The Implementation and Verification
of a Conditional Sum Adder

Jungang Han

Glen Stone

Department of Computer Science
University of Calgary
Calgary, Alberta
Canada T2N 1N4

ABSTRACT

In this paper we first formulate the Conditional Sum Addition (CSA) algo-
rithm, then design an area-time efficient Conditional Sum Adder in CMOS. We
also design a Binary Look-ahead Carry adder and a fast ripple carry adder in the
same technology for the comparison of their performances. finally we formally
prove that the CMOS implementation of the CSA adder is correct (i.e. the
implementation meets the specification of the intended behavior) by using Mike
Gordon’s Higher Order Logic (HOL) system.

1. Introduction

Among the possible choices of fast binary adders for VLSI implementation , carry look-
ahead adders are widely used. In the case of relatively small word-size, ripple adders still have
their advantages. Many practical designs combine different adders to achieve proper compromise
between time and area requirements.

Brent and Kung [1] have presented a regular layout of carry look-ahead adder by reformu-
lating the computation of carrys , we call this kind of adder Binary Look-ahead Carry (BLC)
adder [2]. BLC adder performs addition of two n-bit numbers in O(log n) time using O(n log n)
area. It has been implemented by Brent and Ewin in NMOS [3).

An algorithm for fast addition - Conditional Sum Addition (CSA) was presented by
J.Sklansky [4] early in 1960. It is possible to design a 64 bit adder with up to five or six times the
ripple adder performance by using CSA algorithm, but it needs larger size of area [5].

In order to make the concepts of conditional sum addition clear and the algorithm
appropriate to VLSI implementation, in section 2, we formulate the CSA algorithm, which was
described in [4] only by examples. In section 3 , we design a CSA adder and a BLC adder in
CMOS. In section 4, we compare the performance of CSA adder with BLC adder and fast ripple
adder. In section 5, we briefly describe the formal verification of the CMOS implementation of the
CSA adder by using Gordon’s HOL system [6].

2. The CSA Algorithm
In order to specify the CSA algorithm formally, we introduce the following definitions.

Deflnition 1

let
A=A,.. A2 A,

and

B=B, .. BB,
be n-bit and m-bit binary numbers respectively, where A;,B; are either 0 or 1, We refer to the
(m + n)-bit binary number

C == An ...AgAl Bm Bz B]
as the concatenation of A and B, and use the symbol "&” to denote the operation of con-
catenation, i.e.

C=A&B.
We say that A is a n-bit piece of C and B is a m-bit piece of C.

For example, if A = 101 and B = 1001, then
C = A & B = 1011001.

Definition 2

Let

A=A, . A
and

B = BI.+J' . B.‘

be two binary numbers or two (j+1)-bit pieces of other binary numbers. We define that the con-
ditional 0-sum S, (conditional 1-sum) is the bit i to bit i+] of the sum of A and B under
the assumption that the carry from bit i - 1 to bit i is 0 (1), and that the conditional O-carry
Co (conditional 1-carry C,) is the carry from bit i+j to bit i+j+1 while adding A and B
under the assumption that the carry from bit i- 1 to bit iis 0 (1).

For example, if A = 1010 and B = 0101 then their conditional 0-sum S, 1-sum S, , 0
carry Cg and 1-carry C, are

So = 1111
S = 0000
Co=0

Ci=1.

Particularly, if j = 0 in definition 2 then A and B are 1-bit binary numbers A = A; and B
= B, we can use the following logic expressions to compute the conditional sums and carrys.

So=A,® B,
Si1="(A:19 B,y
Co=A1/\ B
Ci=A\/ B,

where
® denotes exclusive or
/\ denotes logical and
\/ denotes logical or
" denotes logical not

and the logic 1 (true) and O (false) are considered to be equal to number 1 and 0 respectively .

Obviously the following lemma is correct .

Lemma 1

For any two n-bit binary numbers (n > 0) , if their conditional O-sum , 1-sum , conditional
O-carry and l-carry are So,51,Co,and C respectively then

S, =S80+ 1(MOD2")
and
C, 2 Co.

If the summand A = A_h & A_l and the addend B = B_h & B_| (provided that A_h and
B_h have equal number of bits), how to compute the conditional sums and carrys of A and B
using the conditional sums and carrys of A_h and B_h as well as the conditional sum and carrys
of A_l and B_1 ? The following theorem answers this question.

