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Abstract 

A contributing factor to the unexplained collapse of a number of large-scale inflat-

able structures is ponding instability. In this thesis, the load-deflection characteristics 

will be examined for a spherical membrane of radius R0, central half angle /3, and 

internal pressure p,, subjected to concentrated axisymmetric apex loads, hydrostatic 

loads, or a combination of hydrostatic and concentrated axisymmetric apex load-

ing. A full range of geometries, from shallow to very lofty, will be treated and the 

entire range of the ponding medium's nondimensional density will be allowed. The 

analysis will also take support wrinkling into account. The deflected configuration 

is considered in an Eulerian description with open boundary conditions. Equations 

of equilibrium, the Gauss-Codazzi relation and compatibility are used to solve the 

governing differential equations numerically using an iterative scheme based on a 

fourth order Runge-Kutta method. 

The results indicate limit-point behavior for all loading conditions examined if 

the geometry of the structure is sufficiently lofty. The engineer is presented with 

the critical concentrated axisymmetric apex load which can be applied safely to the 

structure or the minimum allowable central half angle for a given nondimensional 

density such that snap-through behavior can be avoided. The engineer should then 

be able to use spherical inflatable structures without fear of snap-through behavior. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

In recent years, the use of polyvinyl pneumatic structures has gained popularity. The 

acceptance of these types of structures can be attributed to reasons such as: improved 

look and quality of the polyvinyl fabric; ease of construction, ease of assembly of the 

structures at a site; the portability of the structure; and its low cost compared to 

conventional structures. In most cities they can be spotted as sports facilities, green 

houses, storage facilities, and as temporary structures for equipment or people at 

special events. 

Although inflatable structures are in use today, the problems associated with 

the loading characteristics have not been completely addressed. The applications 

stated above result in the need for various loads to be attached to the structure 

such as lighting, speaker systems, or watering systems. In most cases these loads are 

attached symmetrically around the apex of the structure. These concentrated loads 

will cause a depression to form at the apex which in turn allows rain, snow, or ice to 

accumulate. This type of loading scenario can lead to the failure of the structure. 

The most popular configurations for pneumatic membrane structures are the 

spherical and cylindrical shapes. This thesis will address the load-deflection charac-

teristics of spherical inflatable structures. 

1 
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1.2 Historical Development 

The identification of the need for research in this area was first done by Dr. Peter 

Glockner in the seventies. Although research was conducted on both spherical and 

cylindrical pneumatic structures, only the historical work done on the spherical in-

flatables will be discussed here. The profiles of the spherical infiatables investigated 

varied from shallow to very lofty profiles. In the literature the profile of the structure 

is defined by the central half angle which, for a very lofty structure, nears 00. Over 

the years, the research developed into three distinct areas: combined hydrostatic and 

concentrated axisymmetric apex loads, concentrated axisymmetric apex loads, and 

hydrostatic loads. Each will be discussed in turn. 

The problem of determining the load-deflection and stability characteristics of 

low profiled spherical membranes subjected to a combined hydrostatic and concen-

trated axisymmetric apex load was first examined by Malcolm and Glockner [20] in 

1981. In their research, they derived the differential equations for a membrane of rev-

olution with a critical concentrated axisymmetric apex load such that the resulting 

depression was completely filled with liquid. The results determined the critical cen-

tral weight for various densities, internal pressures, and radii of the structure. Their 

efforts also included experimental work for comparison with theoretical predictions. 

Preliminary work was also done by Lukasiewicz and Glockner [17, 18, 19] in 1983 

and Szyszkowski and Glockner [14] in 1984. Lukasiewicz and Glockner established 

critical loads for a membrane with a completely filled depresion utilizing an energy 

method. Szyszkovski and Glockner, on the other hand, established load-deflection 

curves for membranes under combined hydrostatic and concentrated axisymmetric 
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apex loading by numerically solving the governing differential equations. The curves 

obtained determined the axisymmetric concentrated apex load which resulted in the 

depression being completely filled with liquid. 

The research on concentrated axisymmetric apex loads began with Szyszkowski 

and Glockner [25] in 1983. The model included an inextensible spherical membrane 

which had a vertical concentrated load hung at the apex. The loading caused a 

wrinkled domain to form around the apex. They developed a set of differential 

equations which satisfied the equations of equilibrium and the Gauss-Codazzi relation 

for the wrinkled region of the membrane. The equations were solved numerically to 

determine points on the structure's load-deflection curve. Load-deflection curves 

were established for a range of profiles, not including very lofty structures. The 

results included snap-through and ultimate behavior of the structures. 

In 1988, Dacko and Glockner [6] took another look at the problem. Their research 

extended the earlier work and included the full range of geometries, from very flat 

to very high profile structures. Their solution technique resulted in convergence for 

low values of the central half angle, down to 20°. They also investigated the effect 

of membrane extensibility and found that the load-deflection curves were within a 

few percent of those for the inextensible case. In addition, they admitted in their 

analysis the phenomenon of support wrinkling which occurs in very lofty structures. 

In an attempt to determine the load-deflection curves for central half angles below 

200, Dacko and Glockner [7], in 1989, reformulated the differential equations in terms 

of the arc length. This resulted in load-deflection curves for central half angles down 

to 50• 

The final development in the research on concentrated axisymmetric apex loads 
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for spherical membranes was also conducted by Dacko and Glockner [8, 9] in 1989. 

This work concentrated on the effects of support conditions on the load-deflection be-

havior of spherical membranes. Supports examined included stove-pipe-like supports 

and a horizontal support surface. 

In 1983 Szyszkowski and Glockner [26] also began research on spherical mem-

branes subjected to hydrostatic loading. They developed the governing differential 

equations for an inextensible membrane of revolution with an axisymmetric depres-

sion at the apex which was completely or partially filled with liquid. Their results 

included a curve representing membranes with a completely filled depression for 

various nondimensional densities. It also included the stable domains of the load-

deflection curve for a nondimensional density of 4.55. The unstable portion of the 

load-deflection curve, however, was not obtained in its entirety due to convergence 

difficulties. 

In the nineties, Stanuszek and Glockner [23, 24] refined the numerical method 

used to solve the differential equations for the hydrostatic loading case. This allowed 

them to determine the unstable portion of the load-deflection curve. Their research 

also incorporated support wrinkling of the structure. The results included load-

deflection curves for nondimensional densities ranging from 2.78 to 30.0 and for 

central half angles down to 5°. Presently research continues on this topic. 

1.3 Summary 

The following material will be covered in the remainder of this thesis. In Chapter 

2 the notation, theory, and results for a spherical membrane with concentrated ax-
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isymmetric apex loading will be briefly discussed. Chapter 3 will discuss the theory 

and results for a spherical membrane under hydrostatic loads while Chapter 4 pro-

vides a detailed analysis of the theory for the combined hydrostatic and concentrated 

axisymmetric apex loading of a spherical membrane. The chapter will also present 

load-deflection surfaces for three nondimensional densities and three central half an-

gles. Finally, this thesis concludes with a summary of the results and suggestions for 

further research in Chapter 5. 



Chapter 2 

CONCENTRATED AXISYMMETRIC APEX 

LOADING 

2.1 Introduction 

Chapter 2 provides a brief summary of the background, theory and results pertain-

ing to this thesis on spherical membranes under concentrated axisymmetric apex 

loading. This chapter's importance lies in the fact that it provides most of the def-

initions, assumptions, and procedures applicable to all loading conditions discussed 

in the thesis. For detailed information on this loading condition see Szyszkowski and 

Glockner [25] and Dacko and Glockner [6, 7, 8, 9]. 

2.2 Assumptions and Definitions 

Figure 2.1 shows a spherical membrane of radius R0 subjected to an internal over-

pressure, p,,. There is no other load applied to the structure. The membrane is 

attached to the ground through hinged supports. In the event of support wrinkling, 

it will be assumed that the wrinkled membrane around the supports lays itself flat 

on the adjacent ground. This type of support is termed a horizontal support and 

is discussed in detail in Dacko and Glockner [6]. The internal overpressure is as-

sumed to be constant even though the internal volume of the spherical membrane 

may change during loading. This can only be justified if it is further assumed that 

6 
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an infinite reservoir exists below the supports, or that a pump system is in place 

which maintains a constant internal pressure. 

Figure 2.1: Spherical Membrane Subjected to Internal Overpressure 

The loftiness of the spherical structure is defined by the central half angle, 3,. A 

shallow spherical membrane, which typifies most realistic structures, has a central 

half angle between 120° and 180°, while a very lofty structure has a central half angle 

between 0° and 60°. 

The properties of the membrane itself were assumed to be as follows: self weight 

is negligible; zero flexural rigidity; suitably small thickness allowing stresses to be 

defined on the "mean" surface; and inextensible. The last assumption was relaxed 

by Dacko and Glockner [6} and the membrane's extensibility was found to have little 

effect on the overall large deflection and stability behavior of such structures. This 
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assumption eliminates the need to define strains and constitutive relations for the 

membrane, thus greatly simplifying the model. 

Finally, when the membrane structure is loaded, it is assumed that the region 

around the apex undergoes wrinkling. The definition of the load wrinkling region 

assumed in the papers and this thesis is that the circumferential stress resultant, 

No, vanishes. Furthermore, it is assumed that the wrinkling is uniform and that the 

wrinkled domain is approximated by a surface with a "mean" radius. 

2.3 Physical Arrangement 

Figure 2.2 shows a spherical membrane subjected to a concentrated axisyminetric 

load, P, applied at the apex which is labeled as point A. The angle between the 

tangent to the deformed membrane and the vertical is defined by Point E 

defines the end of the wrinkled domain which started at point A. The angle between 

the vertical and the tangent to the deformed membrane at point E, is defined by OE. 

The deflection undergone by the concentrated axisymmetric load, P, is defined as 6, 

representing the vertical movement of the apex. 

2.4 Theory 

2.4.1 General Formulation 

In this thesis, all equations and results are stated in nondimensional terms. This 

allows greater freedom for the designer in that the engineer is not limited to a few 

specific values for the internal pressure or the sphere's radius. The dimensionless 

variables for this chapter are: 
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Figure 2.2: Spherical Membrane Subjected to Concentrated Axisymmetric Apex 

Load 

h 
h 

-  Q  
irRp0 

- P 

irRp0 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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(2.6) 

where T, , p, U, , , and are the nondimensional radial coordinate referenced to 

the center of the sphere, nondimensional height coordinate referenced to the center of 

the sphere, nondimensional net pressure, nondimensional total vertical force, nondi-

mensional concentrated axisymmetric apex load, nondimensional vertical deflection, 

and nondimensional arc length, respectively. 

Based on the equations of equilibrium and the Gauss-Codazzi relation for a mem-

brane of revolution, Szyszkowski and Glockner [25] developed three first order dif-

ferential equations which govern the behavior of the spherical membrane with a 

concentrated axisymmetric apex load. The differential equations were rewritten in 

terms of the arc length by Dacko and Glockner [7] as the earlier formulation resulted 

in convergence difficulties for very lofty structures. 

