PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition
Multiple/Parallel Handprinted Digit Recognition

J.R. Parker
Laboratory for Computer Vision
Department of Computer Science
University of Calgary
Calgary, Alberta, CANADA

The use of multiple classification algorithms applied to the same input
can give higher accuracy classifications than using a single algorithm.
This paper discusses three new schemes for classifying handprinted dig-

its, and shows how to merge the results from the individual classifiers into

a coherent single classification.

There are two ways to use features to classify objects. In statistical approaches many fea-
tures are combined into a large feature vector. Because features are measurements, the same ob-
ject can correspond to a wide variety of feature vectors just through the errors in the
measurements. However, these measurements will be clustered in some region of N-space,
where N is the dimension of the feature vector. Hence, a statistical recognizer will construct a
feature vector from a data object and classify it based on how far (Euclidean distance) it is in N-
space from the feature vectors for known objects.

The basic idea behind structural pattern recognition is that objects are constructed from
smaller components using a set of rules. Characterizing an object in an image is a matter of lo-
cating the components, which at the lowest leve] are features, and constructing some representa-
tion for storing the relationships between them. This representation is then checked against
known patterns to see if a match can be identified. Structural pattern recognition is, in fact, a so-
phisticated variation on template matching, one which must match relationships between objects

as well as the objects themselves.The problems involved in structural pattern recognition are

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

two: locating the components, and finding a good representation for storing the relationships be-
tween the components.

Both methods have their strengths and weaknesses, and within each class of recognizer
there are many variations of the basic theme. It is hoped that by combining many classifiers,
some statistical and some structural, the resulting system will be more robust in the sense of
yielding a correct classification in a wide variety of circumstances. To this end, we will examine
briefly five methods for recognizing handprinted digits, and will look at methods for combining

the results of all five into a single classification.

1 Properties of the Character Qutline

In a couple of interesting articles, Shridhar et al [SHRI86, SHRI87, KIMU91] describe a
collection of topological features that can be used to classify hand printed numerals. Most of
these features are properties of the outline, or profile, of the numeral. For instance, a digit ‘8’
might be described as having a smooth profile on both the left and the right sides, and as having
the width a minimum in the center region. Not all hand printed ‘8’ digits would be recognized by
this description, and certainly some other digits might also have this description; the idea is to
provide a sufficient number of descriptions for each digit that a high recognition rate can be
achieved.

Figure 1 shows how the left and right profiles are defined and calculated for a sample digit
‘9. After the digit is isolated and thresholded, the number of background pixels between the left
side of the character’s bounding box and the first black pixel is counted and saved for each row
in the bounding box. This gives a sampled version of the left profile (LP), which is then scaled to
a standard size, in this case 52 pixels. A similar process gives the right profile (RP); the differ-

ence is that the last black pixel on each row is saved.

Having the profiles, the next step is to measure some of their properties. For example, one
important property is the location of the extrema: L, is the location of the minimum value on

the left profile, and L, is the location of the maximum value. of the actual peaks in LDIF and

PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition

10
16— A
14
Dismnce § Dismnce
Lmin 12 Rmin
Rmax
Lmax
10
-0 — ' '
| | | | | | | | |] | |
-0 10 20 0 40 50 -0 10 0 0 40 50
Left Profik [P(K) Right Profile RP(k)

Figure 1 - Simple properties of the Left and Right profiles.
RDIF and their values happens to be quite important in characterizing numerals, and the peaks
are located using a range rather than a single position. Thus, a digit ‘5’ would have the RDIF
peak near the top of the digit, and the peak would have a relatively large value. This set of fea-
tures is not comprehensive. In all, 48 features are used and others could be defined. (See

[SHRIB6] for a complete list and description)

In the training phase all 48 features are computed for each sample numeral and a feature
vector is created in each case. The features are predicates (TRUE or FALSE); for example, fea-
ture number 43 is TRUE if the width of the character at row 20 is greater than or equal to the
width at row 40 (W(20) >= W(40)). Then all of the resulting bit strings for each digit are
searched for common elements, and the features in common for each digit class are stored in a
library. Matching is performed by extracting the profiles of the input image and measuring and
saving the bit string (feature vector) that results. This string is matched against the common ele-
ments of the templates - this is obviously very fast, since only bit operations are involved. A per-
fect match of a library bit string against an input string results in the corresponding digit class
being assigned to the input digit. An example of such a bit string used for this purpose is:

