THE UNIVERSITY OF CALGARY
On the Complexity of Computing Characters of Finite Groups
by
Charles Thomas Hepler

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
AUGUST, 1994

(©Charles Thomas Hepler 1994

National Library Bibliotheque nationale
of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO

REPRODUCE, LOAN, DISTRIBUTE OR.

SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your file Volre rélérence

Our file Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NIDES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99374-X

Canad'éi

#Numle Cleolaa \—Lep(ab

Dissertation Abstracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Con \‘00 < SieUc = o] 3B UMI

SUBJECT TERM SUBJECT CODE

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES

ﬁOlﬂMUNICAIIONS AND THE A%T7529 Esyccifology - gggg PHILOSOPHY, RELIGION.AND
rchitecture " eading .. .
Art History0377 Religiogs . .0527 :ﬂfgﬁoﬁv 0422
Cinema 0900 Sciences .. 0714 Phil iore Y crerssssesssnanssssesssssisaans
Dance 0378 Secondary .0 neral
Fine Arls0357 Social Scienc Biblical Sudies "
oo, T d : -
Library Science0399 Tgacher TrQINING ceveureeveserecsreaes 0530 l; : Lafin American ... 0336
AAas.s Communicationseres 82?% }'ecfl;nd - . 8;&13(8) Theol {.\JAi(:J';J(ljesE'o?tern . 83%9
usic ests and Measurements . . nited States
_?ﬁeech Communication 8222 Vocahional ...ceereresereseeseeasersenes 0747 SOCIAL SCIENCES Eilsfory of Science ...ovverrriereereens 8ggg
eater | American Studies ... e .
EDUCATION LANGUAGE, LITERATURE AND Anthropol Polmcggl Scuiance 0615
Gonerdl 0515 LINGUISTICS Archaeology General ... —
Adnqrc_: cerssss s tes 91 Language Cultural n r¢;.n|'|c|r|onc1 aw an 0616
Adni;mstacgon':...._.. aar %eneral . L0679 .Physicc X P b?'q Eé\s” 0415
A v ci":} |°n inuing 0817 Ancient .. .0289 Business Adm R u I'Ic minisiration . 0814
Arg'l”cu L o | F PPN 0273 I,;iAr:)%UiSﬁC 8%3? genem'.." 8% ; g ng::(ejf\llsgrk0452
i . ern : ccountin ial Workoonreerciireresnnn,
glhqgucl and Multicultural 8%2% Literature Banking 0770 Socnéleogy | 0626
CUSmess e "0275 General ...ccvececeeeceeenereeeane 0401 Management0454 C ."":ml """"" FPamsioo 0837
ommunity ‘:j ?99 o o727 Classical0294 Marketing0338 D"m'"° [y and renoiogy ... 0938
urriculum and Instruction Comparative 0295 Canadian Studiescceerereerenes 0385 emograp ‘{ I sereeeenes
Elarly Childhood 82123 Medieval 0297 Economics thpl% onii C::ICIEJI S!inles 0631
lementary ..o aresens Modern ... 0298 General ndividual and Family
gngé\ce e 82{; African ... 0314 Agricultural | Stu' |.esI A TP 0628
H”' | ance and LOUNSENNG 0680 American .. 0591 Commerce-Business .. n R”? "".° ond Labor 0629
H?Oh 0745 Asian ..o 0305 Finance P b‘la'q '°'é5§'":"|'w"l’f' """"" 0630
HEQ' er i 0520 Canadian {English) .. 0352 History Sgci:'.:cl g;:'ucts::éaon de are ...
Hl:n?eray E?:onomucs 0278 Canadian {French) .. gggg _ll._ﬂbor T 0511 Development
lome & - NGlish Leveererrererecerrererarsrnns BOTY everererenesessseasesseranense :
lndustrial i 82;(]) Gegrmonic _____ T3 Folklore v 0358 . Theorl;yrond Metl 8933
LNa‘n%uage'an iterature 0580 Latin American0312 Geographyceerererererrescenseienas 0366 U" %"SP° A Recrie 0990
MAREMOHCS veveesrror " 0559 Middle Easternccuccomreen 0315 Gerontology w.ecoowrreuemerreeeererr 0351 Womesnspg 0453
Phglm ook 0998 ROMANCE .eevrerrerercnscernncirinne 0313 History OMEN'S VTS »vresivncnnsersesense
TOSOPNY OF sevearerseaersensisusionins Slavic and East European.....0314 General ..o 0578
Physical 0523 '
THE SCIENCES AND ENGINEERING 7
BIOLOGICAL SCIENCES . Geodesy c.orrecrenrierecrneenisiis 0370 Speech Pathologyc.. 0460 Engineerin
Agriculture Geology curerrrrerermriersrrerssnsissasens 0372 Toxicology0383 Generdlcoceerereriesriirenins
Generdl .cueicriscsisininiins 0473 GeOPhYSICS veverercercrereremercrsennns 0373 Home Economics Aerospace ..
AGronomyvusesessssssssecsssns 0285 I;ix'drology .0388 . Agricultural .
Animal Culture and ineralogy0411 PHYSICAL SCIENCES Automotive
NUHON covcceeeenersessiessnans 0475 Paleobotany0345 Pure Sciences " Biomedical..
Animal Pathologycccereinne 0476 Palececology .. 0426 . e
Food Science and Paleontologyewssieeecroreerarenss 0418 Gle Y |
Technology ...cvceeereereenerene 0359 Paleozoology .. .0985 A ".e"‘l" e
Foresiry and Wildlife0478 Pa ynologg' rereeraes .0427 Agrllcu' ”'ic'
Plant Culture0479 Physical Geography0368 B."qh)'"c‘.’f """
s}ant I;ﬁtholcrgy 8g?g Physical Oceanography .0415 |I':gl? gmg -
ant Physio .
Range Managome 777 HEALTH AND ENVIRONMENTAL Nuclear
o IWooo| Technology0746 SCIENCES Phamosautical
Bio a/ I 0306 Environmental Sciences 0768 3 Physical
A n;era 287 Hedalth Sciences Polymer
B."°'°"-"¥. : General ...cvuecreenrerensisisnnenns 0566 Radiation ...
Bn‘;s alistics Audiology0300 Mathemahics ...cvmrreeeerecenerearens
- g RES
entistry 0567 T Generdl .eceveeereereresninnnns
Ef\?ci?ngglo“g‘y """ 8%%3 Educcl%rb\ 8;28 Acgl.?;gcs ——
o 9y . ospital Management.. . Ast .
Genelcs ~8365 Humon Dovelopment ... 0758 RO . Qperation Rescarch
Microbig ogy 0410 ;\','\‘e"é‘.’“Png G 8223 Atmospheric Science. Te?(sﬁi;sTei%nrc':l)o%gly -
- icine and Surgery . . {OMIC .ovvisienerrenrsvesennnnen 0748 75T TR e esaseneneneass
m:i?g‘;lgg e 8%?; - Mental Hedlth .. o .0347 EI:cTrg:nics and Elecirici PSYCHOLOGY
Oceanography 0416 Nursing <0269 Elementary Parficles an General 0621
Ph 5i°|°g phy ..0433 Nutrmop .0570 Hi h Energy 0798 Behuvior(;l 0384
Rc)é'aﬁggy " 0827 Obstetrics and Gy dgy ..0380 Fluid and Plasma0759 Clinical " 0622
aton..... o . ccupational Health an olecular o 0609 Clinical -
Vetelrmory Science0778 oT-Herc i y IH lth 0354 mull N olr 82?8 Developmental0620
. }?o 0472 Ophthaﬁnd "0381 Opics .. 0752 Fx el;upental 82%3
o SO <l el s g% ke -3t
Medicql ------------------------------ 0760 P.‘ormacol ‘04]9 Solid staf 06]] . Ph solo ?;ai' --0989
.............................. P1ar_muc1¥ . .0572 Statistics 70463 Psyc-%obgﬂo ..0349
EARTH SCIENCES Physical Therap 9382 Applied Sci Peychometrics . 7063
: : Public Health . .0573 ppIl lences sycnomelrics ...
Biogeochemistryc..euriieressisene 0425 Radiology ‘0574 Applied Mechanicsco...covnnee 0346 S0CHA] i rerarranen 0451

Geochemistry .cuvsvevessvsrssseces 0996 ReCreationccereresseererens 0575 Computer Sciencecoorieserenrens 0984 . @

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre

thése et inscrivez le code numérique approprié dans |'espace réservé ci-dessous.

11 UMI

SUIET
Catégories par sujets
HUMANITES ET SCIENCES SOCIALES
COMMUNICATIONS ET LES ARTS Lecture ...coveveremimcimrecersiririsenas 0535 PHILOSOPHIE, RELIGION ET
Architechurec..ccerueercerereenens 0729 Mothématiques . e 0280 THEOLOGIE
Bequx-arfs0357 MUSIQUE ..cvoverrmeareseenes ..0522 Philosophiecoeererererrenecens
Bibliothéconomie . ..0399 Orientation et consultatio ..0519 Religion
Cindma .z...cveeee 0900 Philosophie de I'éducation ..0998 énéralités
Communication vel 0459 Physique0523 Clergé.......
Communications0708 Programmes d Etudes bibli
Danse enseignement 0727 Histoire des relilg
Histoire de I'art .0377 Psychologie ... 0525 Philosophie de fa reli 322
. ﬁgences 8?31 Théologieoeercrerennn " 469
iences soc .
Sociologie de I'éducation........... 0340 SCIENCES SOCIALES
Théatre 0465 Technologiecveeerersreerecernee s 0710 Anthropologie
. . Archéologieuereurerennrnine 0324
(EBDeUCMI'ION 515 LANGUE, LITTERATURE ET C,;Jhurelle . . gg%g
énéralitésc.cvvrevenenenns e (10 11
Administrationcceceeeerereeenene 0514 ﬂt“ctﬂ? TIQUE Droit v 0398
Art . 0273 anéralités 0679 Economie
Colléges communautaires 0275 Anciennes GEneralitéscoorerervenrerens 0501
COMMErcecuvusuereens " ...0688 Linguistiqu - Commerce-Affaires 0505
Economie domestique.... ...0278 Mo%erngs Economie agricole................ 0503
Education permanente0516 Litérature Economie du travail . .0510
Education préscolaire0518 Généralités Finances0508
Education sanitaire0680 Anciennes 204 Histoire ...covverecnmsinscrninnerinne 0509
Enseignement agricole............... 0517 Comparée 305 P LT 0511
Enseignement bilingue et Medl%?/ale 207 Etudes américaines0323
multiculturel ...l 0282 erne 208 Etudes canadiennes..... .0385
Enseignement industriel ...0521 Alricaine - 0314 Etudes féministes0453
Enseignement primaire. Américaine " 0591 Folklore0358
Enseignement professionnel Anglaise ..., " 0593 Géographie .0366
Enseignement religieux 0527 Asi%ri ve 70305 Gérontologieccnureercrcrnrnerns 0351
Enseignement secondaire ...0533 Canadienne (Anglaise] ... 0352 Gestion des affaires
Enseignement spécial0529 Canadienne Fra% Qise) o 0355 GENEralitds .vueverres verrnines 0310
Enseignement supérieur ...0745 Germanique FAISE] vrrrene 0311 Administrationc..cccrerneens 0454
Evaluationceeeee. ...0288 Lafino- arr?éri caine 0312 BONQUES ...cevnrverrernecersennes 0770
Financesvvererenvanenees ...0277 Moyen-orientale " 0315 Comptabilitéccccvereernene. 0272
;orrhaﬁo; clieesd enseignants.....:.... 82%8 Ron);ane * " 0313 y Markefing ...coceeoeverciurernenens 0338
Petoire de I'aducation T istoire
Langues et littérature s....covvvennnee §|me et est-europeenne 0314 Histoire généraleccvuu. 0578
SCIENCES ET INGENIERIE
S(IENCIES BIOLOGIQUES %lo}?ie 8%;% SCIENCES PHYSIQUES
riculture ' é sique . L0 :
O G anGrl1Es oo 0473 Hydiologia no3gg eiences Pures
AGrONOMIE. .cvverusrerenseeraseens 0285 inéralogieeeeneeee .0411 "E’;'e sralits
Alimentation et technologie Océanographie physique ".........0415 B.e“ﬁfc’ es
alimentaire 0359 Paléobotanique.............. .0345 Cll(\)'c mie ...
Culture ..oooucrucnee Paléoécologie ... 0426 imie agri

Elevage et alimentation Paléontologie . 0418 Chimie C‘"C‘I)’ﬁq”

Exploitation des péturages ...0777 Paléozoologie ..0985 Chimie minérale ...
Pathologie animale 0476 Palynologie 0427 Chimie nucléaire
Pa'hoogiev' AN S ynologie ‘ Chlmle orgcnique .
Physiologie végeétale ... SCIENCES DE LA SANTE ET DE g}t""."e pharmaceutique
Syliculture et faune ... * L'ENVIRONNEMENT : PolymCres ol
Biol ecnnologie du bois Economie domestique 0386 Radiation
tologle ... Sciences de |'environnement 0768 MathEmaliquesoueereenerenee
énéralités encd 4 9
e SC|enc’es‘de_|q santé [ysi ve
Biologie (Stohsh - Gengrglnes'............:..: 0566 Genéralitésocecveeeeeernan
Biol g! T lq Administration des hipitaux .. 0769 ACOUSHQUEvverrreaeeerrerenens
Bg:rﬂleui:o eculaire Alimentation et nufrition 0570 Astronomie et
oiute Audiologievuver.... 0300 astrophysiquec.cscunev.
i Chimiothérapie Electronique et électricité
Enrocr)ngol Dentisterie Fluides et plasma .0759
it 32 Développement humain 0758 Meétéorologie
Limnorggie Enseignement 0350 Opliqueccorveccrironiisniene 0752
Microbidlagia Immunologie0982 Parficules {Physique
Neorals ieg . Loisirs . . nucléaire)coeoreerreenne 0798
Océanogra N Médecine du travail et Physique atomique
Phoal giep therapie cuevvenesieesisnenne, 0354 Physique de ['état solide
Ra)cllio!igg ---- Médecine et chirurgie0564 Physique moléculaire 0609
Scionce vatirineis Obstétrique et gynécologie ... 0380 Physique nucléaire..... .0610
ool . - Ophtalmologiecouevcrenecen. 0381 Radiation 0756
Biophysig%e) Ortho h?me e .0460 Stoﬁsﬁques g
Genéralités Pathologie .. 9371 Sciences Appliqués Et
PV Pharmacie0572 \Ppliq
icale ...veiisireirnens . g;urmci‘,mlom : Og é g ;f?chno‘l'ogm 0984
siothérapie nformatiqueeevvreescsanineenns
SCIENCES DE LA TERRE 0425 Rodiologie . 574 Ingénierie
Glggel?c 111 TS 0908 Santé mentale .. 347 Gen'erghtes0537
G?°§,"F“e - Santé publique . 573 Agricole0539
Ggo esneh_-...-.ﬁ...:.. A Soins infirmiers 569 Auvtomobilecuervrrrinnnnee 0540
éographie physiquece.ueee. Toxicologie 10383

CODE DE SUJET
ANCIENNE ...cvvvrrercrinrireerinne 0579
Médiévale0581
Moderne .0582

Histoire des
Africaine ...
Canadienne
Etats-Unis ..
Européenne ..

Moyen-orienta 0333
Latino-américain 0336
Asie, Australie et Océanie0332
Histoire des sciences.................. 0585
LOISIFS vuereurerernrnneeneroenrenereesnnanns 0814
Planification urbaine et
16gionale ...cveveverencrreennrensenes 0999
Science politique
Géneralitéscorevevennene 0615

Administration publique0617
Droit et relations

internationalesc... 0616
Sociologie

GEneralitésoovveeerereenene 0626
Aide et bien-atre social 0630
Criminologie et

établissements

pénitentigireso..... 0627
Demographieceeeveneene 0938
Etudes de I individu et
, delafomille...................... 0628

Etudes des relations

interethniques et

es relations racidles 0631
Structure et développement
SOCIAl .eveiierieieeiree s 700
Théorie et méthodes. 0344
Travail et relations .
industriellescooovenvees 0629
Transports

Travail social

Biomédicalecpnvinennc.

Chaleur et ther
Conditionnement

Génie aérospatial ..
Génie chimique .

modynamique

(Emballage)ccvvverrerernnee

Génie civil .oocovveeviciiriires

Génie électronique et

Génie industriel
Génie mécanique ..
Génie nucléaire.........

électriqueccorcreeerenirenns

Ingénierie des systames

Mécanique navale
Métallurgie

Science des matérigux
Technique dy pétrole
Technique miniére

Techniques sanitaires et

Technologie hydrauli
Mécanique appliquée
Géotechnologie ...
Mati

municipales

éres plastique

PSYCHOLOGIE

Gnéralitéscoereerrerirvrsiicnne

[
rert

onnalité ..

PS)'L 10 Jiulusic
PS)'L 10| ugfe clinique

. Psychologie du comportement0384
Psychologie du développement ..0620
PS)\. 10 ugic expérimenfcle 0623
Psychologie industrielle0624
Psychologie physiologique 0989
Psychologie socidle0451
Psychomelriec.cocvvvervieeninns 0632

THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty
of Gradunate Studies for acceptance, a thesis entitled “On the Complexity of
Computing Characters of Finite Groups” submitted by Charles Thomas Hepler

in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor, Wayne Eberly, Depaftment of Computer Science

Nk

Nader Bshouty, Department of (Toméuter Science

K. ~Sbraldal.

H. K. Farahat, Department of Mathematics

Sectember 2, (994 %

September 13, 1993

Abstract

This thesis examines the computational complexity of the problem of finding
the characters of finite groups and sofne associated problems. The central
focus is how the complexity changes according to how the group is specified.
We examine two extremes. Considering computations from Cayley tables,
when the input size is quadratic in the order of the input group, we observe
that we can efficiently invert Burnside’s character table algorithm to find
class matrices.

We also consider computations involving the symmetric group with inputs of
size polylogarithmic in the order of the input group. We show completeness
and hardness results for computations of individual characters of the sym-
metric group. Examining the problem of decomposition of outer products
of characters of the symmetric group, we show that a generalization of the
problem is computationally hard. We show that lattice partitions can be

- enumerated efficiently.

il

A cknowledgments

This thesis.could not have been completed with out the help of the won-
derful people surrounding my life. In particular, two people shined above
the others. These are Marianne Wiltse and Wayne Eberly. Marianne has
been so kind and understanding that I have concluded that our partnership
is the best thing ever to have happened on Earth. On a concrete level, she
has, during the past few months, done all of my laundry, cooked my meals,
dragging me from the computer to eat when I had forgotten I was hungry,
motivated me to work when I felt lazy, and chatted with me on the couch
when I needed a break. Obviously, Wayne’s help has been more direct. He
has diligently read and reread a number of drafts of each section and rapidly
returned them with illuminating comments. He suggested problems to work
on and has always been helpful when discussing methods to approach the
problems. Above all, his patience has been outstanding,.

