Dealing with the Choice Operator in HOLSS8!

by
Brian Graham

Computer Science Department, University of Calgary
Calgary, Alberta, Canada T2N 1N4
Tel: (403) 220 7691
Fax: (403) 284 4707
Net: grahamb@cpsc.ucalgary.ca

April 3, 1990

Abstract

This paper discusses the choice operator @ in HOL88. It gives an intuitive interpretation, as
well as the definition, and presents proof strategies for goals that contain this operator, broken
down into cases based on the number of values which satisfy the predicate argument. A working
knowlege of the HOL system is assumed.

!supported in part by Contract No.W2213-8-6362/01-SS with the Department of National Defence

1

My recent work on the proof of the SECD microprocessor ({GB89], [SGB89}, [BGI0])
has suffered from close encounters with the choice operator (“@”). It is a powerful device
for making definitions, but we have quite limited capabilities of manipulating this con-
stant. This is unfortunate, as it shows up in many fundamental definitions, including the
definitions of REP functions created when new types are defined. It is also used in the
definition of the temporal abstraction function TimeOf?, which is used when relating two
granularities of time in hardware representation.

I thought it useful to draw together all the axioms, rules, conversions, and tactics
concerned with it, and suggest some techniques to handle it in (backward) proofs.

1 What the HOLS88 System Supplies

The constant “$@” is a binder, having the type $@: (*->bool)->*. In [Cam89a], it is
described as follows:

...if t is a term having type o->bool, then @x.t x (or, equivalently, $et)
denotes some member of the set whose characteristic function is ¢t. If the set
is empty, then ex.t x denotes an arbitrary member of the set denoted by o.
The constant @ is a higher order version of Hilbert’s e-operator; it is related to
the constant ¢ in Church’s formulation of higher order logic. For more details,
see Church’s original paper [Chu40], Leisenring’s book on Hilbert’s e-symbol
[Lei69], or Andrews’ textbook on type theory [And86).

When applied to a predicate, it returns an arbitrary value of the correct type that
satisfies the predicate, and in the case where no such value exists, it returns an arbitrary
but undetermined value of the correct type. It can be used to make a total function from
a partial function.

The following listing includes all built-in tools in the HOL88 system that are specific
to the choice operator.

1.1 Axioms

SELECT_AX : thm (in theory "bool")

|- 1(P:* -> bool) (x:*). P x ==> P($Q P)

>This function was defined by Tom Melham in [Mel88] and Inder Dhingra in [Dhi88].

1.2 Forward Inference Rules

SELECT_INTRO : (thm -> thm)

Al-Pt

A |- P($0 P)

SELECT_ELIM : (thm -> (term # thm -> thm)) (cases)

Al |- P($0 P) , A2, "P v |- ¢t

(v occurs nowhere
Al u a2 |- ¢ except in "P v")

SELECT_RULE : (thm -> thm)
Al- 7x. t[x]

A |- tlex.t[x]]

SELECT_EQ : (term -> thm -> thm) (@ abstraction)

Al-t1 =t¢2

A |- (@x.t1) = (@x.t2)

1.3 Conversions

SELECT_CONV : conv

"P [ex.P [x]]" ---> |- P [ex.P [x]] = ?x. P[x]

1.4 Tactics

SELECT_TAC : (term -> tactic) (term = Q@x.P(x))
(found in start_groups.ml in the "group" library)

[A] Plex.P(x)]

[A] 7x.P(x)

2 Manipulating the Choice Operator

We distinguish three cases for the values that the operator may return:

3

1. the predicate holds for no values, so the operator returns an arbitrary but unspecified
value of the correct type.

2. the predicate holds for a single unique value.

3. the predicate holds for more than one value.

We deal with these cases individually in Sections 2.1 to 2.3.

2.1 No values satisfy

It is useful to observe the equivalence given by SELECT_CONV. The SELECT’ed value
satisfies the predicate if and only if some value exists that satisfies the predicate. From
this we can prove the following is false:

((ex. Q x) =y) ==>Qy

(i.e. if the value at which Q holds equals y then Q holds at y.) By using AP_.TERM @ on
the lhs of the implication, we get:

(QCex. Qx) =Qy) ==>Qy
Using SELECT_CONYV on the lhs gives:
((?%x. Qx) =Qy)==>Qy

If no value exists, then the equation simplifies to:

which is clearly false.

In short this means that it is not possible to prove anything about the specific value
returned by the choice operator unless some value exists at which the predicate holds.
This is relevent to the attempt to define an ‘arbitrary’ value of the form "@x.F". It is not
possible to prove inequality of this term to any value of the appropriate type, but all such
arbitrary terms are equal.