In the load wrinkling region, the circumferential stress resultant, No, vanishes 

and the two nonzero equations of equilibrium for a membrane of revolution become: 

(rNçt,) = 0 
dO 

(2.8) 

(2.9) 

where Nçj, is the meridional stress resultant, q is the meridional angle, and Re1, is 

the meridional radius of curvature. When Q, the total vertical force exerted on the 
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membrane, is introduced into equations 2.8 and 2.9 the meridional stress resultant 

No can be eliminated to give: 

 =Rp 
2irr sin 

Q = 2irjPR#r cos cbdcb 

(2.10) 

(2.11) 

Using the single nontrivial Gauss-Codazzi equation for a membrane of revolution 

(2.12) 
cos 0 do 

to eliminate R# from Equations 2.10 and 2.11, the resulting two differential equations 

are written as: 

dr Q  
dq - 2irrptançb 

dQ 
- = 2irrp 
di' 

(2.13) 

(2.14) 

Finally, the shape of the wrinkled membrane, when defined in terms of the orthogonal 

coordinates r and li, is given by: 

dh 
- = tan 

.dr 
(2.15) 

Equations 2.13, 2.14, and 2.15 are the three first order differential equations derived 

by Szyszkowski and Glockner [251. The equations were derived without considering 

the loading state. As such, the differential equations are valid for all loading cases 

discussed in this thesis. 
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The nondiinensional form of differential equations 2.13, 2.14, and 2.15 in terms 

of the radius are: 

- 2tan4 

d Q 

dQ 
=2 

d 

dh 
- tan 
dr 

(2.16) 

(2.17) 

(2.18) 

In the case of a concentrated axisymmetric apex load, the net pressure p is equal 

to the internal pressure, p,,, which is constant. By integrating Equation 2.17 and 

using the boundary condition (F = 0) = -, the following explicit equation can 

be determined for : 

(2.19) 

When Equation 2.19 is substituted into differential equation 2.16, the system is 

reduced to the following two differential equations: 

do 2 tan 4  

dF = F2—P 
(2.20) 

dh =tani (2.21) 
dr-

For computational accuracy, it is advantageous to rewrite differential equations 

2.20 and 2.21 in terms of the nondimensional arc length . The resulting differential 

equations are: 
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dq - 2 sin ç 
. 2_p 

dh 
= sin 

ds 

In transforming the differential equations, the relation 

dr-
- = cos 

(2.22) 

(2.23) 

(2.24) 

has been used. 

As well as determining the behavior of the spherical membrane, Equations 2.22, 

2.23, and 2.24 must also satisfy the boundary conditions at points A and E. If the 

wrinkled domain has not reached the supports yet, the boundary conditions at point 

A are: 

= 

h=O 

while the boundary conditions at point E are: 

(2.25) 

= 

h = hE (2.26) 

'P = Sfl 

It can be seen that, with the height of point E, 1E, and angles OA and Oo, there are 

three unknown quantities. The problem can be reduced to two unknowns because 
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differential equation 2.20 was solved analytically by Szyszkowski and Glockner [25]. 

The analytical solution is: 

= VP— J sin q' (2.27) 

where J is a constant of integration. To eliminate J, the boundary condition q = 

at = 0 was used. The resulting equation is: 

(i +  in  
N s1n44 

Now a relationship can be established between OA and OE by substituting the bound-

ary condition q = Oo at T = sin OB into Equation 2.28. The result is: 

(2.28) 

sin çb =  P sin q!'E (2.29) 
sin 2 0.0 

- P 

The boundary value problem now has two unknowns, 7E and 4's. However, only one 

differential equation remains. The second independent equation required to solve 

the boundary value problem comes from the inextensibility condition, namely: 

(2.30) 

Equations 2.19 through 2.30 define the theory for the membrane of revolution 

under a concentrated axisymmetric apex load when the wrinkled domain has not yet 

reached the supports. Once the wrinkled domain reaches the supports, the boundary 

conditions at point E in Equation 2.26 no longer apply. They become: 
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(2.31) 

=sin/30 J 

The new boundary conditions at point E require equations 2.29 and 2.30 to be 

rederived. When the boundary condition q' = qE at T = sin j3 is introduced into 

Equation 2.28, the relationship between OA and Og for a fully wrinkled membrane 

becomes: 

sin OA   
15 sin 
2 - 

sin f3 - P 

while the inextensibility condition for a fully wrinkled membrane requires: 

(2.32) 

(2.33) 

Once again, the boundary value problem has two unknowns and can be solved. 

Finally, when the load-deflectibn curves are generated, the vertical deflection at 

the apex, , is given by: 

S=hE+1 — Cos 4'E (2.34) 

when the wrinkled domain has not yet reached the supports, and by: 

S=hE+1—cos/30 (2.35) 

when the wrinkled domain has reached the supports. Refer to Szyszkowski and 

Glockner [25] or Dacko and Glockner [6, 7, 8, 9] for further information concerning the 

theory related to concentrated axisymmetric apex loading of spherical membranes. 



16 

2.4.2 Support Wrinkling 

For very lofty structures, the phenomenon of support wrinkling becomes a concern. 

When the forces at the supports are examined, it can be seen that: 

irrp0 - P = 2rr3(N# sin i3) (2.36) 

where i' is the radius of the support which is given by R0 sin 13,. When loading of 

the structure begins P < 1rrp0 and the meridional stress resultant at the supports 

is in tension. However, it is possible for Xp at the support to vanish if: 

or: 

FL = (2.37) 

FL = sin  /3 (2.38) 

where PL is the nondimensional concentrated axisymmetric apex load which initiates 

support wrinkling and results in lateral instability of the structure as a whole. Any 

additional loading will cause the wrinkled membrane at the support to collapse onto 

the horizontal support as shown in Figure 2.3. With the membrane laying on top of 

the horizontal support, a new central half angle, 4, exists. The value of j3, is given 

by: 

= sin-1 (2.39) 

whenever F> FL. 
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Figure 2.3: Membrane of Revolution with Support Wrinkling 

As the support wrinkling produces an additional deflection, 8, of the apex, it must 

be added to the displacement produced by the loading to give the total deflection of 

the apex. The value of S is given by: 

= (cos/30 - cosf 0) (2.40) 
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2.5 Numerical Procedure 

In this section the basics for the numerical procedure will be discussed. The approach 

used to solve the boundary value problem is termed a "shooting method". The 

"shooting method" starts at one boundary and, using the differential equations, 

"shoots" to the second boundary. At that point, a test is carried out to see if the 

correct solution was found. 

In the case of a spherical membrane under a concentrated axisymmetric apex 

load, the starting point for the "shooting method" is point A. Next, a Runge-Kutta 

fourth order method was used to solve the differential equations 2.22, 2.23, and 2.24 

in successive steps until point E was reached. At this point, to ensure that the 

correct solution was obtained, the inextensibility condition, equation 2.30 or 2.33, 

was checked. If the difference between the actual nondimensional arc length and 

calculated nondimensional arc length was less then 1.0 * 10-8 then the solution was 

deemed to be correct. Otherwise new values were selected at point A and the entire 

procedure repeated. 

2.6 Load-Deflection Characteristics 

Once the numerical procedure is completed, a load-deflection curve can be generated. 

Figure 2.4 will be used to explain in detail the behavioral characteristics exhibited by 

a spherical membrane under axisymmetric apex loading. The load-deflection curve 

was generated for a central half angle of 45°. 

The load-deflection curve begins at the origin, designated 0 on Figure 2.4. As 

the concentrated axisymmetric apex loading increases so too does the apex deflec-
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tion. This is the monotonically stiffening domain of the load-deflection curve. If 

the concentrated axisymmetric apex loading continues to increase, a state of neu-

tral equilibrium will be attained at the point designated as G in Figure 2.4. This 

is the maximum concentrated axisymmetric apex load which can be applied to the 

spherical membrane before snap-through occurs. If the loading on the structure is 

increased slightly, snap-through occurs, with the structure moving to a new state of 

stable equilibrium designated by point Q.r. in Figure 2.4. 

However, if after reaching point 0 the concentrated axisymmetric apex load is 

decreased, the unstable portion of the load-deflection curve can be found. The 

unstable portion of the load-deflection curve is between points G and T on Figure 

2.4. As it is unstable, a real structure would never achieve any of these equilibrium 

states. 

The unstable portion of the load-deflection curve continues as the concentrated 

axisymmetric apex load is decreased until the wrinkled domain reaches the supports. 

Up to this point the load-deflection curve corresponded to the main load-deffiection 

curve which is defined as the load-deflection curve for the full range of geometries for 

a spherical membrane subjected to concentrated axisymmetric apex loading. Once 

the wrinkling has reached the supports, the load-deflection curve begins to deviate 

from the main curve. This is designated point D in Figure 2.4 and the deviated 

portion of the load-deflection curve will be refered to as the deviated curve. Even 

though a departure from the main curve has occurred, the equilibrium is still unstable 

and the concentrated axisymmetric apex load continues to decrease. Eventually, 

the concentrated axisymmetric apex load decreases to the point at which a state of 

neutral equilibrium exists. This is designated by point T on Figure 2.4 and represents 
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the local minimum attained in the unloading process after reaching the G point. 

From point T on, the concentrated axisymmetric apex loading increases and the 

equilibrium is once again stable. When snap-through occurs, stable equilibrium is 

reestablished on the stable portion of the deviated load-deflection curve. As the 

loading increases it would eventually lead to an ultimate point. This is defined as 

the ultimate load and ultimate deflection for the spherical structure. Due to the 

fact that the membrane is supported by the internal overpressure, the structure's 

walls will always have some curvature. Only in the limit, when the concentrated 

axisymmetric apex load reaches infinity, will the membrane walls become straight 

lines and attain the ultimate deflection. For this reason the load axis of Figure 2.4 

has been broken. When the concentrated axisymmetric apex load reaches infinity, 

the ultimate deflection or 5ULT, which is governed solely by the central half angle, is 

given by: 

5ULT = - 3)2 - sin 2(ir - i3) + 1 - cos(ir - 3) (2.41) 

where /3 is given in radians. 

It should also be noted that the T point is also important when unloading from 

the ultimate point as snap-through can occur. As the concentrated axisymmetric 

apex load decreases below the concentrated axisymmetric apex load of the T point, 

snap-through occurs from point T to point QuL on the main curve as shown in Figure 

2.4. 
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2.7 Results 

Load-deflection curves for central half angles of 135°, 85°, 600, 45°, and 10° are shown 

in Figure 2.5. The numerical procedure used was capable of determining equilibrium 

points on the main curve down to a central half angle of 5°. Below this point the 

main curve was extrapolated to /3 00 and is shown as a dashed line in Figure 2.5. 

The deflection at this point was S = 2 +,7r = 5.142. 

The effect of support wrinkling is also included in Figure 2.5. When a concen-

trated axisymmetric apex load is being applied to a spherical membrane with central 

half angles below 44.1°, support wrinkling will occur. This angle was obtained by 

substituting 7 = 0.484 into Equation 2.39. As can be seen from the figure, only 

the load-deflection curve for f3 = 10° is affected. Its load-deflection curve, when 

support wrinkling is taken into account, is indicated as the dashed-dot curve. The 

effect of the additional deflection is readily apparent. The points from which the 

support wrinkling load-deflection curve deviates from the main load deflection curve 

and returns to it are indicated by points S and R, respectively. It can be seen that 

the curve rejoins the main load-deflection curve prior to reaching point D. One final 

point is that the regions of support wrinkling and load wrinkling around the apex 

never intersect one another. 

