Exploring Various Monte Carlo Simulations for Geoscience Applications

J. A. Rod Blais Dept. of Geomatics Engineering Pacific Institute for the Mathematical Sciences University of Calgary, Calgary, Alberta T2N 1N4

blais@ucalgary.ca ww.ucalgary.ca/~blais

Introduction

- Stochastic simulations are often critical in geoscience!
- Monte Carlo estimates are needed for direct and inverse problems
- Pseudorandom sequences imply simple quadrature computations
- Quasirandom (i.e. equidistributed) sequences offer alternatives
- Chaotic random sequences have been claimed to be superior
- Numerical experimentation is first required for analysis
- Variance reduction techniques can often improve results
- Geodetic and climate applications abound among others
- Investigations are continuing especially for predictions

Randomness

- In mathematics, only processes can be random!
- In physics, random usually means noncomputable or unpredictable
- In practice, there are various ways to simulate random sequences
- Pseudorandom sequences are commonly generated using some linear congruential model applied recursively, such as

 $x_n \equiv c \odot x_{n-1}$ modulo p (for large prime p and constant c) or lagged Fibonacci congruential sequence, such as

 $x_n \equiv x_{n-u} \odot x_{n-v}$ modulo p (for large primes p and u, v) in which \odot usually stands for ordinary multiplication

Quasirandom sequences are equidistributed ('random') sequences
e.g. using digits from π = 3.14159... ⇒ {0.1, 0.4, 0.1, 0.5, 0.9, ... }

Chaos & Chaotic Randomness

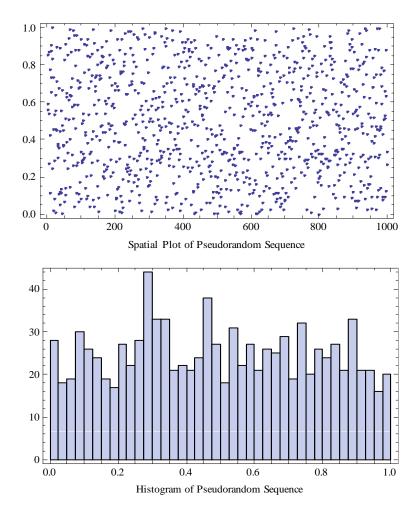
- Chaos refers to unstable dynamical nonlinear systems which are especially sensitive to their initial conditions
- Chaotic maps can be erratic, mixing / ergodic and thus 'random'
- The logistic map generated by $x_n = 4 x_{n-1} (1-x_{n-1})$, n = 1, 2, ...,for some seed x_0 , over the interval (0, 1), exhibits randomness with an approximate density

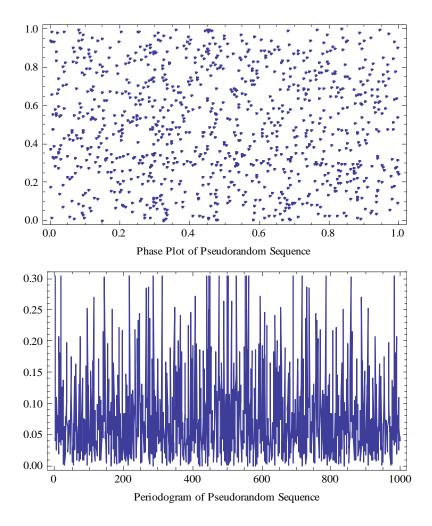
 $\rho(\mathbf{x}) = 1 / \pi [\mathbf{x} (1 - \mathbf{x})]^{1/2}$

