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Abstract 

Microarray data clustering is the common methodology to analyze similar data based on 

expression trajectories. Clustering algorithms in general need a prior number of clusters 

and this is hard even for domain experts to estimate. In this thesis, a new clustering 

algorithm, namely the Multi-objective K-Means Genetic Algorithm (MOKGA), is 

proposed for clustering microarray gene expression data. After running MOKGA, a 

pareto-optimal front is obtained and gives the optimal number of clusters as a solution 

set. The obtained clustering results are then analyzed under several cluster validity 

techniques proposed in the literature. As a result, the optimal clusters are ranked for each 

validity index. In this thesis, the proposed clustering approach is tested by conducting 

experiments using five data sets. The obtained results are compared with those reported 

in the literature to demonstrate the applicability and effectiveness of the proposed 

approach. 
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Chapter One 

Introduction 

1.1 Problem definition 

The central role of the DNA microarray technology in biological and biomedical domains 

enables researchers to observe transcription levels of many thousands of genes. 

Information gathered by analyzing the genes at different levels and stages of the process 

is used for the gene function, the reconstruction of the gene network, the diagnosis of 

disease conditions, and the inference of medical treatment [JGRO3J. 

Data mining methods and techniques have a great deal of interest and application 

areas including bioinformatics. They are designed for extracting previously unknown 

significant relationships and regularities out of huge heaps of details in large data 

collections [SSO 1]. The identified gene expression levels reflecting the biological 

processes of interest are frequently used to analyze the inference of differentially 

expressed genes and their clustering. The main step in the analysis of gene expression 

data is to identify groups of genes/samples based on the notion of similarity. Two leading 

data mining tasks, classification and clustering, exhibit the capability of grouping the 

genes. 

Classification is one of the well-known mining techniques. It has two main aspects: 

discrimination and clustering. In discrimination analysis, also known as supervised 

clustering, observations are known to belong to pre-specified classes. The task is to 

allocate predictors for the new coming instances in to be able to classify them correctly. 
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In contrast to classification, in clustering, also known as unsupervised clustering, classes 

are unknown a prior and the task is to determine classes from the data instances. 

Clustering is used to describe methods to group unlabeled data. By clustering, we aim to 

discover gene/samples groups that enable us to discover, for example, the functional role 

or the existence of a regulatory novel gene among the members in a group. 

As described in the literature, some of the existing clustering techniques have been 

successfully employed in analyzing the gene expression data. These include hierarchical 

clustering method, partitional clustering, graph-based clustering, and model-based 

clustering. 

In general, existing clustering techniques require pre-specification of the number of 

clusters, which is not an easy task to predict a prior even for experts. Thus, the problem 

handled in this thesis may be identified as follows: Given a set of data instances, we 

mainly concentrate on microarray data, it is required to develop an approach that 

produces different alternative solutions, and then conduct some validity analysis on the 

resulting solutions to rank them. 

1.2 Motivation 

When clustering microarray data without any previous knowledge about the data, it is 

hard to decide on the number of clusters and there are always some trade-offs between 

the quality of a clustering result and the number of clusters. One solution is to view the 

two elements as two objectives that affect clustering results. This is a multi-objective 

problem. The solution of a multi-objective problem is a solution set, which is called a 

Pareto-optimal set or non-dominated set [VP1896]. 
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In general, traditional algorithms for clustering microarray data do not produce the 

Pareto optimal set, and most do not lead to the optimal number of clusters in the database 

that they work on. For example, hierarchical clustering method can get the heuristic 

overview of a whole dataset, but it cannot relocate objects that may have been 

'incorrectly' grouped at an early stage. It cannot tell what is the optimal number of 

clusters nor give the non-dominated set, the K-means method needs the number of 

clusters as a predefined parameter, and it may give local optimal solutions because it is a 

local search from a random initial partitioning. SOM has the same disadvantage in that it 

requires the number of clusters as a prior. 

Clearly, a clustering algorithm is needed in to get the global Pareto optimal solution 

set required to give users the best overview of the whole dataset according to the number 

of clusters and their quality. Further, it is required to get clustering results with the 

optimal number of clusters. 

1.3 Contributions 

The main contribution of this thesis is a new clustering approach that considers multiple 

objectives in the process and its application for clustering microarry data. The proposed 

approach has two components: 

o Multi-objective K-means Genetic Algorithm (MOKGA) based clustering 

approach, which presents to the user a Pareto optimal clustering solution set 

without taking weight values into account. Otherwise, the user will have to 

consider several trials weighting with different values until a satisfactory result is 

obtained. 
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o Cluster validity analysis employed to evaluate the obtained candidate optimal 

number of clusters, by applying some of the well-known cluster validity 

techniques, namely Silhoutte, C index, Dunn's index, DB index, SD index and S-

Dbw index, to the clustering results obtained from MOKGA. It gives one or more 

options for the optimal number of clusters. 

The applicability and effectiveness of the proposed clustering approach and clustering 

validity analysis process are demonstrated by conducting experiments using five datasets: 

Fig2data, cancer (NCI6O), Leukaemia data sets available at Genomics Department of 

Stanford University, UCI machine learning repository, Iris at Genome Research MIT, and 

the well-known Ruspini dataset. Finally, two papers are published from this thesis 

[LOABO4] [OLABO4]. 

1.4 Outline of the thesis 

The balance of the thesis is organized as follows. Chapter 2 discusses the necessary 

background for this research. The concepts of clustering and microarray are introduced. 

Existing techniques on clustering methods, clusters validity analysis, genetic algorithms 

multi-objective genetic algorithms are all discussed. Other related topics including the 

application of microarray and the usage of clustering for microarray analysis are also 

covered. Finally the clustering approaches used primarily in the microarray data analysis 

area are reviewed. 

Chapter 3 is devoted to the development of a new clustering system for clustering 

both gene expression and general datasets. The system has two main components: Multi-

objective K-Means Genetic Algorithm (MOKGA) and cluster validity analysis. The 

purpose of MOKGA is to get the Pareto-optimal front, which gives the optimal number 

4 



of clusters as a solution set. The cluster validity analysis involves six cluster validity 

techniques. Methods helpful to get more optimal solutions, such as the multiple Pareto 

front ranking method and the Pareto front distance threshold calculating method are also 

proposed. 

In Chapter 4, the proposed clustering system and related methods are applied to five 

datasets to test the applicability, performance, and efficiency of the system. Experimental 

results for each dataset are presented and between results from the proposed approach are 

compared with other similar methods. 

Finally, Chapter 5 discusses the advantages and disadvantages of the proposed 

approaches, in comparison with other existing methods. Conclusions are made and future 

research directions are suggested. 
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Chapter Two 

The Necessary Background and Related Work 

In this chapter, the major topics necessary to understand the approach proposed in this 

research are discussed. These include existing clustering approaches, cluster validity 

analysis, microarray and its application, the usage of clustering for microarray analysis, 

genetic algorithm in general, and multi-objective genetic algorithms in particular. 

2.1 Clustering 

2. 1.1 What is clustering? 

Cluster analysis can be stated as follows: given N data points embedded in a D-

dimensional space, partition the N points into M clusters, such that the points in the same 

cluster are "more similar" to each other than those belonging to different clusters. 

Through this analysis, one can identify the underlying structure of the data. A good 

clustering method will produce high quality clusters such that the intra-class similarity 

(i.e., within a cluster) is high and the inter-class similarity (i.e., between clusters) is low. 

There are two kinds of clustering analysis techniques: supervised and unsupervised 

clustering analysis. Unsupervised methods can mine through data and extract relevant 

information without the presence of a teacher signal [DEO2]. On the other hand, 

supervised methods use a teacher signal to extract information. We can say that 
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unsupervised methods perform the clustering job while supervised methods are more 

suited to the classification of datasets. 

The main disadvantage of supervised methods is their limitation to hypothesis testing. 

Supervised methods will help accept or reject the hypothesis, but they will never reveal 

the unexpected and cannot lead to new hypotheses or new partitions of the data that are 

unexpected. And they are unable to find the mislabeled data in the training set. 

Unsupervised methods, on the other hand, aim at exploring the structure of the data 

on the basis of correlations and similarities present in the data. In the context of gene 

expression, such an analysis has two goals: 

1. To find groups of genes that have correlated expression profiles. The members of 

such a group may take part in the same biological process; and 

2. To divide the samples into groups with similar gene expression profiles. Samples 

belonging to one group are expected to be in the same biological state. In this 

thesis, the method presented to accomplish these aims is called clustering and it is 

regarded as an unsupervised learning method. 

2.1.2 Clustering methods 

Existing clustering techniques may be classified into traditional clustering algorithms, 

including hierarchical clustering [JAH75], partitional clustering [TK097], and recently 

emerging clustering techniques such as graph-based [BSY99] and model-based [KYYO1] 

[YBO2] approaches. Some of the existing clustering techniques have been successfully 

employed in analyzing the gene expression data. 
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2.1.2.1 Hierarchical clustering 

Hierarchical clustering is a very well known method by biologists. A tree structure called 

a dendo gram is used to illustrate the hierarchical clustering[JTZO3]. Relationships among 

genes are represented by the tree using a degree of similarity symbolized with the branch 

lengths. 

Hierarchical clustering methods are categorized into agglomerative (bottom-up) 

clustering and divisive (top-down) clustering. An agglomerative clustering starts with 

one-point (singleton) clusters and recursively merges two or more most appropriate 

clusters. A divisive clustering starts with one cluster of all data points and recursively 

splits the most appropriate cluster. For both categories, the process continues until a 

stopping criterion is achieved [JTZO3] [SJO2]. 

Hierarchical clustering algorithms have been widely used in the area of gene 

expression data analysis. For example, Waddell [WKOO] applied hierarchical clustering 

method based on partial correlations on NC16O gene expression data to find a tight and 

closed set of genes. He then used them for graphical modeling to find the interaction of 

important genes of the cell cycle. 

2.1.2.2 Partitional clustering 

• K-Means is a commonly used algorithm for partition clustering [TK097]. It is a widely 

used technique and has been utilized to analyze gene expression data. The purpose of K-

Means clustering is the optimization of an objective function that is described by the 

equation: 

C 

Ed(x,m) (2.1) 
1=1 XEC 

8 



where mis the center of cluster C, and d(x, m1) is the Euclidean distance between a point 

x and m1. It can be seen that the criterion function attempts to minimize the distance 

between each point and the center of its cluster. 

The algorithm begins by randomly initializing a set of C cluster centers, then assigns 

each object of the dataset to the cluster whose center is the nearest, and re-computes the 

centers. This process is repeated until the total error criterion converges. 

2.1.2.3 Self organizing maps (SOM): 

Self Organizing Maps method (SOM)[SK97] is a neural network approach that uses 

competitive unsupervised learning and eventually the winner-takes-all approach to assign 

each gene to a cluster. SOMs work is somewhat like K-Means clustering but a little 

richer. With K-Means, one chooses the number of clusters to fit the data into; but for 

SOM, one chooses the shape and size of a network of clusters to fit the data into. There is 

one input layer and a competitive layer, so each input neuron is used for the output result 

of each competitive layer neuron. Two dimensional grids are used to evaluate the results. 

