

Randomness Characterization in Computing and Stochastic Simulations J. A. Rod Blais, Un. of Calgary, <u>blais@ucalgary.ca</u>

UNIVERSITY OF CALGARY

Introduction	True Random Number Sequences	Expected Variances in Monte Carlo Simulations
• Physics: classical (deterministic) → modern (quantum physics)	Basis: physical phenomena 'known' to be random	Numerical Recipes state:
• Mathematics: Lebesgue measures → probabilistic measures		$\int_{V} \mathbf{f} d\mathbf{V} \approx \mathbf{V} \langle \mathbf{f} \rangle \pm \sqrt{\left(\langle \mathbf{f}^{2} \rangle - \langle \mathbf{f} \rangle^{2} \right) / N} \qquad \text{implying a variance O(1/N)}$
Computations: deterministic → pseudo random and stochastic	Examples: HotBits service based on radioactive decay	$\mathbf{J}_{\mathbf{v}}$ (7 $\mathbf{v}(\mathbf{v}, \mathbf{v}, \mathbf{v})$) (7
Simulations: computations → Monte Carlo and stochastic	www.fourmilab.ch	In general, then with N data values,
• Predictions: simulations → stochastic and probabilistic	Quantis generated by quantum mechanical process	True Random Numbers \Rightarrow O(1/N) error variance
Practical considerations	www.idquantique.com	Pseudo Random Numbers $\Rightarrow O(1/N)$ error variance Chaotic Random Numbers $\Rightarrow O(1/N)$ error variance
exact rigorous computations are not always possible	Random generated by atmospheric noise (radio static) www.random.org	but
stochastic simulations often offer practical solutions	TOWNSREE TO A STATE WATER "	Quasi Random Numbers \Rightarrow O((ln N) ^{2s} /N ²) error variance for spatial dimension s, and apparently under the so-called
reproducibility often restricted to confidence levels		'superefficiency conditions with dynamical correlations for large N'
Applications to direct and inverse problems		Chaotic Random Numbers ⇒ O(1/N ²) error variance (See e.g. Umeno 2000, 1999, 1998 and Blais & Zhang, 2011)
Randomness	Pseudo Random Number Sequences	Adaptive and Recursive Monte Carlo Strategies
Mathematics	Basis: computational rounding-off or related errors	Importance Sampling
Randomness applies only to processes	· · ·	Essentially by analyzing the nature of the integrand
'Lawlessness' ≈ algorithmic incompressibility	Common Methodology:	Variable of integration may be transformed for better results
Axiomatization in terms of non-deterministic processes	most often using some linear congruential model applied recursively such as	Significant improvements are possible with complex problems
• Physics	$x_n \equiv c \odot x_{n-1} \mod \rho$ (for large prime ρ and constant c)	Stratified Sampling
Unpredictable chaotic random processes	or lagged Fibonacci congruential sequence, such as x _n ≡ x _{n-p} ⊙ x _{n-q} modulo ρ (for large primes ρ and p, q)	Largely by analyzing the characteristics of the integration domain
Unpredictable quantum random processes Natural unpredictable processes	in which \odot usually stands for ordinary multiplication	Segmenting the domain may be considered for different sampling Small sample means often contribute to better overall results
		Minud / A danking Standarian
Computational Science Unreproducible computations	E HERRICH STREET	Mixed/Adaptive Strategies Both importance and stratified sampling can often be combined
Algorithmic probabilistic entropy		into optimal mixed and/or adaptive implementations, especially
Computer code of shortest description	and the first state term term term term term term term te	in high-dimensional applications
Distributional Aspects	Chaotic Random Number Sequences	Markov Chain Monte Carlo Modeling
Distributional Aspects Randomness in data sequences does not obviously imply low discrepancy nor a	Chaotic Random Number Sequences Basis: computational chaotic processes	Markov Chain Monte Carlo Modeling Sequences of Monte Carlo simulations can be modeled as Markov
	Basis: computational chaotic processes	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps	Basis: computational chaotic processes Common Methodology:	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations {S ₀ , S ₁ , S ₂ , S ₃ ,, S _{k-1} , S _k , S _{k+1} ,}, then
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all k=1, 2, 3,
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four)	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations {S ₀ , S ₁ , S ₂ , S ₃ ,, S _{k-1} , S _k , S _{k+1} ,}, then E[S _k S _{k-1} , S _{k-2} , S _{k-3} ,] = E[S _k S _{k-1}] for all k=1, 2, 3, The Markovian properties imply that only the immediate past
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can casily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi [x (1 - x)]^{1/2}$ (not uniform distribution)	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all k=1, 2, 3,
