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Abstract

In 1994, Shi[16] studied a class of vector singular singularly perturbed boundary-

value problems consisting of

[ dz
-Jt- = U(t7 z, Y, €)
EZQ =V(t, z, €%y, €)
P dt 0<t<1)

Hl(z(O,E), y(O,s), 5) =0

| H2(z(175)1 y(lae)a 5) =0,

where U, V, H, and H, are n-dimensional real-valued functions and infinitely differen-
tiable with respect to their variables respectively and ¢ is a small positive parameter.
In this thesis, we study the following singular singularly perturbed boundary-

value problems consisting of

[ dzx
5 = U 2, 9, €)
dy
e—=V(t, z, ey, ¢
p{ dt ( ) (0<t<1)

Hl(z(oae)s y(0’€)7 E) =0

| Hy(z(1,¢€), y(1,¢), €) =0,
where U, V, H; and H; are scalar real-valued functions and infinitely differentiable
with respect to their variables respectively. This problem extends Shi’s problem for
the scalar case. However, the vector case remains open.

Under a.pproi:ria.te assumptions and employing the method of matched asymp-
totic expansions, we construct an outer solution followed by appropriate left bound-

ary layer corrections and right boundary layer corrections. Then for sufficiently small

iii



€ > 0, we obtain a uniformly valid asymptotic solution, which consists of the outer
solution and the left and right boundary layer corrections.

To illustrate our new results, we provide an example at the end of the thesis.
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Chapter 1
Introduction

In this thesis we study a class of singular pertubation problems. Some preliminary

concepts and theorems are first given.

1.1 Singular perturbation problems

The term “perturbation problem™ is generally used in mathematics when one deals
with the following situation: There is a family of problems depending on a small
parameter € > 0, which we denote by P.. When £ = 0, we have the reduced problem
FP,. We want to study the relationship between the solution of P. and the solution
of P, under appropriate assumptions.

The perturbation problem P. may consist of an ordinary differential equation, or
a system of differential equations, along with some given conditions, such as initial

or boundary conditions. Thus, problem P. can, in general, be written in the form

dy _
E - f(tvyae)v

appropriate initial or boundary or mixed conditions

P, (1.1)

where y and f are n—dimensional vector functions, ¢ is a scalar variable in a given
interval.

A pertubation probiem (1.1) is called a regular perturbation problem if, as ¢ — 0,
its solution y.(t) converges to the solution yo(t) of the reduced problem uniformly

with respect to the independent variable £ in the entire interval.



We can call it a singular perturbation problem if y.(t) converges to yo(t) only
in some interval of ¢, but not throughout the entire interval, thus giving rise to an
“tnitial layer” phenomenon at an initial point or “boundary layers” phenomena at
both end-points.

We give three examples to illustrate the situation.
Example 1. Consider the perturbation problem

d
& ey=0
p dt (1.2)

¥(0) =1, t e |0,1]
where € > 0 is a small parameter.

This problem has the unique solution

y¢=e -

On the other hand, the reduced problem
dy

P, dit
¥0(0) = 1, te(0,1)

has the solution yo(¢) = 1. Since
ye=eF > yo(t) =1 ase— 0

uniformly in [0,1], we conclude that this problem is a regular perturbation problem.
Example 2: The perturbation problem

dy
T

) ¥(0) =1, te[0,1]

+y=0



is a singular perturbation problem, for, as € — 0, the unique-solution

Yo = e-—t/e

converges to yo = 0 in (0, 1], but does not converge to yo = 0 uniformly in [0, 1].
The term e~%/¢ is the “initial layer” at the initial point ¢ = 0.
The following is an example of singular perturbed boundary-value problem.

Example 3: The perturbation problem

2y
e2fy _y4r1=0  telo1],
p{ dt (1.3)

y(0)=0, y(1)=2.

The unique solution is

-1 e—l/c _ 1 +e—1/¢ e
y(t,e) =1 + (].—-——e'Tle)'e tfe + -(T—_—;:mj-e (1-t)/e (1.4)
2t
yl..
0 t 1

Figure 1.1: The solution y(t,¢) for e= 0.03

The solution of reduced problem is

Yo=1. (1.5)



As ¢ — 0, the solution (1.4) converges, uniformly on the interval [§,1-6] (0<
) -<1 /2), to the solution (1.5) but does not converge, uniformly on the interval [0,1],
to the solution (1.5). The nonuniform convergence takes place near the two endpoints,
t = 0 and ¢ = 1[cf. Figure 1.1]. We call these two areas the left “boundary layer” and
the right“boundary layer” respectively. The left boundary layer correction is

and the right boundary layer correction is

L4e g
(1= e-2/e)

Singular perturbation problems P. involving the system

dz

g_t =U(t, z, vy, €)
¥y _

edt - V(ta z, Y, 5)

and subject to given initial or boundary conditions have been studied extensively by
many authors (cf. Hoppensteadt[10], O'Malley[14] and Smith[18]).

(1.6)

If the reduced system of (1.6)

dz
— = Ut 2o, %0, 0)

0=V(t, zo,¥0, 0)
has a solution (zo(t),yo(t)) and if all eigenvalues of V(t, zo,¥0, 0) have either a
positive or negative real part through the entire interval, we call the problem P, a
“regular singularly perturbed problem”. If the matrix V, (¢, zo(%), yo(t), 0) is singular
for some t, we call the problem P. a “singular singularly perturbed problem” (cf.
O'Malley(14]).



Shi[16] studied the following singular singularly perturbed boundary-value prob-
lem with vector functions U, V, H; and H,, which we will elaborate in Chapter

2.
[ dz
E - U(ta z, Y, 6)
52@ =V(t, z, ey, ¢€)

P.{ dt 0<t<1) (1.7)
HI(-'B(O, 5)7 y(oa 5)1 5) =0

L Hz(z(l, 6)1 y(l,e), 5) =0.
In Chapter 3, we will study the following singular singularly perturbed boundary-
value problem with scalar functions.

([ dz
? - U(ta z, Y, 6)
Y
e2—=V(t, z, ey, €
P{ dt ( ) (0<t<1) (1.8)

Hi(z(0,¢), y(0,¢), €) =0

i Hy(z(1,¢e), y(1,¢), &) =0.

The problem with vector functions is still open.

1.2 Asymptotic series solution

We will use the two ordering symbols o and O.
Let f(¢) and g(¢) be two scalar functions with a small parameter ¢ > 0. If

|f(€)/g(e)] — 0 as € — 0, we write
f =o(g).
If |f(e)/g(e)| is bounded as € — 0, then we write

f=0(g)-



In general, the exact solution for singular perturbation problems cannot be found,
so; our main aim is to find an approximation solution with a certain accuracy for
a singular perturbation problem. We seek an asymptotic power series solution for
singular perturbation problem.

Definition. A function f(g) is said to have the asymptotic power series expansion
oo -
fle)~Y fie? ase—0
i=0
if , for any integer N > 0,

1 LA
F(fE) -2 fe) >0 ase—o.
=0
If, we have the somewhat stronger result that
1 N o
~(fe) - > fig))
i=0

is bounded as € — 0, then we will write this as
N -
fle)=3 fief +O("*) ase—0.
i=0

Consider the function
1

1—¢

fle)=

Clearly, it has the asymptotic power series expansion as € — 0
fe)~Q+e+et++---).
Furthermore, we can write

fe)= ie‘ +0(EN)  ase— 0.

=0



A convergent power series should be an asymptotic power series, but in some
cases, an asymptotic power series may not be a convergent power series.

Consider the exponential integral

E(z) = /_ - eft7ldt, z<0.

- ~]

Successive integrations by parts show
E(z)=€"z 1 4+27 1+ 272 +--- + nlz™" + R, (z)]

where

Ri(z) = (n+ 1)z / T ettty

(>~

for any nonnegative n.

We have
|Bn(2)] = [[(n + 1)lze!~=t~""2]Z , + (n + 2)!z [Z, e'~"t~""3dt|
< (n+ |1 + (n + 2)!z| x | [, t7"3d¢]
<2(n+ 1)!|z|™™L, z <0.

So

Ral@) = 0(z™)
Let

T = -—1, e>0

€

Define

f(e) = Ei(z)e "z.
Clearly

f(e)~[1"€+2152+'°'+(—1)"n!€“+--~], as € — 0.



However, the series [1 — ¢ + 22 + - - - + (—1)*nle® + - - -] is not convergent for
e>0.
Since the exact solution for singular perturbation problems in general cannot be

found, we try to seek an asymptotic power series solution of the form

y(t.e) ~ D u(t)e, (1.9)
i=0
for a corresponding singular perturbation problem P,. However, (1.9) is not usually
valid. The failure takes places where the solution of P. does not converge to the
solution of Py, as € — 0. We need to make some corrections. For (1.7) or (1.8), we
anticipate the solution to have the form
z(t,€) = X(t,€) + eX(r,€) + X (0, €)

y(t,e) = Y(t,e) + Y (r,e) + ¥Y(o,¢)

where \ /
X(t,e) oo [ zi(t) .
~Y £, (1.10)
Y(t,e) ] =°\ w()
and
X(re)) o [z(r)) .
~3 £, (1.11)
Y(r.e) J =0\ %i7)
and
Y(”: 6) bl 5,‘(0') .
~ ~3 g (1.12)
Y (o,¢) =0\ #{o)
Here
t
T= -8- (1.13)
is the left “stretched variable” for the left “boundary layer” near t = 0, and
=12t (1.14)

£



is the right “stretched variable” for the right “boundary layer” near ¢t = 1.

Furthmore, we require that
X(r,e) = 0,Y(1,e) =0, asT— +oo

and
f(a, g) — 0, Y(o,e) — 0, as o — +o00.
We can use the method of matched asymptotic expansion to find asymptotic
solutions (1.10), (1.11) and (1.12) for the problem (1.7) or (1.8). In Chapters 2 and
3, we will elaborate how to use this method to find the asymptotic solution under

appropriate conditions.
We refer to O'Malley[13](ppl5-17) for a brief history and references for the

method of matched asymptotic expansion.

1.3 Preliminary Theorems

Let S be a Banach space, let k be a positive number, and let By denote the closed

ball in S of radius k centered at the origin
Bi={se S| |lsll <k} (1.15)

We have the following theorem. (cf. Smith[18])

Theorem 1.1 (Banach/Picard fixed-point theorem): Let T map the closed
ball By of (1.15). into itself; namely T's € By, for all s € B. And let T be a contrac-
tion map on Byi; namely, ||[T'sy — T's2|| < v ||s1 — 82| for all 81, s2 € Bx, for some

fized positive constant v < 1. Then there ezists a unique element s in By such that

Ts =s.
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This theorem will be used to prove the existence of the solution of singular per-
turbation problem.