PRk Rk ok ok kok ok ok kR kR (PR R R (R R] K% §

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

This means that a ‘6’ digit has features 8,32, and 39 as FALSE and features 41, 44, and 48
as TRUE. A “*” represents a “don’t care” situation. The results from this method are only ac-

ceptable at this stage. The recognition rates for our samples are:

0 1 2 3 4 5 6 7 8 9
% Correct 94 95 96 100 95 100 84 94 90 94
% Error 1 4 1 0 5 0 10 5 4 6

% Reject 5 1 3 0 0 0 6 1 6 0

2 Convex Deficiencies
A digitized character image consists of pixels, usually black on a background of white.

Structural character recognition techniques attempt to collect the black, or object, pixels into sets
that represent a feature in a model of an object to be recognized. Then an effort is made to deter-
mine the relationships between the features and to compare these against the relationships in the
model, hoping to find a match. While most character recognition systems are concerned with the
pixels belonging to the characters themselves, there are good arguments to be made for analyz-
ing the size, shape, and position of the background regions surrounding the character image.
Certainly the number and position of the holes has been used - an ‘8’, for example, has two
holes, one in the upper part and one in the lower part of the character image, and a ‘0’ has one in
the middle. However, there are other such features that might be used to classify images - for ex-
ample, a numeral ‘2’ has a left-facing concave region in the top half of the image and a right-fac-
ing one in the bottom half. A more complete analysis of these convex deficiencies may permit
the development of a classification scheme based on the background regions [PARK94d].

For use with digital character images a relatively crude but effective scheme has been de-
veloped. From each background pixel in an input image an attempt is made to draw a line in
each of the four major directions (up, down, left, right). If at least three of these lines encounter
an object pixel, then the original pixel is labelled with the direction in which an object pixel was

not encountered - this is called the open direction. If none of the four directions are open then the

PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition

(a) (b) ©

Figure 2 - Locating convex deficiencies. (a) Codes for the directions. (b) Background pixels
are tested to find the open directions (this one is 2). (c) Regions found for a ‘6’ - one of the
holes (connected to the 4 region) is not real, and will be connected to another region.
pixel concerned is part of a hole, and is labelled with a zero. Figure 2 shows the direction labels,
and illustrates the process of locating and labelling the convex deficiencies.

After all of the regions are labelled, they are counted and measured. Very small regions are
ignored and the largest four regions are used to classify the image. Sometimes a relatively sim-
ple relationship exists; for example, 99% of all zeros can be identified by the large central hole
and lack of other convex deficiencies. The next more complex scheme uses relative positions of
the regions; for example, an ‘8’ has two holes, one above the other, a left-facing region on the
left of the two holes, and a right facing region on the right of the holes. The most complex
schemes require shape information in addition to size and position. As an example, some ‘7’
digits and some ‘3’ digits both have a large left-facing region on the left side of the image. How-
ever, this region is convex for the 7’ but non-convex for the ‘3’.

An important aspect of the method involves not being too specific about the sizes of the re-
gions. The algorithm discards as unimportant any region that is has an area less than 10% of the
object. Then regions are classified only as as large or small. Position, too, is intentionally classi-
fied in only a crude manner as top, bottom, left, or right, with a special flag set for those regions

that are sufficiently close to the center. This provides a description of the background geometry

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

that is good enough to classify the image into digits, but is not overly affected by the usual vari-

ations in line thickness, orientation, size, and shape found in handprinted characters.

The recognition rate achieved using this method is acceptable, averaging about 94%. In

detail:

0 1 2 3 4 5 6 7 8 9
99% 94% 98% 96% 94% 90% 90% 93% 95% 92%

3 Vector Templates
The basic idea behind template matching is that each digit has a particular shape that can

be captured in a small set of models, usually stored as raster images. An incoming (unknown)
digit, also in raster form, is compared against each template, and the one that matches most
closely is selected as belonging to the same digit class as the unknown. Template based recogni-
tion methods work quite well for machine printed characters, which are uniform in size, shape,
and orientation. On the other hand, characters printed by a human show a large degree of varia-
tion even in sets of characters printed by the same person. This variation mitigates against the
use of templates.

