosophy 0422
Religon

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
Hist ory

General 0578

Speech Pathology 0460
Toxicology 0383

Home Economics 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and
Astrophysics 0606

Atmospheric Science 0608
Atomic 0748
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

Is
SUBJECT CODE

UM1

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Low 0398
Political Science

General 0615
International Low and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family

Studies 0628
Industrial and Labor

Relations 0629
Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

Engineering
General 0537
Aerospace 0538
Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geotechnology 0428

Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiolo9icoI 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. cijoisir le sulet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

UMI
SUJET

Categories par sujets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS El LES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema - 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de l'art 0377
Joumalisme 0391
Musique 0413
Sciences de l'inlormation 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communoutaires 0275
Commerce 0688
Economie domestique 0278
Education permonente 0516
Education préscolaire 0518
Education sanitaire 0680
Enseignement agricole 0517
Enseignement bilingue et

muiticulturel 0282
Enseignement industriel 0521
Enseignement primoire. 0524
Enseignement professionnel 0747
Enseignement religieux 0527
Enseignement secondaire 0533
Enseignement special 0529
Enseignement supérieur 0745
Evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire de 'education 0520
Longues et littéroture 0279

Lecture 0535
Mathematiques 0280
Musique 0522
Orientation et consultation 0519
Philosophic de 'education 0998
Physique 0523
Programmes d'études et
ensei9nement 0727

Ps'choiogie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de 'education 0340
Technologie 0710

LANGUE, LITTERATURE El
LINGUISTIQUE
Lan aues

Généralités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
Généralites 0401
Anciennes 0294
Comparee 0295
Mediévale 0297
Moderne 0298
Africoine 0316
Américaine 0591
Anglaise 0593
Asiatique 0305
Canadienne Anglaise) 0352
Canadienne Francaise) 0355
Germanique 0311
LatinoamCricaine 0312
Moyen-oricntole. 0315
Romano 0313
Slave et esteuropéenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Généralités 0473
Agronomie. 0285
Alimentation et tedinologie

alimentaire 0359
Culture 0479
Elevage et alimentation 0475
Exploitation des péturages 0777
Pothologie animale 0476
Pathologie véétale 0480
Physiologie vegetale 0817
Sylviculfure et taune 0478
Technologie du bois 0746

Biologie
Généralités 0306
Anatomie 0287
Biologie (Statistiques) 0308
Bio!oie moléculaire 0307
Botonique 0309
Cellule 0379
Ecolagie 0329
Entomologie 0353
Genétique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Océanogrophie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biaphysique -

Genéralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Biogéochimie 0425
Géochimie 0996
Géodésie 0370
Géographie physique 0368

Geolagie 0372
Géophysique 0373 2dro!ogie 0388

nerologie 0411
Oceanographic physique ' 0415
Paléobotanique 0345
Poleoécologie 0426
Paleontologie 0418
Paleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences de la sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothérapie 0992
Dentisterie 0567
Developpement humain 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Médecine du travail et

thérapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologic 0571
Pharmacie 0572
Pharmacologie 0419
Physiotherapie 0382
Radialagie 0574
Sante mentole 0347
Sante publique 0573
Soins infirmiers 0569
Toxicologic 0383

PHILOSOPHIE, RELIGION El
THEOLOGIE
Philosophie
Religjon

Généralités
Cler9e
Etudes bibliques
Histoire des religions
Philosophie de to religion

Theologie

SCIENCES SOCIALES
Anthropolagie

Archeoiogie
Culturelle
Physique

roit
Economie

Généralités
Commerce-Alfaires
Economie agricole
Economie du travail
Finances
Histoire
ThCorie

Etudes américoines
Etudes canadiennes
Etudes Féministes
Folklore
Geographie
Gérontologie
Gestion des affaires

Généralités
Administration
Ban ques
Comptobilité
Marketing

Histoire
Histoire generale

CODE DE SUJET

Ancienne 0579
Médiévole 0581

0422 Moderne 0582
Histoire des flairs 0328

0318 Africaine 0331
0319 Cancidienne 0334
0321 Etats-Unis 0337
0320 Européenne 0335
0322 Moyen-orientale 0333
0469 Latino-américaine 0336

Asie, Australie et Océanie 0332
Histoire des sciences 0585
Laisirs 0814

0324 Planification urbaine et
0326 regionale 0999
0327 Science politique
0398 Géneralités 0615

Administration publique 0617
0501 Droit et relations
0505 internationoles 0616
0503 Sociologic
0510 Générolités 0626
0508 Aide et bienôire social 0630
0509 Criminologie et
0511 étoblissements
0323 penitentioires 0627
0385 DemograPhie 0938
0453 Etudes de I' individu et
0358 . do la Fomille 0628
0366 Etudes des relations
0351 interethniques et

des relations raciales 0631
0310 Structure et developpement
0454 social 0700
0770 Thécrie ci méihodes. 0344
0272 Travail et relations
0338 industrielles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genérolités 0485
Biochimie 487
Chimie agricole 0749
Chimie onalytique 0486
Chimie minerale 0488
Chimie nucléoire 0738
Chimie orgonique 0490
Chimie pharmaceutique 0491
Physique 0494
PolymCres 0495
Rodiotion 0754

Mothématiques 0405
Physique

Genéralités 0605
Acoustique 0986
Astronomic et
astrophysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Météorologie 0608
Optique 0752
Particules (Physique

nucléaire) 0798
Physique atomique 0748
Physique de I'état solide 0611
Physique maléculaire 0609
Physique nucléaire 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
InFormatique
Ingénierie

Généralités
Agricole
Automobile

Biomédicole 0541
Chaleur et ther
modynomique 0348

Conditionnement
(Emballage) 0549

Genie aéraspauial 0538
Genie chimique 0542
Genie civil 0543
Genie électronique of

électrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucléaire 0552
Inénierie des systömes 0790
Mecanique navale 0547
Metallurgic 0743
Science des mcitérioux 0794
Technique du petrole 0765
Technique minière 0551
Techniques sanitoires et
municipoles 0554

Technologie hydroulique 0545
Mécanique appliquee 0346
Géotechnologie 0428
Motiéres plastiques

(Technologie) 0795
Recherche opérationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Généralités 0621
Personnalité 0625
Psychobialogie 0349
Psychologie clinique 0622
Psychologie du comportement .0384

0984 Psychologie du developpement 0620
Psychologie experimentale 0623

0537 Psychologie industrielle 0624
0539 Psychalogie physiologique 0989
0540 Psycholo9ie sociale 0451

Psychometric 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty

of Graduate Studies for acceptance, a thesis entitled "On the Complexity of

Computing Characters of Finite Groups" submitted by Charles Thomas Hepler

in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor. Wayne Eberly, Depa!tment of Computer Science

A

Nader Bshouty, Department of Corn iiter Science

J\X'

H. K. Farabat, Department of Mathematics

p4ekr 2,

September 1:3, 13, 1993

Abstract

This thesis examines the computational complexity of the problem of finding

the characters of finite groups and some associated problems. The central

focus is how the complexity changes according to how the group is specified.

We examine two extremes. Considering computations from Cayley tables,

when the input size is quadratic in the order of the input group, we observe

that we can efficiently invert Burnside's character table algorithm to find

class matrices.

We also consider computations involving the symmetric group with inputs of

size polylogarithmic in the order of the input group. We show completeness

and hardness results for computations of individual characters of the sym-

metric group. Examining the problem of decomposition of outer products

of characters of the symmetric group, we show that a generalization of the

problem is computationally hard. We show that lattice partitions can be

enumerated efficiently.

111

Acknowledgments

This thesis .could not have been completed with out the help of the won-

derful people surrounding my life. In particular, two people shined above

the others. These are Marianne Wiltse and Wayne Eberly. Marianne has

been so kind and understanding that I have concluded that our partnership

is the best thing ever to have happened on Earth. On a concrete level, she

has, during the past few months, done all of my laundry, cooked my meals,

dragging me from the computer to eat when I had forgotten I was hungry,

motivated me to work when I felt lazy, and chatted with me on the couch

when I needed a break. Obviously, Wayne's help has been more direct. He

has diligently read and reread a number of drafts of each section and rapidly

returned them with illuminating comments. He suggested problems to work

on and has always been helpful when discussing methods to approach the

problems. Above all, his patience has been outstanding.

Throughout my life, my parents and siblings have been supportive in too

many ways to mention. A great number of friends have aided me in my day

to day endeavors. I cannot list them all, but (in alphabetical order) Richard

Erickson, Andre' Isaak, Dennis Kelley, Sleiman Matar, and Christino Tamon

certainly deserve mention. For no particular reason, I would also like to

thank Dan Hermanson, Rita J. Kolpak, and THE GREG PASKUSKI.

Lisa Higham deserves special thanks. Her sparkling lectures inspired me

to study theoretical computer science and she introduced me to Wayne. Also,

Kris Vasudevan has been more than understanding.

Finally, I would like to thank my examiners.

iv

Contents

Approval Page ii

Abstract iii

Acknowledgments iv

List of Figures viii

1 Introduction 1

1.]. General Relevance of the Problems 2

1.2 Summary and Readers' Guide 4

2 Background 6

2.1 Three Combinatorial Definitions 7

2.1.1 Permutations 7

2.1.2 Partitions 9

2.1.3 Lattice Partitions 9

2.2 Background in Algebra 10

2.2.1 Groups 10

2.2.2 Permutation Groups 15

2.2.3 Representations and Characters 18

2.2.4 Character Relations 24

v

2.3 Background in Complexity Theory 25

2.3.1 Complexity Classes, Hardness, and Completeness 26

2.3.2 Computing with Algebraic Numbers 30

2.3.3 Problems 31

2.3.3.1 4-PARTITION 31

2.3.3.2 Boolean Permanent 38

3 Characters of Finite Groups 40

3.1 Computing Characters from Cayley Tables 41

3.2 Inverting Part of Burnside's Algorithm 46

4 Characters of the Symmetric Group 52

4.1 Characters of the Symmetric Group 54

4.1.1 A Graphical Version of the Murnaghan-Nakayama Rule 57

4.1.2 A Concise Version of the Murnaghan-Nakayama Rule 64

4.1.3 A Polynomial Time Transformation 66

4.1.4 A Probabilistic Polynomial Time Version of the Murnaghan-

Nakayama Rule 69

4.1.5 The Murnaghan-Nakayama Rule on a Counting Turing

Machine 74

4.1.6 Completeness Theorems 77

4.2 Outer Products, Schur Functions, and The Lit tlewood-Richardson

Rule 78

4.2,1 Outer Products of Characters of the Symmetric Group 79

4.2.2 The Lit tlewood-Ri chardson Rule 80

4.2.3 Analysis of the Littlewood-Richardson Rule 83

vi

4.2.4 The Complexity of Associated Problems 83

4.2.5 Counting Lattice Partitions 95

5 Conclusions and Additional Problems 102

5.1 Summary of Results 102

5.2 Related Problems 103

5.2.1 Succinct Specifications of Groups 103

5.2.2 Characters Over Other Fields 104

5.2.3 Decomposition of Inner Products of Characteis of the

Symmetric Group 104

Bibliography 106

vi'

List of Figures

2.1 The Cayley Table for E 12

2.2 Inverses in E 12

2.3 a and ,8 are conjugates in E. 14

2.4 E is generated by { oz, 'y}. 15

2.5 An Isomorphism Between E and S3 16

2.6 A Matrix Representation of S3 20

2.7 The Character Table for S3 24

4.1 The diagram for B. 91

viii

1

Chapter 1

Introduction

This thesis examines the computational complexity of the problem of find-

ing the characters of finite groups and some associated problems. The main

theme is an examination of how the complexity of a problem changes accord-

ing to how the group is specified.

In all cases, we will be concerned with exact computations using "sym-

bolic" representations of the input, the output, and quantities computed

along the way. Computing with symbolic representations has an advantage

over fixed precision numerical computations in that, with a bit of care, we

can be guaranteed to be able to determine the signs of small numbers and

perform equality tests with complete reliability. Further, symbolic represen-

tations can be converted to fixed precision numbers with any desired degree

of precision.

This approach has three principal disadvantages. The first is that we

require symbolic representations of our input and this is unrealistic for some

applications. The second is that numerical approximation algorithms may

have a lower complexity than exact algorithms. For those problems where

2

the evidence suggests that there are no efficient (polynomial time) exact al-

gorithms, we must resort to some kind of approximation algorithm. Even

for problems with polynomial time algorithms, numerical approximation al-

gorithms may still be sufficiently more efficient to be worthwhile. For more

information on approximation algorithms in this area see [BF91]. The third

disadvantage is that the manipulation of symbolic representations of numbers

is not always straightforward. This is discussed in detail in [Loo83].

Numerical approximation algorithms are beyond the scope of this thesis.

The choice to examine symbolic computations can be justified by the fact

that some kind of analysis of the exact solution to a problem must be done

before one can analyze an approximate solution.

1.1 General Relevance of the Problems

It is difficult to say exactly when group theory first came into being. Cer-

tainly some of the ideas associated with group theory, such as the investi-

gation of symmetry, date back before recorded history. We will be mostly

concerned with only one small part of the theory of groups, namely, charac-

ter theory. The two most important fields contributing to the development

of the theory of group characters are number theory and physics.

Regarding applications in number theory, we can, not unreasonably, say

that group theory started with Evariste Galois around 1830. Certain myths

surround his life. Chapter 6 of [Rot89] debunks these myths and clearly

demonstrates the presence of subtleties in historical investigations. In light of

this, we gloss over the rest of the history of the theory of groups. Among oth-

ers, Niels Henrik Abel, Augustin-Louis Cauchy, Sir Arthur Cayley, Camille

Jordan, Joseph-Louis Lagrange, Marius Sophus Lie, and Ludwig Sylow began

3

an investigation of Galois' groups, finding new and exciting structures along

the way. Ferdinand Georg Frobenius, William Burnside, and Issai Schur are

perhaps the most important names associated with the development of the

representation theory of finite groups. Our work is directly dependent on

the work of these three men and on the work of Alfred Young.

The theory of group characters is used to examine the structure of finite

fields by considering the group constructed from a field by omitting the ad-

ditive identity and considering only multiplication in the field. In particular,

by evaluating the characters of such a multiplicative group, one can find the

number of solutions to a wide range of equations over the field. For more

information see [IR9O] or [Edw77].

Character theory has important applications in (at least) two areas of

physics, namely, crystallography and quantum mechanics. The power and

value of character theory is demonstrated by the duplication of effort across

physics and pure mathematics. It was not uncommon for a physicist to

work out the structure of some group only to find that a mathematician had

already done so. In [Edd56], Sir Arthur Stanley Eddington describes how

this happened to him.

Both [McW63] and [Hoc66] discuss crystallographic applications. In

quantum mechanics, n—fold degeneracies in the eigenvalues of the wave equa-

tion are directly related to the characters of n-dimensional representations of

a group. Since the eigenvalues are directly related to observable quantities,

determining group characters is very important. The symmetric group is

especially important. The solutions to the wave equation for an n—particle

spin system can be classified in terms .of their symmetries with respect to

interchanges of particles. Here, individual character values, decompositions

of inner products of characters, and decompositions of outer products of

4

characters are extremely useful. For a detailed discussion, see [Wey5O]. A

modern treatment is contained in [DK85]. [Cot63] and [Ham89] are excel-

lent introductions to group theory. They provide physical intuitions for the

interpretation of group theoretical statements and contain a wealth of appli-

cations.

1.2 Summary and Readers' Guide

Chapter 2 discusses background information. We give some combinatorial

definitions. Then, we give definitions and notation for the relevant aspects

of algebra. We provide a brief overview of complexity theory. We review a

hardness proof for a known hard problem and give definitions and citations

for others. Finally, we discuss the complexity of various useful computations

on groups. The reader may freely skip this chapter, returning to it only upon

encountering an unfamiliar term.

Chapter 3 examines the complexity of finding complete character ta-

bles of finite groups from Cayley tables. We describe Burnside's algorithm

for finding character tables from multiplication tables and note that it can

be done in polynomial time. For more complete information on this topic,

see [Ebe89]. We observe that all but the first step of Burnside's algorithm

can be inverted efficiently. This result is not especially surprising but it is of

some significance given the recent work done on computing characters from

a partial tabulation of the "class matrices".

Chapter 4 looks at computing individual characters of the symmetric

group. This problem has very succinct inputs and integer outputs. We

examine several versions of this problem and show completeness and hardness

results (depending on the formulation of the problem). These are the most

5

significant new results in the thesis. As far as we are aware, they are the first

completeness results in this area. The proof is especially satisfying since it

uses only elementary techniques.

We then turn our attention to decomposing outer products of characters.

We had less success with this problem. We invent a generalization of the

problem and demonstrate that it is computationally hard. Also, we show

that an interesting subproblem has a polynomial time solution by framing a

beautiful little theorem of Kreweras in computational terms.

Chapter 5 contains a final summary of the results and a discussion of some

related problems, including computations of character tables of arbitrary

finite groups from representations that are more succinct than Cayley tables.

6

Chapter 2

Background

This chapter includes some necessary background information. It is intended

to review relevant material and to familiarize the reader with our notation.