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi x(1 - x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3, \dots, S_{k-1}, S_k, S_{k+1}, \dots\}$ then $E[S_k S_{k-1}, S_{k-2}, S_{k-3}, \dots] = E[S_k S_{k+1}]$ for all $k=1, 2, 3, \dots$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi [x (1 - x)]^{1/2}$ (not uniform distribution)	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k+1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals:	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi x(1 - x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$ then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi x(1 - x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k,1}, S_k, S_{k+1},\}$, then $E[S_k S_{k+1}, S_{k+2}, S_{k+3},] = E[S_k S_{k+1}]$ for all k=1, 2, 3, The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals:	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi x(1 - x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k,1}, S_k, S_{k+1},\}$, then $E[S_k S_{k+1}, S_{k+2}, S_{k+3},] = E[S_k S_{k+1}]$ for all k=1, 2, 3, The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can casily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $\rho(x) = 1 / \pi x(1 - x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k,1}, S_k, S_{k+1},\}$, then $E[S_k S_{k+1}, S_{k+2}, S_{k+3},] = E[S_k S_{k+1}]$ for all k=1, 2, 3, The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x (1 - x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) $p(x) = 1 + \frac{1}{2} + $	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$ then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x (1 - x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$ then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots.Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random).Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.Gibbs SamplerA Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution without calculating the density.	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x(1-x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology:	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can casily be seen in sample spatial and spectral plots.Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random).Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.Gibbs SamplerA Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution opplications, random variables are required with some assumed distribution of the derived somehow from other random	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x (1 - x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},, \}$ then $E[S_k S_{k+1}, S_{k+2}, S_{k+3},] = E[S_k S_{k+1}]$ for all k=1, 2, 3, The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots.Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random).Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.Gibbs SamplerA Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution vithout calculating the density.In conventional Monte Carlo applications, random variables are required with some assumed distribution of the derived somehow from other random variables having known distribution characteristics. Most random number	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1 / \pi x(1-x) ^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology: Van der Corput (binary) sequences:	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k-1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all k=1, 2, 3, The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration. Applications and Conclusions In Monte Carlo volume estimation and stochastic simulations, the randomness requirements can be quite different: In the former, randomness is often secondary to the distributional aspects of the data sequences. In fact, quasi random numbers of the
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can casily be seen in sample spatial and spectral plots.Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random).Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions.Gibbs SamplerA Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution opplications, random variables are required with some assumed distribution of the derived somehow from other random	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$, for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x (1 - x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology: Van der Corput (binary) sequences: 1, 10, 11, 100, 101, 111, $\Rightarrow 0.1, 0.01, 0.11, 0.001, 0.101, 0.111,$ Halton (binary) sequences: $y_2, y_4, y_4, 1/8, 5/8, 3/8, 7/8, 1/16,$	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration. Applications and Conclusions In Monte Carlo volume estimation and stochastic simulations, the randomness requirements can be quite different: In the former, randomness is often secondary to the distributional aspects of the data sequences. In fact, quasi random numbers of the deterministic type can give the best results , essentially $O(1/N^2)$ with N data values. In the latter, however, randomness can be critical for the probabilistic
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy.$ which can obviously be simplified with uniform distributions. Gibbs Sampler A Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution without calculating the density. In conventional Monte Carlo applications, random variables are required with some assumed distribution of the drived somehow from other random umber generators are designed to produce a uniform distribution of random number	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in $(0, 1)$, which exhibits randomness with a density $p(x) = 1/\pi [x(1-x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology: Van der Corput (binary) sequences: 1, 10, 11, 100, 101, 111, $\Rightarrow 0.1$, 0.01, 0.11, 0.001, 0.101, 0.111, Halton (binary) sequences: y, y, y, 1/8, 5/8, 3/8, 7/8, 1/16, π digital expansion: 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8,	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{bc1}, S_b, S_{bc1},\}$, then $E[S_k S_{bc1}, S_{bc2}, S_{bc3},] = E[S_k S_{bc1} for all k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration. Applications and Conclusions In Monte Carlo volume estimation and stochastic simulations, the randomness requirements can be quite different: In the former, randomness is often secondary to the distributional aspects of the data sequences. In fact, quasi random numbers of the deterministic type can give the best results, essentially $O(1/N^2)$ with N data values. In the latter, however, randomness can be critical for the probabilistic aspects of the simulations. For instance, in digital image restoration, the capuivalence of the Gibbs distribution and the Markov random field is