One solution is to represent the template digits as vectors[PARK94b]. The vectors that
form the skeleton of the characters are used rather than the outline; this gives a good abstraction
of the shape, and permits the lines to be thickened in an arbitrary way. The templates are stored
as sets of four integers: the starting and ending row and column on a standard grid, and all tem-
plates have the same size. Given a scale and rotation, all templates in the collection would be
modified in a consistent way.

A vector template can be produced using only a pencil, and perhaps some graph paper, and
indeed, the first set of templates were generated in just this way. It is also possible to create a
template from a data image, and may be desirable when starting to process data from a new
source. The first step in this process is to threshold and then thin the input image. Then the pixels

are collected into sets, each representing a curve. An end pixel is found (either a pixel connected

PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition

only to 1 other) and the set of pixels connected to it area saved, taking care to trace only one cur-
ve[LAM]. Finally, a set of vectors is extracted from each curve using a recursive splitting tech-
nique, a relatively simple and common method for vectorizing small, simple images.

Once all of the templates have been generated, and there are multiple templates for each
digit, the system is ready to recognize digits. An incoming image is first thresholded and the
width of the lines is then estimated using horizontal and vertical scans. The bounding box is
also found so that the templates can be scaled. Now the template vectors are drawn into an other-
wise clear image the same size as the input image, producing an initial raster template that repre-
sents the scaled skeleton. Finally, each pixel is ‘grown’ equally on all sides to give a line width
comparable to that found in the input image. The result is a raster template with some similar
properties to those found in the input image. Figure 3 illustrates the process of generating a ras-
ter template from a vector one.

The matching process is somewhat different from that used in other template matching
systems, but the goal is still to produce a measure of distance between the template and the im-
age. The first step is to locate those pixels that are black in both images. These have a distance
between them of zero, and are ignored in future processing. Next, each black pixel in the image
has its nearest corresponding pixel in the template located and marked. The 8-distance between
these pixels is noted, and a sum of these distances is computed. After all image pixels have been
assigned corresponding pixels in the template the total distance is an initial measure of similari-
ty. At this point a numeric value that can be used as a goodness of match metric has been found.
It is normalized to a per-pixel distance and stored as a measure for the digit having the same
class as the template. The class having the smallest such measure over all templates is chosen as
the class of the input digit image.

The software implementing this method is written in C for both a Sun SPARC II worksta-
tion and an IBM PC. The time needed for template scaling and drawing is 0.019 seconds per

template for a total of 0.55 seconds. Pixel pairing and matching takes and average of 0.015 sec-

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

onds per template, or 0.84 seconds per input image. The average time to recognize a digit with-
out using parallel processing is 4.4 seconds on a Sun SPARCstation 2, and about twice as long
on the PC.

Recognition rates are relatively good:

0 1 2 3 4 5 6 7 8 9
Correct 99% 9% 9% 96% 94% 92% 90% 93% 95% 92%

There are multiple templates for each digit, but not necessarily the same number.

4 Shape Tracing
The vector template approach essentially attempts to compare a set of standard line draw-

ings of characters against the incoming data. A related method, which will be referred to as
shape tracing, attempts to draw a character over top of the incoming data to see how well the
drawing matches the data. With this in mind, an effort was made to characterize the motions in-
volved in drawing all ten digits. Each motion begins at a start point, which is a point at which the
pen would first touch the paper in making a stroke. Motion is specified by giving a direction
only, or a series of directions for continuing the stroke. Directions are crudely specified as being
one of eight possible: right-up (0-45 degrees), up-right (45-90), up-left (90-135), left-up (135-
180), left-down (180-225), down-left (225-270), down-right (270-315) or right-down (315-0).

60bo"

(©

Figure 3 - Matching using a vector template. (a) Input digit image (to be matched).
(b) Scaled vector template. (c) Thickened vector template (not a good match here).
(d) Pixels in common between template and data image. (e) Distance map between
data image and template. Dark pixels are far away, light ones are close.