It is divided into three sections: one containing combinatorial definitions,

one on algebra, and one on the theory of computing.

The first section gives definitions of permutations, partitions, and lattice

partitions.

The second section discusses groups. The symmetric group S3 is used

as a running example for a brief description of Cayley' tables, permutation

groups, matrix representations, and characters.

The third section presents some aspects of the theory of computational

complexity. We describe the classes F, NP, PP, and #P and discuss re-

ductions, hardness, and completeness. We give definitions of two problems

with known complexity: 4-PARTITION and Boolean Permanent.

The problems are used in chapter 4 to give a new classification of the

computational complexity of computing characters of the symmetric group.

7

2.1 Three Combinatorial Definitions

Permutations are used to represent groups. Partitions are used to specify

cycle structures of permutations. In particular, the conjugacy classes in the

symmetric group can be encoded using partitions (see Section 2.2.2). Also,

the absolutely irreducible representation classes of the symmetric group can

be specified by partitions. Lattice partitions are used by the Littlewood—

Richardson rule (see Section 4.2).

2.1.1 Permutations

This material is standard. For example, see [Bur55].

A permutation ir of n objects is an invertible function from the set of

objects onto itself.

{ai, a2,.. . , a} - jai, a2,. . . , a,}

Since the function is invertible, it assigns a unique object to each object.

We will only be concerned with finite sets. Thus, we can specify a permu-

tation by-listing its value for each of the objects. Supposing that 7r(a) =

we can write the permutation ir as

(al,a2,...

b1,b2,.. . b.)

We call the elements of the set points and say that a permutation acts on

that set of points.

Let us consider the images of a single symbol a as we repeatedly apply

the same permutation ir. Since the set of possible images is finite and ir is

a bijective function, there must be a smallest positive integer k such that

irk (a) = a. A cycle in ir is a finite series of points obtained by repeatedly

8

applying a permutation ir to a single point until we return to that point.

We write a single cycle (ai, ir(a), ir2(a),... , irc(ai)) where R.k+l(ai) = ai and

there is no j < k such that 7r(a) = a. Cycles can be written starting at

any point in the cycle. We will enclose cycles with parenthesis: '(' and T.

It is possible to represent any permutation as a list of disjoint cycles. We

call this representation the cycle form of a permutation. The representation

of a permutation as a list of disjoint cycles is unique up to the order in which

the cycles are written and the starting points of the cycles. For the sake of

brevity and clarity, we will usually omit cycles of length one.

The cycle structure of a permutation is a list of the lengths of the disjoint

cycles needed to express the permutation. (The lengths of cycles of length

one are always included in this list). The cycle structure for a permutation

is unique up to the order in which the lengths are written.

As a conceptual simplification, we use the term multiplication of permu-

tations to denote functional composition of permutations. Bearing this in

mind, we read products of permutations from right to left rather than left

to right. Since we will not be concerned with the nature of the symbols that

are being rearranged, we can save ourselves some writing by always working

with the symbols {1, 2,. .. A .

Example 2.1.1: Multiplication of Permutations in Cycle Form

Consider the set of points 1 = {l, 2, 3}. Multiplying the

permutation a = (1,3,2) acting on Q by the permutation 'y =

(2,3) gives yoa= (1, 2). I

Any permutation can be written as a product of (not necessarily dis-

joint) cycles of length two (called two—cycles). This representation is not.

9

unique. However, for any particular permutation, the ways of writing that

permutation as a product of two-cycles have the same parity. That is, if a

permutation can be written as a product of an even number of two-cycles,

then every way that that permutation can be written as a product of two-

cycles uses an even number of two-cycles. We call such a permutation even.

Similarly, odd permutations are those permutations that can be written as a

product of an odd number of two-cycles. For example, a cycle of length k is

even if and only if k is odd since

(al,u2, . . . ,clk) = . . . (0k_2,crk_1)(crk_1,crk).

It is convenient to use a function to capture the above fact. We define

the function:

sign(7r) =

2.1.2 Partitions

1 if ir is even

—1 otherwise (ir is odd).

A partition of a positive integer n is a sequence A of positive integers

(Al) A2, ... , Ak)

such that Ai ≥ A+1) for 1 ≤ i ≤ k - 1 and such that ELj Ai = n. If for

1 ≤ j <k, A 0 and A,.,.1 = 0, or if = k and Ak 5A 0, then j is the length

of A. We use the notation A I- n to say that A is a partition of n. We will

use partitions of n to specify the cycle structures of permutations acting on

n points.

2.1.3 Lattice Partitions

A lattice partition A corresponding to a partition

A(Ai,...,Am)Hfl

10

is a string A = a1,... ,an of length n of m symbols 01,02,... ,0m such that:

1. For 1 ≤ j < m, the string A has exactly Ai occurrences of the symbol o.

2. For each prefix string AP" = al) ... , a, (1 ≤ i ≤ n), for each j and k,

(1 ≤ j < k < m), there are at least as many occurrences of oj as of o.

That is, letting #(crj, X) denote the number of occurrences of 0-i in a string X,

re) ≥ #(o.k, A C) #(,A (2.1)

for all 1 < i n and 1 ≤ m, and #(cr,A) =

For clarity and to save writing, we will write aj as just i. With this

notation, we see that '1123212' is a lattice partition of A = (3, 3, 1) but

'1132212' is not since the prefix string '113' contains one 3 but zero 2's.

2.2 Background in Algebra

This section contains a review of definitions and cites a few useful theorems.

It is not intended as an introduction to the subject. The reader not famil-

iar with the definitions below should consult a textbook on modern algebra.

[Bur55] is a good, though old, introduction to the subject. A more compu-

tationally oriented and modern introduction can be found in [Mig91]. Both

[But91] and [Wie64] are good references for permutation groups.

2.2.1 Groups

The fundamental mathematical structure that we will consider is the group.

We provide a definition for the sake of completeness and to familiarize the

reader with our notation.

11

Definition 1 A group G is a set of objects for which an associative binary

operation * is defined. The set must be closed with respect to the operation.

The set must contain an identity element and each element must have an

inverse. U

A group is a finite group when the set of objects is finite. A finite group is

said to have order ii when the set of objects has size n.

In general, we will use G to stand for an arbitrary finite group and I

to stand for the identity element in that group. Occasionally when we are

considering several groups at the same time, we will write Ic to indicate the

identity element in G. Frequently, we will drop the * sign and refer to the

group operation as multiplication. Also, we will use the symbol G to refer to

the set and let the operation be understood. We use the exponential notation

gk to indicate a product of k copies of g.

A finite group may be entirely specified by its multiplication table, with

rows and columns indexed by group elements (a and b respectively) and with

products (a * b) as table entries. The multiplication table for a group is often

called its Cayley table.

Example 2.2.2: A Small Group

The set E = {I, a, ,6, 'y, 6, } together with the operation given

by the Cayley table shown in figure 2.1 is a finite group. Later,

it will be convenient to have such a table at hand. Again, for

convenience later on, a table of the inverses of each element is

given in Figure 2.2.

The second table shows that each element has an inverse.

It is an easy matter to verify that the set E together with the

12

a /3 -Y 5

I*g I a /3 5

a*g a /3 I S (
f3*g /3 I a (y 5

'y*g 'y S I 8 a

5*g 5 'y a I /3

C 5 y /3 a I

Figure 2.1: The Cayley Table for E.

g: I a /3 y5 C
g': I /3 a 7S

Figure 2.2: Inverses in E.

operation * satisfies the other properties. U

In the above example, it is not true that h * g = g * h, for each g, h € E.

In particular, a * = 5 = * a. If we do have this additional property,

called commutativity, then we say that the group is Abelian.

The direct sum G = G2 of two groups G1 and G2 is the group of

ordered pairs in G1 x G2 with the group operation defined componentwise.

That is if g, h1 E G1 and 92,h2 E G2, then g = (gi, 92) and h = (h1, h2) are

elements of G and their product is defined to be g * h = (g' * h1,g2 * h2). It

is a straightforward exercise to verify that G1 G2 is a group whenever G1

and G2 are groups.

13

A homomorphism from a group G1 to another group G2 is a function

G1 -+ G2 that preserves group multiplication. That is, in order for

to be called a homomorphism, for all gi, 92 e G1, it must be the case that

= (gig). It follows that if qS : G1 -+ C2 is a homomorphism then

= 1c2 and (g') = (g)' for all g € C1. If, in addition, 0 is one to

one and onto, then 0 is called an isomorphism and the groups C1 and G2 are

said to be isomorphic.

A subgroup H of a group C is a nonempty subset of G which is still a

group under the binary operation * of C restricted to members of H. We

write H ≤ C (or C ≥ H). In case H is strictly smaller than C, we say that

H is a proper subgroup of C and write H < C (or G> H). In contrast to

the case with rings, H ≤ C implies that 1c E H and is the identity element

in H. Further, if h E H then the inverse of h in C, h', is also in H and is

the inverse of h in H as well.

The trivial subgroup of G is the set consisting only of the identity element

in G.

Example 2.2.3: Subgroups of E

Our group E has four nontrivial proper subgroups. They are:

Ea = {I,&,/3}, E7 = {I, 'y}, E5 = {I,6}, and E = {I,(}. The

group properties are easily verified. I

'The left coset of a subgroup H of C determined by g € G is:

gH={gh:h€H}. (2.2)

The element gxg', where g, x E G, is a conjugate of the element x in G.

We say that gxg' is the conjugate of x with respect to g.

14

I a /3 -Y 5

gag'aaa/3/3fi

g/3g'/3/3/3aaa

Figure 2.3: a and /3 are conjugates in E.

Definition 2 The conjugacy class CG(x) of x E G is the set of all conjugates

of x in G:

Cc(x) = {gxg' : g E G}. *

Example 2.2.4: Conjugacy Classes in E

E has three conjugacy classes:

{I} is a conjugacy class since glg' = I for all g E E.

{ a, /3} is a conjugacy class. The conjugates for a and /3
with respect to each element of E are shown in

figure 2.3.

{y, 5, } is easily seen to be a conjugacy class as well. •

The set of all elements in G that commute with a particular element

x E G is called the centralizer of x in G, is written Cc (x), and is a subgroup

of G. The set of all elements in C that commute with every element of C is

called the center of C and is an Abelian subgroup of G.

A set S C G is said to generate a finite group C if every element of C

can be expressed as a product of elements of S. The set S is then called a

generating set for G and we write G = (S).

15

Element I a /3 'y 6

Expression a3 a a2 y a')' a2'y

Figure 2.4: E is generated by {a, 'y}.

Example 2.2.5: A Generating Set for E

The set S = {a, -y} generates E, since each element of E

can be written in terms of elements of the set, as is shown in

Figure 2.4.

These expressions are not unique. •

2.2.2 Permutation Groups

A set of permutations acting on a set ≤) of size n generates a group where the

group multiplication operation is defined to be permutation multiplication.

Such a group is called a permutation group and is said to be of degree n. Every

finite group is isomorphic to a permutation group. Proof of this statement

may be found in any standard text (for example, see [Bur55]).

Example 2.2.6: A Permutation Group

Let the permutations a and y act on the set) = {1, 2, 3}.

The permutations: a = (1,3, 2) and 'y = (2,3) generate the

permutation group {Ici,(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}. We

have seen that 'y o a = (1, 2). Also, 'y o a o a = (1, 3), a o a =

(1, 2,3), and 'y o 'y = Iç2, so all of the listed permutations can be

16

Element of E Permutation

I (1)(2)(3)

a (1,3,2)

/3 (1,2,3)

7 (2,3)

5 (1,2)

C (1,3)

Figure 2.5: An Isomorphism Between E and S3

generated from a and 'y. Since there are no other permutations

on c≥, this is the group generated by a and y, as claimed. U

Definition 3 The symmetric group S, is the permutation group containing

all permutations of ri objects. U

Example 2.2.7: The Symmetric Group 53

The example group E is isomorphic to S3. An isomorphism

is shown in figure 2.5. Recalling that products of permutations

are read from right to left, it is an easy matter to verify that the

group operation is preserved. I

The symmetric group 5,, has a very simple generating set. Let 5,, act

on Il = {1, 2,... , n}. The set {(1, 2), (1,2,... , ri)} (written in cycle form)

generates S,,.

The definitions given in the previous section can be carried over to per-

mutation groups.

17

The definition of direct sum can be conveniently reformulated for permu-

tation groups as follows. The direct sum G of two permutation groups G1

acting on Q1 and G2 acting on 112, where 11 and 112 are disjoint, can be found
by constructing all permutations ir acting on Q1 U 11 such that 7r(111) =

ir(112) = 112 and such that the restriction of ir to 11 or 112 is a member of G1

or G2, respectively.

Next, consider the conjugacy classes of S3 and observe the relationship

between conjugacy classes and cycle structures.

Example 2.2.8: The Conjugacy Classes of S3

From example 2.2.1, we have that the conjugacy classes in

the group E are: {e}, {a, 8}, and {'y, 6, C}. Using the isomor-

phism shown in figure 2.5, we see that these translate into the sets

{(1)(2)(3)}, {(1,2,3),(1,3,2)} and {(1)(2,3),(1,3)(2),(1,2)(3)},

having elements whose cycle structures are (1, 1, 1), (3), and (2, 1)

respectively. U

This is not a coincidence. In fact, the conjugacy classes of the symmetric

group are characterized by their cycle structures. Any two elements of the

symmetric 'group with the same cycle structure are conjugate and any two

conjugates have the same cycle structure (see, for example, [CR62]). Thus,

we can specify a conjugacy class in the symmetric group by giving a partition

which specifies a cycle structure. In general, all elements of a single conjugacy

class in a permutation group have the same cycle structures although two

elements of a permutation group may have the same cycle structure without

being conjugate. For example, in the group G = ((1, 2), (3,4)) acting on

Il = {1, 2, 3, 4}, the elements (1, 2) and (3,4) have the same cycle structure,

18

A = (2, 1, 1), but are not conjugate.

2.2.3 Representations and Characters

There is much that can be said about representations of groups. We merely

touch on a few of the theorems that are most useful to us. There are many

texts on the subject and a large proportion of the introductory group theory

texts contain several chapters on representation theory. The reader is referred

to [Keo75], [FHG2], and [Ser77] for general treatments of the theory of matrix

representations. For the representation theory of the symmetric group, see

[JK81] and [dBR61]. [Led87] is a good introduction to character theory.

Definition 4 A representation T of a group G is a homomorphism T: G -+

H. Since T is a homomorphism, there must be a binary operation defined

on H such that

T(x)T(y) = T(xy) E H

for all x,y E G.m

Representations are most useful when they are homomorphisms from an

abstract group to a less abstract structure. This allows one to investigate

an abstract group by examining a more easily understandable structure.

In addition, using such concrete representations, one can specify a group

considerably more succinctly than would otherwise be possible.

The isomorphism between our example group E and the symmetric group

S3 is a representation. The group E is abstract. The group S3 is a set of

relatively less abstract objects, namely permutations. This type of repre-

sentation gave us a straightforward characterization of the conjugacy classes

of the symmetric group. Whenever the codomain of a representation is a

19

set of permutations, we call the representation a permutation representation.

Also, whenever a representation is injective, we say that the representation

is faithful.

Let K be a field. Let GL(n, K) be the group of invertible n x n matrices

over K.

Definition 5 A matrix representation of dimension (or degree) n over K is

a representation T: G - GL(n, K) of G. •

Example 2.2.9: Matrix Representations of S3

We give three representations over C of S3. The first repre-

sentation is the trivial representation. All of the elements of S3

are taken to the 1 by 1 identity matrix. For technical reasons

(see [dBR61]), we call this representation A(3) and define it as

follows: A(g) (lr) = def [1].

The second representation that we will consider is called the

alternating representation. The elements of the group are taken

either to the 1 by 1 identity matrix or to the matrix [-1] depend-

ing on whether the permutations are even or odd. We call this

representation A(i,i,i) and define it as follows:

def [1] if ir is even
A(l,l,l) 1r) =

. i [-1] otherwise.

The third representation is more interesting. We call it A(2,i)

and define it with the table shown in figure 2.6. 0

20

ir E S3

(1)(2)(3)
0 1)

(1,2)3)
(i\

I _
2

2 J
2 /

(1,3,2)
(1
(

2

_\

I
- /

(1)(2,3)
/ 1

I •:;
\2

I
2)

(1,3)(2)
/ 1 _\

2

I

(1,2)(3)
11

0

0

—1)
Figure 2.6: A Matrix Representation of S3

21

The tensor product C = A ® B of two square matrices A and B, with

dimensions m and n respectively, is obtained by replacing each entry in A

with the product of that entry and the matrix B to get the mn x mn matrix

C = A®B

/ a11B a12B ajmB

a21B a22B •

a 1B am2B ammB I

where A has (i, j)th entry aj for 1 < i, j ≤ m.

The tensor product of two matrix representations A1 of degree rn and

A2 of degree n of a group G is the matrix representation of degree mn

of G in which each element x E G is represented by the tensor product

A, (x) 0 A2(x). Since for m x m matrices A and C and n x n matrices B

and D, (A(9B)(C(9D) = (AC) 0(BD), A = A1 0A2 is a indeed matrix

representation.