Of special note in Figure 2.5 is the effect of the central half angle '8o on the load-

deflection curves. For central half angles of 85.85° or greater, only monotonically 

stiffening behavior is observed. The value of point G is also of special note. The 

maximum concentrated axisymmetric apex load which can be applied to a spherical 

membrane with no snap-through behavior is T = 0.484. If the designer is concerned 
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with preventing snap-through of the structure, two possibilities exist. If the central 

half angle of the structure is greater than 85.85° there is no concern as only monoton-

ically stiffening behavior exists. However, if the central half angle is less than 85.85°, 

the designer must ensure that the nondimensional concentrated axisymmetric apex 

load used does not exceed 0.484. Finally, the calculated values of all G,D, and T 

points on Figure 2.5 are in agreement with those published by Dacko and Glockner 

[6] in 1987. 



Chapter 3 

HYDROSTATIC LOADING 

3.1 Introduction 

This chapter will present the set up, theory, and results pertaining to a spherical 

membrane subjected to axisymmetric hydrostatic loading. The theory was taken 

from [26] where it was first derived. 

3.2 Physical Arrangement 

In this thesis, hydrostatic loads will be restricted to natural substances such as rain 

water and dry snow pellets which will pond in the membrane's depression rather 

than deposit as piles. The depression in which the ponding medium accumulates is 

assumed to be caused by an imperfection in the membrane or by a tie down which 

may become slack once the hydrostatic load begins to accumulate. 

Figure reffig5 shows the basic layout of a spherical membrane subjected to an 

axisymmetric hydrostatic load. The ponding medium has a density, y, and fills the 

depression to a height H0. If the ponding medium's height, H0, reaches the total 

depth of the depression, then any additional liquid will overflow without affecting 

the load or deflection of the membrane. 

The apex of the membrane of revolution is defined as point 0 rather than point 

A in the figure. This is because point A specifically refers to the point on the mem-

25 
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brane where wrinkling begins. Between points 0 and A, the membrane takes the 

shape of an inverted sphere. The reason for this is that at point 0 a singularity 

exists at which the membrane is in a state of tension. As the circumferential stress 

resultant N9 equals the meridional stress resultant N, the region around point 0 

cannot be wrinkled. It takes the distance between points 0 and A before the cir-

cumferential stress resultant N9 vanishes. The shape of an inverted sphere results 

from the assumption of inextensibility of the membrane. 

a 

Figure 3.1: Spherical Membrane Subjected to Axisymmetric Hydrostatic Apex Load-

ing 

Point A is defined by angle OA which is measured from the vertical passing through 

point 0. Once wrinkling initiates at point A, it continues to point B. At point B the 

net pressure, p, is equal to zero and a change in the membrane's curvature results. 

From point B, wrinkling continues to the pond-air interface which is designated as 

point L. Finally, wrinkling continues from point L until point E is reached which 
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indicates the boundary between wrinkled and unwrinkled membrane. 

3.3 Theory 

In addition to the nondimensional terms defined in Chapter 2, the following addi-

tional nondimensional terms are required when hydrostatic loading occurs: 

(3.1) 

(3.2) 

where 77 and V represent the nondimensional density and the nondimensional liquid 

volume, respectively. 

As differential equations 2.13, 2.14, and 2.15 were derived without reference to 

a loading condition, they are valid for hydrostatic loading and will be the starting 

point for this theory section. Unlike the concentrated axisymrnetric apex loading, 

the net pressure p is no longer a constant. Instead, it is defined piece-wise. Between 

points A and L on the membrane the net pressure is given by: 

P = Po - .y(ff0 + h) (3.3) 

and by: 

p=p0 (3.4) 

between points L and E. By integrating Equations 3.3 and 3.4, a piece-wise definition 

of the total vertical force Q can also be obtained. Between points A and L, Q is: 
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Q = irr2 [p0 - 'y(H0 + h)] - yV  

while between point L and E it is: 

Q = irr2p0 - 'YVL (3.6) 

where V1. is the total volume of the ponding medium and V, the volume at any 

particular loading stage, is given by: 

V = VA - kJrA irr2 tan q5dr (3.7) 

or 

dV 2 —=—lcirr tan q5 
dr 

where 

(3.8) 

I —1 between points A and B 
(3.9) 

1 between points B and L 

When Equations 3.3, 3.5, and 3.8 are substituted into Equations 2.13, 2.14, and 

2.15 and converted into nondimensional terms, the differential equations defining the 

behavior of the membrane between points A and L, in terms of arc length, are: 

do 2  sin q 
- 

dV kr 2 —=— sinq' 
ds 

(3.10) 

(3.11) 
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dh _ 

— ksinq 
da 

d. 
- = cos 
d 

(3.12) 

(3.13) 

When equation 3.6 is substituted into Equations 2.16, 2.17, and 2.18, the nondimen-

sional differential equations defining the membrane's behavior between points L and 

E become: 

_ 2 sin q5 

d - - 

dh 
- = sin 
d 

- = cos 
ds 

(3.14) 

(3.15) 

(3.16) 

As well as defining the behavior of the membrane of revolution, the differential 

equations must also satisfy the various boundary and continuity conditions. For a 

membrane of revolution under hydrostatic loading, it is particularly difficult as the 

boundary and continuity conditions exist at points A, B, L, and E and the differential 

equations are defined piece-wise. In an attempt to simplify the explanation, these 

conditions will be explained in the order required to solve the numerical method. In 

this case point A was the start and point E was the finish. 

At point A, the membrane's behavior is defined by differential equations 3.10, 

3.11, 3.12, and 3.13 and the boundary conditions are: 
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= OA 

V V (1 - cos - cos OA - COS  A) 

= sin OA 

= 0 -(1_ COS OA) 

> (3.17) 

I 

As L is an input variable, the only unknown at boundary A is OA for which an 

initial guess is made in the numerical method. Differential equations 3.10, 3.11, 

3.12, and 3.13 are then used to increment from point A to point B. The numerical 

method realizes it has reached point B when the net pressure is zero. The test used 

was: 

= i—(L+)=0 (3.18) 

At point B the value of k in Equations 3.11 and 3.12 is changed to 1 and the 

angle OB is changed to -. The numerical procedure is then continued from point 

B until point L is reached. As point L is where the liquid loading ceases, the test 

used by the numerical procedure was: 

The conditions at point L are: 

H0+h=0 

OL 

V=VL 

= sin 4'L 

(3.19) 

(3.20) 
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all of which are numerically determined. At this point, differential equations 3.10, 

3.11, 3.12, and 3.13 are no longer valid and differential equations 3.14, 3.15, and 3.16 

are used. The numerical procedure would then continue until point E is reached 

which is defined by the following boundary conditions: 

= OE 

F= sinq5E 

Ii. = TO, 

(3.21) 

Unfortunately, the value for O.S is unknown. To obtain a value for 0.0, differential 

equation 3.14 was solved explicitly, as was done in Chapter 2, in the form: 

= + J sin 0 (3.22) 

where J is an arbitrary constant of integration. When the boundary condition F = 

sin OB at = 4E is used, the value of 3 can be determined and Equation 3.22 

becomes: 

+ [sin2 cbE i sin 
1 —2 I 

L T0 J sin OE 

where 

(3.23) 

= (3.24) 

is the value of T at çb = 0. A relationship can be established between OL and bE if the 

boundary condition = sin qi. at çb = 9'L is used in Equation 3.23. The relationship 

is: 
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Sifl'E= 2 
(sin2 OL - ) + /(sin2 L - 2)2 + 4 

(3.25) 

Since V1. and q5L are known, the values for F,, and q5.g can be obtained for Equations 

3.24 and 3.25. The numerical procedure now continues to point E. To detemine if 

the assumed value of OA was correct, the inextensibility condition: 

= OB (3.26) 

was used. If incorrect, a new guess is made for OA and the process is repeated. 

However, once the wrinkling has reached the supports, Equations 3.23, 3.25, and 

3.26 are no longer valid due to a change in the boundary conditions at point E. The 

new bouidary conditions are: 

(3.27) 

When Equation 3.23 is rederived with the boundary condition = sin f3., at 0 = OE 

the result is: 

1+l  1sin2/30 i] sin 4'  
L 

(3.28) 

Now when the boundary condition F = sin qr. at 4' = 4L is used, the relationship 

between OL and cbE for a fully wrinkled membrane becomes: 

(sin2  
sin 4i 

sin E = (sin q5 - 

(3.29) 
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Once the numerical procedure reaches point E at the supports, the test to determine 

if 1'A was correct is given by the inextensibility condition: 

(3.30) 

Support wrinkling also occurs when hydrostatic loads are applied to very lofty 

spherical membranes. The treatment of. support wrinkling is identical to the the-

ory discussed in Chapter 2 with the only difference being the substitution of the 

hydrostatic load, W, for the concentrated axisymmetric apex load, R This con-

cludes the theory relating to a spherical membrane subjected to hydrostatic loading 

in which the depression can be completely or partially filled with a ponding medium 

of nondimensional density 77. 

3.4 Load-Deflection Characteristics 

Figure 3.2 shows a typical load-deflection curve for a spherical membrane subjected 

to hydrostatic loading. The nondimensional density and central half angle for this 

particular curve are 4.55 and 30°, respectively. 

Unlike the concentrated axisymmetric apex load's load-deflection curve which 

starts at the origin, the load-deflection curve for hydrostatic loading begins at a point 

which will be designated as C. On Figure 3.2 it can be seen that point C lies on a 

dotted curve which will be termed the "takeoff" curve in this thesis. The "takeoff" 

curve is a compilation of all the C points for the entire range of nondimensional 

densities. The C point represents the load and apex deflection of a membrane the 

depression of which is completely filled with the ponding medium. It was not possible 



34 

 IL 

N- CD LC) C) C'4 i-

d 0 0 0 a 0 0 0 a 

(L = M ) PO1 P!flbfl Iuo!suew!PUON 

L 

0 

q 
0 

Figure 3.2: Load-Deflection Curve for a Spherical Membrane Subjected to Hydro-
static Axisymmetric Loading with no Support Wrinkling 



35 

to determine equilibrium configurations to the left of point C. 

To the right of point C, the load-deflection curve exists with the depression par-

tially filled by the ponding medium. This is accomplished by adding liquid without 

completely filling the depression. The load-deflection curve then progresses in a man-

ner similar to the concentrated axisymmetric apex load's load-deflection curve. A 

G point is reached which is defined as the maximum load at which neutral equilib-

rium exists. An unstable portion of the load-deflection curve then exists until the 

entire membrane is in a wrinkled state. This is the definition of point D. The load-

deflection curve continues to point T which is defined as the local minimum load at 

which neutral equilibrium exists. 