2.2 One value satisfies

In the case where a predicate is satisfied by a unique value, the choice operator applied to
the predicate can be shown to be equivalent to that unique value. We can prove:

|_ (?!x. Q x) == Q c ==> ((@X Q x) = C)

The definition of “$?7!” is:

[- 8720 = (\P. $2 P /\ (!xy. Px /AP y==> (x=71)))

From “Q ¢” one can derive “?x. Q x” (using EXISTS), so we can reduce the earlier
theorem to :

- ("xy. Qx /ANQy==>(x=17y)) ==>Qc == ((€x. Q x) = ¢)

This has been implemented as a forward inference rule and tactic (see Appendix A for
definitions). SELECT _UNIQUE_RULE takes a pair of terms, a theorem that the predicate
holds at the second term, and a theorem that the predicate has a unique value that satisfies
it, and generates a theorem that the value returned by the choice operator applied to the
predicate is the unique value.

SELECT_UNIQUE_RULE : (term # term) -> thm -> thm -> thm

(mx","y") A1 |- Qlyl 42 |- tx y.(Qlx] A QLyl) ==> (x=y)

A1 U A2 |- (ex.Q[x]) =¥

SELECT_UNIQUE_TAC : tactic

[AT "(ox. Qx]) = y"

(4] "Q[y]" [a] "ix y(Q[x] A Q[y]) ==> (x:y)n

An example problem using this tactic arose in the proof of the correctness of the initial
state of the SECD machine. The essentials of the situation in that complex system are
captured in the following simple example.

We define a circuit composed of a mux, 2 inverters, and 2 D-type flip flops. We sample
all lines once per clock cycle, and assume that the D-types start up with the value F
initially (a forced reset at a lower level of description). Definitions for all components are
in Appendix B. Here we define only the circuit implementation:

let circuit_imp = new_definition
(‘circuit_imp*,
“circuit_imp sO s1 =
? q ¢ in0 inl:num->bool.
(D_type q s0) A
(D_type s0 s1) A
(inv s1 inl) A

(inv s0 ¢) A
(mux2 ¢ in0 inil q) A

(gnd in0)"

30

D_type D_type 51

This circuit implements a modulo 3 counter (convince yourself). In order to show that
the first time that the s1 line is asserted is at time t = 2, we establish the goal:

"TimeOf s1 0 = 2"
["circuit_imp sO s1"]

Note that this use of the TimeOf function defines a mapping from the clock cycle time
granularity to one that is sampled only when the sI line is asserted.

The definition of TimeOf is:
|- '£ n. TimeOf f n = (@t. IsTimeOf n f t).

After rewriting the goal with this definition, the choice operator is introduced.

"(Qt. IsTimeOf O s1 t) = 2"
["circuit_imp s0 si"]

Applying SELECT_UNIQUE_TAC reduces the goal to two subgoals, neither of which

contains the choice operator.

"1t t?, IsTimeOf 0 si t A IsTimeOf 0 s1 t’ ==> (¢t = t’)"
["circuit_imp sO si"]

"IsTimeOf 0 si 2"
["circuit_imp sO si"]

The proof is simple. The first goal is proven by an existing theorem IsTimeOf IDENTITY?:

[- 'n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)

3See Appendix C.

The second is solved by rewriting with the definition of IsTimeOf, and the various com-
ponent definitions. (A complete proof is given in Appendix B.)

The use of SELECT_UNIQUE_TAC has permitted us to eliminate the choice operator
entirely from the subgoals, and prove that the value it represents is equal to a specific
value. Thus time 0 of the coarser granularity of time corresponds to time 2 at the finer
granularity.

2.3 More than one value satisfies

When the choice operator is applied to a predicate that is satisfied at multiple different
values, there is no way to determine which specific value the expression represents. One
can only make use of the fact that the predicate is satisfied by the value. An approach to
proof in this situation is supplied by Flsa Gunter, and contained within the start_groups.ml
file in the group library*. The following tactic is provided:

SUPPOSE_TAC : term -> tactic (term = t)

[Al t1

[4;t] t1 [A] ¢

(There is also a REV_SUPPOSE_TAC which merely reverses the order of the subgoals.)
The idea is to add an assumption that will be useful in solving the goal, and also requiring
that the assumtion itself be proved. This approach is useful in splitting a goal into major
subgoals, and proceeding along one branch, while deferring some of the proof steps to a
more convenient time. This tactic can be useful on a goal of the form:

[A] »q (ex. P x)"

SUPPOSE_TAC "7x. P x" gives the following subgoals:
La; "ex. Px"]"Q (ex. P x)"
LA] "?x. P x"
In the first subgoal, using SELECT_RULE on the new assumption gives:

[4a; "P (ex. Px)"] "Q (ex. P x)"

The properties given by the assumption "P (@x. P x)" may be helpful in solving the
goal.

We revert to the previously given circuit for a concrete example. We start with the
goal:

*See the Modular Arithmetic Case Study in [Cam89c].