Throughout my life, my parents and siblings have been supportive in too
many ways to mention. A great number of friends have aided me in my day
to day endeavors. I cannot list them all, but (in alphabetical order) Richard
Erickson, André Isaak, Dennis Kelley, Sleiman Matar, and Christino Tamon
certainly deserve mention. For no particular reason, I would also like to
thank Dan Hermanson, Rita J. Kolpak, and THE GREG PASKUSKI.

Lisa Higham deserves special thanks. Her sparkling lectures inspired me
to study theoretical computer science and she introduced me to Wayne. Also,
Kris Vasudevan has been more than understanding.

Finally, I would like to thank my examiners.

iv

Contents

Approval Page ii

Abstract e 11

Acknowledgments. L L oo v

List of Figures, Vviil

1 Introduction 1
1.1 General Relevance of the Problems

1.2 Summary and Readers’ Guide 4

2 Background 6

2.1 Three Combinatorial Definitions 7

2.1.1 Permutations 7

2.1.2 Partitions Lo o . 9

2.1.3 Lattice Partitions 9

2.2 Background in Algebra oo oL L. 10

221 Groupst e e e e 10

2.2.2 Permutation Groups [P 15

2.2.3 Representations and Characters 18

2.2.4 Character Relations 24

Background in Complexity Theory 25

2.3
2.3.1 Complexity Classes, Hardness, and Completeness . . . 26
2.3.2 Computing with Algebraic Numbers 30
2.3.3 Problems PR 31
2.33.1 4-PARTITION 31
2.3.3.2 Boolean Permanent AP - 38
3 Characters of Finite Groups 40
3.1 Computing Characters from Cayley Tables 41
3.2 Inverting Part of Burnside’s Algorithm 46
4 Characters of the Symmetric Group 52
4.1 Characters of the Symmetric Group 54

4.2

4.1.1 A Graphical Version of the Murnaghan-Nakayama Rule 57
4.1.2 A Concise Version of the Murnaghan-Nakayama Rule 64
4.1.3 A Polynomial Time Transformation 66
4.14 A Probabilistic Polynomial Time Version of the Murnaghan-

Nakayama Rule e 69
4.1.5 The Murnaghan-Nakayama Rule on a Counting Turing

Machine o 74
4.1.6 Completeness Theorems 77

Outer Products, Schur Functions, and The Littlewood-Richardson

Ruleo 78
" 4.2.1 Outer Products of Characters of the Symmetric Grou.p 79
4.2.2 The Littlewood-Richardson Rule 80
4.2.3 Analysis of the Littlewood-Richardson Rule 83

vi

4.2.4 The Complexity of Associated Problems 83
4.2.5 Counting Lattice Partitions 95
5 Conclusions and Additional Problems 102
5.1 Summéry of Results e e e e e 102
5.2 Related Problems 103
5.2.1 Succinct Specifications of Groups 103
5.2.2 Charactérs Over Other Fields 104

5.2.3 Decomposition of Inner Products of Characters of the
Symmetric Group Lo, 104
Bibliography 106

vil

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

4.1

The Cayley Tablefor E. 12
Inversesin E. o o i e e e e e e e e e e 12
aand fareconjugatesin E. 14
E is generated by {a,v}. oo 15
A_n Isomorphism Between Eand S5. 16
A Matrix Representationof S3 20
The Character Tablefor S5 24
The diagram for B. e e e e e e 91

viil

Chapter 1

Introduction

This thesis examines the computational complexity of the problem of find-
ing the characters of finite groups and some associated problems. The main
theme is an examination of how the complexity of a problem changes accord-
ing to how the group is specified.

In all cases, we will be concerned with exact computations using “sym-
bolic” representations of the input, the output, and quantities computed
along the way. Computing with symbolic representations has an advantage
over fixed precision numerical computations in that, with a bit of care, we
can be guaranteed to be able to determine the signs of small numbers and
perform equality tests with complete reliability. Further, symbolic represen-
tations can be converted to fixed precision numbers with any desired degree
of precision.

This approach has three principal disadvantages. The first is that we
require symbolic representations of our input and this is unrealistic for some
applications. The second is that numerical approximation algorithms may

have a lower complexity than exact algorithms. For those problems where

the evidence suggests that there are no efficient (polynomial time) exact al-
gorithms, we must resort to some kind of approximation algorithm. Even
for problems with polynomial time algorithms, numerical approximation al-
gorithms may still be sufficiently more efﬁcient to be worthwhile. For more
information on approximation algorithms in this area see [BF91]. The third
disadvantage is that the manipulation of symbolic representations of numbers
is not always straightforward. This is discussed in detail in [Loo83].
Numerical approximation algorithms are beyond the scope of this thesis.
The choice to examine symbolic computations can be justified by the fact
that some kind of analysis of the exact solution to a problem must be done

before one can analyze an approximate solution.

1.1 General Relevance of the Problems

It is difficult to say exactly when group theory first came into being. Cer-
tainly some of the ideas associated with group theory, such as the investi-
gation of symmetry, date back before recorded history. We will be mostly
concerned with only one small part of the theory of groups, namely, charac-
ter theory. The two most important fields contributing to the development
of the theory of group characters are number theory and physics.
Regarding applications in number theory, we can, not unreasonably, sa.y
that group theory started with Evariste Galois around 1830. Certain myths
surround 'his life. Chapter 6 of [Rot89] debunks these myths and clearly
demonstrates the presence of subtleties in historical investigations. In light of
this, we gloss over the rest of the history of the theory of groups. Among oth-
ers, Niels Henrik Abel, Augustin-Louis Cauchy, Sir Arthur Cayley, Camille
Jordan, Joseph-Louis Lagrange, Marius Sophus Lie, and Ludwig Sylow began

an investigation of Galois’ groups, finding new and exciting structures along
the way. Ferdinand Georg Frobenius, William Burnside, and Issai Schur are
perhaps the most important names associated with the development of the
representation theory of finite groups. Our work is directly dependent on
the work of these three men and on the work of Alfred Young.

The theory of group characters is used to examine the structure of finite
fields by considering the group constructed from a field by omitting the ad-
ditive identity and considering only multiplication in the field. In particular,
by evaluating the characters of such a multiplicative group, one can find the
number of solutions to a wide range of equations over the field. For more
information see [IR90] or [Edw77].

Character theory has important applications in (at least) two areas of
physics, namely, crystallography and quantum mechanics. The power and
value of character theory is demonstrated by the duplication of effort across
physics and pure mathematics. It was not uncommon for a physicist to
work out the structure of some group only to find that a mathematician had
already done so. In [Edd56], Sir Arthur Stanley Eddington describes how
this happened to him.

Both [McW63] and [Hoc66] discuss crystallographic applications. In
quantum mechanics, n—fold degeneracies in the eigenvalues of the wave equa-
tion are directly related to the characters of n-dimensional representations of
a group. Since the eigenvalues are directly related to observable quantities,
determining group characters is very important. The symmetric group is
especially important. The solutions to the wave equation for an n—particle
spin system can be classified in terms.of their symmetries with respect to
interchanges of particles. Here, individual character values, decompositions

of inner products of characters, and decompositions of outer products of

characters are extremely useful. For a detailed discussion, see [Wey50]. A
modern treatment is contained in [DK85]. [Cot63] and [Ham89] are excel-
lent introductions to group theory. They provide physical intuitions for the
interpretation of group theoretical statements and contain a wealth of appli-

cations.

1.2 Summary and Readers’ Guide

Chapter 2 discusses background information. We give some combinatorial
definitions. Then, we give definitions and notation for the relevant aspects
of algebra. We provide a brief overview of complexity theory. We review a
hardness proof for a known hard problem and give definitions and citations
for others. Finally, we discuss the complexity of various useful computations
on groups. The reader may freely skip this chapter, returning to it only upon
encountering an unfamiliar term.

Chapter 3 examines the complexity of finding cdmplete character ta-
bles of finite groups from Cayley tables. We describe Burnside’s algorithm
for finding character tables from multiplication tables and note that it can
be done in polynomial time. For more complete information on this topic,
see [Ebe89]. We observe that all but the first step of Burnside’s algorithm
can be inverted efficiently. This result is not especially surprising but it is of
some significance given the recent work done on computing characters from
a partial tabulation of the “class matrices”.

Chapter 4 looks at computing individual characters of the symmetric
group. This problem has very succinct inputs and integer outputs. We
examine several versions of this problem and show completeness and hardness

results (depending on the formulation of the problem). These are the most

significant new results in the thesis. As far as we are aware, they are the first
completeness results in this area. The proof is especially satisfying since it
uses only elementary techniques.

We then turn our attention to decomposing outer products of characters.
We had less success with this problem. We invent a generalization of the
problem and demonstrate that it is computationally hard. Also, we show
that an interesting subproblem has a polynomial time solution by framing a
beautiful little theorem of Kreweras in computational terms.

Chapter 5 contains a final summary of the results and a discussion of some
related problems, including computations of character tables of arbitrary

finite groups from representations that are more succinct than Cayley tables.

C hapt'er 2
Background

This chapter includes some necessary background information. It is intended
to review relevant material and to familiarize the reader with our notation.
It is divided into three sections: .one containing combinatorial definitions,
one on algebra, and one on the theory of computing.

The first section gives definitions of permutations, partitions, and lattice
partitions.

The second section discusses groups. The symmetric group Ss is used
as a running example for a brief description of Cayley tables, permutation
groups, matrix representations, and characters.

The third section presents some aspects of the theory of computational
complexity. We describe the classes P, NP, PP, and #P and discuss re-
ductions, hardness, and completeness. We give definitions of two problems
with known complexity: 4-PARTITION and Boolean Permanent.

The problems are used in chapter 4 to give a new classification of the

computational complexity of computing characters of the symmetric group.

2.1 Three Combinatorial Definitions

Permutations are used to represent groups. Partitions are used to specify

cycle structures of permutations. In particular, the conjugacy classes in the |
symmetric group can be encoded using partitions (see Sect.ion 2.2.2). Also,
the absolutely irreducible representation classes of the symmetric group can
be specified by partitions. Lattice partitions are used by the Littlewood-

Richardson rule (see Section 4.2).

2.1.1 Permutations

This material is standard. For example, see [Burb5].
A permutation © of n objects is an invertible function from the set of

objects onto itself.

7:{a1,0s,...,0,} — {a1,02,...,a,}

Since the function is invertible, it assigns a unique object to each object.
We will only be concerned with finite sets. Thus, we can specify a permu-
tation by listing its value for each of the objects. Supposing that 7 (a;) = b;,

we can write the permutation 7 as

(al,az,...,an>
b1, b, .., by,
We call the elements of the set points and say that a permutation acts on
that set of points.

Let us consider the images of a single symbol a as we repeatedly apply
the same permutation 7. Since the set of possible images is finite and 7 is

a bijective function, there must be a smallest positive integer k such that

7*(a) = a. A cycle in 7 is a finite series of points obtained by repeatedly

applying a permutation 7 to a single point until we return to that point.
We write a single cycle (a:, 7(a;), 72(as), . . . , 7™(a;)) where 7¥*1(a;) = a; and
there is no j < k such that 77(a;) = a;. Cycles can be written starting at
any point in the cycle. We will enclose cycles with parenthesis: ‘(’ and).

It is possible to represent any permutation as a list of disjoint cycles. We
call this representation the cycle form of a permutation. The representation
of a permutation as a list of disjoint cycles is unique up to the order in which
the cycles are written and the starting points of the cycles. For the sake of
brevity and clarity, we will usually omit cycles of length one.

The cycle structure of a permutation is a list of the lengths of the disjoint
cycles needed to express the permutation. (The lengths of cycles of length
one are always included in this list). The cycle structure for a permutation
is unique up to the order in which the lengths are written.

As a conceptual simplification, we use the term multiplication of permu-
tations to denote functional composition of permutations. Bearing this in
mind, we read products of permutations from right to left rather than left
to right. Since we will not be concerned with the nature of the symbols that
are being rearranged, we can save ourselves some writing by always working

with the symbols {1,2,...,n}.

Example 2.1.1: Multiplication of Permutations in Cycle Form

Consider the set of points Q@ = {1,2,3}. Multiplying the
permutation a = (1,3,2) acting on Q by the permutation v =

(2,3) givesyoa=(1,2). W

Any permutation can be written as a product of (not necessarily dis-

joint) cycles of length two (called two-cycles). This representation is not.

unique. However, for any particular permutation, the ways of writing that
permutation as a product of two—cycles have the same parity. That is, if a
permutation can be written as a product of an even number of two—cycles,
then every way that that permutation caﬁ be written as a product of two—
cycles uses an even number of two—cycles. We call such a permutation even.
Similarly, odd permutations are those permutations that can be written as a
product of an odd number of two-cycles. For example, a cycle of length & is

even if and only if &k is odd since
(01,009,...,01) = (01,02)(02,03)(03,04) . .. (Ok—2, Ok—1)(Ck-1, OK)-

It is convenient to use a function to capture the above fact. We define

the function:

ien(n) 1if 7 is even
sign(w) =
—1 otherwise (7 is odd).

2.1.2 Partitions

A partition of a positive integer n is a sequence A of positive integers
A= ()\1,)\2,...,/\]0

such that A\; > A;yq) for 1 <4 < k — 1 and such that ZLI A =n. If for
1<j5 <k, Aj#0and Aj31 =0, or if j =k and Ay # 0, then j is the length
of A. We use the notation A - n to say that A is a partition of n. We will
use partitions of n to specify the cycle structures of permutations acting on

n points. ’

2.1.3 Lattice Partitions

A lattice partition A corresponding to a partition

A=y dm) F 1o

10

is a string A = a;,..., a, of length n of m symbols o1, 09,..., 0, such that:
1. For 1 < ¢ < m, the string A has exactly A; occurrences of the symbol o;.

2. For each prefix string A7 = o,...,;, (1 £ i < n), for each j and k,

(1 £ j < k < m), there are at least as many occurrences of o; as of oy.

That is, letting # (o3, X)) denote the number of occurrences of o; in a string X,
#(05, AY) = #(ow, A7) (2.1)

foralll <i<nand 1<j<k<m,and #(0;, 4) = A;.
For clarity and to save writing, we will write o; as just . With this
notation, we see that ‘1123212’ is a lattice partition of A = (3,3,1) but

‘1132212’ is not since the prefix string ‘113’ contains one 3 but zero 2’s.

2.2 Background in Algebra

This section contains a review of definitions and cites a few useful theorems.
It is not intended as an introduction to the subject. The reader not famil-
iar with the definitions below should consult a textbook on modern algebra.
[Burb5] is a good, though old, introduction to the subject. A more compu-
tationally oriented and modern introduction can be found in [Mig91]. Both

[But91] and [Wie64] are good references for permutation groups.

2.2.1 Groups

The fundamental mathematical structure that we will consider is the group.
We provide a definition for the sake of completeness and to familiarize the

reader with our notation.

11

Definition 1 A group G is a set of objects for which an associative binary
operation * is defined. The set must be closed with respect to the operation.
The set must contain an identity element and each element must have an

inverse. W

A group is a finite group when the set of objects is finite. A finite group is
said to have order n when the set of objects has size n.

In general, we will use G to stand for an arbitrary finite group and I
to stand for the identity element in that group. Occasionally when we are
considering several groups at the same time, we will write I¢ to indicate the
identity element in G. Frequently, we will drop the * sign and refer to the
group operation as multiplication. Also, we will use the symbol G to refer to
the set and let the operation be understood. We use the exponential notation
g* to indicate a product of k copies of g.

A finite group may be entirely specified by its multiplication table, with
rows and columns indexed by group elements (a and b respectively) and with
products (a*b) as table entries. The multiplication table for a group is often

called its Cayley table.

Example 2.2.2: A Small Group

Theset E = {I,a, 3,7, 6,(} together with the operation given
by the Cayley table shown in figure 2.1 is a finite group. Later,
it will be convenient to have such a table at hand. Again, for
convenience later on, a table of the inverses of each element is
given in Figure 2.2.

The second table shows that each element has an inverse.

It is an easy matter to verify that the set E together with the

12

g:||Iaﬂ75(
IxgllI|la|B|v]|6]C¢C
axgllalBl|I{o| v
Brg || B|IT|a|C]|7]|d
Yxgllv|C|6|I|B]|c
oxg |6yl Clall|p
Cxg 6|78l

Figure 2.1: The Cayley Table for E.

Figure 2.2: Inverses in F.
operation * satisfies the other properties. W

In the above example, it is not true that h*xg = g x h, for each g,h € E.
In particular, a * v = § # { = v * . If we do have this additional property,
called commutativity, then we say that the group is Abelian.

The direct sum G = G; @ G, of two groups G and G, is the group of
ordered pairs in G; X G5 with the group operation defined componentwise.
That is, if g1, h1 € G1 and gs, he € G2, then g = (g1,92) and h = (b1, h2) are
elements of G and their product is defined to be g * h = (g; * h1, g2 * hy). It
is a straightforward exercise to verify that G; @ G, is a group whenever G,

and G, are groups.

13

A homomorphism from a group G, to another group G, is a function
¢ : G; — G, that preserves group multiplication. That is, in order for ¢
to be called a homomorphism, for all g;,g, € Gy, it must be the case that
#(g1)d(g2) = ¢(g1g2). It follows that if ¢ : G; — G5 is a homomorphism then
#(Ig,) = Ig, and ¢(g~!) = ¢(g)™! for all g € G,. If, in addition, ¢ is one to
~ one and onto, then ¢ is called an isomorphism and the groups G; and G are
said to be isomorphic.

A subgroup H of a group G is a nonempty subset of G which is still a
group under the binary operation * of G restricted to members of H. We
write H < G (or G > H). In case H is strictly smaller than G, we say that
H is a proper subgroup of G and write H < G (or G > H). In contrast to
the case with rings, H < G implies that I € H and is the identity element
in H. Further, if h € H then the inverse of h in G, k™!, is also in H and is
the inverse of h in H as well.

The trivial subgroup of G is the set consisting only of the identity element

in G.

Example 2.2.3: Subgroups of E

Our group E has four nontrivial proper subgroups. They are:
Ey ={I,0,8}, E, = {I,v}, Es = {I,6}, and E; = {I,(}. The

group properties are easily verified. M
The left coset of a subgroup H of G determined by g € G is:
gH ={gh:h e H}. (2.2)

The element gzg™!, where g,z € G, is a conjugate of the element z in G.