Each input neuron is connected with an arc to every neuron at the competitive layer with 

different weight, and competitive neurons are evaluated with an activation function. It is 

good because input neurons feed the copmpetitive neurons with the varying weights in 

parallel by the product of perceptron learning. 

Double self organizing maps (DSOM)[WRMOO] is also used for gene expression 

data clustering. In DSOM, each node does not have only an n-dimensional synaptic 

weight vector, but also a 2-dimensional position vector. During the self-organizing 

process, both the weight and position vectors are updated. Because the position vectors 

are two-dimensional, we can visualize the number of groups of the position vectors by 
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plotting them. Thereby, we are able to determine the number of classes in the gene 

expression data set. 

2.1.2.4 Model-based clustering algorithm 

The model-based approach [RSIO2] is a promising technique, which assumes that data 

are generated by a mixture of finite number of probability distributions. In this approach, 

each cluster represents a probability distribution and a likelihood-based framework can 

be used. 

The Bayesian method is a model-based approach used in gene expression data 

analysis. Barash et al [BFO1] applied Bayesian method on gene-expression time series 

data to study the response of human fibroblasts to serum. Gaussian mixture model is used 

in the method. They found the dynamic nature of gene expression time series during 

clustering Mar [MMO3] proposed a mixture model-based algorithm (EMMIX-GENE) for 

the clustering of tissue samples and presented a case study involving the application of 

EMMIX-GENE to breast cancer data. 

2.1.2.5 Graph-based clustering methods 

Graph-based clustering methods translate a clustering problem into a graph partitioning 

problem by creating a weighted similarity graph and linking each gene to other genes that 

are more than same threshold similar to it [BSY99]. The study by Ben et al [BSY99] tries 

to make cliques for the clustering purpose. Examples of this approach are the Two-Way 

Clustering Binary tree [CBO2] and the Coupled Two-Way Clustering [RSIO2]. 
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2.2 Cluster validity analysis 

Clustering is mainly an unsupervised task, so after data clustering and data partitioning 

into subgroups, the validity of the result must be checked [MRTO3]. 

2.2.1 Resampling techniques 

Levine introduces a cluster validation method based on resampling [LDO1]. The 

clustering algorithm is applied to each subset of the data constructed randomly. A figure 

of merit is proposed to identify the stable clustering solutions. The proposed procedure 

was tested on a one-dimensional data set, for which an analytical expression for the 

figure of merit was derived and compared with the corresponding numerical results. 

In another paper, Roth [RLBBO2] tested the stability by clustering two sets of equal 

size data sampled from 2n size source data, and calculated the rates that the algorithm 

clusters the same object into different clusters. 

Resampling techniques have some advantages. Within the same algorithm, partitions 

can be attributed in the presence of noise. A slight modification of the noise may then 

alter the cluster structure significantly. This method controls and alters the noise by 

resampling the original data set. It also requires no assumption about the structure of the 

data, the expected clusters, or the noise in the data. Only available data is used. In 

addition, this method can also define an optimal number of clusters. The disadvantage of 

this method is that it is unsuitable for very sparse data. In this case, dilution can eliminate 

some of the underlying modes [LDO1] [BEGO2]. 
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2.2.2 Bootstrap method 

Bootstrapping cluster analysis begins by creating a number of simulated datasets based 

on statistical models, such as the analysis of variance (ANOVA) models [KCO1]. For each 

simulated data set, a bootstrap temporal pattern can be constructed based on the estimates 

of the difference between genes and varieties. The filtering and clustering steps can then 

be repeated with these bootstrap estimates to assess the stability of the results from a 

cluster analysis. 

This method is a straightforward way to assess the reliability of clustering results. The 

partition generated by an algorithm with low variability is in general more credible and 

therefore has high cluster validity. The disadvantage is that this method only works well 

when the experimental design provides enough replication. 

2.2.3 Validity indexes 

Other widely accepted criteria used by the clustering algorithms are the compactness 

of the clusters and their separateness. Those criteria should be validated and optimal 

clusters should be found so the correct input parameters must be given to the satisfaction 

of optimal clusters. Some clustering validity techniques used for the validation task 

include Dunn index [DUG99], Davies-Bouldin (DB) index [BRAOO], Silhouette index 

[HUGOO], C index [UFO2], SD index [MJLO1] and SDbw index [GST99], among 

others. 

Dunnts index uses the dispersion parameter, which is prone to noise since it uses the 

maximum of pairwise distance of objects in the same cluster as a parameter. 
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Davies-Bouldin (DB) uses the ratio of scatter (use Euclidean distance to calculate the 

scatter ratio) of objects within a cluster and the scatter of cluster centres. It considers the 

average case by using the average error of each class. 

C-index is another technique being used for the cluster validity. It uses the within 

cluster pairwise dissimilarity. Further, according to the number of pairs in the within 

cluster pairs, minimum and maximum summation of the number of pairwise object 

distance parameters are used in the calculation. However, this method is not 

recommended since it is likely to be data dependent [BA2003]. 

Silhoutte is based on the tightness and separation. It finds the overall average of the 

ratio of the difference of each object's minimum average dissimilarity to all objects in 

other clusters. 

SD index is evaluated by using the average scattering for clusters and the total 

scattering between clusters. 

S_Dbw is similar to SD index, but it also considers the inter-cluster density instead of 

the total scattering in SD, and no weighting is used. Density formula uses the average 

standard deviation of the clusters. The detailed formulas to calculate the indexes will be 

discussed in chapter 4. 

Examples of other cluster validity approaches used in gene expression data analysis 

include Principal Component Analysis (PCA) [BGO3] and Gap statistic [TWHO1] . PCA 

is a statistical-based method that can improve the extraction of cluster structure and 

compare clustering solutions [BGO3]. Gap statistic utilizes within-cluster distances to 

determine the "appropriate" number of clusters in a data set. It is good at identifying 
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well-separated clusters, but not for not-well-separated data and data concentrated on a 

subspace. 

2.3 Microarray and its application 

Microarrays are the first tool permitting a truly integrated view of life at the molecular 

level. Arrays are capable of profiling patterns of expression for all mouse or human 

genes in a single experiment. About a quarter century ago, labelled nucleic acid 

molecules were found reasonable to be used to interrogate nucleic acid molecules 

attached to a solid support [BRAOO]. Today, thousands or even tens of thousands of 

genes can be spotted on a microscope slide and the relative expression levels of each 

gene can be determined. 

The development of DNA microarray technology has produced large amount of gene 

data through which we can monitor the expression patterns of thousands of genes under 

particular experimental environments and conditions. Further, we can analyze the gene 

information rapidly and precisely by managing them at one time. 

2.3.1 What is a microarray? 

An array is an ordered arrangement of samples. A DNA Microarray is an array used at 

the molecular level and for DNA samples with diameters less than a certain value. It 

provides a medium for matching known and unknown DNA samples based on base-

pairing rules (i.e., A-T and G-C for DNA; A-U and G-C for RNA) and automate the 

process of identifying the unknowns. Microarray technology promises to monitor the 

whole genome on a single chip so that researchers can have a better picture of the 

interactions among thousands of genes simultaneously. 

The general procedure of microarrays technology works as follows: 
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1. Single-stranded cDNA molecules are attached at fixed spots on a microarray glass 

slide. There may be tens of thousands of spots on an array each representing a 

single gene. 

2. RNA from the sample and from control cells is extracted and labelled with two 

fluorescent labels (Cye3 and Cye5): for example, a red dye for RNA from the 

sample population and a green dye for that from the control population. Both 

extracts are washed over the microarray. 

3. The gene sequences from the extracts are then hybridized to their complementary 

sequences in the spots. The dyes enable the amount of sample bound to a spot to 

be measured from the level of fluorescence emitted when excited by a laser. If the 

RNA from the sample population is in abundance, the spot will be red; if the RNA 

from the control population is in abundance, it will be green; if sample and 

control bind equally, the spot will be yellow; and if neither binds, it will appear 

black. Thus, the relative expression levels of the genes in the sample and in 

control populations can be estimated from the fluorescence intensities and colours 

for each spot [BRAOOJ. Figure 2.1 (taken from [DUG99]) shows the schema of 

this experiment. 
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4. Based on the size of each DNA spot on the array, DNA arrays can be categorized 

as microarrays when the diameter of DNA spot is less than 250 microns and 

macroarrays when the diameter is larger than 300 microns. macroarrays can be 

easily imaged by existing gel and blot scanners while microarrays require 

specialized robotics and imaging equipment that are generally not commercially 

available as a complete system [CWO3]. 

There are two variants of DNA microarray (also called microarray) technology that 

are distinguished in terms of the property the of arrayed DNA sequence with known 

identity: 

Method 1: Probe eDNA (500-5,000 bases long) is immobilized on a solid surface. A set 

of targets are then added either separately or in a mixture. This method, 
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"traditionally" called DNA microarray, is widely considered to have been developed 

at Stanford University [EC99]. 

Method 2: An array of oligonucleotide (2O-8O-mer oligos) or peptide nucleic acid (PNA) 

probes is synthesized on-chip. Labelled samples DNA are then added and hybridized 

so the identity/abundance of complementary sequences are determined. This method 

is "historically" called DNA chips and it was originally developed at Affymetrix Inc. 

[LSO2]. 

Microarrays have significant advantages because they may contain a very large 

number of genes and are small. Therefore, they are useful when one wants to survey a 

large number of genes quickly or when the sample to be studied is small. The microarray 

(DNA chip) technology is having a significant impact on genomics study. Many fields, 

including drug discovery and toxicological research, will certainly benefit from the use of 

DNA microarray technology, which will be more thoroughly discussed in the next 

section. 

2.3.2 Applications of Microarray Technology 

Microarray technology may be used in a wide range of applications. 

Gene discovery 

Genomic and gene expression microarray experiments can be used to identify new genes 

involved in a pathway. Potential drug targets or expression markers can then be used in a 

predictive or diagnostic fashion. 

Disease diagnosis 

Micoarrays are very valuable for understanding biological processes and understanding 

and treating human diseases. For example, we can find gene expression (mRVA) markers 
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after analyzing multiple samples obtained from individuals with or without acute 

leukemia or diffuse large B-cell lymphoma. Based on the markers, these cancers can be 

classified [MJLO1] [GST99] [ALIOO] [CAO2] [LHO2]. 

Drug discovery: Pharmacogenomics 

Pharmacogenomics is the hybridization of functional genomics and molecular 

pharmacology. The goal of pharmacogenomics is to find correlations between therapeutic 

responses to drugs and the genetic profiles of patients. We can find the target of drugs by 

comparing the expression profile of a drug-treated cell with the profiles of cells in which 

single genes have been individually inactivated. For example, microarrays were used to 

identify a drug 'mechanism' by utilizing the Rosetta data set [HUGOO]. 

Toxicological research: Toxicogenoinics 

Toxicogenomics is the hybridization of functional genomics and molecular toxicology. 

The goal of toxicogenomics is to find correlations between toxic responses to toxicants 

and changes in the genetic profiles of the objects exposed to such toxicants. Through this, 

we can classify drugs and their modes of action [UFO2]. For example, the functional 

similarity and specificity of different purine analogues have been determined by 

comparing the genome-wide effects on treated yeast, murine, human cells [GRA98] 

[MJLO1]. 