Theorem 1
Let A_l= Aiyj LA Ag,
A_h = Ai+j+le -~A-'+j+1,
Bl = Bi4; ...BiuBi,
B_h =B|'+j+k ‘-~B|'+j+1
wherei > 0,j>0andk >0

be binary numbers or pieces of binary numbers, and
the conditional 0-sum of A_h and B_h is S¢_h,
the conditional 1-sum of A_h and B_h is §_h,
the conditional O-carry of A_h and B_h is Cg_h,
the conditional 1-carry of A_h and B_h is C'y_h,
the conditional O-sum of A_l and B_lis Sq_],
the conditional 1-sum of A_l and B_lis §_1,
the conditional O-carry of A_land B_lis C¢_l,
the conditional 1-carry of A_l and B_lis C;_l,
the conditional 0-sum of (A_h & A_l) and (B_h & B_1) is S,
the conditional 1-sum of (A_h & A_l) and (B_h & B_1) is Sy,
the conditional 0-carry of (A_h & A_l) and (B_h & B_l) is C,,
the conditional 1-carry of (A_h & A_l) and (B_h & B_1)is C';.

then we have the following equations.
So = Sl_h & So_l,if 0()_ =1 otherwise So = So_h & So_l y
Sl B Sg_h & Sl_l,if C]_l = 0 otherwise Sl = Sl_h & 51_1 N
Co= C_h if Cy_l = 1otherwise Co = Cq_h and
C,= Co_h if C,_] = 0 otherwise C; = C_h.

Proof

First we find out what the bits i to i+] of Sy should be. According the definition Sy is the i
to i+j+k bits of (A_h & A_l) + (B_h & B_]) under the assumption that the carry from bit I - 1
to bit i is 0. Note that the bits i to i+j of A_h & A_l and B_h & B_] are the same as that of A_]
and B_] respectively , so the bits i to i+j of the conditional 0-sum of A_h & A_l are the same as
that of A_l + B_l under the same assumption, i.e. Sq_] equals the the bits i to i+ of Sy.

Next we figure out the bits i+j+1 to i+j+k of Sq. If Co_l = 1, then from lemmal we have
Cy. 1 =1, i.e. both Co_l and C-l are 1. In this case according the definition of Co_land C_1,
we know that whatever the carry from bit 1 - 1 to bit i is , the carry from bit i+] to bit i+j+1 is
1, so the bit i+j+1 to bit i+j+k of Sq should be the same as that of S_h, because S;_h is the
bit i+j+1 to j+j+k of the sum of A_h and B_h under the assumption that the carry from bit i+j
to bit i+j+1is 1. IF Co_l = 0, the carry from bit i+j to bit i+j+1 is 0 while adding (A_h *A_l)
and (B_h & B_1), so the bit i+j+1 to bit i+j+k of ((A_h & A_l) + (B_h & B_l)) are the same as
that of (A_h + B_h) under the assumption that the carry from bit i+j to bit i+j+1. In another
word, the bit i+j+1 to bit i+j+k of Sq equals that of So_h.

From the above we have
So= S1_h & So_lif Co_l =1 otherwise Sg = So_h & So_l.

-4-

The rest the proof are similar to the above.

From this theorem we can develop a procedure to compute the conditional 0-sum S, condi-
tional 1-sum S, conditional O-carry C¢ and conditional 1-carry C of two longer binary numbers
A= A_h & A_] and B = B_h & B_| using the conditional 0-sum S _h, Sq_l, conditional 1-sum
$1_h, §1_1, the conditional O-carry Cqo_h,Cq_l, conditional 1-carry C;_h and C,_I.

Procedure P(SQ_],Sl_l,Co_l,C1_‘1,50_}1,5 1_h,00_h,0l_h,50,s I,Co,c 1)
begin
if Co_l=1then Sg:= 5, h& So_lelse Sp:= Sy_h & S¢_|
if Co_h=10then §;: =S5, h& S _lelse S;;=85, h& S,
if Co_l=1then Cog:= C_helse Cq:= Co h
if Ci_1=0then C;:= Cq helse C;:= C_h
end

This procedure is used iterately in following algorithm.

