1 Introduction

The SECD chip was designed as the focus of a study of specification-driven VLSI design. It
is a physical realization of Landin’s abstract architecture ([Lan64]), as described in [Hen80]. A
detailed, hierarchical definition of the actual SECD chip written in CDL (an interface language for
an implementation of the Mossim Simulator by R. Bryant [Bry80]) can be found in [GWB+89),
while a description of the abstract architecture can be found in [HBGS89]. An informal operating
specification of the chip is described in [GWS89].

This document discusses issues that arose in the specification and design of the chip. We begin
with a description of the wider project in which it was conceived, and follow with a listing of
the various levels at which the chip was considered. Each of these levels and the design issues
associated with it is presented in turn. Three levels of formal specification are used to describe
the chip in HOL. The representation of time, clocks, and data types, as well as the abstraction
mechanisms to relate different levels of these, are described. We conclude with some comments
about the interaction between verification and design.

1.1 Project Context

The SECD chip arose within an ongoing research effort by the VLSI group at the University
of Calgary. The chip was used as a vehicle to explore the use of specification to drive design
synthesis. The methodology entails elaborating a design hierarchically as a tree of nodes and
formally specifying the behaviour at each node. Verifying that the composition of behaviours
of a node’s children agrees with the node’s specification assures a correct design. By deductive
argument, we can show the correctness or otherwise of a complete design. Thus the process is the
object of study, and the chip is a byproduct only of that process, providing the team with hands-
on experience with a nontrivial design. This intention gave rise to design criteria that affected
decisions taken throughout the design.

The perceived need for higher levels of reliability of computer and control systems has driven
the exploration of formal verification methods. Software and hardware verification efforts have
generally been undertaken independently. A common notation for all levels of hardware design as
well as the software running on the systems is advantageous when attempting to verify a complete
system. The HOL (Higher Order Logic — see [Gor85)) notation used in our work is sufficiently
expressive to achieve this objective.

The difficulty of verifying program correctness for imperative languages has motivated the
choice of functional programming languages for our subject system. The strong mathematical basis
of functional languages makes them more amenable to formal correctness study than imperative
languages. Thus the choice of an architecture that supports functional programming was made with
the intention that a completely verifiable system could be produced. SECD was chosen as a well
understood and well documented architecture, with an available compiler for a pure functional Lisp
language subset (Henderson’s Lispkit language). We begin with the assumption that the compiler
is or can be shown to be correct, and that SECD executing compiled LispKit programs correctly
implements the high level language. A hand proof of the latter, along the lines of [P1o75), has been
completed [SBG89] and will be formalised in HOL in the future.

The project context described gave rise to design criteria that affected decisions taken through-
out the design of the SECD chip.

¢ The most important criterion was that a correct, working device be produced. Correctness
is the primary focus of the specification-driven process. On the other hand, an ostensibly
“correct” design for a device that fails to work, raises questions about the methodology and
assumptions.



e The next criterion was simplicity. Simplicity was necessary on two counts: o ensure that
verification could cope with what promised to be the most complex microprocessor verification
attempted to date, and secondly, to improve the likelihood of meeting the first criterion.

o Testability of the design was considered essential. In the event of malfunction, determination
of the source of the error requires examining the state of the machine extensively. Furthermore,
reliance on a correct output to test problems does little to assure design correctness. Rather,
each step of the computation should be accessible for checking.

¢ Lastly, utility should be considered. It was preferable that the design could be given meaning-
fully sized tasks, rather than be considered a toy device, incapable of all but the most trivial
tasks. A task particularly relevant to this design would be compiling LispKit programs, for
running on the system.

Equal in importance to the selection of criteria is the explicit statement of items that will not
be given priority. Speed was specifically eliminated as a determining criterion, both in terms of
clocking rate, and optimality of the operation sequences, insofar as they could conflict with the
simplicity criterion. The design philosophy that emerged from these constraints leads to a design
that could be characterized as “dumb, but correct”.

1.2 Levels of the Design

Throughout the design process, the chip and system are viewed at many different levels in a
hierarchical fashion that sees increasing level of detail as we proceed. We now proceed to describe
the major levels that were considered.

Abstract machine is the high level definition of the machine characterized by the contents of
4 stacks. The machine is defined in [Hen80] by giving a state transition for each machine
instruction, in terms of the contents of the stacks.

Abstract System level views the SECD machine as a batch mode co-processor to another pro-
cessor (SUN workstation has been chosen). A simulation for this level is characterized by
the use of high level programming constructs, and introduces ‘read’ and ‘print’ routines to
represent the workstation task of uploading and downloading problems to the SECD memory.

Top level FSM (finite state machine) describes the control of the system in terms of major states
and transitions. These states are Idle, Errorl, Error2, and Top of Cycle, introducing the ideas
of initialization and completion of task, and error conditions. The transitions given for the
abstract machine are the set of cycles from the Top of Cycle state.

Abstract RTL (register transfer level) view includes all the required registers and combinational
logic devices in the datapath and a memory, and a simulation controller implemented using
simple control mechanisms such as ‘while’, ‘case‘, and “if ...then ...else’. Records are rep-
resented as 32 bit words, and the bit assignments are determined. In-place, non-recursive
garbage collection is introduced. Higher level routines represent bus transfer functions and
combinational logic devices to build cons records and extract car and cdr fields from them.

Concrete RTL develops a full microcode from the simulation model used in the Abstract register
transfer level. Subroutine implementation details are included, as well as the implementation
of flow control. The controller uses a microcode sequence assembled to a binary image for the
microcode ROM. The controller can be viewed at this level as the full finite state machine for

the SECD chip.

Mossim defines the design down to the transistor level using CDL. It is used for simulation of
the design components.

Layout maintains a (nearly) one-to-one correspondence with the Mossim model. The layout
was defined using the Electric layout software. The design is hierarchically structured, and
different concerns arise at different levels in the hierarchy.
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Several programs from Gabriel and Henderson were run on all simulation models below the
Mossim level. The largest test was the compilation of the LispKit compiler from Henderson. A
LispKit program with 3 mutually recursive functions was used to test the Mossim models of the
controlunit and datapath.

Three levels are formalised in HOL definitions, corresponding roughly to the mossim/layout,
concrete register transfer, and the abstract system levels. The lowest level defines the chip in
terms of primitive gates and transistors, with a granularity of time that captures the clock signal
characteristics, and data types based on boolean valued signals. The RTL definition uses the clock
cycle granularity of time, and more complex data types. The system level defines the behaviour of
the system in terms of the state of memory and register contents on the chip. It uses an abstract
time corresponding to machine instruction execution cycles, and defines an abstract memory type
with high level operations such as cons, car, and cdr. The HOL definitions may be considered
formalized versions of the earlier description levels, which interact with them, constraining the
design in a variety of ways.



2 The Abstract Machine & System Levels

The top level definition of the SECD machine given in [Hen80] defines a set of machine transitions,
one for each of the 21 SECD machine instructions, in terms of contents of the 4 stacks. This
concise specification hardly begins to define how a machine would operate, but once the data
representation is fixed, it can be used to determine the data structure transformations required for
each instruction execution.