"~s0(SUC(Time0f si n))"
["circuit_imp sO si1"]

We want to show that the line s0 is always F following the point corresponding to the
coarser granularity of time. Using the definition of TimeOf to rewrite the goal,

"~s0(SUC(Qt. IsTimeOf n s1 t))"
["circuit_imp s0 si"]

followed by the tactic: SUPPOSE_TAC "!n:num. ?t. IsTimeOf n si t", we get 2 sub-
goals:

"in, ?t. IsTimeOf n s1 t"
["circuit_imp sO s1"]

"~s0(SUC(Qt. IsTimeOf n s1 t))"
["circuit_imp s0 si"]
["In. 7t. IsTimeOf n s1 t"]

The upper subgoal corresponds to proving a liveness property for the circuit: there is a
finer grain time ¢ that corresponds to every point in the coarser grain time. In effect, the
predicate si t is satisfied infinitely often. The lower subgoal will permit us to use this
property and the definition of the circuit in its proof. Thus we have effectively separated
the goal into 2 distinct parts: the liveness of the circuit, and the essential property of
the circuit that we are trying to prove. Tackling the bottom subgoal, we can apply
SELECT_RULE to the bottom assumption to obtain

"IsTimeOf n s1(@t. IsTimeOf n s1 t)",
and resolve this with the theorem IsTimeOf TRUE:
IsTimeOf _TRUE = |- In £ t. IsTimeOf n f t ==> f ¢

to get the goal:

"~50(SUC(Qt. IsTimeOf n sl t))"
["circuit_imp s0 s1"]
["IsTimeOf n si(@t. IsTimeOf n si1 t)"]
["s1(@t. IsTimeOf n s1 t)"]

Resolving the first assumption with an unwound circuit definition:

circuit_unwound =
|- circuit_imp sO si ==
('t. s00=F) /\x
('t. s0(SUC t) = ((s0 t) => s1t | F)) /\
('t. s10=F) /\
('t. s1(SUC t) = s0 t)

then rewriting with the theorem same_branches:
same_branches = |- !x (y:*). x =>y | y =y,

solves this subgoal.

The previous subgoal can be solved using another application of SUPPOSE_TAC, with
the assumption "Inf s1", giving the subgoals:

“Inf st
[“circuit_imp s0 s1"]

"In, ?t. IsTimeOf n s1 t"
["circuit_imp s0 s1"]
["Inf si1"]

The bottom subgoal is solved by resolving with the theorem IsTimeOf EXISTS:
|- 'f. Inf £ ==> !n. 7t. IsTimeOf n f t.

The last subgoal requires proving that s1 is asserted infinitely often. This simple subgoal
can be proven by a surprisingly lengthy proof using induction. It is provided in Appendix B
for the interested reader.

It should be noted that SUPPOSE_TAC is more generally useful than just the cases
given here, and it can be applied in the case where the predicate holds for only one value
as well.

3 Conclusions

We have attempted to provide some useful examples of the approach to solving problems
that involve the choice operator in HOL. An informal analysis based on the number of
values satisfying the predicate to which the choice operator was applied, examined what
is provable about goals containing the operator. A new tactic and inference rule for the
case where a unique value satisfies the predicate were supplied. The techniques described
were developed during the verification of the SECD microprocessor design.

Acknowledgements

This work was supported by Strategic, Operating, and Equipment Grants from the Natural
Sciences and Engineering Research Council of Canada and The Canadian Microelectronics
Corporation. The Strategic Grant was also supported by The Alberta Microelectronic
Centre and LSI Canada Inc. The SECD verification effort was also supported by The
Communication Research Establishment, Ottawa. We are indebted to Mike Gordon, Tom
Melham, and Inder Dhingra for assistance in learning and using the HOL system, and to
Elsa Gunter, whose initial input on this topic led to this report.

References

[And86] P.B. Andrews. An Iniroduction to Mathematical Logic and Type Theory: to Truth
through Proof. Computer Science and Applied Mathematics Series. Academic Press,
1986.

[BG90] G. Birtwistle and B. Graham. Verifying SECD in HOL. In J. Staunstrup, editor, Formal

Methods for VLSI Design. Proceedings of the 1990 IFIP WG 10.5 Summer School to be
held at Lyngby, Denmark, 1990.

[Cam89a] Cambridge Research Center, SRI International, Cambridge, England. The HOL System:
Description, 1989.

[Cam89b] Cambridge Research Center, SRI International, Cambridge, England. The HOL System:
Reference Manual, 1989.

[Cam89¢c] Cambridge Research Center, SRI International, Cambridge, England. The HOL System:
Tutorial, 1989.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic,
5:56-68, 1940.

[Dhi88] I. S. Dhingra. Formal Validation of an Integraied Circuit Design Style. PhD thesis,
University of Cambridge Computer Laboratory, 1988.

[GB89] B. Graham and G. Birtwistle. Formalising the Design of an SECD chip. In Proceed-
ings of the Cornell Workshop on Hardware Specification, Verification, and Synthesis:
Mathematical Aspects, New York, 1989. Springer-Verlag.

[Lei69] A. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. University Mathematical
Series. Macdonald & Co. Ltd., London, 1969.