A representation TH of a subgroup H ≤ G induces a representation T T G

of G. Since we do not make explicit use of the construction, it is not included

here. For mdre information on induced representations see [Ser77] or [FH62].

Suppose A(x) is a representation of G over K and T is a nonsingular

matrix (of the same degree) with coefficients in K. Then B(x) = T'A(x)T

is also a representation of C. We say that A and B are equivalent over K

and write A - B.

A matrix representation A(x) is reducible over K if there exists a non—

singular matrix T over K such that

' (C(x) 0

B(x) = TA(x)T = E(x) D(x) for all x E)C.

22

In the above, C(s) and D(x) are both matrix representations of C over K.

Theorem 1 (Maschke) Let C be a finite group of order g, and let K be

a field whose characteristic is either zero or has no common factors with g.

Suppose A(s) is a matrix representation of G over K such that:

A(s)
(C(X) 0

'S-'

E(x) D(s)

Then

A(x) (C(X) 0 r...I
0 D(x)J

A proof is given in [CR62].

The fields we are concerned with are the complex field and finite exten-

sions of the rationals. All of these have characteristic zero, so that Maschke's

theorem (theorem 1) is applicable.

A representation is said to be irreducible when it is not reducible. If A

is a representation of a group C over a field K, and K is a subfield of a

field L, then A can also be considered as a matrix representation over L.

A representation over a subfield of the complex numbers C is said to be

absolutely irreducible when it is an irreducible representation over C.

Equivalent representations are said to belong to the same representation

class. For any finite group, there are as many absolutely irreducible rep-

resentation classes as there are conjugacy classes (see [CR62]). This is an

upper bound on the number of irreducible representation classes over smaller

fields. When the upper bound is met, the field is called a splitting field for

the group.

The above implies that, since there is a one to one correspondence be-

tween partitions of n and the conjugacy classes in S,, there must also be a

23

one to one correspondence between the absolutely irreducible representation

classes of S, and the partitions of n. There is a natural correspondence be-

tween the partitions of n and the absolutely irreducible representations of S,

which is part of the "special" representation theory of the symmetric group.

The reader is referred to [dBR61] for more information.

The representations given for S3 in the example above are absolutely

irreducible representations. The names we gave the representations reflect

the natural correspondence between absolutely irreducible representations of

Sn and partitions.

Definition 6 The character of a group G with respect to a representation

A of dimension n is the function

n
W(x) = Trace(A(x)) =

i=1

The character has two important properties:

1 Equivalent representations have the same character.

2 If g and h are conjugates in G then (g) = q5(h) for any character 0.

Thus, it makes sense to write characters both as functions of the elements of

a group and as functions of the conjugacy classes of a group.

We say that a character is (absolutely) irreducible if it is the character

of an (absolutely) irreducible representation. When a character is not irre-

ducible, we say that it is a compound character. Compound characters can

be expressed as linear combinations of irreducible characters. The values of

the absolutely irreducible characters for a group with m conjugacy classes

can be tabulated in an m x m table. Unless otherwise specified, when we

talk about the characters of a group, we mean the absolutely irreducible

characters.

24

Conjugacy Class (1, 1, 1) (2,1) (3)

Character in A(s) 1 1 1

Character in A(2,1) 2 0 —1

Character in A(i,i,i) 1 —1 1

Figure 2.7: The Character Table for S3

Example 2.2.10: The Character Table for 53

We can read the characters directly from the absolutely irre-

ducible representations of S3 given in the example above. The

results are shown in the figure 2.7. U

2.2.4 Character Relations

A more detailed examination of group characters yields some elegant rela-

tions among the characters of any group. Aside from being pretty, they can

be used to generate the character tables of some very small groups. For

example, they are used to compute the character tables of the groups S3,

A4, and S4 (the symmetric group on three points, and the alternating and

symmetric groups on four points) in [CR62]. We will have to use some addi-

tional facts in order to compute character tables for larger groups but these

relations will be of use nonetheless.

Let G be a finite group with n elements and k conjugacy classes C1,

C2,..., Ck. Let hi be the number of elements of the conjugacy class C2 and

let ('),. , (k) be the distinct absolutely irreducible characters of C. We

denote the dimension of an absolutely irreducible matrix representation of G

25

with character) by z. Finally, we use the symbol * on subscripts to refer

to the conjugacy class containing the inverses of a given conjugacy class.

That is, C. = {g ' : g E Q. We may now write down the orthogonality

relations for group characters

(hg)W(g_l) = ()(h) .

gEG
zi

i (g)W(gl) =

gEG

i hjXj = n. bij

1=1

Xj* = . '5ij

oji

for h E G, 1 ≤ j, j ≤ k and for öj the Kronecker delta.

For proofs of these relations see [CR62] or [Led87].

2.3 Background in Complexity Theory

(2.3)

(2.4)

(2.5)

(2.6)

We quickly and informally describe some aspects of abstract complexity the-

ory and then present a few known hard problems. Those not already confi-

dent with this material are encouraged to consult [GJ79] and [11U79]. Fur-

ther information is contained in the first three of the chapters in the [vL9O],

namely [vEB9O], [Joh9O], and [Sei9O]. These articles are extremely useful, in

part, because of their extensive bibliographies.

We show that Garey and Johnson's proof of the NP—hardness of the

decision problem 4—PARTITION can be adapted to prove #P—hardness

for the corresponding enumeration problem. While this is neither surprising

nor difficult, we are unaware of the result appearing elsewhere.

26

For the most part, we follow the notation of [11U79}. Deviations from

this notation are noted.

2.3.1 Complexity Classes, Hardness, and Complete-

ness

Informally, the complexity class P is the set of all decision problems with

deterministic polynomial time solutions. The set P has been defined to

formally capture the notion of the set of tractable problems. The class NP

is the set of all decision problems whose positive instances can be verified in

polynomial time and clearly contains P. It is unknown whether the classes

P and NP are equal but it is widely conjectured that they are not.

The class PP is also important. It may be roughly defined as the set

of all decision problems with probabilistic polynomial time solutions. The

only bound on the probability of error is that it must be strictly less than 1.

NP is contained in PP and it is widely conjectured that the containment is

strict. In summary, we have

PçNPçPP

Clearly, P =A PP is a weaker assumption than P 0 NP.

Definitions of P, NP, and PP can be found in [Joh9O] and [11U79]. For

more detailed information on the relationships between P, NP, and PP,

see [Joh9O].

We say that a decision problem A is many—one reducible to another de-

cision problem B if there exists a function M which maps instances of A to

instances of B such that, for a an instance of A, M(a) is a positive instance

of B if and only if a is a positive instance of A. Other kinds of reducibilities,

27

such as oracle reducibility, appear in the literature. We will be concerned

only with many-one reducibility and thus will omit the modifier 'many-one'

in further discussions. If the function M can be implemented in polynomial

time, we say that M is a polynomial time reduction from A to B so that

A is polynomial time reducible to B. The classes F, NP, and PP have

the important property that they are closed with respect to polynomial time

reducibility.

Nondeterministic and probabilistic machines can be thought of as having

a computation tree rather than a computation path. That is, at any given

stage in a computation, nondeterminism arises when there are more than one

possible next steps. Thus, rather than proceeding through a series of ma-

chine configurations, making a single path, a nondeterministic computation

by a given machine on a given input is described by a set of computation

paths. Since these paths all start out the same, it is more compact and

more illuminating to consider this set as a tree. By allowing the machines to

consider the best of these paths or all of the paths at once, we (likely) add

power to the machine.

The term hard is applied to a problem, a complexity class, and a type

of reducibility when it has been shown that all problems in the complexity

class can be reduced to the problem using the specified type of reducibility.

Together with the fact that P is closed with respect to polynomial time

reducibility, this implies that if a problem known to be hard for NP or for

PP is in F, then P = NP or P = PP respectively.

We say that a problem is NP-hard when it is hard for NP with respect

to polynomial time reducibility. Similarly, we say that a problem is PP-hard

when it is hard for PP with respect to polynomial time reducibility. If, in

addition to being hard for a complexity class, a problem is a member of that

28

class, we say that it is complete for that class. For NP and PP, this is

abbreviated to NP-complete and PP-complete respectively.

Since we do not believe that P = NP, classifying a problem as NP-hard

or NP-complete is highly indicative that the problem is intractable. Since

PP contains NP, showing PP-hardness or PP-completeness for a problem

is even stronger evidence for the intractability of a problem.

We have used polynomial-time many-one reductions to define NP and

PP-hardness. Some sources define NP-hardness with respect to a stricter

form of reducibility, "log-space reducibility". This distinction is not impor-

tant for our results.

The class #P is the set of all enumeration problems that can be solved in

polynomial time by a counting Turing machine. A counting Turing machine

is conceptually very similar to a probabilistic Turing machine or a nonde-

terministic Turing machine. The significant difference is that rather than

returning a 'yes' or a 'no' based on. the existence of an accepting computa-

tion (as for a nondeterministic Turing machine) or a 'yes' or a 'no' based

on the ratio of accepting computations to all computations (as for a proba-

bilistic Turing machine), a counting Turing machine returns the number of

accepting computations. Since #P contains enumeration problems rather

than decision problems, it includes the class FP of all enumeration problems

that are computable by a deterministic Turing machine in polynomial time.

It is widely believed, but unproved, that FP is a proper subset of 7LP -

and it has been shown that FP = #P would imply P = NP.

Since many-one reductions apply to decision problems, we need another

kind of reduction in order to prove results about enumeration problems.

We say that a function M from instances of an enumeration problem A to

instances of an enumeration problem B is a polynomial time parsimonious

29

reduction from A to B if M is computable in deterministic polynomial time

and there is a function f : N -+ N that is computable by a deterministic

Turing machine using time polynomial in the length of its input and in the

length of the instance a of A such that, for any instance a of A, if b = M(a)

is the corresponding instance of B and m is the output of B on instance b,

then f(in) is the output of A on instance a.

An enumeration problem A is hard for #P, or "#P-hard", if there is a

polynomial time parsimonious reduction from every enumeration problem in

#P to A'. and A is :#P-complete if A is #P-hard and belongs to #P.

Our definition of parsimonious polynomial time reduction is weaker (that

is, less restrictive) than that found in the literature which requires that the

output for the original instance a of A and for the derived instance b of B

be identical. The reduction we call a "polynomial time parsimonious reduc-

tion" is frequently called a "polynomial time weakly parsimonious reduction."

Since the relation "polynomial time weakly parsimonious reducibility" is a

transitive relation on enumeration problems and since FP is closed with

respect to weakly parsimonious reductions, membership of a #P-hard or

+P-complete problem in FP implies that PP =:#P. Thus, #P-hardness

or completeness is still very good evidence for the intractability of a prob-

lem even with the weaker notion of reduction. Since we only use weakly

parsimonious reductions, we omit the modifier "weakly" in all that follows.

Some problems involve numerical inputs. Normally, we assume that in-

puts are encoded efficiently. That is, numbers are represented using a place

value system. When the structure of a problem is such that the problem

remains complete or hard even when the numbers are represented in a tally

system, we say those problems are strongly complete or hard. This is con-

ventionally said of NP hard problems. We will also use this terminology for

30

PP and #P hard problems.

2.3.2 Computing with Algebraic Numbers

We will be concerned with computations involving the complex numbers.

Since most complex numbers do not have finite representations, some com-

ment is required.

Whenever we are attempting to compute a value in C, we will always be

concerned with problems with both finite specifications and unique solutions.

Thus, the numbers are finitely represented by the specification of the prob-

lem. However, such a representation is of no use to us. It would be highly

desirable if we could efficiently perform operations such as multiplication,

addition, and zero testing on the representations of the numbers.

In the cases that we are concerned with, this can be done by working

with finite algebraic extensions of the rationals. First, we observe that such

fields are subfields of the complex numbers. Furthermore, each can be ob-

tained by adjoining a single algebraic number (say, a) to Q. The generator

a can be represented by its minimal polynomial over Q and by numerical

approximation (to distinguish it from the other roots of this polynomial).

This information identifies the field Q[a]. Second, any element /3 of a field

Q[a] can be represented by a polynomial f E Q[x] with rational coefficients

- namely, the polynomial f (with degree less than that of the minimal poly-

nomial of a) such that /3 = 1(a). Arithmetic operations over the field can

be implemented in terms of operations on the polynomials used to represent

elements of the field. For a detailed discussion see [Loo83].

31

2.3.3 Problems

The problems described below are used to prove hardness or efficiency results

later in the thesis.

2.3.3.1 4—PARTITION

Carey and Johnson [GJ79] show that the problem 4—PARTITION is strongly

NP—complete. Their transformation is parsimonious and so we immediately

have #P—completeness for the corresponding enumeration problem and PP—

completeness for the threshold problem. We follow their notation for 4—

PARTITION, use their transformation, and extend their proof of correctness

to show that the transformation is parsimonious.

The NP—completeness proof in Gary and Johnson proceeds by reduc-

ing 3—Dimensional Matching to 4—PARTITION. We give a definition of 3—

Dimensional Matching below:

Decision Problem 1: 3DM

3-Dimensional Matching

Input:

An integer q represented in unary and

a set M C W x x Y, where W,X and are disjoint sets,

each with q elements.

Question:

Does M contain a matching, that is, a subset M' C M such

that IM'! = q and no two elements of M' agree in any

coordinate? •

The problem 3DM is shown to be NP—complete in Gary and Johnson.

Also, it is shown that the corresponding enumeration problem #3DM and

32

the corresponding threshold problem T-3DM are #P and PP-complete

in [Sim77] and [Gal74]. Although not included in the literature's definition

of the problem, our inclusion of q represented in unary does not affect the

cited results. In order for there to be a matching, M must contain at least

q elements and thus, inclusion of q represented in unary does not cause a

significant increase of the size of the input for the hard instances of the

problem. We include q in the input to simplify statements made later.

We give a definition of 4-PARTITION below:

Decision Problem 2: 4-PARTITION

Strongly NP-complete problem

Input:

m: an integer represented in unary,

A: a finite set with 4m elements,

B: a positive integer bound represented in unary,

s: a function from A to the positive integers such that if

a E A then B/5 < s(a) <B/3 and such that

>aEA s(a) = mB.

Question:

Is there a valid -partition of A? That is, can A be

partitioned into m disjoint sets Si, S2,.. . , Sm

such that for 1 < i ≤ m: EaESi s(a) = B ? U

Again, including m represented in unary in the input does not change the

complexity of the problem since A has more than m elements. The fact that

B can be represented in unary without affecting the NP-completeness of the

problem is shown in [GJ79]. The demonstration of this fact is a significant

portion of the proof that 4-PARTITION is strongly NP-complete.

33

In order to prove that 4—PARTITION is strongly NP—complete, Gary

and Johnson give a transformation from 3DM to 4—PARTITION (see

pages 97 to 99 of [GJ79]). They prove that the transformation can be done

in polynomial time and that it yields an instance of 4—PARTITION which

has element sizes that are bounded by a polynomial in the size of the original

instance of 3DM. We describe the relevant aspects of their proof in order

to show that their transformation is parsimonious, and provide a simple

example.

The transformation takes an instance W = {w1, W2.. .. , w}, X = {x1,

X2,.. .,xq}, Y = {yl,y2,. .. ,yq} and M W x X x Y of 3DM to an instance

(A, B, s) of 4—PARTITION with 41M1 elements. The set A contains one

member for each element of each of the triples in M. These are indexed by

their membership in W, X, or Y and by their position within whichever set

they belong to. Thus, the elements of the set A are denoted w [1], x [1], and

yk{lI where i, j, and k range from 1 to q and for each particular i, j, or

the variable I ranges from 1 to the number N(z) of times that the element

z of W, X, or Y is contained in a triple in M. Thus, by construction, there

are exactly IMI elements of A with the form w1[l] (with 1 ≤ i ≤ q and

1 <1 ≤ N(w)), IMI with the form x[l] (with 1 ≤ j ≤ q and 1 ≤ 1 ≤ N(x)),

and IMI with the form yk[l] (with 1 < k < q and 1 < I ≤ N(yk)). Finally,

the set A includes another IMI elements - denoted u1, U2,... , UIMI.

The elements w[1], x[1], and yk[1] are called actual elements where i, j,

and k have, the same ranges as before. All of the other elements of A except

U1, U2,.. . , UIMI are called dummy elements.

Gary and Johnson's construction includes formulas (on page 97) defining

the sizes for the elements of A. The sizes of the elements depend on (and

are computable deterministically in polynomial time from) the indices of the

34

corresponding elements in the set W, X, or Y and on which set they belong

to. The actual elements all have different sizes. Each of the dummy elements

for a particular element of W, X, or Y has the same size, and the size is

different for each different element of W, X, or Y. Furthermore, none of

the sizes of the actual elements is the same as any of the sizes of any of the

dummy elements.

Gary and Johnson give the following construction of a 4-partition from

a matching. Suppose that M' C M is a matching. The corresponding 4-

partition is made up of IMI 4-sets, each containing a Uj, a w[.], an x5[.], and

a yk[], where (Wj,Xj,yk) = mj E M. If 1 < I ≤ q and mj E M', we group u

with the actual elements w{1], x[1], and Vk[1I. If m1 e M - M', we group

Uj with dummy elements corresponding to w1, x, and Yk• Gary and Johnson

show that for every matching M' C M, the above construction gives a valid

4—partition of A. They also give a construction for a matching M' C M from

a valid 4—partition of A, establishing that 4—partitions corresponding to the

same matching M' M can only differ by having dummy elements for the

same element of W U X U Y exchanged.

