
An Exploratory Study of Automated GUI Testing:

Goals, Issues, and Best Practices

Theodore D. Hellmann, Elham Moazzen, Abhishek Sharma, Md. Zabedul Akbar, Jonathan Sillito, Frank Maurer

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

{tdhellma, emoazzen, absharma, mzakbar, sillito, frank.maurer}@ucalgary.ca

Abstract—Manually testing GUIs can be expensive and

complex, so the creation of automated GUI test suites has been

an area of significant interest. However, to our knowledge, the

motivations of testers and the problems they encounter when

attempting to create and use automated GUI tests have not

been explored. We used Grounded Theory to investigate the

goals motivating automated GUI testing, the issues testers

encounter, and the best practices applied to overcome these

issues. Through this study, we demonstrate that automated

GUI test suite evolution and architecture are extremely

important to the success of automated GUI testing and

describe techniques that can be of use to practitioners. In

addition to these best practices, this study identifies additional

areas in which future research should be concentrated.

Keywords- automated GUI test; test suite architecture; test

suite evolution; best practices;empirical study

I. INTRODUCTION

Graphical User Interfaces (GUIs) display information
and possible actions to users through graphical elements, or
widgets. These elements allow an application to be
controlled using a mouse, stylus, or, for touch-screen
devices, a finger. The freedom of interaction that GUIs offer
greatly increases the ease of use of software applications. As
with other parts of an application, it’s crucial that GUIs be
covered with automated tests – by which we mean
automated, end-to-end testing of an application through its
GUI. However, automated GUI testing (AGT) is a
notoriously difficult task.

The central difficulties with AGT – complexity of GUIs,
verification of results from widgets, and the rapid rate of
change of GUIs – are well-understood in existing literature,
but previous work focuses on technical solutions: better
tools, different test paradigms, etc. This paper seeks to
investigate what makes automated GUI testing difficult from
the perspective of practitioners. Specifically, we investigate
three primary research questions: what goals do people
expect to be able to achieve using AGTs; what sort of issues
do they encounter; and what techniques have they developed
to overcome these issues and achieve their goals?

In order to investigate these questions, we performed a
series of semi-structured interviews with people who have
had experience with the creation and use of AGTs. We

analyzed the transcripts of these interviews using Grounded
Theory [1]. In addition to providing insight into each of these
research questions and empirically confirming the expected
difficulties with AGTs, our study found two central problems
that are not discussed in AGT literature: AGT suite
architecture and AGT co-evolution with the GUI and
underlying system. These issues represent significant
challenges to the effectiveness of AGTs according to our
participants.

This paper is structured as follows. Section II describes
our research methodology. Results of the study are presented
in Sections III, IV, and V. Section VI explains promising
directions for future work. Threats to the validity are covered
in Section VII. Finally, Section VIII concludes this paper.

II. METHODOLOGY

We conducted semi-structured interviews with eighteen
participants with varying experience in automated GUI
testing. We analyzed the resulting transcripts using
Grounded Theory [1]. Our two-stage analysis involved open
coding [2], sorting of codes, and identification of cross-
cutting categories.

A. Participant Demographics

Eighteen participants with experience in the creation,
maintenance, or use of AGTs were recruited for this study.
During the first phase of our data analysis, however, we
noticed that participants with less than one year of practical
experience tended to focus on tool-specific rather than
general issues with AGTs – issues such as learnability,
usability, and reliability of the tools they had used. Because
we wanted to focus on general issues with AGTs, we
excluded these interviews from the second phase of our data
analysis.

This left us with a set of interviews of eight participants
that we used for phase two of our analysis. Information about
these participants’ amount of experience with AGTs, area of
employment, and primary role is provided in Table I. In this
table, participants with less than two years of experience
with AGT were categorized as “junior;” participants with
less than five but more than two years of experience with
AGT were categorized as “intermediate;” and participants

with more than five years of experience with AGT were
categorized as “senior.”