INITIAL STATE TRANSFORMED STATE
S E C D S E C D

s e (LD (m.n).c) d - (xs) e c d
where x = locate ((m.n),e)

s e (LDC x.¢) d — (xs) e ¢ d

(a b.s) e (OP.c) d — (bopas) e ¢ d

where (OP,0p) € {(EQ,=),(LEQ,<),(ADD,+),(SUB,-),(MUL,x),(DIV,/),(REM,rem) }

((a.b).s) e (CAR.q) d — (as) e ¢ d

((a.b).s) e (CDR.c) d - (bs) e ¢ d

(a.s) e (ATOM.c) d — (ts) e ¢ d
where t = (a is an atom)

(a bis) e (CONS.q) d — ((a.b).s) e ¢ d

(x.8) e (SEL ctcfc) d — s e cox (c.d)
where cx = if (x=T) then ct else cf

s e (JOIN) (cd) — s e ¢ d

s e (LDF c.c) d = ((c.e).5) e ¢ d

({(.&)v.s) e (AP.c) d — NIL (ve) ¢ (secd)

(x) e (RTN) (secd) — (xs) e ¢ d

s e (DUM.¢) d — s (Qe) ¢ d

((c€)vs) (Qe) (RAP.c) d — NIL rplaca(e’,v) ¢ (secd)

s e (STOP) d — s e (STOP) d

Table 1: Abstract Machine Level Transitions

This level was modelled by a interpreter written in Franz Lisp ((HBGS89]), which, together
with a LispKit compiler ([SBGH89]), was used to gain a better understanding of the way high level
constructs in the source language (LispKit) were implemented by the compiled machine instruc-
tions. Error checking on operation arguments was performed, and run-time statistics on instruction
counts and environment accesses were recorded. This stage was simply a learning exercise, and
did not seek to flesh out the implementation design. Thus, the interpreter did not attempt to
define data structures or elemental machine operations, but rather relied entirely upon the Franz
Lisp data structure (S-expressions or lists) representation, as well as the cons, car, and cdr opera-
tions and the 5 arithmetic operations that SECD uses. Furthermore, fundamental implementation
concerns were ignored, with recursive functions used to locate values in the environment list, and
resource management (i.e. garbage collection of records) completely omitted.

2.1 Abstract System: the First Refinement

Realizing the SECD machine as a working system required that it be able to accept a task, compute
a result, and return it. The abstract machine definition required that problems be in the form of
a function to be applied to a list of arguments. The interface to permit a user to pose a problem
and the machine to return a result was the first major design decision. Two major options were



considered: a co-processor role and a stand-alone system?.

Using the SECD as a co-processor to another system would permit i/o to be handled by the
other system rather than the SECD chip. For instance, using SECD as a co-processor for a
SUN workstation would see the SUN able to read in an S-expression, set up a memory image for
the problem, signal the SECD to begin computation, receive a signal back on completion of the

calculation, and print out the S-expression solution. This has the advantage of simplifying the
tasks the SECD must perform.

The second option considered was that of a stand-alone system. This would require incorpo-
rating primitive read and write operations into the definition of the machine. Ideally, an operating
system for such a system would be written in the higher level LispKit language, but its pure func-
tional nature does not permit coding of an infinite ‘while’ loop the execution of which will not
exhaust system resources. Recursion is the only means to achieve an infinite sequence, and each
recursion uses up some memory. A possible solution would be to hand modify the machine code
to create the desired loop.

An extension of the stand-alone system concept is the multi-processor SECD system. Such a
system was envisioned as having multiple (perhaps 100) SECD chips operating concurrently on
shared memory. An operating system kernel would assign S-expressions to processors for evalua-
tion. Each processor would be assigned exclusive use of memory blocks in a sort of virtual memory
system, with blocks being assigned and garbage collected by the kernel.

The co-processor option was chosen as most appropriate to the scope of the project. If desired,
a stand-alone approach could be used for a second iteration of the design.

Representation of S-expressions (the “stuff” of programs and data in the SECD machine) is
not determined at this level, but it is known that they will be stored within a finite memory, and
this necessitates garbage collection. A simple mark and sweep garbage collector is used. Thus, the
SECD system will consist of a microprocessor operating upon an S-expression image in a RAM.
Major phases in the operation of the system are:

¢ load problem into RAM (done by main processor)
¢ send start signal to SECD system

e run

¢ stop and signal completion to main processor

e return result (again, main processor task)

A simulation at this level (written in “C”) used external read and print routines to model
the ‘load problem’ and ‘return result’ tasks of the system. These functions prepared a memory
image within a finite memory data structure and extracted an S-expression from a memory image
respectively. The SECD system was modelled making free use of high level language constructs

including complex data types to represent data records, and recursive tree traversal in the garbage
collector mark routine.

To prevent overwriting, we established a precedence (a partial ordering) on registers for each
machine instruction when designing a control sequence for the simulation. Consider the transition
for the AP instruction as an example of the generation of a microcode sequence. The abstract
machine transition is given by:

((C.e)vs) e (APc) d — NIL (v&) ¢ (secd)

2This discussion summarizes work by Jeff J oyce on system configuration, reported originally in [Joy].



We observe the following precedence on registers:
€
d< . <
. The control sequence then takes the following form.

d = (cons (cdr (cdr s))
(cons e
(cons (cdr ¢) d)))
¢ = (car (car s))
¢ = (cons (car (cdr s))

(cdr (car 8)))
s = NIL

The introduction of garbage collection introduces the “memory exhausted” error into this level
simulation. Further errors, including arithmetic over/underflow, validity of operands for machine
operations, and correct program compilation, remain possible, but are not incorporated yet.



3 The Top FSM Level

The previous abstract view of the SECD system was concerned primarily with manipulating the S-
expressions in the 4 stacks. The finite state machine view concerns the development of a controller
for driving the manipulations. The top level FSM has only four states, and the earlier view of
the machine’s state as being represented by the contents of the 4 main stacks (S,E, C,and D) is
incorporated as annotations in transitions where these stack contents change (see Figure 1).
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Figure 1: Top Level Finite State Machine View of SECD

This view introduces several ideas concerning the operation of the machine.

¢ An external reset input has been included to permit a deterministic startup of the machine.
In simulations to this point, we have always begun with the same sequence of operations, and
modelling the controller as a finite state machine similarly requires selection of the startup
state. The assumption of this initial state is most simply implemented by the reset input,
along with a constraint that the reset is asserted in the initial clock cycle.

o An idle state has been introduced, permitting the chip to be turned on but not computing
until a problem has been loaded, and also permitting the completion of the computation to

be recognizable. Earlier models saw the machine performing single computations only. This
level introduces the idea of repeated executions.

¢ A Top of Cycle state corresponds to the state the machine is in at the start of execution of
any SECD machine instruction. There are 21 transitions leading from this state, one for each
machine instruction, forming an instruction fetch/execute style of loop. The abstract machine

transition for the STOP instruction is clarified by transferring to the idle state, instead of
looping infinitely.



o Two Error states are shown. The diagram shows an error condition arising from the exhaus-
tion of memory only. This is a necessary error condition, consistent with the previous level
view. Further errors are not indicated, actually reflecting decisions made at a lower level.

o The introduction of control state suggests the existence of state values as outputs, particularly
as a means of signalling the completion of a task.

e An external input labelled button controls the state transitions from the Error and Idle states.
The use of separate inputs could have eliminated the need for the second error state at this
level3, but a concern over the number of pins available for inputs mandated the single signal.

e There is no data input or output facility indicated. The machine will operate in a sort of
“batch” mode on a problem in memory. It is also able to perform successive computations.

This level is not independent of the abstract system or abstract register transfer views of the
SECD. Instead, it is a particular view of the system that is useful in formalising the behaviour of
the system. Nor is a simulation model directly related to this level. Instead, we see the next level
simulation incorporating the notion of major state by adding a state value at suitable points in
the control sequence.

3Requiring distinct values on incoming transitions than those for outgoing transitions from the state make the
signal timing less critical.
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4 The Abstract Register Transfer Level

The actual architecture of the SECD chip developed with the definition of the Register Transfer
Level view. The SECD machine at this stage is seen as a set of registers, combinational logic
units, a memory, and a bus linking the components. The state transformations are effected by
shifting values between registers and memory, using combinational logic to perform such functions
as “cons”, “car”, and “cdr”. The sequence of operations required is the model for the controller,
which at this stage still retains some higher level control structures such as “if ... then ... else”,
“case”, and “while”.

