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Abstract

This paper develops a new technique that finds lower bounds for
the complexity of programs that compute or approximate functions
in a realistic RAM model. The nonuniform realistic RAM model is
a model that uses the arithmetic operations {+, —, x}, the standard
bit operations Shift, Rotate, AND, OR, XOR, NOT (bitwise), com-
parisons and indirect addressing. We prove general results that give
almost tight bounds for the complexity of computing and approximat-
ing functions in this model. The functions considered here are integer
division, modulo, square root, ged and logarithms.

We also show that if we add the integer division to the realistic
RAM model then no nontrivial lower bound can be proven.

Our results can be also generalized to probabilistic, nondetermin-
istic and parallel RAM models.

1 Introduction

The literature contains many lower bound results for the complexity of com-
puting (or approximating) functions in random access machines (RAMs) that
use arithmetic operations, comparisons and indirect addressing. However,
no nontrivial lower bound is known when the RAM model also uses bit-
wise boolean operations or bit shift operations. This paper is the first that
attempts to define a realistic RAM and prove nontrivial lower bounds for
computing and approximating functions in this model.

Our computation model is the nonuniform random access machine (RAM)

with some fixed set of operations F' C {4, —, x,DIV,---}. An F-RAM, M,



has an unbounded memory M[0], M[1],---, where each location can store
an integer. The computation is directed by a finite program that consists
of instructions of the following type: direct and indirect addressing storage
accesses, conditional branching (IF-THEN-ELSE) and operations from F.
Each of them can be executed at unit cost. For a function f : /" —
N™. where N is the set of nonnegative integers, the complexity of f in the
F—RAM, Cp(f,n), is the maximal number of steps taken over all inputs of
size n and over all programs that compute f. We also define Cp(f, A\,n) to
be the complexity of A—approximating f, i.e., the program outputs f* where
RS S

The set of operations F' considered in the literature are either the arith-
metic operations or the arithmetic operations with the addition of integer
division. The first known lower bound is Q(rlogn) for sorting n elements
using only comparisons (£ = §§). Ben Or [B] gave tight lower bounds for deci-
sion problems in the {+, —, x, /}—RAM model without indirect addressing.
Yao [Y] generalizes Ben Or’s result by restricting the inputs to be integers.
Both papers, [B] and [Y], give tight bounds for the complexity of computing
the functions modulo, integer division and greatest common divisor (gcd)
of two integers in the {4, —, X, /}~RAM model without indirect address-
ing. Paul and Simon [PS] developed a new technique that handles RAM
models with indirect addressing. The technique they used can be applied to
prove tight bounds for the complexity of computing the functions modulo,
integer division and ged in the {+,—, X,/}—RAM with indirect address-
ing. Bshouty [BS2,BS3] and Mansour, Shieber and Tiwary [MST2,MST3]
gave other techniques that handle {4, —, x, /}—RAM models with indirect
addressing when the domain of the input is finite. Mansour, Shieber and
Tiwary found a new technique that establishes lower bounds when the RAM
model also contains the integer division DIV. They proved that there does
not exist a program with complexity O(1) that computes the ged function
in the {4, —, %, /,DIV}-RAM model. Mansour, Shieber and Tiwari [MST*],
and Bshouty, Mansour, Shieber and Tiwari [BMST], also apply these new
techniques for computing the square root. Other resulis for this model can
be found in [Bs0,Bs4,BJM,H,JM,S].