B. Interview Design

We used semi-structured interviews because of the
exploratory nature of this study. Therefore, the initial
questions we asked were very high-level: “the last time you
were using AGTs, what were you trying to accomplish”;
“what functionality were you targeting with these tests”; etc.
We were then able to explore issues that participants
identified in their responses in greater detail. These
interviews ranged in length from 12 to 60 minutes with an
average duration of 32 minutes.

C. Analysis

Our analysis was split into two phases. Phase one
operated on the full set of eighteen interviews and was used
to discover general topics of importance to our participants.
Phase two sought to identify themes important to the
restricted set of eight participants focusing only on the topics
discovered in phase one.

First, a round of open coding [2] was performed. Four of
the authors participated in this coding process to limit the
bias of individual researchers. The three general topics we
discovered through this process were: goals; issues; and best
practices.

We used these results to inform phase two of our
analysis. The first step in phase two was to perform open
coding again on this set of eight interviews. In this round of
coding, we only coded topics directly related to one of the
three topics identified in phase one. This selectiveness
helped us to focus and constrain our analysis and was done
by having a team of two authors examine each interview
initially, then having at least one other author re-examine
their work; again, this was done to reduce individual bias.

Through this realization, we discovered two important
themes: AGT suite architecture and AGT co-evolution with
the GUI and underlying system. We further subdivided each
theme into issues that our participants overcame, the best
practices they used to overcome them, and issues that our
participants had not been able to solve. The following three
sections explain the goals our participants expressed, along
with the themes of test suite evolution and test suite
architecture.

III. GOALS OF AUTOMATED GUI TESTING

Tools should support specific uses, so we used our

interviews to investigate what the goals of automated GUI
testing actually are from the perspective of practitioners.

A. Automated Acceptance Testing

Automated acceptance tests (AATs) are traditionally
created in collaboration with the customer as an
encapsulation of expectations about how a feature should
work. AATs take the form of an automated test that operate
at the system level to demonstrate that a feature is working.
Participant 4, for example, uses AGTs as AATs so that he
has “a certainty that we’re doing things right.”

Six of our participants (2, 3, 4, 5, 7, 8) use AGTs as
AATs to verify that “this software meets the user’s
requirements” (Participant 3). Not all of these participants
agreed on where the customer’s expectations should come
from. Participants 2, 3, 7, and 8 felt that expectations should
come directly from the customer, but Participants 2 and 7 felt
that AATs can derive from their own expectations of how
the system should behave. Participant 2, for example, created
AATs so that he could “be sure that what I have is correct
according to my expectations.” Participant 5 also came into
conflict with the traditional understanding of AATs in that he
derived customer’s expectations from design artifacts like
written specifications and user interface prototypes as
opposed to from customers/users.

B. Automated Regression Testing

Automated regression tests (ARTs) are used to alert
developers that a regression error has occurred. Five of our
participants (2, 4, 6, 7, 8) used AGTs as ARTs. This is
important to “make sure that things are not breaking as we
move to a new version” of the system (Participant 4). The
ARTs they create are able to catch errors in “the wiring of
the application itself and… the wiring that is done in views
through configuration” – the linking between elements of the
GUI and methods in the business logic or other GUI
elements (Participant 8). This is important to our participants
because “unit tests won’t catch those” (Participant 8).

Participants 6 and 8 add new ARTs when regression
errors are caught by human testers. Participant 8 relied on
GUI-level ARTs because “if you want to change a part of the
system, you write a test, and if you break another test, you
can see [the change’s] impact on another scenario.” This
rapid feedback was also important to Participant 2, who used
a suite of ARTs to make it safe for him to experiment with
“several variations… and still see that effectively those
different approaches could have the same result.”

C. Other Goals of Automated GUI Testing

Our participants also expressed several other motivations
behind the creation of AGTs. Participant 8, for example, uses
AGTs because “you have to make sure everything gets tied
together and works properly.” Participant 2 uses AGTs to
“fine-tune what is the problem that I am facing.” Participants
3 and 7 use AGTs “to make sure that we don’t have to
physically do those tests every day” (Participant 3).
Participant 3 also uses AGT to make sure that “anything like
a show-stopper, anything that would make [the application]

TABLE I. Participant demographics

ID Experience Employment Sector Role

1 Junior Academia Developer

2 Senior Academia Professor

3 Senior Industry Tester

4 Junior Industry Developer

5 Intermediate Industry Developer

6 Intermediate Industry Developer

7 Senior Industry Tester

8 Senior Industry Tester

not useable, is not there” so that the software that “is being
developed and tested… [can be put] into use right away.”