The S-expression data type, which is the “stuff” of SECD machine programs and data, is
composed of three types of objects: numbers, symbols, and cons records. A simple mark and
sweep garbage collector required the use of 2 bits in each record. Two additional bits indicate the
“type” each record contains.

Numbers were permitted to range over integers (rather than the natural numbers), consistent
with the definition of SECD.

Symbols represent atomic values which can only be tested for equality with each other. Thus,
a distinct symbol identification number is a suitable representation. The “meaning” of the
symbol (or its written form) is of concern only on input and output operations, and hence
assignment and interpretation can be handled entirely outside of the SECD chip (by the
compiler, since new symbols cannot be created in the course of executing programs). Three
symbolic constants (Nil, True, and False) are required by the SECD chip, and were “built-in”
at this stage.

Cons records represent a pairing operation of S-expressions. In typical Lisp fashion, these are
implemented by pairs of pointers to other cells. The size of pointer determines the maximum
size of memory which can be addressed, and hence the maximum problem size that the
machine can compute. As a minimum, it was felt that the SECD machine should be able
to run the Lispkit compiler on Lispkit programs, and this required approximately 2:2 words.
This set a lower bound of a 28 bit word ((2 x 12) +4). The availability of memories in
multiples of 8 bits made 32 bit words an appealing choice.

The resulting word configuration is as follows:

constant value

or
symbol id
type or

e

gc bits bits car cdr

31130 42928 |27

The S, E, C, and D stacks are implemented as 14 bit registers that will contain pointers to S-
expressions in memory. The free list, used to allocate unused cells as required by the computation
process, is similarly implemented by a register holding a pointer to the free list in memory. Further
registers were added as their need was determined. Working registers z/ and z2 were added, to
permit computation of intermediate results as arguments to a cons operation. A memory address
register (mar) was added to select memory locations. A 32 bit arg register was added to hold
integer or symbol arguments for alu operations, and generally for holding 32 bit records read from
memory, including the machine instruction codes. The output of the alu is connected to two 32
bit buffer registers. The 32 bit bufl register is necessary since the integer and symbol inputs to
alu operations come from the arg register and the bus, and the 32 bit output must be written
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to some other register. The second buffer, buf2 is used only by the mark routine of the garbage
collector, to prevent loss of an arithmetic result being held in bufl.

With each addition to the hardware, a functionality or role was determined, and thereafter this
functionality was respected. Non-transparent uses of components was avoided, with the hopeful
expectation that this would make the verification task more manageable. The clearest indication

of this approach is the provision of separate registers (root, parent, yl, and y2) for use by the
garbage collector.

The description of this level is contained in a simulation characterized by data records consisting
of 32 bits, 14 bit pointers, a fixed set of registers, and the modelling of memory, control and
combinational logic elements by high level routines. A sample of the code at this level implements
the same operations as shown for the abstract system level simulation (for the AP instruction).

! x2 := (cons (cdr c) d)
bus(x2=d);
bus(x1=c);
bus(mar=x1);
bus(x1=cdrvalue(memory[mar});
consx1x2(); ! resulting cell address is in mar
bus(x2=mar)

! x2 = (cons e x2)
bus(xl=e);
consx1x2();
bus(x2=mar);

! d = (cons(cdr(cdr s)) x2)
bus(x1=s);
bus(mar=x1);
bus(x1=cdrvalue(memory[mar]);
bus(mar=x1);
bus(x1=cdrvalue(memory[mar]);
consx1x2();
bus(d=mar);

! e = (cons (car(cdr s)) (cdr(car s)))

bus(x2=s);
bus(mar=x2);
bus(x2 carvalue(memory[mar])

bus(

bus(x2=cdrvalue(memory[mar));

bus(x1=x);

bus(mar=x1);
bus(x1=cdrvalue(memory[mar]);
bus(mar=x1);
bus(x1=carvalue(memory[mar]);
consx1x2();
bus(e=mar);

! ¢ = (car(car s))
bus(c=s);
bus(mar=c);
bus(c=carvalue(memory[mar]);
bus(mar=c);
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bus(c=carvalue(memory[mar]);

! s = NIL
bus(s=NIL);

The instruction sequence in the simulation was systematically derived from the previous ab-
stract system level simulation. The bus function used for all data transfers models a single bus
architecture, which was selected for simplicity. The 3 data structure operations are translated as
follows:

car(z): bus(x1 = z);

bus(mar = x1);

bus(x1 = carvalue(memory[mar]));
cdr(z): bus(x1 = z);

bus(mar = x1);

bus(x1 = cdrvalue(memory[mar]));
cons(z1,z2):  bus(x2 = 22);

bus(x1 = z1);

consx1x2();

Five combinational logic elements are indicated. These are the ALU, the flagsunit, the consunit,
and the carvalue and cdrvalue units. The latter three implement the primitive operations on
records. The first two require further elaboration.

The ALU primary function is the computation of values for the arithmetic SECD machine
operations: ADD, SUB, MUL, DIV, and REM. Additional operations are required for the garbage
collector, including setting and clearing of the mark and field bits, and the desctructive replcar
and replcdr operations used for the in-place traversal of the data structures in memory. These
operations were masked previously by recursive functions implementing the garbage collector.
Lastly, there is a decrement operation, used in looking up values in the environment. It is also
used in the “sweep” phase of garbage collecting to step through the memory address space. The
high address value is built-in as a fixed value to provide a starting point for the sweep. The two uses
have distinct data type arguments, the first uses integers, while the second is applied to addresses.
Thus, the 14 bit addresses must be padded out with 0’s to make 28 bit integers. For this purpose,
a constant register (the clearunit) will Joad 0’s onto the upper 14 bits of the bus when required.

The flagsunit will return the boolean result of predicates used both for the control of the if ...

then ... else and the while structures, as well as computing the SECD machine operations EQ and
LEQ.
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5 The Concrete Register Transfer Level

Refining the abstract register transfer level view concentrates on transforming the control sequence
into a series of microcode instructions. The resulting sequence is then compiled into a binary image
used to define a microcode ROM.

A microcode sequence is generated from the abstract register transfer level model by translating
each of the higher level functions into an instruction sequence as follows:

bus(z = w) — IW Wz

bus(z = carvalue(memory[mar])) — rmem wear ; rear wz
bus(z = cdrvalue(memory[mar])) — rmem wz
consx1x2() — call(Consx1x2,$)

A simple transfer of values on the bus becomes simultaneous read and write signals to the
appropriate registers. The car operation requires that the word be fetched from memory, and its
car field be accessed by writing it first to the car register, and thence transferring it on the bus to
the desired register. It is assumed that the cdr field can be written directly from the memory to
the selected register. Finally, the cons operation is called from so many different locations that it
is treated as a subroutine call, with the following microcode location as the second parameter to

enable a return from the subroutine on completion.

