
THE UNIVERSITY OF CALGARY

STARLOG: FROM SEMANTICS TO

EXECUTION

BY

VINIT NAGARAJA KAUSHIK

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1991

® VINIT NAGARAJA KAUSHIK 1991

1+1
National Library
of Canada

Canadian Theses Service

8ibliothèque nationale
du Canada

Service des theses canadiennes

Ottawa. Canada
KI A 0N4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distiibute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Cmacta19+1

L'auteur a accordé une licence irrevocable et
non exclusive permettant a La Bibliothèque
nationale du Canada de reproduire, prêter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quetque forme
que ce soit pour mettre des .exemplaires de
cette these a la disposition des personnes
in téressées.

L'auteur conserve Ia propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

ISBL 0-315-71189-2

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "Starlog: From Semantics to Execution"

submitted by Vinit Nagaraja Kaushik in partial fulfillment of the requirements for

the degree of Master of Science.

Supelsor, DJ.John C. e:ry
Department of Computer Science

Dr. Graham Birtwistle
Department of Computer Science

Dr. Bxian Gaines
Department of Computer Science

Dr. Ali Kazmi
Department of Philosophy

Date June 6, 1991

11

Abstract

Logic-programming languages allow logical formulae to be executed as programs.

These languages are lacking when used to model change. Towards a declarative

solution to this problem, Cleary designed a logic-programming language Starlog,

which uses negation and arithmetic constraints over an explicit, real-valued time.

In this thesis, we introduce Starlog's bottom-up execution, give a procedural

semantics to the execution method, and prove its correctness for definite, logic pro-

grams. (Definite programs do not use negation.) To demonstrate Starlog's feasibil-

ity, we have implemented an interpreter that executes bottom up, provides a notion

of real-valued time, supports logical arithmetic, and deduces negations efficiently.

Here, we describe the rewrites used for implementing negation and our extension of

Cleary's logical, interval arithmetic to the domain of negations. Finally, we compare

Starlog with related approaches and suggest directions for shaping it as a practical,

logic-programming language.

111

Acknowledgements

This research has been supported financially by Graduate Teaching and Research

Assistantships from the University of Calgary and by my supervisor, Dr. John G.

Cleary.

I write this part after having raised and refined the chapters in this thesis. It is

a release from the technical, and I feel like thanking life and all humanity for the

experience. In fear of indulgence, I shall acknowledge only the major contributions.

I am grateful to John Cleary for opening this window to a fascinating world of

logic programming. I thank him for his patience, especially when commenting on

draft after draft of this thesis, and for his anecdotes. I still marvel at his clear thought

and speech. He would anchor me when I would drift, when Chinooky winters thawed

into golden summers.

Thanks are due to Ian Witten for sharpening my writing style and to Alan Dewar

and Susan Rempel for helping with a Prolog interpreter.

My thanks go to friends Anja Haman, Rosanna Heise, Zoran Kacic-Alesic, and

Vishwa Ranjan for fielding games and extra-curricular activities.

I shall always remember the prompt and cheerful service of the Department's

staff. Unseen and unsung, the system administrators at the Department have taken

care of computing resources; I appreciate their effort.

I dedicate this thesis to my parents, who have nurtured my scholarly interests.

iv

Contents

Approval Page

Abstract

Acknowledgements iv

List of Figures viii

1 Introduction 1
1.1 Mutation and Persistence 2

1.1.1 Approaches to Assignment 2
1.1.2 Assignment: The Problem 3
1.1.3 Assignment in Starlog 4

2 Starlog: The Language 7
2.1 Primitives, Syntax, and Pragmatics 7

2.1.1 Primitives 7
2.1.2 Syntax 8
2.1.3 Pragmatics 9
2.1.4 Programs 10

2.2 Logical Arithmetic 10
2.3 Explicit Time 11

3 Starlog Execution: An Informal Treatment 13
3.1 Background 13

3.1.1 Model Theory Vs. Proof Theory 13
3.1.2 Deduction: Bottom Up Vs. Top Down 15
3.1.3 Least-Fixpoint Computation 16

3.2 Starlog Execution 17
3.2.1 Program 2-3-5 17
3.2.2 Gleaning Information from Heads 23
3.2.3 Program Assignment 24
3.2.4 Recapitulation 24
3.2.5 Debugging 26
3.2.6 X-computations Exploit Parallelism 27