Other existing applications of microarrays include: gene expression under control 

environment and test condition, developmental time course studies, resequencing, 

mutation analysis, genotyping, etc. Finally, it is anticipated that there will be more 

applications in the future. 
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2.4 The usage of clustering for microarray analysis 

Microarray analysis provides a systematic genome-wide approach to solve the problems 

already enumerated above. Clustering techniques manifest their crucial power as the first 

step in microarray analysis. 

Clustering algorithms can be applied on gene expression data under various 

conditions or across different tissue samples to group together genes that have similar 

functions. For example, Rioult et al [RBCO3] analyzed expression matrices to identify a 

prior interesting set of co-regulated genes. They proposed a method that can process the 

transposed matrices by making use of properties of the Galois connections. This 

technique processes the transposed matrices while computing the sets of genes. It can 

deal with expression matrices that are dense and have generally only a few lines. They 

also validated the potential of this framework by looking for the closed sets in two 

microarray data sets: where one data set concerns the study of human insulin-resistance 

and the other concerning gene expression during the development of the drosophilae. The 

results show that this method can efficiently extract patterns from huge gene expression 

databases [RBCO3]. 

Gene clustering also has become the first step to uncover the regulatory elements in 

transcriptional regulatory networks [CPMOZ] [GMCO2]. 

Cohen et al. {CPMO2} applied microarray analysis to Yapip and Yap2p 

Transcriptional Networks and obtained the discrimination between Paralogs. The 

research shows that DNA microarray can distinguish the functions of two closely related 

homologues from the yeast Saccharomyces cerevisiae, Yapip and Yap2p, using 

microarray clustering. Focusing on expression clusters that are over represented for Yap 

binding sites helps in distinguishing direct versus indirect effects on transcription caused 
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by transcription factors. Their approach allows the identification of clusters with 

unexpected expression patterns. It is also easily scalable to larger genomes and larger 

protein families. 

Another example is the identification of unstable transcripts in Arabidopsis by cDNA 

microarray analysis [GMCO2]. It is found that Rapid decay is associated with a group of 

touch- and specific clock-controlled genes. It is pointed out that genes with unstable 

transcripts often encode proteins that play important regulatory roles. In this research, 

cDNA miroarray analysis was applied to identify and characterize genes with unstable 

transcripts in Arabidopsis thaliana (ATGUTs). Results show that MRNA instability is of 

high significance and is associated with specific genes controlled by the circadian clock. 

For the analysis of gene expression data across multiple experiments the CLUSTER and 

TREE VIEW software were used. 

Clustering different samples based on gene expression is one of the key issues in 

problems like class discovery, normal and tumor tissue classification, and drug treatment 

evaluation. Scherf [SRWOO] applied microarray analysis on the gene expression database 

for the molecular pharmacology of cancer. It contains 728 genes, 60 cell lines, and 15 cell 

line groups. Golub et al. [GST99] applied SOM clustering algorithm on gene expression 

data containing 38 acute leukemia samples and 50 genes after filtered the whole dataset. 

SOM automatically grouped the 38 samples into two classes with acute myeloid leukemia 

(ALL) and acute lymphoblastic leukemia (AML). They further used SOM to group the 

samples into four classes. Subclasses of ALL, namely, B-lineage ALL and T-lineage 

ALL were distinguished [GST99]. It has been indicated that clustering samples can be 

used to identify fundamental subtypes of any cancer [SRWOO]. 
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To decide which and how many genes should be selected for further studies is an 

important issue in the microarray data analysis area. Clustering for microarray analysis 

can also be used for gene selection [LGO3]. 

Clustering analysis can also be used to find direct gene-sample correlations. BiCluster 

[CBO2] enables Gene/Condition correlation analysis that can lead to molecular 

classification of disease states, identification of co-fluctuation of functionally related 

genes, functional groupings of genes, and logical descriptions of gene regulation, among 

others. It is a starting point for understanding the large-scale network [CBO2] [MDO1]. 

Domany [DEO2] proposed a Coupled Two-Way Clustering (CTWC), which breaks down 

the total dataset into subsets of genes and samples that can reveal significant partitions 

into clusters. It provides clues about the function of genes and their roles in various 

pathologies. 

2.5 Genetic algorithms 

The famous naturalist Charles Darwin defined Natural Selection or Survival of the Fittest 

as the preservation of favourable individual differences and variations, and the 

destruction of those that are injurious. In nature, individuals must adapt to their 

environment to survive. This process is called evolution, through this procedure the fittest 

genes survive and are transmitted to their descendants during the replica process and 

sexual recombination process, which is called crossover. 

In the late 60s, Holland applied natural selection to machine learning using a 

technique that was later named genetic algorithms. In 1989, Goldberg provided a solid 

scientific basis for this area, and cited some successful applications of the genetic 

algorithm. In recent years there is more software and literature devoted to this subject. 
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Genetic algorithms are modeled after mechanisms of natural selection. Each 

optimization parameter (x1) is encoded by a gene using a real number or a string of bits. 

The corresponding genes for all parameters xj, ..., x, form a chromosome, which 

describes an individual design solution, and a set of chromosomes represent several 

individual design solutions, with those fittest ones being selected to reproduce. Crossover 

is performed to combine genes from different parents to produce children. The children 

are inserted into the population and the procedure starts over again. This procedure 

creates an artificial Darwinian environment. Cross-over may be classified as single point 

or multiple points. To illustrate the process consider the following chromosomes where 

the genes are encoded as binary bits. 

101101110111 and 110011101011; a single point cross-over is specified as 6 to 

divide each chromosome into two parts such that the first 6 genes are in one part and the 

rest are in the other part. Then the first part of the first chromosome is combined into a 

new chromosome with the second part of the second chromosome and the first part of the 

second chromosome is combined with the second part of the first chromosome into 

another new chromosome to get the two chromosomes: 110011110111 and 

101101 101011. 

Mutation changes the value of a single bit and helps in preventing being stuck on a 

local optimal. The traditional mutation operator randomly chooses and flips a bit, changes 

the bit from 1 to 0 or 0 to 1. 

After applying the genetic operators such as crossover and mutation, the "offspring" 

generated will include solutions better than the purely random original ones. The best 

offspring will be added to the population while inferior ones will be eliminated. By 
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repeating this process, repeated improvements will occur in the population, until we 

finally get the same result repeated for certain generations. 

A genetic algorithm for a particular problem must have the following five 

components [CCA98]: 

1. Chromosome representation. 

2. The way to create an initial chromosome population. 

3. Suitable fitness function. 

4. Genetic operators that alter the composition of children (crossover, mutation, 

reproduction etc.) 

5. Values for various genetic algorithm parameters (population size, probabilities of 

applying genetic operators, etc.). 

2.6 Multi-objective GA's 

A problem is said to be multi-objective if it involves simultaneous optimization of 

multiple goals. Usually there is no single solution for which all objectives are optimal. 

For example, a solution may be optimal regarding one objective but inferior regarding 

another objective, so the design goals are competing and there will be some trade-offs. 

In general multi-objective problems do not have a unique solution and the solution of 

a multi-objective problem is a set of solutions, such that there are no other solutions that 

are superior in comparison to all other objectives. The solution set is called Pareto-

optimal set or non-dominated set. This concept was formulated by Pareto in 1896 

[VP1896], and constitutes the origin of research in multi-objective optimization. 

Assume a multi-objective problem has k objectives. Assume this is a minimization 

problem, for solution set x = (xi, x2, ..., xk) and another solution set y = (yj, Y2, ..., yk), if 
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for all i, x y, and there exist I such that x1 < y. Then solution x is said to dominate 

solution y. If there is no other solution y' such that y' dominates x, then solution x is a 

member of the Pareto-set is said to be non-dominated. Thus, the multi-objective problem 

can be defined as finding solutions that are non-dominated [ND99]. 

The minima in the Pareto sense are going to be in the boundary of the design region 

called the Pareto front. For example, considering two objective functions, one is to get 

the minimum number of clusters and the other one is to get the smallest fitness value. 

Assuming a data set: {(2, 32.2), (3, 30.4), (4, 29.7), (5, 29.0), (2, 3 1,5), (4,28.8) 1, the first 

value is the number of clusters and the second value is the fitness value. The subset 

{(2,31.5), (3, 30.4), (4, 28.8)} is the Pareto front, because there is no data point in the 

whole data set that has both less cluster number and smaller fitness value. That is, in the 

Pareto set, there is no data point dominated by other data point. Figure 2.2 shows an 

example of Pareto Front. 

2.6.1 Multi-objective optimization 

In general multi-objective design problem it can be expressed by Equations (2.2). 

Mm F(x) = (fl(x),f2(x), . ..' f k(X))T 

s.t. X E S 

X.) 
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Figure 2.2 An example of a problem with two objective functions. 

(The Pareto front is marked with a continuous line that faces the two axes.) 

where fi(x), f2(x), ..., fk(x) are the k objective functions, (xi, x2, ..., x) are the n 

optimization parameters, and S E R nis the solution or parameter space. 

The obtainable objective vectors, {F(x)I x E S }, are usually referred to as the attribute 

or objective space. It can be: 

1. The Pareto (non-dominated) set which consists of solutions that are not dominated 

by any other solutions. 

2. A dominated set, if there exist a solution that dominates it. 

3. The space in R' formed by the objective vectors of Pareto optimal solutions is 

known as the Pareto optimal front. 

In a general multi-objective GA process, initial population is randomly generalized. 

Then with crossover, mutation, and selection (for multi-objective GA is Pareto selection) 

which are traditional genetic processes, solution chromosomes evolutes to more optimal 

ones, which means both objective function values are getting better. The process can be 

showed in the following figure: 
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Figure 2.3 Illustration of Pareto front convergence process 

In Figure 2.3, blue points denote Pareto set data points for the current population. It is 

shown that, along with the genetic process, the Pareto front converges to the optimal one 

and remains stable. For example, considering two objective functions: fl = mm (a), f2 

mm (b), for generation one we have solution set {(2, 8), (2, 11), (3, 7.7), (3, 13), (4, 6.5), 

(5, 5)}. For each solution, the first value is a and the second one is b, then the Pareto set 

is {(2, 8), (3, 7.7), (4, 6.5), (5, 5)}. After crossover and mutation, solution chromosomes 

evolutes to {(2, 7), (3, 7.7), (4, 6.5), (5, 4.5), (2, 10), (3, 9)}, and the Pareto front for 

generation two is {(2, 7), (4, 6.5), (5,4.5)). .... The evolution will keep on going until the 

Pareto front set becomes stable. The final Pareto front is {(2, 3.2), (3, 2), (4, 1.8), (5, 
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0.9) 1. It can be seen that for each a value we get a smaller b value in the final Pareto 

front. 

2.6.2 Multi-objective Genetic Algorithms 

In the past decade, several evolutionary approaches to multi-objective problems have 

been introduced. 

One commonly used approach is the usage of weighting coefficients and penalty 

functions to combine the objective functions into a single objective. This transformation 

allows us to use a simple single-objective genetic algorithm for a single solution. 

However, it may not fulfill all designer's needs so the solution may not even be non-

dominated. It also requires search space knowledge to set the weights, which is often 

unavailable. Therefore, this method is not always applicable and efficient. 