We illustrate the transformation below.

Example 2.3.11: Transforming an instance of 3DM to an instance

of 4—PARTITION

Let q = 2, W = {wi,w2}, X = {x1,x2}, Y = {yl,y2},

and M= {(w1,xi, YO, (w1,xi,y2),(w2,x2,y1)} be an instance of

3DM.

We construct an instance (m, A, B, s) of 4—PARTITION as

follows. First, we count the number of occurrences of the elements

35

of W, X, and Y in the ordered triples of M, summarized below:

N(wi) = 2 N(w2) = 1

N(xi) = 2 N(x2) = 1

N(yi) = 2 N(y2) = 1

Now, letting r = 32q = 64 and m = 12, we define the size function

s (and at the same time actual and dummy elements of the set

A) for each of the elements of W U X U Y as follows:

s(wi[1]) = br4 + ii' + 1 = 167772225

s(w2[1J) = 10r4 + 2r +1 = 167772289

s(w1[2]) = 11r + ii' +1 = 184549441

s(xj[1]) = 10r4 + li'2 + 2 = 167776258

.S(X2{1]) = 10r4 + 2r2 + 2 = 167780354

s(xi[2]) = hr4 + li'2 + 2 = 184553474

s(yi[l]) = 10r4 +1'3 + 4 = 168034308

s(y2[l]) = br4 + 2r3 + 4 = 168296452

s(yi[2]) = 8r4 + hr3 + 4 = 134479876

For each of the triples of M, we define the size function (and the

rest of the elements of A) as follows:

s(ui) = 10r4 - li'3 - li'2 - hr1 + 8 = 167505864

S(U2) = iO, - 2r3 - li'2 - hr1 + 8 = 167243720

S(U3) = 10r4 - hr3 - 2r2 - 2r' + 8 = 167501704

Finally, we set B = 40r4+15 = 671088655 and the transformation

is complete.

We observe that the only matching in M is M' = { (w1, x1, y2),
(w2, x2) y)} and the only valid 4—partition of (m, A, B, s) is:

36

S1 = {u1,w1[2],x1[2],y1[2]}

52 = {u2,w1[1J,x1{1J,y2[1]}

S3 {u3,w2[1],x2{1],yi[1]}

up to interchange of the indices of the sets S. •

We call two valid 4—partitions of A equivalent if one can be obtained

from the other by interchange of elements with the same size. This defines

an equivalence relation on the 4—partitions of A.

Recall that, by the definition of s, two elements of A have the same

size if and only if they are both dummy elements for the same element in

W U X U Y. Thus, Gary and. Johnson's construction specifies a bijection

between the equivalence classes of valid 4—partitions of A and the matchings

for the instance of 3DM.

We now show that these equivalence classes of 4—partitions all have the

same size and that this size is easy to compute. Consider the 4—partitions in

the equivalence class corresponding to some matching M' C M. The number

of ways that the N(z) - 1 dummy elements corresponding to a member z in

W U X U Y can be arranged in 4—sets corresponding to elements of M \ M'
with z as an entry is (N (z) - 1)!. The dummy elements corresponding to

different elements of W U X U Y can be placed independently. Thus the

number of ways that we can place all of the dummy elements is exactly

fJ III fJ ((N(w) - 1)!(N(x) - l)!(N(yk) - 1)!). (2.7)
1≤i≤q 1≤j≤q 1≤k≤q

Since the sizes of the actual elements are all distinct, this is the size of the

equivalence class of 4—partitions of A corresponding to a matching M'. This

size does not depend on the matching that is chosen so the total number of

37

4-partitions in the constructed instance is

K. JJ fJ J] ((N(w) - 1)!(N(x) - 1)!(N(yk) - 1)!) (2.8)
1≤i≤q1≤jq1≤kq

where K is the number of 3-dimensional matchings M.

The values N(z) can be determined in polynomial time from the de-

scription of M. Furthermore, this description has length at least linear in

1(N(w) + N(x) + N(y)), so the values (N(z) - 1)! can be computed

efficiently as well. We can find the product given in equation (2.7) in poly-

nomial time and then, in time polynomial in the size of M, find K using the

product just computed, equation (2.8), and the number of valid 4-partitions

in the constructed instance of 4-PARTITION.

We now give explicit definitions of the threshold and enumeration prob-

lems associated with 4-PARTITION so that we may summarize our results

in a single theorem.

Decision Problem 3: T-4-PARTITION

Threshold 4-PARTITION

Input:

m: an integer represented in unary,

A: a finite set with 4m elements,

B: a positive integer bound represented in unary,

s: a function from A to the positive integers such that if

a E A then B/5 < s(a) <B/3 and such that

>aEA s(a) = mB,

x: a threshold value represented in binary.

Question:

Do there exist strictly more than x valid 4-partitions of A?

38

Number Problem 4: #4-PARTITION

4-PARTITION Enumeration

Input:

m: an integer represented in unary,

A: a finite set with 4m elements,

B: a positive integer bound represented in unary,

s: a function from A to the positive integers such that if

a E A then B/5 < s(a) <B/3 and such that

>-IZEA s(a) = mB.

Output:

The number of valid 4-partitions of A. U

Note that the values of the function s can b.e represented in unary with

no significant increase in the input size since m and B are both represented

in unary.

Theorem 2 The decision problem T-4-PARTITION is PP-complete.

The enumeration problem #4-PARTITION is #P-complete. U

Proof: It is easy to adapt Gary and Johnson's proof of membership of

4-PARTITION in NP in order to show that T-4-PARTITION be-

longs to PP and #4-PARTITION belongs to #P. We have demon-

strated that Gary and Johnson's transformation (establishing NP-hardness

of 4-PARTITION) is parsimonious; this implies PP-hardness of T-4-

PARTITION and #P-hardness of #4-PARTITION. U

2.3.3.2 Boolean Permanent

The problem BOOLEAN PERMANENT is shown to be #P-complete

in [Va179}. We formally define the problem below.

39

Number Problem 5: BOOLEAN PERMANENT

#P-complete problem

Input:

An n x n matrix M of 0's and l's.

Output:

The value of the permanent of M, given by:

n

Perm(M) = E fl
ES i=1

where, as shown, the sum runs over all n! permutations u of the n

integers {l,2,. ,n}. U

40

Chapter 3

Characters of Finite Groups

There are several sensible ways that a finite group may be specified. The

least succinct is to give the complete multiplication table, or Cayley table,

for the group. In this chapter, we consider the computational complexity of

finding the absolutely irreducible character table for a finite group that is

represented by a Cayley table.

Burnside's algorithm is one known method (of several) for computation

of a character table from a Cayley table. It is efficient - see [Ebe89] for

an analysis. We summarize the algorithm and its analysis. Then, we show

that a significant part of Burnside's algorithm can be inverted efficiently

using a well known theorem - see [CR81]. In particular, we show that the

structure constants used by the algorithm can be found efficiently from an

absolutely irreducible character table. This is motivated by some work by

Schneider (see for example [Sch90]) on finding characters from incomplete

sets of structure constants.

41

3.1 Computing Characters from Cayley Ta-

bles

The problem of finding the character table of a finite group given its Cayley

table has a long history and has been the subject of extensive work. For

numerous examples, see the surveys [Fel78] and [Neu83].

There has been considerable recent interest in Dixon's modification to

Burnside's algorithm ([Dix67]). In particular, Schneider ([Sch9O]) has ex-

plored the removal of wasted computation in Dixon's algorithm caused by

redundancies in the structure constants. In the next section, we demonstrate

that the structure constants are entirely recoverable from the character table.

Although this is only a minor extension of the work of Burnside, Dixon, and

Schneider, it is important in that it shows that the 0 structure constants

contain exactly the same amount of information as the k x k absolutely ir-

reducible character table. Further, it shows that these pieces of information

are equivalent in terms of polynomial time computations.

In order to prove the result in the next section, we now describe Burn-

side's algorithm. The algorithm is derived in, among other places, [CR62].

Although the details of the correctness proof are interesting, they are rather

long and widely available. Thus, a proof is not included here. The algorithm

(and two modifications) are analyzed in [Ebe89].

To begin with, let us formally define the problem under consideration.

Problem 6: x from x
Computation of Character Table from Cayley Table

Input:

A multiplication table for a finite group G = {g1, g2,. .. . g}.

42

Output:

The character table for C over C. I

Intuitively, Burnside's algorithm works as follows. First, we compute a

set of values expressing connections between conjugacy classes - the class

matrices of the group. It can be shown using the character orthogonality

relations given in section 2.2.4 that the components of the common elgen-

vectors of the class matrices are directly related to the characters. After

computing these common eigenvectors, only a minor amount of rearranging

and arithmetic remains in order to obtain the characters.

It is worth noting that Burnside's algorithm and Dixon's modification

can be used to compute character tables over some fields other than the

complex numbers. In order to simplify matters, we will only be concerned

with characters over C.

We now review our notation and state the algorithm formally. Let C be

a finite group with order n. As in section 2.2.4, we denote the k conjugacy

classes of C by C1,. . . Ck, with a convention that C1 = {I}. Aside from

this convention, ordering of the conjugacy classes is arbitrary. We use the

superscript * on the indices of the conjugacy classes to refer to the conjugacy

class containing the inverses of a given conjugacy class. That is, C. = {g _1

9 E C}.

Let hi be the number of elements of the conjugacy class C2 and let XM

be the distinct absolutely irreducible characters of C. We use subscripts

to denote the value of the character for members of a particular conjugacy

class. That is, XV is the value of the ith irreducible character at an element

of the conjugacy class C. In a fashion similar to our notation for conju-

gacy classes, we adopt the convention that XM be the character of the trivial

43

representation (so = 1 for 1 < j ≤ k) and that the order of the other

representations is arbitrary. We denote the dimension of an absolutely ir-

reducible matrix representation of G with character) by z. Note that

Zi = x since Ia E C1.

For 1 ≤ r, s, t ≤ k, the structure constant C,.3t is the number of solutions

(x, y) to the equation xy = z with x E Cr, y E C3, for some fixed z € C.

The number of solutions is easily shown to be independent of the particular

Z E C, that is picked. Define V3 to be the matrix whose (r, t)th entry is c,..

The matrices V1, V2,. . . V are called the class matrices.

It can be shown, using the character orthogonality relations (given in

section 2.2.4), that if

zi forl≤i,j≤k

then the w's are both eigenvalues and components of the eigenvectors of

the class matrices. In particular,

for 1 ≤ ij ≤ k.

It can be shown using linear independence of the characters XM x2•• ,

that these relations uniquely determine the values w. The character values

can then be recovered from W using the orthogonality relations and the

fact that X' = 1 for 1 ≤ i ≤ k. This method for computing character tables

is stated in more detail below.

44

Algorithm 1: Burnside's Character Algorithm

Input:

A multiplication table for a finite group G = {gl, 92, . . ,

Output:

The character table for C over C.

Step 1:

Identify a representative x of each conjugacy class Ci in G and find

the size of the conjugacy class containing that element. Call the

sizes of the k conjugacy classes h1, . . . hj. The order is

not important other than that C1 = {1}.

Step 2:

For each triple (r, s, t) where 1 ≤ r, s,t ≤ k, count the number c,.

of solutions of xy = z such that x E Cr, y E C, for any

fixed z E C.

Step. 3:

For each i where 1 ≤ i ≤ k, find the index i of the conjugacy

class C. containing the inverses of the elements of the class C2.

Step 4:

For each s where 1 ≤ S ≤ k, let V, E Mkxk(C) be the class

matrix given by (V,)rt = c,.,t for 1 ≤ r, t ≤ k.

Find the eigenvalues and bases for the eigenspaces of each of

the matrices V,. Find bases

w1= W2 =

(k)
Wi

(k)
W2

(k)
Wk

45

for the intersections of the eigenspaces, such that these are

common eigenvectors of V1,... , V, span Mk1(C), and

each has first component 1.

Step 5:

For 1 ≤ i ≤ k, compute the integer

= (i)
w1 w1.

(i)
n 1

xS

Step 6:

For each pair (r, s) such that 1 ≤ r, s ≤ Ic, the (r, s)thl entry

in the character table of G is given by:

Zr

where is the rt component of the vector w3.

Step 7:

Output the values X for 1 ≤ r, s ≤ k. U

Since G is finite, the elements of its character table are algebraic numbers

in Q[i] where i is a kt primitive root of unity and k divides the order of G.

See section 2.3.2 for a discussion of the representation of these numbers.

The fact that this algorithm can be implemented in polynomial time was

used in [Ebe89] to prove the following theorem.

Theorem 3 x from x E FP. 0

46

3.2 Inverting Part of Burnside's Algorithm

In this section, we observe that most of Burnside's algorithm (described in

section 3.1) is invertible. More specifically, the "structure constants" found

in step 2 of Burnside's algorithm can be found efficiently from a character

table.

As before, we restrict ourselves to talking about the character table of a

finite group G over C. We carry over the notation of the last section. That

is, we write G for a finite group of order n. The k conjugacy classes in G

are written C, where i ranges from 1 to k, and their sizes are written h.

Once again, C1 = JIG}. By i we mean the index of the class C. containing

the inverses of the elements of the class C2. The value zi is the dimension

of the it' irreducible representation. Finally, x is value of the character of
the representation class i at the conjugacy class C3. Columns in character

tables correspond to conjugacy classes in the group and rows correspond to

the equivalence classes of absolutely irreducible representations.

We now define a new problem.

Problem 7: Cr$t from x
Structure Constants from Character Table

Input:

An absolutely irreducible character table xt of a finite group G.

Output:

A "table" of structure constants Cr8t for the group G where

C,-.t is the number of solutions to xy = z for any fixed z

in the conjugacy class with index t (denoted C) and x and

y are in C and C3 respectively. •

47

This problem can be solved in polynomial time by using a few identities

to find the size m of the group, the sizes h2 of the conjugacy classes, the

values i' of the indexes of the conjugacy classes C. containing the inverses

of the members of the class C1, and the values zi of the dimensions of the

absolutely irreducible representations of G, and then using the formula

h k (m) (m) (m)
r1&s 'cç Xr X Xt

L.d Zm
(3.1)

proved on page 216 of [CR81] to invert the last stages of Burnside's algorithm.

We begin by observing that we can locate the column in x corresponding
to the class consisting of only the identity element, since it will be the only

column with only positive integers as entries: this column must have posi-

tive integer entries since any matrix representation with dimension zi must

represent the identity element of C by the z1 x z1 identity matrix. Consider

the fourth orthogonality relation (equation (2.6))

k
(1) (1) 71

Xz Xj hij6i
1=1 j

If there is a second column with index j in the character table whose entries

are all positive then the value of the left hand side of the orthogonality

relation is positive when i and j" are the indexes of these columns. Since

C1 is the conjugacy class containing the identity element, i i. So, if i

and j are distinct then i and j are distinct. Thus, the right hand side of

the relation is zero when i j. This is a contradiction, so there are no

other cOlumns whose entries are il positive. Therefore, since the "identity"

column is easily locatable, we can assume without loss of generality that it

is the first column X, in the character table.

Since degree z of the jth irreducible character equals for 1 ≤ i ≤ k,

we can now directly read these degrees from the character table.

48

We can now use the identity n = z12 to find n. (The identity is

simply equation (2.6) with i = j = 1.)

We use the fourth orthogonality relation (equation (2.6), again), to find

the values j by computing the sum L for pairs of rows i and j

and observing that j = i if and only if the sum is non-zero. At the same

time, we can find the values of the hi's using n and the non-zero sums above.

We now have all of the values on the right hand side of equation (3.1)

and thus can use it to evaluate the structure constants C,.t.

The above is summarized in the algorithm below.

Algorithm 2: Inversion of Burnside's Character Algorithm

Input:

A character table x (1 ≤ j,≤ k) for a finite group G.
Output:

The structure constants c,. (1 ≤ r, s, t ≤ k) for G.

Step 1:

Identify the column in the character table corresponding to the

conjugacy class containing the identity element in the group

by finding a column with only positive integer entries. Call

this column Xi•

Step 2:

Read the dimensions of the irreducible representation classes z

from the column located in step 1: zi = for 1 ≤ i < k.

Step 3:

Compute the size of the group, m = z2.

Step 4:

For each 1 ≤ i ≤ k, find the values i' and hi by computing sums

49

k

= X1 X3 for 1 ≤ i ≤ k
1=1

and setting i = j and hi = n/X, for the unique index j

such that the sum is nonzero.

Step 5:

Output the values C3t found using equation (3.1):

hrhs (m)X(m)X (rn)
Crst =

m=1 Zm

for l≤r,s,t≤k. I

Theorem 4 crg from x E FP. N

Proof: Each of the steps of the above algorithm can be accomplished in

polynomial time. Steps 1 and 2 involv simply searching the input and

copying part of it. Step 3 is a sum over Ic values and step 4 involves at most

0(k2) sums over k values. Step 5 involves k3 summations, each of which can

be done with k - 1 additions, 2(k - 1) multiplications, and Ic - 1 divisions.