We group together some fundamental results which we will use in Chapters 2 and

Consider the nonhomogeneous differential equation

d
d—’t’ =A(t)z + f(t)  t€ [ti,ts] (1.16)
and the boundary condition
Lz(t,)) + Rz(t2) = « (1.17)

where A(t) is a n X n matrix-valued function, L and R are given comstant n x
n matrices, T is a n-dimensional real vector-valued function, f(¢) is a known n-
dimension real vector-valued function, « is a given constant vector of dimension
n.

The homogeneous part of (1.16) is

‘fl—’t’ —A)z  te€[tuty] (1.18)

A fundmental matrix solution X(¢) for (1.18) is a n x n order real nonsingular
matrix-valued function satisfying

% = A(t)X  t€ [t (1.19)

Theorem 1.2: Let X(t) be a fundmental matriz solution for (1.18), then the

problem (1.16) and (1.17) has the unique solution if and only if the matriz

M = LX(t;) + RX(t2) (1.20)
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is nonsingular. The unique solution z(t) of (1.16) is given by
t2
2(t) = XM a+ [ G(t,5)f(s)ds (1.21)
3
where the Green function G = G(t, s) is the matriz-valued function

XM ILX(t)X(s)™ fort>s
G(t,s) = (1.22)
—X({t)M1RX(t2)X(s)™? fort<s

Theorem 1.2 can be found in Smith{18](pp3-4).

Lemma 1.1: Let k(t,y,y’) be a continuous n-dimensional real vector-valued
function on [0,+00) X R* x R* and let @« € R™ be a given vector. Assume that
for the problem

d’y

_=ht’y’y' , t € 0’+°°
TV — h(t,1,), t € [0,4) )

¥(0)=a,  y(+o0)=0
there ezists a nonnegative function r(t) € C?[0, +oo] satisfying
(2) 7(0) 2 llaf|, r(+o0) = 0.
(i§) " < yTh(t,3,5")/lgll whenever r(t) = lly@)| andr’ = yTy//lyll, II-1| is the
Euclidean Norm.
(iii) h(t,y,y’) satisfies the Nagumo condition on the domain D = {(t,y)]| |ly|| <
r(t),t € [0,4+00)}; in other words, there ezists a positive nondecreasing and continous

function ¢ on [0,+00) such that
&, y, 2)l| < e(li=]), (¢,¥) €D, z€ R"

and
52

s—v-i-noo (p(s) = +oo.
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Then problem (1.23) has a solution y = y(t) € C?*[0, +o0) such that
ly@)|| < r(2) and ||ly' ()l < M, ¢ € [0, +00).

where M ts a certain positive constant depending only on ¢ and r.
The proof for Lemma 1.1 can be found in Shi{16).
Lemma 1.2: Let a(t), b(t) and f(t) be real-valued functions. If a(t) satisfies

a(t) > n?, ng is a positive constant.

for t € [0, +00) and the problem
&Py dy
5z = W) +a(t)y + £(2)

y(0) = o, y(+oo) =8

(1.24)

has a solution y = y(t) € C?0,+o0) for constants a,f € R, then the solution
y = y(t) is the unique solution of problem (1.24).

Proof: It is equivalent to showing that

dy . ..dy
=03 +alt)y

y(0)=0, y(+o00)=0

(1.25)

has only the zero solution. Suppose the contrary. Then the problem (1.25) has a
non-zero solution y = y(t) € C?[0, +00). Let w(t) = y(¢)%. Then w(t) € C?[0,+o0)
and w(t) is not everywhere equal to zero.

From

w(0) =0, w(+o0) =0,

we know that w(t) has a positive maximum at some point to € (0, +00).

Thus

w(te) >0, w(t)=0, 1w (to)<0.
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Since w'(fo) = 0 and y(fo) # 0, we have
y'(to) =0.
However
w” (to) = 2[y(to)y” (to) + ¥’ (t0)?]
= 2y(to)[b(to)y (to) + a(to)y(to)]

= 2a(to)y(to)?

> 0.
We reach a contradiction. Therefore, the problem (1.25) has only the zero solu-

tion.



Chapter 2
A singular singularly perturbed problem

In 1994, Shi[16] studied the following singular singularly perturbed boundary-

value problem P, consisting of the differential equations

:ii_:z: =U(t,z,y,¢€)
Y (21)
29y _ 2
e V(t,z,e%y,¢€)
and the boundary conditions
Hl(z(oa 5): y(oa 5)35) =0
(2.2)

H,(z(1,€),y(l,€),e) =0
where £ € [0,1], 0 < € < €o, U, V, H; and H; are n-dimensional real-valued functions
and infinitely differentiable with respect to their variables respectively.
He made the following 4 assumptions.
Assumption 1: The reduced problem

0 = V(t,zo(t), 0, 0)

.‘B(l,(t) = U(ta zo(t), yo(t), 0)
has a solution (zo(t), yo(t)) € C*[0,1]

(2.3)

Assumption 2: The left boundary layer problem
¢ &7,
71!,]70 = Vz(0, a(0), 0, 0)[(U(0a 30(0)a yO(O) + Fo(7), 0) — U(0, zo(0), 30(0), 0)]

1 Hi(20(0), %0(0) + 70(0),0) =0

L Fo(+o0) =0
(2.4)

14
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has a solution 7, = 7,(7) € C?[0, +o0).
The right boundary layer problem

[ £50 _ v,(1,20(1), 0,0)[(T (L, 0(1),30(D) + (), 0) — UL, o(1),4a(1), O)]

{ Ha(mo(1), 30(1) + 50(0),0) = 0

| Fo(+00) =0
(2.5)
has a solution #p = fo(o) € C?[0, +0).
Assumption 3: Let
Bo(t, 7, 0) = Uy(t, zo(t), yo(t) + Fo(7) + Ho(<),0) (2.6)

Co(t) = ‘/,,.(t, .‘Bo(t), o, 0)

where 7, o are defined in (1.13) and (1.14) respectively. Let Co(t)Bo(t, 7,0) be
positive definite uniformly on the region 0 <t <1,0 < 7 < 4+00,0 < 0 < +00; that

is, let there exist a constant Ag > 0 such that
TCo(t)Bo(t, T,0)y > A2 2 2.7
y 0()0(13 )y_ 0"3/” (')

uniformly for (¢,7,0) € [0,1] x [0, +00) x [0,+00), y € R".
Furthmore, let [Co(t) Bo(t, 7, o )]*/% € C[0,1] and %[Co(t)Bo(t, 7,0)]? be bounded
uniformly on [0, 1] x (0, &o).

Assumption 4: Let the matrices of partial derivatives
Hy +(20(0),%0(0) +¥o(0),0) (2.8)

and

H2 .(z0(1),30(1) + $0(0), 0) (2.9)
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be non-singular, where
Hy(p,r,€) = Hy(z(0, 8), ¥(0,€),¢€), Hy(g,s,€) = HZ(I(LS)’ y(1, 6), 5)

Let problem (2.1)-(2.2) have the formal asymptotic solutions

z(t,€) = X(t,€) + eX(r,€) + X (0,€) 210)
y(t,€) = Y(t,6) + V(r,) + V(o) |
where \ (
X s [eaed I; R
( t.e) ~3 ® ) € (2.11)
Y(te) | =0\ wl(t)
with \ { \
(f(r, HE > L (2.12)
Y(re) | =0\ 7(r) )
and
(}?(a, ) o ( 2:o) )
~ ~ &' (2.13)
Y(o,6) ] =0\ %:i(o) )

Under these assumptions, Shi[16] constructed the outer solution (2.11) for (2.1)-

(2.2), which can be determined by the following equations

z;)(t) = U(t, zo(t), yo(t), 0)
(2.14)
0 = V(¢, 20(), 0,0)
and
xi(t) = Us(ta o, Yo, O)zl(t) + U!I(ts Zo, Yo, O)yl(t) + Pl(t)
(2.15)
0'= Vt(tv Zo, 01 0)31(t) + Ql(t)
and .
z:(t) = Ux(t, Zo, Yo, 0)Zi(t) + Uy(t, Zo, ¥o, 0)yi(t) + Pi(2) (i>2) (2.16)
Yi-2(t) = Va(t, %0, 0,0)zi(t) + Qi(t)
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where
‘ R(t) = H(zo, Iy, =~ Ti-1, Yo, ¥Y1,°" yt'—l)

Q:i(t) = Qi(Zo, z1, - =+, Tiz1, Yo, ¥1,° = Yi-1)
are infinitely differentiable with respect to their variables respectively for z > 1.
By Assumption 1, 2.14 has a solution zq(t), yo(t).
He obtained the following lemma.
Lemma 2.1.1: Let Assumptions 1 and 3 hold, then the problem (2.15)-(2.16)
have unique solutions z;(t),y:(t) € C°[0,1] fori > 1.
Employing the matched asymptotic method, he used the following equations

[ 0 _ 1/(0,20(0), 0(0) + (), 0) — (0, 0(0), 4a(0), )
3 o v,(0,20(0),0,0)%(r) (2.17)
| Eu(20(0), 0(0) + 7(0),0) = 0

and
( % = U,y(0, zo(0), %0(0) + yo("'), 0)y:(7) + F{(T)
3 T v.(0,20(0),0,0(r) + Tulr) (21 (218
|, +(20(0), 90(0) +70(0), 0)7(0) + 7 = 0

to find the left boundary layer correction, and the following equations

i C_:l.?:‘g = —[U(1,20(1), ¥o(1) + Fo(o), 0) — U(1,zo(1), 50(1), 0)]
< %9 = —[Va(1, zo(1), 0,0)F0(c") + Viy (1, zo(1), 0, 0)5o(c)] (2.19)
| H2(20(1),30(1) + %(0),0) =0
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and
N % = —Uy(1, zo(1), yo(1) + Fo(2),0)Fi(c) + Bi(o)
{ B = —I1,0(1),0,005:(0) + Va(L, 2o1), 0, 0(@)] + Bul)  (21)
| Hz, +(z0(1),%0(1) + 50(0), 0)7:(0) + M; =0

(2.20)
to find the right boundary layer correction. Here

4
Pi(T) = P,'(T, Zo, T1y° * *Ti; Yo,¥Y1,° * Yis E01511 < Ty yo:?la ° '-37{—1)
Pi(0) = Pio,z0, 21, - *Ti; Yo, Y1,° * *Yi; ToyT1y+ * *Ti1; Joo Y1y+ * “Fie1)

@(r) = Q:(7T,Zoy T1, " * *Ti; Yor U1, - Yi; Foy Ty~ - Fivi] YorT1s° * Tiv1)

| Qi(0) = Qi(0, %0, %1, - *Ti5 Yo, Y1, + Wi o, B, Fic1; GosF1, - - Fim1)
are infinitely differentiable with respect to their variables respectively, and

M; = Mi(7, %0, Z1," - *Zi5 Yo, Y1s" * *¥i5 TosT1,* * Fim1i oo T1r - Fim) hemor=o
M; = M0, 70,21, - *Ti5 Yo Y1+ - Wi Boy B, + “Bimts oo s+ Fict)lemr.0m0
are known values.
Finally, he obtained the following lemma and theorem.
Lemma 2.1.2: Let Assumptions 1-{ hold. Then the problems (2.17) and (2.19)

have solutions

Zo(7), Fo(7) and Zo(0), Fo(o) € C*[0, +o0)

such that
di | Zo(r) ur
2;3 B = O(e Yo )7
To(7)
and
AEG )
E = 0(e '\06)7

Fo(o)
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furthermore, the problem (2.18) and the problem (2.20) have unique solutions

Z:(1), 7:(7) and Z(o), Fi(o) € C*[0,+00 )

such that \
_d.i: fi(T) - O(e—(l—u;)Aof)
dri | _ ?