CSA Algorithm
input: the summand A =A, .. A3 A,
the addend B= B, ... B, B,
(for convenience provided that there exists m> 0,
such that n =2m)
output: the sum of A and B
(i.e. the O-carry along with the 0-sum of A and B)

begin
SP (i):= A; @ B;
SP (i):="(A; ® B;)
cP (i)= A /\ B
CP (i)=Ai \/ B

end.

fork=0tom-1do
begin
forj=1to2m-k-1do

begin

Procedure P(S§(2j-1),5¢ (2j-1),C§ (2j-1),C¥ (2j-1),
S6(21),51 (20),CH (20),C*t (2),
56+ (), 51+ 6).C8+ (3),CE 1 ())
end
end

the sum of A and B is
A+B=(Cp (1) &(Sg (1)).

3. The Design of CSA and BLC Adder

3.1. CSA Adder

The CSA algorithm described in section 2 performs additions of two n-bit (n = 27)binary
numbers(addthings) by computing the conditional sums and carrys for each 1- bit piece of the
two addthings first, then for each 2-bit piece, each 4-bit piece, , till n-bit piece . The condi-
tional O-sum along with the conditional 0-carry of n-bit addend and summand is the normal sum
we want. To implement the algorithm fast, we should make full use of the advantage of parallel
computation, so we use n identical circuits to compute the conditional sums and carrys for each
bits. the circuit shown in Fig.1 is the CMOS implementation of those logic expressions in the CSA
algorithm. We use GO to denote this circuit.

LIS M b e T
L _4[1 N Abjlr cl 4[— .

N I S i

I
T

Vss

Fig.1. CMOS circuit for computing conditional
sums and carrys of each bit

Once we have generated the conditional sums and carrys for each bit, all we have to do next
is to pass some of them through or select some of them to output under the control of some
inputs iteratively. What the procedure P does is to compute the conditional sums and carrys of
2k-bit piece of the addthings using the conditional sums and carrys of 2-l-bit piece of the
addthings.In procedure P, the input $o_1 and $;_] are input data which are just passed to output;
Coland Cy_| are the input data which control the selection between input data S o h, Sy _h and
Co_h, Cy_h. The functional block diagram implemented P is shown in Fig.2. If we use PE to
represent the hardware implementation of Procedure P, then the n-bit CSA adder can be con-
sidered as a tree which has n leaves nodes(Gs) and n-1 non-leave nodes (PEs), we call it CSA
adder tree. Such a tree for 8-bit CSA adder is shown in Fig.4.

Cl.h sl h Ccl.1 s1.1
cQ_h| so_h cQ 1| sp 1

Selecting

Circuit

VN WV WV v\

Fig.2. Block diagram of the implementation of Procedure P

GO GO GO GO GO GO GO GO

VARNAVARRVARAY

PE1 PEl PEl PE1l

PE2 PE2

=

PE3

Fig.3. The adder tree for 8-bit CSA adder

a-q_J LD_b vdd
L .0 Gt
c J _Z.—]_%:. | out
HC L J G LA
1 [

Fig.4. 2-input fast multiplexer

Unfortunately, only those PEs in the same level of the tree are exactly the same. the nodes
located in different level however are similar in function and structure. The only unit circuit in
PEs is 2-input multiplexer, so the speed of CSA adder mainly depends on the delay time of the
multiplexers. Spice simulation tells us that the multiplexer which consists of transmission gates is
slow. Furthermore, when the signals generated from cell GO transmit toward output, The logic
level will be degraded if no buffers are inserted into the path. Here we use the restoring logic
multiplexers shown in Fig. 4 which acts as a strong buffer as well as a multiplexer. Some special
considerations of its layout made it very fast (delay time 3.5ns).

PE1 consists of four 2-multiplexers, PE2 consists of six 2-multiplexers . In general PEn
consists of 2* + 2 multiplexers. If the number of bit of the CSA is doubled, we have to design
one new PE cell. because the delay time of cell PE is one 2-input multiplexer delay time, the
CSA adder should use O(log n) time to perform n-bit addition. It has the same computational
complexity as BLC adder, The floorplan for 4-bit CSA adder is shown in Fig.5.