Thus, we need no more than 0(k4) field operations for the entire algorithm.

N

The inversion process cannot proceed any further. There are finite groups

which are non-isomorphic and have the same character table. For example,

the fourth dihedral group D4 and the quaternion group Q of order eight are

non-isomorphic and have the same character table.

It is interesting to consider the inversion problem for special classes of

groups. There are no known examples of non-isomorphic simple non-abelian

50

groups with the same character table (see [CR81]). It seems possible that

Cayley tables could be found from character tables of these groups or some

large subclass of these groups. This takes us well beyond the scope of this

thesis. We end the discussion on this topic by noting that since the size of

the multiplication table can be superpolynomial in the size of the character

table, the standard definitions of efficiency are not directly applicable to the

complete inversion problem.

Some comments on the analysis remain. We have counted arithmetic op-

erations rather than Boolean operations. Since our inputs are algebraic num-

bers, it is not immediately clear that only a polynomial number of Boolean

operations are needed. This subject is beyond the scope of this thesis. For

now, it will suffice to say that the proof that Burnside's algorithm could be

implemented in polynomial time explicitly counted the number of Boolean

operations required (see [Ebe89]). Since we are dealing with the same alge-

braic numbers, our proof carries over. For more information on the complex-

ity of arithmetic for algebraic numbers see [Loo83].

The application of the theorem to Schneider's strategy for computing

characters from an incomplete set of structure constants [Sch90] allows the

derivation of a lower bound on the number of structure constants that must

be used. That is, since the entire set of structure constants can be recovered

from the character table, one can only find the character table if one has

enough information to construct all of the structure constants. However, it

is still not clear how exactly the structure constants depend on one another.

As well, the inversion algorithms provides an efficient reduction from the

problem "given a specification of a finite group G (in some form), find the

structure constants for G" to the problem "given (the same) specification

of G, find the absolutely irreducible character table of G". That is, finding

51

all of the structure constants of a group does not require substantially more

resources than finding the group's character table.

52

Chapter 4

Characters of the Symmetric

Group

In this chapter, we examine two problems in the character theory of the

symmetric group. The hardness and completeness results (for computing in-

dividual characters of the symmetric group and for a generalization of com-

puting coefficients in the decomposition of the outer product of characters of

the symmetric group) in this chapter are new. The character and decompo-

sition algorithms are standard parts of the literature but the analysis is new.

The algorithm for counting lattice partitions is a straightforward application

of Kreweras' Theorem. We are unaware of any previous publication of this

algorithm but it seems likely that the algorithm has been known for some

time.

For general groups, there is no known way to sensibly and succinctly

specify a particular class of absolutely irreducible representations and thus

we cannot formulate a good version of the problem of computing individual

entries in the character table of a general group. However, for the symmetric

53

groups, we can sensibly and succinctly specify both conjugacy classes and

classes of absolutely irreducible representations. Thus, we can formulate

computational problems about individual entries in the character table of

the symmetric group.

These problems are quite old. Frobenius gave a formula for the characters

and subsequent researchers have used the formula and related results to

produce correct algorithms for the problem. Littlewood and Richardson gave

a rule for finding the coefficients in the decomposition of the outer product

of characters of symmetric groups.

We formulate two numerical versions of the character problem. The first

is simply the problem of finding the character of a representation at a conju-

gacy class. For technical reasons connected with giving a good classification

of the complexity of the problem, we need to be able to work with positive

numbers. Thus, we define a second version of this problem where we find the

sum of the character and a sufficiently large number. We define a decision

problem by adding a threshold value to the above and asking if the character

is larger than the threshold.

We use a known algorithm to show that the second version of the nu-

merical problem is in #P and that the decision problem is in PP. We then

show that the counting problems are hard for #P and the decision problem

is hard for PP.

We have less success with the outer product problem. Again, we show

membership in #P and PP for number and decision versions of the problem.

We were unable to show hardness results for the problem. We do show that

a generalization of computing outer products is hard and we identify an

interesting class of easy instances of the problem.

54

4.1 Characters of the Symmetric Group

A variant of the Murnaghan—Nakayama rule for computing characters (fol-

lowing [Keo75]) is presented. There is a strong connection between the Frobe-

nius formula (see, for example, [Ham89]) and the Murnaghan—Nakayama

rule. When the algorithm is recursive, it is called the Murnaghan—Nakayama

rule. Otherwise, it is an application of the Frobenius formula.

Correctness proofs of various formulations of the algorithm are contained

in [Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. Using the correctness of

this algorithm, we establish reductions from appropriate formulations of the

hard problem 4—PARTITION (see section 2.3.3) to the problem of finding

individual entries in the character table of the symmetric group. Finally,

we use the algorithm to show that the character problems can be solved

within certain resource constraints. These resource bounds, together with

the hardness results, imply completeness results.

The reader may recall (from Definition 3) that the symmetric group S

is the group of all permutations of n objects and has size n!. The conjugacy

classes of S are directly identifiable with the partitions of n (partitions are

described in section 2.2.2). The classes of irreducible representations of S,

(described in section 2.2.3) have a natural one—to--one correspondence with

the partitions of n. This is a consequence of the special representation theory

of the symmetric group. The description of the correspondence can be found

in [Ker91], [JK81], and [Sag91].

We will write A = [A1, A2,... , A,] for a partition of ri specifying a class

of irreducible representations of S, and /2 = [m /22,. .. , j] for a partition

of m specifying a conjugacy class in S,,. Further, we adopt as a convention

that the entries in the partitions are given in non-increasing order and only

55

positive entries are included in the specification of a partition.

We now have the capability to ask: 'for the symmetric group S,, what

is the value of the character of an irreducible representation given by A at a

conjugacy class j.L?' Throughout this chapter, we will denote this value by

We formally define several problems related to the above question. The

first problem is a restatement of the question above. The inputs for each of

these problems are essentially the same.

Number Problem 8: #CSG

Individual Character of the Symmetric Group

Input:

ri: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,

1: a partition of n specifying a conjugacy class in S.

Output:

The value of the character of an irreducible representation

in A at the conjugacy class u: xA(,L). U

Since the value x () can be negative and we will be concerned with
computations on a counting Turing machine, we give a definition of the

same problem offset so that all values are positive and thus not trivially

uncomputable in this model.

56

Number Problem 9: #CSG+

Sum of an Individual Character of the Symmetric Group and r

Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of Sn,

u: a partition of n specifying a conjugacy class in S.

Output:

The value of sum of character of an irreducible representation

in A at the conjugacy class j and n: x(f.L) + n'

This variation of the problem allows us to give a good characterization

of the complexity of the problem.

Decision Problem 10: TCSG

Threshold for Individual Characters of the Symmetric Group

Input:

n: expressed in unary,

A: a partition of ii specifying a class of equivalent irreducible

representations of S,,

p: a partition of n specifying a conjugacy class in S,.

x: an integer threshold value expressed in binary.

Question:

Is the value of the character of an irreducible, representation

in A at the conjugacy class i greater than or equal to x?

That is, is ≥ x?

All of the above problems include an input of ri in unary. This means

that the way that we express the numbers in the partitions is inconsequential.

57

We may express them in binary or unary without a significant change in the

input size. Furthermore, our hardness results hold with this padding of the

input and our membership results are not affected. Thus, the padding allows

us to state the results in the strongest possible manner.

4.1.1 A Graphical Version of the Murnaghan—Nakayama

Rule

The graphical version of the algorithm inspired the polynomial transforma-

tion given in section 4.1.3. Also, it is useful for visualizing the steps of the

hardness proof.

The extended diagram for a partition A = [A1, A2,... , A] can be formally

defined as the set of points {(i, j) E Z2 such that 1 ≤ j ≤ A + k - i}.

We draw the diagrams using the same indexing conventions as are used

with matrices. The first coordinate i designates the row and increases from

top to bottom. The second coordinate is for columns and increases from left

to right. Thus, the extended diagram corresponding to [3, 2, 1, 1] is the set

of points:

{ (1, 1), (1, 2), (1) 3), (1) 4), (1) 5), (1, 6) , (2) 1),

(2,2),(2,3), (2, 4), (3,1),(3,2), (4, 1)}

and is drawn:

The first operation on extended diagrams that we will consider is the

removal of a cycle. We remove a cycle of length 1 from some row m of an

extended diagram by colouring in the rightmost boxes of the row rather than

58

erasing the boxes from the row. The advantage of this is that we can see

what operation we are performing on a single diagram.

Thus, the extended diagram for [3,2, 1, 1] with a 2-cycle removed from

the second row is:

(4.1)

Further cycles can be removed from that row by colouring the appropriate

number of the rightmost uncoloured boxes. Whenever we remove a cycle

from an extended diagram, all of the boxes that we colour for that cycle

must be removed from only one row.

The second operation is row transposition. This can be done to extended

diagrams that have had cycles removed. Transposing rows i1 and i2 can be

thought of as a simple exercise with scissors. Simply cut both rows from the

diagram and replace the rows in the diagram in opposite order. In terms of

the formal definition, this means replacing all occurrences of i1 with i2 and

i2 with i1 in the first (row) position of the elements of the extended diagram.

Thus, transposing the second and third rows of the diagram shown in 4.1

results in:

(4.2)

A sequence of transpositions can be viewed as a permutation of the rows of a

diagram. This allows us to talk about the sign of a sequence of transpositions.

Bearing in mind that colouring boxes is shorthand for erasing boxes, we

say that two extended diagrams are equivalent if their uncoloured boxes are

in the same positions. From this point of view, the diagrams shown in 4.1

and 4.2 are equivalent.

59

There is one special diagram that we need. The k-staircase is the diagram

consisting of the points (i,j) E z2 such that 1 ≤ j < k and 1 ≤ j ≤ k - i.

The 5-staircase looks like this.

The bottom row of the staircase is empty. That is, the widths of the rows

are (4, 3, 2, 1, 0).

Now that we have established the notation, we proceed with the algo-

rithm.

Algorithm 3: The Graphical Murnaghan-Nakayama Rule

Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,

: a partition of n specifying a conjugacy class in S,.

Output:

The value of the character of an irreducible representation

in A at the conjugacy class :

x GL) .
Step 1:

counter - 0

for i - 1 to m do

z 4- 1

endfor

jm

60

Step 2:

while (j 5A 0) do

continue - True

h extended diagram(A)

while ((continue) and (i <m)) do

remove Mi from row zi of the extended diagram h

(to get a new h)

if ((row i of h is negative) or

(h has two equal rows) then

continue - False

j4—i

endif

increment i

endwhile

if (continue) then

if (h is an even row permutation of the k-staircase) then

increment counter

else

decrement counter

endif

j4—m

endif

increment z

61

while ((zj > k) and (j> 1)) do

decrement j

endwhile

increment z

for i 4- j + 1 to m do

Zi - 1

endfor

endwbile

Step 3:

Output counter

Note that we can rearrange the initial order of the pi's without affecting

correctness although this can affect the efficiency of the algorithm.

We now present an example of using the graphical Murnaghan-Nakayama

rule.

Example 4.1.12: Graphical Evaluation of X[3,2,1,11 ([2,2,2, 1])

We let A = [3, 2, 1, 1] and p = [2,2, 2, 1]. We have already

determined h from A to be the diagram

- We start with z1 = 1, z2 = 1, z3 = 1, and z4 = 1. Thus, we

remove the first cycle of it from the first row of h to get

62

Since the first and second rows in the diagram are now the same

size, we continue with z1 = 2, z2 = 1, Z3 = 1, and z4 = 1.

Removing the first cycle of p from the second row of h gives

This time, the second and third rows in the diagram are the

same size. We continue with z1 = 3, z2 = 1, z3 = 1, and Z4 = 1.

Removing the first cycle of it from the third row of h gives

This diagram does not violate the constraints given in step 2 of

the algorithm, so, since z2 = 1, we remove the second cycle of p

from the first row of the diagram to get

Again the first and second rows are the same. This leads to

considering z1 = 3, Z2 = 2, z3 = 1, and z4 = 1. Removing the

constituents of p from h according to these z's gives the diagram

The permutation taking the diagram to a staircase is odd so we

decrement the counter to —1.

63

Having seen the details of each step, we proceed through the

rest of the execution of the algorithm more quickly.

Continuing with z1 = 3, z2 = 2, z3 = 1, and z4 = 2 gives

a diagram in which the second and fourth rows have the same

length. Thus, without changing the counter, we continue with

= 3, z2 = 2, z3 = 1, and z4 = 3. The third row in the diagram

for this case has a negative width so we continue with z1 = 3,

2, z3 = 1, and z4 = 4. In this case, the third and fourth

rows are the same so we jump to z1 = 3, Z2 = 2, z3 = 2, and

= 1. After removing the third cycle of from h, we see that

the second and third rows have .the same size. Thus, we continue

with z1 = 3, z2 = 2, z3 = 3, and z4 = 1. Removing the third

cycle of tz from the third row yields a row with negative size and

so we continue with z1 = 3, Z2 = 2, z3 = 4, and Z4 = 1. Again

we get a negative row upon removing the third cycle so we set

= 3, z2 = 3, z3 = 1, and Z4 = 1. This yields a negative row

upon removing the second cycle, as does z1 = 3, z2 = 4, z3 = 1,

and z4 = 1. This takes us to z1 = 4, z2 = 1, z3 = 1, and z4 = 1

which gives a negative fourth row on removing the first cycle of

p. At this point, the algorithm terminates, returning a value

of —1 since we have not incremented the counter and we have

decremented it only once. I

64

4.1.2 A Concise Version of the Murnaghan-Nakayama

Rule

We translate the graphical algorithm into a form more amenable to symbolic

manipulation.

We use the following notation. The extended diagram for A is denoted

by h = [h1, h2,.. . , h] where the components h, called the principal hooks,

are given by:

h=A-j-k—i (1≤i<k) (4.3)

This is equivalent to the definition of extended diagram earlier but is more

succinct. The extended diagram h completely determines the class of ir-

reducible representations A and each can easily be found from the other in

deterministic polynomial time. A hook structure is an extended diagram that

may have had cycles removed from it.

We use tJ to denote multiset union (adding multiplicities). We use angle

brackets () to denote multisets. We define the action of a cycle fLi on a hook
structure h = [h1, h2.. .. h,] to be the multiset

k

= tj ([h1,h2) .
M=1

and the action of a cycle on a multiset of hook structures to be the multiset

union of the action of the cycle on each of the members of the multiset.

Note that we are using superscripts to differentiate between hook structures,

and not to indicate exponentiation.

65

The value of a hook structure h = [h1, h2,. , h,} is defined to be

IhI=

o ifai such that h<O

o if 2i,j (i 4i) such that Ii2
1 if an even permutation sorts h1, h2,. . . , h, into descending order

—1 if an odd permutaion sorts h1, h2,.. . , h, into descending order

The value of a multiset of hook structures is the sum of the values of the

individual hook structures in the multiset.

II(h',h2,...,h)II =IhI.
i=1

With this notation in place, we can see that the value of the character

X (p) given by the graphical algorithm is the value of the multiset formed
by allowing each of the cycles of i to act on the extended diagram h formed

from A.

The algorithm is stated below.

Algorithm 4: The Concise Murnaghan—Nakayama Rule

Input:

ri: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,,

j: a partition of n specifying a conjugacy class in S,.

Output:

The value of the character of an irreducible representation

in A at the conjugacy class v: xA(1).
Step 1:

Determine the extended diagram h for A

66

Step 2:

Evaluate xAOL) = JJ/L1(p2... (,Umh). . .))JJ
and return the value. •

Equivalent versions of the above algorithm are shown to be correct in

[Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. The notation and exact

formulation of the algorithm is different in each of the sources. With the

appropriate translation and possibly some rearrangement of the order of the

steps, each of them yields the following theorem.

Theorem 5 The Concise Murnaghan—Nakayama Rule on input n, A, and

returns the value of the character of an absolutely irreducible representation

of S, in A at p. That is, the Concise Murnaghan—Nakayama Rule correctly

finds xA().0

4.1.3 A Polynomial Time Transformation

Consider an instance (A, B, s) of 4—PARTITION (see Section 2.3.3) where

A = {a1, a2,. . . a4m }, s : A -+ Z, and B Z is polynomially bounded in

m = Al. Without loss of generality, suppose

s(al) ≥ s(a2) ≥ ... ≥ s(a4,).

We construct an instance (n, A, i) of #CSG from (A, B, s). Let

n = m 2 . B,

(44)

and p = [m. s(ai),.. . , m s(a4m)].

This transformation can be done in polynomial time whenever B is bounded

by a specific polynomial p(m).

67

Intuitively, we use the rows of the extended diagram for A to hold 4—sets

and the partition p to encode the sizes in the 4—PARTITION instance. The

sizes are scaled up so that any valid 4—set S2 (withE aES s(a) = B) will fit

into a row. Furthermore, with the row i filled by a valid 4-set, there will be

m - i boxes left unfilled in that row. Thus, if all rows are filled with valid

4-sets, then we are left with a staircase which is counted as one. Any other

way to fill the diagram with the cycles of p will result in at least one row

taking elements (in the instance of 4—PARTITION) whose sizes sum to more

than B and thus, whose sizes (in the instance of #CSG) sum to more than

m - (B + 1). Since none of the rows in the diagram for A are that big, the

resulting hook structure has a negative component. Thus, the resulting hook

structure cannot be a permuted staircase and so it is not counted.