D. Recommendations for Tool Developers

Tools for creating AGTs need to directly support
automated acceptance testing and automated regression
testing as primary use cases. Additionally, our participants
note two major difficulties. First, participants sometimes
ended up automating GUI tests with lower defect detection
potential than the test they originally envisioned. Second,
when a test fails, participants wonder first if the test is
broken – demonstrating that the participants don’t consider
their AGTs to be reliable to the same degree that unit tests
are considered reliable. Addressing these issues should be a
high priority for developers of tools that support the creation
of AGTs.

E. Related Work

Meszaros in [3] investigates the motivations behind creating
automated unit tests, some of which are similar to the goals
our participants had for AGTs. Meszaros lists eight goals of
test automation, four of which line up with our findings: tests
as specification; tests as safety net; risk reduction; and bug
repellent. However, the other four goals that Meszaros lists
do not match up with our findings: tests as documentation;
defect localization; ease of creation/maintenance; and
improved quality. In future work, it would be useful to look
into this matter further to determine if these latter four goals
really are not present as goals for AGT – and, if so, why not?

IV. AGT SUITE EVOLUTION

AGTs, on a very basic level, reflect aspects of a system
under test; as the system changes, AGTs that refer to it will
also need to change. Test suite evolution was a major theme
in many of our interviews.

A. Challenges Posed by Evolving GUIs and System

Of our eight participants, five (3, 5, 6, 7, 8) encountered
issues related to test suite evolution. The basic problem is
that many changes to a GUI will require reciprocal changes
to corresponding AGTs. Participant 3 discovered that
“because you have existing automation, and those tests are
rigged by you according to the system… if there is a change
in [a] feature you have to go back to your automation and
reflect that change.” So, when the GUI under test – or a
feature accessible through the GUI – changes, AGTs can
report failures while the system under test is actually
functioning as expected.

This is complicated by the fact that it is likely that a GUI
will continue to change over the course of development,
meaning that suites of AGTs will require ongoing
maintenance. Participant 6 found that an AGT is not
“something you can just set up once and then you’re done.
You have to consistently maintain it the same way you
consistently maintain any piece of software.” This sort of
ongoing effort is expensive – in Participant 3’s experience,
“continuous improvement… can kill you.” Participant 7
encountered the situation where “someone starts with great
intentions, goes and creates all these tests, then something

changes [in the GUI]… and [test maintenance] becomes a
full-time job.”

The effort of updating a suite of AGTs is more
complicated in light of the fact that our participants also had
trouble figuring out what to do about a failing test. Both
participants 5 and 6 both expressed difficulty in pinpointing
the cause of a test failure. In Participant 5’s experience, the
“GUI test could not show us what is the root of the problem,
whether there is some problem in the business logic of the
application or something wrong with the user interface.” To
deal with this, Participant 6’s process for investigating an
AGT failure reflected this difficulty with debugging: “my
first instinct is to look at the errors and figure out ‘is this
something that I’ve seen before’ … then it’s go through the
test, figure out where things stop, figure out what the test
was designed to do… at the step that it failed at.” His process
deals in large part with debugging the test itself to figure out
if the system is actually broken or if the test needs to be
updated. We noticed from this that the problem of
understanding an AGT is twofold: figure out if the system is
at fault or if the test is; if the system is at fault, figure out
what part of the system is at fault.