Another approach is to use genetic algorithm to locate Pareto-optimal solutions. Some 

researchers show that it is more effective [SCH85]. Evolutionary algorithm approaches 

are particularly suitable to solve multi-objective problems because they deal 

simultaneously with a set of possible solutions and this allows us to find several members 

of the Pareto optimal set in a single run of the algorithm. Another reason is that 

evolutionary algorithms are less susceptible to the shape or continuity of the Pareto front. 

They can easily deal with discontinuous or concave Pareto fronts. 

Multi-objective genetic algorithm approaches include Vector Evaluated Genetic 

Algorithm (VEGA), Multi-Objective Genetic Algorithm (MOGA), Niched Pareto 

Genetic Algorithm (NPGA), and Non-dominated Sorting Genetic Algorithm (NSGA). 
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2.6.2.1 Vector Evaluated Genetic Algorithm (VEGA) 

Schaffer [SCH85] developed the method called VEGA (Vector Evaluated Genetic 

Algorithm) that includes multiple objective functions. The only difference with usual 

genetic algorithm is the way that the selection is carried out for recombination. In this 

method, on each generation, the population groups in a certain number of subpopulations 

according to each objective function. These are then shuffled together to obtain a 

population so that conventional crossover and mutation are performed. 

This approach can work properly in simple multi-objective optimization problems. It 

is easy to implement and it is efficient. However, it cannot generate Pareto optimal front 

when it is concave. 

2.6.2.2 Multi-Objective Genetic Algorithm (MOGA) 

Multi-Objective Genetic Algorithm (MOGA) was proposed by Fonseca and Fleming in 

1993 [CFP93]. In this method, an individual is ranked according to the number of 

chromosomes in the current population by which it is dominated. All non-dominated 

individuals are assigned rank 1 and dominated individuals are penalized according to the 

population density of the corresponding region of the trade-off surface. 

Fitness values are assigned according to the following process: sort population 

according to rank; assign fitness to individuals by interpolating from the best (rank 1) to 

the worst (rank n); average the fitness values of individuals with the same rank. The 

authors use a niche-formation method to distribute the population over the Pareto-optimal 

region, which can prevent premature convergence. 
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MOGA normally outperforms all of its contemporary competitors. It is efficient and 

relatively easy to implement but its performance is highly dependent on an appropriate 

selection of the sharing factor. Other Pareto techniques have the same problem. 

2.6.2.3 Niched Pareto Genetic Algorithm (NPGA) 

Niched Pareto Genetic Algorithm was proposed by Horn et al. in 1993 [HN93]. It uses a 

tournament selection scheme based on Pareto dominance. Two individuals randomly 

selected are compared against a subset from the entire population. When both 

competitors are either dominated or non-dominated, the result of the tournament is 

decided through fitness sharing in the objective domain. 

It seems that this method has good overall performance. It is efficient because it does 

not apply Pareto ranking to the entire population and it is easy to implement. In addition, 

it requires another parameter (tournament size) in addition to a sharing factor. 

2.6.2.4 Non-dominated Sorting Genetic Algorithm (NSGA) 

Proposed by Srinivas and Deb in 1994 [SND94], NSGA is based on several layers of 

classifications of the individuals. In this method, non-dominated individuals get a certain 

dummy fitness value, and are then removed from the population. The process is repeated 

until the entire population has been classified. To maintain the diversity of the 

population, classified individuals are shared (in decision variable space) with their 

dummy fitness values. This method is sensitive to the value of the sharing factor and it is 

relatively easy to implement. 
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2.7 Related work 

Existing literature shows that increasing attention is devoted to the development of new 

clustering techniques. As mentioned in the previous sections, existing clustering 

techniques which are mostly used for gene expression data clustering can be classified 

into traditional clustering algorithms including hierarchical clustering [ND99], 

partitioning [CCA98], and recently emerging clustering techniques such as graph-based 

[MDO1] and model-based [SCDO3] [WKOOJ approaches. 

Hierarchical clustering has several advantages: it is robust with respect to input 

parameters, less influenced by cluster shapes, less sensitive to largely differing point 

densities of clusters, and it can represent nested clusters. However it suffers from 

different aspects as stated by statisticians, including robustness, non-uniqueness, and 

inverse interpretation of the hierarchy [PT99]. In addition, its tree structure is prone to 

errors, since there is multi-ways of expressing the similarity. This gets worse as the data 

size increase [MA95]. Once a gene is assigned to a cluster, there is no possibility of 

assigning it to another cluster to see whether there are better results. On the basis of 

traditional hierarchical clustering method, Segal and Keller [SKO2] propose probabilistic 

abstraction hierarchies (PAH), where each class is associated with a probabilistic 

generative model for the data in the class. This method improved the performance of 

traditional hierarchical clustering by handling the drawbacks mentioned above. It is more 

robust and less sensitive to noise in data. 

Partitioning algorithms create a "flat" decomposition of a data set. Examples of 

partitioning algorithms are K-means, SOM, and DSOM. The K-means algorithm is 

widely used in microarray data analysis. The shortcoming of this method is that it finds 

the local optimum but may miss the global one. This clustering process is not a stable one 
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because of the initial phase so that at every run it is more probable to obtain different 

clustering results. 

Self Organizing Maps (SOM) is popular in vector quantization. It uses an incremental 

approach - points (patterns) are processed one-by-one. It allows mapping centroids into 

2D plane that provides a straightforward visualization. The shortcoming of SOM is that 

the size of the two dimensional grid and the number of nodes have to be predetermined. It 

suits well when the prior information about the distribution of the data is not available. 

The model-based approach assumes that data are generated by a mixture of finite 

number of probability distributions. There is a tradeoff between the complexity of the 

probability model and the number of clusters. For instance, if a complex probability 

model is used, a small number of clusters may suffice, while if a simple model is used, a 

larger number of clusters may be needed to fit all the data appropriately. Examples of 

model-based approach are Bayesian method and mixture model-based algorithm 

(EMMIX-GENE). The Bayesian method has the advantage that it can identify the 

number of distinct clusters but it has the disadvantage of relying on the assumption that 

the modeled time series are stationary [YNO1]. Mixture model-based algorithm 

(EMMIX-GENE) clustering results show that it sometimes has errors [MMO3]. 

Graph-based methods also have some shortcomings. Although the number of clusters 

is not given, there is a pre-specified threshold used for the clustering. After the 

convergence, each gene moves to the cluster with the highest average similarity. This is a 

very expensive cleaning step. 

The method proposed in this thesis assumes that a clustering process may have 

several objectives by nature so it is difficult to find the optimal solution to the satisfaction 
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of all the objectives. Rather than using a fixed threshold value and\or fixed number of 

clusters a prior, this thesis is keen on giving a range for the number of clusters parameter 

and finding a set of Pareto optimal solution to find the superior results in the sense that 

there is no other point which can be superior to the Pareto-optimal solution. This idea 

differs from the traditional multi-objective algorithms that scalarize the objectives by 

assigning subjective weights to each function. Hence, we donot need consider weights in 

the system. In addition, using a genetic algorithm with recombination and mutation, we 

can find the global optimum solution using the appropriate system run parameters. 

In summary, the method presented and analyzed in this thesis is unique in presenting 

the set of solutions in the Pareto optimal front and analyze their validity to select the most 

approporiate from all valid candidate solutions. The comparison of the results of validity 

analysis with the known single results reported in the literature for each considered data 

set supports the applicability and effectiveness of the proposed approach. 
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Chapter Three 

The Approach 

A new clustering approach named Multi-Objective Genetic K-means algorithm 

(MOKGA) is proposed here. It is a general-purpose approach for clustering other datasets 

as well, after modifying the fitness functions and changing the proximity values as 

distance or non-decreasing similarity function according to the requirements of datasets 

to be clustered. It has been developed on the basis of the Fast Genetic K-means 

Algorithm (FGKA) [YLUO4] and the Niched Pareto Genetic Algorithm [HNG94]. 

After running the multi-objective K-means genetic algorithm, the Pareto-optimal front 

giving the optimal number of clusters as a solution set can be obtained. The system then 

analyzes the clustering results found under six cluster validity techniques proposed in the 

literature, namely Silhoutte, C index, Dunn's index, SD index, DB index, S_Dbw index. 

This chapter is organized as follows. The objectives of the Multi-Objective Genetic 

K-means algorithm (MOKGA) are discussed in Section 3.1. The chromosome 

representation process in MOKGA is introduced in Section 3.2. Section 3.3 talks about 

the fitness evaluation and selection in MOKGA. Section 3.4 discusses the mutation and 

cross over operations. The implementation details are described in Section 3.5. 
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3.1 The objectives 

During the clustering process, two objective functions are defined: minimizing the 

partitioning error and minimizing the number of clusters. 

To partition the N pattern points into K clusters, one goal is to minimize the Total 

Within-Cluster Variation (TWCV), which is specified as: 

ND K 1 D 
TWCV = X, - .j— SF J (3.1) 

n=1 d=1 

where X1, X2,.. , Xr are the N objects, Xd denotes feature d of pattern X, (n = 1 to JV), Zk 

denotes the number of patterns in cluster k (Gk), and SF, 1 is the sum of the d-th features 

of all the patterns in cluster k (Gk): 

SFkd= k GQ X zid' (d = 1, 2, ...D). (3.2) 

The other objective function minimizes the number of clusters parameter. 

F = mm (number of clusters) (3.3) 

After running the algorithm, the aim is obtaining the first Pareto optimal front having 

the best partition with the least number of clusters as an optimal solution set. 

3.2 Chromosome encoding 

The coding of the individual population is a chromosome of length n. Each gene in the 

chromosome takes a value from the set 11, 2, ..., K} and represents a pattern. The value 

indicates the cluster to which the corresponding pattern belongs. Each chromosome 

exhibits a solution set in the population. If the chromosome has k clusters, then each gene 

a (n = 1 to N) takes different values from the interval [ 1. . . k]. 
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3.3 Fitness evaluation and selection 

The fitness value for each chromosome is a Total Within-Cluster Variation (TWCV) 

value. The calculation of the value has been discussed in Section 3.1. In this thesis, the 

Niched Pareto tournament selection scheme is used for the selection in the Multi-

objective Genetic Clustering system. The scheme is described as follows: Two candidates 

for selection are picked randomly from the population, and then each of the candidates is 

compared against each individual in the comparison set. If the candidate is dominated by 

the comparison set, it will be deleted from the population. In this system, if both 

candidates are non-dominated, they will be kept in the population. This is different from 

the original Niched Pareto Tournament Selection. Where if neither of the two is 

dominated by the comparison set then they will use sharing to choose a winner [HNG94], 

which is not necessarily in this system. 

As an example, Figure 3.1 shows two data points: Pi and F2, and a comparison data 

set represented by a curved line. Fi is dominated by the comparison set, because it has a 

bigger TWCV value or a bigger number of clusters in comparison with every data point in 

the comparison set, so it will be deleted from the population; P2 is not dominated, 

because it has a smaller TWCV value in comparison with the data point with the same 

cluster number in the comparison set, so it will be kept for the next step. 
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Figure 3.1. An example of Pareto tournament selection 

3.4 Crossover and mutation 

Crossover operator: 

One-point crossover operator is applied on two randomly chosen chromosomes. The 

crossover operation is carried out on the population with the crossover Pc (crossover rate). 