LemMa 1 If there are N valid 4—partitions of (A, B, s) then the value of

the character xA(p) of S,, at A and p given by equation (4.4) is N m! a

Proof: The extended diagram h resulting from A is given below.

h= [mB+m— 1,mB+m-2,...,mB]

That is, the components hi of h are given by

h=mB+m — i (1<i<m).

For any subset S C A let D(S) be defined by

D(S)=B — >s(a)
aES

If we remove only the cycles j such that aj E S C A from the jth row of

h we get a resulting extended diagram where the value of the th component,

68

which we denote by H(S, i), is

H(S, i) = h - aES ms(a)

=mB+m — i+m(B — YaEss(a) — B)

= mB + m — i + mD(S) — mB

=m—i+mD(S).

IfD(S) = 0, then H(S,i)=m—i. IfD(S) <0, then

H(S,i) =m—i+mD(S)

m—i—m<0.

Thus, if S, S2,... , S, is a valid 4—partition of A then D(S) = 0 for 1 ≤

i ≤ m and so we can remove the Itj's corresponding to the Si's from h,

by removing p.j from hi whenever btj E S, to get {H(S, 1),. .. , H(S, m)] =

[m - 1, rn - 2,... ,0], which contributes one to the value of the character.

Now, from an expression S, 5 2,. . . , 5m for a valid 4—partition, any permu-

tation ir of m objects applied to the subscript in the expression gives another

expression S11(i), Sir(2),... , Sir(m) for the same 4—partition. Since there are m!

such expressions for each such 4—partition and each of these expressions con-

tributes one to the value of the character, if there are N valid 4—partitions

of A, we get a contribution of N - m! to the character.

We now prove that there are no further contributions to the character.

Given any sequence z = (z1,.. . Zk) € {1, 2, . . . m}', we can reverse the process

described above by putting ai into S; to get a partition Si, S2... . , Sm of A. If

the resulting partition is a valid partition then we have a contribution of one

as described above. Now, consider the case where the resulting partition is

not a valid partition of A. In such a partition, there must be an Sisuch that

the sum of the sizes of the elements is greater than B. If not, the partition

would be valid. Let Sibe such a set and consider what happens to the jth

69

row when we remove the j's from h following z. Since

s(a)>B
aES1

we have D(S) < 0. This, in turn, implies that H(S, i) < 0 and so the

contribution to the value of the character is zero. •

4.1.4 A Probabilistic Polynomial Time Version of the

Murnaghan—Nakayama Rule

Recall that a probabilistic Turing machine is a non—deterministic Turing ma-

chine that accepts a string if strictly more than half of the possible compu-

tation paths on that string are accepting computations. For a more detailed

description see [Joh90].

Informally, we use the phrase 'generate n accepting computations' to in-

dicate a process where we allow the computation tree to branch [log2 n]

times by writing [1092 nl 0's or l's to the tape. For all of the sequences of

U's and l's that correspond to a number less than n, the machine jumps

immediately to an accepting state. For those greater .than or equal to n,

the machine writes another 0 or 1 and rejects if it wrote a 0 and accepts if

it wrote a 1. After this process, there will be n more accepting computa-

tions than rejecting computations and, since the balance of the number of

accepting computations versus the number of rejecting computations is all

that matters .for overall acceptance in this model of computation, we can ig-

nore the matching acceptances and rejections produced for numbers greater

than or equal to n. We use the phrase 'generate ri accepting computations

and continue' to indicate that the process should be prefaced by a single

branching of the computation tree where one branch generates n accepting

70

computations and the other continues. Similar definitions apply to generat-

ing rejections. 'Nondeterministically generate' means produce a branch in

the computation tree for each of the things specified.

We describe a probabilistic polynomial time version of the Murnaghan-

Nakayama rule.

Let h = [h1,. . . , h,] be an extended diagram. Let = . . , jtz] be a

partition (specifying a conjugacy class) and let z E {1, 2,. .. , k}1. We define

the symbol (h - as the value of the extended diagram resulting from

removing g from h according to z. That is, let

= h = [hi,. . .

and

- -' - . L 1 hZi k

The value of (h - , is the value of the resulting extended diagram

Algorithm 5: PP Algorithm for TCSG

Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,

: a partition of n specifying a conjugacy class in Si,.

x: an integer threshold value expressed in binary.

Question:

Is the value of the character of an irreducible representation

in A at the conjugacy class greater than or equal to x?

That is, is ,X(1) ≥ x?

71

Step 1:

if (x> 0) then

generate 2x - 1 rejecting computations and continue

else

generate 21x1 + 1 accepting computations and continue

endif

Step 2:

Non-deterministically generate a z E {1, 2, .. . ,

(ie. for each z do):

Step 2.1:

if(h—p)--0 then

generate an accepting computation

and a rejecting computation

else if ((h - p) 1) then

generate two accepting computations

else

{(h—u)-- —1}

generate two rejecting computations

endif

We show below that correctness of this algorithm is implied by that of

the Concise Murnaghan-Nakayama rule.

Let P' (y) be the number of ways that A can be removed from the

principle hook structure h for representation class A so that the resulting

hook structure h' evaluates to y. That is, P'(y) = I{z: (h - = y} I.
Now from the Concise Murnaghan-Nakayama rule, we see that

xA(/) = P"(1) - PA1L(_1). (4.5)•

72

So X' (p) ≥ x if and only if

PA1L(1) - P"(—l) ≥ x;

that is,

PAP(1) - P(_1) - x ≥ 0.

We now examine the possible outputs from the algorithm in two cases.

Case 1: If x> 0, the algorithm gives:

From step 1: 2x - 1 rejections and

From step 2:

P1&(0) acceptances,

PAP(0) rejections,

2P)"(1) acceptances, and

2P"(— 1) rejections

so the total number of accepting computations is P"(0) + 2P'"(1) and the

total number of rejecting computations is 2x - 1 + P"(0) + 2P>"(-1).

The algorithm accepts the input if and only if the number of acceptances

is larger than the number of rejections. If x> 0, this is true if and only if

P.12(0) + 2P?.1L(1) > 2x - 1 + P"(0) + 2P>""(-1)

Consolidating terms involving P>h12 yields

2P>.1h(1) - 2P"(-1) > 2x - 1

and from equation (4.5), we have

2X"(/,t) > 2x - 1.

73

Since X' (p) and x are integers, this is equivalent to the condition

2) ≥ 2x

or

X, (A) >_ x.

Similarly, the algorithm rejects the input if and only if the number of rejec-

tions is at least as big as the number of acceptances. Again, when x> 0 we

get

P>"(0) + 2pAIL(1) < 2x - 1 + PL (0) + 2P(-1)

and again consolidating terms and applying equation (4.5) gives

x"(i) <s.

Thus, when x> 0 the algorithm accepts if xA (ii) ≥ x and it rejects otherwise.

Case 2: If x < 0, then by a similar calculation to the above, the number of

accepting computation paths is

21x1 + 1 + PA12(0) + 2P(1)

and the number of rejecting computation paths is

p"(0) + 2PA1L(_l).

Now if xt) ≥ x, then

2XA(p) ≥ 2x = —21x1.

Applying equation (4.5) and subtracting 1 from the right hand side to get

an inequality, we have

2P\1L(1) - 2P", (-1) > -21x1 - 1.

74

Adding P"(0) to both sides and rearranging terms gives

2P'(1) + PAL(0) + 21x1 + 1 > 2P''(-1) + PA1L(0)

which implies that the number of accepting computation paths is larger than

the number of rejecting computation paths. Similarly, if xA(p) <x, then

2 >'(,t) < 2x— 1.

Again adding P(0) to both sides and rearranging terms gives

2PA(1) + PA1L(0) + 21x1 + 1 < 2PAz(..1) + P(0)

which implies the number of accepting computation paths is smaller than

the number of rejection computation paths.

Lemma 2 TCSG E PP. •

Proof: As we have just seen, the algorithm is correct. Furthermore, each

branch of the algorithm is of polynomial length. The paths terminating in

step 1 are of length O(log(x)) which is clearly bounded by a polynomial in

the input size. The paths terminating in step 2 are of length O(log(n) . k. 1)

which is polynomial in the input size even when the input is not written in

unary. N

4.1.5 The Murnaghan-Nakayama Rule on a Counting

Turing Machine

Recall that a counting Turing machine (CTM) is structurally the same as a

probabilistic machine except that the value returned by a CTM is the num-

ber of accepting computations, rather than just a 'yes' or 'no' depending on

75

whether there are more accepting computations than rejecting computations.

The class #P is the set of all problems solvable by a CTM in polynomial

time. Since we do not care at all about the number of rejecting computations,

when we say 'generate m accepting computations' we mean generate exactly

n accepting computations. This is easily done by nondeterministically gen-

erating flog2 nj 0's and l's and accepting only if the resulting number (in
binary) is less than n. For a more detailed 'discussion of counting Turing

machines see [Joh90].

Since a CTM cannot return a negative number, instead of directly evalu-

ating the character, we consider the problem of evaluation of the sum of the

value of a character and an easily computable large positive number. This

allows us to give an exact classification of the problem. From this, we can

easily compute the desired character value and thus we have a good classi-

fication of computing the character as well. We choose the large number to

be fl since it is both easily computable and is always at least as large as the

absolute value of the character of Sn.

We now present a CTM version of the Murnaghan-Nakayama Rule.

Algorithm 6: CTM Version of the Murnaghan-Nakayama Rule

Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,,,

: a partition of n specifying a conjugacy class in S,.

76

Output:

The value of the character of an irreducible representation

in A at the conjugacy class p, plus n:

x"(i4+n.

Step 1:

Step 1.1:

Find kt and n'.

Step 1.2:

Generate TlZ - k' accepting computations and continue.

Step 2:

for each zE kJI do

if(h—p)=1 then

generate two accepting computations

else if ((h - = —1) then

reject

else

{(h—/2)2 --O}

accept

endif

endfor •

The number of accepting computations is

2P"(1) + PA1L(0) + nn + k1 = PAL(1) + P1L(0) + P(-1)

+ P1a(1) - PA1L(_1) + n n
- kt

and, since

PA(1) + P(0) + PA1L(_1) = k1

77

and

x = PAh2(l) -

the number of accepting computations is

k1 + xA(iz) + nn - k' = xA(,L) + nn

We observe that, since k, 1 ≤ n, we have that n'2 ≥ k'. Thus step 1 above

can always be done since the value n" k1 is always non-negative.

Lemma 3 #CSG+ E #P. I

Proof: Counting operations on hook structures as unit cost, each branch of

the algorithm takes O(n. k - 1) time and the n" branches can be generated in

O(n log(n)) time. Thus the total running time is O(n log(n) + nkl). N

4.1.6 Completeness Theorems

We are now in a position to prove the main theorems of this section.

Theorem 6 TCSG is PP—complete. I

Proof: We recall from section 2.3.3 that the problem T-4—PARTITION

is PP—complete. The transformation given in section 4.1.3 was shown to be

parsimonious so TCSG is PP—hard. Combining this with lemma 2 immedi-

ately implies the result. I

Theorem 7 #CSG is #P—hard. I

Proof: We recall for section 2.3.3 that the problem #-4—PARTITION is

+P—complete. The transformation given in section 4.1.3 was shown to be

parsimonious so #CSG is #P—hard. 0

78

Theorem 8 #CSG+ is #P—complete. •

Proof: Theorem 7 and the fact that r n is easily computable (in binary from

unary input n) implies #P—hardness. Lemma 3 shows membership in #P.

Combining these implies the result.

Theorem 8 shows that #CSG fails to be#P—complete only by virtue of

having some negative answers.

4.2 Outer Products, Schur Functions, and The

Litt lewood-Richardson Rule

In this section, we describe problem of decomposition of outer products of

characters of the symmetric group. There is a well known connection between

this problem and computing coefficients of Schur polynomials. Namely, both

are solved by the Littlewood—Richardson rule. We analyze the Littlewood—

Richardson rule as it stands and use it to define several related problems to

get a better picture of the complexity of the above problems. Schur polyno-

mials and outer products of characters are discussed at length in [Mac79],

[Sag9l], [JK81] and [Ker91].

Other work has been done in this problem. The Littlewood—Richardson

rule is modified to produce another combinatorial algorithm in [RW84].

[Ee82J documents an implementation of the Littlewood—Richardson rule

with pruning. [ER85] contains a table of Littlewood—Richardson coefficients

for two special cases up to n = 30.

79

4.2.1 Outer Products of Characters of the Symmetric

Group

Given two matrix representations over the same field, T1 of S0 and T2 of Sm

of dimensions ft and 71h respectively, we can construct the tensor product of

these representations T1 ® T2 of Sn Sm for any g1 E S,, and any 92 E Sm.

The dimension of this representation is ii x r1i..

Recalling the definition of the direct sum of groups, we see that Sn @ Sm

is a subgroup of 5n+m• The matrix representation T1 0 T2 of S0 Sm can be

extended to the whole of Sn+m - in particular, to the induced representation

(defined, for example in [Ser77] and [FH62] and mentioned in Section 2.2.3).

The resulting matrix representation T' = (T1 0 T2) I S0 ,,j is called the outer

product ofT1 and T2. We shorten the notation to T' = T1 01'2 so that we can

more easily generalize the above notation to characters.

This gives us a well defined operation on the characters of the symmetric

groups since if T1 and T1' are similar representations and T2 and T2' are

similar representations then T1 T2 and T1' 1'2' are similar. Using n and m

and the superscripts (1) and (2) rather than subscripts, we write X () o

for the character of the (reducible) representation T' = T1 oT2 of 5,,+m• Since

T' may be reducible, we can decompose T' into its irreducible constituents.

Thus we write x'x'2 cAXA where the cA's are to be determined.

We now have the notation necessary to define the problem of computing

the coefficients of the irreducible constituents in the outer product.

Number Problem 11: DecOutSym

Decomposition of Outer Products of the Symmetric Group

Input:

Integers n, m > 0 (expressed in unary).

80

Partitions a, -y, and A of n, in and n + m respectively,

specifying absolutely irreducible characters of Sn, Sm,

and 5,,+m respectively.

Output:

The coefficient c), in the decomposition

x = >qM-n+m N

4.2.2 The Littlewood—Richardson Rule

The standard diagram for a partition

(Al, A2,. .. ,

is the set of points

{(x,y) : :1. ≤ x ≤ A}.

The standard diagram for (6,4,2, 1) is shown below.

(4.6)

For visually obvious reasons, we will often call the points boxes.

Given two partitions A I- n + m and 'y I- m, we make the diagram A\-y by

erasing the standard diagram for 'y from the upper left corner of the standard

diagram for A. Thus, to make (6,4,2, 1)\(2, 2) we remove the diagram for

(2,2)

from the diagram for (6,4,2, 1) shown in (4.6) above to get the diagram

81

shown below.

This operation is only well defined, if for all applicable i, Ai ≥ 'y2.

The Littlewood-Richardson rule can now be stated. Given three parti-

tions A I- ri. + m, 1a I- n and y F- m, we make a diagram of X\'y and count the

ways that we can fill the boxes with symbols directly identified with positive

integers according to the following rules.

1. One and only one integer is written in each box.

2. If = (ELi,... , /2k), then exactly jij boxes contain i.

3. The symbols are entered into the boxes in numerical order. That is, we

start by adding l's and continues such that all symbols i are entered

before we add any of symbol i + 1.

4. No symbol is added directly to the right of an empty box.

5. No symbol is added directly below an empty box.

6. No symbol is added to a row that is above a row already containing

that symbol.

7. No two boxes in the same column contain the same integer.

8. The sequence of integers obtained by reading each row from right to

left and reading the rows from top to bottom is a lattice partition (see

section 2.1.3).

82

If it is impossible to make the diagram A\'y then there are no ways to fill the

diagram.

Example 4.2.13: Using the Littlewood—Richardson Rule

Let us consider the partitions A = (6,4,2, 1) and 'y = (2, 2) as

above, and let p = (5,3, 1). We must fill the diagram A\'y with

five l's, three 2's and one 3. We observe that the first row of A\y

must be filled entirely with l's, otherwise we would violate either

condition 4 or condition 8. The remaining 1 cannot be placed in

the second row lest we violate condition 7. It can be placed in the

first box of the third row, but not in the second box of the third

row by condition 4, and not in the fourth row by condition 5.

The second row must be completely filled with 2's for the

same reasons that forced us to fill the first row with l's. At this

point, we have the diagram:

and we have one 2 and one 3 left to place.

The remaining 2 can be placed in either of the remaining open

boxes. The 3 must be placed in the other box. Both alternatives

are shown below.

Thus, there are two ways that the diagram A\'y can be filled

in accordance with p. I

83

Since we have not been able to determine the complexity of the the prob-

lems solved by the Littlewood—Richardson rule, we do not present a more

formal version of the rule.

The fact that the Littlewood—Richardson Rule solves DecOutSym is

proved, among other places, in [Sag91].