[Mel88] T.F. Melham. Abstraction mechanisms for hardware verification. In G. Birtwistle and
P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages
267-291, Norwell, Massachusetts, 1988. Kluwer.

[SGB89] T.Simpson, B. Graham, and G. Birtwistle. From LispKit to SECD Chip: Some Steps on
the way to a Verified System. In Proceedings of the Third Banff Verification Workshop,
1989. submitted for publication.

10

A SELECT_UNIQUE.ml

%
SELECT_UNIQUE_RULE:

(x',y") A1 |- QLyl A2 |- 'x y.(QIxI/\QLyl) ==> (x=y)

A1 U A2 |- (ex.Q[x]) =y

Permits substitution for values specified by the Hilbert Choice
operator with a specific value, if and only if unique existance
of the specific value is proven.

%

let SELECT_UNIQUE_RULE (x,y) thi th2 =
let Q = mk_abs (x, subst [x,y] (concl thi))
in
let thi’ = SUBST [SYM (BETA_CONV "~Q “y"), "b:bool"] "b:bool" thi
in
(MP (SPECL ["$@ ~Q"; y] th2)
(CONJ (ini_conv_rule BETA_CONV (SELECT_INTRO thi’)) thi));;

%
SELECT_UNIQUE_TAC:

[A] "(ex. Q[x]) =y

[a]"0ylm [41 "txy.(Qx1/\QLyl) ==> (x=y)"

Given a goal that requires proof of the value specified by the
Hilbert choice operator, it returns 2 subgoals:

1. "y" satisfies the predicate, and

2. unique existance of the value that satisfies the predicate.

[

let SELECT_UNIQUE_TAC:tactic (gl,g) =

let Q,y = dest_eq g

in

let x,Qx = dest_select Q

in

let x' = variant (x.freesl(g.gl))x

in

let Qx’ = subst [x’, x] Qx

in

([gl,subst [y,x]Qx;
gl, "!"x “x’. ("Qx /\ “Qx?’) ==> ("x = “x’)"],
(\thl. SELECT_UNIQUE_RULE (x,y) (hd thl) (hd (t1 thl))));;

11

B hilbert.ml

new_theory ‘hilbert‘;;
new_parent ‘when‘;;

loadt ‘SELECT_UNIQUE®;;
loadf ‘start_groups‘;;
load_all ‘when‘;;

% Akt ok ook ok Kok ok ok Aok ok ok ko ok ok koo ok ok ok koK KR ARk kKRR Aok kR Rk Rk Y
let mux2 = new_definition
(‘mux2°,
"lent in0 inl out:num->bool.
mux2 cnt in0 inil out = !t:num. out t = cnt t => in1 t | in0 t"

YHH

let inv = new_definition
(“inv*,
"1in out:num->bool. inv in out = !t. out t = “in t"

)

let D_type = new_definition
(‘D_type*,
"!in out:num->bool.
D_type in out =
(out 0 = F) /\
1t, out (SUC t) = in t"

YHH

let gnd = new_definition

(‘gnd*,

"!p:num->bool. gnd p = !t. pt = F"
)is

let circuit_imp = new_definition
(‘circuit_imp*,
"circuit_imp sO si1 =
? q ¢ in0 inl:num->bool.
(D_type q s0) /\
(D_type sO s1) /\
(inv s1 in1) /\
(inv s0 ¢) /\
(mux2 ¢ in0 in1 q) /\
(gnd in0)"
)i

Y ko okok ok ook ok ok ok ok e ook ok ks sk sk ko kool sk ok ok ok ok koY)
let lemma_0 = TAC_PROOF
(00, "eircuit_imp s0 s1 ==> ~s1 0"),

prtlcircuit_imp; D_typel

THEN DISCH_THEN (REPEAT_TCL CHOOSE_THEN (\th.rt[th]))

)is

12

let lemma_1 = TAC_PROCF

(0, "circuit_imp sO s1 ==> "s1 1"),

prt[circuit_imp; D_type; num_CONV “1"]

THEN DISCH_THEN (REPEAT_TCL CHOOSE_THEN (\th.rt[th])));;

let lemma_2 = TAC_PROOF

((0, "circuit_imp sO si ==> s1 2"),

prtlcircuit_imp; D_type; inv; mux2; num_CONV "2"; num_CONV "1"]
THEN DISCH_THEN (REPEAT_TCL CHOOSE_THEN (\th. rt[th])));;

Y% ks ok kR kb Rk kR KRRk Rk ok k ok ok ok Rk ok okokk ok kY
set_goal(["circuit_imp sO s1"], "TimeOf s1 0 = 2");;

expand (port[Time0f]);;

expand (SELECT_UNIQUE_TAC);;

rotate 1;;

expand (rt[IsTimeOf_IDENTITY]);;

expand (port[IsTime0f]);;

expand (IMP_RES_THEN (\th.rt[th]) lemma_2);;

expand (re_conv_tac num_CONV);;

expand (GEN_TAC THEN prt[LESS_THM] THEN STRIP_TAC);;

expand (art[]);;
expand (port[(SYM o num_CONV) "1"]);;
expand (IMP_RES_THEN ACCEPT_TAC lemma_1);;

expand (art[1);;
expand (IMP_RES_THEN ACCEPT_TAC lemma_0);;

expand (IMP_RES_TAC NOT_LESS_0);;
let initial_thm = save_top_thm ‘initial_thm‘;;