We say that grg~! is the conjugate of = with respect to g.

14

g: (I|alBly]d6]|C

gogtllalala|B|B |8

gBg | BB |Bla|a|a

Figure 2.3: o and f are conjugates in E.

Definition 2 The conjugacy class C®(z) of z € G is the set of all conjugates
of z in G:
CC(z)={gzg':g€G}. M

Example 2.2.4: Conjugacy Classes in E

E has three conjugacy classes:
{I} is a conjugacy class since gIlg-! =I forallg € E.
{a, B} is a conjugacy class. The conjugates for o and 3
with respect to each elemeﬁt of E are shown in
figure 2.3.

{7, 6,¢} is easily seen to be a conjugacy class as well. B

The set of all elements in G that commute with a particular element
z € G is called the centralizer of z in G, is written Cg(z), and is a subgroup
of G. The set of all elements in G that commute with every element of G is
called the center of G and is an Abelian subgroup of G.

A set S C G is said to generate a finite group G if every element of G
can be expressed as a product of elements of S. The set S is then called a

generating set for G and we write G = (S).

15

Element

Expression

| :
" a3 a2 v 2

Figure 2.4: E is generated by {«,~}.

Example 2.2.5: A Generating Set for £

The set S = {a,v} generates F, since each element of F
can be written in terms of elements of the set, as is shown in

Figure 2.4.

These expressions are not unique. M

2.2.2 Permutation Groups

A set of permutations acting on a set Q of size n generates a group where the
group multiplication operation is defined to be permutation multiplication.
Such a group is called a permutation group and is said to be of degree n. Every
finite group is isomorphic to a permutation group. Proof of this statement

may be found in any standard text (for example, see [Bur55]).

Example 2.2.6: A Permutation Group

Let the permutations o and v act on the set & = {1,2,3}.
The permutations: o = (1,3,2) and v = (2,3) generate the
permutation group {lp,(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}. We
have seen that yo o = (1,2). Also, yoaoa = (1,3), xoa =

(1,2,3), and vy oy = I, so all of the listed permutations can be

16

Element of E | Permutation
I (1)(2)(3)
(1,3,2)
1,2,3)
(2,3)
(1,2)
(1,3)

Y IR TR

Figure 2.5: An Isomorphism Between F and S;

generated from a and 4. Since there are no other permutations

on 2, this is the group generated by a and +, as claimed. W

Definition 3 The symmetric group S, is the permutation group containing

all permutations of n objects. W

Example 2.2.7: The Symmetric Group S3

The example group E is isomorphic to S;. An isomorphism
is shown in figure 2.5. Recalling that products of permutations
are read from right to left, it is an easy matter to verify that the

group operation is preserved. M

The symmetric group S, has a very simple generating set. Let S, act
on Q = {1,2,...,n}. The set {(1,2),(1,2,...,n)} (written in cycle form)
generates S,,.

The definitions given in the previous section can be carried over to per-

mutation groups.

17

The definition of direct sum can be conveniently reformulated for permu-
tation groups as follows. The direct sum G of two permutation groups G
acting on ; and G, acting on Q,, where Q; and 2, are disjoint, can be found
by constructing all permutations = acting on Q; U, such that m(Q;) = Q,
w() = €y and such that the restriction of 7 to Q; or €, is a member of G4
or (G,, respectively.

Next, consider the conjugacy classes of S3 and observe the relationship

between conjugacy classes and cycle structures.

Example 2.2.8: The Conjugacy Classes of S;

From example 2.2.1, we have that the conjugacy classes in
the group E are: {e}, {a, B}, and {v,6,{}. Using the isomor-
phism shown in figure 2.5, we see that these translate into the sets
{D@B)} {(1,2,3),(1,3,2)} and {(1)(2,3), (1,3)(2),(1,2)(3)},
having elements whose cycle structures are (1, 1, 1), (3), and (2, 1)

respectively. W

This is not a coincidence. In fact, the conjugacy classes of the symmetric
group are characterized by their cycle structures. Any two elements of the
symmetric group with the same cycle structure are conjugate and any two
conjugates have the same cycle structure (see, for example, [CR62]). Thus,
we can specify a conjugacy class in the symmetric group by giving a partition
which specifies a cycle structure. In general, all elements of a single conjugacy
class in a permutation group have the same cycle structures although two
elements of a permutation group may have the same cycle structure without
being conjugate. For example, in the group G = ((1,2),(3,4)) acting on
Q= {1,2,3,4}, the elements (1,2) and (3,4) have the same cycle structure,

18

A =(2,1,1), but are not conjugate.

2.2.3 Representations and Characters

There is much that can be said about representations of groups. We merely
touch on a few of the theorems that are most useful to us. There aré many
texts on the subject and a large proportion of the introductory group theory
texts contain several chapters on representation theory. The reader is referred
to [KeoT75], [FH62], and [Ser77] for general treatments of the theory of matrix
representations. For the representation theory of the symmetric group, see

[JK81] and [dBR61]. [Led87] is a good introduction to character theory.

“ Definition 4 A representation T of a group G is a homomorphism 7" : G —
H. Since T is a homomorphism, there must be a binary operation defined
on H such that

T@)T(@y)=T(xy) e H

forallz,yc G. W

Representations are most useful when they are homomorphisms from an
abstract group to a less abstract structure. This allows one to investigate
an abstract group by examining a more easily understandable structure.
In addition, using such concrete representations, one can specify a group
considerably more succinctly than would otherwise be possible.

The isomorphism between our example group £ and the symmetric group
S3 is a representation. The group F is abstract. The group Ss is a set of
relatively less abstract objects, namely permutations. This type of repre-
sentation gave us a straightforward characterization of the conjugacy classes

of the symmetric group. Whenever the codomain of a representation is a

19

set of permutations, we call the representation a permutation representation.
Also, whenever a representation is injective, we say that the representation
is faithful.

Let K be a field. Let GL(n, K) be the group of invertible n X n matrices

over K.

Definition 5 A matriz representation of dimension (or degree) n ovet K is

a representation T': G — GL(n,K) of G. W

Example 2.2.9: Matrix Representations of S3

We give three representations over C of S;3. The first repre-
sentation is the trivial representation. All of the elements of S
are taken to the 1 by 1 identity matrix. For technical reasons
(see [dBR61]), we call this representation Ay and define it as
follows: Ag)(m) o [1]. .

The second representation that we will consider is called the
alternating representation. The elements of the group are taken
either to the 1 by 1 identity matrix or to the matrix [—1] depend-
ing on whether the permutations are even or odd. We call this
representation A 1,1y and define it as follows:

Asrn(n) def [1] if 7 is even
: | [-1] otherwise.
The third representation is more interesting. We call it A ;)

and define it with the table shown in figure 2.6. W

€ Sy A(2,1) (7!')
10
OIVIC) (0 1)
~1 3
(1,2,3) 5
~1 _¥3
(1,3,2) s
2 T2
oes | | i)
D
£ |
WLy || L7
1 0
(1,2)(3) ()
0 -1

Figure 2.6: A Matrix Representation of .S;

20

21

The tensor product C = A ® B of two square matrices A and B, with
dimensions m and n respectively, is obtained by replacing each entry in A

with the product of that entry and the matrix B to get the mn x mn matrix

C = A®B
auB apB -+ ainB
anB apB - amB
amB ameB -+ ammB
where A has (i,§)™ entry a;; for 1 < 4,5 < m.

The tensor product of two matrix representations A; of degree m and
Ay of degree n of a group G is th;a matrix representation of degree mn
of G in which each element £ € G is represented by the tensor product
A)(x) ® Ax(z). Since for m X m matrices 4 and C and n X n matrices B
and D, (A® B)(C ® D) = (AC) ® (BD), A = A; ® 4, is a indeed matrix
representation.

A representation Ty of a subgroup H < G induces a representation T T G
of G. Since we do not make explicit use of the construction, it is not included
here. For more information on induced representations see [Ser77] or [FH62).

Suppose A(zx) is a representation of G over K and T is a nonsingular
matrix (of the same degree) with coefficients in K. Then B(z) = T 'A(z)T
is also a representation of G. We say that A and B are equivalent over K
and write A ~ B. _ '

A matrix representation A(x) is reducible over K if there exists a non—

singular matrix T" over K such that

C(z)

= TA(z)T! =
B(z) = TA()T (E(x) D)

), for all z € G.

22

In the above, C(z) and D(x) are both matrix representations of G over K.

Theorem 1 (Maschke) Let G be ¢ finite group of order g, and let K be
a field whose characteristic is either zero or has no common factors with g.

Suppose A(x) is a matriz representation of G over K such that:

A(z) ~ Cx) O
E(z) D(z)
Then
A(m)N(C‘(a)) 0)..
0 D(x)

A proof is given in [CR62].

The fields we are concerned with are the complex field and finite exten-
sions of the rationals. All of these have characteristic zero, so that Maschke’s
theorem (theorem 1) is applicable.

A representation is said to be irreducible when it is not reducible. If A
is a representation of a group G over a field K, and K is a subfield of a
field L, then A can also be considered as a matrix representation over L.
A representation over a subfield of the complex numbers C is said to be
absolutely irreducible when it is an irreducible representation over C.

Equivalent representations are said to belong to the same representation
class. For any finite group, there are as many absolutely irreducible rep-
resentation classes as there are conjugacy classes (see [CR62]). This is an
upper bound on the number of irreducible representation classes over smaller
fields. When the upper bound is met, the field is called a splitting field for
the group.

The above implies that, since there is a one to one correspondence be-

tween partitions of n and the conjugacy classes in S,, there must also be a

23

one to one correspondence between the absolutely irreducible representation
classes of S, and the partitions of n. There is a natural correspondence be-
tween the partitions of n and the absolutely irreducible representations of S,
which is part of the “special” representatic.)n theory of the symmetric group.
The reader is referred to [dBR61] for more information.

The representations given for S; in the example above are absolutely
irreducible representations. The names we gave the representations reflect
the natural correspondence between absolutely irreducible representations of

S, and partitions.

Definition 6 The character of a group G with respect to a representation

A of dimension n is the function
n
o(z) = Trace(A(z)) = D aii(z). W
i=1
The character has two important properties:
1 Equivalent representations have the same character.
2 If g and h are conjugates in G then ¢(g) = ¢(h) for any character ¢.

Thus, it makes sense to write characters both as functions of the elements of
a group and as functions of the conjugacy classes of a group.

We say that a character is (absolutely) irreducible if it is the character
of an (absolutely) irreducible representation. When a character is not irre-
ducible, we say that it is a compound character. Compound characters can
be expressed as linear combinations of irreducible characters. The values of
the absolutely irreducible characters for a group with m conjugacy classes
can be tabulated in an m x m table. Unless otherwise specified, when we
talk about the characters of a group, we mean the absolutely irreducible

characters.

24

Conjugacy Class (1,1,1) | (2,1) | (3)
Character in A 1 1 1
Character in A) 2 | 0 |1
Character in Aq 1,1 1 -1 1

Figure 2.7: The Character Table for S3

Example 2.2.10: The Character Table for S;

We can read the characters directly from the absolutely irre-
ducible representations of S; given in the example above. The

results are shown in the figure 2.7. B

2.2.4 Character Relations

A more detailed examination of group characters yields some elegant rela-
tions among the characters of any group. Aside from being pretty, they can
be used to generate the character tables of some very small groups. For
example, they are used to compute the character tables of the groups Ss,
Ay, and S, (the symmetric group on three points, and the alternating and
symmetric groups on four points) in [CR62]. We will have to use some addi-
tional facts in order to compute character tables for larger groups but these
relations will be of use nonetheless.

Let G be a finite group with n elements and k conjugacy classes Cj,
Cs,. .., Ck. Let h; be the number of elements of the conjugacy class C; and
let x,...,x™ be the distinct absolutely irreducible characters of G. We

denote the dimension of an absolutely irreducible matrix representation of G

25

with character x® by z;. Finally, we use the symbol * on subscripts to refer

to the conjugacy class containing the inverses of a given conjugacy class.

That is, Cp = {97! : g € C;}. We may now write down the orthogonality
relations for group characters
) , @(R) - '
T hg(g) = X g (23)
geG i
S xx g =n-b5 (2-4)
geCG
SO0 _
Zh X\ xiw =mn- 8 (2.5)
I=1
=00
ZXz Xy = . 5]‘ (26)

forheG,1<i,7<kand for 6,-3- the Kronecker delta.
For proofs of these relations see [CR62] or [Led87).

2.3 Background in Complexity Theory

We quickly and informally describe some aspects of abstract complexity the-
ory and then present a few known hard problems. Those not already confi-
dent with this material are encouraged to consult [GJ79] and [HU79]. Fur-
ther information is contained in the first three of the chapters in the [vL90],
namely [vEB90], [Joh90], and [Sei90]. These articles are extremely useful, in
part, because of their extensive bibliographies.

We show that Garey and Johnson’s proof of the N P-hardness of the
decision problem 4-PARTITION can be adapted to prove #P-hardness
for the corresponding enumeration problem. While this is neither surprising

nor difficult, we are unaware of the result appearing elsewhere.

26

For the most part, we follow the notation of [HU79]. Deviations from

this notation are noted.

2.3.1 Complexity Classes, Hardness, and Complete-

ness

Informally, the complexity class P is the set of all decision problems with
deterministic polynomial time solutions. The set P has been defined to
formally capture the notion of the set of tractable problems. The class NP
is the set of all decision problems whose positive instances can be verified in
polynomial time and clearly contains P. It is unknown whether the classes
P and NP are equal but it is widely conjectured that they are not.

The class PP is also important. It may be roughly defined as the set
of all decision problems with probabilistic polynomial time solutions. The
only bound on the probability of error is that it must be strictly less than 1.
NP is contained in PP and it is widely conjectﬁred that the containment is

strict. In summary, we have
PCNPCPP

Clearly, P # PP is a weaker assumption than P # NP.

Definitions of P, NP, and PP can be found in [Joh90] and [HU79]. For
more detailed information on the relationships between P, NP, and PP,
see [Joh90]. _

We say t.hat a decision problem A is many-one reducible to another de-
cision problem B if there exists a function M which maps instances of A to
instances of B such that, for a an instance of A, M (a) is a positive instance

of B if and only if a is a positive instance of A. Other kinds of reducibilities,

27

such as oracle reducibility, appear in the literature. We will be concerned
only with many—one reducibility and thus will omit the modifier ‘many-one’
in further discussions. If the function M can be implemented in polynomial
time, we say that M is a polynomial time reduction from A to B so that
A is polynomial time reducible to B. The classes P, NP, and PP have
the important property that they are closed with respect to polynomial time
reducibility.

Nondeterministic and probabilistic machines can be thought of as having
a computation tree rather than a computation path. That is, at any given
stage in a computation, nondeterminism arises when there are more than one
possible next steps. Thus, rather than proceeding through a series of ma-
chine configurations, making a single path, a nondeterministic'compu’gation
by a given machine on a given input is described by a set of computation
paths. Since these paths all start out the same, it is more compact and
more illuminating to consider this set as a tree. By allowing the machines to
consider the best of these paths or all of the paths at once, we (likely) add
power to the machine.

The term hard is applied to a problem, a complexity class, and a type
of reducibility when it has been shown that all problems in the complexity
class can be reduced to the problem using the specified type of reducibility.
Together with the fact that P is closed with respect to polynomial time
reducibility, this implies that if a problem known to be hard for NP or for
PP isin P, then P = NP or P = PP respectively.

We say that a problem is NP-hard when it is hard for NP with respect
to polynomial time reducibility. Similarly, we say that a problem is PP-hard
when it is hard for PP with respect to polynomial time reducibility. If, in

addition to being hard for a complexity class, a problem is a member of that

28

class, we say that it is complete for that class. For NP and PP, this is
abbreviated to NP-complete and PP-complete respectively.

Since we do not believe that P = N P, classifying a problem as NP-hard
or NP-complete is highly indicative that the problem is intractable. Since
PP contains NP, showing PP-hardness or PP-completeness for a problem
is even stronger evidence for the intractability of a problem.

We have used polynomial-time many-one reductions to define NP -and
PP-hardness. Some sources define NP-hardness with respect to a stricter
form of reducibility, “log-space reducibility”. This distinction is not impor-
tant for our results.

The class #P is the set of all enumeration problems that can be solved in
polynomial time by a counting Turing machine. A counting Turing machine
is conceptually very similar to a probabilistic Turing machine or a nonde-
terministic Turing machine. The significant difference is that rather than
returning a ‘yes’ or a ‘no’ based on.the existence of an accepting computa-
tion (as for a nondeterministic Turing machine) or a ‘yes’ or a ‘no’ based
on the ratio of accepting computations to all computations (as for a proba-
bilistic Turing machine), a counting Turing machine returns the number of
accepting coiﬁputations. Since #P contains enumeration problems rather
than decision problems, it includes the class F'P of all enumeration problems
that are computable by a deterministic Turing machine in polynomial time.
It is widely believed, but unproved, that F'P is a proper subset of #P —
and it has been shown that FP = #P would imply P = NP.

Since many-one reductions apply to decision problems, we need another
kind of reduction in order to prove results about enumeration problems.
We say that a function M from instances of an enumeration problem A to

instances of an enumeration problem B is a polynomial time parsimonious

29

reduction from A to B if M is computable in deterministic polynomial time
and there is a function f : N — N that is computable by a deterministic
Turing machine using time polynomial in the length of its input and in the
length of the instance a of A such that, for any instance a of A, if b = M(a)
is the corresponding instance of B and m is the output of B on instance b,
then f(m) is the output of A on instance a.

An enumeration problem A is hard for #P, or “#P-hard”, if there is a
polynomial time parsimonious reduction from every enumeration problem in
#P to A'and A is #P-complete if A is #P-hard and belongs to #P.

Our definition of parsimonious polynomial time reduction is weaker (that
is, less restrictive) than that found in the literature which requires that the
output for the original instance a of A and for the derived instance b of B
be identical. The reduction we call a “polynomial time parsimonious reduc-
tion” is frequently called a “polynomial time weakly parsimonious reduction.”
Since the relation “polynomial time weakly parsimonious reducibility” is a
transitive relation on enumeration problems and since FP is closed with
respect to weakly parsimonious reductions, membership of a #P-hard or
P-complete problem in FP implies that FP = #P. Thus, #P-hardness
or completeness is still very good evidence for the intractability of a prob-
lem even with the weaker notion of reduction. Since we only use weakly
parsimonious reductions, we omit the modifier “weakly” in all that follows.

