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1 Introduction

The work of Black and Scholes [1] and Merton [26] provided a solution in
simple situations to derivative valuation and hedging. They considered the
situation where the price dynamics of the underlying risky asset are described
by a geometric Brownian motion (GBM). Together with the assumptions of a
perfect market and the absence of arbitrage, they were able to perfectly repli-
cate the payoff of a derivative security by continuously re-balancing a portfolio
consisting of a bond and a share and so derived an explicit pricing formula
for a standard European call option. The advantage of the Black-Scholes-
Merton formula is that it is preference-free; that is, it does not depend on
a choice of utility function and the appreciation rate of the underlying risky
asset. Therefore, the subjective views of market participants about the ap-
preciation rate and risk-preferences do not influence the option price in the
Black-Scholes-Merton world. Despite its compact form and popularity, the as-
sumptions underlying the Black-Scholes-Merton model are often questioned.
The GBM cannot explain some observed important empirical features of asset
price dynamics. In the past three decades a number of option pricing models
based on more realistic price dynamics have been proposed. These include the
jump-diffusion model, the stochastic volatility models, the GARCH option
pricing model, and others. These models can provide a more realistic way to
describe empirical features of share price data, such as heavy-tailedness, and
the option price data, such as the implied volatility smile or smirk. However,
they do not take into account structural changes in economic conditions when
modeling asset price dynamics and valuing options. In practice, structural
changes in economic conditions have significant impact on and economic im-
plications for asset prices. For example, there have been substantial changes
in asset prices before and after the global financial crisis of 2008. Structural
changes in economic conditions represent an important risk factor that should
be taken into account in asset pricing models, especially when one wishes to
value long-dated option contracts. Failure to incorporate this risk factor ap-
propriately may lead to incorrect assessment of the risk inherent from writing
an option contract.

Regime-switching models have recently attracted serious attention among re-
searchers and practitioners in economics, finance and actuarial science. They
provide a natural and convenient way to incorporate structural changes in eco-
nomic conditions when modeling asset prices movements. The idea of regime
switching models may be traced back as early as the work of Quandt [30],
where a two-state, regime-switching, regression model was developed. Gold-
feld and Quandt [18] considered a regime-switching regression model for de-
scribing the nonlinearity and non-stationarity of economic data. Econometric
applications of regime-switching models were pioneered in the original work of
Hamilton [20], where a class of discrete-time, Markov-switching, autoregres-



sive time series models was proposed. Empirically, this class of models can
describe a number of important “stylised” facts of economic and financial time
series, such as the heavy-tailedness of assets’ returns, time-varying conditional
volatility, volatility clustering, regime switchings, nonlinearity and nonstation-
arity. Economically, regime-switching models can describe structural changes
in economic conditions and provide flexibility to describe stochastic evolution
of investment opportunity sets over time. Applications of regime-switching
models can be found in many fields of economics and finance. Some of these
applications include Elliott and van der Hoek [7] for asset allocation, Pliska
[29], Elliott et al. [8] and Elliott and Kopp [10] for short rate models, and
Elliott and Hinz [9] for portfolio analysis and chart analysis.

Recently, attention has turned to the application of Markov regime-switching
models to value derivative securities. The market in a regime-switching model
is, in general, incomplete. Consequently, the standard Black-Scholes-Merton
arguments cannot be applied and the option valuation problem becomes more
challenging from both a mathematical and economic perspective. Different
methods have been developed to value derivative securities in an incomplete
market. Follmer and Sondermann [15], Féllmer and Schweizer [16] and Schweizer
[31] introduced the minimization of a quadratic function of hedging errors for
valuation. Davis [3] used traditional economic equilibrium arguments to value
options and formulated the problem as a utility maximization problem. Gerber
and Shiu [17] pioneered the use of the Esscher transform, a well-known tool
in actuarial science, to value options in an incomplete market. Hodges and
Neuberger [25] developed a utility-based indifference pricing approach in an
incomplete market. The idea of indifference pricing is to determine a seller’s,
(buyer’s), price so that the seller, (the buyer), is indifferent to whether the
claim is sold, (bought), or whether it is not sold, (bought). The utility-based
approach has a solid economic foundation and is related to the concept of cer-
tainty equivalence, which has been applied in insurance economics for premium
calculation. The idea of utility-based indifference pricing was then applied by
Hobson and Henderson [24] for valuation of contingent claims in stochastic
volatility models. Some existing works on option valuation in regime switch-
ing models include Naik [27], Guo [19], Buffington and Elliott [2], Elliott et
al. [11], Elliott et al. [12], [13], Siu [32]. However, it seems that in these works,
the regime-switching risk was not priced explicitly. In practice, this source of
risk is important and should be priced appropriately.