Y% Aok Ak ook ok ook ok ok ok ok ok ok ok Aok ko Kok K sk koK Kk kR kR KRRk R Kk kR Kok Y
let same_branches = TAC_PROOF (([],"'x (y:*). x=>y | y=7y"),
GEN_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN rt[1);;

let not_both = TAC_PROOF
((["circuit_imp s0 s1"], "!t:num. si t ==> ~s0 t"),
INDUCT_TAC
THENL
[IMP_RES_TAC lemma_0O
THEN art{]
; RULE_ASSUM_TAC (prrlcircuit_imp; D_type; inv; mux2; gnd])
THEN FIRST_ASSUM
(\th.(CHOOSE_THEN (REPEAT_TCL CHOOSE_THEN ASSUME_TAC))th ?
NO_TAC)
THEN art[]
THEN ASM_CASES_TAC "(si:num->bool) t"
THENL
[RES_TAC
THEN art([]
; ASM_CASES_TAC "(sO:num->bool) t"
THEN art[]

13

]
;s

let circuit_unwound =
(fst o EQ_IMP_RULE o SPEC_ALL o (prr[D_type; inv; mux2; gnd]))
circuit_imp;;

Y kkddkokkdok p——. ok ok ok ok okok koo k ok ok ok ok kR Y]
set_goal ([“circuit_imp s0 si"], "~sO (SUC(TimeOf si n))");;

expand (port[TimeOf]);;
expand (SUPPOSE_TAC "!n:num. ?t. IsTimeOf n s1 t");;

expand (poke (SELECT_RULE o (SPEC "n:num")));;

expand (IMP_RES_TAC IsTimeOf_TRUE);;

expand (IMP_RES_THEN STRIP_ASSUME_TAC circuit_unwound);;
expand (art[same_branches]);;

expand (SUPPOSE_TAC "Inf si");;
expand (IMP_RES_THEN (\th.rt[th]) IsTimeOf_EXISTS);;

expand (port[Infl);;
expand (INDUCT_TAC);;

expand (EXISTS_TAC "2"
THEN CONJ_TAC
THENL
[prt[num_CONV “2"; LESS_0]
; IMP_RES_THEN ACCEPT_TAC lemma_2
s

expand (poke (porr{[SYM_RULE LESS_MONO_EQ]));;
expand (poke (porr[LESS_THM]));;
expand (POP_ASSUM STRIP_ASSUME_TAC);;

expand (IMP_RES_THEN STRIP_ASSUME_TAC circuit_unwound);;
expand (EXISTS_TAC "SUC (SUC (SUC t’))");;

expand (art[LESS_THM; same_branches]);;

expand (IMP_RES_TAC not_both);;

expand (EXISTS_TAC "t’:num" THEN art[]);;
let sO_thm = save_top_thm ‘sO_thm‘;;

'/, o 3 2 3 3 e e o o afe ke e e e e ok e e ok o o e e o ok ok e o o ok ok ok o ok ok 3 e e o ok ok e e kb e e e sk ke e ook ok sk sk ok sk ke sk '/,

14

| FILE : when.ml

DESCRIPTION : Defines the predicates ‘Next‘, ‘Inf‘, ‘IsTimeOf¢
and ‘TimeOf‘ and derives several major theorems
which provide a basis for temporal abstraction.

l

I

[

|

I

| These predicates and theorems are taken from

| T.Melham’s paper, "Abstraction Mechanisms for
| Hardware Verification'", Hardware Verification
| Workshop, University of Calgary, January 1987.
|
!
!

This file was written by I.S.Dhingra.

- %
new_theory ‘when‘;;
let Next = new_definition
(‘Next*,
"Next t1 t2 £ = (t1<t2) /\
(ft2) /N
1t. (t1<t) /\ (£<t2) ==> ~f g
)i
let IsTimeOf = new_prim_rec_definition
(“IsTime0f*,
" (IsTimeQf 0 £t = £t /\ . (t'<t) ==> "f t’) /\
(IsTimeOf (SUC n) £t = ?t’. IsTimeOf n £ t’ /\
Next t’> t £ "
)i
let TimeOf = new_definition
(‘TimeOf*,
"TimeOf £ n = @t. IsTimeOf n f t"
)i
let when = new_infix_definition
(‘when®,
"when (s:num->*) (p:num->bool) = \n. s (TimeOf p n)"
)i
let Inf = new_definition
(‘Inf*,
"Inf £ = !t. ?7¢°. (t<t?) /\ (£ t2)"
JHH
- -
| Define "LEAST P" to represent that P has a smallest element.
U
h

let LEAST = new_definition

15

(‘LEAST®,

)’v

"LEAST P = ?x. P x /\ (ly. y<x ==> "P y)"

close_theory();;