After point T, the load-deflection curve comprises, once again, stable equilibrium 

configurations. This is the portion of the load-deflection curve which is reached 

when the structure incurs snap-through. At this point the similarities with the con-

centrated axisymmetric apex load's load-deflection curves cease. The first difference 

which can be seen on Figure 3.2 is that the maximum deflection of the structure does 

not occur at the ultimate point which is designated by U. The maximum deflection 

of the structure occurs where the slope of the load-deflection curve is vertical. The 

second difference is that the ultimate point has a finite deflection and load. This is 

because, at the ultimate point, the membrane's depression is once again completely 

filled with the ponding medium. Any additional liquid added to the depression flows 

off. As the structure does not attain the shape of an inverted sphere due to the 

internal pressure, the test used to determine whether the structure reached the ulti-

mate point was to check if qi, = cbE. For if OL = cbE then the height of the ponding 

medium was at the same height as the supports. 
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3.5 Results 

Before presenting the load-deflection curves, some new results which arose during 

the research will be discussed in detail. 

3.5.1 Critical Nondimensional Density 

During the research conducted on spherical membranes subjected to hydrostatic 

loads it was established that, for a particular nondimensional density, the structure's 

depression was completely filled with liquid while it is in a state of neutral equilib-

rium. In other words the G and C points coincide. This particular nondimensional 

density is termed the critical nondimensional density. The reason it is termed critical 

is that for a nondimensional density lower than the critical nondimensional density 

the load-deflection curve departs from the "takeoff" curve in a state of unstable 

equilibrium. 

In previous research by Szyszkowski and Glockner [26] and Stanuszek and Glock-

ner [23, 24] it was established that the "takeoff" curve had a point at which the slope 

of the curve was horizontal. Furthermore, the nondimensional density corresponding 

to this point was established as 57 = 2.86 by Szyszkowski and Glockner [26] and 

was further refined by Stanuszek and Glockner [23] to be 57 = 2.78. It was assumed 

by these researchers that the slope of the actual load-deflection curve for this den-

sity was also zero and that a G point existed. Consequently, it was concluded that 

57 = 2.86 (or 2.78) was the critical nondimensional density. 

The previous researchers, however, had calculated load-deflection curves for nondi-

mensional densities of 57 = 4.55 and for the nondimensional density corresponding 
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to the "takeoff" curve's apex. In the course of the present research, load-deflection 

curves for nondimensional densities between 57 = 2.78 and 57 = 4.55 were calculated 

and Figure 3.3 was produced. It can be seen clearly that the load-deflection curve 

for 57 = 3.6 departs from the "takeoff" curve with a positive slope while the load-

deflection curve for 57 = 3.2 leaves the "takeoff" curve with a negative slope. It was 

determined, in the course of the research, that the load-deflection curve for 57 = 3.4 

was in neutral equilibrium when it departed from the "takeoff" curve and is the 

critical nondimensional density. 

As this is a new development in the research and it conflicted with previous pub-

lished values for the critical density it was deemed necessary to confirm the results. 

As load-deflection curves are continuous entities, it was felt that a curve composed 

of points representing states of neutral equilibrium would smoothly tend towards the 

lowest nondimensional density for which neutral equilibrium corresponded to a filled 

depression. Figure 3.4 which is comprised of two curves was produced as a result. 

The first curve is a portion of the "takeoff" curve which is a hypothetical curve com-

posed of points representing equilibrium configurations for which the membrane's 

depression is completely filled with liquid for various nondimensional densities. The 

second curve is a hypothetical curve composed of points representing neutral equi-

librium configurations at G points for various nondimensional densities. As can be 

seen from the figure, the two curves are smooth and continuous and intersect at a 

nondimensional density of 57 = 3.4. 

As a final proof to the value of the critical density, the slopes of the load-deflection 

curves as they left the "takeoff" curve were calculated. The calculations revealed that 

the slope for 57 = 3.405 was positive while the slope for 57 = 3.395 was negative. By 
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extrapolation of the slopes, the nondimensional density for which the slope was zero 

was confirmed to be 7f = 3.400. The "takeoff" curve is now broken into two distinct 

regions. The first region is for 7f < 3.4 in which the load-deflection curves departing 

from the "takeoff" curve start with configurations corresponding to a completely 

filled depression in unstable equilibrium. The other region is for y> 3.4 in which 

all load-deflection curves depart the "takeoff" curve with a configuration in stable 

equilibrium. The load-deflection curve for 5 = 3.4 leaves the "takeoff' curve with a 

membrane configuration in neutral equilibrium and represents the boundary between 

the two regions. 

3.5.2 The "Takeoff" Curve 

As was stated earlier, the "takeoff" curve is a collection of points for which the 

membrane is in a state of equilibrium with the depression completely filled with 

liquid. As such, it represents the collection of C points for the entire range of 

nondimensional densities. It was assumed in past research that all points on the 

"takeoff" curve were stable equilibrium configurations since the "takeoff" curve was 

never considered for values smaller than 7 = 2.86. Based on this assumption, past 

researchers logically concluded that the "takeoff" curve terminated at its apex. Their 

reasoning was that, if the "takeoff" curve existed past the apex, its slope would be 

negative and the C points would be in unstable equilibrium. At the time they felt 

this was impossible. However, as was stated in the prior section, points on the 

"takeoff" curve are in a state of unstable equilibrium for nondimensional densities 

below 7 = 3.4. This being the case, the current research for this thesis investigated 

the possibility of the existence of the "takeoff" curve past its apex. 

C, 
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It can be seen on Figure 3.4 that the nondimensional density which defines the 

apex of the "takeoff" curve is 57 = 2.7985. However, in determining the nondimen-

sional density which corresponded to the apex, unstable equilibrium configurations 

with completely filled depressions were found for nondimensional densities below 

57 = 2.7985. In fact, as can be seen on Figure 3.5, the "takeoff" curve for nondimen-

sional densities was calculated down to 57 = 0.45. The remainder of the "takeoff" 

curve was then extrapolated down to 57= 0.0 which is shown as a dashed line in the 

figure. As the "takeoff" curve exists down to 57 = 0.0, load-deflextion curves also 

exist for nondimensional densities down to 57 = 0.0. In fact load-deflection curves for 

57 = 1.8 will be presented later in this thesis. 

3.5.3 Central Half Angle 

Next, the effect of the central half angle on the load-deflection behavior of a spherical 

membrane will be discussed. Figure 3.6 shows a variety of load-deflection curves for 

various nondimensional densities when the central half angle of the structure is held 

constant at j3 = 120°. As all the curves exhibit monotonically stiffening behavior, 

the only effect the nondimensional density appears to have on the load-deflection 

curves is their starting points on the "takeoff" curve. Special attention should be paid 

to the load-deflection curve for 57 = 5.7961 as its configuration when the depression is 

completely filled coincides with the membrane being completely wrinkled. In other 

words its C and D points are identical for this value of j9. This does not mean, 

however, that load-deflection curves do not exist for nondimensional densities below 

57= 5.7961. Load deflection curves were generated down to a nondimensional density 

of 7 = 4.8942 but as they fall very close to the load-deflection curve for 7 = 5.7961 
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they were not included in Figure 3.6. As nondimensional densities below ? = 5.7961 

have load-deflection curves consisting of fully wrinkled membrane configurations for 

)30 = 1200, their C points comprise a deviated "takeoff" curve as shown in Figure 

3.6. For example, the load-deflection curve for 7 = 5.2 would start on the deviated 

portion of the "takeoff" curve and exhibit monotonically stiffening behavior until 

its ultimate point is reached. As the nondimensional density decreases, the loading 

difference between the C and ultimate point decreases until the two coincide. For 

Po = 1200 this occurs for a nondimensional density of = 4.8942 and no load-

deflection curves exist with lower nondimensional densities for this particular central 

half angle. 

Figure 3.7 shows the load-deflection curves for various nondimensional densities 

when the structure's central half angle is f3 = 60°. By changing the central half angle 

from f3 = 120° to f3, = 60°, the load-deflection curves are affected in two ways. First 

by the fact that load-deflection curves now exist with partially wrinkled membranes 

for nondimensional densities between 7 = 5.7961 and = 1.6513. The "takeoff" 

curve, although not indicated on Figure 3.7, deviates at y = 1.6513 which is the 

nondimensional density for which the C and D point coincide. The second effect 

of increasing the central half angle is that it allows unstable equilibrium to exist 

for nondimensional densities between ? = 4000 and ? = 3.4. For nondimensional 

densities below 3.4 stable equilibrium exists only after the membrane has become 

fully wrinkled. 

Finally Figure 3.8 shows load-deflection curves for a central half angle of 6o = 30°. 

The nondimensional density for which the C and D points coincide is ? = 0.9882. 

Otherwise the load-deflection curves are similar in appearance to those for f3 = 600, 
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the only difference being the unstable portion of the load-deflection curve which is 

extended because it takes longer for the structure to become fully wrinkled due to 

the extra arc length a higher profile central half angle provides. 

3.5.4 Nondimensional Density 

In Subsection 3.5.2 it was shown that load-deflection curves existed for nondimen-

sional densities down to = 0.0. The question then arose during the course of this 

research as to what the effect of increasing the value of the nondimensional density 

had on the load-deflection curves. In past research, when the membrane was sub-

jected solely to hydrostatic loads, the highest nondimensional density for which a 

load-deflection curve was generated was = 30.0. To determine an answer, load-

deflection curves were calculated for nondimensional densities up to = 4000.0 and 

individual points on the load-deflection curve were calculated for = 8000.0. 

On examination of Figures 3.7 and 3.8 it can be seen that a dashed line was 

included to show the load-deflection curve for concentrated axisymmetric apex load-

ing. Both figures clearly show that as the nondimnsional density increases, the 

load-deflection curves approach the concentrated axisymmetric apex loading's load-

deflection curve. To further illustrate the point, Figures 3.9 and 3.10 show, for 

= 60° and j8o = 30°, how the minimum points of neutral stability (T points) 

for hydrostatic loading approach the T point for concentrated axisymmetric apex 

loading as the nondimensional density approaches infinity. As further proof, it can 

be seen in Figure 3.4 that the curve composed of maximum points of neutral equi-

librium (G points) also approaches the G point for concentrated axisymmetric apex 

loads as the nondimensional density increases. 
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To explain the fact that, as the nondimensional density approaches infinity, the 

membrane's behavior tends toward that of a membrane under concentrated axisym-

metric apex loading, the following reasoning was used. As the nondimensional den-

sity applied increases, the volume of liquid required for equilibrium decreases. As 

this trend continues, the loading becomes a very small volume of liquid with a very 

high nondimensional density situated at the apex of the membrane. This is very 

close to the model of a concentrated a.xisymmetric apex load and if the nondimen-

sional density could reach infinity, it is proposed that the load-deflection curve for 

hydrostatic loading would be identical to that of concentrated axisymmetric apex 

loading. 

3.5.5 Load-Deflection Curves 

Figures 3.11 to 3.24 conclude Chapter 3 with the presentation of load-deflection 

curves for nondimensional densities ranging from 7T = 1.8 to 7 = 4000. For each 

nondimensional density, load-deflection curves were included for central half angles 

of 6o = 120°, Po = 600, and 8o = 30° where applicable. Each Figure also includes 

load and deflection values for all C, G, D, T and Ti points where applicable. 

The effect of support wrinkling is included in the results as the long dashed curves 

in the figures. In general the only curves affected in this thesis are those for f3 = 300. 