In this paper, we study utility-based indifference pricing and hedging of a
European-style contingent claim in a continuous-time, Markov, regime-switching
model. The market interest rate, the appreciation rate and the volatility of a
share are modulated by a continuous-time, finite-state, Markov chain whose
states represent various states of an economy. There are two sources of risk in
the regime-switching model. One source of risk is attributed to fluctuations
of market prices, or rates. We refer to it as market risk and model this by a



standard Brownian motion. The other source of risk is due to more long term
changes in in economic conditions. This is referred to as economic risk and is
modeled here by the Markov chain. In the context of utility-based indifference
valuation, the market risk and the economic risk described here may be re-
garded as the tradeable and non-tradeable factors of risk. Since the market in
this model is incomplete, there is more than one price kernel, and so more than
one arbitrage-free price of the claim. Further, in an incomplete market, not
all contingent claims can be perfectly hedged. Consequently, the selection of a
price kernel and the determination of an optimal, (partially), hedged portfolio
are two key issues. In this paper we first specify the parametric form of price
kernels so that both market risk and economic risk are considered. This can
be achieved by introducing a price kernel given by the product of two density
processes for measure changes, one for the standard Brownian motion and an-
other for the Markov chain. We determine an issuer’s price and the optimal,
(partially), hedged portfolio of the claim so that both the market risk and
the economic risk are priced and hedged optimally. The valuation and hedg-
ing problem is then formulated as a stochastic optimal control problem. We
use the dynamic programming approach to solve the problem. A verification
theorem for the Hamilton-Jacobi-Bellman (HJB) equation is given. The local
conditions of the theorem are then used to determine an issuer’s price kernel
and the optimal, (partially), hedged portfolio of the claim. In particular, the
issuer’s price kernel is given as the solution to a system of linear programming
problems.

The paper is organized as follows. Section 2 gives the model dynamics and a
parametric form of price kernels based on the product of two density processes.
In Section 3, we present the utility indifference valuation method to select a
price kernel and an optimal hedged portfolio for the issuer of the claim. Section
4 gives verification theorems for the HJB equations to the valuation problem.
We also derive the local conditions for the issuer’s utility-indifference price
kernel and optimal hedged portfolio. A system of linear programming problems
for determining the price kernel is obtained and is solved in the cases of two
regimes and three regimes. The final section gives some concluding remarks.

2 The Model Dynamics and Price Kernels

Consider a continuous-time economy with two primitive assets, a bond and
an ordinary share. We suppose that these assets are traded continuously over
time on a finite time horizon 7 := [0, 7], where T' € (0, 00). Fix a complete
probability space (€2, F,P), where P is a real-world probability measure. We
suppose that the probability space is rich enough to model both market risk
and economic risk.



2.1 The Model Dynamics

Firstly, we describe the model for transitions of states of an economy. Let
X = {X(#)[t € T} be a continuous-time, finite-state, Markov chain on
(Q, F,P) whose states represent different states of the economy. Suppose
the chain X takes values in a finite state space S := {si,s5...,s5} € R".
We assume that X is observable and that its states are proxies of some ob-
servable, (macro)-economic, indicators. For example, they may be interpreted
as the credit ratings of a region, or sovereign credit ratings. They may also
be interpreted as the gross domestic product (GDP) and retail price index
(RPI). Following the convention in Elliott et al. [6], we identify, without loss
of generality, the state space of the chain X with a finite set of basis vectors
€ :={ej, ey, ...,ex} € RV where the j* component of e; is the Kronecker
delta 0;;, for each 7,5 = 1,2,..., N. The space & is called a canonical state
space of the Markov chain.

Let A(t) := [ai;j(t)])ij=12.n, t € T, be a family of generators of the Markov
chain X under P. These generators are also called rate matrices, transitions
intensity matrices, or (Q-matrices. They specify the statistical properties of
the chain X under P. For each i,7 = 1,2,..., N, a;;(¢) is the instantaneous
intensity of the transition of the chain X from state j to state ¢ at time ¢.
Note that for each t € T, a;;(t) > 0, for i # j and that YN a;;(t) = 0,
so a;(t) < 0. For each 4,7 = 1,2,..., N with ¢ # j and each t € T, we
suppose that a;;(t) > 0, so a;;(t) < 0. For any such matrix A(t), write a(t) :=
(a11(t), ..., ay(t),...,ann(t))’, where y’' is the transpose of a matrix, or a
vector, y. With the canonical state space representation, Elliott et al. [6] gave
the following semi-martingale dynamics for X:

X () = X(0) + / A(w)X (u—)du + M(t)

where {M(¢)|t € T} is an RV-valued martingale with respect to the right-
continuous, P-completed, filtration generated by X, denoted as FX := {FX(t)|t €
T}, under P. Since {fi A(u)X(u—)dult € T} is a predictable process of
bounded variation, X is a special semi-martingale and the above semi-martingale
decomposition is unique.