7:(7) )

and \
dj- -‘Bz’(a’) _ O(e-(l——m)/\oa-)
dol | . ?

yi(o) )

for any integer j > 0, T and o € [0,+00), and
O<pm<pa<---<L

Theorem 2.1.1: Let Assumptions 1-4 hold, then,when N > 0 is an integer and ¢
is sufficiently small, the problem (2.1)-(2.2) has a unique solution z(t,€) and y(%,¢€)
€ C*[0, 1] satisfying

z(t,€) = zV(¢,€) + O(eM*?),
y(t,e) = yN(t,e) + O(eN+Y).
where N
zN(t,e) = 2 (2:(t) + Fea () + Eica (o ))e?
N N = = i
Y (e} = 2 (w(t) + 5lr) + 5ilo))e

andT_1(r) =Z_4(0) =0



Chapter 3
A new singular singularly perturbed problem

In this last and somewhat long chapter, we consider a new singular singularly

perturbed boundary-value problem P, consisting of differential equations

2 —Ultz,3.0)
o (31)
2_ 2 —
et =V(t z,ey,¢)
subject to the boundary conditions
H,(z(0,¢), y(O,E), €)=0
(3:2)

Hy(z(1,¢),y(1,€),e) =0

where ¢t € [0,1], 0 < € < g. U, V, H, and H, are scalar functions and infinitely
differentiable with respect to their variables respectively. For examples, the function
V(t,z,ey,e) = t + 22 + (ey)® + € is infinitely differentiable with respect to each of
variables ¢, z, (ey) and ¢, the function H(z(0,¢),y(0,¢),&) = z(0,€)? + y(0,¢) + ¢
is also infinitely differentiable with respect to each of variables z(0,¢), y(0,¢€) and e.
Basically we employ the same approach as used by Shi[16] and Smith{18].

3.1 Assumptions

The singular perturbation problem (3.1) and (3.2) will be studied under the fol-

lowing four assumptions.

20
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Assumption 1: The reduced problem

0= V(t, zo(t), 0, 0)

(3.3)
zo(t) = U(t, zo(t), yo(t), 0)
has a solution (zo(2), ¥o(t)) € C*[0,1]
Assumption 2: The left boundary layer problem
( &5 dg,
—31_—20 = ey(O, 30(0)9 Oa O)d—: + V;(O, z0(0)? 07 0)
[(U(0,z0(0), 0(0) + Fo(7),0) — U(0, zo(0), ¥0(0), 0)] (3.4)
H1(20(0),30(0) +70(0),0) =0
{ Fo(+0) =0
has a solution ¥, = 74(7) € C?0, +00).
The right boundary layer problem
[ %o dijo
—d—;; = —Vey(l, zo(l), 0, 0)% + V;-(l, zo(l), 0, 0)
[((U(1,z0(1), y0(1) + Fo(2),0) — U(1, z0(1), ¥0(1), 0)] (3.5)
4 .
H>(zo(1),y0(1) + 70(0),0) =0
| Yo(+o00) =0
has a solution %o = §o(c) € C?[0, +00).
Assumption 3: Define
Bo(t, T, 0‘) = Uy(t’ zo(t), yO(t) + 70(") + ‘,170(0'), 0)’
1 Co(t) = Vi(t, zo(t),0,0). (3.6)
\ Do(t) = V,y(t, .‘Bo(t), 0, 0).

where T and o are defined in (1.13) and (1.14) respectively.
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Let
Co(t)Bo(t, T,0) = A2, Ag is a positive constant. (3.7)

uniformly for 0 <t < 1,0 < 7 < 4+00,0 < o < +00, and
Do(0) <0,  Do(1) 20 (3.8)
Assumption 4: Let partial derivatives
Hy (z0(0),30(0) +70(0),0) (3.9)

and

H2,s(30(1)a yO(]-) + fio(O),O) (310)

be nonzero, where
H(p,r,e) = Hy(z(0,¢),y(0,¢€),€), Hx(q,s,e) = Hy(z(1,€),y(1,¢€),€)

Lemma 3.1.1: Let Assumptions 1-3 hold, then in Assumption 1, the solution
zo(t), yo(t) € C*[0,1] and in Assumption 2, the solution Fy(7), Jo(c) € C=[0, +c0).

Proof: we only show that in Assumption 1, the solution zo(%),yo(t) € C*[0,1].
The method can be applied to show that in Assumption 3, the solution Fy(7), Fo(o)
€ C*[0,+00).

By Assumption 1, we have
0 =V (t,z0(1),0,0) (3.11)

and

zo(t) € C0,1).
We can differentiate both sides of (3.11) with respect to ¢ to obtain

0 = Vi(t, zo(t), 0,0) + Vi(t, zo(t), 0, 0)zq(t). (3.12)



By Assumption 3
Co(t) = ‘V,(t, Io(t), Os 0)
is nonzero.
Thus
zo(t) = —Co(t) ' Vi(t, zo(2), 0,0) = Fi(t, zo(t)).

Fi(t, zo(t)) is infinitely differentiable with respect to its variables.
So
zo(t) € C*[0,1],

or
zo(t) € C?*[0,1).
In fact
oF, O0OF .
zo(t) = —1 + 5 —=2o(t) = Fa(t, zo(t), zo(t))-
Fy(t,zo(t), zo(t)) is infinitely differentiable with respect to its variables.
Then
zo(t) € C*[0, 1],
or
zo(t) € 03[0, 1].
In fact
’f’ F ' aF "
29 (6) = 22 + 22210) + S2ai(e).

where F2 = Fy(t,u,v)..

We can repeat the above process for infinitely many times to conclude

zo(t) € C*[0,1].

23



On the other hand
To(t) = U(t, zo(t), ¥o(2), 0),

then
2o(t) = Ut + Uszo(t) + Uyyo(t)-

By Assumption 3
U, = Uy(t, zo(2), yo(t), 0)

is nonzero.

From (3.13), we have
volt) = —Uy {Us + Uszi(t) — zo (1))
We can use the method for showing zo(t) € C*[0 , 1] to prove
vo(t) € C=[0,1].
Finally the same method can be adopted to show
Yo(7), Yo(0) € C[0,+00)

where %,(7) and §o(o) are the solutions in Assumption 2.

This completes the proof.

We note that Co(t) = Vz(2, zo(t),0,0) is bounded on the interval ¢ € [0, 1].

Lemma 3.1.2: Let Assumptions I and 2 hold, then

Yo(7) and Fo(o)

24

(3.13)

(3.14)
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are bounded on the interval [0,4+00). Furthermore in Assumption 8
Bo(t, 7,0) and hence Co(t)Bo(t, T,0)
are bounded fort € [0,1], T € [0,+00), ¢ € [0, +o0).
Proof. We consider 3,(7) in Assumption 2. Since
Yo(+o0) = 0.
So, there exists a constant positive é such that

[Fo(7)| < 1.
for 7 > 6.
Since 7y(7) is continuous, there exists a constant & > 0 such that
[Fo(7) < k.
Thus
[Fo(7)| < max(1, k)
on the whole interval [0, +00).
Similarly, o(o) is bounded on the interval [0, +00).
Since
Bo(t, 7,0) = Uy(2, Zo(t), yo(t) + Fo(7) + §(c ), 0)
is a continuous function, where zq(%), ¥o(t), ¥(7) and (o) are all bounded for ¢t €
[0,1],7 € [0,400) and o € [0,+00).
Thus
" Bo(t, 7,0) and hence Cq(t)Bo(t, T, 0)

are bounded for ¢ € [0,1], 7 € [0,+0o0) and & € [0, +00).

This completes the proof.
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3.2 The formal asymptotic solution

We obtain the solution of (3.1)-(3.2) in the following form

(3.15)

z(t,e) = X(t,€) + eX(7,€) + eX(0, )
y(t,€) =Y(¢t,) + Y(r,€) + ¥(o,¢)

where T and o are defined in (1.13) and (1.14) respectively.

Assume

( = [z
X(te) ) z:(t) ) I (3.16)

\Y(te) ) =\ wt)
with \ \
( X(r,e) 5 (=) -
\T(re) ) =\ 7(n)

e (20 o { s )
Twa | _gf5), o5
\ Y(0:6) ] =%\ %i(o) }

In other words
z(t,€) = zo(t) + (z1(t) + To(7) + Fo(0))e + - - - (3.19)

and
y(t,€) = yo(t) + Fo(7) + Fo(o) + (¥2(t) + 72 (7) + Fa(0))e + - - - (3.20)

We use the method of matched asymptotic expansion to first find (zo(2), yo(%)),
then (z1(t), 1(t)), and (z:(t), yi(t)) for any i > 2.
Later we can see that, based on our Assumptions, (zo(t), yo(t)) and the boundary

conditions, we can find (Zo(7),Yo(7)) and (Zo(c), Jo(o)). Generally speaking, in order
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to_ find (Z:(7),¥;(7)) and (Z:(c),7:(o)) for z > 1, we need to find (Tk(7),¥(7)) and
(Zx(0),e(0)) [for all 0 < k < (z — 1)] and (zx(t), y&(t)) [for all 0 < k& < 7].