"

|- tP. (?n. P n) ==> LEAST P

(‘wop
"ip,

)’»

= prove_thm

¢
>

(?n. P n) ==> LEAST P",

REWRITE_TAC [WOP; LEAST]

A

| Inf_

EXISTS = |- !f. Inf f ==> 7n. fn

let Inf_
(‘Inf_

"if,

PURE_

THEN
THEN
THEN
THEN
)i

EXISTS = prove_thm
EXISTS®,
Inf £ == n. £ n",
REWRITE_TAC [Inf]
REPEAT STRIP_TAC
FIRST_ASSUM (STRIP_ASSUME_TAC o (SPEC "t:num"))
EXISTS_TAC "t’:num"
FIRST_ASSUM ACCEPT_TAC

| Inf_

LEAST = |- {f. Inf f ==> LEAST f

let Inf_
(“Inf_

"f,

LEAST = prove_thm
LEAST,
Inf £ ==> LEAST f",

REPEAT STRIP_TAC

THEN
THEN
)i

IMP_RES_TAC Inf_EXISTS
IMP_RES_TAC wop

A

| Inf_

Next |- 1f, Inf £ ==> 1t. £ t ==> ?t’, Next t t’ £

let Inf_
(“Inf_

"if,

PURE_

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

Next = prove_thm

Next ¢,

Inf f ==> It. £ t ==> 7¢t’. Next t t’ f",

REWRITE_TAC [Inf; Next]

REPEAT (X_GEN_TAC "v:num" ORELSE STRIP_TAC)
RULE_ASSUM_TAC (\th. SPEC "v:num" th ? th)

IMP_RES_THEN (X_CHOOSE_THEN "n:num" STRIP_ASSUME_TAC) wop’
EXISTS_TAC "n:num"

ASM_REWRITE_TAC []

REPEAT STRIP_TAC

RES_THEN (STRIP_ASSUME_TAC o (REWRITE_RULE[DE_MORGAN_THM]))
RES_TAC

16

)
where wop’ =
CONV_RULE (DEPTH_CONV BETA_CONV) (SPEC ((mk_abs
dest_exists
snd
dest_forall
rhs
concl
SPEC_ALL
Inf)

~ 0 O 0 0 0 ©o

WOP
)i

Y — ————
| Next_ADD1 = |- 'f t. £ (t+1) ==> Next t (t+1) £
- - %
let Next_ADD1 = prove_thm
(‘Next_ADD1°,
"1f t, f (t+1) ==> Next t (t+1) f",
REWRITE_TAC [Next
; SYM (SPEC_ALL ADD1)
; LESS_SUC_REFL
]
THEN REPEAT STRIP_TAC
THENL [FIRST_ASSUM ACCEPT_TAC
; IMP_RES_THEN
(STRIP_ASSUME_TAC o (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)))
LESS_NOT_EQ
THEN IMP_RES_TAC LESS_SUC_IMP
THEN IMP_RES_TAC LESS_ANTISYM
]

)i

*,
%
| Next_INCREAST = |- 'f t1 t2. ~f(t1+1) ==>

| Next (ti+1) t2 f ==> Next t1 t2 f

-—- %

let Next_INCREASE = prove_thm
(‘Next_INCREASE®,
"I t1 t2. Tf(t1+1) ==
Next (t1+1) t2 £ ==> Next t1 t2 f",
PURE_REWRITE_TAC [Next; SYM (SPEC_ALL ADD1)]
THEN REPEAT STRIP_TAC
THENL [IMP_RES_TAC SUC_LESS
; FIRST_ASSUM ACCEPT_TAC
; MATCH_UNDISCH_TAC "~~(genvar":bool")"
THEN IMP_RES_TAC (PURE_REWRITE_RULE [LESS_OR_EQ] LESS_SUC_EQ)
THEN RES_TAC
THEN ASM_REWRITE_TAC []

)i

| Next_IDENTITY = |- 't1 t2 f. Next t1 t2 f =

"
v

17

| 1$3. Next t1 t3 £ ==> (t2 = t3)
- - %
let Next_IDENTITY = prove_thm
(“Next_IDENTITY®,
"1tl t2 £, Next t1 t2 £ ==
1t3. Next t1 t3 £ ==> (t2 = t3)",
PURE_REWRITE_TAC [Next]
THEN REPEAT STRIP_TAC
THEN PURE_ONCE_REWRITE_TAC
[(SYM o SPEC_ALL o hd o CONJUNCTS) NOT_CLAUSES]
THEN DISCH_TAC
THEN STRIP_ASSUME_TAC
(SPECL ["t2:num"; "t3:num"}
(REWRITE_RULE [DE_MORGAN_THM] LESS_ANTISYM))
THENL [ALL_TAC
; RULE_ASSUM_TAC (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
]
THEN IMP_RES_TAC LESS_CASES_IMP
THEN RES_TAC
Yo