We are now ready to present the price dynamics of the bond and the share.
Let r(t) denote the instantaneous market interest rate of the bond at time t,
t € T. We suppose that the chain X determines r(t) as:

r(t) = (r,X(1)) ,



where r := (11,79, -+, ry) € RY with r; > 0, for each ¢ = 1,2,--+, N; r; is
the market interest rate of the bond when the economy is in the i'* state; the
scalar product (-, -) selects the component of r that is in force at a particular
time based on the state of the economy at that time.

The price process of the bond is then given by:

B(t)zexp(jr(u)du) , teT, B0)=1.

Let W := {W(¢)|t € T} be a standard Brownian motion on (£, F,P) with
respect to the P-augmentation of its own natural filtration. To simplify the
issue, we suppose that W and X are stochastically independent. For each
t € T, let u(t) and o(t) be the appreciation rate and the volatility of the share
at time ¢. Again we assume that the chain determines u(t) and o(t) as:

Here po := (py, pio, -, i)’ € RY with y; € ry and o := (01,09, -+, 0n) € RY
with o; > 0; u; and o; are the appreciation rate and the volatility of the share
when the economy is in the i** state, respectively, for each i = 1,2,---, N.

Then the share price process evolves over time according to the following
Markov, regime-switching, geometric Brownian motion (GBM):

dS(t)=u(t)S(t)dt + o(t)S(t)dW(t) ,

S(0)=s>0.
Since the economy considered here consists of two sources of random shocks
and two primitive securities, the market in the economy is incomplete.

2.2  Price Kernels as a Product of Two Density Processes

The key to value a contingent claim is to determine a price kernel, or an
equivalent martingale measure. The first step is to determine a parametric
form for price kernels. 2 There are different ways to specify the parametric

2 Indeed, one may also consider a non-parametric approach to specify a price ker-
nel. However, the non-parametric approach may be subject to the problem of curse
of dimensionality. To solve this problem, one may then consider a semi-parametric



form of price kernels. Here we specify a class of price kernels by a product
of two density processes so that both the market risk and economic risk are
taken into account in the parametric specification of the price kernels. One
of the density processes is for a measure change for the standard Brownian
motion W and the other one is for a measure change of the Markov chain
X. The product of two density processes and a Girsanov transform for the
Markov chain were used in Elliott and Siu [14] for risk minimizing investment
portfolios.

Firstly, we define a density process for a measure change for the Brownian
motion W. Let FW := {FW(t)|t € T} be the right-continuous, complete,
filtration generated by W. For each i = 1,2,..., N, let {0;(¢)|t € T} be a
real-valued, F"-progressive measurable, stochastic process such that

(1) for each i =1,2,---, N, |6;(t)] = |0;(t,w)| < K < o0, V(t,w) € T x £
(2)

T

/|€i(t)|2dt <oo, P-as., i=12...,N.

0

Consider a Markov, regime-switching, process 0 := {0(t)|t € T } as:

0(t) =(0(t),X(t)) , teT,
where 0(t) := (01(t),05(t),...,0n(t)) € RV,

Suppose IS = {F5(t)|t € T} and FX := {FX(t)|t € T} are the right-
continuous, P-completions of the filtrations generated by the price process of
the share S and the Markov chain X, respectively. Define, for each t € T,
G(t) := F3(t) v FX(t) to be the enlarged o-algebra generated by both F5(t)
and FX(t). Consequently, for each t € T, G(t) contains information generated
by the share price and observable economic information up to and including
time ¢. Write G := {G(t)|t € T }. This represents the flow of public information
over time.

Define a G-adapted process A := {A%(t)|t € T} associated with 6 by putting

A%(t) := exp < - /t@(s)dW(s) - ;/tHQ(s)ds> . (1)

approach to select a price kernel. This may represent an interesting topic for fur-
ther research. Both the semi-parametric and non-parametric approaches are more
complicated than a parametric approach. For simplicity, we consider a parametric
approach here.



Since |6;(t,w)] < K < oo, Y(t,w) € T x Q, it is not difficult to check that
the Novikov condition is satisfied. That is, {6(t)|t € T} satisfies the following
condition:

E{exp (;/T|9(t)|2dt)] <00 .

For detail about the Novikov condition, interested reader may refer to Elliott
[5], (Chapter 13, therein).

Consequently, A? is a (G, P)-martingale, and
E[AY(T)] =1.

We now define a density process for a measure change for the Markov chain
X. For each 4,5,k = 1,2,---, N, we consider a real-valued, F'"-predictable,
bounded stochastic process {c};(t)[t € T} on (Q,F,P) such that for each
teT,

(1) cf(t) >0, for i # j;

(2) ?;1 cfj(t) =0, so c&(t) <0.