PARKER Vision Interface *97 Multiple/Parallel Handprinted Digit Recognition

Motion is approximated by straight lines; of course, curves exist in handprinted characters, but
most computer software would plot a curve as a sequence of straight lines. The lines used in this
recognizer are longer than would be used to plot the curve, but the basic shape information re-
mains after the linear approximation.

An example of how to draw a digit appears in figure 4. The digit, in this case a ‘6’, begins
in the upper right of the canvas., where the pen is put to paper. Drawing the digit proceeds as fol-
lows: left-down, down-left, down-right, right-down, up-right, up-left, left-up, and left-down. Not
all sixes follow exactly this path, so the tracing of the path must have a certain flexibility. For ex-
ample, the light grey line represents an alternate path that could just as easily occur, and should

also be allowed in a six. The line lengths are not all crucial, but if all of the lines were the same

left-up

left-down Start point

left-down

down-left down-left

up-left

left-down left-up

up-left

down-right

down-right

up-r i ght up-ri ght

right-down right-down

Figure 4 - Drawing a six by specifying the start point and pen motions. A zero
can be described by identical pen motions, but some of the lines are different lengths.

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

length, the result would have been a zero instead of a six. Thus some effort must be made to

characterize the key lines and their relative lengths.

Thus, the templates in this particular matching scheme consist of sets of pen motions, and
the recognizer must attempt to measure how well each set of motions matches what is actually
seen in the input image. The matching step turns out to be hard to do in software, and seven ver-

sions of the program were tested before coming up with a strategy that worked.

The procedure followed for zeros and eights is only slightly different, due to the fact that
neither digit generally has a start point. If no start point is found then one is created by slicing
through the glyph vertically along its own axis and using the black pixel in the centre of the first
stroke encountered. A start point found in this way is special, and a note is made of this fact for
later use.

Eights presented unique difficulties in tracing. There was a larger than expected variety in
the shape of the eights seen in the sample data set, and that combined with the fact that an eight
has a larger number of linear features than any other digit made them impossible to trace both
unambiguously and reliably. The solution was, arguably, a ‘hack’, but nonetheless a reliable one.
An eight will be a character that more or less agrees with a zero, but has a black region in the
middle. This simple process correctly classifies 95% of the ‘8’ digits.

The classifier described above was used to classify the same set of digit images used in the

previous three examples and gave the following results:

0 1 2 3 4 5 6 7 8 9
Correct 100% 94% 92% 99% 90% 94% 100% 88% 99% 98%
Reject 0 0 5% 1% 4% 3% 0 0 0 0

This gives an overall error rate of 3.3%. The low recognition rate for seven digits might be
improved on in a number of ways, but is not a concern provided that it does not result in an over-

all low recognition rate for sevens in the multiple/parallel system.

PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition
5 Neural Nets

The use of artificial neural systems (ANS) for various recognition tasks is well founded in
the literature[MUI94, SHAN94,TOUR89, YONGS88]. The advantage of using neural nets, as
they are commonly called, is not that the solution they provide is especially elegant or even fast;
it is that the system ‘learns’ it own algorithm for the classification task, and does so on actual
samples of data. Indeed, the same basic neural net program that recognizes digits can also be
used to recognize squares, circles, and triangles. To thoroughly explore the use of neural nets is
not the goal of this section nor of this thesis. Instead, the goal is to provide a fifth and last classi-
fier to the multiple/parallel system, and one based on a different strategy than the previous meth-
ods. The hope is that the strengths and weaknesses of the methods will combine to provide a
classification system having high reliability.

With this in mind, a three layer backpropagation net (BPN) is proposed. There are 48
nodes in the input layer, one node for each pixel in an image of 8 rows x 6 columns. The 3 layer
net was trained using 1000 digits, 100 drawn from each class, presented alternately to the inputs;
that is, one sample of each class O through 9 produced by a single writer was presented, followed
by another set of 0 -9, and so on. If all of the O digits were presented first, then the 1’s and so on,
the net would tend to forget the earlier digits and recognize only the later ones trained. After the
training phase a second set of 1000 digits from 100 different writers was used to test the recogni-

tion rate. The results were initially not very good, at least for nines:

0 1 2 3 4 5 6 7 8 9
Correct 99% 93% 99% 95% 100% 95% 99% 100% 95% 74%

The logistic function gives an almost binary output that can be used as a ranking, so that a
neural net of this type can provide both a simple classification and a ranking of likely classifica-

tions which can be ordered according to likelihood.