which needs to be taken into account in Monte Carlo applications

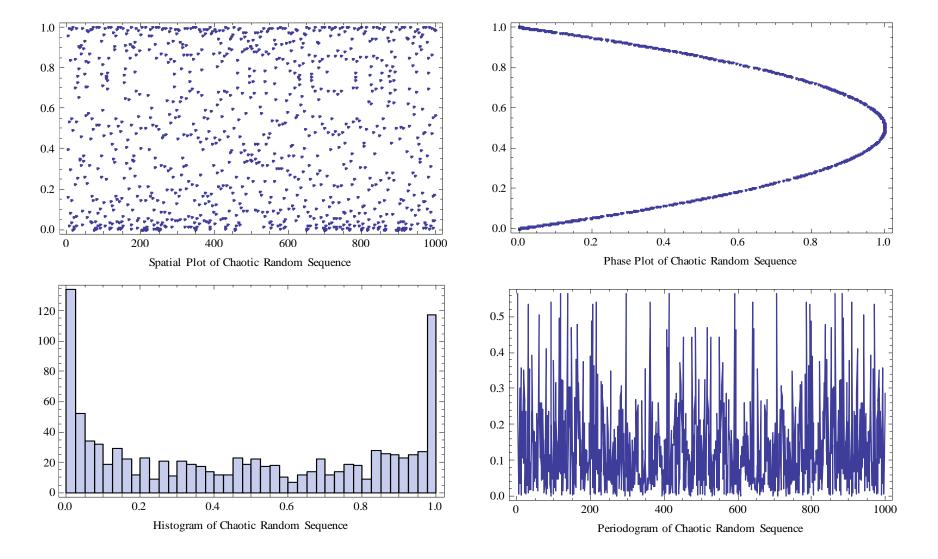
• However, $x_n = \sin^2(2^n \theta)$ satisfies the Logistic Equation for any θ , n = 0, 1, 2 3, ..., and according to Makila [2004], it is possible that $2^n \theta \rightarrow$ some integer thus making $x_n \rightarrow 0$ as $n \rightarrow \infty$ [Blais, 2010]

Pseudorandom Sequences

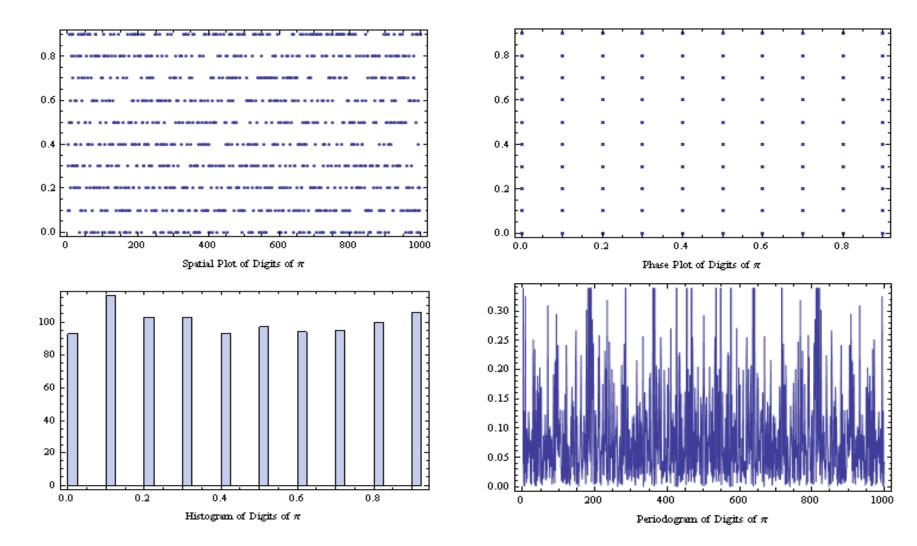




Chaotic Random Sequences



Quasirandom Sequences



Monte Carlo Simulations

Numerical Recipes state:

$$\int_{V} \mathbf{f} \, \mathbf{dV} \approx \mathbf{V} \left\langle \mathbf{f} \right\rangle \pm \sqrt{\left(\left\langle \mathbf{f}^{2} \right\rangle - \left\langle \mathbf{f} \right\rangle^{2}\right) / \mathbf{N}}$$

implying a variance O(N⁻¹)