Let C(t) := {cij(t) }ij=12,..~n, t € T, be a second family of rate matrices of the
chain X under a new probability measure such that for each i, =1,2,---, N,

cij(t) = (ci(t), X(t=)) , teT. (2)
Here c;;(t) := (cj;(t), (L), - -+, ¢ (1)) € RN, where ¢;(t) is the instantaneous
intensity of transition of the chain X from state j to state ¢ at time ¢ when
X(t—) = ey. Consequently, ¢;;(t) depends on X(t—) only through the scalar
product (-, ).

Let C*(t) := [c};(t)]ij=1,2,..n, for each k =1,2,---, N and each t € T, where
Ck(t) is the rate matrix of the chain X at time ¢ when X(t—) = e;,. Conse-
quently, we can write

C(t) :zick(t) (X(t—),er) , teT. (3)

Now we wish to introduce a new probability measure under which C is a
family of rate matrices of the chain X. The development here follows that of



Dufour and Elliott [4], where a version of Girsanov transform for the Markov
chain was adopted.

Define, for each t € T, the following matrix:

DE(t) = [cij () /ai; ()]s =12, -
Note that a;;(t) > 0, for each ¢t € T, so D(t) is well-defined.

For each t € T, let

d®(t) = (dS (1), dSy (1), - -, dSn (1) € RY .

Write, for each t € T,

D (t) := D(t) — diag(d“(1)) ,

where diag(y) is a diagonal matrix with diagonal elements given by the vector
y.

Consider the vector-valued counting process, N := {IN(¢)|t € T }, on (Q, F, P),
where for each t € T, N(t) := (N1(t), No(t), -, Nx(t)) € RY and N;(¢)
counts the number of jumps of the chain X to state j up to time ¢, for each
7 =1,2,--- N. Then it is not difficult to check that N admits the following
semi-martingale representation: (See Dufour and Elliott [4])

/ (I — diag(X(u—)))dX(u)

N(0) + / (I — diag(X(u—)))A(t)X(t)dt

+ / (I — diag(X(u—)))dM(t), teT . (4)

Here N(0) = 0, the zero vector in R".

The following lemma gives a compensated version of N under P, which is a
martingale associated with N. This result is due to Dufour and Elliott [4] and

we recall it here.

Lemma 2.1. Let Ay(t) := A(t)—diag(a(t)), where a(t) := (a11(t), asa(t), -, ayn(t)) €
RN, for each t € T. Then the process N := {N(t)|t € T} defined by putting



is an RN -valued, (FX,P)-martingale.

Consider the FX-adapted process A€ := {AC(t)|t € T} on (Q, F,P) associ-
ated with C defined by setting

AC(H) =1+ / AC(u—)[DE ()X (u—) — 1)/dN(u) .

Here 1:= (1,1,...,1) ¢ RN,

Then the following result is an immediate consequence of Lemma 2.1 and the
boundedness of ¢;;(t), for each 4,5 =1,2,---, N and each t € T.
Lemma 2.2. A€ is an (FX,P)-martingale.

Let K be a subspace of the space of rate matrices of the chain X defined by:

K := {C|A€ is an (FX, P)-martingale} .

Then for each C € K, A€ is used as a density process for a measure change
for the chain X.

Consider a G-adapted process A%C = {A%C(t)|[t € T} on (Q, F,P) defined
by:
APC(t) = A°(t) - AC(t), teT.
Our assumptions ensure that A%€ is a (G, P)-martingale.
We now define a probability measure Q%€ absolutely continuous with respect

to P on G(T') as:

dQG,C

= AC(T) . 6
P o (T) (6)

This is a density process for a measure change for both the standard Brownian
motion W and the Markov chain X.

The following theorem gives the probability laws of the Brownian motion W
and the chain X under the new measure Q%C.

10



Theorem: 2.1. The process defined by

WOt) .= W(t) — /Q(U)du , teT,

is a (G, Qe’c)—standard Brownian motion. Under Q%€ the chain X has a
family of rate matrices C and can be represented as:

X () = X(0) + / C(u)X (u—)du + ME(t) ,

0

where MC := {MC(t)|t € T} is an RY -valued, (G, Q%€)-martingale.

Furthermore, under Q%C, the share price process evolves over time as:

.
95)
—
~
SN—
I
o

p(t) +o®)0t)S(t)dt + o(t)SE)dWl(t) , teT ,

Proof. The results follow directly from Girsanov’s theorem for the Brownian
motion and a Girsanov transform for the Markov chain, (see, Elliott [5] and
Dufour and Elliott [4] ) O

3 Selection of a Price Kernel and Utility Indifference Approach

In this section, we present a utility indifference approach for the selection of a
price kernel and the optimal hedged portfolio for a European-style contingent
claim from an issuer’s perspective. We first demonstrate that the martingale
condition is not sufficient to fix a price kernel if one wishes to price both market
risk and economic risk. We then illustrate the use of the utility indifference
approach to solve the problem. The central idea of the utility indifference
approach is to determine an issuer’s price kernel, or price, so that from a
perspective of utility maximization, the issuer is indifferent to whether the
claim is sold, or not sold. Here we use this approach to determine an issuer’s
price of the claim. A buyer’s price of the claim can be determined in the same
way.