There are many other lower bounds in different RAM models but there
were no nontrivial lower bound results for the complexity of functions in a
realistic computer model. One that also uses bits operations such as bit-
wise AND, XOR and AND and bitwise shift operations such as Rotate and



Shift. In this paper we develop a new technique that handles RAM models
of computation that contain the bitwise boolean operations and the bit shift
and rotate operations. Our techniques find lower bounds for the complexity
of computing and approximating functions in a realistic RAM model. The
realistic RAM model is an R—RAM where

R = {+,—, x, R-Shift, L-Shift, R-Rotate, L-Rotate, AND, OR, XOR, NOT}

(R- and L- stand for Right and Left). Our model also has indirect addressing
and comparisons. All the lower bounds in this paper are true even if the RAM
model has unlimited power for answering YES/NO questions. The boolean
operations in the R-RAM can be executed on any consecutive bits. For
example, L-Shift(M[k], ¢, j) is an operation that shift the bits ¢, 4+ 1,...,J
in the content of M[k] to the left. Therefore, if

MLk = mgpamm_y - - Mjp1M;Mj_q * - MMy,

is the binary representation of the k-th memory content then
L-Shift(M[k],2,7) = - - mipami_imi_y - - - mypam;0m;_y - - - mymy.

To the best of our knowledge, prior to this work, no lower bounds are
known for the complexity of functions using the operations in R.

It is true that the model will be more realistic if we also add the integer di-
vision operation to the set of operation R, but it has been proven by Bshouty,
Mansour, Shieber and Tiwary [BMST] that all functions with one variable
can be computed with complexity O(1) if the integer division DIV is added
to the model. This implies that no nontrivial lower bound can be proven for
functions with one variable in the model R U {DIV}—RAM. In this paper
we push this result further. We prove that no nontrivial lower bound can be
proven for any function (or any language, in the sense of decision problems)
in the RU {DIV}—RAM model.

The following table summarizes our results. (Here Q(k) = Q(k/ log k))



Complexity A-approximation | a-approximation
any constant A
I -
z? Q(#ﬁ) Q(Gxﬁﬁ):—n) Q(logn — loglog o)
R\{x}-RAM O(n) O(n) O(n)
XY (# ﬂ(ﬁgﬁ):—n) Q(logn — loglog o)
R\{x}-RAM O(n) (n) O(n)
DIV(z,y) A2s) (k) Q(logn — logloga)
R-RAM 0O(n) O(logn) O(logn — loglog o)
z mod y (ﬁ) (%%) Q(logn — loglog @)
R—-RAM O(n) O(n) O(n)

IV A25) Q(poE) Q(logn — loglog )
R-RAM O(n) Oflogn) O(logn = loglog )
ged(z,y) ﬂ(l_‘,:n ) Q(l_g_o:)lo:n Q(logn — loglog «)
R-RAM O(n) O(n) O(n)

[log z] ﬂ(lo:)lo:n) Q(TLOSTO%) Q(loglogn — loglog o)
R-RAM O(logn) O(loglogn) O(loglogn — loglog o)
[loglog =] (lolgoli:)]go:n) Q(loz)ﬁ:ﬁ;]&c:n) Q(logloglogn — loglog o)
R-RAM O(loglogn) O(logloglog n) O(logloglogn — loglog o)

F(ml,...,zk)
k constant e(1) e(1) o(1)
RU{DIV}—RAM
F(zy,...,zr)
Any r o(r) O(r) O(r)
RU{DIV}-RAM
[szel
Finite L C N7 O(r) o(r) o(r)
RU{DIV}.RAM
Table 1: Summary of Results
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The first column in the table contains the functions that we are consid-
ering in this paper. The second column contains the complexities of exactly
computing those functions. The third and forths columns contain the com-
plexity of A-approximating the functions for constant A and a-approximating
the functions for any a. Each row in the table is split into two. The upper
one is for the lower bound and the lower one is for the upper bound. In the
first two rows we have lower and upper bounds for computing the the square
of an integer and the product of two integers in the R\{x}-RAM. Rows 3-
8 contain lower and upper bounds for computing integer division, modulo,
integer square root, greatest common divisor, integer logarithm and integer
double logarithm. The last three rows in the table tell the reader that when
we add the integer division DIV to our model then no nontrivial lower bound
can be proven.

