## Introduction

Physics: classical (deterministic) $\rightarrow$ modern (quantum physics)
Mathematics: Lebesgue measures $\rightarrow$ probabilistic measures

- Computations: deterministic $\rightarrow$ pseudo random and stochastic Simulations: computations $\rightarrow$ Monte Carlo and stochastic Predictions: simulations $\rightarrow$ stochastic and probabilistic - Practical considerations
exact rigorous computations are not always possible stochastic simulations often offer practical solutions reproducibility often restricted to confidence levels
Applications to direct and inverse problems


## Randomness

- Mathematics

Randomness applies only to processes
'Lawlessness' $\approx$ algorithmic incompressibility
Axiomatization in terms of non-deterministic processes
Physics
Unpredictable chaotic random processes
Unpredictable quantum random processe Natural unpredictable processes
Computational Science
Unreproducible computations
Algorithmic probabilistic entropy
Computer code of
Computer code of shortest description

## Distributional Aspects

Randomness in data sequences does not obviously imply low discrepancy nor Randomness in data sequences does not obviously imply low discrepancy nor a
uniform distribution as can easily be seen in sample spatial and spectral plots.

Spatial plots of random numbers show clumping effects in places and open gaps in other places. Such spatial discrepancies are usually unrelated to the distributional properties of the sequences. Some quasi random sequences are especially designed to have low discrepancy characteristics (without necessarily being random).

Well known procedures can be used to transform a random variate y with distribution $p(y)$ into another variate x with distribution $\mathrm{p}(\mathrm{x})$. The
$p(y) d y=p(x)\left|\frac{\partial x}{\partial y}\right| d y$
which can obviously be simplified with uniform distributions.
Gibbs Sample
A Gibbs sampler is a technique for generating random variables indirectly from some (marginal) distribution without calculating the density.

In conventional Monte Carlo applications, random variables are required wit some assumed distribution often derived somehow from other random
variables having known distributional characteristics. Most random number generators are designed to pr
over the unit interval ( 0,1 ).

In practice, it really depends on the application context to decide on the most appropriate Gibbs sampler. For example, in digital image restoration, the Gibbs sampler is often based on immediate pixel neighborhoods for the Markov random field (see e.g. Geman \& Geman, 1984).

True Random Number Sequence
Basis: physical phenomena 'known' to be random
Examples:
HotBits service based on radioactive decay www.fourmilab.ch
Quantis generated by quantum mechanical process www.idquantique.con
$\underset{\text { www.random.org }}{\text { Random generated by atmospheric noise (radio static) }}$ www.random.org


Pseudo Random Number Sequences
Basis: computational rounding-off or related errors
Common Methodology:
most often using some linear congruential model applied recursively such as
$x_{n}=c \odot x_{n-1}$ modulo $\rho$ (for large prime $\rho$ and constant $c$ )
or lagged Fibonacei congruential sequence, such as
$x_{n}=\sum_{n-p} \odot x_{n-q}$
modulo $\rho$ (for large primes $\rho$ and $p, q$ )
in which $\odot$ usually stands for ordinary multiplication


Chaotic Random Number Sequences
Basis: computational chaotic processes

## Common Methodology:

Using the Logistic equation (with parameter equal to four) $x_{n}=4 x_{n-1}\left(1-x_{n-1}\right)$ for $n=1,2,3$,
using some random seed $x_{0}$ in $(0,1)$, which exhibits randomness with a density
$\rho(x)=1 / \pi[x(1-x)]^{1 / 2} \quad$ (not uniform distribution)
Other similar procedures given in the literature
( see e.g. Blais \& Zhang, 2011)


## Quasi Random Number Sequences

## Basis: computational sequences of low discrepanc

## Varied Methodology:

Van der Corput (binary) sequences:
$1,10,11,100,101,111, \ldots \Rightarrow 0.1,0.01,0.11,0.001,0.101,0.111, \ldots$ Halton (binary) sequences
$1 / 2,1 / 4,3 / 4,1 / 8,5 / 8,3 / 8,7 / 8,1 / 16, \ldots$.
$\tau$ digital expansion: 3, 1, 4, 1,5,9,2, 6,5,3,5,8,9,7,9,3,2,3,8,


Expected Variances in Monte Carlo Simulations Numerical Recipes state:

$$
\int_{\mathrm{V}} \mathrm{f} \mathbf{d V} \approx \mathrm{~V}\langle\mathbf{f}\rangle \pm \sqrt{\left(\left(\mathbf{f}^{2}\right\rangle-\langle\mathbf{f}\rangle^{2}\right) / \mathbf{N}} \quad \text { implying a variance } \mathbf{O}(1 / \mathbf{N}
$$

In general, then with N data values,
True Random Numbers $\Rightarrow \mathbf{O}(1 / \mathbf{N})$ error variance Pseudo Random Numbers $\Rightarrow \mathbf{O}(1 / \mathbf{N})$ error variance
but
Quasi Random Numbers $\Rightarrow \mathbf{O}\left((\ln N)^{2 s} / N^{2}\right)$ error variance or spatial dimension s , and apparently under the so-called superefficiency conditions with dynamical correlations for large N Chaotic Random Numbers $\Rightarrow \mathbf{O}\left(1 / \mathbf{N}^{2}\right)$ error variance
(See e.g. Umeno 2000, 1999, 1998 and Blais \& Zhang, 2011)

Adaptive and Recursive Monte Carlo Strategies

- Importance Sampling

Essentially by analyzing the nature of the integrand Variable of integration may be transformed for better results Significant improvements are possible with complex problems

Stratified Sampling
Largely by analyzing the characteristics of the integration domain Segmenting the domain may be considered for different sampling Small sample means often contribute to better overall results
Mixed/Adaptive Strategies
Both importance and stratified sampling can often be combined into optimal mixed and/or adaptive implementations, especially in high-dimensional applications

## Markov Chain Monte Carlo Modeling

Sequences of Monte Carlo simulations can be modeled as Markov a sequence of such simulations $\left\{\mathbf{S}_{0}, \mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}, \ldots, \mathbf{S}_{k}, 1, \mathbf{S}_{k}, \mathbf{S}_{k+1}, \ldots\right\}$, then
$E\left[\mathbf{S}_{k} \mid \mathbf{S}_{k-1}, \mathbf{S}_{k-2}, \mathbf{S}_{k-3}, \ldots.\right]=\mathbf{E}\left[\mathbf{S}_{k} \mid \mathbf{S}_{k-1}\right]$ for all $\mathrm{k}=1,2,3, \ldots$
The Markovian properties imply that only the immediate past ransition probabilities need to be considered in current simulations. This greatly simplifies the modeling and the analysis.
The transition probabilities are often modeled in terms of decreasing temperatures' to simulate annealing processes converging to some
ppropriate uniform distribution. This is described as 'stochastic relaxation' in digital image and similar restoration.

## Applications and Conclusions

In Monte Carlo volume estimation and stochastic simulations, the domness requirements can be quite different: In the former, randomness is often secondary to the distributional deterministic type can give the best results , essentially $\mathbf{O}\left(1 / \mathbf{N}^{2}\right)$ with ata values. data values.
In the latter, however, randomness can be critical for the probabilistic equivalence of the Gibbs distribution and ind digital image restoration, explicitly used in the stochastic modeling and restoration.
pplications abound in geomatics, geoscience and elsewhere (see e.g. Blais \& Zhang, 2011; Blais, 2010; Blais, 2009; Blais et al, 2008)