3.2.1 Construction of the outer solution

We first substitute (3.16) formally into (3.1) and (3.2) to obtain

f;zi(t)e" = U(t, i z:(t)e', 2 yi(t)e', €) (3.21)
and
iyé(t)e‘“’ =V(¢, f zi(t)e’, fj yi(t)e™, ) (3.22)

Next, we formally obtain Taylor series expansion for the right side of (3.21) about

e =0, that is

U(t, & =:(0)e’, £ wi(t)ehse)

= U(t’ $O(t), yO(t), 0) + -:—'Ei z[(zl + T2 + .- .)5%_’_

=1

0 0 .;
(yl + ye+-- )a—y + &']‘U(t7 zO(t)a yO(t)1 0)

5 & o (3.23)
= U(%, zo(t), yo(t),0) + 5[31% + g, + g]U(ta zo(t), yo(),0) + €
5 1 &# 1 & 1 P

)
o2y, tug, toamigm Y ahgE T a5 T gt

8 52
h dyoe +Z1in 3z3y]U(ta zo(t), yo(£),0) + - - -

From (3.21) and (3.23), we equate the coefficients of like powers of ¢ to obtain



[ zi(t) = U(t, zo(t),yo(t),m

9 9
z,(t) = [:61 +y1 3y 3 ]U (¢, zo(t), yo(t),0)
) a 6162132 192

a? b i
.'hm + 311/15;3310' (¢, zo(t), ¥o(t),0)

\

and generally
zi(t) = [z= +zha JU(t, zo(t), yo(£),0) + Fi(t) i21
where
Pi(t) = P(zo, 21,* = *y Ti-1, Y0, Y1, " s ¥i-1)-

is infinitely differentiable with respect to its variables.
With the same analysis for (3.22), we can obtain

0=V, xo(t) 0,0)
0= [z + 51V (t,20(2), 0,0) + 3o(t) Vet 0(2), 0,0)
| weo= [z’ : “"a(z )72 : fa(922 + 55 + gt
| yoa—(gﬁ 398 5l (6 3a(8),0,0
and generally
Yia(t) = V(t zo(t),0,0)z:(t) + Qi(t) i>2
where

Qi(t) = Qi(zov Z1,* 9 Ti=-1y Y0:s Y1y * s yi-l)-

is infinitely differentiable with respect to its variables.

zo(t) =l + gt oTiga tahiga taga T oGt
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(3.24)

(3.25)

(3.26)

(3.27)
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From (3.24)-(3.27), we have

zo(t) = U(t, o(t), y0(2), 0)

(3.28)
0 = V(t, zo(t), 0,0)
and
z;(t) = Uz(ta -'Bo(t), yO(t)a 0).1‘:1(t) + Uy(ta IO(t)a yO(t)v o)yl(t) + Pl(t) (3 29)
0= V-‘b’(ts zo(t), 0: 0).‘31 + I’,(t, :l:o(t), 0) 0) + ng(t, zo(t), 0’ O)yo(t)
and specially
3::(t) = Uz(ta Io(t)’ yo(t), 0)3i(t) + Uy(t, zO(t)a yO(t)’ O)yi(t) + H(t) (1. > 2)
Uiea(t) = Va(t,2a(2), 0, 0): + Qi(t). B
(3.30)

By Assumption 1, problem (3.28) has a solution zo(%), yo(t).
Lemma 3.2.1: Let Assumptions 1 and 3 hold, then the problems (8.29) and

(3.30) have unique solutions
zi(t), () eC™[0,1]  fori>1.

Proof: First we consider the problem (3.29), where zo(t), yo(t) is the solution of
(3.28).
By Theorem 3.1.1
zo(t), yo(t) € C*[0,1]. (3.31)

By Assumption 3
Vz(t, zo(2),0,0) # 0.

From the second equation of (3.29), we have

.‘Bl(t) = ——‘/,,-(t, wo(t), 0, 0)-1Q1(t). (332)
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Substitute z;(¢) into the first equation of (3.29) to obtain

_[V‘l-‘(t’ zo(t), 01 0)-1Q1(t)]' = -Ut(t’ zO(t)a yO(t)a O)I/;'(t: zO(t)w 01 0)—1Q1(t)
+Uy (¢, 2o(t), o(t), 0)31(2) + Pi(2)

Since
Uy (2, Zo(2), yo(2), 0) # 0.
We obtain
y1(t) = Uy (2, Zo(2), yo(2), 0) 7 {Uz (2, Zo(2), yo(2), 0)Vz (2, zo(t), 0, 0) ' Qu(2)

—Fi(t) = [Ve(t, 20,0,0) 7 Qu()]'}:
From (3.29), (3.31), (3.32) and (3.33), we can adopt the method for proving

(3.33)

Lemma 3.1.1 to prove

Similarly we can use the above method to prove that (3.30) has the unique solu-

tion such that

z:i(t), y:i(t) € C*[0,1] for : > 2. (3.35)

3.2.2 Construction of the boundary layer corrections
We now use the method of matched asymptotic expansion to find
X(r,¢), Y(¢), f(a, £), ?(O',E).

First we consider the left boundary layer correction near ¢t = 0.

Substitute
z = X(t,€) +eX(r,¢)

y=Y(te)+Y(r,e)



into (3.1) and (3.2) to obtain

% + %-{ = U(t, X(t,€) + X(7,¢),Y(t,€) + ¥ (7,€),¢),

and
(— + —) =V (t,X(t,€) + €X(7,€),eY (¢, €) + Y (,¢),€).

Since

dX

dt
52% = V(t,X(t,¢),eY(t,¢),€)

=U(t, X (t,¢),Y(t,e),¢€)

dX dX dr 1dX

@t dr &t cdr
dY dY dr 1dY

=—X—=—-—

dt r dt  edr’

Then
dx - —
4 = U(t,X(eT,€) + eX(7,€),Y(er,e) + Y(7,¢8),¢€)
_U(t: X(€T, 5)7 Y(ST, 5)1 5)

and

e = V(er, X(eT,€) + eX(1,€),eY (er,€) + €Y (T, €),¢€)
—V(er, X (eT,€),€Y (e, €),€)
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(3.36)

(3.37)

We first handle (3.37). We try to obtain Taylor series expansions for the left part

of (3.37) about & =0, that is

V(s-r X(er,€) +€X(r,€),eY (e7,€) + €Y (1,€),€) — V(er, X (eT,€),eY (€T, €), €) |

Z{[era( m + (X(eT,e) +eX(r,8) +--- — xo(o))aa;_*_

*i=1
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(eY(er, &) + €Y (eT,€)) 3 ( 2 + e-g]‘V(O, z0(0),0,0)—
7] 7] 0 ;

[er 8 r ) + (X(er,e) — zo(O)) + eY(er, s)m +e-a—g]‘
V(0, z0(0),0,0)}
Since

X(eT,€) = zo(eT) + z1(e7)e + z2(eT)E2 + - - -,

and

zi(er) = 2:(0) + 2(0)er + 2t (O)(er)? +

We equate the like powers of € between the two sides of (3.37) to obtain

dyg (7] a

?3;:9- = [Eo%‘ + %M]V(U, 30(0): 0, 0) (3'38)
and generally

dy; a g Yol

F = g+l VO 2@,0048(r) (21) (339

where
_Q.-z'(‘r) = _Q-g'(fa Zoy T1y " " "Tiy Yo, Y1y Yiy f01 Ela °c '-5:'-1; ?03?17 * '?i—l)
is infinitely differentiable with respect to its variables. For example

T, = lEa(r) e +vo<r)%12vm, 20(0),0,0) + [ror + 20(0) o

5 5 (3.40)
+y0(0)_a(8 ) ][30(1") + yO(T)MIV(O! xo(O), 0’ 0)
Applying the same method for (3.36) to obtain
B — U(0,20(0), 90(0) +To(r),0) — U0, 20(0), 30(0),0)  (3.41)

dr
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and in particular

o U,0,20(0),30(0) + T L OB+ Pilr) (21 (3.42)

where
Pi(1) = Pi(7,T0,Z1," * *Ti5 Yo, Y1, - Y5 Z0yZ1s-* Ti-1; Vo1 10" " “Fie1)

is infinitely differentiable with respect to its variables.

Now, it is time for us to consider one boundary condition
Hy(z(0,¢),y(0,€),e) =0

Let
z(0,¢) = X(0,¢) + eX(0, €); y(0,€) = Y(0,¢) +?(015)

We have
H;y(X(0,€) + €X(0,€),Y(0,e) + Y(0,8)) =0 (3.43)

Next, we try to obtain Taylor series expansion for the right side of (3.43) about

e =0, that is

0 = Hy(X(0,¢) +€X(0,€),Y(0,¢) + Y(0,¢),¢)
= Hi(z(0), 0(0) + 30(0).0) + § SCK(0,€) + X0,) ~ zo(@) 5+
(Y(0,6) + 7(0,6) = 50(0) ~ To(0)) o + 5T H(20(0),30(0) +Fo(0),0)
(3.44)

We have

X(0,¢) +€X(0,¢) (3.45)

= z0(0) 4+ z1(0)e + z2(0)e? + - - - + To(0)e + ZF1(0)e? + F2(0)e® +- - -
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and
Y(0,¢) +Y(0,¢)
(3.46)
= 30(0) + 31(0)e + ¥2(0)e? + - - - + Fo(0) + 7 (0)e + T,(0)e® + - - -.
Substitute (3.45) and (3.46) into (3.44) and equate the coefficients of like powers

of € to obtain

Hy(z0(0), %0(0) + 7,(0),0) =0

(3.47)
H;, +(z0(9), %0(0) +70(0),0)7:(0) + M; =0 (i = 1)
where
M; = M;(zo,T1,- - “Ti3 Yo, Y1, * * *¥i; Toy F1, * * *Tie1; Yo J1» * * i1 )| e=0,7=0
has a known value.
We combine the above results to obtain
4 dfo _
_dT_ = U(Oi 30(0), yO(O) + yO(T)a 0) - U(Oa $o(0)s y0(0)1 0)
d—
‘ -;,,y,—° = Vz(0,20(0),0,0)Zo(7) + Vey (0, 20(0), 0, 0)Fo(7) (3.48)
| H1(20(0),%0(0) +70(0),0) = 0
and
( dz; _ _ _
7 = U(0,20(0), 0(0) +Fo(7), 0)7:(7) + Pi(7)
di. — )
Vi = V(0,20(0), 0,0)%(7) + Vey (0, 20(0), 0,0)5i(r) + @i(r) (i21)
L H,, +(20(0), ¥0(0) + Fo(0), 0)7:(0) + M; = 0
) (3.49)
Substitute

z = X(t,€) +eX(0,€)
y=Y(te)+ ¥(o,¢)
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into (3.1) and (3.2) and use the same method to deal with the right boundary layer

correction near t = 1 to obtain

(%0 (1, 20(1), 90(1) + Go(),0) ~ U(L,2o(1), 30(1), 0)]
9 % = —[V;(l, 30(1)3 01 0)50(0’) + ng(l, 30(1)’ 0’ 0)370(6)] (3'50)
| Ha(zo(1),%0(1) + %(0),0) =0

and
r dz; . . ~
o —Uy (1, 20(1), ¥0(1) + Ho(2), 0)Fi(0) + Pi(o)
dy; N - ~ .
J % = —[Va(1, 2o(1),0,0)2:(c) + Vey(1, zo(1), 0, 0)5i(c)] + Qi(o) (=1)
| Ho, a(zo(1),90(1) + §0(0),0)5:(0) + M; =0
(3.51)
where
P{(0) = Pio, 0,71, - *Ti;¥0, Y1, * - i Boy B, -+ Fim1i Por T+ - Fim1)
and

Qi(e) = Qi(o, xo, 71, - * *Ts; Yo, Y1, - * *Yi; To, T1, * * *Ti-15 Yo, Y1, " * Yi-1)
are infinitely differentiable with respect to their variables respectively. Furthmore
Mi = M(an T, TiY0, Y1, " ° Yis 50’ 31’ b '53'-1; gOv ‘.'717 o .gi—1)|t=1,1’=0

has a known value.