Notice that all the lower bounds in this paper are for the nonuniform
R—RAM model and therefore they also apply for the uniform R—RAM




model. In the nonuniform model we allow one unit cost for exponential
size of integers, unbounded memory and distinct programs for different in-
put size so a lower bound in this model implies lower bound for any weaker
model. Unfortunately, the upper bounds do not necessarily apply for the
uniform RAM model (otherwise, the result in the previous paragraph proves
P=NP and solves the integer factoring problem). The upper bounds we have
in this paper are important in the sense that they show that it is impossible
to prove certain lower bounds.

2 Definitions

Let F' be a set of random access machine (RAM) operations. Any F-RAM
program, P, can be regarded as a computation tree Tp with labeled vertices.
The label of vertex v is denoted by [,. The tree has five types of vertices:

e Input vertex: The root of the tree Tp is the input vertex that assigns
the input of the program to M[1],..., M[n].

o Computation vertices: Each computation vertex v has one child and is
labeled with a binary operation M[i] « M[j] o M[k] where o € F.

o Assignment vertices: Each assignment vertex v has one child and is
labeled with one of M[i] « a for some constant a, M[i] « M[j] or

M[i) — MIM[j))

o Comparison vertices: Each comparison vertex v has two children and

is labeled with “M[i] > 07”.

o Halt vertices: The halt vertices are the leaves of Tp. Each leafis labeled
with Halt.

The computation in Tp begins at the root of the tree. We always execute
the command in the vertex and go to its child. In the comparison vertex
we go to the left child if M[:] > 0 and to the right child otherwise. The
computation in Tp terminates when we arrive at a leaf. The outputs of
the function are in M[1],..., M[s], where s is the number of outputs. It is
obvious that the complexity of computing f in a program P is the height of
the tree Tp.



When the program P does not contain IF-THEN-ELSE commands, then
we say that P is a straight line program.

Let A and B be sets of integers. A generator program that generates B
from A with the operations in F' is a straight line program that uses only
the constants in A and generates the constants in B using the operations
in F'. The complexity of a generator program is the number of operations
used in the generator. We define Ap(A, B) to be the minimal number of
operations needed to generate the integers in B using only the integers in A
and the operations in F'. We also define Ag,i\)(A, t) to be the minimal number
of operations needed to generate a constant ¢ such that t/\ < ¢ < M using
only the integers in A and the operations in F'.

The set of operations we shall consider in this paper is

R = {+, —, x, R-Shift, L-Shift, R-Rotate, L-Rotate, AND, OR, XOR, NOT}.
Here R-Shift and L-Shift are as defined in the introduction and
AND(a,b,4,7) = ---a; - aipr(a; AN b;) - -+ (aj A bj)aj—y -+ ag

where - -aja;—1 -+ - ap and --- bjbj1 - - - by are the binary representations of
and b, respectively, and A is the and boolean operation. It is easy to verify
that the operations in R can be simulated in O(1) using the operations

{+,—, x, R-Shift(a, i,0), NAND(a, b, ,0)}

where for two bits z and y, £ NAND y = z A y. For example, L-Shift(a, 1, j)
can be simulated in O(1) steps using NAND, multiplication by 2 and the
constants 211 — 2771 927 and 2/ — 1 as follows:

be—a b= aiyy @i a; a1 ag
NAND(a,24' = 27714 0)  a=---aipq 0------ 0 @j_1---do
NAND(b,27 —1,4,0) b=vrtipq oo a 0-:-0
be2xb b=--aip@ aq---a0 0---0
NAND(a, b,,0) a=:Q41 G-1- a1l a;_q---ao.
a—aq— a=---a ai—l"‘aj() aj-1---ao.

We will also assume that when the RAM uses the subtraction @ — b then
a > b. The RAM can always simulate computation with positive and negative
numbers using only positive numbers. This can be done by saving each
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number in two memory cells one contains the absolute value of the number
and the other contains its sign. This gives O(1) blow up time. Therefore,
without loss of generality, we assume that

R = {+, -, x, R-Shift(a,7,0), NAND(a, b, i, 0)}

and the memory cells always contain positive integers.