It should be noted that in this thesis all load-deflection curves that include the effect 

of support wrinkling with a nondimensional density satisfying y < 15.2 are broken 

into two segments. The first segment is a dotted line showing the effect of support 

wrinkling on the "takeoff" curve. The second portion of the curve is long dashed and 

represents the effect of support wrinkling on the load-deflection curve. The reason 
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for the two segments is that the C points for 7T < 15.2 occur at a nondimensional 

force which is greater than the nondimensional force required for the onset of support 

wrinkling. 

One important characteristic of support wrinkling is the maximum value of f3 

for which support wrinkling first occurs for a particular nondimensional density. The 

maximum value of the central half angle is determined by substituting the maximum 

nondimensional liquid load that occurs on the load-deflection curve for the particular 

nondimensional density into Equation 2.39. In general the load used will correspond 

to the nondimensional liquid load of the C point. However, when hydrostatic loads 

were being examined it was determined that C points only existed for 77 between 

infinity and 3.4. In this region the value of f3 for which support wrinkling first 

occurs varries from P. = 44.1° for an infinite nondimensional density (concentrated 

loading) to /3 = 55.8° for 7T = 3.4. For nondimensional densities below 3.4, for 

which the load-deflection curves do not possess a C point, the maximum force on 

the load-deflection curve corresponds to the nondimensional force at the C point and 

is used to determine the angle P,, for which support wrinkling first occurs. As the 

nondimensional density 77 = 2.8 has the largest nondimensional liquid load for a C 

point, it defines the maximum value of f3 for which support wrinkling first appears 

at 8o = 56.93°. 

It should be noted that the load-deflection curve for = 4.55 was first published 

by Szyszkowski and Glockner [26] while load-deflection curves for 7f = 2.78, 57 = 4.55, 

57 = 9, 57 = 15, and 57= 30 were published by Stanuszek and Glockner [23] and [24]. 

This concludes the chapter on hydrostatic loading. 
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Chapter 4 

HYDROSTATIC AND CONCENTRATED 

AXISYMMETRIC APEX LOADING 

4.1 Introduction 

In Chapter 4 the original problem proposed and investigated by Malcolm and Glock-

ner [20] will be investigated. However, unlike the original study which focused on 

low profile structures, this chapter will present load-deflection surfaces for a wide 

range of geometries and nondimensional densities. The theory follows closely to that 

in [14] where it was first derived. 

4.2 Physical Arrangement 

In Chapter 3, the hydrostatic load accumulated due to an initial imperfection in the 

membrane or due to a depression caused by a tie down. A third method to produce 

a depression and allow the ponding medium to accumulate, which is also the most 

probable from an engineering standpoint, is to apply a concentrated axisymmetric 

apex load. The resulting depression is then readily available for a ponding medium 

to accumulate. The question then arises as to what the value is of the maximum con-

centrated axisymmetric apex load, or critical concentrated axisymmetric apex load, 

which can be applied to the membrane's apex such that the membrane's depression 

completely fills with the ponding medium without causing collapse. 

66 
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- 

Figure 4.1: Spherical Membrane Subjected to Hydrostatic and Concentrated Ax-

isymmetric Apex Loading 

Figure 4.1 shows a spherical inflatable of radius R0 with an internal pressure 

p subjected to a concentrated axisymmetric apex load, P, and a hydrostatic load 

of density y to a depth of H0 measured from the apex. As can be seen from the 

figure, point A defines the beginning of the wrinkled region at the apex where the 

concentrated axisymmetric apex load is applied. Angle OA defines the slope of the 

tangent at point A and is measured from the tangent to the membrane at point A to 

the horizontal. The curvature of the wrinkled membrane changes at point B and the 

end of the hydrostatic loading occurs at point L. When angle qi, is equal to zero the 

depression is completely filled and any additional liquid will flow off the membrane. 

Finally the wrinkled domain terminates at point E where the slope is defined by 

angle Os. 
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The supports are identical to those described in the preceding two chapters and 

support wrinkling is taken into account for the high profile structures. 

4.3 Theory 

Unlike the theory presented in Chapters 2 and 3, which was previously developed 

and published, the following theory on combined hydrostatic and concentrated ax-

isymmetric apex loading is being presented for the first time in terms of the volume 

instead of the total verticle force, Q, and the differential equations are in terms of 

the arc length. However, as the methodology mirrors that of the theory for Chapter 

3, the equations presented will appear familiar. 

The development of the theory begins, once again, with the following differential 

equations which were derived in Chapter 2: 

- 2irrptan  

dr Q 

dQ 
- = 2irrp 
dr 

(4.1) 

(4.2) 

dh =ktanq (4.3) 
Tr 

As was the case with hydrostatic loading, the net pressure, p is not constant and 

furthermore must be defined piece-wise due to the change in loading domains at 

point L. Its definition is: 
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Po - .-y(H0 + h) between points A and L 
p= (4.4) 

Pa between points L and E 

When Equation 4.4 is substituted into differential equation 4.2 and the resulting 

differential equation is integrated, the following piece-wise definition for the total 

vertical force, Q, is obtained: 

= irr9p, - 'y(ff0 + h)] + ky fA irr2dh+ J between points A and L 

irr2p0 + M between points L and E 
(4.5) 

where J and M are arbitrary constants of integration. To eliminate the arbitrary 

constant J from equation 4.5, the boundary condition Q(r = 0) = —P was used 

which resulted in J = —P. Next, Equation 4.5 being continuous across point L, was 

used to eliminate constant M. Thus, substituting r = rL and h = —H0 into both 

equations for Q and equating them resulted in M = —yVL - P. Now the equation 

for the total vertical load, Q, is: 

Iirr2[p0 - -y (H0 + h)] + ky f, irr2dh - P between points A and L 

irr2p0 - - P between points L and E 
(4.6) 

As the integral in Equation 4.6 represents the total volume of liquid accumulated in 

the depression at height, h, the volume is defined as: 

V=-kJhA irr2dh (4.7) 

or 
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dV 2 

dh 
= —kirr 

When the definition for V is substituted into Equation 4.6, the result is: 

= irr2[p0 - 'y(II + h)] - -yV - P between points A and L 

irr2p0 - yVL - P between points L and E 
(4.9) 

By transforming Equation 4.8 into a differential equation in terms of r and sub-

stituting Equation 4.9 into differential equations 4.1, 4.2, and 4.3 they become: 

between points A and L and: 

dq 2irrptan  

dr irr2p—'yV—P 

dV 2 
—=—lcnrr tan 
dr 

dh 
- = 1ctan 
dr 

d4 2irrp0 tan 4 

dr 1rr2p0—yVL—P 

dh 
- = tan4 
dr 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

between points L and E. It is a simple procedure to convert these differential equa-

tions into nondimensional form as well as in terms of arc length. Differential equa-

tions 4.10, 4.11, and 4.12 are thus written as: 
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_ 2sin 

d —yV—P 

dV kr -2 —=— sinq5 

dh 
- =k sin 

- cos 
d.s 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

It must be noted that, even though there are now four differential equations, only 

three are independent as differential equations 4.17 and 4.18 can be combined to 

represent one differential equation, namely the nondimensional form of differential 

equation 4.12. Similarly, differential equations 4.13 and 4.14 written in terms of arc 

length and nondimensional terms results in: 

_ 2F sin  

d 2_VL_ 

dh. 
- = sin 

- = cos 
ds 

(4.19) 

(4.20) 

(4.21) 

Again it should be noted that only two of these are independent. It is encouraging 

to note that, if F in differential equations 4.15 through 4.21 is zero, they reduce 

to differential equations 3.10 through 3.16 for hydrostatic loading. Similarly, when 
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7 and V are zero, the differential equations reduce to differential equations 2.22 

through 2.24 for concentrated axisymmetric apex loading. 

Now that the differential equations are defined, all that remains is to satisfy the 

boundary and continuity conditions and the inextensibility criterion. Once again, the 

conditions will be discussed in the order they are used in the numerical procedure. 

Point A, as with hydrostatic loading, is the starting point and has the following 

boundary conditions: 

(4.22) 

h=O 

It is apparent that the only unknown variable is çb4 for which an initial guess was 

made. As point A is also the apex, the nondimensional arc length, '9, is set to zero. As 

there are two input variables, namely L and P, it was decided that P would be held 

constant while individual points were established for various liquid depths, E, until 

an entire load-deflection curve was obtained. Once this was accomplished, the value 

of 75 was incremented and its corresponding new load-deflection curve developed. 

The numerical method then solves for çb, V, F, and T along the membrane using 

the Runge-Kutta fourth order method until point B is reached. The test used was 

whether the net pressure was zero which is determined by: 

(4.23) 

Once point B is reached, the values of k and OB must be changed to —Ic and 
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4'B, respectively. The numerical procedure continues with differential equations 

4.15, 4.16, 4.17, and 4.18 until point L is reached. As point L marks the end of the 

liquid loading domain, the test to determine if point L was reached is: 

H0+h=0 (4.24) 

The boundary conditions at point L, which are all determined numerically, are: 

(4.25) 
= sink 

As the liquid loading domain is finished, the numerical method switches to dif-

ferential equations 4.19, 4.20, and 4.21 until point E is reached. Point E is defined 

by the following boundary conditions: 

I (4.26) 

of which Ov and hE are unknown. At this point it became necessary to predict the 

correct value of q. As was the case in Chapter 3, the first step is to solve differential 

equation 4.19 explicitly. The solution was originally derived by Szyszkowski and 

Glockner [14], and their result was: 

r=\/YVL+P+J sin cb (4.27) 
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where J is an arbitrary constant of integration. Before solving for J, an important 

value is obtained when q = 0 is substituted into Equation 4.27. The value of T is 

renamed :F,, and is equal to: 

F0= (4.28) 

The radius, F, occurs at the highest point on the deformed membrane or, in other 

words, where the membrane's slope is horizontal. When the membrane's depression 

is completely filled with liquid, the values for F. and FL coincide. Now, to determine 

the value of the arbitrary constant J, the boundary condition F = sin OE at çb = 

is used. Once equation 4.28 is substituted, the resulting equation for 7 is: 

sin (4.29) [sin' 
'o OB J sin OE 

At this point it is possible to establish a relationship between OE and q'i.& by substi-

tuting the boundary condition F = Sfl OL at 0 = OL into equation 4.29. Utilizing the 

quadratic equation, the value of OE can now be predicted at point L by: 

sin OE 
(sin2 q - ) + /(sin2 q5 - F2)2 + 4F 

2 
(4.30) 

The numerical procedure can then proceed to point E where the inextensibility con-

dition is used to determine if the initial guess made for OA was correct. The inex-

tensibility criterion demands: 

(4.31) 
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If this condition is satisfied the solution is correct and the liquid level, H0 is 

incremented and a new initial guess for OA is made. Otherwise, the current value of 

OA is incorrect and a new guess for OA must be made. 

The procedure outlined above is only valid in predicting sbE if the wrinkled domain 

has not reached the supports. Once the wrinkling reaches the supports, the boundary 

conditions for point E alter. The procedure for handling this case is identical to the 

theory presented in Chapter 3 as outlined by equations 3.27 through 3.30. 

Finally, the production of load-deflection curves requires a value for the total 

vertical deflection, W. Equations 2.34 and 2.35 in Chapter 2 are still valid. 