112, rd  wx2  (jump 113) ! bus(x2=d);

113, rc wxl  (jump 114) ! bus(x1=c);

114, rx1 wmar (jump 115) ! bus(mar=x1);

115, rmem wx1  (jump 116) ! bus(x1=cdrvalue(memory[mar]);
116, (call (“Consx1x2”, 117)) ! consx1x2();

117, rmar wx2  (jump 118) ! bus(x2=mar);

118, re wxl  (jump 119) ! bus(xl=e);

119, (call (“Consx1x2”, 120)) ! consx1x2();

120, rmar wx2  (jump 121) ! bus(x2=mar);

121, 1s wxl  (jump 122) ! bus(x1=s);

122, 1x1  wmar (jump 123) ! bus(mar=x1);

123, rmem wx1  (jump 124) ! bus(x1=cdrvalue(memory[mar]);
124, rx1 wmar (jump 125) ! bus(mar=x1);

125, rmem wx1  (jump 126) ! bus(x1=cdrvalue(memory[mar]);
126, (call (“Consx1x2", 127)) ! consx1x2();

127, rmar wd  (jump 128) ! bus(d=mar);

128, 1s wx2  (jump 129) ! bus(x2=s);

129, rx2  wmar (jump 130) ! bus(mar=x2);

130, rmem wcar (jump 131)

131, rcar wx2 (jump 132) ! bus(x2=carvalue(memory[mar]);
132, rx2  wmar (jump 133) ! bus(mar=x2);

133, rmem wx2  (jump 134) ! bus(x2=cdrvalue(memory[mar]);
134, rx wxl  (jump 135) ! bus(x1=x);

135, rx1  wmar (jump 136) ! bus(mar=x1);

136, rmem wxl  (jump 137) ! bus(xl=cdrvalue(memory[mar]);
137, rx1  wmar (jump 138) ! bus(mar=x1);

138, rmem wcar  (jump 139)

139, rcar  wxl  (jump 140) ! bus(x1=carvalue(memory[mar]);

140,

(call (“Consx1x2”, 141))

1
! consx1x2();
! bus(e=mar);
1

!

141, rmar we (jump 142)

142, 1s we (jump 143) ! bus(c=s);

143, rc  wmar (jump 144) ! bus(mar=c);

144, rmem wcar

145, rcar  wc (jump 146) ! bus(c=carvalue(memory[mar]);
146, rc wmar (jump 147) ! bus(mar=c);

147, rmem wcar (jump 148)

148, rcar  wc (jump 149) ! bus(c=carvalue(memory[mar]);
149, mil  ws (jump 150)

150,

(jump “topof.cycle”)

! bus(s=NIL)
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Figure 2: Register Transfer Level View of SECD Machine
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The set of datapath register (and memory) control signals is now established, as are the 12 ALU
operations, given in the previous level. Control mechanisms for the microcode consist of 5 types:
unconditional jumps, conditional jumps, subroutine calls, subroutine returns, and a jump table
that uses the current machine instruction value. Of these, the conditional jumps and subroutine
calls both require 2 addresses, while the others require a single address argument. The subroutine
mechanism required a microaddress stack. A total of 8 conditional jump instructions were required,
with conditions consisting of:

o the value of the button input

 is the argument an atom record

o the EQ operation applied to 2 arguments

o the LEQ operation applied to 2 arguments

e is record equal to the symbolic constant “NIL”

o is the record equal to the symbolic constant “TRUE”
o is the mark bit set

o is the field bit set

These values will be the flagsunit outputs. Additionally, the datapath will also send the current
machine instruction value to the controller. The controller has thus 12 distinct ways of computing
the next microinstruction address to select.

This evolution was suitable for mechanical rewriting, ignoring optimizations that would be
obvious to the reader. The final microcode evolved through several successive refinements, aimed
at reducing the ROM size. The major optimizations include:

¢ A peephole optimization run eliminated unnecessary bus transfers using the working x1 or x2
registers, when the value could be transferred directly to the required register in one operation.

¢ An external reset input was added, as indicated in the top level FSM view.

¢ An additional reserved memory location was added, in which a pointer to the problem in
memory would be installed for the use of the SECD chip in initializing its state registers.
Upon completion of the program, the location is used to return a pointer to the solution.
This replaced a bank of switch inputs planned to provide a problem location input.

¢ Unconditional jump instructions and subroutine calls were combined with the previous in-
struction in sequentially executed code.

¢ An additional level of subroutining was added to share common code sequences in arithmetic
and logical SECD machine instruction sequences.

* A jump table used to implement the “case” instruction at the head of the instruction execute
cycle was relocated in the microcode so that the actual instruction value could be used as the
microcode address, rather than having to add it as an offset from the first jump table address.

¢ An early version of the microcode had anticipated an on-chip RAM, which defaulted to read.
While the output was gated to the bus, the car field was gated directly to the car unit, which
was simply a combinational device. Thus, carvalue(memory[mar]) did not require a cycle to
read from memory. The change involved making the carunit a register, and adding a cycle to
load it from memory where required.

¢ The value of binary flags was used on the cycle following the read from memory of one of
their arguments. The implied latching arrangement was eliminated in favor of reading the
argument in the same cycle in which the flag value was used.

e Again, an early version had an error condition for an invalid machine instruction code (just
the specific code 0). This error would be a compiler error only, and was eliminated from on
chip testing.
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e The status flags for unary operations changed from using the value on the bus to using the
contents of the ARG register, just as the binary alu operations.

* An odd timing regimen implying the use of paired (master-slave) latches in the datapath (the
contents of ARG was decrimented and written back to ARG on the same microcycle) was
eliminated, and a buffer registers added for ALU output, as mentioned earlier.

o Slight revision to the ordering of conditional jump instructions was made so that the following
microinstruction was always the default next address. This permitted the elimination of this
default address field as an explicit value in each microcode instruction, since the only other
instruction using two addresses was the subroutine call, and the return address parameter to
a subroutine call was always the immediately following address as well. Thus, at most one
address field was required in each microinstruction. The unconditional jump instruction was
divided into remote jumps and jumps to the following microinstruction, with the latter not
needing a specified argument. This increases to 13 the number of ways of choosing the next
mpc contents.

The final version of the microcode for the AP instructions is as follows:

L( “AP");

rd ; wx2 ; (inc () 5

rc ; wmar i (inc ()) 5

rmem ; wxl ; (call (“Consx1x2")) ;
rmar  ; wx2 i (inc () 5

re s wxl ; (call (“Consx1x2")) ;
rmar  ; wx2 i (inc () 3

s ; wmar ; (inc () ;

rmem ; wxl i (inc () ;

rx1 ; wmar i (inc () ;

rmem ; wxl ; (call (“Consx1x2")) ;
rmar ; wd ; (inc () ;

s ; wmar 3 (inc () ;

rmem ; wcar ; (inc () ;

rcar  ; wmar i (inc () 5

rmem ; wx2 ; (inc () ;

rs ; wmar ; (inc () ;

rmem ; wxl ; (inc () 5

rxl ; wmar ; (inc ()) 5

rmem ; wcar i (inc () 5

rcar  ; wxl ; (call (“Consx1x2")) ;
rmar ; we ; (inc () ;

18 ; wmar ; (inc () 5

rmem ; wcar 3 (inc () ;

rcar  ; wmar ; (inc () 5

rmem ; wcar ; (inc () ;

rcar  ; wc ; (inc () ;

rnil 5 ws ; (jump (“topof_cycle”)) ;

This modelling of the chip implicitly assumes an external RAM, since an outside agency is
expected to download problems and upload results, and there is no provision in the model for
handing control of the memory to the external agency. External RAM is consistent with the
simplicity criterion, and focussed our effort on the microprocessor design, rather than the distinct
concerns of RAM design. The RAM is treated as just another, though addressable, register, with
read and write signals controlling it. It was expected that the RAM would default to a read
operation, and the rmem control line would control its gating onto the bus.

This implementation of the controller is a classical finite state machine design. We view the
controller as a finite state machine, with the state held in the mpc register (this is extended to
include the microcode stack registers as well), changing with each microcode instruction executed.
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6 The Mossim and Layout Levels

The next level will model the SECD down to transistors. The simulation used is an implementation
of Randall Bryant’s Mossim simulator, written in C by Jeff Joyce, with a Common Lisp interface,
called CDL, written by Breen Liblong. The complete CDL definition of the SECD chip is available
in [GWB*89]. The layout design was completed using the ‘Electric’ system ([Rub87)).