All of the lower bounds in this paper are true even if the model has
unlimited power for answering YES/NO questions.

Other notation that will be frequently used in this paper is the following.
For a set, H, the number of elements in I will be denoted by |H|. Unless
stated otherwise log will always mean log,. The set of integers is A/ and
N; ={0,1,...,5}. For an integer a we will write a = - -- a;a;_, - - - ajao for
the binary representation of a where aq is the least significant bit of a. The
number [a];; is @;a;_y...a;. For a vector a = (ai,...,a,) € N, [a];; =
([a1]i gy -+, [an)i;) and for a set of vectors S we write [S];; for {[s];;|s € S}.

3 Complexity of exactly computing functions

3.1 The main theorems

In this subsection we will give a general theorem that implies lower bounds
for the complexity of exactly computing functions.

The following lemma uses a simple counting argument to show that with
“few” constants and operations there is an integer in a set of integers H that
requires at least log |H |/ loglog |H| operations to be generated.

Lemma 1 Let H C N*®. Let W be a set of constants and F be a set of
operations where |F|+|W| < (log |H|)°W). Then, there exists (t1,...,t,) € H

such that
log |H]| )

t,...,ts)) 2 _—
AF(Wa(la 7t)) Q<10g10g|H|

(Here, s = O(1) with respect to |H|)

Proof. The proof follows from a simple counting argument. The number
of generator programs with at most h steps is less than or equal to

(FIWEYAFIWI+ 1)) (IFI(IW] + k= 1)) < [F["(|W] + ).
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This is because after ! steps we have |W| + [ constants, so we can choose
any two constants wy and wy (< ([W] 4 [)? possible choices) and choose an
operation o in I’ and then generate the new number w; o w,.

Since the number of programs is greater than or equal to the number of
elements in /H modulo the order, we get

P+ me >
This implies the result of the lemma.0

The next corollary shows that the bound in lemma 1 is tight when F' =
{+,x}, W ={0,1} and H = {1,---,t}.

Corollary 1. Let F' = {4+,x} and W = {1}. Any integer in H =
{1,---,t} can be generated with log?/loglogt operations.

Proof. Let ¢ € H and let a = @ja;_---ay be the binary represen-
tation of a. We first generate all the numbers 0,1,2,3,...,2" — 1 where
b = |logl — loglog!|. This takes 2° < I/logl < t/logt addition opera-
tions. Then compute 2°,2% ... 2U/4 This takes I/b < 21/logl < 2t/logt
multiplications. Now we can write a as

a=a® 4+ W20 4 o@D L ..y Wow

where 0 < aU) < 20 and y < |log a/b] < [I/b]. We use this to compute a
using 2y < 4t/log! more operations. Notice that all al) were computed in
the first round and 2/° in the second.O

The main theorems in this section are:

Theorem 1 Let f : N — N°® be an integer function. Let T be an integer,
ccE ./\/'27,1 and M C N7, be a such that

[M]ro = {e}. (%)

That is, all the elements in M agree on the least significant T+ 1 bits. Then,
the complezity of computing f for inputs of size n in the R-RAM model is

log |[f(M)]rol )
loglog [[f(M)]rol )

Cr(f,n) ZQ(



Theorem 2 Let f : N7 — N be an integer function. Let T,€ be an integer,
¢ € Nj. and M C N}, be such that

[M],¢ = {c}.
Then, the complezity of computing f for inputs of size n in the R\{x}-RAM

model 1s
log |[f(M)]r )
loglog |[f(M)] el

We will give the proof for theorem 1 here. The proof for theorem 2 is
almost identical and will be left to the reader.
Proof of Theorem 1. The proof will be for the set of operations

Cryxy(f,n) 2 0 (

R = {4, —, x, R-Shift(a,,0), NAND(a, b,4,0)}.