B. Best Practice: Comprehensive Test Maintenance

Out of the five participants that encountered issues with
AGT suite evolution, three (3, 7, 8) had developed ways of
mitigating the impact of these issues. The first
recommendation our participants had for ways to decrease
the burden of AGT suite evolution was to remember the
essentially reflective nature of AGTs. Since AGTs should
reflect the way in which a feature works, modification of
AGTs should be considered an essential step in modifying
how a feature works. Participant 8 found that each “test has
to be enhanced as you’re developing more of the system to
reflect how we use the system.” As a result of this positive
mindset, within his team, “most of the time when the
regression test goes red, it’s because a feature is broken.”
Contrast this with, for example, Participant 6’s experience
with AGTs and his default assumption being that a failing
test is simply broken and needs to be fixed. In Participant 6’s
context, when a test breaks, there is a problem with that test
which needs to be resolved. The focus of this mindset is on
getting the AGT suite passing, and while it will quickly get
the system back into a green state, it fails to acknowledge
that a failing AGT should indicate a problem with the
system. Participant 8’s mindset acknowledges that AGTs and
system (not the GUI alone) co-evolve and continue to reflect
the end-user’s expectations. In both contexts AGTs break,
but Participant 8 avoids developing an antagonistic
relationship with his test suite by acknowledging and
embracing this relationship.

A key point about comprehensive maintenance is the
need to continually improve AGTs so that they continue to
provide value as the system changes. Participant 3
understands a broken test as an indication that his team needs
to “continue to improve our automated tests to make sure
they’re giving us the best results… results that uncover other
issues that might exist in the software.” In this mindset,
AGTs can’t simply be created at some point in time and left

in that initial state for the duration of the project. In that
state, the AGT won’t have any realistic prospect of detecting
errors. The system will quickly evolve past the point where
its AGTs are relevant. Participant 3 improves his AGTs
continually both to ensure that the feedback they provide is
good and to continually increase their defect detection
potential. From this viewpoint, AGT evolution provides an
opportunity to improve the value an AGT can provide that
should be viewed as a way to offset the cost of maintenance.

However, it’s also quite possible that the overhead of
maintenance for specific AGTs will become too high to
justify the value they provide. Participant 7 is adamant about
making sure that each test has a raison d’être: “Automation
for automation’s sake is not worthwhile… you have to be
able to look at any given test and be able to say ‘this is why
this test is here, this is why I can’t just have an intern sit
there and do this.’” Participant 3 found that when “those
changes are getting in the way of the project… it’s becoming
cost-ineffective to put that test into automation. … The
advantage of automation is to help you do some things
without being too involved, and if I get too involved then
there’s no point in automation.” This sort of situation can
occur when “the test never should have been there to begin
with, it was written poorly, or the underlying reason for the
test is no longer valid” (Participant 7). In the event that a test
begins to require too much maintenance effort, it’s important
to realize this situation early on and perform the test
manually or abandon it entirely if it is no longer offering any
value to offset its upkeep.

C. Open Issues

Participants 3 and 7 raised several additional issues
regarding test suite evolution. First, there is a likelihood that
AGTs will go stale over the course of a project – for
example, Participant 7 wonders “at what point do you say ‘I
need to rewrite this test because it’s never given me any sort
of value.’” This issue is present in other forms of testing, but
the tendency of AGTs to require more maintenance and to
take longer to run than other AGTs means that the cost of
putting up with stale AGTs is higher. Another consequence
of the fact that AGTs run at a very high level is that it’s
difficult to determine the point at which the number and
quality of GUI tests is reasonable for testing a given system.
Even though it’s possible to “have tests on 100% of things,

you have not covered 100% of the scenarios. It’s not even
theoretically possible” (Participant 7). With respect to AGTs,
the difficulty is that it is easy to create tests that generate
very high coverage metrics, but it is difficult to determine if
they are actually testing the system in a relevant manner.
Participant 7 expects that “a year from now, the software’s
changed… so the tests that you wrote a year ago may not be
relevant.”

This brings up the question: how long can we reasonably
expect an AGT to last? Both Participants 5 and 7 found that
their AGT suites only tend to last about two years. After that
amount of time, their companies tend to decide to make use
of a new technology for their user interfaces. This sort of re-
architecting poses a distinct threat to a suite of AGTs.

