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Introduction
St h ti i l ti ft iti l i i !• Stochastic simulations are often critical in geoscience!

• Monte Carlo estimates are needed for direct and inverse problems

P d d i l i l d t t ti• Pseudorandom sequences imply simple quadrature computations

• Quasirandom (i.e. equidistributed) sequences offer alternatives

• Chaotic random sequences have been claimed to be superior• Chaotic random sequences have been claimed to be superior

• Numerical experimentation is first required for analysis

• Variance reduction techniques can often improve results• Variance reduction techniques can often improve results

• Geodetic and climate applications abound among others

• Investigations are continuing especially for predictions• Investigations are continuing especially for predictions



Randomness
I th ti l b d !• In mathematics, only processes can be random!

• In physics, random usually means noncomputable or unpredictable
• In practice there are various ways to simulate random sequencesIn practice, there are various ways to simulate random sequences
• Pseudorandom sequences are commonly generated using some

linear congruential model applied recursively, such as
xn  c  xn-1 modulo p     (for large prime p and constant c)

or lagged Fibonacci congruential sequence, such as
x  x  x modulo p (for large primes p and u v)xn  xn-u  xn-v modulo p   (for large primes p and u, v)

in which   usually stands for ordinary multiplication
• Quasirandom sequences are equidistributed (random) sequences

e.g. using digits from π = 3.14159…  {0.1, 0.4, 0.1, 0.5, 0.9, … }



Chaos & Chaotic Randomness
• Chaos refers to unstable dynamical nonlinear systems which are• Chaos refers to unstable dynamical nonlinear systems which are 

especially sensitive to their initial conditions

• Chaotic maps can be erratic, mixing / ergodic and thus randomC o c ps c be e c, g / e god c d us do

• The logistic map generated by  xn = 4 xn-1 (1-xn-1),  n = 1, 2, …,
for some seed x0, over the interval (0, 1), exhibits randomness 
with an approximate density 

(x) = 1 /  [x (1 – x)]1/2

which needs to be taken into account in Monte Carlo applications

• However,                          satisfies the Logistic Equation for any θ,
n = 0, 1, 2 3, …,  and according to Makila [2004], it is possible that 
2nθ i t th ki 0 [Bl i 2010]

2 n
nx sin (2 ) 

2nθ → some integer thus making xn → 0 as n → ∞   [Blais, 2010]



Pseudorandom Sequences
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Chaotic Random Sequences
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Quasirandom Sequences



Monte Carlo Simulations

Numerical Recipes state:

implying a variance O(N-1)        
22

V
f dV V f f f / N

More specifically,

 

Random Number Generators Variance of Error
Standard Pseudorandom Numbers O(N-1)
Quasirandom Numbers (General, spatial dim. s ) O((ln N)2sN-2)Q ( , p ) (( ) )
Chaotic Monte Carlo (General) O(N-1)
Superefficient Chaotic Monte Carlo* O(N-2)
* U d h  ffi i di i  i li d b h d i l l i f l N*  Under the  superefficiency condition implied by the dynamical correlation for large N,

see e.g.  [Umeno, 2000, 1999, 1998]                



N i l E i t ti
 

Numerical Experimentation

PMC / CMC / QMC N = 10 N = 102 N = 103 N = 104

1.54464560 1.60391781 1.67767504 1.709296271 xe dx
 1.718281828459045

1.80241182 1.38343424 1.61749711 1.70409600

1.59818977 1.75556959 1.71391782 1.71511801
1 25060309 1 26440568 1 29981050 1 31472135

0
1 1 xyd d 
 1.317902151454404

1.25060309 1.26440568 1.29981050 1.31472135

1.34889037 1.02949566 1.21680953 1.31020325

1.22984290 1.34958187 1.31403513 1.31556883

xy

0 0
e dxdy 

1.11214566 1.11346090 1.13706131 1.14409612
0.94684567 0.95059967 1.12476063 1.16363260
1 09371629 1 16785666 1 14383721 1 14510484

1 1 1 xyz

0 0 0
e dxdydz  

 1.146499072528643 1.09371629 1.16785666 1.14383721 1.14510484



Analysis of Simulations

Pseudorandom Monte Carlo (PMC) Approach:

• Using Mathematica 7 random number generator

V d l i l f O(N 1)• Very good results in general of O(N-1)

Chaotic Random Monte Carlo (CMC) Approach:
• Using Logistic Map with corresponding density correction

• Results generally comparable to pseudorandom results

Quasirandom Monte Carlo (QMC) Approach:

• Using π digits, these specific results are surprisingly good…

• In general, more investigations are required to confirm this!



Variance Reduction

In general:
• Uniformity appears generally more important than randomness

PMC d CMC l f b i d h i d i• PMC and CMC results can often be improved thru variance reduction

Importance Sampling Strategy:
• Variable of integration may be transformed for better results

• Significant improvements are possible with complex problems 

Stratified Sampling Strategy:

• Domain of integration may be partitioned for different sampling

• Small sample means often contribute to better overall estimates 



Geodetic Applications

Direct Problem: Gravimetric terrain corrections at the origin:

  
L L H(x,y) zdzdydxδg(0 0 0) Gρ

then for N small prisms over an area A,

   2 2 2 3/2-L -L 0

yδg(0,0,0) Gρ
(x + y + z )



i

Nh

2 2 3/ 2 2 20
i=1 i i

z dz GρA 1 1δg(0,0,0) Gρ A -
(d + z ) N d d + h

 
  
 
 


which is very appropriate for LIDAR and similar dense terrain data [Blais, 2010]

Inverse Problem: Recovery of ocean bathymetry from surface gravity data andInverse Problem: Recovery of ocean bathymetry from surface gravity data and  

disturbances using Simulated Annealing  computations [Blais et al, 2008]



Concluding Remarks

• Pseudorandom Monte Carlo simulations generally give results of O(N-1)

• Quasirandom Monte Carlo results using digits from π are most surprising!

• Chaotic Monte Carlo limited experimentation shows no better than O(N-1)

• Makila [2004] results imply that the Logistic Map is not always appropriateMakila [2004] results imply that the Logistic Map is not always appropriate

• Variance reduction strategies can improve results from O(N-1) to O(N-2)

• Gravimetric terrain corrections using LIDAR data are very efficient & useful• Gravimetric terrain corrections using LIDAR data are very efficient & useful

• Research and computational experimentation are continuing for gravity terrain  
corrections and uncertainty characterization especially for climate changecorrections and uncertainty characterization especially for climate change
applications such as e.g. in hydrology [Mutulu and Blais, 2010]