V

4 Formal Semantics for Definite Starlog 31
4.1 Notation and Terminology 32
4.2 Idempotent Unifiers: An Assumption 33
4.3 Soundness of Definite Starlog 34
4.4 Completeness of Search 46

5 Negation in Starlog 64
5.1 Temporal Stratification 65
5.2 Type Mismatch: Error or Failure? 66
5.3 Negation Strategy 67

5.3.1 Forward Rewrites 67
5.3.2 Return Rewrites 68

5.4 Execution of not-exists 73
5.4.1 Example 73
5.4.2 General Execution 76

6 Comparison with Related Approaches 79
6.1 Partial Deduction 79
6.2 Prolog 80

6.2.1 Updates 80
6.2.2 Negation 81
6.2.3 Execution 82

6.3 Committed-Choice, Logic-Programming Languages 82
6.4 Logic Data Language 84
6.5 Linda 86
6.6 Connection-Graph Theorem Proving 87
6.7 Temporal Logics 89
6.8 Constructive Negation 91

7 Conclusions and Future Work 94
7.1 How We Implemented Starlog 94

7.1.1 Origins 94
7.1.2 Building Starlog 95
7.1.3 Tuples in Practice 96

7.2 Declarativeness 96
7.2.1 Negation 97
7.2.2 Logical Arithmetic 97

7.3 Formal Semantics 99
7.4 Performance 100

7.4.1 Information Flow 100

vi

7.4.2 Garbage Collection 100
7.4.3 Scheduling 101
7.4.4 Active Negation 101
7.4.5 Parallel Execution 102

7.5 Conclusions 102

Bibliography 104

A Starlog Syntax 107

B Example, Starlog Programs 108
B.1 Prime Numbers 108
B.2 Bouncing Ball 108
B.3 Temporal-Database Update 109

vii

List of Figures

1.1 A Variable's Lifetime. 3
1.2 Program Assignment. 4

3.1 Program 2-3-5. 18
3.2 Legend. 19
3.3 Initial X-tree for Program 2-3-5. 19
3.4 Two Stages in an Execution of Program 2-3-5. 22
3.5 Three Stages in an Execution of Program 2-3-5. 23
3.6 Program Assignment. 24
3.7 A "Compressed" X-tree for Program Assignment. 25
3.8 Deduction of Tuple val([1 .0,3.0) a, v). 29
3.9 Deduction of Tuple val([3 .0 ,+inf) a, w). 30

4.1 Descendance: An Example. 39
4.2 Definite Program Pqrl. 42
4.3 A Finite X-tree for Pqrl. 43
4.4 An Infinite X-tree for Pqrl. 43
4.5 Definite Program Pqr2. 50
4.6 A Big X-tree for Pqr2. 50
4.7 A Small X-tree for Pqr2. . 51

5.1 A Generate-and-Test Program. 65
5.2 Forward Rewrites. 68
5.3 Rewrites for Inversion of Timestamp Constraints. 69
5.4 Rewrites for General Inveräion of Arithmetic. 69
5.5 Remaining Rewrites for Inversion. 70
5.6 Rewriting not-exists As not: Examples. 71
5.7 Execution Trace to Motivate Partitioning. 71
5.8 Inter-Relationship of Constraining Intervals. 72
5.9 Rewrites Via Partitioning. 72
5.10 A Portion of an X-tree. 74

7.1 Possible Inversion of Existential Negation. 97

viii

Chapter 1

Introduction

Language shapes the way we think,

and determines what we can think about.

- B. L. Whorf

Logic-programming languages permit declarative or logical formulae to describe

computation and be executed as programs. A problem troubling these languages

is that of expressing change, both mutation and persistence. This problem arises

in areas as varied as event-driven simulation, databases, operating systems, and

hardware verification. Starlog [CK91], a new, logic-programming language, is de-

signed to address this problem declaratively. It advocates the use of negation and

arithmetic constraints over a real-valued time to express change. Starlog resembles

the well-known, logic-programming language Prolog [CM81] in syntax, but executes

differently.