After the crossover, assigned cluster numbers for each gene are renumbered beginning 

from a1 to a. For example, if two chromosomes having 3 clusters and 5 clusters, 

respectively, they need to have a crossover at the third location, 

Number of clusters=3: 12333, 

Number of clusters=5: 1432 5, 

We will get 12 3 25 and 14 3 3 3, which are then renumbered to get the new number of 

clusters parameters: 

Number of clusters4: 12 3 2 4 (for 12 3 2 5) 

Number of clusters=3: 12 3 3 3 (for 14 3 3 3) 
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The reason for choosing one-point crossover is because some initial experiments 

demonstrated that one-point cross-over produces better fitness values than multi-point 

attempts. 

Mutation operator: 

The mutation operator on the current population is employed after the crossover. During 

the mutation, each gene value an is replaced by a' with respect to the probability 

distribution; for n = 1, ..., N simultaneously. a' is a cluster number randomly selected 

from 11, ..., K} with the probability distribution {p, P2g..., PK} defined using the 

following formula: 

1•5*dm (Xv) — d(Xfl ,Ck)  

(1.5 *dm,() —d(Xfl ,Ck)) 

where I = (1, 2, ..., k) and d(X, Ck) denotes the Euclidean distance between pattern X, 

and the centroid Ck of the k-th cluster, dmax(Xn) = maxk{ d(X, Ck) ), pi represents what the 

probability interval of a mutating gene is assigned to cluster I (e.g., Roulette Wheel). 

Using this method, the probability of changing gene value an to a cluster number k is 

greater if Xn is closer to the centroid of the k,; cluster Gk. 

(3.4) 

3.5 Implementation details 

The gene expression data clustering system proposed in this thesis consists of two 

components: the Multi-Objective Genetic K-means Algorithm (MOKGA) cluster and the 

cluster validity component. The implementation details are described in the following 

sections. 
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3.5.1 Multi-Objective Genetic K-means Algorithm (MOKGA) 

As presented in the flowchart shown in Figure 3.2, MOKGA uses a list of parameters to 

drive the evaluation procedure as in other genetic types of algorithms: including 

population size (the number of chromosomes), t_dom (the number of comparison set) 

representing the assumed non-dominated set, crossover, mutation probability, and the 

number of iterations for the execution of the algorithm to obtain the result. 

Subgoals can be defined as fitness functions, and instead of scalarizing them to find 

the goal as the overall fitness function with the user defined weight values, it is expected 

that the system can find the set of best solutions, i.e., the Pareto-optimal front. By using 

the specified formulas, at each generation, each chromosome in the population is 

evaluated and assigned a value for each fitness function. 

Initially, the current generation is assigned to zero. Each chromosome takes the 

number of clusters parameter within the range 1 to the maximum number of clusters 

given by the user. A population with the specified number of chromosomes is created 

randomly by using the method described by Rousseeuw in [PS87J where data points are 

randomly assigned to each cluster at the beginning and the rest of the points are randomly 

assigned to clusters. By using this method, we can avoid the generation of illegal strings, 

which means some clusters do not have any pattern in the string. 
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Figure 3.2. Flow chart: the process of the Multi-Objective Genetic K-means Algorithm 

Using the current population, the next population is generated and the generation 

number is incremented by 1. During the next generation, the current population performs 

the Pareto domination tournament to get rid of the worst solutions from the population. 
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Crossover, mutation, the k-means operator [YLUO4] are then performed to reorganize 

each object's assigned cluster number. Finally, we will have twice the number of 

individuals after the Pareto domination tournament. The ranking mechanism used by 

Zitzler in [EZ199] is applied to satisfy the elitism and diversity preservation. This halves 

the number of individuals. 

The first step in the construction of the next generation is the selection using Pareto 

domination tournaments. In this step, two candidate items picked among (population 

size- td,,,) individuals participate in the Pareto domination tournament against the td,,, 

individuals for the survival of each chromosome in the population. In the selection part, 

tdom individuals are randomly picked from the population. Two chromosome candidates 

are randomly selected from the current population except those in the comparison set 

(population size- td,,,), and each of the candidates is compared against each individual in 

the comparison set, tdonj. If one candidate has a larger total within-cluster variation fitness 

value and a larger number of cluster values than all of the chromosomes in the 

comparison set, then it is dominated by the comparison set and will be deleted from the 

population permanently. Otherwise, it resides in the population. The corresponding 

pseudo code is given below: 
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Function selection 

Begin 

shuffle(random_pop_index,number_of_rules) /*Rerandomize random index 
array*/ 

candidate_i=random_pop_index[OJ 
candidate_2=random_pop_index[ 1] 
candidate_i_dominated = false 
candidate-2—dominated = false; 

For comparison_set_index=3 to tdom+3 do /* Select tdom individuals randomly 
from current population S/ 

comparison_individual=random_pop_index [comparison_s et_index] 
If S [comparison_individual] dominates S [candidate_i] 

then candidate_i_dominated=true 
If S [comparison_individual] dominates S [candidate_2] 

then candidate_2_dominated=true 
End For 

If (candidate_i_dominated AND candidate-2,-dominated) 
delete_rule(candidate_i, candidate-2); 

If (candidate_i_dominated AND not candidate-2—dominated) 
delete_one_rule(candidate_1); 

If (not candidate_i_dominated AND candidate-2—dominated) 
delete_one_rule(candidate_2); 

End selection 

After the Pareto domination tournament, the dominated chromosome is deleted from 

the population. 

The next step is the crossover process. One point crossover is used in the employed 

multi-objective genetic clustering approach. An index into the chromosome is selected 

and all data beyond that point in the chromosome are swapped between the two parent 

chromosomes. The resulting chromosomes are the children. The pseudo code is: 
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Function crossover 

Begin 

/* Randomly chose the two chromosomes*/ 

Chromosome-1 = rand() % biggest chromosome index 
Chromosome-2 = rand() % biggest chromosome index 

1* Randomly chose the cross point*/ 
cross_point = rand() % length of the chromosome 

Swap (Chromosome-1, Chromosome-2, cross—point) 

End crossover 

Mutation is applied to the population in the next step by randomly changing the 

values in the chromosome according to probability distribution, as discussed in Section 

3.4. The pseudo code is as following: 
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Function mutation 
Input: population P (Si, S2, ..., Sj), Mutation probability MP 
Output: population P (S1, S2, ..., S A 
Begin 
For j=O to J do 1* for each solution Si in population PI 

SD=O; /*summation of distribution*/ 

C1 ••• Ck  = CalCentroids(Sj) /* calculate the centre point for each cluster*/ 

For n=1 to N do /*for each data point in Sj / 
If rand() <MP then 

d_max=O.00; 
For k=t to K 

centre*/ 

1* for each cluster *1 

dk = calEuclideanDistance( X n , ) 1* distance from data to cluster 

&.max = max(d_max, dk) 

SD = SD +(1.5 * d_max(X)— d(L ,)) 

End For 
P1 =(1.5 *d_maxdi)/SD / Mutation probability for cluster 1*! 
For k=2 to K 

/* Mutation probability for cluster 2- CLUSTER*/ 
pk=(1.5*d_max dk)/SD+ pk-1; 

E,nd,for 
= a cluster number, randomly chose according to the distribution p, 

P2,... Pk 
End if MP 

End for n 
End for  

End mutation 

The K-means operator is applied last to reanalyze each chromosome gene's assigned 

cluster value. It calculates the cluster centre for each cluster and re-assigns each gene to 

the closest cluster to each instance in the gene. Hence, K-means operator is used to speed 

up the convergence process by replacing a by an', for n=1, ..., N simultaneously, where 

a' is the closest to object Xn in Euclidean distance. The pseudo code for K-means 

operator is given in the following: 
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Function K-Means operator 
Input: population P (Si, S2, ..., Sj) 
Output: population P (Si, S2, ..., S A 
Begin 

For j=1 to J do 1* each solution in a population P/ 

C1 Ck = CalCentroids(Sj) /* calculate the centre point for each cluster*/ 

For n=1 to N do 1* each data point in a solution*/ 

dmin MAX NUMBER 
For k=1 to K do /* K is maximum cluster num ber*/ 

dk = calEuclideanDistance( X ,, , ) P calculate the Euclidean 
distance from the data point to each cluster centre*/ 

If (dk < dmin) then 

dmin = dk; 
kmin k; 

End If 
End For 
S'j .a' = kmin 

End For 
End For 

End K-means operator 

1* a closer centroid is found*/ 

/ assign the closet cluster number to the data point*/ 

After all operators have been applied, twice the number of individuals remains. After 

having the Pareto dominated tournament, we cannot give an exact number equal to the 

initial population size, because at each generation randomly picked candidates are 

selected for the survival test leading to the deletion of one or both, in case dominated. To 

half the number of individuals, the ranking mechanism proposed by Zitzler in [EZ199] is 

employed. Thus, the individuals obtained after crossover, mutation, and the K-means 

operator are ranked, we pick among them the best individuals to place in the population 

for the next generation. 

The approach picks the first 1 individuals considering the elitism and diversity among 

21 individuals. Pareto fronts are ranked. Basically, we find the Pareto-optimal front and 

remove the individuals of the Pareto-optimal front from the 21 set and place it in the 
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population to run in the next generation. In the remaining sets we get the first Pareto-

optimal front and put it in the population and so on. Since we try to get the first 1 

individuals, the last Pareto-optimal front may have more individuals required to complete 

the number of individuals to 1. We handle the diversity automatically. We rank them and 

reduce the objective dimension into one. We then sum the normalized value of the 

objective functions for each individual. These are sorted in increasing order and each 

individual's total difference from its individual pairs is calculated. The individuals are 

placed in population based on decreasing differences, and then we keep placing from the 

top as many individuals as we need to complete the number of individuals in the 

population to 1. The reason for doing this is to take the crowding factor into account 

automatically so that individuals occurring closer to others are unlikely to be picked. This 

method was also suggested as a solution for the elitism and diversity for improvement in 

NSGA-II. For example, in order to get 20 chromosomes from the population, we select 

10 chromosomes from the Pareto front, delete them from the current population, then get 

8 chromosomes from the Pareto front in the current population, delete them from the 

population. Suppose that we have 6 in the current population, we take 2 chromosomes 

that have the biggest distance to their neighbours using the ranking method that we 

mentioned above. 

Finally, if the maximum number of generations is reached, or the Pareto front remains 

stable for 50 generations, then the process is terminated. Otherwise the next generation is 

performed. 
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3.5.2 Cluster Validity 

Concerning the employed approach, after running the multi-objective K-means genetic 

algorithm, we get the Pareto-optimal front that gives the optimal number of clusters as a 

solution set. The system analyzes the clustering results found under six of the cluster 

validity techniques proposed in the literature, namely Silhoutte, C index, Dunn's index, 

SD index, DB index, and S_Dbw index. The calculation of the indices is described in the 

following sections. 

3.5.2.1 The SD validity index 

The SD validity index definition is based on the concepts of average scattering for 

clusters and total separation between clusters. 