All the other operations in the realistic RAM model can be simulated by the
operations of R in O(1) steps. Let H = [f(M)],o. Let P be a program that
computes f for inputs of size n with complexity Cg(f,n). We change the
program to a computation tree Tp as described in section 2. If the number
of leaves in Tp is greater than |H|'/2, then the height of Tp, which is the
complexity Cr(f,n), is greater than (1/2)log |H| = Q(log |[f(M)],o|) and
the result follows. Therefore we may assume that the number of leaves in
the tree Tp is less than |H|[Y2. Since |[f(M)],o| = |H|, and each input
z € M terminates the computation at some leaf of the tree, there exists
a leaf v in the tree such that the set of inputs M’ C M that arrive in the
computation at this leaf satisfies |[f(M')],o| > |H|*/? (Pigeon-hole principle).
Let H = [f(M')],0. Then

h=|H'|>|H|"

The path from the root to the leaf v computes f for the inputs in M’. We
now take this path and delete all the comparison vertices in it. We will
be left with a straight line program that computes f for the inputs in M’.
Let P' = Py, Py, ..., P, be the instructions in this straight line program. If
n > log |H| then the result follows because the height of the tree, which is
the complexity of the program, is at least 5. Therefore we may assume that
the number of commands in this straight line program satisfies

1 <log|H|.
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Now the proof proceeds as follows. We will change this program to gener-
ators that uses different operations and generate the constants in H’. This
generator will have a complexity that is in the same order as the complexity
of the program. Then we will use lemma 1 to pick up a constant in H’ that
is “hard to generate”. This gives a lower bound on the number of operations
for the generator and therefore for the program.

To formalize the above let Wps and Rpr be the set of constants and the
set of operations, respectively, that are used in the straight line program P’.
Define the set of constants

W = (We mod 271U {27,271 — 1} U C,

where C' is the set of entries of the vector & in (x). W will be the set of
constants that will be used in the generators. We now define a new set of
operations R. The set R contains the operations {+yr+1, —gr+1, Xgr+1 }. Those
are the arithmetic operations modulo 27+, i.e., a+4r+1b = (a+b) mod 27+,
It also contains NAND(a, b,2,0) for 0 <7 < 7 and R-Shift(a,,0) for 0 <7 <
7. We define )

R=(RNA(Rp))U {4341}

where A(Rp') = {A(z)|z € Rp/} and for z € Rpr, we have

" z2=—
+or+1 z=4
Xor+1 z=X

A(z) = { NAND(x,+,7,0) == NAND(M]a], M[8],i,0) and i > r
NAND(x,%,7,0) == NAND(M[a], M[8],,0) and i < r
R-Shift(x,7,0)  z = R-Shift(M[a],7,0) and & > 7
R-Shift(%,2,0)  z = R-Shift(M[a],7,0) and i <7

The set R will be the set of the operations that will be used in the generators.
Since )
(W[ <|[Wp|+7r+2<n+r+2<0(log|H|)

and

|RI < |Rp/| +1<p+2 < O(log |H]),

by lemma 1, there exists £ € H' such that

. log |H'| log | H|
(W H>0l——— | =0 ——— . 1
Ar(Ws1) _Q<loglog|H' log log |H| (1)
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Now, we will show that
1 .
Crlfin) 2 S AR, 1) )

and then combining this with (1) will give the result. To prove (2) we will
show how to change the straight line program P’ to a generator program that
generates ¢ from W using at most 3Cg(f,n) operations in R.

By the condition () in the theorem and since t € H' = [f(M")],, and
[M'];0 C [M], = {c}, there exists @ € M’ such that

[aro=c , [f@lo=t

We now substitute a in the algorithm P’ as an input and observe the least
significant 7 bits in the numbers generated by the algorithm P’. We will
show that using the constants in W and the operations in R we will be able
generate the first 7 bits of the numbers generated in P’.

First we need to get rid of the indirect addressing in the algorithm. Since
the input in P’ is a fixed integer @, all indirect addressing can be changed
to direct addressing and then M[i] in the algorithm can be replaced by its
content. The resulting program P = P'(a) is a generator program that
generates f(a) from the entries of @ and the constants in Wps using the
operations in Rpi. We now change the generator algorithm to a new generator
algorithm that generates f from the constants in W using only the operations
in R. Step P; in algorithm P will be changed to step ['(F;), defined as follows:

(1) We change all the constants a in the algorithm P to a’ = ¢ mod 27+1.