In Chapter 2, we provide an overview of the Starlog language. We demonstrate

Starlog execution in Chapter 3 as a prelude to the following Chapter 4, which for-

mally defines Starlog execution and proves its semantic correctness. Chapter 4 is the

core of this thesis, but might jolt the reader with its sudden recourse to very-formal

definitions and proofs. Care has been taken to ensure that it can be safely skipped

on the first reading. Chapter 5 discusses Starlog's active negation. Chapter 6 com-

pares Starlog with related approaches. Finally, Chapter 7 takes a look at how we

1

CHAPTER 1. INTRODUCTION 2

implemented the Starlog interpreter, suggests future work, and presents our conclu-

sions. The rest of this chapter discusses the problem of mutation and persistence to

introduce Starlog's approach.

1.1 Mutation and Persistence

Mutation of an object is destructive or in-place assignment to it. For example, by as-

signing to a variable in a (conventional-language) program, the variable is mutated—

its old value is over-written by another one. (We use the word "object" in a general

sense, to encompass structures that might be as simple as a variable or as complex

as an entire database.) Persistence of an object is its value's existence over a period

of time, e.g., a variable's value persists from the time an assignment caused it until

the next assignment. Mutation and persistence are general phenomena. Therefore,

it is important for programming languages to support them.

1.1.1 Approaches to Assignment

Imperative-programming languages offer operators to carry out assignments on vari-

ables in a program. Functional-programming languages, such as Lisp [W1181], realize

that assignment transgresses their formal basis in the)-calculus, but for efficiency—

both space reuse and fast execution—they offer operators such as setq and set!.

Similarly, many logic-programming languages have sacrificed their declarative se-

mantics and offer operators such as assert and retract to simulate assignment

and to improve efficiency by adding lemmata that store intermediate results for later

reuse [Kow85].

CHAPTER 1. INTRODUCTION 3

Preserving state information is complicated in pure functional and classical-logic

languages because their formal calculi—involving A-expressions and predicates—do

not support variables that can be accessed and mutated globally, i.e., by different

parts of a program. Destructive assignment requires locations to be associated with

variables and a notion of ordered execution; neither requirement is directly supported

by classical logic. Therein lies the problem in supporting mutation and persistence.

In [Kow85], after discussing the problem of destructive assignment, Kowalski con-

cludes that it is "possibly the single most important problem of logic programming."

Starlog offers a declarative way of simulating destructive assignment. In Starlog,

constraints on explicit timestamps are used to enforce the notion of sequencing. We

now motivate Starlog's approach by simulating assignment to variables.

1.1.2 Assignment: The Problem

Since arithmetic intervals allow a compact notation, we will use them for illus-

trating ranges of real values. For example, instead of the conjunction of con-

straints (3 > T, T >= 1) over T, we bind T to the more compact [1,3). Fig 1.1

depicts the life—in terms of a real-valued time—of a variable 'a'. At time 1. 0, the

Lifetime of Variable 'a':

. . .

0.5 1.0 1.5 2.0 2.5 3.0 3.5

val([1.0,3.0),a,v) I val([3.0,+int),a,w)
0.

set(1.0,a,v) set(3.0,a,w)

Figure 1.1: A Variable's Lifetime.

CHAPTER 1. INTRODUCTION 4

variable is assigned or set to a value v, and at time 3. 0, it is assigned a value w.

(We are considering simple, ground values only to simplify this discussion.) From

the "definition" of assignment, the variable should have a value v at each point in

time from 1 .0 until—but not including-3 . 0, i.e., the value v should persist over

the half-open interval [1.0,3.0) of real-valued time. (There are many definitions

that can be used for assignment. Let us use this one for discussion.) Similarly, the

value w should persist through each point in time after—and including-3 .0, i.e.,

over the time interval [3. 0 .1 +inf). (+inf and -inf denote the positive and negative

infinities, +oo and —oo, limiting the scale of real values.)

1.1.3 Assignment in Starlog

Fig 1.2 shows a program that simulates the assignments in Fig 1.1 and specifies the

variable's lifetime. (We generally follow the convention that capital letters be used to

% Program Assignment.
% A variable 'Var' has a value 'Val' from---and inclusive of---the time 'Ts',
% when it was set, until---but not including---a time 'Tn', when it is set again.