The mossim level model was used to capture component design for simulation, and also guided
the actual layout. Layout decisions determined the mossim definition, and the mossim model was
used as a suitable form to define the components then implemented in the layout.

A full custom design was selected in preference to gate array or semi-custom using a standard
cell library. Our team had the expertise to undertake full custom design, and it also provided
a better learning experience than the other options. Further, non-custom designs suffered from
constraints, including the number of gates in gate array, and the availability of suitable cell libraries.
Full custom fabrication was available through MOSIS, with a clear and concise set of scalable design
rules.

Concerns about the limited likelihood of fabricating a working chip on the first try and the
ability to determine causes of failure led to the decision to introduce some degree of testability
into the design. Previous views of the SECD divided it into two major functional components:
the controller and the data path. As described earlier, these two parts were developed somewhat
independently, and it was felt that they should be independently testable. If a flaw occurred in
one component, testing of the other component would still be possible. To meet this objective, it
was decided to add a bank of shift registers between the two components, which could be used to
trap all, or most, signals passing between them?.

6.1 Timing and Clocking

Implementing the controller as a finite state machine requires buffering between current and next
states. This is achieved by the use of a two-phase non-overlapping clocking scheme and paired
registers, along the design style described in [MC80]. The state register in the control unit is the
mpc register, but in a more general sense, the values on the 4-deep microcode subroutine stack are
also part of the state. In the following discussion, references to the mpec register can be applied
similarly to the stack registers.

Level-triggered registers were selected:

o for space/transistor count efficiency.

o level triggered latches are in keeping with the view of circuits presented in [MC80] as a system
of opening and closing valves.

o previous experience on Tamarack2®.

In some sense, level triggered latches can be viewed as falling edge triggered, although the state
is lost at the start of the clock pulse. The mpc register is actually the second of the pair of state
registers, the first is labelled nextmpe. Nextmpc is clocked on ¢4 and mpc on ¢p. The control
unit state is considered to change on ¢ .

Particular attention was paid to possible race conditions. One example was the possibility
of generating transient “write” signals from the ROM when the value mpc is changing. The
solution was to delay latching of the datapath registers until after the mpe is latched (and the

*Detailed listings of signals in the shift registers are given in [GWS89]

%a second implementation of the Tamarack chip [Joy88], an implementation of Gordon's toy computer [Gor83]
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value propagated). Use of the inverse clock signal (qE) was still subject to race conditions®, so
the ¢4 phase was used. The clocking scheme requires that inputs to registers latching on ¢4 be
stable prior to the end of the ¢4 pulse. The overall view of the chip now sees the control unit as
changing state on @5 and the datapath changing on ¢ ,.

The first layout iteration, and the mossim simulation, really did not properly account for the
operation of the external memory. It was expected that memory outputs would float unless the
rmem signal was asserted. Capacitance induced delays of signal switching and power disapation
caused by both memory and SECD devices driving external lines simultaneously for some over-
lapping interval were seen as potential problems later. Thus, a more considered memory interface
timing was developed (described in detail in [GWS89]), and the new control signal logic added in
a design revision.

6.2 Floorplanning

Mosis offered a 3u1 double metal p-well CMOS process, in dies that permitted maximum project
sizes of:

2.3 x 3.4 mm
4.6 x 6.8 mm
6.9 x 6.8 mm
7.9 x 9.2 mm

Initial estimates indicated we would require the largest size, and the size was a fixed constraint. A
lengthy delay between the completion of the layout (late 1986) and the chip fabrication (fall 1988)
permitted us to use the 2y process introduced by Mosis in the interim. The use of scalable design
rules was vital in enabling us to take advantage of the new technology without any redesign.

The major functional components, namely the datapath and controller, from the register trans-
fer level were maintained as major floorplan elements. The shift register block was located between
these two, and all were surrounded by a padframe.

6.3 Design Guidelines

The project team had already completed a microprocessor layout (the Tamarack2) and thus had
some experience in layout. The design would use a cell library, with guidelines rigidly controlling
the cell designs. Power and ground rails occurred at top and bottom of cells in metal-2, and bit
slices were arranged so one rail were shared between two adjacent slices. Data generally flowed
horizontally through the cells in metal-1, while control signals and clock lines run vertically in
polysilicon. The use of metal-2 was restricted within cells to the rails, so that it could be freely
used for horizontal interconnect running over the cells without any design rule violations.

Cell height was selected based on the example of past work, and by building sample cells using
different heights. An optimal value of 86\ was selected. Each cell was to be self-sufficient, so
all required well/substrate contacts were internal. Port locations and boundary clearances were
standardized, and multiple instances of ports was encouraged to ease cell composition.

All library cells were defined and exhaustively simulated in mossim. Layout cells used the
same root name for ports as the mossim definition, and a one-to-one correspondence between the
two definitions was attempted through all levels in the design hierarchy. The XOR cell was an
exception, since mossim could not correctly model the 6 transistor design actually used.

6One could devise a scenario where the &5 signal overlaps the start of the ¢p pulse, and thus random write
signals may be generated.

19



6.4 Controlunit

Several key decisions directly affected the design of the controlunit:

o the encoding of the microcode
e the interface between the controlunit and datapath.

o the choice of signals trapped by shift registers.

A simple view of the ROM has a fully horizontal microcode, with discrete outputs for each
read, write, and alu control signal (23, 17, and 12 signals respectively). Further, the address
field required by the goto, subroutine call, and conditional jump instructions was 9 bits (since
the microcode length was approximately 400 instructions). Lastly, the method of selection of the
next microinstruction has 13 possibilities. A fully horizontal microcode ROM would be 9 x 400
x T4. With a square pitch of 12.5X for the ROM layout, in the 34 process, we had a ROM size of
approximately 2.06 x 7.5 mm, excluding routing to and from, and buffering of inputs and outputs.
While this size might fit on the chip, it was felt that we could reduce it considerably, and in the
process also reduce line capacitance and thus provide a higher probability of reliable operation.

Microcode characteristics were examined in the search for an encoding scheme. The mutually
exclusive assertion of individual read, write, alu, and test signals during any cycle suggested these
signals could be encoded. The number of distinct combinations of control signals in a microinstruc-
tion numbered approximately 120, while the number of distinct combinations of read and write
signals numbered approximately 86. Further, the address and alu fields are sparse in the microcode;
alu instructions appeared 17 times in total, while the address field was used approximately 118
times. The simple encoding of read, write, alu control, and test fields to microinstruction fields
was selected, since it was a natural way of breaking up the signals, permitting easier examina-
tion for error detection, and would be a simple encoding to verify later on. This reduced the
microinstruction word length to 27 bits.

Physical arrangements for the ROM layout were also considered. The sparse address field, and
the correspondence between the use of this field and the test field selecting other than the next
instruction, suggested using 2 ROM devices, one for the read, write, and alu fields, and the other
for the address and test fields. The two devices would be 9 x 400 x 14 and 9 x 115 x 13 respectively.
The alu fields could be generated directly from the address decoder outputs, and reordering the
decoder outputs (to something conceptually closer to a PLA structure than a ROM) could enable
sharing of a single decoder between the 2 devices. This scheme was abandoned, largely because of
its complexity, and the implicitly inconsistent treatment of outputs, and the line lengths resulting
from the need for the full 9 x 400 decoder. Also, the savings generated by the simple encoding
already brought the ROM into an acceptable size. Reduction of the length of internal lines in the
ROM was achieved by the transformation to a 7 x 100 x 104 ROM, with 2 bit column decode. This
produced a nearly square device, and considerable flexibility in the control unit layout. The ROM
layout was generated automatically from a bit pattern produced from the microcode simulation of
the previous level. The decoder component is a fully complementary CMOS device, while the ‘OR’

is implemented in a pseudo NMOS design, using pullup transistors in each column, and n-type
devices exclusively in the plane.