The average scattering for clusters is defined as: 

1 I Scatt(n) =; j4 (41 (3.5) 

where o(v1) is the average standard deviation (average of the Euclidian distance between 

all the points) of cluster centers; and o(x) is the average standard deviation of all the 

data points. 

The total separation between clusters is defined as: 

,l, ( fl, 

= Dmax Ik VJ Dis(n) 
Dmiii k1 \. 1=1 
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where, Dmax = max(IIv - vj 11) Vi, j { 1, 2,3,..., n} is the maximum distance between 

cluster centers and D 11 = min(flv - vj II) Vi, j { 1, 2,..., n } is the minimum distance 

between cluster centers. 

Finally the SD index is calculated using the following equation: 

SD(n) = aDScat(n)+Dis(n) (3.7) 

where a is a weighting factor. 

In the above equation, Scat(n) indicates the average compactness of clusters. A small 

value for this term indicates compact clusters. Dis(n) indicates the total separation 

between the n clusters. Since the two terms of SD have different ranges, a weighting 

factor is needed in to incorporate both terms in a balanced way. The number of clusters 

that minimizes the index is an optimal value. 

3.5.2.2 S_Dbw validity index 

S_Dbw is formalized based on the clusters' compactness (intra-cluster variance) and the 

density (Inter-cluster Density) between clusters. Inter-cluster density is defined as 

follows: 

( 

1Ili lie density(u)  

Dens - bw(n) Y, max { densi(v1), densi( v i#jnUn —1) 
I 

(3.8) 

where v1 and vj are centers of clusters c1 and cj; and u1 is the middle point of the line 

segment defined by the clusters' centers vi and vj. The term density(u) is given by 

following equation: 
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" (I 

density(u) = f(x,,u) (3.9) 
1=1 

where n,1 is the number of tuples that belong to the cluster c1 and Cj, i.e., x1 E c, and Cj E S. 

Functionf(x,u) is defined as: 

10, if d(x,u)>stedev 
f(x, u) 1, otherwise (3.10) 

where stedev is the average standard deviation of clusters. 

Inter-cluster Density (ID) evaluates the average density in the region among clusters 

in relation to the density of the clusters. 

Intra-cluster variance measures the average scattering of clusters (Scat(n)) and 

already been defined in the SD index part. 

Finally, the S_Dbw is calculated using the following equation: 

S_Dbw(n)=Scat(n)+ Dens _bw(n) (3.11) 

the definition of S_Dbw considers both compactness and separation. The number of 

clusters that minimizes the index is an optimal value. 

3.5.2.3 Dunn's Validity Index 

The Dunn index is calculated using the following equation [SMWO3]: 

D = mill mill 
j=i+1.....n, 

1  
d(x,y) 

I C1 I  C XECyEC 

max2 
k=1.... 

[  XECk(] 

ICkI 
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where c1 represents the i-cluster of a certain partition, d(x,y) is the distance between data 

point x and y, where x belongs to cluster i and y belongs to cluster j, d(x, ck) is the 

distance of data point x to the cluster centre that it belongs to, JCkJ is the number of data 

points in cluster k. 

The main goal of the measure is to maximize the intercluster distances and minimize 

the intracluster distances. Therefore, the number of clusters that maximizes D is taken as 

the optimal number of clusters. 

3.5.2.4 Davies-Bouldin(DB) Validity Index 

The DB index is calculated using the following equation: 

DB max ? S11 )l 
n i=1 ,* S(QI,QJ) j 

(3.13) 

where n is the number of clusters, 5,, is the average distance of all objects from the 

cluster to their cluster center, S(Q, Q1) denotes the distance between centres of clusters. 

The Davies-Bouldin index is a function of the ratio of the sum of within-cluster 

scatter to between-cluster separation. When it has a small value it exhibits a good 

clustering. 

3.5.2.5 Silhouette Validation Method 

The following formula is used to calculate the Silhouette index: 

(b(i)—a(i))  

max{a(i), b(i)} 
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where a(i) is the average dissimilarity of i-object to all other objects in the same cluster, 

Euclidian distance is used to calculate the dissimilarity; and b(i) is the average 

dissimilarity of i-object to all objects in the closest cluster. 

The formula indicates that the silhouette value is in the interval [-1,1]: 

o Silhouette value is close to 1: means that the sample is assigned to a very 

appropriate cluster. 

o Silhouette value is about 0: means that that the sample lies equally far away 

from both clusters, it can be assigned to another closest cluster as well. 

o Silhouette value is close to —1: means that the sample is "misclassified". 

The partition with the largest overall average silhouette means the best clustering. So, 

the number of clusters with the maximum overall average silhouette width is taken as the 

optimal number of the clusters. 

3.5.2.6 C index 

This index is defined as follows: 

C   
Smax - Smin 

(3.15) 

where S is the sum of distances over all pairs of patterns from the same cluster, L is the 

number of pairs for calculating and is the sum of the 1 smallest distances if 

all pairs of patterns are considered, and 5niax is the sum of the 1 largest distances out of all 

pairs. It can be seen that a small value of C indicates a good clustering. 

50 



Chapter Four 

Experimental Results 

This chapter report the experimental results. We start by describing the testing 

environment. We then present the results obtained for different datasets. For each dataset, 

the multi-objective GA based clustering approach is employed first to get the Pareto front 

and then we run six of the well-known validity indices to rank the obtained optimal 

solutions. The overall ranked results are compared with the singular results reported in 

the literature for the same datasets. 

4.1 The environment used for the experiments 

To evaluate the performance and efficiency of the proposed system consisting of the 

MOKGA clustering approach and cluster validity analysis, experiments were conducted 

on computers with the following features: 

o Running Windows XP operating system 

o Pentium @4,2.00 GHz CPU, 

o 512MBRAM 

The system was implemented using MS Visual C++. The running platform is Microsoft 

Visual Studio.NBT 2003. 
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4.2 Data sets 

Both widely used clustering data mining datasets and microarray data sets are used to test 

the proposed system. This demonstrates that the system proposed in this thesis works not 

only for microarray data (gene expression data) application but also for general clustering 

as well. For example, the two datasets Iris and Ruspini that are widely used in testing 

clustering approaches described in the literature have been used to test the general 

MOKGA approach. 

Three gene expression datasets, Fig2data, cancer (NCI6O), and Leukaemia datasets 

were used to test the performance and accuracy of the system for gene expression data. 

Among them, Fig2data data is used for clustering genes, while cancer (NCI6O) and 

Leukaemia data sets are used for group cell samples. 

The description and testing results of each datasets are discussed in the following 

sections. 

4.2.1 Ruspini dataset 

The Ruspini dataset {RUS7O] is popular for illustrating clustering techniques. It has 75 

instances with 2 attributes and integer coordinates with 0 < X < 120, 0 < Y < 160, which 

might be naturally grouped into 4 sets. 

In one study [RUS7O], four clusters were reported as the best clustering solution for 

the Ruspini dataset using numerical methods. In another independent study, Cole tested 

the Ruspini dataset using general genetic algorithms [R0W98]. The same number of 

clusters was obtained using genetic algorithms using Calinski and Harabasz criterion, 

Davies and Bouldin cluster validity methods. Values of major parameters used in genetic 

algorithms in this study are: the number of iterations = 100, the range of exponential 
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mutation rate: ranges from 10.0 to 0.000001, population size = 200, and crossover 

probability = 1.00. 

The multi-objective genetic algorithm-based approach proposed in this thesis has 

been run ten times with the following parameters: population size = 100, t_dom (the 

number of comparison set = 10) and crossover = 0.8 and mutation = 0.01. Threshold = 

0.1 has been used to check if the population stops evolution for 50 generations and if the 

process needs to be stopped. The range of [ 1, 10] was picked for finding the optimal 

number of clusters. 
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Figure 4.1 Pareto-fronts for Ruspini dataset 

Table 4.1 Ruspini Dataset TWCV for k = 8 

Iteration TWCV 

1 7718.25 

50 6158.25 

100 6157.50 

150 6149.63 
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Changes in the Pareto-optimal front by running the algorithm for the Ruspini datasets 

are displayed in Figure 4.1 for different generations. It demonstrates how the system 

converges to an optimal Pareto-optimal front. As the actual change in the value of TWVC 

is not reflected in Figure 4. 1, key TWVC values are reported in Table 4.1. 
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Figure 4.2 Ruspini dataset cluster validity results using Dunn, DB, SD, S_Dbw and 
Silhouette indices 
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In the experiments, not only 4 is in our Pareto optimal front as it can be easily seen 

from the results plotted in Figure 4.2 and Figure 4.3, but also this value is the best for all 

the cluster validity analysis indexes (The index values are shown in Appendix A). This 

finding is consistent with the results obtained before and reported elsewhere [RUS7O] 

[R0W98]. 

4.2.2 Iris dataset 

The Iris dataset is a famous dataset widely used in pattern recognition and clustering. It is 

a 4-attributes dataset containing 150 instances. That has three clusters. Each has 50 

instances. One cluster is linearly separable from the other two and the latter two are not 

exactly linearly separable from each other [CLO3]. 

68 

Figure 4.4. The real cluster distribution visualized with the labels from the original Iris 
dataset: Iris dataset clustering results from [CLO3] 
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Chen and Liu [CLO3] applied the Visual Rendering method to Iris dataset. The 

VISTA system that they used implements a linear and reliable mapping model to 

visualize k-dimensional data sets in a 2D star-coordinate space. It allows users to validate 

and interactively refine the cluster structure based on their visual experience as well their 

domain knowledge. They found that one cluster had been separated from the other two. 

The gap between clusters A and B can be visually perceived but is not very clear. Figure 

4.4 shows their clustering results for his dataset. The same figure also explains why two 

is the number of clusters in our cluster validity analysis results sometimes have a better 

index value. Cole also tested the his dataset using general genetic algorithms [R0W98]. 

The values of the main parameters used in the genetic algorithm are: the number of 

iterations = 1000, the range of exponential mutation rate = from 10.0 to 0.000001, 

population size = 50, crossover probability = 1.00. For the cluster validity, the optimal 

numbers of clusters obtained are 3 for Davies Bouldin method and 2 for Calinski and 

Harabase method. 

The clustering approach proposed in this thesis has been run 10 times with the 

following parameters: population size = 100, t_dom (number of comparison set = 10), 

crossover = 0.8, and mutation = 0.01. Threshold = 0.0001 was used to check if the 

population stops evolution after 50 generations or if the process needs to be stopped. In. 

addition, the range of [ 1, 10] was picked for finding the optimal number of clusters for 

the experiments, which is the same as for the Ruspini dataset. 

Average changes in the Pareto-optimal front by running the proposed algorithm for 

the Iris dataset are displayed in Figure 4.5 for different generations. It demonstrates how 

the system converges to an optimal Pareto-optimal front. As the actual change in the 
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value of TWVC is not reflected in the curves plotted in Figure 4.5, some key TWVC 

values are reported in Table 4.2. 
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Figure 4.5 Pareto-fronts for IRIS dataset 

Table 4.2 Iris Dataset TWCV for k =6 and k = 9 

Iteration TWCV(6) TWCV(9) 

1 65.9482 57.2637 

10 41.708 29,2061 

25 41.708 28.3555 

50 41.708 28.1758 

100 39.043 28.1758 

With the Pareto optimal front, the obtained results were tested and analyzed for the 

Iris dataset using the six indexes mentioned before. The average results of the 10 runs are 

reported in Figure 4.6, Figure 4.7, Table 4.3, and Table 4.4, respectively. 