We would like to take this opportunity to raise a question
related to AGT suite evolution: what is the fundamental
difference between this form of software evolution and any
other form of software evolution? Why haven’t solutions
found in the general field of software evolution been applied
to automated GUI testing? One of the more obvious
differences that we note is that there is only a small amount
of experimental support for technologies like syntax
highlighters within the GUI domain [4] [5]. Within a typical
IDE, for example, changes to a method signature cause
compile errors that are immediately apparent. Further
research into other fundamental differences between AGT
evolution and evolution of other types of systems would
identify practical issues that GUI testing tools could address.

D. Related Work

The ways in which AGTs evolve over the course of a
software development project have been explored previously
in [6]. This study researched insights into the co-evolution of
a GUI-based application and its AGT suite and found that
updated AGTs were able to detect flaws in future versions of
the system.

The necessity of continuously asking whether or not a
given AGT should be automated echoes Marick’s early work
“When Should a Test Be Automated?” The findings we
report here are validated by the three questions Marick
encourages us to ask before we automate any test [7]: is
automating this test going to save effort; how long is this test
going to last; and how likely is this test to find bugs? While
the issues and best practices our participants raise are not

TABLE II. Issues and corresponding best practices.

Issue Best Practice

Test Suite Evolution Comprehensive Test Maintenance

Frequency of Maintenance Continuous Improvement

Difficulty of Debugging Prune Test Suite

Focus on Passing Tests Focus on Working System

Detecting Stale Tests (None)

Determining Test Lifetime (None)

Test Suite Architecture Three-Layer Architecture

Understandability Separation of Concerns

Code Duplication Increase Modularity

Low Reusability Data-Driven Testing

Up-Front Investment (None)

unique to AGTs, they do seem to carry a lot more weight
than with other forms of testing. It would be useful to
investigate this relationship in future work to determine what
makes AGTs special in this way.

Related work has also been done into the basic questions:
“do tests actually evolve alongside code?” and “how can we
tell?” In [8], a qualitative approach is taken in which
visualizations of software repositories were made to
determine if it was possible to understand the co-evolution of
test and production code. While this research was successful,
understanding the visualizations was difficult. The authors
extended this work in [9] to automatically determine whether
test code is co-evolving with production code. This work
could be used to address our findings in that it can make it
possible to determine whether AGTs are evolving suitably to
continue to add value to the software development effort.

An approach specific to evolving suites of AGTs has
been proposed in which a “change guide” is created by
automatically noting when widgets used in test code have
changed and notifying human testers that a test failure could
occur at a specific location within a test script [4]. This
approach has also been used to explicitly type the widgets
used in test scripts to assist in test maintenance [5]. This
work doesn’t attempt to remove humans from the process of
test suite maintenance, but instead provides tool support for
these activities. Approaches have also been proposed using
genetic algorithms [10], heuristic approaches [11], and
compiler-based approaches [12] in order to attempt to
automatically repair broken GUI test cases.

V. TEST SUITE ARCHITECTURE

Many of the difficulties our participants experienced had
to do primarily with how the AGTs themselves were
structured. We observed that the tight coupling between test
code and GUI implementation and the low reusability of
AGT code was largely due to the fact that AGTs tend to be
created using a single-layer architecture where testing goals,
business logic, and widget interaction are lumped into the
same entity.

A. Problems Caused by Single-Layer Architectures

Four participants (1, 4, 7, 8) encountered issues related to
the way their AGTs were structured. First, their tests were
difficult to understand. Participant 6’s process for figuring
out which action caused a test failure only narrowed the
cause of a test failure down to a certain position within a test.
From there, it is necessary to actually understand what the
test code at that point was attempting to do, which widget it
was attempting to interact with, and, eventually, what caused
the test failure. This is apparently more difficult than with
most other kinds of tests. Participant 8 found that “it was
hard to read the tests and figure out what the application was
doing,” and he realized that this was “because of the level of
detail in the tests – moving the mouse, clicking buttons,
filling that text box with that name, and then you try to look
at the application and figure out what the ‘user’ is trying to
do.” His AGTs, which should have been an expression of
user objectives, were implemented as a series of very direct,
low-level interactions. Understanding the purpose of these

atomic actions complicated test maintenance. Participant 8
found that using a testing framework where “the language of
the tests was very low-level and very business-oriented”
made matters even worse.