From the properties of the boundary layer corrections, it is natural to require
Zi(+o0) =Fi(+00) =0 (3.52)

and

Zi(+00) = Fi(+00) =0 (3.53)
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forallz > 0.
- We have the following results for the problems (3.48) and (3.50)
Theorem 3.2.1: Let Assumptions 1-{ hold, then the problems (3.48) and (3.50)
have solutions

Zo(T), Fo(7) and Zo(), Fo(o) € C[0,+00)

such that
;1;5 =o(7) =0(e~™7), j >0, T €[0,+0)
Yo(7)
and
d [ Zo(o) .
i = 0(e™%), ;> 0, o € [0,+).
Yo(o)

Proof: We first consider the problem (3.48). After we rewrite the (3.48) and add
another condition %p(+00) = 0, we have

rdz'ﬁo_

7= Vo
J [(TU(0, z0(0), yo(O) +Go(7), 0) — U(0, zo(0), yo(0), O)],
H1(-'Bo(0)a yO(O) +70(0)1 0) =0,

‘ Fo(+o0) = 0.

(0, 70(0),0,0)222 1 V.0, 20(0), 0,0)

(3.54)

In fact, (3.54) is (3.4) of Assumption 2 and has solution F,(7). Substitute it back
into (3.48) to obtain

Za(r) = V0, 20(0), 0, 0122 — Viy(0,20(0), 0, 0)Fo(r)]
From (3.48), (3.52) and (3.54), we have

Zo(+00) = Fo(+00) = 0.
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By Lemma (3.1.1)
To(7) € C*[0, +o0).

It is easy to show
To(r) € C*[0, +00).

We differentiate both sides of ODE in (3.54) to obtain

d*g, d*y, - 190
o DO(O)# + Co(0)Bo(r)——,
where
ﬁo(‘r) = cli.% BO(Oa 7, 0’).
Define
_ 4y
zZ = F.
We have 2 p
z z —
% = Do(0) 3= + Co(0)Bo(r)z,
a7
1 20 = 2l (3.55)
L Z(+m) = 0.
Clearly, (3.55) has a solution
_ 4%
z=—"

We will use Lemma 1.1 in Chapter 1 to show that this is the unique solution such
that
z(t) = O(e™"),
where A is defined in Assumption 3.
Let r(7) = (]2(0)| + 1)e=%7, we check that r(7) satisfies the conditions (i)-(iii) in
Lemma (1.1). Since here n =1, so ||r|| = |r|.
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It is clear that condition (i) holds.

For condition (ii), whenever r(7) = [z(7)|, we have

’ 2z X z'
r'(r) = o

Since

r (1) = (|2(0)] + 1)(—Xo)e™™" < 0.
Thus

zxz <0.

Define

k(t,z,z') = Do(0)z' + Co(0)Bo(7)z, (3.56)

where

Do(0) <0, Co(0)Bo(7) > AL

Thus
zh(t,2,2)) _ 2(Do(0)2" + Co(0)Bo(7)2) _ Do(0)z x =’ + Co(0)Bo(7)2"
|z(7) |z(7)] |2(7)]

o Co(0)Bo(r)2?
|2()]

So, r(r) satisfies the condition (ii).

2 Mla(r)] = Hr(r) =1’ ()

As to the final condition (iii), by Lemma 3.1.2
ICo(0)Bo(T)| < ko

for a certain constant kq.

On the domain

D = {(t,2)] |z(r)| £ (1)},
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we have
|h(t, 2, z')| = | Do(0)2" + Co(0) Bo(T)z|
< [Do(0)] x |2'| + |Co(0)Bo(7)| x |2
< |Do(0)] % |2'] + Kolz]
< |Do(0)] x |2'] + kor(7)
< |Do(0)] x 12| + ko(|2(0)] + 1)
Define

©(s) = [Do(0)] x |s| + ko(|z(0)] + 1)
It is easy to verify that this ¢o(s) satisfies the Nagumo condition, thus condition
(ii1) still holds.
By Lemma 1.1 and 1.2, (3.55) has the unique solution

z(1) € C?[0, +o0) and |2(7)| < r(7).

So

#(r) = 0(e™),
or

d?o _ =AoT

—z; = O(e o ).
Since

dj.(s _ dyq(s
7a(r) = [ T2y 4 g,(4o0) = [ Heldy,.

Then

— T d?O(s) — —XoT
B < [ 122 ds = 0.
Based on the above results, from 2nd equation of (3.48), we obtain

Fo(1) = O(e™™7),
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and
. %4

_— = -1\01’
o O(e™").

Differentiating both sides of 2 ODE’s in (3.48) for infinitely many times, we
obtain, as required, that

df 50(1‘)

ari = 0(e™™"), j >0, T € [0, +c0).

To(T)
The problem (3.50) can be handled similarily. This completes the proof.

Based on the above results, with routine calculation, we have

& [ Pa(r) _
F _ = 0(6—(1 “l)'\of), (3.57)
@1 (7)
and
i [ Pilo)
% N = Oe~(t=r)e), (3.58)
Q1(0)

for a certain constant u; € (0,1) and any integer j > 0.

Theorem 3.2.2: Let all assumptions 1-4 hold, then, fori > 1, the problems(3.49)

and (8.51) have unique solutions

Zi(7), 9:(7) and 2:(9), §i(o) € C[0,+o0 )

such that

d’ (5}(1’) \

s - ) =O(e‘(1—ui)3\o‘f')’ T € [0, +00),
\ 7:(7

and
@ [ ) )

4 | o) } = O(e~(=#%7), & € [0, +00)
\ Ui(o
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for any integer j > 0, p; € (0,1) and
O<m<p2<---<1l.

Proof: We first consider the problem (3.49). Let ¢ = 1, from (3.49), we have
[ &7,
J dr?
71(0) = Hl-, r(zO(o)a yO(O) +y0(0)10)M11

= Do(O) + Co(0)Bo(7)7, + f(7),

(3.59)

L 71("'00) =0,

where

£(r) = CoO)P(r) + 5.

From (3.57), we have
f(r) = O(e~Cmsadhe),

or
)] < Ry tdmaddor

for a certain constant k;.

Let
ks
m = max{l, 2X3([70(0) +1)(1 — p1)(2 — “1)}-
Define
r(7) = m([7y(0)] + 1)e=(G-#2)%7
+§'A_[et\or /°° lf(S)le"Xosds + e~toT /."" If(s)le,\os]_
Thus

r'(r) = —(1 — 1) Aom([F,(0)] + 1)e~(t-saddor
4517 [T 1f()leo%ds — e [ |f(s)]e]
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with
r'(1) = (1 = ;) Nm([,(0)] + 1)e(-ra)dor
A AoT * —Ag3 —MoT Aosy
+51e [ 1f()leds + 77 [T 1£(s)]e] - 1£(7)]
Now we check that r(r) satisfies the conditions (i)-(iii) in Lemma 1.1. Here
n=1,so0 |rf] =|r|.
It is clear that condition (i) holds.

We consider condition (ii), here
h(t,91,91) = Do(0)7; + Co(0)Bo(7)7: + £(7)
Whenever
r(r) = [7.(7)I-

We have
— -t
t X
r (T) = yl- yl.
Iyll

Since ] -
= gAoT —Ags
s [ 1f(s)levds

S %eko'r /w kl e—(l—pl )l\ose—l\osds
= ﬂe»\of /m kle-(Z—m)Xusds

2 T

ky
= —€

T2 (2-m)ho
kle_(l—“l)kof

= 2(2 - FI)AO

Nor e~ (2—x1)raT

and

(1 = p1)dom([7,(0)]| 4 1)e~(—#1)do7
: 5
2= FI)AC'?«\%(I%(O)I +1)(1 — )

kl e~ (1=u1)der
T 2(2 - m)ro

— e—(l—uﬂ.\a'r
(2 — ”1) (Iyl(o)l + 1)
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From the above inequalities, we obtain
r'(r) <0,

thus

7 X7, <0.

Since ,
7, k(¢,7,,%1)
7l ~
_ 51(Do(0)7; + Co(0)Bo(7)7: + £(7))
%
> (M7, 12 + 9. f(7))
- 7.
> Xl ~ 1)
>r'(r)

Thus, the condition (ii) holds.

It is easy to verify that the condition (iii) still holds here.

By Lemma 1.1 and 1.2, the problem (3.59) has the unique solution %,(7) such
that

(0l < r(7),

or

Ta(7) = O(e (k%)
Thus, we find the unique solution Z,(7) such that

%y (1) = O(e~(7)T),
We conclude

Zi(r) = O(e ), g{(r) = Oe=-wIe),



It is easy to obtain

& | Tar)

yd = O(e~(=#)%7) 7 g [0, +o0).

71(7)
for any integer 7 > 0.
By the same method, we obtain that, for z = 2, the problem (3.49) has the unique
solution Z,(7), ¥,(7) such that

& | Ta7)

ar = O(e~(=#)%7), 1 € [0, +o0)

72(7)
for any j > 0, in particular
O<pr <per<l.
By induction, we know that for any ¢ > 1, the problem (3.49) has the unique

solution Z;(7),¥;(r) such that

& [ Tilr) .
dr = O(e~(~#)%7), r € [0, +00)
7:(7)

for any j 2> 0, in particular
<y <p2<---<1.