A—
[IsTimeOf_TRUE |- Inft. IsTimeOf n ft ==>f t
e %
let IsTimeOf_TRUE = prove_thm

(‘IsTimeDf_TRUE®,

"“In f t. IsTimeOf n f t ==> £ t",

INDUCT_TAC

THEN REWRITE_TAC [IsTimeOf; Next]
THEN REPEAT STRIP_TAC
)i

%
| IsTimeOf_EXISTS = |- 'f. Inf f ==> !n. 7t. IsTimeOf n f t
-—= —-—- %
let IsTimeOf_EXISTS = prove_thm
(‘IsTimeOf_EXISTS®,
“1f, Inf £ ==> !n. ?t. IsTimeOf n £ t",
GEN_TAC
THEN DISCH_TAC
THEN INDUCT_TAC
THENL [IMP_RES_TAC Inf_EXISTS
THEN IMP_RES_THEN
(ASSUME_TAC o (PURE_REWRITE_RULE {LEAST]))
Inf_LEAST
THEN ASM_REWRITE_TAC [IsTimeOf]
; FIRST_ASSUM STRIP_ASSUME_TAC
THEN IMP_RES_TAC IsTimeOf_TRUE
THEN IMP_RES_TAC Inf_Next
THEN FIRST_ASSUM STRIP_ASSUME_TAC
THEN REWRITE_TAC [IsTimeOf]
THEN EXISTS_TAC "t’:num"
THEN EXISTS_TAC "t:num"
THEN ASM_REWRITE_TAC []

18

A

s

TimeOf_DEFINED = |- !f. Inf f ==> (!n. IsTimeOf n f (TimeOf f n))

let TimeOf_DEFINED = save_thm

(‘TimeOf_DEFINED‘, (GEN_ALL

o DISCH_ALL

o GEN_ALL

o (REWRITE_RULE [SYM(SPEC_ALL TimeOf)])
o CONV_RULE (DEPTH_CONV BETA_CONV)

o (REWRITE_RULE [EXISTS_DEF])

o SPEC_ALL

o UNDISCH_ALL

o SPEC_ALL

) IsTimeOf_EXISTS

)i

TimeOf _TRUE = |- !'f. Inf f ==> (In. f (TimeOf £ n))

let TimeOf_TRUE = save_thm

(‘Time0f_TRUE‘, (GEN_ALL
o DISCH_ALL

o GEN_ALL

o (MATCH_MP IsTimeOf_TRUE)
o SPEC_ALL

o UNDISCH_ALL

o SPEC_ALL

) TimeOf_DEFINED

IsTimeOf_IDENTITY =
|- tn £ t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
U
- - - %

let IsTimeOf_IDENTITY = prove_thm

(“IsTimeOf_IDENTITY®,
"In f t1 t2. IsTimeOf n £ t1 /\ IsTimeOf n f t2 ==> (t1 = t2)",
INDUCT_TAC
THEN PURE_REWRITE_TAC [IsTimeOf; Next]
THEN X_GEN_TAC "f:num->bool"
THEN X_GEN_TAC "t1:num"
THEN X_GEN_TAC "t2:num"
THEN REPEAT STRIP_TAC
THENL [ALL_TAC

; RES_THEN

(\th. EVERY_ASSUM
(STRIP_ASSUME_TAC o (\thm. SUBS [th] thm? thm)))

]

THEN STRIP_ASSUME_TAC
(SPECL ["t2:num"; "t1:num"]
(REWRITE_RULE [LESS_OR_EQ] LESS_CASES))

19

THEN RES_TAC
)5

Z___
| TimeOf_INCREASING =
| |- 1f. Inf £ ==> !n. (TimeOf f n) < (TimeOf f (n+1))

let TimeOf_INCREASING = prove_thm
(*TimeOf_INCREASING®,
"1f, Inf f ==> (!n. (TimeOf £ n) < (TimeOf f(n+1)))",
GEN_TAC
THEN DISCH_TAC
THEN X_GEN_TAC "n:num"
THEN IMP_RES_TAC Inf_Next
THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC '"n:num")) TimeOf_DEFINED
THEN IMP_RES_THEN
(CHOOSE_THEN (STRIP_ASSUME_TAC
o (\thl. CONJ (el 1 thl) (el 2 thl))
o CONJUNCTS
)
o (REWRITE_RULE [IsTimeOf; Next])
o (SPEC "SUC n")
) TimeOf_DEFINED
THEN MATCH_UNDISCH_TAC 'x<y"
THEN IMP_RES_TAC IsTimeOf_TRUE
THEN IMP_RES_THEN
(\th. ONCE_REWRITE_TAC[ADD1; th]) IsTimeOf_IDENTITY