Once again, support wrinkling is handled as outlined in Section 2.4.2. It should 

be noted that the combined load, P, must be used, which is defined as: 

(4.32) 

where W = 7fV—L is the total hydrostatic load. 

4.4 Load-Deflection Characteristics 

The presentation of load-deflection results for a spherical membrane structure sub-

jected to combined hydrostatic and concentrated axisymmetric apex loading differs 

from Chapters 2 and 3 as there are now two independent loading variables. As such, 

it was deemed appropriate to create a load-deflection surface with the three axes 

being the nondimensional apex deflection, the nondimensional liquid load, and the 

nondimensional concentrated axisymmetric apex load. Figure 4.2 shows a. sample 

surface in order to highlight its features prior to presenting the results. The load-
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deflection surface was generated for a nondimensional density of = 4.55 and a 

central half angle of 3., = 600. 

Examining Figure 4.2, it is evident that, when the value of the concentrated 

axisymmetric apex load remains constant at a value of zero, the resulting curve 

produced on the surface is for hydrostatic loading as seen in Chapter 3. Similarly, 

when the hydrostatic load applied to the membrane is constant with a value of zero, 

the resulting curve produced on the load-deflection surface is that for concentrated 

axisymmetric apex loading as seen in Chapter 2. Thus a load-deflection surface 

provides a complete representation of the behavior of a spherical membrane whether 

is is subjected to hydrostatic loading, concentrated axisymmetric apex loading, or a 

combination of the two. 

Before examining combined hydrostatic and concentrated axisymmetric apex 

loading it is helpful to keep the physical arrangement of the loading in mind. The 

spherical membrane is initially loaded by a concentrated axisymmetric apex load 

and the depression resulting from applying the concentrated axisymmetric apex load 

is then allowed to fill with the ponding medium. This being the case, every con-

centrated axisymmetric apex load between P = 0 and 15 = 0.484 will undergo 

hydrostatic loading which is in stable equilibrium until one of the two situations 

discussed below occurs. 

The first possibility is that the liquid added eventually fills the depression so 

that no additional liquid loading can occur. This is indicated on Figure 4.2 as the 

C curve. Specifically, it occurs when the concentrated axisymmetric apex load is 

between P = 0 and P = M, where PM is the concentrated axisymmetric apex 

load which produces a load-deflection curve which is tangent to the C curve. The 



77 
0 
0 
Co 

L() 
Co 

CN 

CD CD CD 

(J ) 6upoi P!flbil ,UO!SUeW!PUON 

0 , 

CD 

CD 

CD 

C 

Figure 4.2: Typical Load-Deflection Surface for a Spherical Membrane Subjected 
to Combined Hydrostatic and Concentrated Axisymmetric Apex Loading with no 
Support Wrinkling (f3 = 600 and 7Y = 4.55) 



78 

tangent point is indicated on Figure 4.2 as point CM on the C curve. Points on the C 

curve between CM and CH on Figure 4.2 also represent membranes with completely 

filled depressions with a concentrated axisymmetric apex load between T = 0 and 

P = PM. However, these configurations can only be reached by unloading from a 

configuration with a greater apex deflection then the configuration on the C curve. 

The point Cif on the C curve represents the C point when only hydrostatic loading 

occurs. 

The second possibility occurs if the concentrated axisymmetric apex load is be-

tween P = PM and TP = 0.484 or is between P = 0 and P = PM and is on the C 

curve in the direction of increasing apex deflection from point OM In this case, as 

the hydrostatic load continues to be applied, the membrane continues to be in stable 

equilibrium until the hydrostatic load is increased to the point that neutral equilib-

rium exists. In Chapters 2 and 3 this was the definition of a G point, however, in the 

case of combined hydrostatic and concentrated axisymmetric apex loading, where 

every concentrated axisymmetric apex load between P = 0 and Y = 0.484 has a G 

point, a G curve is produced on the load-deflection surface as indicated in Figure 

4.2. If the hydrostatic load is increased slightly once the G curve has been reached, 

then the membrane structure snaps through to the fourth white line from the left 

on Figure*4.2 which is labeled the snap-through curve. When snap-through occurs, 

only the apex deflection changes as the concentrated axisymmetric apex load and 

hydrostatic load at the G point remain the same. 

If after reaching the G curve the hydrostatic load is decreased, an unstable por-

tion of the load-deflection surface can be attained. As the load is decreased and 

the deflection increases, the wrinkled region eventually reaches the supports. At 
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this point the load-deflection surface deviates from the main load-deflection surface 

which would have been realized if a smaller central half angle were employed. As this 

occurs for every concentrated axisymmetric apex load between P• = 0 and P = 0.401, 

a curve is formed which is termed the D curve. The value Y = 0.401 was taken from 

Chapter 2 and corresponds to the concentrated axisymmetric apex load which caused 

the load wrinkling domain on the membrane to reach the supports for /3 = 600. For 

the purpose of this thesis, the portion of the load-deflection surface to the left of 

the D curve, which consists of partially wrinkled membrane configurations, will be 

referred to as the main portion of the load-deflection surface. The remainder of the 

load-deflection surface, which consists of fully wrinkled membranes, will be referred 

to as the "deviated portion" of the load-deflection surface. The hydrostatic load con-

tinues to decrease on the deviated portion of the load-deflection surface until neutral 

equilibrium is reached once again. As this occurs for all concentrated axisymmetric 

apex loads between P = 0 and 15 = 0.375, a T curve is formed which is indicated on 

Figure 4.2. The value 75 = 0.375 was also obtained from Chapter 2 for a central half 

angle of /3 60°. From the T curve on, any additional hydrostatic loading produces 

stable equilibrium. For concentrated axisymmetric apex loads between T = 0.375 

and P = 0.484, the hydrostatic unloading continues after the G curve until there 

is no longer any liquid remaining in the depression. This represents the unstable 

portion of the concentrated axisymmetric apex load's load-deflection curve. 

The portion of the load-deflection surface to the right of the T curve will be 

referred to as the stable deviated portion of the load-deflection surface, representing 

stable equilibrium configurations. In terms of concentrated axisymmetric apex loads, 

the stable deviated load-deflection surface is valid for loads between T = 0 and 
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= 00. However, as the depression is being loaded by a liquid, it will eventually 

fill. In terms of hydrostatic load this results in the deviated load-deflection surface 

terminating along a curve which will be referred to as the ultimate curve. The 

ultimate curve is not indicated on Figure 4.2 but it will be documented and discussed 

in the Results Section. 

4.5 Results 

4.5.1 Nondimensional Density 

In order to illustrate how the load-deflection surface changes when the nondimen-

sional density of the ponding medium changes, Figures 4.3, 4.4, and 4.5 were created. 

The central half angle for these figures is held constant with a value of /3, = 60° while 

the nondimensional density was varied. The nondimensional density has a value of 

= 2.8, 77 = 4.55, and = 4000 for Figures 4.3, 4.4, and 4.5 respectively. 

One effect of varying the nondimensional density for a constant central half angle 

has already been touched upon hi Chapter 3. Namely, that as the nondimensional 

density increases, the results for hydrostatic loading tend towards those for the con-

centrated axisymmetric apex load case. When Figures 4.3 through 4.5 are examined 

the load-deflection surface for 5 = 4000 appears symmetrical about a plane oriented 

at 45° to the concentrated axisymmetric apex load and apex deflection plane. The 

explanation for this phenonenon was discussed in Chapter 3 but it should be noted 

that it also applies for a membrane with a combined hydrostatic and concentrated 

axisymmetric apex load. 

By examining the G, T, D and Snap-Through curves in Figures 4.3 through 
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Figure 4.3: Load-Deflection Surface for a Spherical Membrane Subjected to Com-
bined Hydrostatic and Concentrated Axisymmetric Apex Loading ( = 2.8 and 
Po = 600) 
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4.5, it can be determined that, as the nondimensional density increases, the curves 

straighten. It is believed that, in the limit when the nondimensional density ap-

proaches infinity, the G, T, D and Snap-Through curve would become straight lines 

since the hydrostatic and concentrated axisymmetric apex load load-deflection curves 

would become identical. On the other hand, when the nondimensional density de-

creases, the C curve will intersect and truncate the G curve as seen on Figure 4.3 

for 57 = 2.8. This means that all of the points on the C curve in the direction of 

increasing apex deflection from C curve's intersection point with the G curve are 

unstable. As this is not the case for the load-deflection surface for 57 = 4.55, the 

change of behavior must occur between the two nondimensional densities. In fact, 

as was indicated in Chapter 3, when the nondimensional density is 57 = 3.4 the G 

curve, C curve, and hydrostatic loading curve all intersect at one point, CH. The 

crucial point, however, is that in Chapter 3 it was stated that for 57 < 3.4 there was 

no stable portion of the main load-deflection curve. This is still correct, but it can 

be seen from Figure 4.3 that, when combined hydrostatic and concentrated axisym-

metric apex loading is applied, there is a stable portion of the load-deflection surface 

for 57 < 3.4. In fact there is a stable portion for every concentrated axisymmetric 

apex load between = 0 to P 0.484. It also indicates that, when the membrane 

is loaded solely by hydrostatic loading, a point of equilibrium exists at the origin 

which was not indicated in Chapter 3. 

The next effect discussed was the effect of the nondimensional density on the 

value of the hydrostatic load for the ultimate curve. As Figures 4.3 through 4.5 do 

not include the ultimate curve due to space requirements, reference will first be made 

to the results in Chapter 3 and then inferences can be made as to the behavior of 
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load-deflection surfaces. When the nondimensional liquid load is examined for the ul-

timate point at a given central half angle for Figures 3.11 through 3.24, it is apparent 

that, as the nondimensional density increases, so too does the final nondimensional 

liquid load. This is a natural consequence based on the fact that, for a fixed volume 

of liquid, the total load will increase if a liquid with a higher density is substituted. 

This is also the case for the ultimate curve on a load-deflection surface. If a higher 

nondimensional density is used, the ultimate curve will terminate at a higher nondi-

mensional liquid load. In fact, as the nondimensional density approaches infinity, 

the ultimate curve will not be reached just as in the case for the ultimate point for 

concentrated axisymmetric apex loading. On the other hand, if the nondimensional 

density is decreasing in value, the nondimensional liquid load level of the ultimate 

curve also decreases. In fact, as the nondimensional density approaches = 0, the 

ultimate curve will approach the D curve. An example of this phenomenon is shown 

on Figure 4.6 which will be presented later in this section. 

The most dramatic effect the nondimensional density has on the behavior exhib-

ited on the load-deflection surface concerns the 0 curve. It is obvious from Figures 

4.3 through 4.5 that, as the nondimensional density increases, the amount of surface 

area excluded from the load-deflection surface decreases, due to the formation of 

completely filled membrane depressions. Even though it appears that there is no 

o curve on Figure 4.5, there is one, but the scale is too large for it to be seen. A 

natural consequence of having a smaller C curve is that point CM occurs at a smaller 

value of PM. In the limit, as the nondimensional density approaches infinity, the C 

curve will vanish at the origin. 