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution $p(y)$ into another variate x with distribution $p(x)$. The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy$ which can obviously be simplified with uniform distributions. Gibbs Sampler A Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution often derived somehow from other random variables having known distributional characteristics. Most random number generators are designed to produce a uniform distribution of random numbers over the unit interval (0, 1).	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$, for $n = 1, 2, 3,$ using some random seed x_0 in (0, 1), which exhibits randomness with a density $p(x) = 1/\pi [x (1 - x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology: Van der Corput (binary) sequences: 1, 10, 11, 100, 101, 111, $\Rightarrow 0.1, 0.01, 0.11, 0.001, 0.101, 0.111,$ Halton (binary) sequences: $y_2, y_4, y_4, 1/8, 5/8, 3/8, 7/8, 1/16,$	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration. Applications and Conclusions In Monte Carlo volume estimation and stochastic simulations, the randomness requirements can be quite different: In the former, randomness is often secondary to the distributional aspects of the data sequences. In fact, quasi random numbers of the deterministic type can give the best results , essentially $O(1/N^2)$ with N data values. In the latter, however, randomness can be critical for the probabilistic aspects of the simulations. For instance, in digital image restoration, the equivalence of the Gibbs distribution and the Markov random field is explicitly used in the stochastic modeling and restoration.
Randomness in data sequences does not obviously imply low discrepancy nor a uniform distribution as can easily be seen in sample spatial and spectral plots. Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random). Well known procedures can be used to transform a random variate y with a distribution p(y) into another variate x with distribution p(x). The transformation follows the usual approach with Jacobians in integrals: $p(y)dy = p(x) \left \frac{\partial x}{\partial y} \right dy.$ which can obviously be simplified with uniform distributions. Gibbs Sampler A Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution without calculating the density. In conventional Monte Carlo applications, random variables are required with some assumed distribution of the drived somehow from other random variables having known distributional characteristics. Most random number generators are designed to produce a uniform distribution of random numbers over the unit interval (0, 1).	Basis: computational chaotic processes Common Methodology: Using the Logistic equation (with parameter equal to four) $x_n = 4 x_{n-1} (1 - x_{n-1})$ for $n = 1, 2, 3,$ using some random seed x_0 in $(0, 1)$, which exhibits randomness with a density $p(x) = 1/\pi [x(1-x)]^{1/2}$ (not uniform distribution) Other similar procedures given in the literature (see e.g. Blais & Zhang, 2011) Quasi Random Number Sequences Basis: computational sequences of low discrepancy Varied Methodology: Van der Corput (binary) sequences: 1, 10, 11, 100, 101, 111, $\Rightarrow 0.1$, 0.01, 0.11, 0.001, 0.101, 0.111, Halton (binary) sequences: y, y, y, 1/8, 5/8, 3/8, 7/8, 1/16, π digital expansion: 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8,	Sequences of Monte Carlo simulations can be modeled as Markov chains with appropriate transition probabilities. Explicitly, considering a sequence of such simulations $\{S_0, S_1, S_2, S_3,, S_{k-1}, S_k, S_{k+1},\}$, then $E[S_k S_{k-1}, S_{k-2}, S_{k-3},] = E[S_k S_{k-1}]$ for all $k=1, 2, 3,$ The Markovian properties imply that only the immediate past transition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis. The transition probabilities are often modeled in terms of decreasing 'temperatures' to simulate annealing processes converging to some appropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration. Applications and Conclusions In Monte Carlo volume estimation and stochastic simulations, the randomness requirements can be quite different: In the former, randomness is often secondary to the distributional aspects of the data sequences. In fact, quasi random numbers of the deterministic type can give the best results, essentially $O(1/N^2)$ with N data values. In the latter, however, randomness can be critical for the probabilistic aspects of the simulations. For instance, in digital image restoration, the capuivalence of the Gibbs distribution and the Markov random field is