B4 | 1-bit
-1 csa PE1
24
mux
_| X4 PE2
B3 1-bit
] CSA nux
A3
X6
B2 | 1-bit
1 “csa PEl
a2
mux
_] X4
Bl 1-bit
-1 csa
Al

Fig.5 the floorplan of 4-bit CSA adder

3.2. BLC Adder

In order to compare the CSA adder with other fast adder, we design a BLC adder using the

same CMOS technology. the design is similar to its NMOS counterpart described in [3].

We use two complementary black processors cell BA and BB(Fig.6(a) and (b)) which per-
form the operation "0” defined by Brent and Kung in [1] and two white processors cell WA and
WB (Fig.6 (c) and (d)) which act as buffers and wire the black processor cells. The cell GO which
produces the generate term G; and propagate term P; from the input A; and B; is shown in

Fig.7(a). The cell SO which produces the sums (S; = P; O C;_; is shown in Fig.7(b).

vdd . —t vad

s t":pj sql Jp-*d[b
p’—c| - b

I' I ? "o F e

Vss : Vss

Fig.6(a) Cell BA Fig.6(b) Cell BB

>_
{>o_

Fig.6(c) Cell WA

[
[

Fig.8(d) Cell WB

[j -‘L vdad
S0 L o g et
—4[1 L[| HP::
Fig.7(a) Cell GO -
Su
Y.
—C HC R e
S

Fig.7(b) Cell SO

.9-

The floorplan for a 8-bit BLC adder is shown in Fig.8. It is fairly straightforward to expand
the layout to any number of bits.

GO | BB |AB | BB | WB | WB | SO

GO | WB | WA | WA | WA | BB | SO

GO | BB | WB |WA | AB | WB | SO

GO | WB | WA | WA | WA | BB | SO

GO | BB|AB | WB | WB | WB | SO

GO | WB | WA | BB | WA | WA | SO

GO | BB |WB | WB | WA | WA | SO

GO | WB | WA | WA | WA | WA | SO

Fig.8 . Floor-plan for 8-bit BLC adder.

We have laid-out the CSA and BLC adder in static COMS. The area taken up by these
adders along with the Spice simulation results are shown in table 1. We also compare them with
the fast ripple adder which was designed for a signal processing chip by one of authors of this
paper. We assume that the load capacitance is 0.1pF and that the highest logic "0” voltage level
is 0.25 V, the lowest logic "1” voltage level is 4.5 V while counting the delay time of the Spice
simulation results.

Area and Time Requirement

No Different Adders
of Ripple BLC CSA
Bits size delay size delay size delay
() (ns)) (ns) () (ns)
4 258X278 6 410X278 8 540X278 7
8 258X542 12 570X542 12 760X542 10
16 258X1070 24 730X1068 16 1028X1070 14
32 258X2122 48 890X2122 20 1350X2122 18
64 258X 4258 96 1052X4258 24 1810X4258 22

In order to make the comparison of area easier, we use the same pitch height in the layout
for all the three adders. It can be seen from table 1 that the CSA adder is faster than BLC
adder, nevertheless It demands larger size of area. Notice that the ripple adder here is faster than
general straightforward serial adder.

-10 -

4. Formal verification of the CSA adder

We have done some Spice simulation of the circuit of CSA adder, but only for some typi-
cal inputs. By running circuit simulation (or other kind of simulation such as switch level and
logic level simulation) we can predict the performance of the design and verify the correctness of
the design but only for theses typical inputs. It is impossible to exhaust all acceptable inputs
even for a 8-bit adder.

Hardware verification is a technique by which one can formally prove that the design
meets a specification of its intended behavior.Instead of doing simulation for all possible inputs we
give a formal verification to show that the design is correct for all the acceptable inputs.

Mike Gordon’s HOL system (6] (a mechanization of Higher Order Logic) which can handle
circuits, sub-systems and complete architectures is a powerful proof generating system. We use
Higher Order Logic to specify the implementation and intended behavior of the CSA adder and
prove that the implementation meets the specification of the behavior by the proof generating
tools in HOL system.

We take the 8-bit CSA adder as an example to describe the idea of proof. From the 8-bit-
csa adder tree in Fig.3,it can be seen that the 8-bit CSA adder consists of two 4-bit CSA adders
and a processing unit PE3. As we said before, the role of PE3 is to select and transfer signals, so
we take the type of word built in HOL system, which was used by Mike Gordon for proving a
small computer in the level of register transfer, to represent the summand, addend and sums of
the CSA adders here, and we use the type of bool to represent carry signal.