11



3.1 Selection of a price kernel

Harrison and Kreps [21] and Harrison and Pliska [22], [23] established a fun-
damental relationship between the absence of arbitrage and the existence of
an equivalent martingale measure. This is known as the fundamental theo-
rem of asset pricing. A version of this theorem states that the absence of
arbitrage is “essentially” equivalent to the existence of an equivalent martin-
gale measure under which all discounted price processes are martingales. We
refer the latter condition to as a martingale condition. In our current con-
text, the martingale condition implies that the discounted share price process

S(t) == exp(— [Ir(u)du)S(t), t € T, is a martingale (G, Q%€). That is,

S(u) =E*C[St)|G(w)], tueT, t>u. (7)
Here E%C is expectation under Q%C.
The following theorem gives a necessary and sufficient condition for the mar-

tingale condition.
Theorem: 3.1. The martingale condition holds if, and only if

oy = "= e (8)

Proof. By Corollary 2.1, under Q%C,

dS(t) = (u(t) + o(£)0(t)St)dt + o(t)SE) AW (¢) .

Applying Ito’s differentiation rule to exp(— [y r(u)du)S(t) gives:

dS(t) = (u(t) — r(t) + o(0)0(t)S(t)dt + o (t)S(t)dW(t) .

This is a (G, @%C)-martingale if, and only if the drift term vanishes. The result
follows. o

From Theorem 2.1 and Corollary 2.1, we see that the martingale condition
is not sufficient to determine the family of rate matrices C under the new
probability measure Q%€ We need an additional condition to determine C.
Here we adopt the utility-based indifference approach to select C. From now
on, we assume that {0(t)|t € T} satisfies the martingale condition (8).

12



3.2 Utility-Based Indifference Valuation

We consider a situation where the issuer invests his/her wealth in the bond
and the share so as to maximize the expected utility of terminal wealth at
time T'. Firstly, we define a portfolio process of the issuer. For each t € T let
7(t) be the proportion of wealth invested in the share at time t. We assume
that 7 := {m(t)|t € T} is G-progressively measurable and cadldg, (i.e., right
continuous with left limits). This means that the issuer decides the number
of units invested in the share at each instant according to information gen-
erated by the share and observable (macro)-economic states just prior that
instant. We also assume that 7 is self-financing, (i.e., there is no income or
consumption).

Let V™ := {V™(t)|t € T} be the wealth process of the issuer who invests
according to the portfolio process 7. In the following, to simplify the notation,
we suppress the superscript 7 and write V(t) := V™ (¢), for each ¢t € T, unless
stated otherwise. Then it is not difficult to show that under P, the wealth
process of the issuer evolves over time as:

SH
<
—~
~+
~—
I

r(t) + (u(t) —r@)r @)V (@)dt + 7 (t)o )V ()dW (1) ,
V(0)=v . (9)

We suppose that the portfolio process 7 is such that the stochastic differential
equation (9) for the wealth process V' has a unique strong solution and that

/ [|V(t)||r(t) F(ult) = (D)) + 2OTOVH) | dt < 00, P-as.

We also impose the technical condition that m satisfies

T
/7T2(t)dt <00, P-as.
0

To preclude “doubling strategies”, we may require that the wealth process
V' is uniformly bounded from below. For details, interested readers may refer
to Harrison and Pliska [22]. We write A for the space of all such admissible
portfolio strategies.

Corollary 3.1. Suppose 0(t) = %, YVt e T, (i.e. {6(t)|t € T} satisfies
the martingale condition (8)). Then under Q%C, the dynamics of the share
price process, the wealth process of the issuer and the Markov chain are given

by:

13



S(t)dt + o (t)S(t)dWO(t) ,
dt + (o (t)V ()dW(t) ,
dX(t)=CHt)X(t)dt + dMC(t), teT .

<
~~
S+
~—

Proof. The result follows from Theorem 3.1 and Corollary 2.1. [

For valuing contingent claims, we only need to consider equivalent martingale
measures. Consequently, we shall consider a family of probability measures
Q%€ such that 6 satisfies the martingale condition (8) and C € K. In the
sequel, we adopt the utility indifference pricing approach to determine a C €
and a ™ € A.