Since deciding to have the ROM output encoded signals, decoders were required. It was possible
to decode fully within the controlunit, or permit the datapath to decode. The decoders were
included in the controlunit because they did not easily fit with the bitslice dominated layout
approach of the datapath. Further, if the decoded signals were routed through the shift registers,
more flexibility control was available in debug operation mode. The same automated ROM/PLA
generator was used to produce the layout of all 3 decoders.

The 13 alternative methods of selecting the next microcode instruction select from 4 possible
values only:
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o the address following the current one in the microcode,

o the address supplied as a field in the microcoed (for historical reasons called the A address),
e the SECD machine instruction code (opcode), and

o the top of the microcode subroutine stack value.

A 4 x 1 MUX gates these values to nextmpc register. The mux control signals are generated by a
test field of the microcode, in combination with the value of the flag and button inputs. The logic
is implemented in a PLA, again generated automatically.

A bit-slice approach is used for the mpc and nextmpc registers, the microcode stack, and
the logic to implement the selection of the next microinstruction. The required control signals for
this are generated from a single row of random logic. Other signals, such as the control for the
bidirectional i/o pads, were generated from random logic that was located with the PLA device.

6.5 Datapath

While symbol and cons record representation was fixed at an earlier stage, the representation of
integers was left until the design of the datapath. The use of the alu to decrement addresses as
well as integers required that the mapping of 14 bit addresses to 28 bit integers (accomplished
by clearing the upper 14 bits) should be consistent with the representation of integers. While
both 2’s complement and sign magnitude conformed to this constraint, the use of 2’s complement
representation produced a simpler alu implementation.

The datapath was designed around a 32 bit bus, connecting all the registers and combinational
logic devices. Most registers are simply 14 bits, connected to the cdr field of the bus, aside from
the alu output buffer registers and the arg register which are all 32 bits. The car register inputs
are connected to the upper 14 bit address field of the bus, while its outputs are connected to the
lower (cdr) field. The x1 register inputs and outputs both connect to the cdr field of the bus,
but the output additionally connects to the car field inputs of the consunit. The clearunit sets
the upper (car) field of the bus to zeros when the mar or num registers are read, because these
are the sources of addresses that are decremented by the alu. This operation effectively maps a
14 bit address to a 28 bit integer. The alu was simplified by dropping the 3 most complex (in
terms of area) operations: mul, div, and rem. The opcodes were not eliminated however, and the
implementation let them default to the dec operation.

Registers are grouped into subcomponents: regs-14-misc, regs-14-car, regs-14-y2, regs-32-
arg, and regs-32-bufs. No error checking of type bits is implemented for any operations in the
datapath. Logical alu operations maintain the (unaffected) bits, while the arithmetic operations
produce 32 bit output with the type bits set to integer, and both mark and field bits cleared.
Similarly, the consunit outputs a 32 bit value with record bits set to cons and mark and field bits
cleared.

Once the padframe was designed, it was found necessary to add one additional unit to the
datapath. This read-mem unit allows the input values from the bidirectional pads to be passed
onto the bus only when the rmem signal is high. This is necessary since the bidirectional pads
were designed as write-enabled, and default to input mode. The busgates prevent the pads from
writing onto the bus when not reading from memory.

6.6 Shift Registers

The shift register block is a simple device used in the previous Tamarack?2 design. It uses separate
controls and clocks?, and is used to take a “snapshot” of the state of the chip, or to enter a vector for

"The use of distinct clocks for system and shift registers was chosen to simplify the logic design and improve the
probability of obtaining working subcomponents on the chip by minimizing operational dependencies.
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testing. Every signal that was considered reasonably useful for testing was routed through the shift
registers. This included all read, write (except the write memory signal which was initially expected
to be exported directly), and alu signals, the status flags from the datapath, and additionally, the
mpc contents (the lines between the mpc register and the ROM), and the control signals for the
4 x 1 MUX feeding the nextmpc register, and controlling the microcode stack. In total, 72 bits
are trapped by the shift registers. The only value passing between these components that was not
trapped was the machine instruction code. Passthrough lines were provided in the shift registers
for this signal. Additionally, the control signal for the bidirectional pads, which was added at a

late stage in the design, was not trapped. Unfortunately, this made examining datapath register
contents more difficult, as described in [GWS89].

6.7 Padframe

The original die size and package had a limit of 64 pins. Bidirectional pins (32) were inevitable
for the bus connection. The MAR output required 14 pins, system clocks 2 pins, control inputs 2
pins, state output signals 2 pins, shift register controls, input, and output a total of 4 pins. 2 pins
were used for the separate shift register clocks, instead of using one pin for a clock control input.
Lastly, 2 power and 2 ground pins are used. A pair of power and ground pins (called dirty power
and dirty ground) drive the pads only, to reduce noise on the supply lines to the chip, while the
other pair drives the rest of the chip. In the final layout, the distribution of the pads around the
chip perimeter was constrained by the number of bonding fingers along each cavity edge of the
package, and a maximum 45 degree angle of bonding wires.

Aside from the power and ground pads, there are input, output and bidirectional pads. Simple
input and output pads are on little interest, but the design of the bidirectional pads required more
effort. When used in output mode, the pad must increase the drive strength of the signal. A
step-up buffer is used for this, but it cannot drive on input mode. Thus the circuitry turns off
both n and p-transistors by providing 0 and 5 volt gate inputs respectively. The designs were
simulated using SPICE, and switching times in the 20 nanosecond range were achieved using a
load capacitance of 50 pf. This speed was quite acceptable, given the constraints stated earlier.
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7 Formalizing the SECD Representation

This section concerns formalizing the implementation and specification of the SECD machine in
HOL. We consider 3 levels of definition: the lowest level (implementation) definition, the inter-
mediate (register transfer) level, and the top (abstract system) level. The discussion focuses on
the representation of time, clocking and data types, and how they are used to specify the system
behaviour. Abstraction mechanisms between levels of representation are described.

7.1 Time

The three levels each have a distinct granularity of time. The implementation level uses the finest
grain, while the register transfer level grain is that of the clock cycle. The top level granularity
relates to the time to execute individual SECD machine instructions.

7.1.1 Lowest Level

The finest granularity of time represented must permit the capture of the essential behaviour of
every signal. Specifically, describing the signal using a finer sampling of time should not detect
patterns that are not expressed at the chosen granularity of time. The choice of a fully static
design determines that the essential behaviours of generated signals will be describable in terms
of their settled values, assuming a clock rate that permits them to settle. The finest granularity
needed is that which captures the behaviour of the clock signals. Further, we constrain all input
signals appropriately to validate their abstraction to these discrete points in time.

The grain of time described bears no direct relation to real time, but instead corresponds to
the changing of values on clock lines. Thus, if the clock is stopped for any interval, there are no
points of fine grain time in that interval.

We use a 2 phase non-overlapping clock. This is abstracted to two boolean signals (referred
to as phases), ¢4 and ¢p, with values defined at 4 points of fine grain time per clock cycle: at 2
points one signal is asserted, alternating with points when neither is asserted:

o] L

We have used a second pair of clock phase lines for clocking the shift register unit. The
intended mode of operation will not permit cycling of both clocks simultaneously. This unusual
clock arrangement obscures the simple relation of clocks to the granularity of time just described.
The interesting point is that intervals of the finest grain of time must correspond to intervals for
either system of clocks. We express the desired clocking behaviour in terms of predicates applied
to both sets of clock phase lines, requiring that complete cycles will be executed when any clock
is asserted. Further, advances in time correspond to cycling one of the clocks. This description of
two independent clock pairs provides a logical expression of the system we have designed.

