
Introduction

• Physics: classical (deterministic)  modern (quantum physics)

• Mathematics: Lebesgue measures  probabilistic measures

• Computations: deterministic  pseudo random and stochastic

• Simulations: computations  Monte Carlo and stochastic

• Predictions: simulations  stochastic and probabilistic

• Practical considerations

exact rigorous computations are not always possible

stochastic simulations often offer practical solutions

reproducibility often restricted to confidence levels

• Applications to direct and inverse problems

True Random Number Sequences

Basis:  physical phenomena ꞌknownꞌ to be random

Examples:
HotBits service based on radioactive decay 

www.fourmilab.ch
Quantis generated by quantum mechanical process

www.idquantique.com
Random generated by atmospheric noise  (radio static)

www.random.org 

Expected Variances in Monte Carlo Simulations

Numerical Recipes state:

In general, then with N data values,
True Random Numbers   O(1/N)  error variance
Pseudo Random Numbers   O(1/N)  error variance
Chaotic Random Numbers   O(1/N)  error variance

but
Quasi Random Numbers   O((ln N)2s /N2) error variance 

for spatial dimension s, and  apparently under the so-called 
ꞌsuperefficiency conditions with dynamical correlations for large Nꞌ

Chaotic Random Numbers   O(1/N2)  error variance
(See e.g.  Umeno 2000, 1999, 1998 and Blais & Zhang, 2011)  

Randomness

• Mathematics
Randomness  applies only to processes
ꞌLawlessnessꞌ ≈  algorithmic incompressibility
Axiomatization in terms of non-deterministic processes

• Physics
Unpredictable chaotic random processes 
Unpredictable quantum random processes
Natural unpredictable processes

• Computational Science
Unreproducible computations

Algorithmic probabilistic entropy
Computer code of shortest description 

Pseudo Random Number Sequences

Basis:  computational rounding-off or related errors

Common Methodology:
most often using some linear congruential model applied recursively
such as

xn  c ε xn-1 modulo  (for large prime  and constant c)
or lagged Fibonacci congruential sequence,  such as

xn  xn-p ε xn-q modulo  (for large primes  and p, q)
in which ε usually stands for ordinary multiplication

Adaptive and Recursive Monte Carlo Strategies

• Importance Sampling
Essentially  by analyzing the nature of the integrand
Variable of integration may be transformed for better results
Significant improvements are possible with complex problems

• Stratified Sampling
Largely by analyzing the characteristics of the integration domain 
Segmenting the domain may be considered for different sampling
Small sample means often contribute to better overall results

• Mixed/Adaptive Strategies
Both importance and stratified sampling can often be combined 
into optimal mixed and/or adaptive implementations, especially 
in high-dimensional applications

Distributional Aspects

Randomness in data sequences does not obviously imply low discrepancy nor a 
uniform distribution as can easily be seen in sample spatial and spectral plots.

Spatial plots of random numbers show clumping effects in places and open gaps 
in other places.  Such spatial discrepancies  are usually unrelated to the 
distributional properties of the sequences. Some quasi random sequences are 
especially designed to have low discrepancy characteristics (without necessarily 
being random).

Well known procedures can be used to transform a random variate y with a 
distribution p(y) into another variate x with distribution p(x).  The 
transformation follows the usual approach with Jacobians in integrals:

which can obviously be simplified with uniform distributions.

Chaotic Random Number Sequences

Basis:  computational chaotic processes

Common Methodology:
Using the Logistic equation (with parameter equal to four)

xn = 4 xn-1 (1 – xn-1)   for n = 1, 2, 3, …
using some random seed  x0 in (0, 1), which exhibits randomness 
with a density

(x) = 1 /  [x (1 – x)]1/2 (not uniform distribution)
Other similar procedures given in the literature 
( see e.g. Blais & Zhang, 2011) 

Markov Chain Monte Carlo Modeling

Sequences of Monte Carlo simulations can be modeled as Markov 
chains with appropriate transition probabilities.  Explicitly, considering 
a sequence of such simulations {S0, S1, S2, S3, …, Sk-1, Sk, Sk+1, …}, then

E[Sk | Sk-1, Sk-2, Sk-3, ….]  = E[Sk | Sk-1]   for all k=1, 2, 3, ...

The Markovian properties imply that only the immediate past
transition probabilities need to be considered in current simulations. 
This greatly simplifies the modeling and the analysis.

The transition probabilities are often modeled in terms of decreasing
‘temperatures’ to simulate annealing processes converging to some
appropriate uniform distribution.  This is described as ‘stochastic
relaxation’ in digital image and similar restoration.  

Gibbs Sampler

A Gibbs sampler is a technique for generating random variables indirectly from
some (marginal) distribution without calculating the density.

In conventional Monte Carlo applications, random variables are required with 
some assumed distribution often derived somehow from other random
variables having known distributional characteristics.  Most random number 
generators are designed to produce a uniform distribution of random numbers 
over the unit interval (0, 1).

In practice, it really depends on the application context to decide on the most
appropriate Gibbs  sampler.  For example, in digital image restoration, the
Gibbs sampler is often based on immediate pixel neighborhoods for the Markov 
random field  (see e.g. Geman & Geman, 1984).

Quasi Random Number Sequences

Basis:  computational sequences of low discrepancy

Varied Methodology:
Van der Corput (binary) sequences:

1, 10, 11, 100, 101, 111, …  0.1, 0.01, 0.11, 0.001, 0.101, 0.111,…
Halton (binary) sequences:

½, ¼, ¾, 1/8, 5/8, 3/8, 7/8, 1/16, ….
 digital expansion:  3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, …
e digital expansion:  2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, …

Applications and Conclusions

In Monte Carlo volume estimation and stochastic simulations, the 
randomness requirements can be quite different:
In the former, randomness is often secondary to the distributional 
aspects of the data sequences. In fact, quasi random numbers of the 
deterministic type can give the best results , essentially  O(1/N2) with N 
data values.
In the latter, however, randomness can be critical for the probabilistic 
aspects of the simulations. For instance, in digital image restoration, the 
equivalence of the Gibbs distribution and the Markov random field is 
explicitly used in the stochastic modeling and restoration.
Applications abound in geomatics, geoscience and elsewhere  (see e.g. 
Blais & Zhang, 2011; Blais, 2010; Blais, 2009;  Blais et al, 2008)
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