Let U : ® — R be a concave, strictly increasing and differentiable utility
function, where R is the extended real line, (i.e. # := R U {cc}). Consider a
general contingent claim with payoff of the form F(T') := F(S(T),X(T)), for
some Borel-measurable function F': ®2 — R; that is, the payoff of the claim
at the terminal time 7" depends on both the share price and the economic
state at that time.

Suppose the issuer of the claim F' has a utility function U. Then conditional
on S(t) = s, X(t) = x and V(t) = v, the issuer charges a premium of P¥ :=
PF(t,s,v,x) at time ¢ for writing the claim F with maturity at time 7. We
consider the following two scenarios.

Scenario I: Suppose the claim F is sold at time ¢. Then conditional on S(t) =
s, V(t) = v and X(t) = x, the issuer faces the following optimization problem.

d(t,s,v+ P x):= _sup By e, x[U(V™(T) — F(S(T),X(T)))] . (10)

Here Efsc »x 1 a conditional expectation under Q%€ given S(t) = s, V() = v
and X(t) = x. ® is the value function of the optimization problem. In this
problem, the objective of the issuer is to choose an optimal hedged strategy
and a price kernel so as to maximize the expected utility on terminal wealth.

Scenario II: Suppose the claim F' is not sold at time ¢. Then conditional on
S(t) =s, V(t) = v and X(t) = x, the issuer faces the optimization problem.

O(t,s,0,%x) = sup Efe, [UV(T))] . (11)
TeA,CeX

Similarly, the goal of the issuer is then to select an optimal portfolio strategy
m € A that maximizes the expected utility on terminal wealth.
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Conditional on S(t) = s, V(t) = v and X(t) = x, the utility indifference price
of the issuer for the claim F' at time ¢ is defined as the premium P¥, which is
a solution, (if it exists), to the following equation:

®(t,s,v+ PF x) = d(t,5,0,%) .

To determine a price kernel and an optimal hedging portfolio, we must solve
the optimization problem in Scenario I. To find an issuer’s utility indifference
price of the claim F', we need to find the value functions in Scenario I and
Scenario II. The existence of the solutions in the two scenarios depends on (1)
the type of utility function U used, (2) the appropriate admissible strategies
A and K, and (3) the integrability conditions on the claim F'.

4 A Verification Theorem for the Hamilton-Jacobi-Bellman (HJB)
Solution

In this section we first give a verification theorem for the Hamilton-Jacobi-
Bellman (HJB) solution of each of the optimization problems which arise in
the utility-based indifference valuation. We then derive local conditions for the
issuer’s utility-based indifference price kernel and optimal hedged portfolio.

4.1 Verification Theorem

Firstly, we need some assumptions for the control processes, namely, the op-
timal portfolio strategy m and the family of the rate matrices C. Note that
the vector-valued process {(S(t), V(t), X(t))|t € T} is Markov with respect to
the enlarged filtration GG. Under mild conditions, the class of Markov controls
will perform as well as the larger class of adapted controls, (see, for example,
(Oksendal [28]). Elliott [5] noted that if the state processes are Markov, it is
not unreasonable to assume that the optimal controls are Markov, so here we
consider Markov controls.

Let O := (0,T) x (0,00) x (0,00) be the solvency region. Let K; C R and
K, C RY @ RV such that 7 € K; and C € K, where RY @ R is the space
of all (N x N) matrices. Here we consider the case that K is a “rectangular”
region in the sense that

Cij(t)6[0_<i,j>,c+(i,j)] ) iaj:1727"'7N7 tETa

for some given real constants ¢~ (i, j) and ¢* (i, j).
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In addition, we impose the following constraints on the lower and upper bounds
¢ (i, j) and ¢* (i, ).

N N
Se(i,j)=0, Y ¢t(,5)=0, 4,j=1,2,---,N.
=1

i=1
These constraints are the same as that for the rate matrix.

Let 7: O x & = K; and C: O x & — K, be two functions such that

w(t) = (1, S(0), V(£), X(1)) .

C(t)=C(t, S(t), V(t),X(t)) .

To simplify, with a slight abuse of notation, hereafter we do not distinguish
between 7 and 7, and between C and C. Consequently, we can simplify the
control processes with deterministic functions 7 (¢, s,v,x) and C(t, s, v, x), for
each (t,s,v,x) € O x €. We call them feedback controls. Define the following
spaces of Markov controls:

Ay ={m € A|r is Markov} ,
K :={C € K|C is Markov} .