The above method can be applied to deal with problem (3.51) analogously.
This completes the proof.
Theorem 3.5: Let

2N (t,€) = 5°(@i(t) + Teca (7) + Bea (o))
=0 (3.60)

Nit o) = = (ue(t) 4 5. IRAE.
Yy (te) = Z(w(t) +7:(7) + %ilo))e
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where N > 0 and T_,(7) = Z_;(0) = 0. Then, there ezists a constant 6(N) > 0 such

that
=" (¢,€)" = U(t, zV(¢,€), y™(t,¢€), €)| < 6(N)eV, (3.61)
[e2yN (t,€) — V(t, zV(t,€), ey (t,€), €)| < S(N)eN,
where
2 (t,e) = -%x"(t, e,y (te) = %y”(t, e).

Proof: First we consider the case when ¢ is far away from 1, then

o= I—Z—t — 400, if € is sufficiently small.

Since
d& | Zi(o)
— = O(e~(1—#i)ro7)
dol | .
i(o)
where 0 € [0,+00), N—-12:20,5 20.
Thus
i [ Zi(o)
& = O(eM+).
do? | .
¥i(o)

We consider

XN(t,e) —U@E, XV (t,€),YN(t,€),¢)

where
N .
XN(t,e) = _2030'(05',
' .
YN(t,e) = T wi(t)e'.
=0
Since

XN(t,e) — U@, XN, YV, ¢)

N ,. N . N .
= E ziet - U(t’ 2 z,-e‘, E yi€t7 6)
=0 =0 =0
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N
= (zg+ 216+ - - - + ze™) — {U(¢, 20, ¥0,0) + ;.175"2[(1:1 +--- +a:NeN‘1)aiz+

2
ST U200 10(0),0) + e (o
+ .- +znel -1)-(% + (@ +- - +yne" ‘1);% + %]"U(t, zo(t)+

0™ ~ za(t)),vo(t) + O™ — 30(t)), 8¢)

= o — Ult,20,0,0) + SL&(8) — (221 + -0t 70,30,0) — PO
+0(eM+1)

= O(eM*).

where 8 € [0,1], P!s are defined in (3.25).

Thus

(va+--- +yNe”-1)3% +

XN(t,e) = U@, XN, YV, e) = O(eN+). (3.62)
On the other hand, we can prove

d

557"“ —[UEXY +eX" YN +7,6) = U, XV, YV, e)] = O(eV)  (3.63)

where Ne1
=—N-—-1 =l__ .
X T (re)= T ETie,

=0

—N N .
(Ta 5) = ) ;'
=0
Add (3.62) to (3.63) to obtain

2" (t,e) = U(t, =, ¥V, €) = O(") (3.64)

If ¢ is near 1, we can use the same method to obtain (3.64).
Thus
le" (t.e) — U, =V, 3V, €)| S & (MY

for all ¢ € [0, 1], 6;(IV) is a positive constant.



The above method can also be applied to obtain the second inequality
2y (t,e) — V(t, =V, ey”, €)| < 82(N)eNH!

for all ¢ € [0,1], 62(N) is a positive constant.
Let
6(N) = max(6,(N), &(N))-

We have
I't;\f - U, =V, ¥V, €)| < S(N)EN,

letyy — V(t, =V, ey, €)| < §(N)eN+L.
This completes the proof.

We can use the same method to obtain the following results

[Hy(z7(0,€), ¥V (0,¢), £)] < p(N)eV+1
|Ha(zN(1,¢), vV (1,¢), &)] < p(N)eV*H?

where zN(t,€), y"V(t,£) are defined in (3.60), p(XN) is a constant.

3.3 The Main Theorem
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Theorem 3.3.1: Let Assumptions 1-4 hold, then, when N > 0 is an integer and ¢

is sufficiently small, the problem (8.1)-(3.2) has a unique solution z(t,€) and y(t,¢)

€ C*|[0,1] satisfying
z(t,e) = zV(t,e) + O(eV 1)
y(t,€) = yN(t.€) + 0" )
where (zVV(t,€),y"(t,€)) is defined in (3.60).
The proof of this theorem involves steps (A)-(E).

(3.65)
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Step A:
Let
z =z(t,e) — zV(t,€), w =y(t,e) — yV(¢t,¢). (3.66)

Substitute (3.66) into (3.1) and (3.2), we have
L= Z 00, 2(t,e) + 52, 17 (t.6) + 3w, c)ds
=(1- s)g—i-U(t, zN(t,€) + sz, ¥V (t, €) + sw,e)|=) +

01 disU(t, SN (t,€) + 52,V (t, €) + 5w, £)ds
= —%U(t, zN(t,e) + sz,yN (t,€) + sw,€)|s=0 +

[U(t,zV(t,€) + 2,y (¢, &) + w, &)~

U(t,zN(t,€),y™(t,€),€)]
= —[U.(t,zV(t,€), ¥V (¢,€), &)z + Uy (t, 2V (t,€), ¥ (¢, €), €)w]+

[2V(t.€) +2' = U(t,z(¢t,€),y™ (¢, €), €)]
So
2 = [Us(t, 2N(t, ), yV (2, €), €) 2 + Uy (2, 27 (2, €), ¥V (2, &), €)w]

+[U(t, 2N (t,€), yN(t,€),€) — =V (¢, €)1+

/ - @%{U( t, ¥ (t,6) + sz, yN(t, ) + sw, €)]ds
On the other hand
2w’ = [Vi(t,zV(¢t,€),eyN(t,€), )z + Viy (8, 2V (¢, €),ey™ (2, €), €)ew]

+[V(t,2V(t,€), ey (¢, €), &) — 24V (£, €) ]+
+[a- s)g-z-[V( t, 2V(t,€) + 52, e(yN (2, €) + sw), )]ds
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Combine the above results to yield

z A B z Ei(t, z,w,e) + p1(t. €)
= + (3.67)
( 2w’ ) ( C €D ) ( w ) ( E(t,z,w,€) + p2(t,€) )

where )
A =U.(t,zN(t,€),yN (¢, €),¢€)
B =U,(t,z"(t,€),y" (¢, €),€)
< , (3.68)
C = V.(t,zN(t,¢),ey™ (¢,€),¢€)
| D =V (t,2N(t,€), ey (t,€),€)
and

( Ei(t,z,w,€) ) _ ./01(1 . &2 ( U(t,zV (t,€) + sz, ¥V (t,€) + sw, &) ) &,

Eq(t, z,w,€) ds? V(t, zN(ta £) +3z15(yN(ta g) + sw), )
(3.69)
and
ate) | [ UtV (ke)e) ( 2(te) | [ oE
pa(tr6) V(e,eN(te) ey (he)e) |\ e (te) oM+ |
(3.70)

The same linearization method can be applied to handle the boundary conditions
to obtain

z(0,¢) z(1,€) Hy(zM(0,¢),3™(0,¢),€) + Fi(z,w,¢)
L(¢) + R(e) =—
UJ(D,E) w(l’ 5) Hz(zN(l, 5)1 yN(].,E),E:) + Fz(z:w, 5)

(3.71)

where

L = ( Hyp(M(0,6),57(0,6),6)  Hir(=V(0,6),57(0,€),€) )  am
0 0
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and

0
R(e) = 0 . (3.73)
Hag(zV(1,€), 4V (1L,6),6) Haa(zV(1,), 57 (1,€),¢)

and
Fy(z,w,¢) _ 1(1—3)£ H,(zN(0,€) + s2(0,£), ¥V (0, &) + sw(0,¢),€) i
Fy(z,0,€) 0 d* | Hy(zV(L, ) + s2(1,€), 5% (L ) + sw(l,e),e) |
(3.74)
From (3.69)
Eq(t, 2, w,¢€)

1
= _/; (1- S)Z%U(t’ zN(t,e) + sz, ¥V (t,€) + sw,e)ds

1 d_ 9 a
= ./o (1- s){z[za;- + wgy-]U(t,xN(t, £) + sz,y™ (t,€) + sw, ) }ds

Ut 22, ) + 52,y (1, ) + s, €)ds

- a2l o
_L (1 —9)[z 3z2+w 3y2+2zw3x6y

Thus, it is easy to conclude
|Ev(2, 2, w,€)| < |Eq|(J|z]l1 + [lwil:)?
where |E;| is a positive constant, and norm || - [|,is defined by
lz(®)llx = sup |=(Z)I-
tefo,1]
Furthmore
|Ex(t, 21, w1, €) — Ea(t, 22, w2, €)| < | Er|(l}z1 — 2211 + [lwr — well1)

where

o = max{[lzlls, lloilln}-
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The same method can be used to obtain
|Ex(t, z, w,€)| < |Eal(l|z]lx + ellwlf)?
and
|E2(t, 21, w1, €) — Eq(t, 22, w2, €)| < 2| B2([lz1 — 22l + [Jwr — w2ll1)
where | E;| is a positive constant, and
az = max{||z1, eflwill1}-

Let
|E| = max{| B, | B2}
Combine the above results to obtain

[Ea(t, z,w, €)f < [E|([|2llx + ljwll1)

(3.75)
[E2(t, z,w, €)| < |E|(llzll + €llwll)?
and
|Er(t, 21, w1,€) — En(t, 22, w2, €)| < en| B[([l21 — 22l + [|lwr — w2l1) (3.76)
| E2(t, 21, w1, €) — Ea(t, 22, w2, €)| < | El(J|z1 — z2ll1 + [[wr — we)
The same analysis can be applied to handle functions F; and F3 to yield
|Fi(t, 2, w, €)] < |FI(12(0,€)| + [w(0,€))?

(3.77)

| F2(2, 2, w, &)| < |F|(|z(1,€)] + w(1,€)])?
and
|Fi(t, 21,w1,€) — F{(t, 22, w2,€)| < B1|F|(121(0, €) — 22(0, €)| + |w1(0, €) — w2(0,€)])

|F2(2, 21, w1,€) — F2(t, 22, w2, €)| < Bol F(Iz1(1, €) = 22(1, €)] + Jwn(1, €) — w2(1,€)])
(3.78)
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where |F| is a positive constant, and
A1 = max{[lz:(0, €)llx, lw:(0,€)ll1}, Bz = max{ilz(1, )z, llwi(L, €)lla}-
Let
u=z, v=cw.