(2) If P, = (a « boc) where o € {+, x}, then we change the step to

I(P)=d « bV oy .

(3) If P; = (a « b— ¢) then if (b mod 27*') > (¢ mod 27*1) we change
the step to

(1, — b/ —9o7+1 CI
and if (b mod 271) < (¢ mod 27*!) then we change it to the following three
steps
a" — (27+1 _ 1) —— 14 ;(l" - C/_+_ 1; a — am—l—(L”.
(4) If P, = NAND(a, b,7,0), then
_ | NAND(d",¥,7,0) 7>,
F(P) = { NAND(a’,¥,3,0) <7
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(5) If P; = R-Shift(a,4,0), then

R-Shift(d’, ,0) 1> T,a,41 =0,
['(P;) =4 R-Shift(a/,7,0); @’ «d' +27 i> 7 0,41 =1,
R-Shift(a’, 7,0) 1< 7.

We will show that the new generator generates f from W using the op-
erations in R. To show this we will prove by induction that the constants
generated in the new generator a’ satisfy ' = a mod 277!, First Notice that
from (1) all the constants a used in P are replaced by a’ = a mod 27+!.
In particular @ is replaced by @ mod 27*! = [@], o = &. Now assuming that
b =bmod 27" and ¢ =c mod 27*! we have the following cases.

Case I. P, = (a « boc) where o € {+, x}. Then

a = Voyud

= (Moc) mod 27!
= ((bmod 2"} o(cmod 27) mod 27*!
= (boc) mod 2" =a mod 27*.

Case II. P, = (a « b—c¢). Then we have b > ¢. If bmod 27+ >
cmod 27*! then, as in case I, we have @' =a mod 271!, If b mod 27! <
cmod 27*! then we have

a/ — 27+1 +b'—c'
= (b—c) mod 27%!

= amod 27T,

Case IIL. P; = NAND(q, b,7,0). This command take the least significant
¢ bits in b and takes the NAND of it with a puts the result in a. Since
a’ = a mod 2711 is the least significant 7 bits of a the NAND of the modulo
is the modulo of the NAND.

Case IV. P, = R-Shift(a, ¢,0). This is a right shift of the least significant
¢ bits of @ to the right. If : < 7 then the least significant 7 bits of the shift
is the shift of the least significant 7 bits. If 7 > 7 then the resulting shift
depend on whether the 7 + 1 bit of @ is 0 or 1. If it is 0 then we have the
same as before. If it is 1 then we add this bit by adding 27 to the shifted
number. In all cases a’ will be a mod 27%!.
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This complete the proof of the claim.

Since the number of steps in the new generator algorithm I'(P) is less
than or equal to 3 times the number of steps in P, the result (2) follows.O

Notice that in our proof we haven’t used the fact that the queries in
the comparison verteces are comparisons. Therefore the lower bound of the
theorem follows even if the RAM model has unlimited power for answering
YES/NO questions.

3.2 Lower bounds

In this subsection we show how to use Theorem 1 and 2 to prove lower bounds
for the complexity of (exactly) computing functions.

Result 1. Let E; : Non — Nyn be the integer function that computes
the square of integers. Then

n
) Ey) >0 .
Cr\(x(E2) 2 (logn)
Proof. We will use theorem 2. Let M = {1,2,...,2"}, 7 = 2n and
¢ =n+ 1. We have [M]3, 41 = {0} because for any z € M, [z]ynpn1 =
DIV (z,2"*1) = 0. Now we show that [Ey(M)]anne1 > 2°/3. Then using

theorem 2 the result follows.
Let z > 2(2/3(+3)  Then

T n/372 22
- [EZ(«'E)]Zn,n-H = l( +2[i1 .‘) J - \\271_},1“

z? 4 2223 z?
= on+1 T ontl
> 1.