Suppose h € CM(T x (RT)? x ). Let hi(t,s,v) := h(t, s,v,e;), for each
(t,s,v) € T x (R")? and each i = 1,2,---, N. To simplify the notation, let
h; := hi(t,s,v), for each i« = 1,2,--- N, and h = h(t,s,v,x). Write h :=
(hi,hg, -+, hy) € RN, Then, for any (7, C) € Ay x Ky, the vector-valued,
controlled, state process (S, V™, XC) is Markov with respect to the enlarged
filtration G with generator £ on the function space C3(T x (%)% x &)
under the measure Q%€ defined by setting:

E”’C[h(t, $,v,X)]

_ 0Oh oh oh 1 5 ,0*h 1 5, o ,0%
=5 +r(t)sas —I—r(t)vav + 57 (t)s 5a? + 50 (t)m*(t)v 502
2
—I—cr2(t)7r(t)svasav +(h,C(t)x_) , VYheC"*(T x (R")?*x¢&),

where x_ := X(t—), for each t € T .

The following lemma is useful for the verification theorem.

Lemma 4.1. Suppose T is a stopping time, where 7 < oo P-almost surely.
Assume further that h(t, s,v,x) and LYC[h(t, s, v,x)] are bounded on t € [0,1].
Then
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E*Clh(r,S(7),V (), X(7))]

T

— (0, 5,0, %) + E*C ( [ £, 5@, v @), X(t))]dt) .

Proof. The result follows by applying It6’s differentiation rule to h(t, S(t), V (t), X(t))
and conditioning on (S(0),V(0),X(0)) = (s, v,x). O

The following theorem gives the verification theorem for the HJB solution to
the optimization problem in Scenario I and provides a sufficient condition for
the optimality.

Theorem: 4.1. Let O be the closure of O. Suppose there is a function h
such that for each x € &, h(-,-,-,x) € C*(O)NC(O) and a Markov control
(#(t), C(t)) € Ay x Kas such that:

(1) L7C[h(t,s,v,x)] = SUDre i, ceky LTCR(E, s,v,%)] = 0, V(t, s,v,x) € Ox
E;
(2) for all (m,C) € Ay x K,

lim h(t, S(t), V(t),X(t)) = U(V(T) — F(S(T),X(T))) .

t—T—

(3) let St be the set of stopping times T < T. The family {h(r, S(7), V (1), X(7))|T €
Sr} is uniformly integrable.

Write, for each (m,C) € Ay x Ky,

J™C(t,s,v,x) = EPClUV(T) — F(S(T),X(T)))] .

Then

h(t,s,0,x) = B(t,s,v,x) = J7C(t, 5,0, %) ,

and (#,C) is an optimal Markov control.

Proof. The proof of Theorem 4.1 is adapted from the proof of the verification
theorem to the HJB solution to a standard stochastic optimal control problem
in Oksendal [28]. However, the partial differential operator used in Qksendal
28] is for a diffusion process. Here we replace the partial differential operator
in Qksendal [28] by the one in Lemma 4.1, and all of the steps in the proof
of the verification theorem in Qksendal [28] can be followed exactly to prove
Theorem 4.1 here. O]

The verification theorem for the HJB solution of the optimization problem in
Scenario II is the same as that of the Scenario I presented in Theorem 4.1,
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except that they have different terminal conditions. The terminal condition of
the value function of the optimization problem in Scenario IT is:

O(t,s,v,x) =U(V(T)) .

4.2 The Local Conditions

We now give the local conditions that characterize a price kernel and an
optimal hedged portfolio of the issuer. To determine the price kernel and
the optimal hedged portfolio, we must determine 7,(t) := n(¢,s,v,e;) and
cij(t) == ci(t,s,v,e5),4,7=1,2,--- N, for each t € T. We only need to solve
the optimization problem in Scenario I to determine the price kernel and the
optimal hedged portfolio. To find an issuer’s utility indifference price of the
claim, we have to solve the optimization problem in Scenario II as well and
the issuer’s price is then determined by the value functions of the optimization
problems in the two scenarios.

Firstly, we fix some notation. For each i = 1,2, .-+, N, let ®(i) := ®(t, 5,0, €;)
and ®(i) := ®(t, 5,v, ;). Write @ := (®(1), $(2),---,®(N)) € R and @ :=
(@(1),®(2), -+, P(N)) € RY. For each i =1,2,---, N, let

wi) =220 a0 =200 a0 = 20
b)) = o @)= SO ()= T

Similarly, we define the corresponding notation for the first-order and the
second-order partial derivatives of ®(i), ¢ = 1,2,---, N, with respect to the
variables ¢, s and v.

The following theorem gives a system of equations which are satisfied by the

unknown variables 7;(t) and ¢;;(t), for 4,5 =1,2,---, N.
Theorem: 4.2. For each j = 1,2,---, N, the optimal hedged portfolio is given
by:

Py (4)

The price kernel is determined by solving the following system of N linear
dynamic programming problems indexed by j =1,2,---,N:
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N

max > B(i)ey(t)

C1j (t)chj (t)v'“chj (t) i=1

subject to the linear constraint:

N
Y ety =0,
=1

and the inequality constraints:

Clj(t) € [07(17]’)7 C+(17j)] )
CQj(t> € [67(27]’)7 C+(27j)]

exy(t) € e (N, ), (N, )]

forj=1,2,--- N.