Finally, the results obtained are compared with the corresponding results reported 

elsewhere [CLO3] [R0W98]. According to [CLO3], the optimal number of clusters found 

for the Iris data is 3, which ranks second for all the indexes except S-Dbw and C index 
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(see Figure 4.6 and Figure 4.7). This finding is consistent with the result of the cluster 

validity DB index published by Rowena [R0W98]. The reason that these clusters are not 

the best is that the good values of the six indices indicate "good" clustering, which 

includes properly combined compactness and separation. Clusters are more compact but 

less separate from each other for number of clusters taken as 3, while clusters with 

number of clusters taken as 2 are better separated. The visual clustering results given by 

Keke and Liu in [CLO3] show this difference clearly. C index is likely to be data 

dependent and the behavior of the index may change when different data structures were 

used [HBVO2]. 
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Figure 4.6 Iris dataset cluster validity results using Dunn, DB, SD, S_Dbw and Silhouette 
indices 
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4.2.3 Fig2data Dataset 

The Fig2data dataset is the time course of serum stimulation of primary human 

fibroblasts. It contains the expression data for 517 genes of which expression changed 

substantially in response to serum. Each gene has 19 expressions ranging from 15 

minutes to 24 hours [CLO3] [VR199]. 

Lu et al. [YLUO4] applied the Fast Genetic K-means Algorithm to Fig2data. They 

selected mutation probability = 0.01, population size = 50, and generation = 100 as their 

parameter setting and obtained a fast clustering process. 

The proposed genetic algorithm-based approach MOKGA has been applied to 

Fig2data dataset. Experiments were conducted with the following parameters: population 

size = 150, t_dom (number of comparison set = 10) and crossover = 0.8, mutation = 

0.005, gene mutation rate= 0.005, and threshold = 0.0001, which is applied to check if the 

population stops evolution after 50 generations and if the process needs to be stopped. 

The range of [ 1, 25] was picked to find the optimal number of clusters. 
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Figure 4.8 Pareto-fronts for Fig2data dataset 

Table 4.3 Fig2data Dataset TWCV for k = 16 

Iteration TWCV 

1 17406.3 

50 3371.91 

100 3303.5 

200 3303.21 

300 3214.34 

400 3211.25 

500 3202.04 

The corresponding experimental results are demonstrated in Figure 4.8 and Table 4.3. 

They also show how the system converges to an optimal Pareto front. 
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Figure 4.9 Fig2data dataset cluster validity results using Dunn, DB, SD, S_Dbw and 
Silhouette indices 

Figure 4.9 and Figure 4.10 report validity results and reflect comparisons with the 

studies described elsewhere [YLUO4][VR199]. The study described by Iyer et al. in 

[VR199] show that the optimal number of clusters for the Fig2data is 10. Consistently, 

results in this thesis indicate that it ranks among the best ones for C index, and the 

number of 10 clusters is among the best for other indices. According to Maria et al. 

[HBVO2], SD, SDbw, DE, Silhouette, and Dunn indices cannot handle properly 

arbitrarily shaped clusters, so they do not always give satisfactory results. 
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Figure 4.10 Fig2data dataset cluster validity results using C index 

4.2.4 Cancer (NCI6O) dataset 

The NCI6O dataset is a gene expression database for the molecular pharmacology of 

cancer. It contains 728 genes and 60 cell lines derived from cancers of colorectal, renal, 

ovarian, breast, prostate, lung, and central nervous system origin, leukaemias and 

melanomas. Growth inhibition is assessed from changes in total cellular protein after 48 

hours of drug treatment using a suiphorhodamine B assay. The patterns of drug activity 

across the cell lines provide information on mechanisms of drug action, resistance, and 

modulation [US 00]. In the clustering test in this thesis, there is a need to test cell-cell 

correlations on the basis of drug activity profiles, which are gene expression data 

available. 

The study by Scherf [USOO] uses an average-linkage algorithm and a metric based on 

the growth inhibitory activities of the 1,400 compounds for the cancer dataset. The 

authors observed 15 distinct branches at an average inter-cluster correlation coefficient of 
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at least 0.3. In this method, the correlation parameter was used to control the clustering 

results. It might be hard to decide if it is an unsupervised clustering task. 

The genetic algorithm-based approach MOKGA proposed in this thesis has been run 

for the Cancer dataset with the following parameters: population size = 100, t_dom 

(number of comparison set = 10) and crossover = 0.8, mutation = 0.005, gene mutation 

rate= 0.005, and threshold = 0.0001 which is used to check if the population stops 

evolution for 50 generations and if the process needs to be stopped. The range of [ 1, 20] 

was picked to find the optimal number of clusters. 
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Figure 4.11 Pareto-fronts for Cancer dataset 
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Table 4.4 Cancer Dataset TWCV for k = 16 

Iteration TWCV 

1 78435.2 

100 53785 

200 53210.5 

400 52571.8 

600 52571.8 

800 52398.1 

1000 52398.1 

1100 52385.3 

Changes in the Pareto-optimal front after running the algorithm are displayed in 

Figure 4.11 and Table 4.4 for different generations. It demonstrates how the system 

converges to an optimal Pareto-optimal front. 
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Figure 4.12 Cancer dataset cluster validity results using Dunn, DB, SD, S_Dbw and 
Silhouette indices 
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Figure 4.13 Cancer dataset cluster validity results using C index 

Figures 4.12 and Figure 4.13 show the average results obtained. For the cancer 

(NCI6O) dataset, we have 15 in the Pareto optimal front; this value also ranks the sixth 

for DB index, fifth for SD index and the fifth for C index. These are consistent with the 

results reported in [USOOJ. Some indices values are not good because index values are 

highly dependent on the shape of the clusters, 

4.2.5 Leukaemia dataset 

The third microarray dataset used in this thesis is the Leukemia dataset, which has 38 

acute leukemia samples and 50 genes. The purposes of the testing include clustering cell 

samples to groups and finding subclasses in the dataset. 

The study by Golub et al. in [G0L99] uses Self-Organizing Maps (SOMs) to group 

Leukemia dataset. In this approach, the user specifies the number of clusters to be 

identified. The SOM finds an optimal set of "centroids" around which the data points 

appear to aggregate. It then partitions the data set with each centroid defining a cluster 
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consisting of the data points nearest to it. Golub [G0L99] got two clusters acute myeloid 

leukemia (AML) and acute lymphoblastic leukaemia (ALL), as well as the distinction 

between B-cell and T-cell ALL, which means that the optimal number of clusters is 2 or 

3 (with subclasses). 

The proposed genetic algorithm-based approach has been run for the Leukemia 

dataset with the following parameters: population size = 100, t_dom (number of 

comparison set = 10) and crossover = 0.8, mutation = 0.005, gene mutation rate = 0.005, 

and threshold = 0.01 which is used to check if the population stops evolution for 50 

generations and if the process needs to be stopped. The range of [ 1, 10] was picked for 

finding the optimal number of clusters. 
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Figure 4.14. Pareto-fronts for Leukaemia dataset 

Changes in the Pareto-optimal front are displayed in Figure 4.14 and Table 4.5 for 

different generations. It demonstrates how the system converges to an optimal Pareto-

optimal front. 
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Table 4.5 Leukaemia Dataset TWCV for k = 9 

Iteration TWCV 

1 2.25E+09 

25 1.94E+09 

50 1.881E+09 

100 1.84E+09 

200 1.81E+09 
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Figure 4.15 Leukemia dataset cluster validity results using Dunn, DB, SD, S_Dbw and 
Silhouette indices 
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Figure 4.16 Leukemia dataset cluster validity results using C index 

The Leukaemia Dataset clustering results in this thesis shown in Figure 4.15 and 

Figure 4.16 indicate the same conclusions as in [G0L99] by Golub et al.. They also 

indicate that 2 (AML and ALL) is the best number of clusters after the validity analysis 

with Dunn index, DB index, SD index, and Silhouette and 3 (AML, B-cell ALL and T-

cell ALL) is the second best. C index shows that 2 is the best cluster number and 3 is the 

second. It can be seen from figure 4.15 that S_Dbw is an exception. SD index gives good 

values but S_Dbw does not. This indicates that the inter-cluster density for number of 

clusters taken 2 and 3 is not high for the 38 samples. Experimental results in this thesis 

also indicate S_Dbw indices is not suitable to test small datasets with fewer than 40 

instances. 

4.3 General Evaluation and Comparisons with Other Methods 

As discussed in the previous section, experiments were conducted to examine 

convergence and performance of the proposed MOKGA clustering system using five 
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datasets. In this section, s general evaluation is given, and the MOKGA system is 

compared with other methods on the basis of the results obtained from the same datasets. 

4.3.1 General evaluation 

The Ruspini dataset clustering result shows that four is the optimal cluster number in all 

the cluster validity analysis indexes. This is consistent with earlier result [RUS7O]. The 

Iris dataset gives similar result with the solutions of having the number of clusters two as 

the best solution and 3 the second best. According to [VR199] , Fig2data has 10 clusters. 

The proposed approach gave the same result using C index clustering validity method. 

Cancer data has 15 clusters according to the result in [US 00]. MOKGA produces the 

same result using the DB index. The optimal number of clusters of Leukemia dataset is 2 

or 3 (with subclasses). MOKGA reported the same results using Dunn, DB, SD, and 

Silhouette indices. 

4.3.2 Comparisons with other methods 

Multiobjective K-mean Genetic Algorithm (MOKGA) Vs. Fast Genetic K-mean 

Algorithm (FGKA): 

Since MOKGA has been developed on the basis of Fast Genetic K-mean Algorithm 

(FGKA) [YLUO4] and Niched Pareto Genetic Algorithm (NPGA), MOKGA and FGKA 

share many features: both are evolutionary algorithms; they have the same mutation and 

K-mean operators; and they both use Total Within-Cluster Variation (TWCV) for the 

fitness value evaluation. 
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According to the results, MOKGA and FGKA got similar TWCV values, MOKGA 

obviously need more generations to get the stable state, this might be because MOKGA is 

optimizing chromosomes with different number of clusters altogether. 

MOKGA has some advantages over FGKA and GKA: it can find Pareto optimal 

front, which allows us to get an overview of the entire clustering possibilities and to get 

the optimal clustering results in one run; it does not need the number of clusters as a 

parameter, which is very important because clustering is an unsupervised task, and we 

usually do not have any idea about the number of clusters before the clustering of gene 

expression data. These two issues are real concerns for FGKA, GKA and most of the 

other clustering algorithms. 

Multiobjective K-mean Genetic Algorithm (MOKGA) Vs. Neighborhood Analysis: 

The study in [G0L99] uses Self Organizing Maps (SOM) to group Leukemia dataset. 

Their method gets 2 classes, and for each of them, they get 2 subclasses. Exactly the 

same results are obtained in this thesis except for S_Dbw. Experiments in this thesis 

indicate that the index is not suitable to test small datasets, like when number of instances 

is less than 40. In the experiment conducted for the study described in [G0L99], they 

used SOM method with user defined number of clusters, whereas the method proposed in 

this thesis does not need such value predefined. 