On the other hand, it is evident that as the nondimensional density decreases, the 
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amount of surface area excluded from the load-deflection surface increases. As was 

previously stated, the G curve for Figure 4.3 has been interrupted by the C curve re-

sulting in a portion of the C curve being in a state of unstable equilibrium. However, 

it is important to note that the point CM on the C curve is in stable equilibrium. In 

practice, the engineer would be restricted to concentrated axisymmetric apex loads 

between P = 0 and P = PM. Thus, for a particular nondimensional density, as 

long as point CM is in stable equilibrium, then that nondimensional density can be 

legitimately used in design. It will be shown later that all nondimensional densities 

are legitimate but not necessarily practical for design purposes. 

It is believed that, as the nondimensional density decreases below 7 = 2.8, the C 

curve will continue to exclude surface area on the load-deflection surface. In fact, it 

is proposed that, when the nondimensional density reaches 7 = 0, the entire load-

deflection surface will be excluded except that of the concentrated axisymmetric 

apex load's load-deflection curve which will also correspond to the C curve. The 

reasoning is as follows: as the nondimensional density decreases, the liquid adds 

less and less weight to the total load applied to the structure. The result is that a 

very low density liquid will cause negligible additional deflection of the membrane 

allowing the depression to be filled more easily than if a more dense liquid had been 

used. In the limit, when 7 = 0, the depression is completely filled with a hypothetical 

ponding medium which adds no additional load and causes no additional deflection 

to the structure. The result is that only the concentrated axisymmetric apex load's 

load-deflection curve exists. As proof, using Figure 3.5 in Chapter 3, the point CH 

for 7= 0 occurs at W = 0.0 and 3 = ir + 2 which corresponds to the end point of the 

main curve for concentrated axisymmetric apex loading. This means the hydrostatic 
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load-deflection curve for 0 consists of a single point, and furthermore, that point 

lies on the concentrated axisymmetric apex load's load-deflection curve. 

It is believed that the point CM on the C curve will always remain in the sta-

ble portion of the load-deflection surface as the nondimensional density decreases. 

It is further proposed that, in the limit when the nondimensional density reaches 

57 = 0, the point CM will coincide with the G point for concentrated axisymmetric 

apex loading. The basis for this statement is that point CM is defined by the max-

imum concentrated axisymmetric apex load which will produce a completely filled 

depression. When the nondimensional density is 57 = 0 the C curve is identical to 

the load-deflection curve for concentrated axisymmetric apex loading. Therefore, 

the point CM must lie on the concentrated axisymmetric apex load's load-deflection 

curve. Further, as the point CM must correspond to the maximum concentrated 

axisymmetric apex load which produces a completely filled membrane, the G point 

for concentrated axisymmetric apex loading must also be point CM. 

In summary, as the nondimensional density approaches infinity, the load-deflection 

surface becomes symmetrical about a plane oriented at 450 to the concentrated ax-

isymmetric apex loading and apex deflection plane. This is due to the fact that 

the hydrostatic loading mimics the concentrated axisymmetric apex loading when 

the nondimensional density reaches infinity. In the other extreme, when the nondi-

mensional density is 57 = 0, then the load-deflection surface corresponds to the 

load-deflection curve for concentrated axisymmetric apex loading. 
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4.5.2 Central Half Angle 

To aid in examining the effects of the central half angle on the load-deflection be-

havior exhibited by a spherical membrane, Figures 4.6, 4.7, and 4.8 were produced. 

The central half angle used were /3 1200, f3 = 600, and /3 = 300 while the 

nondimensional density was held constant at 5 = 4.55. 

In actuality, the central half angle has only one effect on load-deflection surfaces, 

namely, where the load-deflection surface deviates from the main load-deflection 

surface for a given nondimensional density. Only the portion of the load-deflection 

surface which has deviated from the main load-deflection surface has unique charac-

teristics based on the central half angle. 

By examining Figures 4.7 and 4.8, it is apparent that, as long as the central 

half angle causes the deviation from the main load-deflection surface to occur at a 

configuration located in a direction of increasing apex deflection from the G curve, 

there will be an unstable portion of the main load-deflection surface and snap-through 

can occur. As the central half angle decreases, the unstable portion of the main load-

deflection surface enlarges and the effects of snap-through become more pronounced. 

It should be noted, that the G curve consists of individual G points each of which 

has a unique angle cbE. Thus, there is a transition domain in which the deviation 

from the main load-deflection surface occurs across the G curve. In other words, 

the D curve will intersect and truncate the G curve such that only concentrated 

axisymmetric apex loads possessing a G point on the load-deflection surface will 

exhibit snap-through behavior. This being the case, the smallest value of the central 

half angle which would guarantee that no snap-through behavior is exhibited, no 
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Figure 4.6: Load-Deflection Surface for a Spherical Membrane Subjected to Com-
bined Hydrostatic and Concentrated Axisymmetric Apex Loading (y = 4.55 and 
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Figure 4.7: Load-Deflection Surface for a Spherical Membrane Subjected to Com-
bined Hydrostatic and Concentrated Axisymmetric Apex Loading (T = 4.55 and 
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Figure 4.8: Load-Deflection Surface for a Spherical Membrane Subjected to Com-
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matter what the loading, is /3 = 7r - where cbEflG corresponds to the value of 

'bE of the G point for hydrostatic loading. This is because angle cbE for hydrostatic 

loading's G point is the minimum value of all the angles of cbE along the G curve. 

Whenever the central half angle is greater than /3c, = ir - cbEHG, only the D curve 

exists and the main load-deflection surface only exhibits monotonically stiffening 

behavior. 

However, if the central half angle is increased such that f3 > 1r—OE,,, , where 6EHC 

corresponds to angle q!i of the C point for hydrostatic loading, then the deviation 

from the main load-deflection surface will occur on the C curve. In this case, a 

deviated portion of the C curve exists. This type of behavior can be seen in Figure 

4.6. It is interesting to note that, no matter how large the central half angle, there 

will always be a load-deflection surface in which the concentrated axisymmetric apex 

load can range from P = 0 to P = co. 

Characteristics of the deviated portion of the load-deflection surface will now be 

discussed. In general, the deviated portion of the load-deflection surface falls into 

one of three categories of behavior. The first category exhibits only monotonically 

stiffening behavior for concentrated axisymmetric apex loads between P = 0 and 

P = oo and occurs if the central half angle can be described by f3 > ir - 

In such cases the G, T and snap-through curves do not exist as the load-deflection 

surface deviates before their characteristics manifest themselves. This type of be-

havior is shown in Figure 4.6. The second category has a deviated portion of the 

load-deflection surface which exhibits unstable behavior for a certain range of con-

centrated axisymmetric apex loads and then switches to monotonically stiffening 

behavior for the remainder. For this to occur the central half angle must be de-
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scribed as ir - cbEHG > f3 > ir - cbEPG where qEPG is the angle OE for the G point 

for concentrated axisymmetric apex loading. The transition between unstable and 

monotonically stiffening behavior once again occurs where the D curve intersects and 

truncates the G curve. Let the concentrated axisymmetric apex load which corre-

sponds to the intersection point of the D and G curve be defined as P. For the 

second category of behavior, it can now be said that for concentrated axisymmetric 

apex loads between T = 0 and T = 15G, the deviated portion of the load-deflection 

curve has an unstable region whereas for concentrated axisymmetric apex loads be-

tween P = G and 15 = co only monotonically stiffening behavior is exhibited. 

Finally, the third category occurs, if 13c, <ir - cbEPG where all values of the concen-

trated axisymmetric apex load that deviate from the main load-deflection surface 

have an unstable region. In such cases, the entire D curve falls to the right of the G 

curve. For all concentrated axisymmetric apex loads which have an unstable region 

on its deviated load-deflection surface, the unstable region ceases at the T curve. 

Figures 4.7 and 4.8 exhibit category three behavior for their deviated portion of the 

load-deflection surface. 

The last characteristic on the deviated portion of the load-deflection surface to 

be affected by the central half angle is the ultimate curve. As the central half 

angle increases, the final volume available to be filled in the ultimate configuration 

decreases. As the nondimensional density is constant, a smaller volume causes the 

final nondimensional liquid load, W, to be lower at the ultimate configuration. It is 

evident in Figure 4.6 as the ultimate curve can be seen due to the large value of the 

central half angle. 

The last topic to be discussed with respect to the central half angle is support 
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wrinkling. The occurrence of support wrinkling is dependent on two variables, the 

total nondimensional load, P, and the central half angle. As the G point for hy-

drostatic loading has the largest value of total nondimensional load, P, on the main 

load deflection surface, this is where the onset of support wrinkling will occur if the 

central half angle is lower than the critical value of ,3 as determined by Equation 

2.38, where Pr. = P. This value for the central half angle also corresponds to the 

minimum value of the central half angle such that no effects of support wrinkling 

appear on the load-deflection surface. 

Figure 4.9 shows the load-deflection surface of Figure 4.8 when support wrinkling 

is included. The only difference between the two Figures is that a larger deflection 

occurs between the R and S curves on the main load-deflection surface. The S curve 

indicates the onset of support wrinkling while the R curve marks the end of support 

wrinkling effects, both of which are shown in Figure 4.9. For central half angles 

small enough to cause support wrinkling at the G point for hydrostatic loading 

yet not small enough to cause support wrinkling at the G point for concentrated 

axisymmetric apex loading, the S and R curves will meet at a point on the G curve. 

As can be seen from Figure 4.9, support wrinkling has no effect and never will effect 

the Snap-Through curve, T curve, D curve or any portion of the deviated portion of 

the load-deflection surface as the membrane is completely wrinkled. Finally, as the 

central half angle decreases in value, the additional deflection the apex incurs will 

increase. This is a natural consequence of Equation 2.40. 
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4.5.3 Design 

In practice, the engineer wants to design a structure so that it will not collapse. For 

the structures discussed in this thesis, failure of the structure can be defined as an 

unreasonable deflection of the apex or the occurrence of snap-through behavior. The 

first definition of failure is included as the structure may not incur snap-through yet 

undergo an apex deflection large enough to render the structure useless. It is not the 

purpose of this thesis to determine what an unreasonable value of apex deflection is 

as it is dependent on the use of the structure. Instead, this subsection will focus on 

the prevention of snap-through behavior. This being the case, the engineer must be 

cautious in the use of the geometry of the structure, which is controlled by the central 

half angle, and with the applied loading. However, the engineer can only control the 

concentrated axisymmetric apex load since the hydrostatic loading is determined by 

the weather which is unpredictable. Thus, in designing the structure, the engineer 

can freely choose from the entire range of central half angles or any concentrated 

acisymmetric apex load but not both. 

At this point it is advantageous to provide a range of values for the nondimen-

sional density for substances the engineer is likely to encounter, rain and snow. The 

equation used to determine the nondimensional density is = . In all cases, it PO 

will be assumed that the internal overpressure, Po, is a quarter of an inch of water or 

62 Pa. The radius of the structure, R0, on the other hand, is likely to vary depending 

on the application. For the purposes of this thesis, it is felt that a range between 25 

m and 50 m adequately represents the values likely to be used for storage, sports, 

and green house facilities. Finally, the density of rain water is 9810N/m3 while that 
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of freshly fallen snow was taken as 1256N/m3 from Mark's Standard Handbook for 

Mechanical Engineers [5]. The result is that for rain water the range of nondimen-

sional densities is between 57 = 4000 and 57 = 8000 while for snow it varies from 

57=500 to 57=1000. 