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition

6 Converting between response types
Before proceeding to analyze methods for merging responses it would be appropriate to

discuss means of converting one response type to another[XU92]. In particular, not all of the
classifiers yield a rank ordering, and this will be needed before merging the responses together.

Converting a single response to a rank cannot be done in a completely general and reliable
fashion. However, an approximation can be had based on the measured past performance of the
particular algorithm. Each row in the confusion matrix represents the classifications actually en-
countered for a particular digit with that classifier expressed as a probability, and the columns
represent the other classifications possible for a specified classification; this latter could be used
as the confidence rating. Of course, there will be a large number of small valued and zero en-
tries, especially if the classifier is any good, but that would be expected in any case. The conver-
sions from type 1 can be expressed as:

Type 1 to Type 3: Compute the confusion matrix K for the classifier. If the classification

in this case is j, then first compute:

Now compute the type 3 response as a vector V, where

vy = KGD

Type 1 to Type 2: Convert from type 1 to type 3 as above, then convert to type 2 from type

3 by sorting the responses descending on liklihood.

7 Merging responses
The problem encountered when attempting to merge ranked responses is as follows: given

M rankings, each having N choices, which choice has the largest degree of support? For exam-

ple, consider the following 3 voter/4 choice problem [STRAS80]

Voter 1: abcd Voter2:cabd Voter3:bdca

PARKER Vision Interface '97 Multiple/Parallel Handprinted Digit Recognition

This case has no majority winner; a, b and ¢ each get one first place vote. Intuitively, it
seems reasonable to use the second place votes in this case to see if the situation resolves itself.
In this case b receives two second place votes to a’s one, which would tend to support b as the
overall choice. In the general case there are a number of techniques for merging rank-ordered
votes, four of which will be discussed here.

Our analysis [PARK95] has indicated a slight advantage to the Black [BLAC58] scheme,
which requires just a little explanation. The Borda count [BORD81] is a well-known scheme for
resolving this kind of situation. Each alternative is given a number of points depending on where
in the ranking it has been placed. A selection is given no points for placing last, one point for
placing next to last, and so on up to N-1 points for placing first. In other words, the number of
points given to a selection is the number of classes below it in the ranking. However, the Borda
count does have a problem that might be considered serious. Consider the following 5 voter/3
choice problem:

Voter 1: abec Voter 2: abc Voter3: abc Voter4: bca VoterS: bca

The Borda counts are a=6, b=7, c=2, which selects b as the winner. However, a simple ma-
jority of the first place votes would have selected a! This violates the so-called majority criterion
[STRASO]:

If a majority of voters have an alternative X as their first
choice, a voting rule should choose X.

This is a weaker version of the Condorcet Winner Criterion [CONDSS5]:

If there is an alternative X which could obtain a majority of
votes in pair-wise contests against every other alternative, a
voting rule should choose X as the winner.

With the monotonicity criterion in mind the Black[BLACS8] strategy chooses the winner

by the Condorcet criterion if such a winner exists; if not, the Borda winner is chosen. This is ap-

PARKER Vision Interface 97: Multiple/Parallel Handprinted Digit Recognition

pealing in its simplicity, and can be shown to be monotonic. The results are summarized in Table

1 rather than present the full set of confusion matrices.
Table 1: Results of the Voting Rules for Rank Ordering

Rule Recognition Error Rejection Reliability Acceptability
Borda 99.9% 0.1 0.0 0.999 0.998
Black 99.9% 0.1 0.0 0.999 0.998
Copeland 99.6% 0.2 0.2 0.998 0.994

From this table it would appear that the Borda scheme is tied with Black’s, and then Cope-
land’s. It is important to temper this view with the fact that this result was obtained from basical-
ly one observation; Confirmation would come from applying these schemes to a large number of
sets of characters. Another consideration is that a voting scheme may err in favor of the correct
classification when it should, in fact, be rejected.