Some problems involve numerical inputs. Normally, we assume that in-
puts are encoded efficiently. That is, numbers are represented using a place
value system. When the structure of a problem is such that the problem
remains complete or hard even when the numbers are represented in a tally
system, we say those problems are strongly complete or hard. This is con-

ventionally said of NP hard problems. We will also use this terminology for

30

PP and #P hard problems.

2.3.2 Computing with Algebraic Numbers

We will be concerned with computations involving the complex numbers.
Since most complex numbers do not have finite representations, some com-
ment is required.

Whenever we are attempting to compute a value in C, we will always be
concerned with problems with both finite specifications and unique solutions.
Thus, the numbers are finitely represented by the specification of the prob-
lem. However, such a representation is of no use to us. It would be Highly
desirable if we could efficiently perform operations such as multiplication,
addition, and zero testing on the representations of the numbers.

In the cases that we are concerned with, this can be done by working
with finite algebraic extensions of the rationals. First, we observe that such
fields are subfields of the complex numbers. Furthermore, each can be ob-
tained by adjoining a single algebraic number (say, @) to Q. The generator
o can be represented by its minimal polynomial over @ and by numerical
approximation (to distinguish it from the other roots of this polynomial).
This information identifies the field Q[a]. Second, any element 3 of a field
Q[a] can be represented by a polynomial f € Q[z] with rational coefficients
— namely, the polynomial f (with degree less than that of the minimal poly-
nomial of a) such that 8 = f(a). Arithmetic operations over the field can
be implemented in terms of operations on the polynomials used to represent

elements of the field. For a detailed discussion see [Loo83].

31

2.3.3 Problems

The problems described below are used to prove hardness or efficiency results

later in the thesis.

2.3.3.1 4-PARTITION

Garey and Johnson [GJ79] show that the problem 4-PARTITION is strongly
N P-complete. Their transformation is parsimonious and so we immediately
have # P-completeness for the corresponding enumeration problem and PP-
completeness for the threshold problem. We follow their notation for 4-
PARTITION, use their transformation, and extend their proof of correctness
to show that the transformation is parsimonious.

The N P-completeness proof in Gary and Johnson proceeds by reduc-
ing 3-Dimensional Matching to 4-PARTITION. We give a definition of 3-

Dimensional Matching below:

Decision Problem 1: 3DM
3-Dimensional Matching
Input:
An integer g represented in unary and
aset M CW x X xY, where W, X and Y are disjoint sets,
each with ¢ elements.
Question:
Does M contain a matching, that is, a subset M’ C M such
that |M'| = ¢ and no two elements of M’ agree in any

coordinate? W

The problem 3DM is shown to be NP-complete in Gary and Johnson.

Also, it is shown that the corresponding enumeration problem #3DM and

32

the corresponding threshold problem T—3DM are #P and PP-complete
in [Sim77] and [Gal74]. Although not included in the literature’s definition
of the problem, our inclusion of ¢ represented in unary does not affect the
cited results. In order for there to be a matching, M must contain at least
g elements and thus, inclusion of ¢ represented in unary does not cause a
significant increase of the size of the input for the hard instances of the
problem. We include ¢ in the input to simplify statements made later.
We give a definition of 4-PARTITION below: '

Decision Problem 2: 4-PARTITION
Strongly NP-complete problem
Input:
m: an integer represented in unary,
A: a finite set with 4m elements,
B: a positive integer bound represented in unary,
s: a function from A to the positive integers such that if
a € A then B/5 < s(a) < B/3 and such that
Yaea s(a) = mB.
Question:
Is there a valid 4-partition of A? That is, can A be
partitioned into m disjoint sets S}, S, ..., Sn

such that for 1 <1< m: Tyes 8(@) =B 7 B

Again, including m represented in unary in the input does not change the
complexity of the problem since A has more than m elements. The fact that
B can be represented in unary without affecting the N P—completeness of the
problem is shown in [GJ79]. The demonstration of this fact is a significant

portion of the proof that 4-PARTITION is strongly N P—complete.

33

In order to prove that 4-PARTITION is strongly N P-complete, Gary
and Johnson give a transformation from 3DM to 4-PARTITION (see
bages 97 to 99 of [GJT79]). They prove that the transformation can be done
in polynomial time and that it yields an instance of 4~PARTITION which
has element sizes that are bounded by a polynomial in the size of the original
instance of 3DM. We describe the relevant aspects of their proof in order
to show that their transformation is parsimonious, and provide a simple
example.

The transformation takes an instance W = {wy, ws,...,w,}, X = {21,
Xoy.. oy Zat, Y = {y1,Y2,...,Yq} and M C W x X xY of 3DM to an instance
(A, B, s) of A-PARTITION with 4|M]| elements. The set A contains one
member for each element of each of the triples in M. These are indexed by
their membership in W, X, or Y and by their position within whichever set
they belong to. Thus, the elements of the set A are denoted w;ll], z;[l], and
yk[l] where i, j, and k range from 1 to ¢ and for each particular i, j, or k,
the variable | ranges from 1 to the number N(z) of times that the element
zof W, X, or Y is contained in a triple in M. Thus, by construction, there
are exactly |M| elements of A with the form w;[l] (with 1 < ¢ < ¢ and
1 <1< N(w;)), [M| with the form z;[l] (with1 <j < gand 1 <1< N(z;)),
and |M| with the form yg[l] (with 1 < k < qgand 1 <[< N(yx)). Finally,
the set A includes another |[M| elements — denoted uy,us, . . . , ujm|-

The elements w;[1], z;]1], and y[1] are called actual elements where i, j,
and k have the same ranges as before. All of the other elements of A 'except
U1, Uz, - . ., Uy are called dummy elements.

Gary and Johnson’s construction includes formulas (on page 97) defining
the sizes for the elements of A. The sizes of the elements depend on (and

are computable deterministically in polynomial time from) the indices of the

34

corresponding elements in the set W, X, or Y and on which set they belong
to. The actual elements all have different sizes. Each of the dummy elements
for a particular element of W, X, or Y has the same size, and the size is
different for each ‘different element of W, X, or Y. Furthermore, none of
the sizes of the actual elements is the same as any of the sizes of any of the
dummy elements.

Gary and Johnson give the following construction of a 4-partition from
a matching. Suppose that M’ C M is a matching. The corresponding 4-
partition is made up of | M| 4-sets, each containing a w;, a w;[*], an z;[], and
a yYi[], where (w;,zj,yx) =my € M. If 1 <1 < g and m; € M’, we group
with the actual elements w;[1], z;[1], and yk[1]. If m; € M — M', we group
w; with dummy elements corresponding to w;, ¢;, and y;. Gary and J ohnson
show that for every matching M’ C M, the above construction gives a valid
4-partition of A. They also give a construction for a matching M’ C M from
a valid 4-partition of A, establishing that 4—partitions corresponding to the
same matching M’ C M can only differ by having dummy elements for the
same element of W U X UY exchanged.

We illustrate the transformation below.

Example 2.3.11: Transforming an instance of 3DM to an instance

of 4-PARTITION

Let ¢ = 2, W = {w,we}, X = {z1,2}, Y = {y, 32},
and M = {(w1, 21, 11), (w1, Z1,Y2), (W2, Z2,91)} be an instance of
3DM.

We construct an instance (m, 4, B, s) of 4—PARTITION as

follows. First, we count the number of occurrences of the elements

35

of W, X, and Y in the ordered triples of M, summarized below:

Nw) =2 N(w)=1

N(z;)=2 N(z)=1

N(y)=2 N(yp)=1
Now, letting r = 32¢ = 64 and m = 12, we define the size function
s (and at the same time actual and dummy elements of the set

A) for each of the elements of WU X UY as follows:

s(un[1]) = 10r* + 1r + 1 = 167772225
s(wa[1]) = 1074 + 27 + 1 = 167772289
s(wi[2]) = 117" + 1r + 1 = 184549441
s(z1[1]) = 10r* + 1r% + 2 = 167776258
s(x2f1]) = 10r* + 2r% + 2 = 167780354
s(@1[2]) = 1174 + 112 + 2 = 184553474
s(i[1]) = 107 + 1% + 4 = 168034308
s(ya[1]) = 10r* + 2r3 + 4 = 168206452
s(1[2]) = 8r¢ + 1r° + 4 = 134479876

For-each of the triples of M, we define the size function (and the
rest of the elements of A) as follows:

s(uy) = 10r* — 1r® — 172 — 171 + 8 = 167505864

s(ug) = 107 — 2r3 — 172 — 17! + 8 = 167243720

s(ug) = 10r* — 17® — 202 — 27! 4 8 = 167501704
Finally, we set B = 40r*+15 = 671088655 and the transformation

is complete.
We observe that the only matching in M is M’ = {(w;, 1, y2),
(we, x2,y1)} and the only valid 4-partition of (m, 4, B, s) is:

36

St = {u1, w1 [2], z:[2], 11[2]}
Sy = {ug, w1 (1}, 2:1[1], 92[1]}
Sy = {us, we[1], z2[1], 11 (1]}

up to interchange of the indices of the sets .S;. W

We call two valid 4-partitions of A equivalent if one can be obtained
from the other by interchange of elements with the same size. This defines
an equivalence relation on the 4—partitions of A.

Recall that, by the definition of s, two elements of A have the same
size if and only if they are both dummy elements for the same element in
WUXUY. Thus, Gary and Johnson’s construction specifies a bijection
between the equivalence classes of valid 4-partitions of A and the matchings
for the instance of 3DM.

We now show that these equivalence classes of 4—partitions all have the
same size and that this size is easy to compute. Consider the 4-partitions in
the equivalence class corresponding to some matching M’ C M. The number
of ways that the N(z) — 1 dummy elements corresponding to a member z in
W UXUY can be arranged in 4-sets corresponding to elements of M \ M’
with 2z as an entry is (N (2) — 1)!. The dummy elements corresponding to
different elements of W U X UY can be placed independently. Thus the
number of ways that we can place all of the dummy elements is exactly

IT IT I ((V(ws) = DI () — DIV (ge) = D). (2.7)

1<i<q 1<5<q 1<k<q
Since the sizes of the actual elements are all distinct, this is the size of the
equivalence class of 4—partitions of A corresponding to a matching M’. This

size does not depend on the matching that is chosen so the total number of

37

4-partitions in the constructed instance is
K- 11 II II ((V(w:) - DUN(=;) = DN (ge) — 1Y (2.8)
1<i<q 1<5<q 1<k<g
where K is the number of 3-dimensional matchings M.
The values N(z) can be determined in polynomial time from the de-
scription of M. Furthermore, this description has length at least linear in
! (N(w;) + N(z;) + N(y:)), so the values (N(z) — 1)! can be computed
efficiently as well. We can find the product given in equation (2.7) in poly-
nomial time and then, in time polynomial in the size of M, find K using the
product just computed, equation (2.8), and the number of valid 4-partitions
in the constructed instance of 4-PARTITION.
We now give explicit definitions of the threshold and enumeration prob-
lems associated with 4—-PARTITION so that we may summarize our results

in a single theorem.

Decision Problem 3: T-4-PARTITION
Threshold 4-PARTITION
Input:
m: an integer represented in unary,
A: a finite set with 4m elements,
B: a positive integer bound represented in unary,
s: a function from A to the positive integers such that if
" a€Athen B/5 < s(a) < B/3 and such that
Yaea 8(a) =mB,
z: a threshold value represented in binary.
Question:

Do there exist strictly more than z valid 4-partitions of A7 W

38

Number Problem 4: #4-PARTITION
4-PARTITION Enumeration
Input:
m: an integer represented in unary,
A: a finite set with 4m elements,
B: a positive integer bound represented in unary,
s: a function from A to the positive integers such that if
a € A then B/5 < s(a) < B/3 and such that
Yeeas(a) = mB.
Output:
The number of valid 4—partitions of A. W

Note that the values of the function s can be represented in unary with
no significant increase in the input size since m and B are both represented

in unary.

Theorem 2 The decision problem T-4-PARTITION is PP-complete.
The enumeration problem #4—PARTITION is #P-complete. M

Proof: It is easy to adapt Gary and Johnson’s proof of membership of
4-PARTITION in NP in order to show that T-4-PARTITION be-
longs to PP and #4-PARTITION belongs to #P. We have demon-
strated that Gary and Johnson’s transformation (establishing N P-hardness
of 4-PARTITION) is parsimonious; this implies PP-hardness of T—4—
PARTITION and #P-hardness of #4-PARTITION. B

2.3.3.2 Boolean Permanent

The problem BOOLEAN PERMANENT is shown to be #P-complete
in [Val79]. We formally define the problem below.

39

Number Problem 5: BOOLEAN PERMANENT
P-complete problem

Input:
An n x n matrix M of 0’s and 1I’s.

Output:
The value of the permanent of M, given by:

Perm(M) = > [[Miow)

g€Sy t=1

where, as shown, the sum runs over all n! permutations o of the n

integers {1,2,...,n}. B

40

Chapter 3

Characters of Finite Groups

There are several sensible ways that a finite group may be specified. The
least succinct is to give the complete multiplication table, or Cayley table,
for the group. In this chapter, we consider the computational complexity of
finding the absolutely irreducible character table for a finite group that is
represented by a Cayley table.

Burnside’s algorithm is one known method (of several) for computation
of a character table from a Cayley table. It is efficient — see [Ebe89] for
an analysis. We summarize the algorithm and its analysis. Then, we show
that a significant part of Burnside’s algorithm can be inverted efliciently
using a well known theorem — see [CR81]. In particular, we show that the
structure constants used by the algorithm can be found efficiently from an
absolutely irreducible character table. This is motivated by some work by
Schneider (see for example [Sch90]) on finding characters from incomplete

sets of structure constants.

41

3.1 Computing Characters from Cayley Ta-
bles

The problem of finding the character table of a finite group given its Cayley
table has a long history and has been the subject of extensive work. For
numerous examples, see the surveys [Fel78] and [Neu83].

There has been considerable recent interest in Dixon’s modification to
Burnside’s algorithm ([Dix67]). In particular, Schneider ([Sch90]) has ex-
plored the removal of wasted computation in Dixon’s algorithm caused by
redundancies in the structure constants. In the next section, we demonstrate
that the structure constants are entirely recoverable from the character table.
Although this is only a minor extension of the work of Burnside, Dixon, and
Schneider, it is important in that it shows that the k* structure constants
contain exactly the same amount of information as the k x k absolutely ir-
reducible character table. Further, it shows that these pieces of information
are equivalent in terms of polynomial time computations.

In order to prove the result in the next section, we now describe Burn-
side’s algorithm. The algorithm is derived in, among cther places, [CR62].
Although the details of the correctness proof are interesting, they are rather
long and widely available. Thus, a proof is not included here. The algorithm
(and two modifications) are analyzed in [Ebe89)].

To begin with, let us formally define the problem under consideration.

Problem 6: x from X
Computation of Character Table from Cayley Table
Input:
A multiplication table for a finite group G = {91,92,---,9n}-

42

Output:
The character table for G overC. W .

Intuitively, Burnside’s algorithm works as follows. First, we compute a
set of values expressing connections between conjugacy classes — the class
matrices of the group. It can be shown using the character orthogonality
relations given in section 2.2.4 that the components of the common eigen-
vectors of the class matrices are directly related to the characters. After
computing these common eigenvectors, only a minor amount of rearranging
and arithmetic remains in order to obtain the characters.

It is worth noting that Burnside’s algorithm and Dixon’s modification
can be used to compute character tables over some fields other than the
complex numbers. In order to simplify matters, we will only be concernedl
with characters over C.

We now review our notation and state the algorithm formally. Let G be
a finite group with order n. As in section 2.2.4, we denote the k conjugacy
classes of G by Ci,...C}, with a convention that C; = {Is}. Aside from
this convention, ordering of the conjugacy classes is arbitrary. We use the
superscript * on the indices of the conjugacy classes to refer to the conjugacy
class containing the inverses of a given conjugacy class. That is, C;» = {g™!:
g € Ci}.

Let h; be the number of elements of the conjugacy class C; and let x(, .. .,
x%) be the distinct absolutely irreducible characters of G. We use subscripts
to denote the value of the character for members of a particular conjugacy
class. That is, Xg-i) is the value of the ' irreducible character at an element
of the conjugacy class C;. In a fashion similar to our notation for conju-

gacy classes, we adopt the convention that x(!) be the character of the trivial

43

representation (so Xg-l) =1 for 1 £ j £ k) and that the order of the other
representations is arbitrary. We denote the dimension of an absolutely ir-
reducible matrix representation of G with character x by 2. Note that
2= X&") since I € C}.

For 1 < r,s,t < k, the structure constant ¢, is the number of solutions
(z,y) to the equation zy = z with z € C,,y € Cs, for some fixed 2 € C;.
The number of solutions is easily shown to be independent of the particular
z € C; that is picked. Define V, to be the matrix whose (r,t)" entry is c .
The matrices Vi, Va,...V, are called the class matrices.

It can be shown, using the character orthogonality relations (given in
section 2.2.4), that if

.)
w,g’):-’-lfz&’——forlgi,jSk
]

then the wzgj)s are both eigenvalues and components of the eigenvectors of

the class matrices. In particular,

[L0] [L0]
V- w.g) = w,gj) . w%j) for1<4,7<k.
0 | a
It can be shown using linear independence of the characters ¥, x®, ..., x®

that these relations uniquely determine the values w](-i). The character values
xg-i) can then be recovered from wg-i) using the orthogonality relations and the
fact that xgl) =1 for 1 <4 < k. This method for computing character tables

is stated in more detail below.

44

Algorithm 1: Burnside’s Character Algorithm
Input:
A multiplication table for a finite group G = {g1,92,.-,9n}
Output:
The character table for G over C.
Step 1:

Identify a representative x of each conjugacy class C; in G and find
the size of the conjugacy class containing that element. Call the
sizes of the k conjugacy classes hy, ... hg. The order is
not important other than that C; = {1}.

Step 2:

For each triple (r,s,t) where 1 < 7,5, < k, count the number ¢,
of solutions of xy = 2 such that x € C;, y € C, for any
fixed z € G;.

Step 3:

For each 7 where 1 < i < k, find the index ¢* of the conjugacy

class C;» containing the inverses of the elements of the class C;.
Step 4:

For each s where 1 < s <k, let V; € My (C) be the clags
matrix given by (Vy)re = ¢pge for 1 <7t < k.