Next, our participants found that, when using this sort of
test architecture, a relatively unimportant change to the GUI
or the underlying system could cause many failures. Often
“we have a huge test suite. We make a small change
somewhere. Then we have a huge number of [tests] failing”
(Participant 4). The root of this issue is the duplication
inherent in creating AGTs that interact with the GUI at a low
level. For example, Participant 4 was using “hard coding to
find the UI elements” in each test. This means that, whenever
the GUI was updated, a large swath of the test suite would
need to be updated to reflect what was essentially a single
change, and Participant 4 found that “it’s a lot of work to go
and fix those tests.”

We notice that AGTs written using a single-layer
architecture and a high level of detail pose a challenge to
reusability. Instead of creating tests in such a way that parts
can be easily extracted and used elsewhere, participants
tended to create AGTs as “custom test code with very little
generic application” (Participant 1). We notice that this focus
on creating highly-detailed, highly-customized test code
gave some of our participants a tendency to create a new test
from scratch rather than making use of existing test code.

We note that one reason for this could be the popularity
of capture/replay tools (CRTs) among our participants. CRTs
support the creation of AGTs by observing and recording
interactions with a GUI. CRTs make it easier to create
AGTs, but they usually record test scripts in a domain-
specific language. These AGTs tend to exist independent of
other tests and be structured according to a single-layer
architecture. “So,” Participant 7 explained, “what you’re left
with if you’re using a CRT… are say 20 tests that you run.
They’re probably fairly easy to put together that first time…
but then say something changes on the screen, and you have
to go to 20 different places… You have to rebuild that test
again – over and over and over again.” In this respect, CRTs
exacerbate the problems that we have already identified by
making it easy to create a large amount of duplicate code.

This duplication can immediately become an issue when
testing a web interface on multiple browsers. “You have to
look at every browser,” Participant 6 found, “and you have to
add special rules or special cases for every browser.” In this
situation, a single change can necessitate updates in many
different affected AGTs and in the many different versions
of each of those tests.

B. Best Practice: Multi-Layer Architecture

Out of the four participants who encountered issues with
test suite architecture, three (1, 7, 8) provide techniques for
dealing with them. The suggested test architecture is
summarized in Fig. 1.

The first point participants raised was the need for some
amount of modularity in the AGTs they were building. For
example, Participant 1 likes a feature of Selenium

1
 that

1
 A major web testing tool. See: www.seleniumhq.org

allowed him to “create modules; for instance, a login
method,” which he can reuse “rather than having to redo an
entire segment of the script.” This enables him to encapsulate
sets of actions that have the potential to be used outside the
context of a single test and avoid creating redundant code.
This also creates a single point of failure. If one of the
widgets involved in Participant 1’s login module were to
change, this change would initially cause every test using
that module to fail; however, a fix will need to be
implemented in only a single section of the test code rather
than being propagated to a large number of AGTs.

Participant 8 felt that better AGTs resulted from
including user goals in a separate layer of the test suite that
“take[s] care of navigation, flow.” This makes it possible to
change details about how to interact with a GUI without
losing sight of a high-level user story. Participants 7 and 8
also found it useful for a test suite architecture to contain an
intermediate layer. Participant 8 explained that the middle
layer he uses is “a level of detail where we express the
business goals” and “is about separating the navigation flow
from the user objectives.” We believe that this method of
abstraction should allow the actions required to trigger
business logic to change without impacting user goals. This
is important because it means we don’t need to figure out
what a test is supposed to be testing as a first step to
modifying that test; it should be obvious from the top layer’s
description of the test. Further, if at some point in the future
we need to radically re-architect the GUI or underlying
software, we won’t need to entirely recreate each AGT. This
means that, to an extent, a suite of AGTs structured in this
manner should be safeguarded against software re-
architectings.