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val),
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)).

set(1.0,a,v). % at time 1.0, set variable 'a' to a value Y.

set(3.0,a,w). % at time 3.0, set variable 'a' to a value W.

Figure 1.2: Program Assignment.

denote variables and small letters to denote constants in a program. The symbols '-'

and '<-' are used interchangably to mean "implies.") In this program, the rule for

val(T, Var, Val) states that a variable named Var has a value Val at a time T if

there is a time Ts in T's present or past—this is the constraint T >= Ts—when Var

was set to a value Val. Now, the value Val should be given by the most-recent

CHAPTER 1. INTRODUCTION 5

assignment with respect to T. So, through the not-exists negation in the body, the

rule additionally states that there should not be any time Tn between T and Ts—this

is through the constraints T >= Tn and Tn > Ts—when Var is set to some value New.

The not-exists construct, which denotes "there does not exist," allows the fresh

variables Tn and New to be introduced locally within the negation.

val([1. 0,3.0) ,a,v) and val([3 .0 ,+inf) ,a,w) are assertions of the program

in Fig 1.2, when viewed declaratively as a piece of logic. Henceforth called tu-

ples, assertions are logical consequences of the program. As we will see later, in

Chapter 3, Starlog can execute the program to produce these tuples, as well as the

tuples set(1.0,a,v) and set(3.0,a,w).

In general, we would like tuples that faithfully extract as much as is specified

by the bodies of rules. If an arithmetic variable appears in the head of a rule, we

would like its range of values narrowed or squeezed as much as is permitted by

the constraints appearing in the rule's body. We would also prefer that solutions be

simplified. If a variable T is constrained to lie in the interval [1. 0,3. 0), then instead

of solutions that instantiate T to each real number in turn in that range, which is

infinite, the range itself should be presented. Ranges should also be used, wherever

possible, for efficiency. As can be seen from the predicate definition for val in Fig 1.2,

the positive atom T >= Ts in the body can only serve to compute the lower bound

of T's interval; the upper bound has to be deduced from the atom T >= Tn, which is

within a negation. This means that both negation and arithmetic have to be active

and logical in Starlog. They must be able to generate bindings and constrain search

to make Starlog's execution effective and efficient.

In essence, Starlog advocates the use, over explicit time, of arithmetic constraints

CHAPTER 1. INTRODUCTION 6

and negation to express mutation and persistence. Having briefly introduced Star-

log's approach, we take a look at the language itself in the following Chapter 2.

For more interesting programs, the reader may refer to Appendix B, [CK91], and

[Cle9O], which develops a Starlog program that uses sectors to carry out a mixed-

mode—continuous-time and discrete-event—simulation of colliding objects.

Chapter 2

Starlog: The Language

Starlog is a logic-programming language that supports, arithmetic constraints and

a notion of time. Its negation works like a logical constraint—being capable of

both receiving and generating bindings (or values) for variables. The rules in a

Starlog program can be non-clausal since existentially-quantified variables can be

introduced through the not-exists predicate, but they must belong to a subclass of

first-order formulae that are expressed in prenex conjunctive normal form (PCNF)

[Llo87, page 18]. Henceforth in this thesis, we use "rule" to mean an acceptable

formula in a Starlog program, "rule-instance" to mean a Starlog formula deduced

from a program, and "tuple" to mean the head of a unit rule-instance or assertion

deduced from a program.

In this chapter, we discuss Starlog's primitives, syntax, pragmatics, notion of

time, and logical arithmetic.

2.1 Primitives, Syntax, and Pragmatics

2.1.1 Primitives

The following are Starlog's declarative, built-in predicates:

• >, >=, and =: = are the "greater than," "greater than or equal to," and "equal

to" arithmetic constraints.

7

CHAPTER 2. STARLOG: THE LANGUAGE 8

• <, <=, and ! = are the "less than," "less than or equal to," and "not equal to"

arithmetic constraints.

• + (X, Y, Z) and * (X, Y, Z) are the relational, arithmetic constraints that the sum

and product, respectively, of X and Y is Z.

• real (X) and notreal (X) are the constraints that X is or is not real valued.

• mt (X) is the constraint that X is an integer.

• = and =1= are the general equality and inequality constraints for arbitrary

terms.