We can transform (3.67) and (3.71) into the following
u eA B u s&(t, u,v,€) + epi(t, €)
€ = = (3.79)
v C D v Ey(t,u,v,€) + p2(t,€)
and

” ( (0, ¢) ] \ RO ( u(l, &) ) _ ( Hy(zM(0,6),5¥(0,6),¢) + B ) .50

‘U(O, E) ‘U(l, 5) Hz(-'BN(l, 6)7 yN(ls 6)95) + ﬁz
where
E:(t,u,v,¢) Ei(t,u,etv,€)
_ = (:=1,2), (3.81)
Fy(t,u,v,¢) Fi(t,u,e7tv,¢)
and

E(e) _ ( HI.P(zN(()) 5)1 yN(01 6),6) E_IH,_',.(IN(O,E), yN(Or 5),5) ) , (3.82)

0 0

and

R(e) = 9 0 . (3.83)
Hz'q(zN(l,e),yN(l,e),e) 5—1H2.s(3N(1a5)1yN(1,5)15)
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Rewrite (3.75)-(3.78) to obtain the following
[ 1By(t,u,v,)] < |E|(lully + e Hloll)?
) [Ea(t, u,v,€)] < |E|([[ully + llv]l,)?
[Fi(t, u,v,€)] < |F|([[w(0, €)ll + €2 [[0(0, £)]}r)?

| 1B2(t,u,v,€)] < |FI(lu(1, e)lh + £~ Mv(1, &) |l1)?

and

[ |Eu(t,u1,01,€) — Ba(t, uz,v2,€)| < @l El(flur — walls + e vy — v2fl1)
| B (2, u1,v1,€) — Ea(t, uz,v2,6)| < ol E|(llua — walls + €7Y[v1 — vell1)

|Fi(t, ur,v1,€) — Fi(t, u2,v2,€)] < Bl FI(Jur(0, €) — u2(0, €)] + £~ [v1(0,€) — v2(0,€)|)

L IFI(ta U3, vy, 5) - F'l(t'l Uz, V2,4 5)' S leFl(hh(laf) - u2(11 E)l + E—llvl(]-’s) - 02(1’ E)l)
(3-84)

where

& = ggﬂl"i"las-llwz‘"l}aaz = max{|uils, lvill1},
and
Bi= max{||u:(0, &)1, €7 wi(0,€)[l1}, Bz = gg{““i(la€)||1,€°1||U:'(1’5)||1}-

Step B:

Next, we consider the homogeneous part of (3.79)

u eA B u

€ = (3.85)
v C D v
Rewrite (3.85) into _the following
u 0 By u
€ = +eZ (3.86)
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where By = Bq(t,T,0), Co = Co(t), Do = Do(t) and

A (B — By)/e
Z = °
(C—-Co)/e (D — Dy)fe
is bounded.
We will transform (3.86) into the diagonalized form.

Now, we try to find a nonsingular matrix P such that

paf0 Bl (M0
Co Do 0 /\2

where A; and A; are the eigenvaules of matrix

0 B
Co Do
In fact
Mt ) = Do - \/DS + 4CoBo’ (3.87)
and
Aa(t, €) = Doty DS + 4GB, (3.88)
By Assumption 3
CoBo > A2

Thus, A; and ); are nonzero for t € [0,1],0 < € < &. Since A; and ); are the

continuous functions with respect to ¢t € [0,1],0 < € < &g, they are bounded, say,
0 > ma Z /\1 Z m; (3-89)

and

mg>2A2>2m3z>0 (3.90)
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where m;, m,, m3 and my4 are constants.

The eigenvector for the eigenvalue ), is

1

’\I/BO

The eigenvector for the eigenvalue ), is

1
A2/ Bo
Define
1 1
P(t,e) =
A1/ Bo A2/ Bo
Thus
P—l — BO —/\2 / Bo 1 ’
M=de\ \/By -1
with
~ 0 B - A O
p-t P=

Clearly, P, P-! and P’ are bounded.
Let

=P . (3.91)

From (3.86), we have

’

8
)
o
&
)
K}

e|P +P = +eZ| P ,

<)
<)
§
&
<)
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thus ,
' &) 0 B, ). o _1(=
eP = P+¢e(ZP - P) ,
\ v } Co Dy v
so ,
gy [ (o BY. .. . _l{(=
€ = | P! P+ePY(ZP - P) ,
v ) | Co Dy v
finally
u M O N - u
£ = +eP~Y(ZP - P) . (3.92)
7] 0 A v
Define
Ay elAp AL

0 ~~ -~ A'
= +ePY(zZP - P)|.
5A21 Azz 0 )\2

where A1, A12, Az and Az, are bounded. Since P~1(ZP — F') is bounded, when ¢
is sufficiently small, from (3.89) and (3.90), we conclude

0> an_z 2 Ay = 2m,, (3.93)
and
m3
2my > Nge > —2— > 0. (3.94)
Thus

u Au_ €A12 u
€ = - (3.95)

v €Az1 Azz v

Now, we adopt a Riccati transformation

“ = R(t,¢) ¢ (3.96)
n

<)
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where
' 1 —&S
R(t,e) = , (3.97)
=T 14€TS
with
14+eST &S
R7'(t,e) = . (3.98)
T 1

Thus, (3.96) takes (3.95) into the following

f Au - €A12T 0 E
€ = (3.99)

7 0 Aoz + T g2 n
where S5, T are the solutions of the problems

aT
GE = (Azz —_ An)T + €A12T2 —eAn

(3.100)
T(1) =0
d
- ds
E-E = (A11 - Azz - €A12T - ETA12)S - A12
(3.101)
S(0) =0

Lemma 3.3.1 Let Assumptions 1-8 hold, then for all sufficiently small € > 0,
the problem (3.100) and (8.101) have unique solutions T'(t,e), S(t,€) such that

T(t,e) = O(e), S(t,e) =0(1), te|o,1].
Proof: First we consider (3.100), we can rewrite (3.100) as

: 4 y]
T(t,e) = /1 e~ Ji Hom-tuldu(p T2 A4, (3.102)
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Define the integral operator I(T) equal to the right side of (3.102), from (3.93)
and (3.94), we have
(T, < ek(ITH +1)
I(T1) — I(T)li, < ek(ITallx + IT2lh) (T2 — T2lih)
for any T'(¢,¢), T1(t,¢€), Ta(t,€) € C[0,1], where k is a constant and norm || - ||; is
defined by [[2(t)ll = sup [z(2)|
0<t<1
Define
B = {T(t,)|T(t,€) € C[0,1], and ||T||; < 2ek}.
Thus, B is a closed ball in the Banach space B = {T(t,¢)|T(t,€) € C[0,1]}.
When
. 1
0 <& < min{l, E’SO}'

We have
II(T)Il, < ek(ITI: +1) < ek(1 + 1) = 2¢k

and
| 1(T1) — I(T2)|,
< ek(|[Tallx + | T2ll)(I1 T2 — T2f)
< ek(2ek + 2¢k)(||T1 — T2|l1)

=4e’k(ITx - T2llv)
1
16k2

1
= leTl —Tzfx

< 4k? |71 — Ty

where T, Ty, T € B
From the above results, we use Theorem (1.1) to show (3.102) has the unique
solution T'(t,€) € B, obviously this solution T'(¢,&) = O(e). Put this solution 7'(¢,€)
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into (3.101) to find the unique solution

S(t,e) = /0 ‘ et L‘(AII'A”"A”T"TA“)%(—Alz)ds. .

Clearly
S(t,e) = 0(1).

This completes the proof.

Step C:
We can find the fundamental solution matrix ¢(t, ) for (3.99)
et Jo(Ba1-cA12T)ds 0

(t,e) = . : (3.103)
0 e?fx (Az2+eA31 T)ds

Thus, (3.85) has the fundamental solution matrix (¢, €)
e% f;(A;;—eAnT]d: 0

¥(t,e) = PR ) i (3.104)
0 c% [ (B22+285:T)ds

Clearly, when ¢ is sufficiently small, we have

P(t,€)PY(s,€)

= O(e ¥~ (3.105)
¥(s,e)(L2 — P)p~1(¢,¢)

where

my; m3 10

OSSStS]., k2=min ———’_)’ P=
4’ 4

' 00

Let

M(e) = Ly(0,¢) + Ry(1,¢).
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Lemma 3.3.2: For all sufficiently small € > 0, M(g) is invertible and M~1()

satisfies

M~Y(e) = O(e)

Proof: From (3.104), we have

¥(0,¢)
1
= P(O,E)R(O,E) ( 0 ei_f:(An.{.gAuT)ds )
(1 1 Y /(1 ~e5(0,¢) PO
1\1(5?;5) /\2(;;6)} \ —T(0,e) 1+¢T(0,6)S(0,¢) / \ 0 O(e= %)
(3 1\ 1 O(e-h))
= A . /\2 9
1(3908) (B?os)/ \ —T(0,¢) 0(6-%)
([ 1-7@,¢) 0(e=%)
= ,\1(0,6)_/\,;50’6)1‘(0’6) O(e~?)

From (3.82), we have

_ ( Hyp(zM(0,€),y¥(0,6),6)  e~Hy (zM(0,€), 3™ (0,¢),€) )
L{e) = .
0 0

Since

H, .(zV(0,€),y7(0,¢),€)

= Hio(20(0), 0(0) + To(0) + §o(2), ) + 5 Hur (27(0, 016}, 47(0,6s6), 1)
= Hyo(20(0), 6(0) & Ta(0),0) + [ i (20(0),30(0) + Fo(0) + Badol 7). 0]

~ 1 d
yO(Z) + 62‘6'51,,-($N(0, 015)$ yN(Oa 015): 015)
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where 6,6, € [0,1], fo(2) = O(e~*9/¢). By Assumption 4, when ¢ is enough small

Hl.r(xN(Ga £), yN(Oa €),€) # 0.