Find the eigenvalues and bases for the eigenspaces of each of

. the matrices V;. Find bases

wgl) LU§2) wgk)
wél) wé?) wék)
wy = y Wp = ’ y W =

45

for the intersections of the eigenspaces, such that these are
common eigenvectors of Vi,..., Vi, span My, ;(C), and
each has first component 1.
Step b:
For 1 < i < k, compute the integer

2 n
;= —_————r
Tt)

Step 6:
For each pair (r,s) such that 1 < r,s < k, the (r, s)' entry

in the character table of G is given by:

) _ 2 wgr)
s hs

where w({" is the r** component of the vector w;.
Step 7:
Output the values {7 for 1 <r,s< k. W

Since G is finite, the elements of its character table are algebraic numbers
in Q[77] where 7 is a k' primitive root of unity and k divides the order of G.
See section 2.3.2 for a discussion of the representation of these numbers.

The fact that this algorithm can be implemented in polynomial time was

used in [Ebe89] to prove the following theorem.

Theorem 3 x from x € FP. R

46

3.2 Inverting Part of Burnside’s Algorithm

In this section, we observe that most of Burnside’s algorithm (described in
section 3.1) is invertible. More specifically, the “structure constants” found
in step 2 of Burnside’s algorithm can be found efficiently from a character
table.

As before, we restrict ourselves to talking about the character table of a
finite group G over C. We carry over the notation of the last section. That
is, we write G for a finite group of order n. The k conjugacy classes in G
are written C;, where i ranges from 1 to k, and their sizes are written h;.
Once again, C; = {Ig}. By ¢* we mean the index of the class C; containing
the inverses of the elements of the class C;. The value z; is the dimension
of the i*" irreducible representation. Finally, xg-i) is value of the character of
the representation class i at the conjugacy class C;. Columns in character
tables correspond to conjugacy classes in the group and rows correspond to

the equivalence classes of absolutely irreducible representations.

We now define a new problem.

Problem T7: ¢, from x
Structure Constants from Character Table
Input:
An absolutely irreducible character table x{*) of a finite group G.
Output:
A “table” of structure constants c,s for the group G where
Cret 18 the number of solutions to xy = z for any fixed 2
in the conjugacy class with index ¢ (denoted C;) and z and

y are in C, and C; respectively. W

47

This problem can be solved in polynomial time by using a few identities
to find the size n of the group, the sizes h; of the conjugacy classes, the
values ¢* of the indexes of the conjugacy classes C;+ containing the inverses
of the members of the class C;, and the values z; of the dimensions of the
absolutely irreducible representations of G, and then using the formula

(m)

hehs Z XX x (3.1)
Zm '

Crst =

m=1
proved on page 216 of [CR81] to invert the last stages of Burnside’s algorithm.

We begin by observing that we can locate the column in x corresponding
to the class consisting of only the identity element, since it will be the only
column with only positive integers as entries: this column must have posi-
tive integer entries since any matrix representation with dimension z; must
represent the identity element of G by the z; X 2z; identity matrix. Consider

the fourth orthogonality relation (equation (2.6))

D n ’
EXS)XE) * 6-]-

If there is a second column with index j* in the character table whose entries

D"

are all positive then the value of the left hand side of the orthogonality
relation is positive when ¢ and j* are the indexes of these columns. Since
C; is the conjugacy class containing the identity element, i* = i. So, if ¢
and j* are distinct then ¢ and j are distinct. Thus, the right hand side of
the relation is zero when ¢ # j. This is a contradiction, so there are no
other columns whose-entries are all positive. Therefore, since the “identity”
column is easily locatable, we can assume without loss of generality that it
is the first column Y, in the character table.

Since degree 2; of the i*® irreducible character equals x(li),for 1<i<k,

we cah now directly read these degrees from the character table.

438

We can now use the identity n = ¥F, 2 to find n. (The identity is
simply equation (2.6) with ¢ =j =1.)

We use the fourth orthogonality relation (equation (2.6), again), to find
the values j* by computing the sum ¥F x,(l) th‘) for pairs of rows 7 and j*
and observing that j = i if and only if the sum is non-zero. At the same
time, we can find the values of the h;’s using n and the non-zero sums above.

We now have all of the values on the right hand side of equation (3.1)
and thus can use it to evaluate the structure constants c,s.

The above is summarized in the algorithm below.

Algorithm 2: Inversion of Burnside’s Character Algorithm
Input: _

A character table xg-i) (1 <4,7<k) for a finite group G.
Output:

The structure constants ¢ (1 < 7,8, < k) for G.
Step 1:

Identify the column in the character table corresponding to the
conjugacy class containing the identity element in the group
by finding a column with only positive integer entries. Call
this column y;.

Step 2:
Read the dimensions of the irreducible representation classes z;
fr_om the column located in step 1: z; = x&") for1 <i<k..
Step 3: |
Compute the size of the group, n = %, 22
Step 4:

For each 1 <4 < k, find the values ¢* and h; by computing sums

49

k
Xig=Sx%0 for1<j<k
=1

and setting ¢* = j and h; = n/X,; for the unique index J
such that the sum is nonzero.
Step 5:
Output the values ¢,,; found using equation (3.1):

h.hs zk: Xy)y ()
n Zm

Crat =

m=1

for1<rmst<k N
Theorem 4 ¢, from Yy € FP. |

Proof: Each of the steps of the above algorithm can be accomplished in
polynomial time. Steps 1 and 2 involve simply searching the input and
copying part of it. Step 3 is a sum over k values and step 4 involves at most
O(k?) sums over k values. Step 5 involves k* summations, each of which can
be done with"k -1 additions, 2(k — 1) multiplications, and k — 1 divisions.
Thus, we need no more than O(k?) field operations for the entire algorithm.
||

The inversion process cannot proceed any further. There are finite groups
which are non-isomorphic and have the same character table. For example,
the fourth dihedral group D4 and the quaternion group @ of order eight are
non-isomorphic and have the same character table.

It is interesting to consider the inversion problem for special classes of

groups. There are no known examples of non-isomorphic simple non-abelian

50

groups with the same character table (see [CR81]). It seems possible that
Cayley tables could be found from character tables of these groups or some
large subclass of these groups. This takes us well beyond the scope of this
thesis. We end the discussion on this topic by noting that since the size of
the multiplication table can be superpolynomial in the size of the character
table, the standard definitions of efficiency are not directly applicable to the
complete inversion problem.

Some comments on the analysis remain. We have counted arithmetic op-
erations rather than Boolean operations. Since our inputs are algebraic num-
bers, it is not immediately clear that only a polynomial number of Boolean
operations are needed. This subject is beyond the scope of this thesis. For
now, it will suffice to say that the proof that Burnside’s algorithm could be
implemented in polynomial time explicitly counted the number of Boolean
operations required (see [Ebe89]). Since we are dealing with the same alge-
braic numbers, our proof carries over. For more information on the complex-
ity of arithmetic for algebraic numbers see [Loo83].

The application of the theorem to Schneider’s strategy for computing
characters from an incomplete set of structure constants [Sch90] allows the
derivation of a lower bound on the number of structure constants that must
be used. That is, since the entire set of structure constants can be recovered
from the character table, one can only find the character table if one has
enough information to construct all of the structure constants. However, it
is still not clear how exactly the structure constants depend on one another.

As well, the inversion algorithms provides an efficient reduction from the
problem “given a specification of a finite group G (in some form), find the
structure constants for G” to the problem “given (the same) specification

of G, find the absolutely irreducible character table of G”. That is, finding

51

all of the structure constants of a group does not require substantially more

resources than finding the group’s character table.

52

Chapter 4

Characters of the Symmetric

Group

In this chapter, we examine two problems in the character theory of the
symmetric group. The hardness and completeness results (for computing in-
dividual characters of the symmetric group and for a generalization of com-
puting coefficients in the decomposition of the outer product of characters of
the symmetric group) in this chapter are new. The character and decompo-
sition algorithms are standard parts of the literature but the analysis is new.
The algorithm for counting lattice partitions is a straightforward application
of Kreweras’ Theorem. We are unaware of any previous publication of this
algorithm but it seems likely that the algorithm has been known for some
time.

For general groups, there is no known way to sensibly and succinctly
specify a particular class of absolutely irreducible representations and thus
we cannot formulate a good version of the problem of computing individual

entries in the character table of a general group. However, for the symmetric

53

groups, we can sensibly and succinctly specify both conjugacy classes and
classes of absolutely irreducible representations. Thus, we can formulate
computational problems about individual entries in the character table of
the symmetric group.

These problems are quite old. Frobenius gave a formula for the characters
and subsequent researchers have used the formula and related results to
produce correct algorithms for the problem. Littlewood and Richardson gave
a rule for finding the coefficients in the decomposition of the outer product
of characters of symmetric groups.

We formulate two numerical versions of the character problem. The first
is simply the problem of finding the character of a representation at a conju-
gacy class. For technical reasons connected with giving a good classification
of the complexity of the problem, we need to be able to work with positive
numbers. Thus, we define a second version of this problem where we find the
sum of the character and a sufficiently large number. We define a decision
problem by adding a threshold value to the above and asking if the character
is larger than the threshold.

We use a known algorithm to show that the second version of the nu-
merical problem is in #P and that the decision problem is in PP. We then
show that the counting problems are hard for #P and the decision problem
is hard for PP.

We have less success with the outer product problem. Again, we show
membership in #P and PP for number and decision versions of the problem.
We were unable to show hardness results for the problem. We do show that
a generalization of computing outer products is hard and we identify an

interesting class of easy instances of the problem.

54

4.1 Characters of the Symmetric Group

A variant of the Murnaghan-Nakayama rule for computing characters (fol-
lowing [Keo75)) is presented. There is a strong connection between the Frobe-
nius formula (see, for example, [Ham89]) and the Murnaghan—-Nakayama
rule. When the algorithm is recursive, it is called the Murnaghan-Nakayama'’
rule. Otherwise, it is an application of the Frobenius formula.

Correctness proofs of various formulations of the algorithm are contained
in [Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. Using the correctness of
this algorithm, we establish reductions from appropriate formulations of the
hard problem 4-PARTITION (see section 2.3.3) to the problem of finding
individual entries in the character table of the symmetric group. Finally,
we use the algorithm to show that the character problems can be solved
within certain resource constraints. These resource bounds, together with
the hardness results, imply completeness results.

The reader may recall (from Definition 3) that the symmetric group S,
is the group of all permutations of n objects and has size n!. The conjugacy
classes of S, are directly identifiable with the partitions of n (partitions are
described in section 2.2.2). The classes of irreducible representations of S,
(described in section 2.2.3) have a natural one-to—one correspondence with
the partitions of n. This is a consequence of the special representation theory
of the symmetric group. The description of the correspondence can be found
in [Ker91], [JK81], and [Sag91]. .

We will ;write A = [A1, Ag, ..., Ax] for a partition of n specifying a class
of irreducible representations of S; and u = [u, y2,...,m] for a partition
of n specifying a conjugacy class in S,. Further, we adopt as a convention

that the entries in the partitions are given in non-increasing order and only

55

positive entries are included in the specification of a partition.

We now have the capability to ask: ‘for the symmetric group Sy, what
is the value of the character of an irreducible representation given by A at a
conjugacy class u?’ Throughout this chapter, we will denote this value by
x* (). |

We formally define several problems related to the above question. The
first problem is a restatement of the question above. The inputs for each of

these problems are essentially the same.

Number Problem 8: #CSG

Individual Character of the Symmetric Group
Input:

n: expressed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,

u: a partition of n specifying a conjugacy class in S,,.
Output:

The value of the character of an irreducible representation

in X\ at the conjugacy class p: x*(u). M

Since the value x*(u) can be negative and we will be concerned with
computations on a counting Turing machine, we give a definition of the
same problem offset so that all values are positive and thus not trivially

uncomputablé in this model.

56

Number Problem 9: #CSG+

Sum of an Individual Character of the Symmetric Group and n"
Input:

n: expréssed in unary,

A: a partition of n specifying a class of equivalent irreducible

representations of S,

u: a partition of n specifying a conjugacy class in S,.
Output:

The value of sum of character of an irreducible representation

in X\ at the conjugacy class 4 and n™: x*u) +n" W

This variation of the problem allows us to give a good characterization

of the complexity of the problem.

Decision Problem 10: TCSG
Threshold for Individual Characters of the Symmetric Group
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
répresenta,tions of Sy,
u: a partition of n specifying a conjugacy class in S,.
z: an integer threshold value expressed in binary.
Question:
Is the value of the character of an irreducible representation
in A at the conjugacy class p greater than or equal to 7

That is, is x*(u) >z ? M

All of the above problems include an input of n in unary. This means

that the way that we express the numbers in the partitions is inconsequential.

57

We may express them in binary or unary without a significant change in the
input size. Furthermore, our hardness results hold with this padding of the
input and our membership results are not affected. Thus, the padding allows

us to state the results in the strongest possible manner.

4.1.1 A Graphical Version of the Murnaghan—Nakayama
Rule

The graphical version of the algorithm inspired the polynomial transforma-
tion given in section 4.1.3. Also, it is useful for visualizing the steps of the
hardness proof.

The extended diagram for a‘partition A= [A1, A2, ..., Ag] can be formally
defined as the set of points {(,5) € z2? such that 1 < j < A+ k —i}.

We draw the diagrams using the same indexing conventions as are used
with matrices. The first coordinate i designates the row and increases from
top to bottom. The second coordinate is for columns and increases from left
to right. Thus, the extended diagram corresponding to (3,2,1,1] is the set
of points:

{(1? 1)’ (1’ 2)’ (1’ 3)’ (1? 4)’ (1’ 5)’ (1’ 6)’ (2’]‘)’

(2,2),(2,3),(2,9),(3,1),(3,2), (4, 1)}

and is drawn:

[]

The first operation on extended diagrams that we will consider is the
removal of a cycle. We remove a cycle of length [from some row m of an

extended diagram by colouring in the rightmost boxes of the row rather than

58

erasing the boxes from the row. The advantage of this is that we can see
what operation we are performing on a single diagram.
Thus, the extended diagram for [3,2,1, 1] with a 2-cycle removed from

the second row is:

(4.1)

Further cycles can be removed from that row by colouring the appropriate
number of the rightmost uncoloured boxes. Whenever we remove a cycle
from an extended diagram, all of the boxes that we colour for that cycle
must be removed from only one row. |
The second operation is row transposition. This can be done to extended
diagrams that have had cycles removed. Transposing rows ¢, and i; can be
thought of as a simple exercise with scissors. Simply cut both rows from the
diagram and replace the rows in the diagram in opposite order. In terms of
the formal definition, this means replacing all occurrences of ¢; with i3 and
i, with 7; in the first (row) position of the elements of the extended diagram.
Thus, transposing the second and third rows of the diagram shown in 4.1

results in:

[1]
X[X]

(4.2)
A sequence of transpositions can be viewed as a permutation of the rows of a
diagram. This allows us to talk about the sign of a sequence of transpositions.

Bearing in mind that colouring boxes is shorthand for erasing boxes, we
say that two extended diagrams are equivalent if their uncoloured boxes are
in the same positions. From this point of view, the diagrams shown in 4.1

and 4.2 are equivalent.

59

There is one special diagram that we need. The k-staircase is the diagram
consisting of the points (i,5) € Z® such that 1 <i<kand1<j <k —i.

The 5-staircase looks like this.

The bottom row of the staircase is empty. That is, the widths of the rows
are (4,3,2,1,0).
Now that we have established the notation, we proceed with the algo-

rithm.

Algorithm 3: The Graphical Murnaghan-Nakayama Rule
Input: '
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of S;,
u: a partition of n specifying a conjugacy class in S,,.
Output:
The value of the character of an irreducible representation
in A at the conjugacy class u:
x* ().
Step 1:
counter — 0
for i — 1 tomdo
z;i+— 1
endfor

jem

60

Step 2:
while (5 # 0) do
continue «— True
h «— extended diagram(\)
11
while ((continue) and (i < m)) do
remove u; from row z; of the extended diagram h
(to get a new h)
if ((row ¢ of h is negative) or
(h has two equal rows) then
continue «— False
g1
endif
increment %
endwhile

if (continue) then
if (h is an even row permutation of the k-staircase) then

increment counter
else
decrement counter
endif
Jem
endif

increment z;

61

while ((z; > k) and (j > 1)) do
decrement j
endwhile
increment z;
fori«+— j+1tomdo
2 +—1
endfor
endwhile
Step 3:
Output counter W

Note that we can rearrange the initial order of the p;’s without affecting
correctness although this can affect the efficiency of the algorithm.
We now present an example of using the graphical Murnaghan-Nakayama

rule.

Example 4.1.12: Graphical Evaluation of x*241([2, 2,2, 1])

We let A = [3,2,1,1] and p = [2,2,2,1]. We have already
determined A from A to be the diagram
[]

" We start with 2 =1, 25 = 1, z3 = 1, and 24, = 1. Thus, we

remove the first cycle of u from the first row of h to get

X[x]

Since the first and second rows in the diagram are now the same
size, we continue with 2y = 2, 2o = 1, 23 = 1, and 2z, = 1.

Removing the first cycle of u from the second row of h gives

This time, the second and third rows in the diagram are the
same size. We continue with z1 =3, 2 =1, 23 =1, and 24, = 1.

Removing the first cycle of p from the third row of h gives

XX

This diagram does not violate the constraints given in step 2 of
the algorithm, so, since z; = 1, we remove the second cycle of p

from the first row of the diagram to get

XIX|

X|X

Again the first and second rows are the same. This leads to
considering 2; = 3, 22 = 2, 23 = 1, and z3 = 1. Removing the

constituents of p from h according to these 2’s gives the diagram

XIX]X]

XX

The permutation taking the diagram to a staircase is odd so we

decrement the counter to —1.

62

Having seen the details of each step, we proceed through the
rest of the execution of the algorithm more quickly.

Continuing with z; = 3, 20 = 2, 23 = 1, and 2z = 2 gives
a diagram in which the second and fourth rows have the same
length. Thus, without changing the counter, we continue with

21 =3, 2 =2, z3=1, and 24 = 3. The third row in the diagram

for this case has a negative width so we continue with z; = 3, -

2z =2, z3 =1, and 2y = 4. In this case, the third and fourth
rows are the same so we jump to z; = 3, 22 = 2, z3 = 2, and
24 = 1. After removing the third cycle of y from h, we see that
the second and third rows have the same size. Thus, we continue
with z; = 3, 2z, = 2, 23 = 3, and 24, = 1. Removing the third
cycle of p from the third row yields a row with negative size and
so we continue with z, = 3, 2, = 2, 23 = 4, and 24 = 1. Again
we get a negative row upon removing the third cycle so we set
21 =3, 20 =3, z3 =1, and 24, = 1.- This yields a negative row
upon removing the second cycle, as does z; = 3, 2 =4, 23 = 1,
and zg = 1. Thistakesusto z; =4, 2z, =1, z3=1,and 2y =1
which gives a negative fourth row on removing the first cycle of
p. At this point, the algorithm terminates, returning a value
of —1 since we have not incremented the counter and we have

decremented it only once. W

63

64

4.1.2 A Concise Version of the Murnaghan-Nakayama
Rule

We translate the graphical algorithm into a form more amenable to symbolic
manipulation.