The behaviour of the 4 clock lines during any given clock cycle can be described using the
following predicates:

V (to:ftime) (f:Afsig).
CycleA to f = (—if (to)) A ( f (io + 1)) A (—vf (to + 2)) A (—\f (to + 3))

v (to:ftime) (f:1sig).
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CycleB to f = (~f (t0)) A (~f (to + 1)) A (=f (to +2)) A (£ (to + 3))

V (to:ftime) (f:fsig).
noCycle to f = (~f (t0)) A (=f (to + 1)) A (=f (to +2)) A (=f (to + 3))

V ¢4 ¢p:fsig (t:ftime).
CYCLEf ¢4 ¢é5 t=CycleA t ¢4 A CycleB t ¢

V ¢4 ¢p:sig (t:ftime).
no.CYCLEf ¢4 ¢p t = noCycle t ¢4 A noCycle t ¢

Véa, ¢B, da, dp,:fsig (t:ftime).
CLOCK.CYCLE.f$4, ¢p, 64, ¢5, t = CYCLEf$4, ép, t Ano.CYCLES ¢4, ¢5, ¢

In each clock cycle interval, we shall require that the following holds:

CLOCK.CYCLEA ¢4 ¢p sr-4 sr-¢p t V CLOCK_CYCLE { sr-¢ 4 sT-dp b4 bp t

7.1.2 Register Transfer Level

The time grain for the Register Transfer level corresponds to 4 intervals of finest grain time, or
precisely one clock cycle (of either system or shift register clock). For the system clock, the cycle
consists of the 4 points beginning with the point when ¢4 is asserted. (A similar pattern applies
to the shift register clock.) We map points in medium grain time to the first of these points.

el e e
N B B e B

1 . . ¢ to+4 to+8 to+12 to+16 to+20
timeginegrain | P wps | epe | ops i
timemed(umgrain 0 1 2 3 4 5

-6 [ TL
sr-¢p |_L [_l_

The existence of discrete clock phase lines is hidden entirely at this level. Normally, a register
transfer view abstracts away the clock entirely, but the existence of two distinct clocks requires that
we maintain signals at this level to indicate whether the system or shift register clock advances in
any given clock cycle. Thus, registers must retain an actual clock input, rather than treating the
clock as inherent in the time parameter. The correctness goal for the system will be constrained
to the case where only the system clock advances.

7.1.3 Top Level

The most coarse grain of time used to describe the system corresponds to the points when the
system is in major states of the top-level FSM (Idle, Errorl, Error2, and Top_of-Cycle). We map
from this coarse granularity to the medium grain points of time when specific microcode addresses
are in the mpc register. The mapping is not a linear function as was the mapping from medium to
fine grain time, since the number of cycles needed to execute any machine instruction varies, and
can vary between executions of the same instruction. The latter differences arise due to garbage
collection calls during instruction execution, as well as varying search distances required to load
values from the environment. The method of defining such mapping functions is well described
in [Mel88g).
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7.2 Data Types
7.2.1 Lowest Level

We represent the clock phase lines as functions from the fine grain of time to boolean values.
Boolean values are used to model all signals, aside from pseudo-nmos regular structures where the
modelling of pullup devices requires a tristate logic. The validity of this abstraction relies upon
several assumptions, including the ability of all signals to settle within one time interval and that
devices output acceptably strong-valued signals. Floating values of outputs are modeled by the
use of implication for defining behaviour. This gives rise to a proof obligation to show that circuit
nodes that may potentially be driven from multiple sources are only driven by at most one source
at any point in time. The problem is most readily observed for the single internal bus. Since
many values are gated onto the bus, the value of the bus is expressed by the use of implication.
If two devices are simultaneously driving opposite values onto the bus, the situation arises in the
abstracted circuit model where “T = F”. This problem is constrained if we prove independently
that no two devices ever drive the bus simultaneously.

Combinational logic devices are modelled as instantaneous, consistent with the assumption
that time intervals are sufficiently long to permit all signals to settle. Memory devices (registers or
latches), can be defined simply by giving the output at (fine grain) time (¢ + 1) in terms of input
and clock signal at time (¢).

latch wrt in out =
V t:time. out (t + 1) = wrt t = in t | out ¢

This type of definition is appropriate where the circuit consists of sequences of memory elements
clocked on alternating clock phases and separated by combinational logic. The level-triggered latch
devices used will actually produce the new output at the start of the clock cycle, rather than at
the end, although the value is latched at the falling edge of the clock. An optimization in the
fetch instruction microcode makes use of this observation, by utilizing the output of one latch (the
arg register) as an input of another (the nextmpe register), with both clocked on the same clock
phase. This has required a redefinition of the latch.

latch wrt in out =
V t:time. out (t + 1) = wrt (t + 1) = in (t + 1) | out ¢

This redefinition has the effect of shifting the output signal by one point in fine grain time: the
new output appears one interval earlier that with the previous definition.

7.3 Register Transfer Level

Signals abstracted to this level are really a sampling of the signals described at the finer grain.
Notice that signals hold the same value through 4 points in fine grain time starting at the point
when the register giving rise to the signal is latched. This holds for the mpc contents, from the
point when ¢ is asserted, and is a property we can prove for most outputs, given the inputs
behave and we clock as described, but other signals are off phase. Thus two sorts of stability are
identified, which we shall label ¢,-stability and #p-stability, determined by the clocking of the
memory device producing the signal.

It is clear that an output with ¢ g-stability is suitable as in input to a device clocked on ¢4,
and vice-versa. Further, with the definition of the latch behaviour above, devices clocked on the
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same clock line may feed each other provided that there is no circular feedback path®. Datapath
registers are clocked on a signal dependent upon both ¢4 and the write signal for the register, and
thus will not change every clock cycle. Clearly then, such a datapath register which is not clocked
in a cycle can feed any device latching on ¢. These complete the set of constraint relations that
arise between signals within the SECD chip at this level.

An external reset input has been provided to permit a deterministic startup of the chip state.
Asserting the reset input during a pulse of ¢ will force the mpc to 0 (the idle state). We
require the reset line to be ¢ 4-stable, and asserted at time t5, and never reasserted at any later
cycle. Further, the system clock ¢p must be asserted at the same time, in order for the reset to
occur. The button input will be constrained to ¢p-stability, since it is an input to the nextmpe
register latching on ¢ 4. ¢pg-stability of the mpc and flag outputs is readily derived from clocking
constraints. ¢ 4-stability of the datapath registers and memory is derivable from the clocking
constraints, the ¢p-stability of the mpe, and the resulting ¢p-stability of the register control
signals.

The behaviour of the system at this level is expressed in the composition of major components,
whose behavioural specification is proven from the implementation level. The control unit is
defined by 3 blocks: the mpc register and the 4 deep microcode stack, a ROM, and a DECODE
component, consisting entirely of combinational logic. The datapath consists of registers and
combinational logic devices (the alu, consunit, flagsunit, and an array of transmission gates
isolating the bus from memory output when not reading a memory location), with the bus modelled
as the wiring together of these devices. The behaviour of the shift registers when disabled® is
proved from the implementation, and we constrain the shift register controls and clock accordingly.
Additionally, the logic of the padframe (the bidirectional pads particularly) is specified in terms of
a mixture of ‘wordn’ and discrete signals, once again proven from the implementation.

7.3.1 Top Level

At the most abstract level, the SECD machine is defined in terms of transformations to S-
expressions in the 4 stacks, as shown in the first part of this report. A formal specification of
the top level behaviour is ideally defined in terms of transformations to an S-expression data type,
that closely resembles the elegant definition given by Henderson. The closer the resemblance the
better assured are we that the HOL specification is equivalent.