The intended behavior of a 8-bit CSA adder can be defined in Higher Order Logic by fol-
lowing predicate eight_bit_csa_spec, but at first, we define conditional 0-sum(s0), 1-sum(sl),0-
carry(c0) and 1-carry(c1) of two 8-bit word w1 and w2 by following definitions, Note that the type
of wl and w2 in HOL are word8, represented by "(wl:word8) (w2:word8)”, VALS is a constant in
HOL and (VAL8 w1} is the value of wl.

let sum0_8 = new_definition
(‘sum0_8",”}(s0:word8)(w1:word8) (w2:words8).
sum0_8 s0 wl w2 =
(VALS s0 = ((VAL8 w1 + VAL8 w2) < (2EXP 8)) =>
(VAL8S w1 + VAL8 b) | ((VAL8 w1 +VALS w2) -(2 EXP 8)))");;

let suml_8 = new_definition
(‘sum1_8¢,”!(s1:word8)(w1:word8)(w2:word8).suml_8 sl wl w2 =
(VAL8 s1 = (((VAL8 w1 + VAL8 w2)+ 1) < (2EXP 8)) =>
((VAL8 w1 + VALS w2) +1) |
(((VAL8 w1 +VALS w2) +1) -(2 EXP 8)))");

let carryl_8 = new_definition
(‘carryl_8‘,”!(c1:bool)(wl:word8)(w2:word8).carryl_8 ¢l wl w2 —
(cl = (((VAL8 w1 + VAL8 w2) + 1) < (2EXP 8))=>F | T)");

let carry0_8 = new_definition
(‘carry0_8‘,”!(c0:bool)(wl:word8)(w2:word8).carry0_8 c0 wl w2 =
(c0 = ((VAL8 w1 + VAL8 b) < (2EXP 8)) =>F | T)");
Now we define the specification of the behavior of 8-bit CSA adder:
let eight_bit_csa_spec = new_definition
(‘eight_bit_csa_spec’,
"!(w1:word8) (w2:word8)(s0:word8) (sl:word8)
(c0:bool)(c1:bool).
eight_bit_csa_spec wl w2s0sl c0cl =
sum0_8 s0 wl w2 /\
suml_8 sl wl w2 /\

11 -

carry0_8 cO wl w2 /\
carryl 8 cl wl w2”);;

On the other hand We specify the implementation of the 8-bit CSA adder.
let eight_bit_csa_imp = new_definition
(‘eight_bit_csa_imp*,
”{(w1:word8)(w2:word8)(s0:word8)(s1:word8)(c0:bool)(c1:bool).
eight_bit_csa_imp w1l w2 s0 sl ¢0 cl =
?s0_1s1_1¢0_1cl_1s0_hsl_hcO_hcl_h.
(four_bit_csa_imp (low_field4 w1) (low_fieldd w2)
s0_1s1_1c0_l el 1) /\
(four_bit_csa_imp (high_field4 w1) (high_field4 w2)
s0_h s1_h ¢0_h c1_h) /\
(PE3_imp s0_l s1_1 ¢0_1 c1_1s0_h s1_h ¢0_h c1_h s0 s1 c0 c1)
")

Here "low_field4 w1” was defined to be lower 4-bit of w1, and "high_field w1” was defined
to be the higher 4-bit of wl.

We can define the implementation and specification for 2-bit and 4-bit CSA adder in the
same way.

We have proved following theorem:
|- twl w2.eight_bit_csa_imp w1 w2 s0 sl ¢0 ¢l ==
eight_bit_csa_spec wl w2 s0 sl c0 cl
which means the implementation of 8-bit CSA adder meets the specification of its intended
behavior.

The idea of the proof of above theorem is roughly similar to the proof of the algorithm in
section 2 but involved much more details of arithmetics we have to prove a bunch of theorems
about arithmetics by forward or tactics proofs before starting to prove above theorem.