(B + [2%))]

2n,n+1

-2

This shows that for z = 2@/3)(+3) 4 4[9/3] 'y = 1,... [2%/3], the integers
[E2(2)2nnt1] are distinct. Therefore the set [Ey(M)]anne1 contains at least
2 — 2(2/3)(+3) 1 1 distinct elements.D

Result 2. Let x : N2 — Nyn be the integer function that computes
the product of two integers. Then

n
> .
Crip(x) = & (logn)
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Proof. Follows immediately from result 1.0
Result 3. Let DIV : N2 — Nys be the integer division function. Then

CR(DIV)ZQ( - )
logn

Proof. Let n be even and M = {(2¥/%F1z, 27/24)|z = 1,2,...,2%/* 1},
We choose 7 = n/2. Then [M],o = M mod 2*/? = {(0,0)}. Now since z =
2 (201 € [DIV(M)],0for 2 = 1,2,...,2%/*  we have [DIV(M)],o| >
2"/2=1, Now by theorem 2 the result follows.O

Result 4. Let mod : N2 — ANjn be the modulo function. Then

Cr(mod) > Q( - )
logn
Proof. Take M = {(2"%y,2"/* — 1)ly = 1,2,...,2%/* — 1}. Then
M mod 2% = {(0,2/% — 1)} and since 2*/%y mod 2/ — 1 = y we have
that |[mod(M )]z 6| = 2*/% — 1. Now by theorem 1 the result follows.O
Result 5. Let Vo Nan — Nynpz be the integer square root function.
Then

o 0()

Proof. Let n = 4k. Consider M = {2V%y|y = 1,2,---,2"/% —4}. Then
[M],L/Q_LO == {0} NOW,

V22 +8)] = (V2] = 22y +8) = 2/ — 2

on/1g
— ______2
Vy+4+ .y
> 4-2=2.

Therefore “\/(M)]n/Z—l,O‘ > 2%/2/16 and by theorem 1 the result follows.O

Result 6. Let ged : Nj. — Naa be the integer function that computes
the greatest common divisor of two integers. Then

Cr(ged,n) > Q ( n ) .
logn
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Proof. Letn =4k m=n/2and A€ {1,3,5,...,2"/* + 1} be an odd
integer. Since A is relatively prime to 2™ there is an integer by < A such
that

42" =1 mod A.
Now define the set

M = {(ba2™ —1,A2™) | A=1,3,5,...,20%1 41},

Since b2™ — 1 < A2™ < 2" we have M C N}.. Take 7 = |n/3]. Then
M, 0= {(27"" — 1,0)}. Now, since

ged(b42™ — 1, A2™) = ged(bs2™ — 1, A) = A,
we have
f(M))ro={1,3,5,...,204 —1} and  |[f(M)],] > 21741,

therefore, by Theorem 1,

R (1;flg[{[ng{A)4]>]l|) =0 <1g> .

Result 7.

logn
> .
Cr(log,n) 2 & (log log n>

Proof. We take M = 2"/2N,./» and 7 = logn. It can be shown that
[M];0={0} and |[f(M)],0] = n, so by Theorem 1 the result follows.O

A similar proof yields the following.

Result 8.

Cr(loglog,n) > Q ( loglog n >

log loglogn

4 Complexity of A-approximating functions

4.1 Lower bound

In this section we prove lower bounds for A-approximating functions. To
prove the main result we first prove a lemma similar to lemma 1.
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Lemma 2 Let W be a set of constants and F be a set of operations such
than |F| 4+ [W| < (loglog |[H)°®). Let H = {1,2,...,r}. Then there exists
t € H such that

loglog |H| — log A
AP, > o 228 .
F(Wht) 2 log log log |H |

Proof. The number of generator programs with < & steps is less that
or equal to

c S [FIM(IW)?--- (W] + ).