Further, this multi-layer architecture provides our
participants with potential for reuse. Participant 7
complimented the three layers proposed so far with data-
driven testing so that “you can have a database or whatever
with the data that you’re going to test against. You can have
all your test cases in there.” With both test data and
information required to locate widgets stored in a database
and a multi-layer test suite architecture, it is possible to test a
large number of test cases using a single, small AGT
combined with a relatively small set of data defining
different test cases and success criteria. This architecture
should be robust against changes in that it should be possible
to make changes to the various portions of a test – user story,
middle layer interactions, discrete interactions with the GUI,
data used to define test cases – without breaking AGTs in a
way that will require overwhelming effort to repair.

C. Open Issue

Setting up the various layers of the architecture is an
investment. Participant 8 found that “it took some time… to
build the infrastructure… you go pretty slowly at the
beginning because you have to build everything in the test
infrastructure.” However, “as you put more of the
infrastructure in place, you can reuse that in different
scenarios, so it starts to pay off pretty quickly.” The process
of moving from a single-layer architecture to a multi-layer
architecture took several two-week iterations. Future work

should aim to reduce the time between when we start
investing in a multi-layer AGT architecture and when the
return starts to outweigh the investment.

D. Related Work

While work exists on the architecture of software
systems, little work exists on the architecture of AGT suites
specifically. Multi-layer test suite architectures have been
briefly proposed in the field of hardware testing [13], but
within software engineering specifically this topic has not
been discussed.

VI. FUTURE WORK

This investigation was able to identify a host of areas –
based on the concerns of people actively engaged in the use
of AGTs – for future work.

A. Additional Topics

In future publications, we intend to explore the concerns
we could not address in the current publication, including:

1) Widget Identification
Five of our participants (1, 3, 4, 6, 7) have trouble getting

their AGTs to reliably find the relevant set of widgets for a
test. The basic issue is that changes to a GUI can break
AGTs that rely on the structure of the GUI itself or on
information about particular widgets. Fixing these broken
tests can waste a lot of time, especially in a situation where a
failing test does not represent a broken feature. An additional
complication exists in the case where information about a
widget changes over the course of a test. This makes it
difficult for a human to make the semantic connection
between the identifying characteristics of widgets present in
a test and widgets in a GUI and can complicate debugging.

Our participants had experimented with three solutions:
use keyword-based testing (1, 7); use a system to

Fig.1. Multi-layer AGT suite architecture showing calls

between layers.

heuristically identify widgets (6); use a screenshot-based tool
(3). However, keyword-based testing can complicate the
process of using automated tools to extend existing AGTs (as
in [14]). In the case of heuristic identification, we caution
that the cases where identification fails could be much more
complicated to debug. Further research is needed on this
topic specifically. Screenshot-based testing, on the other
hand, is very brittle against a variety of trivial changes. Each
of these may represent worse solutions to a bad problem, so
future work needs to be done not only to identify better
solutions, but to explain why this problem is so much more
complicated for AGTs than for other forms of testing.

2) Targets for Automation
Participants 3, 4, and 7 felt that a primary candidate for a

test that should be automated was something that was easy to
automate. When pressed on this issue, all three also felt that
the task should also be repetitive. Participant 7 also found
that these tasks should be things that customers will care
about, have high visibility, and be important if they were to
actually fail. Guidelines for which GUI tests to automate and
which to perform manually would be useful for practitioners
and this topic would be an excellent source of future work.

Participants 4 and 6 found that AGTs involving the look-
and-feel and presentation/layout of GUIs are hard to
automate. It would seem that there are characteristics of
GUIs that are difficult to test, and it would help in the design
of future tools to look into what makes a given manual test
difficult to successfully turn into an AGT.

VII. LIMITATIONS

Several limitations are present in this study. First, our
results are based on interviews. In order to determine
whether these findings are valid in general, it would be
necessary to perform more detailed, longitudinal
observational investigations into the effects of test suite co-
evolution with GUI/system code and test suite architecture
on the effectiveness of AGTs.

Second, due to the filtering of interviews at our second
phase of data analysis, our study looked only at the
experiences of experienced automated GUI testers. The
issues that less-experienced testers had were clustered
around tool-specific problems, but not in themselves invalid.
Future work should study these testers to determine why, for
example, people tend to give up on AGTs.