As yet, there are no primitives for input and output from programs or for user

interaction, but declaratively incorporating these and other real-world requirements

into Starlog is being considered.

2.1.2 Syntax

Starlog programs follow the Edinburgh-style syntax for Prolog [CM81]. The bodies

of rule-instances can be of the following forms:

• a user-defined predicate of the form p(T,U1,... ,Un) where T is a timestamp,

and Ui,... ,Un are arbitrary terms. We use the word "timestamp" to mean an

arithmetic variable (or value) that can take on only time values.

• a built-in predicate, e.g., Ui >= TJ2.

9 a negation of a valid body L, e.g., not (L).

CHAPTER 2. STARLOG: THE LANGUAGE 9

• a quantifying negation of the form not-exists Xl,... ,Xm: (L).

Here, Xl,... ,Xm are variables quantified existentially within the negation, and

L is a valid body.

• a conjunction of valid bodies, e.g., (Li, L2, ...).

• a disjunction of valid bodies, e.g., (Li; L2; ...).

Appendix A formally specifies Starlog's syntax in Backus-Naur Form (BNF).

2.1.3 Pragmatics

If p (Th , Ui ,.. • , Un) is the head of a rule-instance, the following constraints should

be contained in or obeyed by the body:

• Th >= 0. This ensures that the first term of each user-defined predicate is a

timest amp.

• Th >= Tb for each user-defined predicate q(Tb ,Vl ,... ,Vm) in any literal, even

those within negations, in the body of a rule-instance. This ensures that the

program is causal, i.e., the truth of the head depends only on the truth of

predicates that are contemporary or earlier in time.

For logic programming, in general, unrestricted use of negation causes serious,

semantic problems. Therefore, Starlog restricts its domain to a class of temporally-

stratified programs. A sufficient condition for a program to be temporally stratified is

that each recursive, predicate-call loop involving negation should be accompanied by

a time advance, i.e., there should be no zero-delay loops involving negation [CK91].

CHAPTER 2. STARLOG: THE LANGUAGE 10

2.1.4 Programs

The simplest form of Starlog programs is a unit clause, which states that a particular

tuple is true. For example, the following clause says that p (T, a, b) is true at the

instant 1.5:

p(1.5,a,b).

As will be explained ahead in Chapter 3, Starlog uses a forward-reasoning procedure

for execution. Therefore, each program must contain one or more such unit clauses

so that tuples, which are the useful products of execution, may be generated.

To assert that a tuple is true over an interval of time, constraints need to be

placed on the timestamp. The following clause generates the tuple p((1.5,2.3],c,d):

p(T,c,d) <- T > 1.5, 2.3 >= T.

To create more-interesting programs, it is necessary to allow more-general con-

ditions in the body of a rule. For example, to say that p will be true 1.5 time units

after q, the following clause can be used:

p(Th) <- q(Tb), Tb >= 0, +(Tb,1,Th).

In this clause, the body (tail) contains one call to a user-defined predicate q(Tb)

and two calls to Starlog's arithmetic primitives Tb >= 0 and + (Tb, 1, Th). The head

(consequent) of the clause is p (Th).

2.2 Logical Arithmetic

Arithmetic in Prolog-like, logic-programming languages is dependent on the order

of execution, and errors that are due to limited, floating-point precision are propa-

CHAPTER 2. STARLOG: THE LANGUAGE 11

gated [Cle87]. Also, arithmetic in Prolog is based on functions, and so, it loses the

generality for expressing constraints, which are multi-directional relations.

Since Starlog's time is real valued and since Starlog advocates the logical expres-

sion of mutation and persistence via constraints on time, it is important that its

arithmetic be simple to express, correct, and constructive, i.e., capable of forcing so-

lutions. We chose the logical, interval arithmetic of [Cle87] to implement arithmetic

in Starlog. Internally, this method represents arithmetic variables as intervals—

closed or open—of real numbers and executes relational, arithmetic operations on

these intervals. The arithmetic is unharmed by the order of parameter instantiation.

Cleary [Cle87] illustrates the expressive power and declarativeness of this method by

producing invertible programs that compute factorials and solve general polynomi-

als. We have extended the logical, interval arithmetic of [Cle87] to the domain of

negations; this will be clarified in Chapter 5.