If the engineer is restricted to the use of a specific concentrated axisymmetric apex 

load and if, for the nondimensional density which is applicable, it exceeds the critical 

value for the concentrated axisymmetric apex load, PM, the engineer must restrict 

the geometry of the structure such that snap-through is impossible. In Subsection 

4.5.2, it was pointed out that the entire load-deflection surface would be in stable 

equilibrium if the central half angle was greater than 7r - EHG, where 4EHG is the 

value of angle OE for the G point when the membrane is subjected to hydrostatic 

loading. With this in mind, Figure 4.10 shows a curve which provides the minimum 

allowable central half angle for a specific nondimensional density. It is recommended 

that additional safety factors be included. On Figure 4.10, it can be seen that the 

curve terminates at 57 = 3.4. This is due to the fact that, for hydrostatic loading, the 

G point is nonexistant below 7 = 3.4 as the load-deflection curve is already unstable 

at its C point. As the practical range for nondimensional densities is considerably 

greater than 57 = 3.4 it is not a problem. The practical ranges are also indicated on 

Figure 4.10. As the corresponding range of central half angles is moderately lofty, 

the engineer can use shallow geometries with confidence. 

On the other hand, if the engineer is required to use a central half angle for 

which snap-through is a possibility, the design must focus on using a concentrated 

axisymmetric apex load below the critical concentrated axisymmetric apex load, 

PM, for the given nondimensional density. Figure 4.11 provides the nondimensional 
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critical concentrated axisymmetric apex load when a specific nondimensional density 

has been chosen. This curve was first produced by Szyszkowski and Glockner [14] 

who found that the linear portion of the curve could be approximated by 

1.109 = (4.33) 

As a side note, Figure 4.11 confirms the statement made in subsection 4.5.1 to the 

effect that, as the nondimensional density approaches = 0.0, the value of the 

critical concentrated axisymmetric apex load approaches P = 0.484. 

Of particular interest is the value of the critical concentrated axisymmetric apex 

load and the depth of the critical depression for the upper range of the nondimen-

sional density, 5 = 8000, for water. The equation used in determining the concen-

trated axisymmetric apex load is P = rRp0. Using P = 0.000172, from Figure 

4.11, a radius of 50 m and and internal overpressure of 62 Pa, the critical concen-

trated axisymmetric apex load is 84 N. This is an extremely small load for the size of 

the structure. The depth of the critical depression, which would allow the structure 

to collapse due to hydrostatic loading alone, is determined by the height of the liquid 

at the apex which is H. = 0R0. Using the value L = 0.000309, the corresponding 

depth of the depression is 1.545 cm. This is alarmingly small as a defect in the arc 

length for a structure with a 50 m radius may easily exceed this value. This situation 

can be alleviated by increasing the internal overpressure for large radius structures. 

It also points out that large radii, flat, structures are more likely to be susceptible 

to ponding failure. However, it is recommended that the design also incorporate a 

shallow central half angle to eliminate the possibility of snap-through behavior. 
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4.6 Summary 

This concludes the presentation on results for various loading conditions of a spher-

ical inflatable membrane. Chapter 5 will summarize the findings, as well as make 

recommendations for future research. 



Chapter 5 

DISCUSSION AND CONCLUSIONS 

5.1 Limitations 

This section will discuss the limitations of the computer model, the reason for each 

limitation, and how, if possible, to adapt to the limitation such that its effect will 

be minimized. 

The first limitation to be discussed is that equilibrium configurations for the 

membrane would not converge for central half angles below f3 = 5°. This results in 

the main load curve for concentrated axisymmetric apex loading and the "takeoff" 

curve for hydrostatic loading to terminate prematurely. The data for these curves 

was extrapolated below /3, = 5° based on the points for central half angles greater 

than /6o = 5°. The end point of the curves can be deduced from the geometry of 

the structure. The reason for the limitation is that, at very lofty geometries, the 

problem becomes highly unstable and the variables used by the computer do not 

have enough precision. At this point the computer program variables are quadruple 

precision and no further improvement can be achieved. This limitation exists for all 

three loading conditions described in this thesis. 

The second limitation, however, only affects combined hydrostatic and concen-

trated axisymmetric apex loading cases. The difficulty lies in the fact that the 

concentrated axisymmetric apex load cannot be set to zero. When this is attempted 

it results in a singularity in the differential equations defining the behavior of the 
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membrane at the apex. This results from the fact that the assumption was made 

that the wrinkled region begins at the apex. In Chapter 3 the reason for using an 

inverted sphere from the apex to point A was to eliminate the singularity at point 

A that would have resulted if wrinkling began at the apex. For combined loading, 

however, the load-deflection behavior can be determined for P = 0 by choosing a 

concentrated a..xisymmetric apex load close to P = 0, determining its load-deflection 

value, and then reducing the concentrated axisymmetric apex load. This process 

is repeated until the change in load-deflection values becomes negligible. The only 

problem with this procedure is that the resulting values of 3 and W for combined 

loading, although close, did not match those predicted in Chapter 3 for Hydrostatic 

loading. The reason lies in the fact that the behavior at the apex is assumed to be 

different in the two chapters. In Chapter 3 there is an inverted sphere at the apex 

while in Chapter 4 the wrinkling begins immediately at the apex. The two cases will 

never reconcile. 

The next limitation in the computer model is that, whenever hydrostatic load-

ing occurs, the nondimensional density's upper limit is restricted as it attempts to 

approach infinity. In the case of this thesis the nondimensional density produced 

acceptable results for = 8000 but failed when = 16000 was attempted. The 

reason this occurred was that, as the nondimensional density increases, the points 

A, B, and C on the membrane move closer together. Finally, the B and C points 

are so close that they are both within a single increment of the arc length. The pro-

gram attempts to execute both the test for the B and C point at the same time and 

the program fails. The solution to this limitation is that, for larger nondimensional 

densities, the step size used for the nondimensional arc length must be decreased. 
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The final limitation in the computer model to be discussed is the fact that, when 

C points are generated, the depression is never completely filled. The test used 

to determine if the depression was full is to check if cbc = 0. When the program 

was executed, however, the closest angle cbc came to passing the test was typically 

ba = —0.001. At first it was felt that this resulted since the nondimensional liquid 

height, ,, was within one increment of the nondimensional arc length from being 

completely filled. When the increment used for the nondimensional arc length was 

reduced, however, no noticeable improvement for the value of cbc was obtained. It 

then became apparent that the method used to predict angle OD at point C fails 

when cba = 0 as Equation 4.29 becomes identical to Equation 4.28. Fortunately, the 

values for 3 and P do not change significantly once the value of angle qa is less than 

—0.01 radian. 

5.2 Conclusions 

A summary of the major points presented in this thesis are as follows: 

• The load-deflection characteristics have been clearly developed for a spheri-

cal membrane subjected to concentrated axisymmetric apex loads, hydrostatic 

loads, or a combination of hydrostatic and concentrated axisymmetric apex 

loading. 

• Snap-through behavior is exhibited by spherical inflatable structures, given a 

sufficiently small central half angle, when subjected to concentrated axisym-

metric apex loads, hydrostatic loads, or a combination of hydrostatic and con-

centrated axisymmetric apex loading. 
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• When the spherical membrane is subjected solely to concentrated axisymmetric 

apex loading, the engineer can avoid snap-through behavior by ensuring the 

nondimensional concentrated axisymmetric apex load is less then 15 = 0.484 

regardless of the geometry of the structure. 

• When the spherical membrane is subjected solely to concentrated axisymmetric 

apex loading, the engineer can avoid snap-through behavior by ensuring the 

central half angle for the structure is greater than 85.5° regardless of the 

concentrated axisymmetric apex load applied. 

• When the spherical membrane is subjected to hydrostatic loading, load-deflection 

curves exist for nondimensional densities ranging from 57 = 0 to 57 = Co. 

• When the nondimensional density for hydrostatic loading approaches infinity, 

the load-deflection behavior of the spherical membrane approaches the behav-

ioral characteristics of a membrane subjected to concentrated axisymmetric 

apex loading. 

• When the nondimensional density for hydrostatic loading ranges between 57 = 

3.4 and 57 = oo, The load-deflection curves deviate from the "Takeoff" curve 

in a state of stable equilibrium. 

• When the nondimensional density for hydrostatic loading ranges between 57= 

3.4 and 57 = 0, the load-deflection curves deviate from the "Takeoff" curve in 

a state of unstable equilibrium. 

• The "Takeoff" curve terminates at W = 0 and S = 2 + ir when the nondi-

mensional density is 57 = 0. This corresponds to the end of the main curve for 
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concentrated axisymmetric apex loading. 

• As hydrostatic loads result from precipitation, the loading and unloading of 

hydrostatic loads is unpredictable. Also, when subjected to hydrostatic loading 

all load-deflection curves, with a sufficiently small central half angle, exhibit 

snap-through behavior. As this is the case, the only equilibrium configuration 

which can be relied upon not to collapse is the one involving a completely filled 

depression since any additional loading is rejected. These configurations make 

up the "Takeoff" curve for various nondimensional densities. 

• In practice, the engineer will likely encounter structures which are initially 

loaded by a concentrated axisymmetric apex loads. The resulting depression 

is available to initiate hydrostatic loading of the structure. 

• Load-deflection surfaces rather than curves are better equipped to describe the 

load-deflection characteristics of a spherical membrane subjected to a combi-

nation of hydrostatic and concentrated axisymmetric apex loads. 

• As the nondimensional density approaches infinity, the load-deflection surface 

becomes symmetrical about a plane oriented at 45° to the plane defined by the 

nondimensional concentrated axisymmetric apex load axis and the nondimen-

sional apex deflection axis. 

• As the nondimensional density approaches 7 = 0, the load-deflection surface 

decreases in area until it is reduced to the concentrated axisymmetric apex 

load's load-deflection curve. 
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• Once again, equilibrium configurations with completely filled depressions af-

ford the only guarantee against snap-through behavior when small central half 

angles are employed. These configurations comprise the C curve on load-

deflection surfaces. The maximum concentrated axisymmetric apex load which 

produces a completely filled membrane is designated as 15M. 

• As the value of PM is insignificant for the practical range of nondimensional 

densities corresponding to rain water, it is recommended the engineer employ 

a shallow geometry to prevent snap-through behavior. 

• Support wrinkling of the structure occurs for all loading conditions discussed in 

this thesis if the central half angle is sufficiently small. The load wrinkling and 

the support wrinkling domains never interact. The result of support wrinkling 

on the structure's load-deflection characteristics is an additional settlement of 

the apex. 

5.3 Future Research 

To conclude this thesis, a few potential new areas for research are suggested: 

• The effect of stove pipe supports and support interference on the load-deflection 

behavior of spherical membranes subjected to hydrostatic loads or combined 

hydrostatic and concentrated axisymmetric apex loads. 

• The effect of nonaxisymmetric concentrated loads on a spherical membrane's 

load-deflection characteristics. 
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• The load-deflection characteristics of a spherical membrane subjected to sym-

metric ring and hydrostatic loads. 

• The effect on the load-deflection characteristics of a spherical membrane if the 

assumption of a constant internal overpressure is relaxed. 
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