Then
Lg(0,¢)
_ HI,P(ZN(O: 6),yN(0, €),€) 3-1H1,r(3N(0,5)a yN(O: €),€)
0 0
1—T(0,¢) O(e~?2)
x
A1(0,¢€) z\;((,o,e)T(O, €) 0 (e‘“%)
Cie"'+0(1) O(e~?)
0 0
where C; # 0.
Similarly
~ 0 0
Ré(l,e) = .
( O(e~2) Cae+0(1)) )
where C; # 0.
Thus

O(e=2) Cae™ + O(1))
So, M(¢) is invertible such that

-1 _.L;z
o) (Cxe +0(1) O(2) )

M™(e) = O(e). (3.106)

This completes the proof.
Step D:
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By Theorem 1.2, (3.79) can be rewriten as

u 1
( ) =y(t,e) M 'H + ‘/; G(t,s)Eds (3.107)
v
where
Glt.s) = W(t,)M~2Ly(0,)¥(s, )™ fort>s
—(t, )M 1RY(1,e)¢(s,e)!  fort<s
and
H Hl(zN(Oa 5)’ yN(01 6)75) + F'l
Hz(zN(l,e), yN(l,S),E) + F'2 ,
and
E El(sa u, ‘U,E) +P1(3,5)
S-I(Ez(s, U, v, 6) + 5-1P2(37 6)
Since

/ * 5(t, &) MLp(0, £)(s, )L Eds + / L (t, )M E(0, &)l — Plb(s, ) Eds
+ " w(t,e) M Bp(1,) P(s, )2 Eds

= [ 9t eM Y0, e) (I — P+ PYb(s,e) Eds + [ " (t, &) M E9(0, )
(I, — Plb(s, ) Eds + [ " b(t, )M Bp(1,€) Py(s, )~ Eds

= [ 66 )M T (0,e)(Ts — PYp(s,e) Bds + [ * it ) MLp(0,€) P
¥(s,e)1Eds + [ " w(t, )M Bib(1,) Pp(s, ) Eds

= w(t, )M [ " 6(0,6)(L — P)d(s,e)Eds + / " (t,€) P(s, ) Eds

Similazly

_ /t L (&) ML RY(1, £)b(s, £) Eds— jt " (2, &) M~2L(0, £)[I,—Pli(s, €) " Eds



— [ 0,0 Bo1,)Pu(s, ) Bds
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= —9(,e) MR [ " 6(1,&)Pi(s, ) Eds — f L 6(t,€) (L — P)ib(s,e)Eds

Add the above results to obtain

fo ' G(t, s)Eds

_ /o'¢(z,s)M-1z¢(o,s)¢(s,e)-1Eds— / L (&) ML Bp(1, )u(s,e) " Eds

= p(t,e) ML /o " 6(0,€)(L — PY(s, ) Eds — B '[) L ¥(1,€)Pi(s,e) " Eds}

+ [ 9(t,e)Po(s, ey Eds - [ " $(t€) (I — Pp(s,e) " Eds

Then, (3.107) can be rewritten as

( ‘ ) = ¢(ta E)M-l(e)ﬁ(u’ U,E) + el(tv u, vie) + 82(ts u, v, 5)

where
F(u,v,e) = H(u,v,€) — Ley(0,u,v,¢) — ﬁel(l,u, v,€),
with
t
ti(t,u,0,6) = [ b(t,e)PY(s, ) Eds,

and

1

(t,u,v,€) = — / ¥(t,€) (I — P)v~(s,€) Eds.
t
Step E:

We provide the final proof for Theorem 3.3.1.
Define the norm

"

= [lull, + €7} |lvll, , for € > 0, and u,v € C[0,1].

[

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)
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From (3.105), we have
[#(t.e)Po~s, )], < crem2 =2

and
-1 ~22 (t—s)
[4(s. ) - Py (2, €)||, < cre™
where 0 < s <t <1, ¢ is a constant.

Since
"el(t’ u, v, 5) "g
| / " (t,€) Py~(s, ) Eds

[

( Bit,u,v,6) + pi(t, ) ) ;

e7Y(En(t, u,v,6) + €7 2pa(t,€)

< [ et ePvms, ), >

[ 4

< [ e 2Bt u, 0,6, + st Ol +
(| Extts v v, )], + llea(t, )]s
< [ e BEINE(lull + &7 lolh)? + SN+
= HIEI(lull, + loll,)? + 6(N)eN+1)]ds
< [OB1+ &) (lully + 7 [oll)? + V) + ¥ 0)] [ cre2¢as
< (081 + ) lull + 7 ol )? + S + V1) x (e )

4+ 26(N)eM] (whenever €2 < 1/|E|, and € < 1)

+ §(N)(eNH + V)]

< 2B +e™)
2

y

[

C1 -1
< ==
*% 2¢e
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([ |
< Zolet )| |l 4 (define ¢ = maxf2, 250M)))
2
\ ¥ /.
( u \ i c1C
< llal e +eN]  (define ||&] = %3
\ v :
Thus
2
u
1a(t, u, v, &)l < [|4ll (G +5N) (3.113)
v
On the other hand

1€1(, u1, v1,€) — ba(t, uz, v, €)|l,

Ey(t,u1,v1,€) — Ey(t, ug,v1,¢) ) ds
e (Ea(t, u1,v1,€) — Ea(t, up, v2,€)) .
< [0t 1P6 (s, 1Bl Bl — wall + € fon — wall)+

G262 E|([fur — uzlls + e7M|vr — v2ll1)]ds

= '[ »(t,e) Py~ (s,¢€)

~ ~ €
< (@1 + &e™?)|B|(llur = vzl + 7o — valh)(erg)

€., ~ =2 Uy — U2 ~~
< (cl-’;—)(al + aze™%)| £ (define c3 = max(ay, &2))
2 Uy — U2
1 -1 Uy — U2
< 2¢15—c3e | B (whenever 0 < £ < 1)
L
V1 — V2
Uy — u
<lalee B (define d = =
v — VU2 . €2
Thus

u; — Uz

1€1(t, u1, v1,€) — (2, uz, v3,€)|l, < |||l et (3.114)

V1 — 02
[ 4
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Using the same method, we conclude for all sufficiently small ¢ > 0, there exists

positive constants ||£2]| and |[H]| such that

4 2
u

li€2(2, u, v, €)ll. < ll&2]] [ +e"]
v

[
2

| B, v.o), <nEniEe || © || +eM
v

and
(
-1 Uy — U
"e2(t1 u;, v, 5) - zz(t, Uz, v2, E)”e S— "e2" d€
V1 — U2
< &
- — 1 Uy — U2
|E (w1, 01, ) — H(ua, v3,6)], < l|Hl de™
{ v — V2 .
Let
u
B = | u(t), v(t) € C[0,1]
v

with norm (3.112).
Thus, B is a Banach space.

Let

| u(t), v(t) € C[0,1] and ¢ < kseN

o
I

[

where

ks = 2(ksks || H|| + |[4 ]} + [I€2]]),
k4 and ks are constants satisfying

el < b [MHE)|, < kee-

(3.115)

(3.116)

(3.117)

(3.118)



67

Thus, B is a closed ball inside B.

Define an integral operator

. | u u u -
I: — for any €B (3.119)
v v v
NIR
where [ is the right side of the (3.108).
v

From the above inequalities for ¢;, £, and qH , we conclude that when

N >2, 0<e<min{l,1/(4k% +1)},

we have
. u

I
v

e

< (¢, €)M~ () H (u, v, )|, + lea(t, 4, v, €)ll, + [162(2, u, v, €) |,
2
u

< (kskse | H|| + (el + [1:1)[e~* + V]

v
4

< Ths(BeV 1 +eM)
< %kg(e‘N + €M)

= kaeN

so, I maps B into B.

Since

~)
|
~

U — U2
< (kakse || H|| + [[4]] + liel])de™

U — U2
[ 4
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1 u; — U2
< 5’63 X k3€—1
v, — U2
[ 4
u; —u
< l 1 2
2 Uy — V2
4
- ~ u; -
thus, [ is contrative on B for all €B,i=1,2
Vi

By Banach/Picard fixed-point theorem (Theorem 1.1), there exists a unique so-

u ~
lution € B to the equation

v

for all sufficiently small € > 0, thus the problems (3.108) has the unique solution

u
such that
v
lull, < kse®, |lv|l, < kse™*
or
lzll; < kse™, lwll, < kse™.
On the other hand
z z—zV z — gVl ZN+1L _ oN
— — +
w y—y" y—y"H y N+ N
= O(eN*1) + O(eVH+Y)

= O(E:N'“)



The result for N = 0 or 1 follows from

z=2M+0(), y=y1+0()

Since
2P = 2N + O(e?), y@ =y 4 O(e?)
so
z=z04+0(@?), y=y"+0(?
clearly

z=2+0(), y=y"+0()
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We remark that in order to avoid confusion, we denote (zVV, yV) for N =0, 1

and 2 by
(29, y), (a4, yi) and (22, y1)

respectively.
This completes the proof.

3.4 Application

Consider the singular perturbation problem P, consisting of

E—ez+y
dt tef0,1]

dy
2%Y _ 2 - 4
5 % zf+tey — (t+ 1)

and the boundary conditions
¥(0, e)=0

y(l,e) =1

(3.120)

(3.121)
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This problem is of the form (3.1)-(3.2) with
[ Ut,z,9.6)=ex+y
4
| V(t,z,ey,6) = 2 +tey — (¢ + 1)*

and

[ Hy(2(0,€),5(0,€),€) = y(0,¢)

L HI(I(].,E), y(]-’ 6), 5) = y(l,e) -1
The reduced problem is given by

dzo

dt (3.122)
0=z3—(t+1)*

It has two solutions

zo(t) = (¢ +1) 5129

yo(t) = 2(t +1)

zo(t) = — 2
(t)=—(+1) (3.124)

Since (3.124) does not satisfy Assumption 3, we choose (3.123).

For Assumption 2, we have

1 7o(0) = —2 (3.125)

and

1 70(0) = -3 (3.126)
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The solutions for (3.125) and (3.126) are

TolT) = =2V (3.127)
and
fo(o) = —3e~4%¢ (3.128)
respectively.

For Assumption 3, we have
Bo(t,7,0) =1,Co(t) = 2(t + 1), Do(t) = t.

Thus
Co(t)Bo(t, T,O’) Z 2, Do(O) = 0, Do(l) =1 Z 0.

For Assumption 4, we have

Hl.f(zO(0)7 yO(o) +y0(0)a0) = 11

and
Hj 4(zo(1), yo(1) + $0(0),0) = 1.

Since four Assumptions hold in this example, the problem has the solution such

that
z=(t+1)2+0(¢)
. (3.129)
y=2(t+1) —2eVEH — 32 | ()
uniformly for ¢ € [0, 1] and all sufficiently small £ > 0.

The above result for (3.120) and (3.121) cannot be deduced from [1]-{21].
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3.5 Conclusion

In this thesis, we study a new class of scalar singular singularly perturbed problems
under appropriate assumptions and obtain some new results. Compared to Shi[16],
our result has the improvement and also the restriction. The improvement is that
we can change V'(£, z, €%y, €) in Shi’s case to V (¢, z, ey, ) in our case, which extends
Shi’s problem for scalar case. The restriction is that we can only handle the problem
with scalar functions and the problem with vector functions still remains open, which

we would continue to investigate.
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