We use the following notation. The extended diagram for A is denoted
by h = [h1, hs, ..., hi] where the components h;, called the principal hooks,
are given by:

hi=A+k—i (1<i<Lk) (4.3)

This is equivalent to the definition of extended diagram earlier but is more
succinct. The extended diagram h completely determines the class of ir-
reducible representations A and each can easily be found from the other in
deterministic polynomial time. A hook structure is an extended diagram that
may have had cycles removed from it.

We use |#) to denote multiset union (adding multiplicities). We use angle
brackets () to denote multisets. We define the action of a cycle u; on a hook
structure h = [hy, he, . .. hi] to be the multiset

k
ﬂi([hly h2, sy hk]) = H’J ([hla h27 ceey h’m = Miy.-., hk])
m=1

and the action of a cycle on a multiset of hook structures to be the multiset

union of the action of the cycle on each of the members of the multiset.
“i(ha, <oy hb) = .u'i<ha> RER .ui<h’b>

Note that we are using superscripts to differentiate between hook structures,

and not to indicate exponentiation.

65

The value of a hook structure b = [hy, ho, ..., hg] is defined to be

0 if 34 such that h; <0
0 if 34,5 (i # j) such that h; = h;

1 if an even permutation sorts hy, ks, ..., bt into descending order

Al = S

| —1 if an odd permutaion sorts hy, hs, ..., hx into descending order
The value of a multiset of hook structures is the sum of the values of the

individual hook structures in the multiset.
!

I(RY B2, RO =D 1K)

i=1

With this notation in place, we can see that the value of the character
x* (1) given by the graphical algorithm is the value of the multiset formed
by allowing each of the cycles of i to act on the extended 'diagram h formed
from A.

The algorithm is stated below.

Algorithm 4: The Concise Murnaghan—Nakayama Rule
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of S,
u: a partition of n specifying a conjugacy class in S,.
Output:
The value of the character of an irreducible representation
in X\ at the conjugacy class p: x*(u).
Step 1:

Determine the extended diagram h for A

66

Step 2:
Evaluate x*(1) = ||pa(pz - - - (mh) ..)|

and return the value. B

Equivalent versions of the above algorithm are shown to be correct in
[Ham89], [dBR61], [Ker91], [JK81], and [Sag91]. The notation and exact
formulation of the algorithm is different in each of the sources. With the
appropriate translation and possibly some rearrangement of the order of the

steps, each of them yields the following theorem.

Theorem 5 The Concise Murnaghan-Nakayama Rule on input n, A, and u
returns the value of the character of an absolutely irreducible representation
of S,, in A at u. That is, the Concise Murnaghan-Nakayama Rule correctly
finds x*(u). W

4.1.3 A Polynomial Time Transformation

Consider an instance (A4, B, s) of 4-PARTITION (see Section 2.3.3) where
A = {a},0as,...a4m}, $: A — Z, and B € Z is polynomially bounded in
m = |A]. Without loss of generality, suppose

s(a1) = s(ag) > ... 2> s(asm).
We construct an instance (n, A, i) of #CSG from (A4, B, s). Let

n=m?. B,
A=[(m-B)m, (4.4)
and g = [m-s(a1),...,m- s(am)]-
Tl_lis transformation can be done in polynomial time whenever B is bounded

by a specific polynomial p(m).

67

Intuitively, we use the rows of the extended diagram for A to hold 4-sets
and the partition y to encode the sizes in the 4-PARTITION instance. The
sizes are scaled up so that any valid 4-set S} (with Yaess $(a) = B) will fit
into a row. Furthermore, with the row ¢ filled by a valid 4-set, there will be
m — i boxes left unfilled in that row. Thus, if all rows are filled with valid
4-sets, then we are left with a staircase which is counted as one. Any other
way to fill the diagram with the cycles of p will result in at least one row
taking elements (in the instance of 4-PARTITION) whose sizes sum to more
than B and thus, whose sizes (in the instance of #CSG) sum to more than
m - (B + 1). Since none of the rows in the diagram for A are that big, the
resulting hook structure has a negative component. Thus, the resulting hook

structure cannot be a permuted staircase and so it is not counted.

Lemina 1 If there are N valid 4—partitions of (A, B,s) then the value of
the character x*(u) of Sy, at A and u given by equation (4.4) is N-m! W

Proof: The extended diagram h resulting from A is given below.
h=[mB+m— 1,mB+m—2,...,mB]
That is, the components h; of h are given by
hi=mB+m—1 (1 <i<m).
For any subset .S C A let D(S) be defined by

D(S)=B-)_s(a)

a€S

If we remove only the cycles p; such that a; € S C A from the i*® row of

h we get a resulting extended diagram where the value of the i** component,

68

which we denote by H(S, 1), is

H(S,i) = hi— Taesms(a)
=mB+m—i+m(B — T,es s(a) — B)
=mB+m—i+mD(S) —mB
=m — i+ mD(S).

If D(S) =0, then H(S,7) =m —i. If D(S) <0, then

H(S,i) =m—i+mD(S)
<m-—-t1—m<0.
Thus, if S;,Ss,...,S9 is a valid 4-partition of A then D(S;) = 0 for 1 <
i < m and so we can remove the p;’s corresponding to the S;’s from h,
by removing p; from h; whenever p; € S;, to get [H(S,1),...,H(S,m)] =
[m —1,m—2,...,0], which contributes one to the value of the character.

Now, from an expression S;, Ss, . . . , Sy, for a valid 4-partition, any permu-
tation 7 of m objects applied to the subscript in the expression gives another
expression Su(1), Sn(2), - - - » Sr(m) for the same 4-partition. Since there are m!
such expressions for each such 4-partition and each of these expressions con-
tributes one to the value of the character, if there are N valid 4-partitions
of A, we get a contribution of V- m! to the character.

We now prove that there are no further contributions to the character.
Given any sequence z = (2y,...2;) € {1,2,... m}*, we can reverse the process
described above by putting a; into S, to get a partition S, Se, ..., Sy of A. If
the resulting partition is a valid partition then we have a contribution 6f one
as described above. Now, consider the case where the resulting partition is
not a valid partition of A. In such a partition, there must be an S; such that
the sum of the sizes of the elements is greater than B. If not, the partition

would be valid. Let S; be such a set and consider what happens to the i'®

69

row when we remove the u;’s from h following 2. Since

> s(a) > B

a€S;
we have D(S;)- < 0. This, in turn, implies that H(S,i) < 0 and so the

contribution to the value of the character is zero. R

4.1.4 A Probabilistic Polynomial Time Version of the

Murnaghan—Nakayama Rule

Recall that a probabilistic Turing machine is a non—-deterministic Turing ma-
chine that accepts a string if strictly more than half of the possible compu-
tation paths on that string are accepting computations. For a more detailed
description see [Joh90].

Informally, we use the phrase ‘generate n accepting computations’ to in-
dicate a process where we allow the computation tree to branch [log,n]
times by writing [log, n] 0’s or 1’s to the tape. For all of the sequences of
0’s and 1’s that correspond to a number less than n, the machine jumps
immediately to an accepting state. For those greater than or equal to n,
the machine writes another 0 or 1 and rejects if it wrote a 0 and accepts if
it wrote a 1. After this process, there will be n more accepting computa-
tions than rejecting computations and, since the balance of the number of
accepting computations versus the number of rejecting computations is all
that matters for ovella.ll acceptance in this model of computation, we can ig-
nore the matching acceptances and rejections produced for numbers greater
than or equal to n. We use the phrase ‘generate n accepting computations
and continue’ to indicate that the process should be prefaced by a single

branching of the computation tree where one branch generates n accepting

70

computations and the other continues. Similar definitions apply to generat-
ing rejections. ‘Nondeterministically generate’ means produce a branch in
the computation tree for each of the things specified.

We describe a probabilistic polynomial time version of the Murnaghan-
Nakayama rule.

Let h = [hy,..., hi] be an extended diagram. Let p = [u1,...,m] be a
partition (specifying a conjugacy class) and let z € {1,2,...,k}. We define
the symbol (h — u), as the value of the extended diagram resulting from

removing u from h according to z. That is, let
RO =h=1[hy,..., h],

and
h(j) = [hgj—l)’ s ’hg_l) = iy 7h§cj_1)]'

The value of (h — p), is the value of the resulting extended diagram k).

Algorithm 5: PP Algorithm for TCSG
Input: |
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of Sy,
u: a partition of n specifying a conjugacy class in S;.
z: an integer threshold value expressed in binary.
Question:
Is the value of the character of an irreducible representation
in A at the conjugacy class u greater than or equal to 7

That is, is x*(u) >z ?

71

Step 1:
if (z > 0) then
generate 2z — 1 rejecting computations and continue

else

generate 2|x| + 1 accepting computations and continue
endif

Step 2:
Non-deterministically generate a z € {1,2,...,k}}

(ie. for each z do):
Step 2.1:
if (h — p), =0 then
generate an accepting computation
and a rejecting computation
else if ((h — p), = 1) then

generate two accepting computations

else

{(h—p), = -1}

generate two rejecting computations
endif W

We show below that correctness of this algorithm is implied by that of
the Concise Murnaghan-Nakayama rule.

Let PM(y) be the number of ways that yu can be removed from the
principle hook structure h for representation class A so that the resulting
hook structure b’ evaluates to y. That is, PM(y) = |[{z: (h — u). = y}|.

Now from the Concise Murnaghan-Nakayama rule, we see that

X (1) = PM(1) — PM(-1). (4.5)

72
So x*(u) > z if and only if
PM#(1) — PM(~1) > a;

that is,
PM(1) — PM(-1) —z > 0.

We now examine the possible outputs from the algorithm in two cases.

Case 1: If x > 0, the algorithm gives:
From step 1: 2z — 1 rejections and
From step 2:

P*#(0) acceptances,
P*#(0) rejections,
2P*#(1) acceptances, and

2P #(—1) rejections

so the total number of accepting computations is P*#(0) + 2P*#(1) and the
total number of rejecting computations is 2z — 1 + PM(0) + 2PM#(—1).
The algorithm accepts the input if and only if the number of acceptances

is larger than the number of rejections. If x > 0, this is true if and only if -
PMH(0) 4 2PM(1) > 22 — 1 + PM(0) + 2P (1)
Consolidating terms involving PM* yields
2PMH(1) — 2P (=1) > 2 — 1
and from equation (4.5), we have

2xMw) > 2z — 1.

73

Since x*(1) and z are integers, this is equivalent to the condition
2xMw) 2 2z

or
XM () 2 2.

Similarly, the algorithm rejects the input if and only if the number of rejec-
tions is at least as big as the number of acceptances. Again, when £ > 0 we

get
PMH(0) + 2P (1) < 2z — 14+ PM(0) 4 2PM#(—1)

and again consolidating terms and applying equation (4.5) gives

x'w) <z

Thus, when = > 0 the algorithm accepts if x* (1) > = and it rejects otherwise.
Case 2: If z < 0, then by a similar calculation to the above, the number of

accepting computation paths is
2lz| + 1 + PM(0) + 2P (1)
and the number of rejecting computation paths is
PM(0) 4 2PM(-1).
Now if x*(u) > z, then
2N (1) > 2z = —2la|.

Applying equation (4.5) and subtracting 1 from the right hand side to get

an inequality, we have

2PM (1) — 2P (—1) > —2|z| — 1.

74
Adding P*#(0) to both sides and rearranging terms gives
2PM#(1) + PM(0) + 2|z| + 1 > 2PM(—1) + PM*(0)

which implies that the number of accepting computation paths is larger than

the number of rejecting computation paths. Similarly, if x*(1) < z, then
axMp) < 2¢— 1.
Again adding P**(0) to both sides and rearranging termé gives
2P (1) 4+ PM(0) + 2|z| + 1 < 2P™*(~1) + P*(0)

which implies the number of accepting computation paths is smaller than

the number of rejection computation paths.

Lemma 2 TCSGe PP. &

Proof: As we have just seen, the algorithm is correct. Furthermore, each
branch of the algorithm is of polynomial length. The paths terminating in
step 1 are of length O(log(z)) which is clearly bounded by a polynomial in
the input size. The paths terminating in step 2 are of length 0(log(n) - k- 1)
which is polynomial in the input size even when the input is not written in

unary. H

4.1.5 The Murnaghan-Nakayama Rule on a Counting
Turing Machine

Recall that a counting Turing machine (CTM) is structurally the same as a
probabilistic machine except that the value returned by a CTM is the num-

ber of accepting computations, rather than just a ‘yes’ or ‘no’ depending on

75

whether there are more accepting computations than rejecting computations.
The class #P is the set of all problems solvable by a CTM in polynomial
time. Since we do not care at all about the number of rejecting computations,
when we say ‘generate n accepting computations’ we mean generate exactly
n accepting computations. This is easily done by nondeterministically gen-
erating [logyn| 0’s and 1’s and accepting only if the resulting number (in
binary) is less than n. For a more detailed discussion of counting Turing
machines see [Joh90].

Since a CTM cannot return a negative number, insteéd of directly evalu-
ating the character, we consider the problem of evaluation of the sum of the
value of a character and an easily computable large positive number. This
allows us to give an exact classification of the problem. From this, we can
easily compute the desired character value and thus we have a good classi-
fication of computing the character as well. We choose the large number to
be n" since it is both easily computable and is always at least as large as the
absolute value of the character of S,.

We now present a CTM version of the Murnaghan-Nakayama Rule.

Algorithm 6: CTM Version of the Murnaghan-Nakayama Rule
Input:
n: expressed in unary,
A: a partition of n specifying a class of equivalent irreducible
representations of S,

U a pértition of n specifying a conjugacy class in S,.

76

Output:
The value of the character of an irreducible representation
in A at the conjugacy class u, plus n™:
XMu) +n".
Step 1:
Step 1.1:
Find k' and n™.
Step 1.2:
Generate n® — k' accepting computations and continue.
Step 2:
for each z € {1,...,k} do
if (h — p), =1 then
generate two accepting computations
else if ((h —), = —1) then
reject
else
{(h —). =0}
accept
endif
endfor B

The number of accepting computations is

OPMH(T) + PP(O) £ n K = PY(1) 4+ PM(0) + PM#(=1)
+ PM(1)— PM(-1)+n" — k'

and, since

PM(1) + P*(0) + P(-1) = &'

7

and

Xy = PY(1) = PM#(-1),
the number of accepting computations is
K+ () +n" — K = x () +n"

We observe that, since &, < 7, we have that n™ > k'. Thus step 1 above

can always be done since the value n" — k! is always non-negative.
Lemma 3 #CSG+ € #P. &

Proof: Counting operations on hook structures as unit cost, each branch of
the algorithm takes O(n- k1) time and the n" branches can be generated in

O(nlog(n)) time. Thus the total running time is O(nlog(n) + nkl). M

4.1.6 Completeness Theorems

We are now in a position to prove the main theorems of this section.
Theorem 6 TCSG is PP-complete. W

Proof: We récall from section 2.3.3 that the problem T-4-PARTITION
is PP—complete. The transformation given in section 4.1.3 was shown to be
parsimonious so TCSG is PP-hard. Combining this with lemma 2 immedi-

ately implies the result. W
Theorem 7 #CSG is #P-hard. W

Proof: We recall for section 2.3.3 that the problem #—-4-PARTITION is
#P-complete. The transformation given in section 4.1.3 was shown to be

parsimdnious so #CSG is #P-hard. H

78
Theorem 8 #CSG+ is #P-complete. W

Proof: Theorem 7 and the fact that n" is easily computable (in binary from
unary input n) implies #P-hardness. Lemma 3 shows membership in #P.
Combining these implies the result. W

Theorem 8 shows that #CSG fails to be #P-complete only by virtue of

having some negative answers.

4.2 Outer Products, Schur Functions, and The
Littlewood—Richardson Rule

In this section, we describe problem of decomposition of outer products of
characters of the symmetric group. There is a well known connection between
this problem and computing coefficients of Schur polynomials. Namely, both
are solved by the Littlewood—Richardson rule. We analyze the Littlewood-
Richardson rule as it stands and use it to define several related problems to
get a better picture of the complexity of the above problems. Schur polyno-
mials and outer products of characters are discussed at length in [Mac79],
[Sag91], [JK81] and [Ker91].

Other work has been done in this problem. The Littlewood—Richardson
rule is modified to produce another combinatorial algorithm in [RW84].
[Ege82] documents an implementation of the Littlewood-Richardson rule
with pruning. [ER85] contains a table of Littlewood—Richardson coefficients

for two special cases up to n = 30.

79

4.2.1 Outer Products of Characters of the Symmetric
Group

Given two matrix representations over the same field, T of S, and 75 of S,
of dimensions # and 1 respectively, we can construct the tensor product of
these representations 73 ® 75 of S, @ S,, for any g, € S, and :any go € Sp.
The dimension of this representation is 7 x .

Recalling the definition of the direct sum of groups, we see that S, ® Sn,
is a subgroup of S,+m. The matrix representation 77 ® T3 of S, & S,, can be
extended to the whole of Sy, — in particular, to the induced representation
(defined, for example in [Ser77] and [FH62] and mentioned in Section 2:2.3).
The resulting matrix representation 7 = (17 ® T5) T Snim is called the outer
product of T} and T,. We shorten the notation to TV = T ¢ T3 so that we can
more easily generalize the above notation to characters.

This gives us a well defined operation on the characters of the symmetric
groups since if 7} and T}’ are similar representations and T3 and T3’ are
similar representations then T} ¢ T3 and Ty’ o T3 are similar. Using n and m
and the superscripts (1) and (2) rather than subscripts, we write x(o x®
for the character of the (reducible) representation TV = T} T3 of Spy4m. Since
T’ may be reducible, we can decompose T” into its irreducible constituents.
Thus we write x(Dox® =3 A-(ntm) CAX" Where the ¢)’s are to be determined.

We now have the notation necessary to define the problem of computing

the coefficients of the irreducible constituents in the outer product.

Number Problem 11: DecOutSym
Decomposition of Outer Products of the Symmetric Group
Input:

Integers n, m > 0 (expressed in unary).

80

Partitions p, v, and A of n,m and n 4+ m respectively,
specifying absolutely irreducible characters of S, Sn,
and Sp4m respectively.