.,

Y- _— -
| TimeOf_INTERVAL =

| |- 'f. Inf £ ==>

| in t. (TimeOf £ n)<t /\ t<(TimeOf f (n+1)) ==> “f t

let TimeOf_INTERVAL = prove_thm
(‘TimeOf_INTERVAL®,
“1f, Inf f ==
'n t. (TimeOf £ n)<t /\ t<(Time0f £ (n+1)) ==> ~f t",
GEN_TAC
THEN DISCH_TAC
THEN X_GEN_TAC "n:num"
THEN X_GEN_TAC "t :num"
THEN IMP_RES_TAC Inf_Next
THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC "n:num")) TimeOf_DEFINED
THEN IMP_RES_THEN
(CHOOSE_THEN (STRIP_ASSUME_TAC
o (\thl. CONJ (el 1 thl) (SPEC "t:num" (el 4 thl)))
o CONJUNCTS
)
o (REWRITE_RULE [IsTimeOf; Next])
o (SPEC '"SUC n")
) TimeOf_DEFINED
THEN FIRST_ASSUM (UNDISCH_TAC o concl)
THEN IMP_RES_TAC IsTimeOf_TRUE

20

THEN IMP_RES_THEN (\th. ONCE_REWRITE_TAC[ADD1; th]) IsTimeOf_IDENTITY
VA

Y e e e —
| TimeOf_Next = |- !f. Inf f ==> !n. Next (TimeOf f n) (TimeOf f (n+1)) £
- - - - -A
let TimeOf_Next = prove_thm
(‘Time0f_Next*,
"1f. Inf £ ==> !'n. Next (TimeOf f n) (TimeOf f (n+1)) £,
PURE_REWRITE_TAC [Next]
THEN REPEAT STRIP_TAC
THENL [IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_INCREASING
; IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_TRUE
; IMP_RES_TAC TimeOf_INTERVAL THEN RES_TAC
]

)i

print_theory ‘when‘;;
%< - _
The Theory when
Parents ~- HOL wop
Constants --
Next ":num -> (num -> ((num -> bool) -> bool))"
IsTimeOf ":num -> ((num -> bool) -> (num -> bool))"
TimeOf “:(num -> bool) -> (num -> num)"
Inf ":(num -> bool) -> bool"
Curried Infixes --
when ":(num -> *) -> ((num -> bool) -> (num -> *))"
Definitions --
Next
[- 11 2 f.
Next t1 t2 £ =
t1 <2 /\ £ t2/\ (1t. t1 <t /\t <t2 ==> "f t)
IsTimeOf_DEF
|- IsTimeOf
PRIM_REC
(\ft. £t /\ (18, £ <t ==> "f t))
(\g00004 n £ t. ?t’. g00004 £ t’> /\ Next t’ t f)

TimeOf |- !f n. TimeOf f n = (Qt. IsTimeOf n f t)
when |- s p. s when p = (\n. s(TimeOf p n))
Inf |- 1f. Inf £ = (!t. ?2¢7. t <t /\f t’)
Theorems --
IsTimeOf
I- (¢ ft. IsTimeOf 0 £ t = £ t /\ (!1t’. ¢’ <t ==> "f t’)) /\
('n f t. IsTimeOf(SUC n)f t = (?t’. IsTimeOf n f t’ /\ Next t’ t £))
Inf_EXISTS |- !'f. Inf f ==> (?n. f n)
Inf_LEAST |- 'f. Inf f ==> LEAST f
Inf_Next |- £, Inf £ ==> (!t. £ ¢t ==> (?7t’. Next t ¢’ f))
Next_ADD1 |- !f t. £(t + 1) ==> Next t(t + 1)f

Next_INCREASE
|- 'f t1 t2. “f(t1 + 1) ==> Next(t1 + 1)t2 f ==> Next t1 t2 f
Next_IDENTITY
|- tt1 t2 f. Next t1 t2 £ ==> (1£3. Next t1 t3 f ==> (t2 = t3))
IsTime0f_TRUE]- 'nf t. IsTimeOf n f t ==> f t

21

IsTimeOf_EXISTS |- !'f. Inf f ==> ('n. ?t. IsTimeOf n f t)
TimeOf _DEFINED |- 1£. Inf £ ==> (!n. IsTimeOf n f(TimeOf f n))
TimeOf _TRUE j- t£. Inf £ ==> (!n. f(TimeOf f n))
IsTimeOf_IDENTITY

|- tn £ t1 t2. IsTimeOf n £ t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
TimeOf _INCREASING

|- 1f. Inf £ ==> ('n. (TimeOf £ n) < (TimeOf f(n + 1)))
TimeOf _INTERVAL

|- tf. Inf f ==>
('nt. (TimeOf £ n) < t /\ t < (TimeOf f(n + 1)) ==> "f t)
TimeOf _Next |- !f. Inf f ==> (!n. Next(TimeOf f n)(TimeOf f(n + 1))f)
Rk kKR ST RIS * * kK >%

22