The proof for 2-bit, 4-bit and 8-bit CSA adder are basically the same, but we have to go
down the transistor level and use the bidirectional model of transistor for the proof of 1-bit CSA
adder and processing unit PEs, though the proof is straightforward. Here we take the proof of
correctness of the fast multiplexer shown in Fig.4. as a example. The specification of the intended
behavior of the multiplexer:
let mux1_spec = new_definition

(‘mux1_spec *,”!(a:bool)(b:bool)(c:bool) (o:bool).
muxl_spec ab ¢o= (o= (c=> b]a)));

The implementation of the multiplexer :

let mux1_imp = new_definition

(‘mux1_imp‘,”!ab ¢ o.
mux1_imp (a:bool)(b:bool) (e:bool)(o:bool) =
?pl p2 p3 p4 p5 pb p7 p8.

inv_imp ¢ pl /\
inv_imp p2 o /\
pwr_spec p7 /\
gnd_spec p8 /\
ptran_spec a p7 p3 /\
ptran_spec b p7 p4 /\
ptran_spec ¢ p3 p2 /\
ptran_spec pl p4 p2 /\
ntran_spec a p8 p5 /\
ntran_spec b p8 p6 /\
ntran_spec pl p5 p2 /\
ntran_spec ¢ p6 p2);;

-12-

Here we take the transistor, power and ground as primitives, the correctness of inverter in

the circuit was proved beforehand.

The correctness of the implementation of the multiplexer is given by the theorem
|- ta b c o.muxl_impabco==> muxl_specabco

The following HOL script proves and stores the above theorem.

let STRIP_EXISTS_TAC =

DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC);;

let mux1_imp_correct = prove_thm

(

5.

‘mux1_imp_correct’,

"!a b ¢ o.muxl_imp ab ¢ 0o ==> muxl_specab co”,
REPEAT GEN_TAC THEN
REWRITE_TAC [mux1_imp;muxl_spec;inv_correct;pwr_spec;
gnd_spec;ptran_spec;ntran_spec;inv_spec] THEN
BOOL_CASES_TAC "a” THEN BOOL_CASES_TAC "b” THEN
BOOL_CASES_TAC "¢” THEN REWRITE_TAC({THEN STRIP_TAC THEN
FIRST [ASM_REWRITE_TAC [|THEN
EVERY_ASSUM (\ th.SUBST1_TAC (SYM th) ? ALL_TAC) THEN
FIRST [ACCEPT_TAC (ASSUME "~ p8”)

; ACCEPT_TAC (ASSUME "p7”)|

ASM_REWRITE_TAC [[THEN RES_TAC THEN
EVERY_ASSUM (\ th.SUBST1_TAC (SYM th) ? ALL_TAC) THEN
FIRST [ACCEPT_TAC (ASSUME "~ p8")

; ACCEPT_TAC (ASSUME "p7”)]]);;

Conclusion
We have formulated the CSA algorithm, and suggested a design of the CSA adder in

CMOS. The layout of CSA and BLC adders as well as the Spice simulation results have shown
that the CSA adder described in this paper is area-time efficient, It can perform n-bit addition in
O(log n) time, but demands larger size of area. Its layout is regular but needs more wiring
efforts than BLC layout. Furthermore we have formally proved that the implementation of the
CSA adder is correct by using HOL proof generating system. We feel that the work we have done

is

a meaningful experiment for implementing and proving a device or subsystem by available

CAD tools .

6. References :

(1]. Brent,R.P.,and Kung,H.T. "A regular layout for parallel adders”. IEEE Trans.comput. C-
31{Mar.1982),pp.260-264.

[2]. Weste,N. and Eshraghan K. Chapter 8 in "PRINCIPLES OF CMOS VLSI DESIGN”
ADDISON-WESLEY PUBLISHING COMPANY 1985, pp.326-331.

[3]. Brent, R.P. and Ewin, R.R.”Design of an NMOS parallel adder” TR-CS-82-06 , Department
of Computer Science, The Australian National University,1982.

[4]. Sklansky, J. "Conditional sum addition logic” IRE Trans. Electron.Comput. Vol.EC-9
(June 1960), pp.226-231.

[5]. Ware,F.A. Mcallister, W.H.,Carlson,D.S., and Vlach,R.J., "64 bit monolithic floating point

processors”, [EEE J.of solid-state circuits, Vol.SC-17, No.5,0ct 1982, pp.898-907.

- 13-

[6]. GordonM. "HOL:A Proof Generating System for Higher-Order Logic” in VLSI
Specification,Verification and Synthesis,Ed.G.Birtwistle and Subrahmanyam, Kluwer
1987.PP.73-128.