Multiobjective K-mean Genetic Algorithm (MOKGA) Vs. Average-linkage 

algorithm: 

The study described in [USOO] uses an average-linkage algorithm and a metric based on 

the cancer dataset. A correlation parameter was applied to control the clustering results. 
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This parameter might be difficult to decide if it is an unsupervised clustering task. The 

number of clusters 15 was obtained in this thesis. It ranks the first for overall 

performance in DB index. This is consistent with the result reported in [USOOI. 

Multiobjective K-mean Genetic Algorithm (MOKGA) Vs. Visual Rendering: 

Keke Chen applied Visual rendering clustering algorithm on his dataset in 2003. The 

system implements a linear mapping model to visualize k-dimensional data sets in a 2D 

star-coordinate space; then it provides a set of interactive rendering operations to enable 

users to validate and interactively refine the cluster structure based on their visual 

experience as well as their domain knowledge. Using this method, the researcher 

successfully divided the data set into three clusters. But, this system needs manual 

parameter adjustment to get a better separate map, and manual boundary set. These are 

inefficient, and may cause some errors. Without needing such manual process, MOKGA 

successfully grouped the data set into 3 clusters. Results also clearly show that separating 

them into 2 clusters is also reasonable. This can be verified from the map that the Visual 

rendering method delivered. In comparison to the Visual rendering method, MOKGA has 

the following advantages: it is more efficient, no user's input is required during the 

clustering process, and it also can give users a more clear cluster validity result . so that 

users can get an overview about the dataset. But, the visual rendering method has the 

advantage that users can get a visual clustering result and it may work well in dealing 

with clusters of irregular shapes. 

Multiobjective K-mean Genetic Algorithm (MOKGA) Vs. Genetic Clustering 

Algorithm (GCA): 
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In 1998, Rowena Marie Cole [RUS7O] used a genetic algorithm (GCA) for clustering 

Ruspini dataset. We got the same clustering result they reported. Rowena's clustering 

system is similar to the proposed system in this thesis, they both have evolutionary based 

clustering algorithm and clustering validity methods, but the GCA cannot find Pareto 

optimal front in one run, and the process is relatively complex. 
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Chapter Five 

Discussions and Conclusions 

This thesis investigates the clustering approaches in general and investigates their 

applicability for clustering gene expression datasets, which including hierarchical 

clustering [JAH75], partitional clustering [TK097] and recently emerging clustering 

techniques such as graph-based [BSY99] and model-based [KYYO1] [YBO2] approaches. 

Some traditional clustering algorithms which have been used for clustering gene 

expression datasets have also been discussed, including K-Means, Self Organizing Maps 

(SaM), heriatical clustering method, model-based approaches like Bayesain method, and 

the mixed model-based clustering algorithms. 

A multi-objective genetic algorithm called MOKGA is proposed in this thesis to 

handle the expression data clustering problems. It is developed on the basis of the Niched 

Pareto optimal and fast K-means genetic algorithm. By using MOKGA, it is aimed at 

finding the Pareto-optimal front is sought to help the user to achieve many alternative 

solutions at once. Then, cluster validity index values are evaluated for each Pareto-

optimal front value, which is considered the optimal number of clusters value. The 

applicability and effectiveness of the proposed clustering approach are demonstrated by 

conducting experiments using five datasets: figure2data, cancer (NCI6O) and Leukaemia, 

Iris and the Ruspini. 
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In MOFGA, both crossover and mutation operators are used for the evolutionary 

process, in addition to the K-means operator are used to make the evolutionary process 

faster. For the selection, Niched Pareto tournament selection method is used. 

Additionally, a multiple Pareto-optimal front layer ranking method is proposed to 

maintain relative consistence population size in the genetic process. In the experiments, it 

is also verified that this method can help in leading to the global optimal solutions. In the 

MOKGA process, the distance (Euclidean distance) between the current generation's 

Pareto optimal front and the previous generation's is calculated and counted compared 

with the threshold, which can be used to decide when to terminate the genetic process. 

MOKGA overcomes the difficulty of determining the weight of each objective 

function taking part in the fitness when dealing with this multiple objectives problem. 

Otherwise, the user would have been expected to do many trials with different weighting 

of objectives as in traditional genetic algorithms. This method also gives user an 

overview of different number of clusters, which may help them in finding subclasses and 

optimal number of clusters in a single run, whereas traditional methods like SOM, K-

means, Hieratical clustering algorithms and GCA can not find optimal number of clusters 

or need it as a predefined parameter. 

MOKGA is less susceptible to the shape or continuity of the Pareto front. It can easily 

deal with discontinuous or concave Pareto fronts. These two issues are real concerns for 

mathematical programming techniques, like model-based approaches such as Bayesain 

method and Mixed model-based clustering algorithms. 

There are some possible areas of improvement for MOKGA. In this thesis, cluster 

validity techniques, including Sithoutte, C index, Dunn's index, DB index, SD index and 
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S-Dbw index, were used to evaluate the solutions in the Pareto optimal front and to get 

the optimal number of clusters. The overall performance is good, but it can be seen that 

S_Dbw index is more suitable for evaluating large datasets than small ones. Hence, 

choosing suitable index to get the optimal number of clusters will be an issue in the 

clustering process, especially when there are arbitrarily shaped clusters. Other future 

research directions include the application of MOKGA to other microarray clustering 

problems, such as biclustering problems [CBO2], or using third criteria to test cluster 

validity. 
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Appendix A 

Cluster validity results 

1. Cluster validity results for Leukaemia dataset 

Number of 

clusters Dunn DB SD S_Dbw Silhouette C 

2 0.816302 0.963104 0.000294 0.801714 0.469944 0.042038 

3 0.882528 1.18878 0.000289 0.677513 0.412883 0.021152 

4 0.636145 1.51309 0.000336 0.53522 0.219935 0.082555 

5 0.678682 1.46778 0.000331 0.462136 0.234052 0.057915 

6 0.651348 1.45849 0.000347 0.411032 0.197411 0.072089 

7 0.639514 1.234201 0.000302 0.351981 0.215911 0.047749 

8 0.697644 1.232512 0.0003 0.302092 0.235597 0.042049 

9 0.601084 1.329422 0.000325 0.276681 0.203163 0.045872 

10 0.599161 1.352388 0.000328 0.238616 0.207523 0.04753 
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2. Cluster validity results for Fig2data dataset 

Number of 

clusters Dunn DB SD S_Dbw Silhouette C 

2 0.757165 0.932779 - - 0.776392 0.040804 

3 0.904648 0.851353 1.772194 0.851742 0.738288 0.046575 

4 0.445638 1.22227 1.733586 0.720494 0.538008 0.050832 

5 0.326452 1.268101 2.258081 0.869284 0.509345 0.044687 

6 0.297175 1.202612 2.062816 0.745646 0.486546 0.0424 

7 0.20698 1.217804 2.756195 1.10103 0.509416 0.03035 

8 0.231939 1.13895 2.155115 0.743688 0.49341 0.026079 

9 0.219252 1.256533 2.011548 0.640726 0.485222 0.023815 

10 0.185454 1.378938 2.250847 0.625845 0.455456 0.019997 

11 0.185876 1.388135 2.04828 0.530905 0.458917 0.018416 

12 0.23 1665 1.344745 1.766967 0.387019 0.462375 0.017079 

13 0.274408 1.374182 1.506195 0.268499 0.465027 0.015018 

14 0.268536 1.373209 1.524575 - 0.462974 0.013985 

15 0.24915 1.351373 1.625935 0.23868 0.44799 0.013824 

16 0.246076 1.501431 1.658829 - 0.45004 0.012644 

17 0.233579 1.409388 1.852181 0.216034 0.439243 0.011287 

18 0.203939 1.509113 2.202078 0.204957 0.406159 0.009704 

19 0.2174 1.412827 2.133923 0.200268 0.412211 0.008122 

20 0.167296 1.482442 2.669504 0.931215 0.394078 0.007489 

21 0.266929 1.47751 1.7814 - - 0.006547 
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3. Cluster validity results for cancer (NCI6O) dataset 

Number of 

clusters 
Dunn SD S_Dbw Silhouette DB C 

2 0.806048 0.110659 0.938838 0.110364 2.60584 0.281144 

3 0.829059 0.08715 0.817321 0.150427 2.1934 0.212971 

4 0.773502 0.088299 0.803443 0.122332 2.27871 0.21199 

5 0.703265 0.097601 0.791144 0.115684 2.8107 0.185538 

6 0.708641 0.095058 0.822848 0.116664 2.523243 0.137107 

7 0.681119 0.096103 0.811413 0.108295 2.514573 0.132263 

8 0.671372 0.093632 0.765839 0.108287 2.436603 0.138629 

9 0.671268 0.093795 0.718804 0.110278 2.40532 0.137473 

10 0.69439 0.090476 0.704952 0.1191 2.235683 0.131666 

11 0.68403 0.088327 0.642555 0.133249 2.187223 0.120912 

12 0.65934 0.084985 0.605714 0.14278 2.16577 0.114811 

13 0.721543 0.083808 0.592626 0.151204 2.20415 0.100341 

14 0.761475 0.083444 0.604737 0.151678 2.128133 0.086632 

15 0.767246 0.078352 0.475545 0.179657 2.068077 0.081889 

16 0.793189 0.074822 0.455773 0.198995 2.068077 0.073042 

17 0.793189 0.07047 0.404607 0.220043 2.068077 0.06975 

18 0.793086 0.069992 0.383722 0.2331 2.03246 0.064866 

19 0.778983 0.068771 0.361035 0.245958 2.048287 0.061703 
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4. Cluster validity results for Ruspini dataset 

Number of 

clusters 
Dunn DB SD S_Dbw Silhouette C 

2 1.31725 0.724512 0.079156 0.351993 0.582726 0.027355 

3 0.953401 0.532855 0.054054 0.15511 0.633405 0.051498 

4 2.27981 0.374353 0.038952 0.048959 0.737657 0.001608 

5 1.29515 0.500789 0.075495 0.036377 0.701924 0.003837 

6 0.747283 0.817465 0.135803 0.119585 0.593999 0.020716 

7 0.93904 1.11354 0.13389 0.100566 0.489046 0.019362 

8 0.906991 0.871263 0.133282 0.106498 0.499191 0.02015 

9 0.803495 0.87171 0.133163 0.088543 0.486977 0.021555 
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5. Cluster validity results for Iris dataset 

Number of 

clusters 
Dunn DB SD S_Dbw Silhouette C 

2 2.02591 0.404293 1.253414 0.788212 0.681046 0.02383 

3 1.3881 0.661972 1.709599 0.737179 0.552819 0.03276 

4 0.954282 0.787745 2.458602 0.913305 0.498051 0.02675 

5 1.06648 0.839332 2.882346 0.789506 0.488781 0.02146 

6 0.784807 1.023145 4.206412 0.879516 0.460521 0.02547 

7 0.749252 1.098966 3.812975 0.721657 0.369526 0.02614 

8 0,749864 1.108426 3.961877 0.669416 0.359924 0.02334 

9 0.625991 1.121303 4.765977 0.638982 0.345266 0.02272 

10 0.721925 1.14415 4.80393 0.584897 0.325041 0.02107 
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