Let G1,- -, G. be those generator programs and let ¢y < t, < --- < ¢, be the
integers that they generate, respectively. Then G; is a generator program
that A-approximates all the integers in [t;/A, At;]. Next we will show that if
¢ <log|H|/log A — 1 then

O[ti//\, £ 4 H.

We first show by induction that #; < Z;Zl M. Notice that if & > X then
the integer 1 in H is not generated by those generators which gives a con-
tradiction. Therefore ¢; < A. Assuming ¢; < 2;21 Nif iy > Z;’;‘l N then
Sliice

bin

A

there is an integer between t;41/A and Ai; that is not been approximated by
any one of the generators. This gives a contradiction. Therefore

—M; > 1

|H| < Xt < At

which implies that ¢ must be greater than or equal to log |H|/log A — 1 and
the result follows.O
The proof of the Theorem 3 is similar to the proof of Theorem 2.

Theorem 3 Let f : N™ — N be an integer function. Suppose that for every
integer n there exist integers T, £, a vector ¢ € N, and a subset M C N,
such that

[M]ye = {c}.

16



If [f(M)}Tyf = {1727"'77’} then

cR\{X}(“n)m( log log |[f(M)),¢| — log A )

log(loglog |[f(M)]r¢l —log A)
If € =0, then

C’R(f/\n)ZQ( loglog |[£(M)]0| — log ) )

log(log log |[f(M)], 0] —log A)

This theorem provides all of the approximation results in Table 1.

4.2 Upper bounds

In this subsection we prove two upper bounds. The first upper bound proves
the bounds for the square root, logn and loglogn in the table. The second
result shows that adding integer division to the model solves all the problems
in computer science (in the nonuniform model which allow one unit cost for
exponential size of integers, unbounded memory and distinct programs for
different input size).

Theorem 4 Let f : N' — N be any monotone nondecreasing function. Then

Cr(f,n) < Olog f(N3-))

and

Cr(f;A,n) < O(loglog f(2") — loglog \).

Proof.  We will save integers vy, f(v1),...,vs, f(vs) in a table. This
sequence satisfies v; < vy < -+ < vy and for every 7 we have

f(vi):f(vi+1):"':f(vi+1"1)7&f(vi+l)’

Now f(z) for any integer z can be computed using a binary search in the
table for ¢ such that v; < 2 < v;y; and then f(z) = f(v;) is the value in the

table after v;.
log f(2" ]

We now prove the second statement. Consider the list 1, A, A?,-- -, )\[ to8 2

with the list of f~'(X*). The program simply does a binary search for the
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input z in the second list. If f~1(A7') < z < f~Y(\), then X' is a A
approximation for f(z). The binary search takes

log([log f(2")/log(A)]) = loglog f(2") — loglog A + O(1)

operations.O
Obviously, the above proof gives a nonuniform program for computing

f(=).
Theorem 5 For any function (fi,..., fi)(z1,...,2;), we have
Crutpvy((fiy -+ -y fr)yn) = O(k + j).

Proof . Since the domain of the inputs is finite (./\/'{n), we may assume
that fi,..., fx are polynomials (interpolation of a finite number of points).
For £ =1 and j = 1 the proof can be found in [BMST]. The idea of the
proof for any k and any j is the following. We pack the inputs zq,...,z; in
one input (e.g. X = 2y + 252" 4.+ 42,2070 1)) and we pack the output
f1,+++, fr in one integer output. Then we use the Bshouty, Mansour, Shieber
and Tiwary result [BMST] to compute a polynomial with one variable in
O(1) operations and then unpack the output. The costs of the packing and
unpacking in RU {DIV'} are O(k) and O(j), respectively.O

5 OPEN PROBLEMS

We list two open problems

1. Find a nontrivial lower bound for computing functions in the R U
{DIV}-RAM when the integers in the program are not allowed to
grow exponentially large with the input size.

2. Are the lower bounds in this paper tight?

Acknowledgment. I would like to thank David Wilson for proofreading
the paper.
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