Output:

The coefficient ¢ in the decomposition

X(l") o X('Y) = Z¢l-n+m c¢x(¢). []

4.2.2 The Littlewood—Richardson Rule
The standard diagram for a partition
A=A, Az, A1)

is the set of points
{(z,y): 1<z <A}

The standard diagram for (6,4, 2,1) is shown below.

(4.6)

For visually obvious reasons, we will often call the points boxes.

Given two partitions A - n+m and v - m, we make the diagram A\vy by
erasing the standard diagram for from the upper left corner of the standard
diagram for A. Thus, to make (6,4,2,1)\(2,2) we remove the diagram for
(2,2)

from the diagram for (6,4,2,1) shown in (4.6) above to get the diagram

81

shown below.

This operation is only well defined, if for all applicable 7, A; > ~;.

The Littlewood—Richardson rule can now be stated. Given three parti-

tions A - n+m, u - n and v - m, we make a diagram of A\ and count the

ways that we can fill the boxes with symbols directly identified with positive

integers according to the following rules.

1.

One and only one integer is written in each box.
If p= (ui,-..,ux), then exactly p; boxes contain 1.

The symbols are entered into the boxes in numerical order. That is, we
start by adding 1’s and continues such that all symbols ¢ are entered

before we add any of symbol 7 + 1.
No symbol is added directly to the right of an empty box.
No symbol is added directly below an empty box.

No symbol is added to a row that is above a row already containing

that symbol.
No two boxes in the same column contain the same integer.

The sequence of integers obtained by reading each row from right to
left and reading the rows from top to bottom is a lattice partition (see

section 2.1.3).

82

If it is impossible to make the diagram A\~ then there are no ways to fill the

diagram.

Example 4.2.13: Using the Littlewood—Richardson Rule

Let us consider the partitions A = (6,4,2,1) and v = (2,2) as
above, and let p = (5,3,1). We must fill the diagram A\~ with
five 1’s, three 2’s and one 3. We observe that the first row of A\«

must be filled entirely with 1’s, otherwise we would violate either

condition 4 or condition 8. The remaining 1 cannot be placed in

the second row lest we violate condition 7. It can be placed in the

first box of the third row, but not in the second box of the third

row by condition 4, and not in the fourth row by condition 5.

The second row must be completely filled with 2’s for the

same reasons that forced us to fill the first row with 1’s. At this

point, we have the diagram:

111}

DO

and we have one 2 and one 3 left to place.

The remaining 2 can be placed in either of the remaining open

boxes. The 3 must be placed in the other box.. Both alternatives

are shown below.

112

3

1]1]
2

111}

1
2]

Thus, there are two ways that the diagram A\~ can be filled

" in accordance with u.

83

Since we have not been able to determine the complexity of the the prob-
lems solved by the Littlewood-Richardson rule, we do not present a more
formal version of the rule.

The fact that the Littlewood-Richardson Rule solves DecOutSym is

proved, among other places, in [Sag91].

4.2.83 Analysis of the Littlewood—Richardson Rule

There are a number of prﬁning techniques which allow one to avoid filling
the boxes in all possible ways and then checking conditions 1 through 8.
However, since the result of the algorithm can be superpolynomial in the
input size (see section 4.2.5) and since the algorithm generates every valid
placement of integers in A\, so that its running time is at lea'strlinear in the
value it returns as output, even with perfect pruning, the algorithm still has
superpolynomial time complexity. Still, the above algorithm does allow us

to observe the following.
Theorem 9 DecOutSym € #P.

Proof: Each of conditions 1 through 8 above can easily be checked by a
Turing machine in polynomial time. Thus, a counting Turing machine, which
generates all functions from the set of allowable symbols to the set of boxes
in the standard diagram and then accepts only if the placement of symbols
satisfies the conditions, solves DecOutSym. Further, each branch takes

only polynomial time. W

4.2.4 The Complexity of Associated Problems

The description of the Littlewood—Richardson Rule is only dependent on A
and v being partitions for determining the diagram A\7y. The conditions

84

given above can be used on a diagram even if it is not obtainable as a

difference of standard diagrams. We define a problem based on the above.

Number Problem 12: L-R/GenDiag
Littlewood—Richardson Problem on Generalized Dia,giams
Input:
Two vectors: X, Y, € N™ with components
x;,y; such that z; Sy for 1 <i < m.
These specify the left and right boundaries of the diagram.
One vector: Z, € (z*)* with components z; such
that z; > 241 for 1 < j <n—1 and such that
(Y —) = E;';l Zje
. This specifies the number of each symbol used to fill the diagram.
Output:
The number of ways that the diagram specified by X,, and Y,
can be filled with symbéls from Z satisfying conditions 1
through 8 in the Littlewood-Richardson Rule. W

If the'components of X, and Y;,, when listed by their order in the vec-
tors, are in descending order, then the diagram is a difference of standard
diagrams. In this case, X, and Yy, correspond to v and A (respectively) in
the definition of DecSymOut. Z corresponds to u.

Unfortunately, this new problem is an extreme generalization of the
Littlewood—Richardson problem so we are unable to draw any strong con-
clusions about the Littlewood-Richardson problem from an analysis of the
new problem. However, we are able to give a precise classification of its
complexity. The result indicates that if there is a polynomial time algorithm

solving the Littlewood-Richardson problem, then the algorithm must make

85

use of the fact that the input diagram is a difference of standard diagrams
(unless FP = #P).
The following lemma, follows immediately from Theorem 9 since there is

no mention of the dropped input requirements in the proof.
Lemma 4 L-R/GenDiag € #P. l

Now, we give a transformation from Boolean Permanent (see sec-
tion 2.3.3.2) to L-R/GenDiag.

Given an instance of Boolean Permanent B = [b;;], an n X n boolean
matrix, we construct an instance (X,Y, Z) of L-R/GenDiag by defining a
set of components and then saying how these components are to be combined
to produce an instance of L-R/GenDiag.

We construct an initialization component using the first n+ 1 rows of the
diagram. For 0 < j < n, we denote the left and right boundaries of row j by

o and y* respectively. The valqes are as follows.
T (n 4 1)°
Yyt (n4+1)2 42
o — (n+1)*+1 (1<j5<n)
Yt~ (n+1)*+3 (1<j<n).

This gives the following shape.

86

We construct components for each row of the matrix in three parts. We
call the parts the upper triangular control component, the selection com-
ponent, and the lower triangular control component. The two triangular
components are each made using n + 1 fows in the diagram. For now, we
will denote the left and right boundaries of the j** row of the component for
the i*® row of B with superscript Vi (for the “upper triangular component”)
or Ai (for the “lower triangular component”) and subscript j. The selection
component for each row of the matrix takes only one row in the diagram.
The left and right boundaries for the selection component for the i*t row of

sel

the matrix are denoted by 25 and ¢, respectively.

For 1 <4< nand0<j<n, the values of z)%,yY* and x5 are assigned

as follows.
)’ —i(n+1)
) j
Y = i+ 1) (n+1) -1 by
k=1
and
xf" — ij".

Forl1<i<nand0<j<n-1,

Y — i+ 1)(n+1)
and for 1 <i< n,

2 — i+ D(n+1) -1

For1<i<mn,

x‘:fel — (n+1)?

and

yﬁel — (n+ 1)2 +1

87

For each row of the matrix, we place the upper triangular component
above the selection component and the selection component above the lower

triangular component. This gives a shape of:

7

We now explicitly construct the vectors X = (zi,... Top2pant1) and ¥ =
(Y1, - - - Yon2+ans1) from the components made so far. Both X and Y are
constructed in the same manner. The initialization component comprises

the first part of the vector:
T — ™ for (1<i<n+1)

yi — Y™ for 1 <i<n+1).

Then, we add the upper triangular component, the selection component, and

the lower triangular component for each row ¢, consecutively:
Ti(2n+3)+j-n—-1 a:jVi for (1<i<nand0<j<n),

Yien+3)yrj—n—1 — ¥} - for (1 <i<nand 0<j < n),
Zi(on+3) 25 for (1 <4 < n),
Yignsa) — Y for (1 <i < n),

and

Ti(2n+3)+j+1 xf‘i for (1<i<nand 0<j<n),

Yi(2n+3)+j+1 < yfi for (1<i<nand 0<j<n).

88

Finally, we make the vector Z. Z is of dimension n + 1 and each component
isn(n+1)+2.

For example, the transformation can be applied to the boolean matrix

101
B=|1010
111
to get the diagram shown in figure 4.1.

We now describe how to fill figure 4.1 following the Littiewood—Richardson
rule (see section 4.2.2).

Following condition 3, we begin by inserting 1’s into the boxes. There are
boxes in fifteen columns (columns 4 through 18). By condition 7, each of the
fourteen 1’s must be placed in a different column. We cannot place a 1 in
column 18 because condition 5 forbids placing it to the right of an empty box.
Therefore, one 1 must be placed in each of columns 4-17. By condition &, a
1 must be placed in column 17 of the top row; by conditions 3 and 4, this
must occur after a 1 has been placed in column 16 of this row. Now, the
remaining twelve 1’s must be placed in columns 4-15 — and, therefore, in
rows 5-31. Again, by conditions 4, 5, and 8, all three boxes in row 5 (columns
5-7) must be filled with 1’s. Remaining 1’s must be placed in columns 8-15
and, therefore, rows 10-31. Continuing to use conditions 4, 5, and 8 in this
manner, one can argue that there is only one valid placement of the fifteen
1’s in this diagram.

We can proceed more quickly if we place symbols in any convenient order
and verify that we could have followed the order constraints to obtain the
same placements when we are done.

Rows 1-4 include eight boxes, exactly two of which contain 1's. Condi-

tion 8 can be used to conclude that the remaining six boxes must be filled

89

by exactly two 2’s, two 3’s, and two 4’s. Similarly, the sixteen boxes in rows
5-13 must be filled by exa'ctly four 1’s, four 2’s, four 3’s, and four 4’s. The
sixteen boxes in rows 14-22 and the sixteen boxes in rows 23-31, must then
each be filled by exactly four 1’s, four 2’s, four 3’s, and four 4’s as well.

Condition 8 now forces two 2s, 3’s, and 4’s to be placed into rows 2-4 in
the positions shown in the diagram. We also have no choice (by condition 5)
in the placement of entries in the remaining three boxes in column 4. Con-
dition 8 (and, at the end, condition 7) can then be used to determine the
placement of the remaining entries in column 5.

Only three entries — in row 9 and column 16, row 11 and column 7, and
row 12 and column 17, remain to be filled. As in the diagram, let a denote
the number assigned to row 9 and column 16. Since there is already a 1 in
column 16, a # 1. As well, a # 3, since this would violate condition 8 - so
a € {2,4}. Denote the entries in column 17 and rows 11 and 12 by c and d
respectively. Since rows 5-13 must include exactly four 1’s, 2’s, 3’s, and 4’s,
{a,c,d} = {2,8,4}. If a = 2 then, by conditions 3 and 5, c =3 and d = 4;
otherwise a = 4 and, by the same conditions, ¢ = 2 and d = 3.

Now consider rows 14-22. Again, condition 5 determines the place of
entries in column 8; conditions 7 and 8 then determine the placement of
entries in rows 14, 15, 16, and 17. The remaining entries (in rows 21 and 22)
of column 10 are then fixed by conditions 5 and 7. Once again, since all 1’s
have already been placed, the entry in row 18 and column 16 must either be 2,
3, or 4. However, (since the entries in rows 1-17 are now fixed) condition 8
is violated if this entry is either 2 or 4 — so there is a 3 in this position. Now,
only a 2 and a 4 remain to fill the remaining boxes in column 7; condition §

forces us to fill the boxes as shown in the diagram.

90

Now, only rows 23-31 remain. Conditions 4, 5, and 8 force the placement
of entries in the upper triangular component in rows 23—-25. Conditions 5
and 7 then fix the entries for the remaining boxes in columns 12-14. The
entry b in row 26 and column 16 must be whichever of {2,4} is not equal to
the entry a above it in the same column, in order to satisfy condition 7. Now,
only entries e and f in rows 28 and 29 and column 15 must be determined.
Since {b,e, f} = {2,3,4} and the integer e must be less than the integer f,
e and f are determined by the choice of a (since b is).

Thus, there are two ways that we can fill the diagram. All of the boxes
that are filled with numbers are forced by the conditions. Those with letters
can be filled either witha=2,c=3,d=4,b=4,e=2, and f = 3 or with
a=4,¢c=2,d=38,b=2,e=3,and f =4. This is to be expected since
the permanent of B is two.

We will now show that the transformation works. That is, the result of
applying the Littlewood—Richardson rule to the instance of L—-R/GenDiag
given by the transformation acting on a Boolean matrix B is the permanent
of the matrix B.

We can think of the permanent of a Boolean matrix as the number of
paths through the matrix, starting on the top row and proceeding row by
row to the bottom row, such that we use exactly one element from each row
and exactly one element from each column, under the constraint that we use
only elements whose value is 1.

- For each such path through the Boolean matrix B, there is one way that
we can fill the diagram (X,Y) with symbols given by Z according to the
Littlewood-Richardson rule. Further, there are no other ways that we can

fill the diagram according to the Littlewood—Richardson rule.

6 11 16
1 1 11
2|2
3|3
414
] 11111
6 2|2
3|3
* A
. 1
11 AR
3 |d
L4]a
111 14
1 ol]2
16 3|3
44 n
14
— 2]
21 3l4
| 4 |
1]1]1]
AL
—_ [3 |
26
b]
y
21le
] 3l3ls
31 lal4l4

Figure 4.1: The diagram for B.

91

92

Specifically, suppose that B = (b1 - -« bny,) is a path through B con-
tributing to the permanent of B. That is, all b;;, = 1 and for each j # &,
i; # ix. Then we can fill the diagram (X,Y) as follows: for 1 < i <n+1,
row 4 of the initialization component is filled with symbol i + 1 (see rows
1-4 in Figure 4.1). Each row ¢ of each of the upper triangular components
is filled with symbol 7 (as is the case for the components in rows 5-8, 14—
17, and 23-25 in the example). The j* selection component is filled with
symbol i; + 1 (specified in the definition of B above). Note the entries in
column 16 in Figure 4.1. All but the rightmost column of the lower triangu-
lar components are filled in same way that the upper triangular components
are filled. That is, the i** row of each component is filled with the symbol
i + 1 except possibly for the box in the rightmost column. The rightmost
column of each lower j* triangular component is filled, in numerical order
from top to bottom, with symbols 1 through n+ 1 leaving out symbol ;+ 1.
Thus, Figure 4.1 corresponds to the “path” by, by, bsz through the matrix
B if a = 2, and corresponds to the “path” bys, bog, bs; when a = 4.

For the sake of comprehensibility of the description, the above does not
make explicit use of the order constraints (conditions 3, 4, 5, and 6 in sec-
tion 4.2.2). By examining the results of the above description, we can see

that it satisfies all of the constraints. We give demonstrations below.

1. This condition is trivially satisfied.

2. Two copies of each symbol are used by the initialization component.
Each group of upper triangular, lower triangular, and selection compo-
nents contains n+1 copies of each symbol. Summing, we get n(n+1)+2

copies of each symbol, which is what is required by Z.

3. This condition can be trivially satisfied.

93

4. This condition is satisfied in the initialization component, the upper
triangular components, and the selection components since the rows
in these components are each filled with one symbol. Now consider a
single row in a lower triangular component. Each box except for the
one in the last column is filled with the same symbol. The symbol
in the last column is either the same or larger than the one in the
rest of the row. Since the above is true for each row in each lower
triangular component and values in boxes increase as one moves down
a column within any of these components, condition 4 can be satisfied

in conjunction with condition 3.

5. This is clearly satisfied for the selection components.since there are no
boxes directly above any of them. Each column in other components
is filled from top to bottom with symbols in increasing order and thus

this condition can be satisfied in conjunction with condition 3.
6. This condition can be trivially satisfied.

7. Examining each column and referring to the construction and to the
proof-for condition 5, we see that the only place where this could be
violated is in the selection components, which are all contained in a
single column. By the construction from the path B, it immediately

follows that the constraint is satisfied there as well.

8. Thié is clearly satisfied by the placement of values in the initialization
component. Also, the prefix string associated with the initialization
component contains an equal number of each of the symbols, so the
entire string will be a lattice partition if and only if removing the pre-

fix string leaves us with a lattice partition. Each group of contiguous

94

upper triangular component, selection component, and lower triangu-
lar component has the same property, so we need only show that the

inverse row word for each one of the groups is a lattice partition.

Consider the i*! such group. Clearly, the prefix string corresponding to
the upper triangular component causes no trouble. The symbol in the
selection component can follow this prefix string since if there isa 1 in
the boolean matrix in the (i,5)"™ position then there is one more box
in the % row of the upper triangular component than in the (j + 1)%
row. Similarly, there can be no problems with the lower triangular

component.

Only a few additional comments need be made to show that there are
no other ways to fill the diagram in accordance with the rules (given in sec-
tion 4.2.2). Since there can be no duplicates in any column (condition 7),
the initialization component must be filled as described above or the cor-
responding inverse row word would not be a lattice partition (condition 8).
Because of the insertion order constraints (conditions 3, 4, 5, and 6), the
first upper triangular component must be filled as given above or we would
violate either the column constraint (condition 7) or the lattice partition
constraint (condition 8). The selection component for the first row must be
given a symbol corresponding to a 1 in the first row of B or we violate the
lattice partition constraint (condition 8), because of the construction of the
upper triangular component. For the same reasons guiding the ﬁlliﬁg of the
upper triangular component, the lower triangular component must be filled
as described. _

Again, since we are forced to fill each group of upper triangular, selection

and lower triangular components with the same number of copies of each

95

symbol, the same reasoning can be applied to the each of the components
in turn. Finally, all of the selection components are in the same column so
they must contain different symbols. They are not vertically adjacent to one
another, so the symbols do not need to be in numerical order.

Thus, the result of applying the modified Littlewood-Richardson rule
to the constructed instance of L-R/GenDiag is the same as evaluating
the permanent of the original matrix. Since the transformation can easily
be accomplished in polynomial time, we have demonstrated the following

lemma.
Lemma 5 L-R/GenDiag is #P-hard. &
By combining lemmas 4 and 5, we have the following result.

Theorem 10 L-R/GenDiag is #P-complete. B

4.2.5 Counting Lattice Partitions

An important nontrivial restriction of the Littlewood-Richardson problem
can be solved in polynomial time. We restrict the input so that the difference
of diagrams has at most one box per row and at most one box per column. In
this case, the only constraints that have any effect are conditions 1, 2, and 8.
Thus, the problem reduces to counting the lattice partitidns corresponding
to the partition x in the input of DecSymOut.