4.2.3 Analysis of the Littlewood—Richardson Rule

There are a number of pruning techniques which allow one to avoid filling

the boxes in all possible ways and then checking conditions 1 through 8.

However, since the result of the algorithm can be superpolynomial in the

input size (see section 4.2.5) and since the algorithm generates every valid

placement of integers in)\'y, so that its running time is at leat linear in the

value it returns as output, even with perfect pruning, the algorithm still has

superpolynomial time complexity. Still, the above algorithm does allow us

to observe the following.

Theorem 9 DecOutSym E #P.

Proof: Each of conditions 1 through 8 above can easily be checked by a

Turing machine in polynomial time. Thus, a counting Turing machine, which

generates all functions from the set of allowable symbols to the set of boxes

in the standard diagram and then accepts only if the placement of symbols

satisfies the conditions, solves DecOutSym. Further, each branch takes

only polynomial time. U

4.2.4 The Complexity of Associated Problems

The description of the Littlewood—Richardson Rule is only dependent on A

and y being partitions for determining the diagram A\-y. The conditions

84

given above can be used on a diagram even if it is not obtainable as a

difference of standard diagrams. We define a problem based on the above.

Number Problem 12: L—R/GenDiag

Littlewood-Richardson Problem on Generalized Diagrams

Input:

Two vectors: Xm, Ym, E N with components

Xjj such that x ≤ yj for 1 ≤ i ≤ m.

These specify the left and right boundaries of the diagram.

One vector: Z E (z with components zj such

that zj ≥ for 1 ≤ j ≤ n - 1 and such that

E1(v - x) = E=1 z2.

This specifies the number of each symbol used to fill the diagram.

Output:

The number of ways that the diagram specified by Xm and Ym

can be filled with symbols from Z satisfying conditions 1

through 8 in the Littlewood—Richardson Rule. U

If the components of Xm and Ym when listed by their order in the vec-

tors, are in descending order, then the diagram is a difference of standard

diagrams. In this case, Xm and Ym correspond to 'y and A (respectively) in

the definition of DecSymOut. Z corresponds to p.

Unfortunately, this new problem is an extreme generalization of the

Littlewood—Richardson problem so we are unable to draw any strong con-

clusions about the Littlewood—Richardson problem from an analysis of the

new problem. However, we are able to give a precise classification of its

complexity. The result indicates that if there is a polynomial time algorithm

solving the Littlewood—Richardson problem, then the algorithm must make

85

use of the fact that the input diagram is a difference of standard diagrams

(unless FP = #P).

The following lemma follows immediately from Theorem 9 since there is

no mention of the dropped input requirements in the proof.

Lemma 4 L—R/GenDiag E #.P.

Now, we give a transformation from Boolean Permanent (see sec-

tion 2.3.3.2) to L—R/GenDiag.

Given an instance of Boolean Permanent B = [b], an n x n boolean

matrix, we construct an instance (X, Y, Z) of L—R/GenDiag by defining a

set of components and then saying how these components are to be combined

to produce an instance of L—R/GenDiag.

We construct an initialization component using the first n + 1 rows of the

diagram. For 0 ≤ j ≤ n, we denote the left and right boundaries of row j by

xr and y1it respectively. The values are as follows.

Wit X0 (n+ 1)2

fl1t +- (n+ 1)2+2

x1t+..(n+1)2+1 (1≤j≤n)

ynit4-(n+1)2+3 (1≤j≤n).

This gives the following shape.

86

We construct components for each row of the matrix in three parts. We

call the parts the upper triangular control component, the selection com-

ponent, and the lower triangular control component. The two triangular

components are each made using n + 1 rows in the diagram. For now, we

will denote the left and right boundaries of the th row of the component for

the i' row of B with superscript Vi (for the "upper triangular component")

or Ai (for the "lower triangular component") and subscript j. The selection

component for each row of the matrix takes only one row in the diagram.

The left and right boundaries for the selection component for the row of

the matrix are denoted by xr' and yel, respectively.

For 1 ≤ i ≤ n and 0 ≤ j ≤ m, the values of x7' Y7' and x are assigned

as follows.

4- i(n+ 1)

y72 (i+ 1)(n+ 1)— 1—bik

and

For 1 <i< nand 0≤j ≤ n—i,

- (i+ 1)(n+ 1)

and for 1 :; i ≤ n,

For l≤i≤n,

and

87

For each row of the matrix, we place the upper triangular component

above the selection component and the selection component above the lower

triangular component. This gives a shape of-

F-1

We now explicitly construct the vectors X = (XI... . x2fl2+4fl+1) and Y =

(yi,.. . Y2,2 from the components made so far. Both X and Y are

constructed in the same manner. The initialization component comprises

the first part of the vector:

xj — x for (1 ≤i≤ri+1)

yj — y for (1 ≤i≤n+1).

Then, we add the upper triangular component, the selection component, and

the lower triangular component for each row i, consecutively:

and

Xi(2n+3)+j_n_1 4— xr for (1 ≤ i ≤ n and 0 ≤ j ≤ n),

Yi(2n+3)+j—n-1 - Yj for (1 ≤ ≤ n and 0 ≤ j

Xj(2n+3) xseI for (1 ≤ i ≤ n),

Yi(2n+3) __ yCI for (1 i ≤ n),

Xi(2n+3)+j+l - xr for (1 ≤ i < n and 0 < j ≤ n),

Yi(2n+3)+i+1 - y for (1 <i< n and 0 ≤ j <n).

88

Finally, we make the vector Z. Z is of dimension n + 1 and each component

is n(n+ 1) + 2.

For example, the transformation can be applied to the boolean matrix

0

B = 010

1 11

to get the diagram shown in figure 4.1.

We now describe how to fill figure 4.1 following the Littlewood-Richardson

rule (see section 4.2.2).

Following condition 3, we begin by inserting l's into the boxes. There are

boxes in fifteen columns (columns 4 through 18). By condition 7, each of the

fourteen l's must be placed in a different column. We cannot place a 1 in

column 18 because condition 5 forbids placing it to the right of an empty box.

Therefore, one 1 must be placed in each of columns 4-17. By condition 8, a

1 must be placed in column 17 of the top row; by conditions 3 and 4, this

must occur after a 1 has been placed in column 16 of this row. Now, the

remaining twelve l's must be placed in columns 4-15 - and, therefore, in

rows 5-31. Again, by conditions 4, 5, and 8, all three boxes in row 5 (columns

5-7) must be filled with l's. Remaining l's must be placed in columns 8-15

and, therefore, rows 10-31. Continuing to use conditions 4, 5, and 8 in this

manner, one can argue that there is only one valid placement of the fifteen

l's in this diagram.

We can proceed more quickly if we place symbols in any convenient order

and verify that we could have followed the order constraints to obtain the

same placements when we are done.

Rows 1-4 include eight boxes, exactly two of which contain l's. Condi-

tion 8 can be used to conclude that the remaining six boxes must be filled

89

by exactly two 2's, two 3's, and two 4's. Similarly, the sixteen boxes in rows

5-13 must be filled by exactly four l's, four 2's, four 3's, and four 4's. The

sixteen boxes in rows 14-22 and the sixteen boxes in rows 23-31, must then

each be filled by exactly four l's, four 2's, four 3's, and four 4's as well.

Condition 8 now forces two 2's, 3's, and 4's to be placed into rows 2-4 in

the positions shown in the diagram. We also have no choice (by condition 5)

in the placement of entries in the remaining three boxes in column 4. Con-

dition 8 (and, at the end, condition 7) can then be used to determine the

placement of the remaining entries in column 5.

Only three entries - in row 9 and column 16, row 11 and column 7, and

row 12 and column 17, remain to be filled. As in the diagram, let a denote

the number assigned to row 9 and column 16. Since there is already a 1 in

column 16, a 54 1. As well, a 0 3, since this would violate condition 8 - so

a E {2, 4}. Denote the entries in column 17 and rows 11 and 12 by c and d

respectively. Since rows 5-13 must include exactly four l's, 2's, 3's, and 4's,

fa, c,d} = {2,3,4}. If a = 2 then, by conditions 3 and 5, c = 3 and d = 4;

otherwise a = 4 and, by the same conditions, c = 2 and d = 3.

Now consider rows 14-22. Again, condition 5 determines the place of

entries in column 8; conditions 7 and 8 then determine the placement of

entries in rows 14, 15, 16, and 17. The remaining entries (in rows 21 and 22)

of column 10 are then fixed by conditions 5 and 7. Once again, since all l's

have already been placed, the entry in row 18 and column 16 must either be 2,

3, or 4.' However, (since the entries in rows 1-17 are now fixed) condition 8

is violated if this entry is either 2 or 4 - so there is a 3 in this position. Now,

only a 2 and a 4 remain to fill the remaining boxes in column 7; condition 5

forces us to fill the boxes as shown in the diagram.

90

Now, only rows 23-31 remain. Conditions 4, 5, and 8 force the placement

of entries in the upper triangular component in rows 23-25. Conditions 5

and 7 then fix the entries for the remaining boxes in columns 12-14. The

entry b in row 26 and column 16 must be whichever of 12,41 is not equal to

the entry a above it in the same column, in order to satisfy condition 7. Now,

only entries e and f in rows 28 and 29 and column 15 must be determined.

Since {b, e, f} = {2, 3, 4} and the integer e must be less than the integer f,

e and f are determined by the choice of a (since b is)..

Thus, there are two ways that we can fill the diagram. All of the boxes

that are filled with numbers are forced by the conditions. Those with letters

can be filled either with a = 2, c = 3, d = 4, b = 4, e = 2, and f = 3 or with

a = 4, c = 2, d = 3, b = 2,e = 3, and f = 4. This is to be expected since

the permanent of B is two.

We will now show that the transformation works. That is, the result of

applying the Littlewood—Richardson rule to the instance of L—R/GenDiag

given by the transformation acting on a Boolean matrix B is the permanent

of the matrix B.

We can think of the permanent of a Boolean matrix as the number of

paths through the matrix, starting on the top row and proceeding row by

row to the bottom row, such that we use exactly one element from each row

and exactly one element from each column, under the constraint that we use

only elements whose value is 1.

• For each such path through the Boolean matrix B, there is one way that

we can fill the diagram (X, Y) with symbols given by Z according to the

Littlewood—Richardson rule. Further, there are no other ways that we can

fill the diagram according to the Littlewood—Richardson rule.

91

1 6 11 16

1

6

11

16

21

26

31

1 1 1

2 2

3 3

4

1

2 C

3 d

4 4

1 1 1

2 2 2

3 3

4 4

2

3 4

4

1 1 1

2 2

3

4

1

Fa

1

2 e

-3

4

3

4

f

2--2-
3 3

4 4

Figure 4.1: The diagram for B.

92

Specifically, suppose that E = (b1,1,... , is a path through B con-

tributing to the permanent of B. That is, all bj,ij = 1 and for each j k,

ii 54 ik. Then we can fill the diagram (X, Y) as follows: for 1 ≤ i ≤ n + 1,

row i of the initialization component is filled with symbol i + 1 (see rows

1-4 in Figure 4.1). Each row i of each of the upper triangular components

is filled with symbol i (as is the case for the components in rows 5-8, 14-

17, and 23-25 in the example). The jt selection component is filled with

symbol i + 1 (specified in the definition of b above). Note the entries in

column 16 in Figure 4.1. All but the rightmost column of the lower triangu-

lar components are filled in same way that the upper triangular components

are filled. That is, the i1h row of each component is filled with the symbol

i + 1 except possibly for the box in the rightmost column. The rightmost

column of each lower jth triangular component is filled, in numerical order

from top to bottom, with symbols 1 through n +1 leaving out symbol i +1.

Thus, Figure 4.1 corresponds to the "path" b11, b22, b33 through the matrix

B if a = 2, and corresponds to the "path" b13, b22, b31 when a = 4.

For the sake of comprehensibility of the description, the above does not

make explicit use of the order constraints (conditions 3, 4, 5, and 6 in sec-

tion 4.2.2). By examining the results of the above description, we can see

that it satisfies all of the constraints. We give demonstrations below.

1. This condition is trivially satisfied.

2. Two copies of each symbol are used by the initialization component.

Each group of upper triangular, lower triangular, and selection compo-

nents contains n+1 copies of each symbol. Summing, we get n(n+ 1) + 2

copies of each symbol, which is what is required by Z.

3. This condition can be trivially satisfied.

93

4. This condition is satisfied in the initialization component, the upper

triangular components, and the selection components since the rows

in these components are each filled with one symbol. Now consider a

single row in a lower triangular component. Each box except for the

one in the last column is filled with the same symbol. The symbol

in the last column is either the same or larger than the one in the

rest of the row. Since the above is true for each row in each lower

triangular component and values in boxes increase as one moves down

a column within any of these components, condition 4 can be satisfied

in conjunction with condition 3.

5. This is clearly satisfied for the selection components- since there are no

boxes directly above any of them. Each column in other components

is filled from top to bottom with symbols in increasing order and thus

this condition can be satisfied in conjunction with condition 3.

6. This condition can be trivially satisfied.

7. Examining each column and referring to the construction and to the

proof-for condition 5, we see that the only place where this could be

violated is in the selection components, which are all contained in a

single column. By the construction from the path E, it immediately

follows that the constraint is satisfied there as well.

8. This is clearly satisfied by the placement of values in the initialization

component. Also, the prefix string associated with the initialization

component contains an equal number of each of the symbols, so the

entire string will be a lattice partition if and only if removing the pre-

fix string leaves us with a lattice partition. Each group of contiguous

94

upper triangular component, selection component, and lower triangu-

lar component has the same property, so we need only show that the

inverse row word for each one of the groups is a lattice partition.

Consider the i' such group. Clearly, the prefix string corresponding to

the upper triangular component causes no trouble. The symbol in the

selection component can follow this prefix string since if there is a 1 in

the boolean matrix in the (j)th position then there is one more box

in the jth row of the upper triangular component than in the (j + i)tI

row. Similarly, there can be no problems with the lower triangular

component.

Only a few additional comments need be made to show that there are

no other ways to fill the diagram in accordance with the rules (given in sec-

tion 4.2.2). Since there can be no duplicates in any column (condition 7),

the initialization component must be filled as described above or the cor-

responding inverse row word would not be a lattice partition (condition 8).

Because of the insertion order constraints (conditions 3, 4, 5, and 6), the

first upper triangular component must be filled as given above or we would

violate either the column constraint (condition 7) or the lattice partition

constraint (condition 8). The selection component for the first row must be

given a symbol corresponding to a 1 in the first row of B or we violate the

lattice partition constraint (condition 8), because of the construction of the

upper triangular component. For the same reasons guiding the filling of the

upper triangular component, the lower triangular component must be filled

as described.

Again, since we are forced to fill each group of upper triangular, selection

and lower triangular components with the same number of copies of each

95

symbol, the same reasoning can be applied to the each of the components

in turn. Finally, all of the selection components are in the same column so

they must contain different symbols. They are not vertically adjacent to one

another, so the symbols do not need to be in numerical order.

Thus, the result of applying the modified Littlewood—Richardson rule

to the constructed instance of L—R/GenDiag is the same as evaluating

the permanent of the original matrix. Since the transformation can easily

be accomplished in polynomial time, we have demonstrated the following

lemma.

Lemma 5 L—R/Genfliag is #P—hard.

By combining lemmas 4 and 5, we have the following result.

Theorem 10 L—R/GenDiag is #P—complete.

4.2.5 Counting Lattice Partitions

An important nontrivial restriction of the Littlewood-Richardson problem

can be solved in polynomial time. We restrict the input so that the difference

of diagrams has at most one box per row and at most one box per column. In

this case, the only constraints that have any effect are conditions 1, 2, and 8.

Thus, the problem reduces to counting the lattice partitions corresponding

to the partition i in the input of DecSymOut.

We do not use the full power of Theorem 11 (Kreweras' theorem, which

follows) in dealing with this case. The theorem gives a formula for counting

lattice paths with any start point and any end point. The lattice paths that

we consider always start at the origin. By considering other start points, our

method can be extended to give efficient solutions to larger subproblems of

96

DecSymOut. However, it appears that these subproblems are still extreme

restrictions of DecSymOut.

The problem of counting lattice paths has important applications in

statistics. Since this is far beyond the scope of this thesis we provide only

two pointers to other work in this area: [Rap87] and [Nar79].

Now, we formally define the problem under consideration.

Number Problem 13: CLP

Count Lattice Partitions

Input:

Al- n

n: given in unary.

Output:

The number of lattice partitions corresponding to A. U

Kreweras theorem (theorem 11 below) is used to count paths in a lattice.

Before we prove our result, we describe a way of envisaging a lattice partition

(see section 2.1.3) in terms of the type of lattice used by Kreweras. Let

a= (ai,a2, ... ,am)beapoint in Z"' such that ai ≥ a+1≥ Ofor 1≤ i ≤ rn—i

and let b = (0,0,. . . , 0) E Zm. Geometrically, we think of a lattice path from

b to a as a (finite) sequence , s(k) of points in zm. For convenience of

notation, let us write b = (0) and a = s. Now, we can imagine a point

moving from b and ending at a, following the sequence given by the s's.

if , 5(k) describes a path which involves only moves towards a

by a distance of 1 in only one dimension at a time and, further, never crosses

above any of a set of diagonal hyperplanes passing through the origin (with

lower indexed coordinates taking priority in measuring height), then the s's

describe a lattice partition. The diagonal hyperplanes that we consider are

97

diagonal on only two coordinates. That is, the (i, j)lh diagonal hyperplane

is completely specified by xi = x5.