The method of implementing recursive function definitions as closures with a circular envi-
ronment component raises the complexity of the data representation problem considerably. Such
circular S-expression lists, created by destructive operations, cannot be mapped to a simple recur-
sive type. Further, structure is shared by S-expressions, particularly the environment component
of closures. In defining mutually recursive functions originating within a LETREC in LispKit,
each function closure references the same environment, which is also in the E “stack”. When a
destructive replace operation is performed to create the circular list structure, the change affects
all those components simultaneously.

Thus, a much lower level of representation has been chosen to describe the top level specification.
Rather than directly defining transformations to S-expression data type structures, we define an
abstract memory type which can contain representations of S-expressions. Further, we define a
set of primitive operations upon the memory which correspond to the operations on S-expressions,
namely cons, car, cdr, atom, replcar, dec, eq, leq, add, sub, mul, div, and rem. The 4 state

8 As described, the arg register is the only component feeding another register clocked on the same phase, and
the output of this second register, the nextmpe register, is an input to only one memory device, which is latched
on ¢pg. Thus no circular feedback path exists.

9Shift registers are disabled when not being clocked and when the input values are passed directly through to
cutput.
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registers contain values that reference the appropriate S-expression representation. Finally, an
additional free register containing a value to access the free list structure is needed to define the
cons operation. The state of the machine is then defined by a tuple:

(S,E,C,D, Free,memory, FSM state)

where the FSM state is one of the 4 major states of the top level finite state machine view of the
machine.

The implementation definition includes a memory function with simple read and write opera-
tions only. The task of the verification is to show that the sequence of operations performed on
the real memory commutes with the specification transition of the abstract memory.

s, ¢, ¢, d, free machine s’ e, ¢, d, free’

( ) ) .' ) ] tl’ansltlon ( ) k) i ? ,1 7’
memory imp, state) ———— memory imp’, state’)
abstrachionl labstmction

(s, € ¢, d, free,  specification (9 00 00 P free’,

transition

abs memory, state) —————— abs memory’, state’)

The abstract memory type p is basically a function :
p=6—(62ua)

where 6 is the domain of the function and « is the set of atoms:
a = integers U symbols

The set of symbols includes the symbolic constants: T, F, and NIL. The domain of the function is
chosen to be the type of 14 bit words, matching the type used by the implementation definition.
We extend the definition of memory to incorporate garbage collection features, by adding mark

and field bits to each cell: pt = 6 — ((bool x bool) x (62 Ua))

Additionally, we include the repledr, setf, and setm operators used by the garbage collector, as
well as a Garbage_collect function, which is left undefined for the first proof attempt. Extractor
functions mark, field, Int_of, and Atom_of are provided for the values returned by the g function.
The relevant built-in functions and their types are summarized in Table 2. Abstracting from the
implementation memory to the abstract memory type maintains the mark and field bits unchanged,
and maps the 28 bit field to the appropriate cons, integer, or symbol record based on the record
type bits.

As seen in the table, many of the functions return triples, consisting of a memory cell, a memory,
and a second cell which represents a free list pointer. Operations such as CAR, CDR, EQ, LEQ,
etc. do not alter memory, while Cons, ADD, SUB, setm, setf, Replcar, Replcdr do alter one cell
in the memory, and thus must return the new memory. In order to permit composition of the
primitive memory operations, we provide the CAR and CDR functions which return the unaltered
memory and free pointer. For example, to access an argument to a LD command, we can write

the following: let m = Int.of(CAR(CAR(CDR(c, MEM, free))))

In Table 3 we provide the top level transition specification for the AP instruction. Following
this, in Table 4 the set of 21 such transitions are used to define the next state of the machine for
each instruction, as well as the top level specification for the SECD.

We wish to verify the behaviour of the system only under very constrained conditions, repre-
senting the actual operating conditions of SECD. The major constraints include the following:

o Clock behaviour as described.
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Operation Type

Car, Cdr (O x ux8) =19

CAR, CDR (Exuxb)— (6xpxé)
Cons, Cons.tr (Ex86xpux8)—(6xuxb)
EQ, LEQ (6 x 6% px &) = bool
ADD, SUB, MUL, DIV, REM | (8 x 8 x s X §) — (8 X u X 8)
Replcar, Replcdr (ExExpx8 = (6xpuxb)
setm, setf (bool X 8 x pu x 8) = (8 x pu x §)
mark, field & — p — bool

Int_of (6 x 1 x 8) — integer
Atom_of (6xpuxb)—a

Atom (6 X 1 x 8) = bool

Is.int (6 x p x 8) — bool

Is_.TRUE (6 x u x 8) — bool
Garbage_collect (px8) = (px9)

Table 2: Primitive Operations on Abstract Memory Data Type

AP _trans (s:6,e:6,c:6,d:6,free:§, MEM:p) =
let cell.mem.free = Cons(e, Cons._tr(d,CDR(c,MEM,free))) in
let d_mem free = Cons.tr( cellof cell.mem free,
CDR(CDR(s,mem free_of cell.mem free))) in
let e_mem free = Cons (Car (CDR (s,mem_free_of d_mem._free)),
CDR (CAR (s,mem_free_of d_mem free))) in

(LKNIL, %S %

cell of e_mem_free, % E %

Car (CAR (s,mem_freeof emem _free)), % C %

cell_of d.mem.free, % D%

free_of e.mem_free, % free %
mem_of e_mem_free, % memory %
top-of_cycle) % FSM state %

Table 3: Transition for AP Instruction

The reset input is asserted at the start of machine operation and is never subsequently as-
serted.

Input signal stability as mentioned earlier.
The shift registers are disabled and the shift register clock does not advance.

The free list pointer is never NIL. (i.e. No garbage collection is required.) This constraint will
be eliminated in our next verification attemp.

The control list represents a valid program. This constraint concerns the form of the control
list, limits the instruction codes to the 21 machine instructions, and requires the appropri-
ate argument and environment structure for the individual instructions. For example, the
arguments to the LD instruction must reference a position within the environment list.
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NEXT (s:6,e:6,c:6,d:6,free:5, MEM:p) =
let instr = Int.of (CAR (c, MEM, free)) in
(instr = LD) = (LD.trans  (s,e,c,d,free, MEM)) |
(instr = LDC) = (LDC.trans (s,e,c,d,free, MEM)) |
(instr = LDF) = (LDF.trans (sie,c,d,free, MEM)) |
(instr = AP) = (AP.rans  (s,e,c,d,free, MEM)) |

(instr = LEQ) = (LEQ.trans (s,e,c,d,free, MEM)) |
(instr = STOP) = (STOP_trans (s.e,c,d,free, MEM)))

SYS_spec (MEM:u_csig)
(s:6 cvec) (e:5cvec) (c:6cvec) (d:6.cvec)
(free:6 cvec)
(reset:csig) (button:csig)
(state:state.csig)
= V tictime.
((s (t+1), e (t4+1), c (t+1), d (t+1), free (t+1), MEM (t+1), state (t+1)) =
(reset t = (s t, e t, c t, d t, free t, MEM t, idle) |
(state t = idle) =
(button t = (Cdr (CAR (LK.NUM, MEM t, free t)),
LKNIL,
Car (CDR (LK.NUM, MEM t, free t)),
LKNIL, LKNIL, MEM t, top_ofcycle) |
(styet,ct,dt, free t, MEM t, idle)) |
(state t = error0) =
(button t = (s t, e t, c t, d t, free t, MEM t, errorl) |
(st,et,ct,dt, free t, MEM t, error0)) |
(state t = errorl) =
(button t =>(s t, e t, ct, d t, free t, MEM t, errorl) |
(st et, ct, dt, free t, MEM t, idle)) |
(state = top_of_cycle) =
(NEXT (s t, e t, c t, d t, free t, MEM t))))

Table 4: Top Level Specification
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