Proof. Firstly, note that the partial differential operator £™C acting on ® is
equivalent to the following system of partial differential operators [,;-T’C acting
on ®(j).

LTC[®())]
102f

| | 1 | |
=1(j) +155Pa(5) +1;0Pu(j) + 5075 Pus(j) + SO FTV 1))

2 J

N
+oiiisv®e(j) + Y ®(j)ey(t) , j=1,2,--- N
=1

The first-order condition of maximizing E}T’C[h( j)] with respect to 7 in Theo-
rem 4.1 gives:

We also note that the maximization of E;-r’c [h(j)] with respect to C is equiv-
alent to the following system of maximization problems:

N
max S D(i)ey(t), j=1,2,---,N,

C1j (t)chj (t)v'“chj (t) i=1
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since the sum Y1, ®(i)c;;(t) is the only part of L]’ C[h(j)] that depends on
C.

The linear constraint

N
> e(t) =0,
=1

comes from the property of a rate matrix and the “interval” constraints are
attributed to the rectangularity of K. O

The optimization problem in Scenario II can be solved similarly. Then, the
issuer’s utility indifference price is given by the solution to the following equa-
tion:

d(t,s,v+ PF x) = d(t,5,0,%) .

Suppose the Markov chain X has two states, (i.e. N = 2). State e; and
State “ep” represent a “Good” economy and a “Bad” economy, respectively.
In this case, we have the following two linear programming problems indexed
by j=1,2:

e [@(Ley (1) + 2(2ex, (1)

subject to the constraints:

c1j(t) + cp5(t) =
c15(t) € [c (LJ) (1 i)l -

Solving then gives:
cy(t) = (1, NMia)-a@)>0p + ¢ (1, ) {a@)-a(2)<0}
CQJ(t) () tETv j_172
In the case when the Markov chain has three states, (i.e., “Good”, “Medium”

and “Bad” economic situations), we have the following three linear program-
ming problems indexed by j = 1,2, 3:

max  [®(1)eyj(t) + P(2)e; () + D(3)es ()]

c15(t),c2;5(t),e35(t)
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subject to the constraints:

c1;(t) + c2;(t) + c35(t
Clj(t) € [Ci(lmj)chr(
c2;(t) € [ (2,5), ¢ (

These three programming problems can be simplified to the following three
linear programming problems indexed by j = 1,2, 3:

Cljggm[(@(l) — ®(3))er; (1) + (2(2) = D(3))e;(1)]

subject to the constraints:

Solving the three linear programming problems gives:

cij(t) =c (L, ) wa>e@)e@>06) + ¢ (L) [@0)>06),80)<06)
+c (L, j) ay<a@),e@)>a@3)) T ¢ (1, 1) o) <a3),02)<a3))

Gsj(t) =" (2, ) p(>a@)0@>06)) T ¢ (2,0) [@0)>06),802)<06)
+c7 (2, ) ay<a@) e@>a@) T ¢ (2,0)[s0)<aE)0@)<0G))

c3i(t) =—(c"(1,5) + (2, 9) Lo(1)>0(3),02)>0(3)}
—(c"(L,9) + ¢ (2, ) sy >a(3),0(2)<0(3))
—(c7(1,7) + (2, 1) [{o()<a(3),02)>0(3))
—(c (L, 7) + (2, ) o)<a@)02)<a@)y) » €T, j=1,2,3.

To find the price kernel, the optimal hedging strategy and the utility in-
difference price, we must determine the value functions ®(i) and ®(i), i =
1,2,---, N, in Scenario I and Scenario II. However, even for some paramatric
forms of the utility function, say a power utility and an exponential utility,
it is very difficult, if not impossible, to obtain analytical forms for ®(i) and
®(i). Consequently, one may resort to some numerical approximation methods
such as finite difference method to approximate the solutions of the partial

differential equations for the value functions ®(i) and ®(i).
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5 Conclusion

We investigated utility-based indifference pricing and hedging of contingent
claims in continuous-time, Markov, regime-switching models from an issuer’s
perspective. A parametric form of the price kernels was introduced based on
the product of two density processes so that both market risk and economic
risk are priced. We illustrated the use of a Girsanov transform for the Markov
chain to price economic risk, or regime-switching risk. The valuation and hedg-
ing problem was formulated as a stochastic optimal control problem. A ver-
ification theorem for the HJB solution to the problem was provided. It was
shown that the determination of a price kernel can be formulated as linear
programming problems. We solve the linear programming problems and give
the price kernel in the case that the economy has two regimes or three regimes.
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