VIII. CONCLUSIONS

This paper presents insights into the goals, issues, and
best practices of automated GUI testing. We were able to
discover that the major goals AGTs were used to achieve
were acceptance testing and regression testing. Further, we
found that test suite evolution and test suite architecture were
significant issues for our participants. In terms of test suite
evolution, participants that had dealt with this issue had
discovered that AGTs need to co-evolve with the system
they operate on, AGTs need to be upgraded as the system or
GUI changes, and frequently-breaking AGTs may need to be
removed from automation. In terms of test suite architecture,
we found that a three-layer test suite architecture had made it

easier to maintain, understand, and reuse their AGTs. We
believe that multi-layered architectures may provide
protection against major changes to the system under test.

This paper serves as a first attempt to explore the large
and largely unexplored area of automated GUI testing. Our
results suggest that further research is needed in the
following areas: identifying widgets from test code; what
makes a good target for test automation; ways to lower the
initial investment in multi-layered test suite architectures;
and the evolution of AGTs. It will remain difficult to provide
effective support for automated GUI testing until we
understand more about what makes it so difficult in the first
place.

REFERENCES

[1] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:

Strategies for Qualitative Research, Chicago: Aldine, 1967.

[2] J. Saldaña, The Coding Manual for Qualitative Researchers, London:

Sage, 2009.

[3] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, 2nd ed.,

Upper Saddle River, NJ: Addison-Wesley, 2007.

[4] M. Grechanik, Q. Xie and C. Fu, "Maintaining and Evolving GUI-
Directed Test Scripts," in 31st International Conference on Software

Engineering, Washington DC, USA, 2009.

[5] C. Fu, M. Grechanik and Q. Xie, "Inferring Types of Reference to
GUI Objects in Test Scripts," in International Conference on Software

Testing Verification and Validation, Denver, Colorado, USA, 2009.

[6] Y. Shewchuk and V. Garousi, "Experience with Maintenance of a
Functional GUI Test Suite Using IBM Rational Funcitonal Tester," in

International Conference on Software Engineering and Knowledge

Engineering, Boston, USA, 2010.

[7] B. Marick, "When Should a Test Be Automated?," in 11th

International Software Quality Week (QW'98), San Francisco, 1998.

[8] A. Zaidman, B. van Rompaey, S. Demeyer and A. van Deursen,
"Mining Software Repositories to Study Co-Evolution of Production

and Test Code," in 1st International Conference on Software Testing,

Verification, and Validation, Lillehammer, Norway, 2008.

[9] Z. Lubsen, A. Zaidman and M. Pinzger, "Using Association Rules to

Study the Co-Evolution of Production and Test Code," in 6th IEEE

International Working Conference on Mining Software Repositories,
Vancouver, Canada, 2009.

[10] S. Huang, M. Cohen and A. M. Memon, "Repairing GUI Test Suites

Using a Genetic Algorithm," in 3rd IEEE International Conference on
Software Testing, Verification, and Validation, Washington DC, USA,

2010.

[11] S. McMaster and A. M. Memon, "An Extensible Heuristic-Based
Framework for GUI Test Case Maintenance," in International

Conference on Software Testing, Verification, and Validation, Denver,

Colorado, USA, 2009.

[12] A. M. Memon and M. L. Soffa, "Regression Testing of GUIs," in 9th

European Software Engineering Conference / 11th ACM SIGSOFT

international Symposium on Foundations of Software Engineering,
Helsinki, Finland, 2003.

[13] P. Bernardi, A. Bertuzzi, M. Grosso, V. Tancorre and S. Tritto,

"Testing Parametric Cores: A Multi-Layer Test Program to Improve
and Automate the EDA-ATE Link," in 7th European Manufacturing

Test Conference, Munich, Germany, 2005.

[14] T. D. Hellmann and F. Maurer, "Rule-Based Exploratory Testing of
Graphical User Interfaces," in International Conference on Agile

Methods in Software Development, Salt Lake, UT, 2011.