More specifically,

Random Number Generators	Variance of Error	
Standard Pseudorandom Numbers	O(N ⁻¹)	
Quasirandom Numbers (General, spatial dim. s)	O((ln N) ² sN ⁻²)	
Chaotic Monte Carlo (General)	O(N ⁻¹)	
'Superefficient' Chaotic Monte Carlo*	O(N ⁻²)	

* Under the 'superefficiency condition' implied by the dynamical correlation for large N, see e.g. [Umeno, 2000, 1999, 1998]

Numerical Experimentation

PMC / CMC / QMC	N = 10	$N = 10^2$	$N = 10^3$	$N = 10^4$
$\int_0^1 e^x dx$	1.54464560	1.60391781	1.67767504	1.70929627
	1.80241182	1.38343424	1.61749711	1.70409600
≅ 1.718281828459045	1.59818977	1.75556959	1.71391782	1.71511801
$\int_0^1 \int_0^1 e^{xy} dx dy$	1.25060309	1.26440568	1.29981050	1.31472135
	1.34889037	1.02949566	1.21680953	1.31020325
≅ 1.317902151454404	1.22984290	1.34958187	1.31403513	1.31556883
$\int_0^1 \int_0^1 \int_0^1 e^{xyz} dx dy dz$	1.11214566	1.11346090	1.13706131	1.14409612
	0.94684567	0.95059967	1.12476063	1.16363260
≅ 1.146499072528643	1.09371629	1.16785666	1.14383721	1.14510484

Analysis of Simulations

Pseudorandom Monte Carlo (PMC) Approach:

- Using Mathematica 7 random number generator
- Very good results in general of O(N⁻¹)

Chaotic Random Monte Carlo (CMC) Approach:

- Using Logistic Map with corresponding density correction
- Results generally comparable to pseudorandom results

Quasirandom Monte Carlo (QMC) Approach:

- Using π digits, these specific results are surprisingly good...
- In general, more investigations are required to confirm this!

Variance Reduction

In general:

- Uniformity appears generally more important than randomness
- PMC and CMC results can often be improved thru variance reduction

Importance Sampling Strategy:

- Variable of integration may be transformed for better results
- Significant improvements are possible with complex problems

Stratified Sampling Strategy:

- Domain of integration may be partitioned for different sampling
- Small sample means often contribute to better overall estimates

Geodetic Applications

<u>Direct Problem</u>: Gravimetric terrain corrections at the origin:

$$\delta g(0,0,0) = G\overline{\rho} \int_{-L}^{L} \int_{-L}^{L} \int_{0}^{H(x,y)} \frac{z \, dz \, dy \, dx}{\left(x^2 + y^2 + z^2\right)^{3/2}}$$

then for N small prisms over an area A,

$$\delta g(0,0,0) \approx G \overline{\rho} A \left\langle \int_0^h \frac{z \, dz}{\left(d^2 + z^2\right)^{3/2}} \right\rangle \approx \frac{G \overline{\rho} A}{N} \sum_{i=1}^N \left(\frac{1}{d_i} - \frac{1}{\sqrt{d_i^2 + h_i^2}} \right)$$

which is very appropriate for LIDAR and similar dense terrain data [Blais, 2010]

Inverse Problem: Recovery of ocean bathymetry from surface gravity data and disturbances using Simulated Annealing computations [Blais et al, 2008]

Concluding Remarks

- Pseudorandom Monte Carlo simulations generally give results of O(N⁻¹)
- Quasirandom Monte Carlo results using digits from π are most surprising!
- Chaotic Monte Carlo limited experimentation shows no better than O(N⁻¹)
- Makila [2004] results imply that the Logistic Map is not always appropriate
- Variance reduction strategies can improve results from O(N⁻¹) to O(N⁻²)
- Gravimetric terrain corrections using LIDAR data are very efficient & useful
- Research and computational experimentation are continuing for gravity terrain corrections and uncertainty characterization especially for climate change applications such as e.g. in hydrology [Mutulu and Blais, 2010]