More formally, let a = (a1,.. . , am) and b = (0,... , 0) as above, let n =

FT a, and let S= (s(°),. . . , .s(')). For 1 ≤ i ≤ m let ej denote the jth unit

vector, whose jth component is öj, for 1 ≤ j ≤ m. If for each i, 0 ≤ i ≤ n,

= 8(i) + f(i + 1)

where f is a function from the first n positive integers to the set of unit

vectors in zm

and if
(i) (i')
S3 ≥ Sj, (0≤i'i) (4.7)

for 1 < i ≤ n and 1 ≤ j <k ≤ m, then we say that the sequence S is a valid

lattice path.

Since ai ≥ a+i for 1 ≤ i ≤ m - 1, we can think of a as a partition.

We now construct a one-to-one mapping between the valid lattice paths

from (0,. . . , 0) to a = (a1,. .. ,am) and the lattice partitions of a. Let A =

(A1, A2,. . . , A,) E {1, 2,3,. . . Mjn be a lattice partition of a. Now, let

(1<i<n).

For 1 < i ≤ n, let f(i) = eA3. In this light, equation 2.1 and equation 4.7

express the same condition using different notation. Thus, for any a e zm we

have a bijective mapping between lattice paths and lattice partitions and so

we know that the number of valid lattice paths from the origin to a is equal

to the number of lattice partitions of a.

98

Kreweras' theorem gives an expression for counting lattice paths allowing

duplicate points and jumps in the path. We give the theorem without proof

below. Among other places, the theorem is proved in [Nar79].

Theorem 11 (Kreweras 1965) Let 0 < a1 < ... < a, and 0 < b1 ≤

b be two sets of integers satisfying b a (1 ≤ i < n). Let =

(s 2) ,.. . , sw)), j = 1, 2,. . . , r, be a set of vectors satisfying the inequalities

0 ≤ s < ... ≤ s (1 ≤ j ≤ r) (4.8)

and

b ≤ s ≤ a (1 ≤ j <r, 1 ≤ i ≤ n). (4.9)

Let I (b, a; r) I denote the number of n x r matrices [3)] satisfying equations 4.8

and 4.9. For r ≥ 1

I(b,a;r)I = detc (r)

where

(1 ≤ i,jn) (r)

\ r+j — i)
and, as usual, if y < z or z <0 then

By applying the law of inclusion—exclusion, we obtain the following algo-

rithm for CLP.

Algorithm 7: Count Lattice Partitions

Input:

n: given in unary.

99

Output:

The number of lattice partitions corresponding to A.

Step 1:

Let 1 be the length of A.

for s - 1 t n+ 1 do

Let C(s) be the 1 x 1 matrix

whose (j,j)th entry is

)
D) +- det(C())

endfor

Step 2:

Let L(1) =

for s - 2 to n+ 1 do

Evaluate

L(s) = - (: 1))
Step 3:

Output L(n+1) R

We observe that the algorithm is correct. Let L(s) denote the number of

paths of length s from the origin to A where there are no duplicate points.

Since includes duplicate points, in order to find in terms of L, we

count the shorter paths and then account for duplicate points. Suppose there

are L(t) distinct paths to A of length t < s. For each of these paths, we can

construct some number Q(s, t) of paths of length s by duplicating points in

100

the path. Now, s - t points must be added to the path and they, can be

added to t locations thus, so we have

Q(s,t) =
(t+s_t_ i.)

s — t
Then L(1) = I(0,A; 1)1 = D' and for .s>1

s-i

(s—i

.s—t

= (0, A; s)I = L(s) + E L(t). (s—i

s—t

Solving this for L(n + 1) gives the algorithm.

Since the arguments for the binomial coefficients involve values given in

unary and determinants can be evaluated in polynomial time (see [AVATJ74]),

the entire algorithm runs in polynomial time. Thus, we have the following

theorem.

Theorem 12 Count Lattice Partitions E FP. •

The number of lattice partitions can be superpolynomial in the input.

Consider the number of lattice partitions that can be made corresponding to

the partition A = (2m, m) I- 3m. Clearly, this is at least

(2m)

if we put the first m copies of the first symbol at the beginning of the

string, we are free to arrange the remaining m symbols any way we like. This

number is superpolynomial in m and thus superpolynomial in 3m.

Now, let A = (3m,3m— i,...,1), let ji = (2m, m), and let 'y = (3m-

1, 3m - 2, . .. , 1); then the coefficient c,\ of x in the decomposition

 =

101

is the number of lattice partitions corresponding to (2m, m) I- 3m. Thus,

DecSymOut has instances with solutions that are superpolynomial in the

input size.

This means that a counting algorithm (which computes a value by in-

crementing a counter and thus requires time at least linear in the value it

returns) cannot solve DecSymOut in polynomial time. If a polynomial time

algorithm exists, it must do more than just count. Thus, at the very least,

major modifications to the Littlewood-Richardson rule will be required in

order to find an efficient algorithm for DecSymOut.

102

Chapter 5

Conclusions and Additional

Problems

5.1 Summary of Results

We have examined the computational complexity of finding the characters

of finite groups. It was known that the problem can be solved efficiently by

Burnside's algorithm when the group is given by its complete multiplication

table. The first step of Burnside's algorithm is the computation of "structure

constants". Recent work to improve the algorithm has involved reduction

of the number of these constants that are computed. We have shown how

to efficiently compute a complete set of these "structure constants" from a

character table.

Considering the other end of the spectrum of representation sizes, we

have shown that finding individual entries in the character table of the sym-

metric group is computationally hard (under standard complexity theoretic

assumptions).

103

We had limited success in classifying the problem of decomposing outer

products of characters of the symmetric group. We defined a generalization

of this problem and showed that it was computationally hard (under stan-

dard complexity theoretic assumptions). We gave an efficient solution to an

important subproblem, namely counting lattice partitions.

5.2 Related Problems

5.2.1 Succinct Specifications of Groups

Giving the multiplication table for a group is not a space efficient method

for specifying a group. In particular, a Cayley table requires size quadratic

in the order of the group. There are methods for specifying groups where,

for many groups, the space required is polylogarithmic in the order of the

group. The character table may have size superpolynomial in the input size

if a concise specification of the input group is given. In general, there is no

natural way to 'index' into the character table as we do with the symmetric

group. Thus, the complexity theoretic question becomes, can one compute

the character table of a group in time polynomial in the maximum of the

input size and the output size?

The problem of finding character tables from such succinct specifications

of groups is presently unclassified with regards to its computational complex-

ity. Considerable work has been done on computations with permutation

groups (see [But91] for a good introduction). However, even the apparently

very special case of finding characters for p-groups has not been analyzed

(see [Con90a] and [Sla86]). The state of affairs is similar for matrix groups

and finitely presented groups. Groups specified by permutations can be ef-

104

ficiently converted to finitely presented groups or to matrix groups. Thus,

finding the character tables of matrix groups or of finitely presented groups

is at least as (computationally) hard as the corresponding problem for per-

mutation groups.

5.2.2 Characters Over Other Fields

We have only considered finding character tables over C. All of the problems

asking for complete character tables can be generalized so that a specification

for a field K is included in the input and then the question becomes 'what

is the character table over K for the group?' There has been extensive work

on algorithms in this area. For example, see [Con90b].

5.2.3 Decomposition of Inner Products of Characters

of the Symmetric Group

Let T1 and T2 be absolutely irreducible matrix representations of S,. Con-

sider the tensor product T = T1 ® T2 (see section 2.2.3). T is also a repre-

sentation of S, but it is not generally irreducible. Like all representations of

finite groups over fields of characteristic zero, it is similar to a direct sum of

irreducible representations.

Define the inner product of the characters x' and x2 of the representations
T1 and 1'2 to be the character of the representation T = T1 0 222. We denote

this character by q = x' x x2. The characters of tensor products of similar
representations are the same. That is, if T1 T'1 and 222 ".' T'2 then T1 ®1'2

T'1®T'2. So, the characters of T1 0 T2 and T'1®T'2 are the same.

Since 0= X1 x x2 is a well defined character of S, it is expressible as a
linear combination of the irreducible characters of Sn. We recall that for the

105

symmetric group, we can succinctly specify irreducible representation classes

using partitions. Thus, we may ask, 'given partitions A1, A2, p I- n, what is

the coefficient c of x in the decomposition

X X A2 =

#1-n

It is known (see [Ebe89]) that the coefficients can be found from such

inputs using polynomial space. At present, nothing more is known aboul the

complexity of this problem. It seems quite plausible given the hardness of

computing individual characters that this problem is hard as well.

Bibliography

[AVAU74] John E. Hoperoft Alfred V. Aho and Jeffrey D. Ullman. The

Design. and Analysis of Algorithms. Addison—Wesley Publishing

Company, Don Mills, Ontario, 1974.

[BF91] Lásló Babai and K. Freidi. Approximate repreentation theory

of finite groups. In Proceedings of the 32nd Annual IEEE FOCS,

pages 733-742, 1991.

[Bur55] W. Burnside. Theory of Groups of Finite Order. Dover, New

York, second edition, 1955. This is a reprint of the original second

edition published in 1911 by Cambridge University Press.

[But91] Gregory Butler. Fundamental Algorithms for Permutation

Groups, volume 559 of Lecture Notes in Computer Science.

Springer—Verlag, New York, 1991.

[Con9Oa] S. B. Conlon. Calculating characters of p—groups. Journal of

Symbolic Computation, 9:535-550, 1990.

[Con90b] S. B. Conlon. Computing modular and projective character de-

grees of soluble groups. Journal of Symbolic Computation, 9:551-

570, 1990.

106

107

[Cot63] F. Albert Cotton. Chemical Applications of Group Theory. John

Wiley and Sons, Inc., New York, 1963.

[CR62] Charles W. Curtis and Irving Reiner. Representation Theory of

Finite Groups and Associative Algebras. John Wiley and Sons,

New York, 1962.

[CR81] Charles W. Curtis and Irving Reiner. Methods of Representation

Theory withe applications to finite groups and orders, volume 1 of

Pure and Applied Mathematics. John Wiley and Sons, New York,

1981.

[dBR61] G. de B. Robinson. Representation Theory, of the Symmetric

Group. University of Toronto Press, Toronto, 1961.

[Dix67] J. D. Dixon. High speed computations of group characters. Num.

Math., 10:446-450, 1967.

[DK85] Wlodzislaw Duch and Jacek Karwowski. Symmetric group ap-

proach to configuration interaction methods. Computer Physics

Reports, 2(3) :95-170, January/February 1985.

[Ebe89] Wayne Eberly. Computations for Algebras and Group Representa-

tions. PhD thesis, University of Toronto, 1989. Technical Report:

225/89.

[Edd56] Sir Arthur Stanley Eddington. The theory of groups. In James R.

Newman, editor, The World of Mathematics, volume 3, pages

1558-1573. New York, Simon and Schuster, 1956.

108

[Edw77] Harold M. Edwards. Fermat 's Last Theorem: A Genetic Intro-

duction to Algebraic Number Theory. Springer—Verlag, New York,

1977.

[Ee82} Omer Eecio1u. Computation of outer products of schur func-

tions. Computer Physics Communications, 28:183-187, 1982.

[ER85] Omer Eeciolu and J. B. Remmel. Symmetric and antisymmetric

outer plethysms of schur functions. Atomic and Nuclear Data

Tables, 32:157-196, 1985.

[Fe178] V. Felsch. A bibliography on the use of computers in group the-

ory and related topics: algorithms, implementations, and appli-

cations. SIGSAM Bulletin, 12:23-86, 1978.

[FH62] William Fulton and Joe Harris. Representation Theory: A First

Course. Springer-Verlag, New York, 1962.

[Ga174] Z. Gaul. On some direct encodings of nondeterministc Turing

machines operating in polynomial time into P—complete problems.

SIGACT News, 6:1:19-24, 1974.

[GJ79] Micheal R. Garey and David S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company, New York, 1979.

[Ham89] Morton Hamermesh. Group Theory and Its Application to Physi-

cal Problems. Dover Publications Inc., New York, 1989. This is a

reprint of the second (corrected) printing (1964) of the work first

published by Addison-Wesley Publishing Compuan, Inc., Read-

ing, Massachusetts, 1962.

109

[Hoc66] Robin M. Hochstrasser. Molecular Aspects of Symmetry. W. A.

Benjamin, Inc., New York, 1966.

[HU79] John E. Hoperoft and Jeffery D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Addison-Wesley

Publishing Company, Don Mills, Ontario, 1979.

[IR90] Kenneth Ireland and Michael Rosen. A Classical Introduction

to Number Theory. Springer—Verlag, New York, second edition,

1990.

[JK81] Gordon James and Adalbert Kerber. The Representation Theory

of the Symmetric Group, volume 16 of Encycolpedia of Mathemat-

ics and Its Applications. Addison-Wesley Publishing Company,

Reading, Massechusetts, 1981.

[Joh90] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume A: Al-

gorithms and Complexity, pages 67-162. The MIT Press, Cam-

bridge, Massachusetts, 1990.

[Keo75] R. Keown. An Introduction to Group Representation Theory, vol-

ume 116 of Mathematics in Science and Engineering. Academic

Press, New York, 1975.

[Ker9l] Adalbert Kerber. Algebraic Combinatorics Via Finite Group Ac-

tions. Wissenschaftsverlag, Mannheim/Wein/Zurich, 1991.

[Led87] Walter Ledermann. Introduction to Group Characters. Cambridge

University Press, New York, second edition, 1987.

110

[Loo83] R. Loos. Computing in algebraic extensions. In B. Buchberger,

G. E. Collins, and R. Loos, editors, Computer Algebra. Symbolic

and Algebraic Computation., pages 173-187. Springer, New York,

1983. (2nd Edition).

[Mac79] I. G. MacDonald. Symmetric Functions and Hall Polynomials.

Claredon Press, Oxford, 1979.

[McW63] R. McWeeny. Symmetry: An Introduction to Group Theory and

Its Applications, volume 3 of The International Encycolpedia of

Physical Chemistry and Chemical Physics. The Macmillan Com-

pany, New York, 1963.

[Mig91] Maurice Mignotte. Mathematics for Computer Algebra. Springer-

Verlag, New York, 1991.

[Nar79] T. V. Narayana. Lattice path combinatorics with statistical ap-

plications, volume 23 of Mathematical Expositions. University of

Toronto Press, Toronto, 1979.

[Neu83] J. Neubüser. Computing with groups and their character ta-

bles. In B. Buchberger, G. E. Collins, and R. Loos, editors,

Computer Algebra. Symbolic and Algebraic Computation., pages

45-56. Springer, New York, 1983. (2nd Edition).

[Rap87] D. C. Rapaport. Algorithms for lattice statistics. Computer

Physics Reports, 5(6) :268-349, November 1987.

[Rot89] Tony Rothman. Science a la Mode: Physical Fashions and Fic-
tions. Princton University Press, Princeton, New Jersey, 1989.

111

[RW84] J. B. Remmel and R. Whitney. Multiplying schur functions. Jour-

nal of Algorithms, 5:471-487,1984.

{Sag91} Bruce E. Sagan. The Symmetric Group: Representations, Combi-

natorial Algorithms, and Symmetric Functions. Wadsworth and

Brooks/Cole Advanced Books and Software, Pacific Grove, Cali-

fornia, 1991.

[Sch90] Gerhard H. A. Schneider. Dixon's character table algorithm re-

visited. Journal of Symbolic Computation, 9:601-606, 1990.

[Sei90] J. I. Seiferas. Machine independent complexity theory. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, vol-

ume A: Algorithms and Complexity, pages 163-186. The MIT

Press, Cambridge, Massachusetts, 1990.

[Ser77] J. P. Serre. Linear Representations of FInite Groups. Springer-

Verlag, New York, 1977.

[Sim77] Janos Simon. On the difference between the one and the many

(preliminary version). In Automata, Languages, and Program-

ming, volume 52 of Lecture Notes in Computer Science, pages

480-491. Springer, Berlin, 1977.

[Sla86] M. C. Slattery. Computing character degrees in p-groups. Journal

of Symbolic Computation, 2:51-58, 1986.

[Val79] L. G. Valiant. The complexity of computing the permanent. The-

oret. Comput. Sci., 8:189-201, 1979.

112

[vEB9O] P. van Emde Boas. Machine models and simulations. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, vol-

ume A: Algorithms and Complexity, pages 1-66. The MIT Press,

Cambridge, Massachusetts, 1990.

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Sci-

ence, volume A: Algorithms and Complexity. The MIT Press,

Cambridge, Massachusetts, 1990.

[Wey50] Hermann Weyl. The Theory of Groups and Quantum Mechanics.

DoverPublications, Inc, New York, 1950. This is a reprint of the

original English translatiqn published in 1931 by Methuen and

Company, Ltd.

[Wie64] Helmut Wielandt. Finite Permutation Groups. Academic Press,'

New York, 1964. Translated by R. Bercov.