If the results from the classifier are simple single-valued class specifications, then the
overall classification from the multiple classifier can be obtained by a simple majority vote.
Based on work we have done so far, this yields the best results out of three alternative methods

examined [XU92, PARK95].

Finally, in cases where actual probabilities are produced by a classifier, the overall result

can be given by the class having the largest average value of all of the classes.

In order to compare the methods a single numerical value representing how good the clas-
sification is should be used. The reliability, expressed as recognition_rate/(100%-rejection_rate)
is not very good here, since the reliability is high when the recognition rate is only 50% and the
rejection rate is 50%. We used the acceprability measure, expressed as recognition*reliability, to
compare the methods. Using this measure to assess each of the merging methods discussed, we
need to look only at the best method in each of the three groups; that is, the best multiple type 1

classifier, the best type 2, and the best type three. The best three are:

Name Type Acceptability
SMV values 0.994

PARKER Vision Interface 97 Multiple/Parallel Handprinted Digit Recognition

Name Type Acceptability
Black ranks 0.998
Average probabilities ~ 0.994
From the table above it can be seen that the best classifier in this trial uses the Black

scheme for merging rank ordered responses.

8 References
[BLACSS8] Black, D., The Theory of Committees and Elections, Cambridge University

Press, 1958.

[BORDS81] Borda, Jean-Charles de., Memoire sur les Elections au Scrutin, Histoire de
I’Academie Royale des Sciences, Paris, 1781.

[CONDS85] Condorcet, Marquis de., Essai sur ’application de I’analyse a la probabilite
des decisions rendues a la pluralite des voix, Paris, 1785.

[KIMU91] Kimura, F. and Shridhar, M., Handwritten Numeral Recognition Based On
Multiple Algorithms, Pattern Recognition, Vol. 24 No 10, 1991.

[MUI94] Mui, L., Agarwal, A., Wang, PS.P, An Adaptive Modular Neural Network
with Application to Unconstrained Character Recognition, IJPR, V. 8§ no 5, 1994. Pg 1189.

[PARK94a] Parker, J.R., Practical Computer Vision Using C, John Wiley & Sons, N.Y.,
1994.

[PARK94b] Parker, J.R., Vector Templates and Handprinted Character Recognition,
Proc. 12th IAPR Conference on Pattern Recognition, Jerusalem, Israel. Oct 9-13, 1994,

[PARK94c] Parker, J.R., Recognition of Hand Printed Digits Using Multiple/Parallel
Methods, Third Golden West International Conference on Intelligent Systems, Las Vegas, June
6-9/94.

[PARK94d] Parker, J.R., The Use of Convex Deficiencies for the Recognition of Hand

Printed Digits, SPIE Vision Geometry I1l, Boston, MA. Nov. 2-3, 1994. Pp. 169-175.

PARKER Vision Interface '97: Multiple/Parallel Handprinted Digit Recognition
[PARK95] Parker, J.R., Voting Methods for Multiple Autonomous Agents, University
of Calgary Department of Computer Science Technical report #95/558/10
[SHAN94] Shang, C. and Brown, K., Principal Features-Based Texture Classification
with Neural Networks, Pattern Recognition 27, 1994, 675-687.

[SHRIB6] Shridhar, M. and Badrelin, A, Recognition of Isolated and Simply Connected

Handwritten Numerals, Pattern Recognition, Vol. 19 No. 1, 1986.

[SHRI87] Shridhar, M. and Badrelin, A, Context-directed Segmentation Algorithm for
Handwritten Numeral Strings, Image and Vision Computing, Vol. 5 No. 1, Feb, 1

[STRABO] Straffin, P.D. Jr., Topics in the Theory of Voting, Birkhauser, Boston, 1980.

[TOURS89] Touretzky, D. ed., Advances in Neural Information Processing Systems,
Morgan Kaufmann, San Mateo, CA, 1989.

[XU92] Xu, L., Krzyzak, A., and Suen, C.Y., Methods Of Combining Multiple Classifi-
ers And Their Application To Handwriting Recognition, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 22 No. 3, May/June 1992.

[YONGS88] Yong, Y., Handprinted Chinese Character Recognition via Neural Net-
works, PRL 7, 1988, 19-25.