We do not use the full power of Theorem 11 (Kreweras’ theorem, which
follows) in dealing with this case. The theorem gives a formula for counting
lattice paths with any start point and any end point. The lattice paths that
we consider always start at the origin. By considering other start points, our

method can be extended to give efficient solutions to larger subproblems of

96

DecSymOut. However, it appears that these subproblems are still extreme
restrictions of DecSymOQut.

The problem of counting lattice paths has important applications in
statistics. Since this is far beyond the scope of this thesis we provide only
two pointers to other work in this area: [Rap87] and [Nar79].

Now, we formally define the problem under consideration.

Number Problem 13: CLP

Count Lattice Partitions
Input:

AbEn

n: given in unary.
Output:

The number of lattice partitions corresponding to A. M

Kreweras theorem (theorem 11 below) is used to count paths in a lattice.
Before we prove our result, we describe a way of envisaging a lattice partition
(see section 2.1.3) in terms of the type of lattice used by Kreweras. Let
a = (ay,as,...,an,) be a point in Z™ such that a; > a;4; 2 0for1 <i <m-—1
and let b = (0,0,...,0) € Z™. Geometrically, we think of a lattice path from
b to a as a (finite) sequence s, ..., s® of points in z™. For convenience of
notation, let us write b = s and a = s%¥). Now, we can imagine a point
moving from b and ending at a, following the sequence given by the s’s.

If s©, s, ..., s* describes a path which involves only moves towards a
by a distance of 1 in only one dimension at a time and, further, never crosses
above any of a set of diagonal hyperplanes passing through the origin (with

lower indexed coordinates taking priority in measuring height), then the s’s

describe a lattice partition. The diagonal hyperplanes that we consider are

97

diagonal on only two coordinates. That is, the (4, 7)'* diagonal hyperplane
is completely specified by z; = z;.

More formally, let a = (a,...,am) and b = (0,...,0) as above, let n =
™ a;, and let S = (s©,...,sM). For 1 < i < m let ¢; denote the i*™ unit

vector, whose j** component is 0, for 1 < j < m. If for each 4, 0 < i < m,
s = 5O 4 fi+1)

where f is a function from the first n positive integers to the set of unit
vectors in Z™

f:{l...n} — {er, ez €3 ...,n}

and if .
)2 o) (0<i<i) | (47)

for1 <i<mnandl<j<k<m,then we say that the sequence S is a valid
lattice path.

Since a; > a;4, for 1 < ¢ < m — 1, we can think of a¢ as a partition.
We now construct a one-to-one mapping between the valid lattice paths
from (0,...,0) to a = (ai,...,a,) and the lattice partitions of a. Let A =

(A1, As, ..., Ay) € {1,2,3,...m}" be a lattice partition of a. Now, let

For 1 <4 < n, let f(i) = ey, In this light, equation 2.1 and equation 4.7
express the same condition using different notation. Thus, for any a € Z™ we
have a bijective mapping between lattice paths and lattice partitions and so
we know that the number of valid lattice paths from the origin to a is equal

to the number of lattice partitions of a.

08

Kreweras’ theorem gives an expression for counting lattice paths allowing
duplicate points and jumps in the path. We give the theorem without proof

below. Among other places, the theorem is proved in [Nar79].

Theorem 11 (Kreweras 1965) Let 0 < a; < ... < ay and 0 < b; <
... < b, be two sets of integers satisfying b; < a; (1 <4 < n). Let s¥) =

(s9,...,s9), =1,2,...,7, be a set of vectors satisfying the inequalities
0<s¥ <. < 1<ji<r) (4.8)
and
b <sP < <q (1<j<r1<i<n). (4.9)

Let |(b, a;)| denote the number of nxr matrices [sgj)] satisfying equations 4.8
and 4.9. Forr > 1
|(b,a;7)| = det cg)

where
a;—bj+1 \ .
a= (1<i,j<n)
r+5—1
and, as usual, if y < z or z < 0 then
Y1=o.m
z

By applying the law of inclusion—exclusion, we obtain the following algo-

rithm for CLP.

Algorithm 7: Count Lattice Partitions
Input:
Abn

n: given in unary.

99

Output:
The number of lattice partitions corresponding to A.
Step 1:
Let [be the length of A.
fors—1lton+1do
Let C®) be the | x | matrix
iy

whose (7, 7)* entry is

Ait+s
(s+j—i)
D) — det(C®)
endfor
Step 2:

Let L(1) = DW,
fors—2ton+1do

= D _ 5 I(L(t). (s—1))
t=1 s—t

We observe that the algorithm is correct. Let L(s) denote the number of

Evaluate

Step 3:
Output L(n+1) &

paths of length s from the origin to A where there are no duplicate points.
Since D includes duplicate points, in order to find D® in terms of L, we
count the shorter paths and then account for duplicate points. Suppose there
are L(t) distinct paths to A of length ¢t < s. For each of these paths, we can

construct some number Q(s,t) of paths of length s by duplicating points in

100

the path. Now, s — ¢t points must be added to the path and they can be

added to t locations thus, so we have

t+s—t—1 s—1
Q(S,t) = () = ()
s—t s—t
Then L(1) = |(0,A;1)| = DM and for s > 1

D¥) =(0, ;)] =L(3)+8§—:1L(t)- (ot) :

s$—1
Solving this for L(n + 1) gives the algorithm.
Since the arguments for the binomial coeflicients involve values given in
unary and determinants can be evaluated in polynomial time (see [AVAU74]),
the entire algorithm runs in polynomial time. Thus, we have the following

theorem.
Theorem 12 Count Lattice Partitions € FP. R

The number of lattice partitions can be superpolynomial in the input.
Consider the number of lattice partitions that can be made corresponding to

the partition A = (2m,m) I 3m. Clearly, this is at least

2m
(")
since if we put the first m copies of the first symbol at the beginning of the
string, we.are free to arrange the remaining m symbols any way we like. This
number is superpolynomial in m and thus superpolynomial in 3m.
Now, let A = (3m,3m —1,...,1), let u = (2m,m), and let v = (3m —
1,3m — 2,...,1); then the coefficient ¢, of x* in the decomposition

P ox®= T cx®
$-nt+m

101

is the number of lattice partitions corresponding to (2m,m) F 3m. Thus,
DecSymOut has instances with solutions that are superpolynomial in the
input size.

This means that a counting algorithm (which computes a value by in-
crementing a counter and thus requires time at least linear in the value it
returns) cannot solve DecSymOut in polynomial time. If a polynomial time
algorithm exists, it must do more than just count. Thus, at the very least,
major modifications to the Littlewood—Richardson rule will be required in

order to find an efficient algorithm for DecSymOut.

102

Chapter 5

Conclusions and Additional

Problems

5.1 Summary of Results

We have examined the computational complexity of finding the characters
of finite groups. It was known that the problem can be solved efficiently by
Burnside’s algorithm when the group is given by its complete multiplication
table. The first step of Burnside’s algorithm is the computation of “structure
constants”. Recent work to improve the algorithm has involved reduction
of the number of these constants that are computed. We have shown how
to efficiently compute a complete set of these “structure constants” from a
character table.

Considering the other end of the spectrum of representation sizes, we
have shown that finding individual entries in the character table of the sym-
metric group is computationally hard (under standard complexity theoretic

assumptions).

103

We had limited success in classifying the problem of decomposing outer
products of characters of the symmetric group. We defined a generalization
of this problem and showed that it was computationally hard (under stan-
dard complexity theoretic assumptions). We gave an efficient solution to an

important subproblem, namely counting lattice partitions.

5.2 Related Problems

5.2.1 Swuccinct Specifications of Groups

Giving the multiplication table for a group is not a space efficient method
for specifying a group. In particular, a Cayley table requires size quadratic
in the order of the group. There are methods for specifying groups where,
for many groups, the space required is polylogarithmic in the order of the
group. The character table may have size superpolynomial in the input size
if a concise specification of the input group is given. In general, there is no
natural way to ‘index’ into the character table as we do with the symmetric
group. Thus, the complexity theoretic question becomés, can one compute
the character table of a group in time polynomial in the maximum of the
input size and the output size?

The problem of finding character tables from such succinct specifications
of groups is presently unclassified with regards to its computational complex-
ity. Considerable work has been done on computations with permutation
groups '(see [But91] for a good intfoduction). However, even the apparently
very special case of finding characters for p-groups has not been analyzed
(see [Con90a] and [Sla86]). The state of affairs is similar for matrix groups

and finitely presented groups. Groups specified by permutations can be ef-

104

ficiently converted to finitely presented groups or to matrix groups. Thus,
finding the character tables of matrix groups or of finitely presented groups
is at least as (computationally) hard as the corresponding problem for per-

mutation groups. -

5.2.2 Characters Over Other Fields

We have only considered finding character tables over €. All of the problems
asking for complete character tables can be generalized so that a specification
for a field K is included in the input and then the question becomes ‘what
is the character table over K for the group?’ There has been extensive work

on algorithms in this area. For example, see [Con90b].

5.2.3 Decomposition of Inner Products of Characters

of the Symmetric Group

Let Ty and T3 be absolutely irreducible matrix representations of S,. Con-
sider the tensor product T = T} ® T3 (see section 2.2.3). T is also a repre-
sentation of S, but it is not generally irreducible. Like all representations of
finite groups over fields of characteristic zero, it is similar to a direct sum of
irreducible representations.

Define the inner product of the characters ' and x2 of the representations
T, and T3 to be the character of the representation ' = T ® T;. We denote
this character by ¢ = x! x x® The characters of tensor products of similar
representations are the same. That is, if T} ~ T"; and T, ~ T"y then T} QT ~
T',®T",. So, the characters of T} ® T and T";®T", are the same.

Since ¢ = x! x x? is a well defined character of S, it is expressible as a

linear combination of the irreducible characters of S,. We recall that for the

105

symmetric group, we can succinctly specify irreducible representation classes
using partitions. Thus, we may ask, ‘given partitions A;, Az, 1 - n, what is
the coefficient ¢, of x* in the decomposition

A Ay @
XU x X =)
¢Fn

It is known (see [Ebe89]) that the coefficients ¢, can be found from such
inputs using polynomial space. At present, nothing more is known about the
complexity of this problem. It seems quite plausible given the hardness of

computing individual characters that this problem is hard as well.

Bibliography

[AVAU74] John E. Hopcroft Alfred V. Aho and Jeffrey D. Ullman. The

[BF91]

[Bur55]

[But91]

[Con90al

[Con90b)]

Design and Analysis of Algorithms. Addison-Wesley Publishing
Company, Don Mills, Ontario, 1974.

L4slé Babai and K. Freidl. Approximate representation theory
of finite groups. In Proceedings of the 32°¢ Annual IEEE FOCS,
pages 733-742, 1991.

W. Burnside. Theory of Groups of Finite Order. Dover, New
York, second edition, 1955. This is a reprint of the original second

edition published in 1911 by Cambridge University Press.

Gregory Butler. Fundamental Algorithms for Permutation
Groups, volume 559 of Lecture Notes in Computer Science.

Springer—Verlag, New York, 1991.

S. B. Conlon. Calculating characters of p—groups. Journal of
Symbolic Computation, 9:535-550, 1990.

S. B. Conlon. Computing modular and projective character de-
grees of soluble groups. Journal of Symbolic Computation, 9:551—
570, 1990.

106

[Cot63]

[CR62]

[CR81]

[dBR61]

[Dix67]

[DKS85]

[Ebe89]

[Edd56]

107

F. Albert Cotton. Chemical Applications of Group Theory. John
Wiley and Sons, Inc., New York, 1963.

Charles W. Curtis and Irving Reiner. Representation Theory of
Finite Groups and Associative Algebras. John Wiley and Sons,
New York, 1962.

Charles W. Curtis and Irving Reiner. Methods of Representation
Theory withe applications to finite groups and orders, volume 1 of
Pure and Applied Mathematics. John Wiley and Sons, New York,
1981.

G. de B. Robinson. Representation Theory. of the Symmetric

Group. University of Toronto Press, Toronto, 1961.

J. D. Dixon. High speed computations of group characters. Num.

Math., 10:446-450, 1967.

Wlodzistaw Duch and Jacek Karwowski. Symmetric group ap-
proach to configuration interaction methods. Computer Physics

Reports, 2(3):95-170, January/February 1985.

Wayne Eberly. Computations for Algebras and Group Representa-
tions. PhD thesis, University of Toronto, 1989. Technical Repoff:
225/89.

Sir Arthur Stanley Eddington. The theory of groups. In James R.
Newman, editor, The World of Mathematics, volume 3, pages

1558-1573. New York, Simon and Schuster, 1956.

[Edw77]

[Ege82]

[ER85)

[Fel78]

[FH62]

[Gal74]

[GI79]

[Ham89]

108

Harold M. Edwards. Fermat’s Last Theorem: A Genetic Intro-
duction to Algebraic Number Theory. Springer—Verlag, New York,
1977.

Omer Egecioglu. Computation of outer products of schur func-

tions. Computer Physics Communications, 28:183-187, 1982.

Omer Egecioglu and J. B. Remmel. Symmetric and antisymmetric

outer plethysms of schur functions. Atomic and Nuclear Data

Tables, 32:157-196, 1985.

V. Felsch. A bibliography on the use of computers in group the-
ory and related topics: algorithms, implementations, and appli-

cations. SIGSAM Bulletin, 12:23-86, 1978.

William Fulton and Joe Harris. Representation Theory: A First

Course. Springer-Verlag, New York, 1962.

Z. Galil. On some direct encodings of nondeterministc Turing
machines operating in polynomial time into P-complete problems.

SIGACT News, 6:1:19-24, 1974.

Micheal R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York, 1979.

Morton Hamermesh. Group Theory and Its Application to Physi-
cal Problems. Dover Publications Inc., New York, 1989. This is a
reprint of the second (corrected) printing (1964) of the work first
published by Addison-Wesley Publishing Compuan, Inc., Read-
ing, Massachusetts, 1962.

[Hoc66]

[HU79]

[TR90)]

[JK81]

[Joh90]

[Keo75]

[Ker91]

[Led87]

109

Robin M. Hochstrasser. Molecular Aspects of Symmetry. W. A.
Benjamin, Inc., New York, 1966.

John E. Hopcroft and Jeffery D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley
Publishing Company, Don Mills, Ontario, 1979.

Kenneth Ireland and Michael Rosen. A Classical Introduction
to Number Theory. Springer—Verlag, New York, second edition,
1990.

Gordon James and Adalbert Kerber. The Representation Theory
of the Symmetric Group, volume 16 of Encycolpedia of Mathemat-
ics and Its Applications. Addison-Wesley Publishing Company,
Reading, Massechusetts, 1981.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A: Al-
gorithms and Complexity, pages 67-162. The MIT Press, Cam-
bridge, Massachusetts, 1990.

R. Keown. An Introduction to Group Representation Theory, vol-

ume 116 of Mathematics in Science and Engineering. Academic

Press, New York, 1975.

Adalbert Kerber. Algebraic Combinatorics Via Finite Group Ac-
tions. Wissenschaftsverlag, Mannheim/Wein/Zurich, 1991.

Walter Ledermann. Introduction to Group Characters. Cambridge

University Press, New York, second edition, 1987.

[Loo83]

[Mac79]

[McW63]

[Mig91]

[Nar79]

[Neu83|

[Rap87]

[Rot89]

110

R. Loos. Computing in algebraic extensions. In B. Buchberger,
G. E. Collins, and R. Loos, editors, Computer Algebra. Symbolic
and Algebraic Computation., pages 173-187. Springer, New York,

. 1983. (2nd Edition).

I. G. MacDonald. Symmetric Functions and Hall Polynomials.
Claredon Press, Oxford, 1979.

R. McWeeny. Symmetry: An Introduction to Group Theory and
Its Applications, volume 3 of The International Encycolpedia of
Physical Chemistry and Chemical Physics. The Macmillan Com-
pany, New York, 1963.

Maurice Mignotte. Mathematics for Computer Algebra. Springer-
Verlag, New York, 1991.

T. V. Narayana. Lattice path combinatorics with statistical ap-
plications, volume 23 of Mathematical Ezpositions. University of

Toronto Press, Toronto, 1979.

J. Neubiiser. Computing with groups and their character ta-
bles. In B. Buchberger, G. E. Collins, and R. Loos, editors,
Computer Algebra. Symbolic and Algebraic Computation., pages
45-56. Springer, New York, 1983. (2nd Edition).

D. C. Rapaport. Algorithms for lattice statistics. Computer
Physics Reports, 5(6):268-349, November 1987.

Tony Rothman. Science a la Mode: Physical Fashions and Fic-

tions. Princton University Press, Princeton, New Jersey, 1989.

[RW84]

[Sag91]

[Sch90]

[Sei90]

[SerT7)

[Sim77]

[S1a86)

[Val79)

111

J. B. Remmel and R. Whitney. Multiplying schur functions. Jour-
nal of Algorithms, 5:471-487, 1984.

Bruce E. Sagan. The Symmetric Group: Representations, Combi-

natorial Algorithms, and Symmetric Functions. Wadsworth and
Brooks/Cole Advanced Books and Software, Pacific Grove, Cali-
fornia, 1991.

Gerhard H. A. Schneider. Dixon’s character table algorithm re-

visited. Journal of Symbolic Computation, 9:601-606, 1990.

J. I. Seiferas. Machine independent complexity theory. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume A: Algorithms and Complexity, pages 163-186. The MIT
Press, Cambridge, Massachusetts, 1990.

J. P. Serre. Linear Representations of Flnite Groups. Springer-

Verlag, New York, 1977.

Janos Simon. On the difference between the one and the many
(preliminary version). In Automata, Langdages, and Program-
ming, volume 52 of Lecture Notes in Computer Science, pages

480-491. Springer, Berlin, 1977.

M. C. Slattery. Computing character degrees in p—groups. Journal
of Symbolic Computation, 2:51-58, 1986.

L. G. Valiant. The complexity of computing the permanent. The-
oret. Comput. Sci., 8:189-201, 1979.

[VEB90]

[vL90]

[Wey50]

[Wie64)

112

P. van Emde Boas. Machine models and simulations. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume A: Algorithms and Complexity, pages 1-66. The MIT Press,
Cambridge, Massachusetts, 1990.

J. van Leeuwen, editor. Handbook of Theoretical Computer Sci-
ence, volume A: Algorithms and Complexity. The MIT Press,
Cambridge, Massachusetts, 1990. '

Hermann Weyl. The Theory of Groups and Quantum Mechanics.
Dover Publications, Inc, New York, 1950. This is a reprint of the
original English translation published in 1931 by Methuen and
Company, Ltd.

Helmut Wielandt. Finite Permutation Groups. Academic Press,:

New York, 1964. Translated by R. Bercov.