2.3 Explicit Time

In Starlog programs, each user-defined predicate is explicitly timestamped. Time in

Starlog has the following topology:

• continuous. Time has infinitely-many, real values. (Starlog's implementations

may impose bounds on precision and allow only a finite number of values.)

• totally, linearly ordered via the arithmetic operator >=. This is as opposed to

the alternatives of branching and circular time [Gal87].

CHAPTER 2. STARLOG: THE LANGUAGE 12

• bounded by a value 0. 0, which is the smallest value time can take, on one

side of the ordering. Although this restriction might require some applications

to be temporally translated—a minor effort—in order to be programmed in

Starlog, it makes Starlog's arithmetic more efficient and constructive. There is

no finite, upper bound on time.

The Starlog interpreter uses timestamps to force solutions out of negations—this

is explained in Chapter 5—and can use it to schedule execution, and thereby, detect

and eliminate tautologies—this is suggested in 7.4.3.

Having taken a look at Starlog as a language, we now move on to Chapter 3,

where Starlog's execution will be informally discussed.

Chapter 3

Starlog Execution: An Informal Treatment

In this chapter, we provide a broad overview of Starlog execution. First, we discuss

some of the important terms used in this thesis, and then, we illustrate the tree-

based execution of simple, Starlog programs. Execution will be formally treated in

Chapter 4. In this thesis, the word "interpretation" is used to denote an assignment

of truth values to predicates [Llo87, page 12], "execution" is used to denote the

execution of programs by an interpreter, and "atom" is used for an atomic formula

[Llo87, page 6].

3.1 Background

3.1.1 Model Theory Vs. Proof Theory

Both model theory and proof theory are means of formalizing the "meaning" or

semantics of a given (logic) program. A logic program is a collection of rules, which

are clauses in the case of Prolog programs and possibly non-clausal in the case of

Starlog programs. According to [Llo87], a model-theoretic view of programs sees the

output of a program as a model' of its rules. A reply to a query should make the

query true in the model given by the program. This is in contrast to a proof-theoretic

view, wherein the program is a theory based on the first-order, predicate calculus

and its rules are axioms or invariants of the theory. In this view, answering a query,

'An interpretation wherein the program's rules hold true.

13

CHAPTER 3. STARLO G EXECUTION: AN INFORMAL TREATMENT 14

by means of outputs or bindings, constitutes an inference drawn from the program.

Given a program, different model-theoretic views can be adopted; they might be

"natural" or "intended." For definite programs, which use only Horn clauses, both

Prolog and Starlog subscribe to denotational semantics via a least-fixpoint charac-

terization of least, Herbrand models. Some model-theoretic views will be inadequate.

For example, it is not generally possible to show that a conjunction of non-clausal

formulae is unsatisfiable, i.e., has no model, when restricting attention to Herbrand

interpretations [Llo87, pages 17, 39]. Therefore, more general interpretations need to

be considered in such cases. Similarly, different proof-theoretic views are possible for

a given program, and if their inference rules are applied in a semantically-incorrect

manner, they can produce different results.

These views assume that answering a query or goal is the objective. Starlog takes

a different stance. As introduced ahead, its rules of inference are similar to those

used in [Llo87, page 38] for computing a program P's minimal model via the least

fixpoint of a mapping Tp. Given a program P, Starlog's objective is to compute a set

of tuples that when grounded equal P's minimal model. Therefore, Starlog execution

mirrors its model-theoretic view—it has no notion of queries, and the "model" itself

is the objective.

X-computation, which is formally treated in Chapter 4, is used to execute Starlog

programs. X-computation and SLD-resolution [Llo87, pages 40-41] differ greatly in

their inference rules, and yet, they produce equivalent results when a fair search

is used. Standard Prolog is an execution strategy that uses SLD-resolution and

selects the leftmost atom in a goal. It selects clauses to resolve against in their order

of textual appearance in the program. Due to this unfair, depth-first search rule,

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 15

standard Prolog is incomplete—though sound—even for definite programs [L1o87,

pages 59-60]. Although the Starlog interpreter might not terminate, we will prove,

in Chapter 4, that for definite programs, it is both sound and complete.

3.1.2 Deduction: Bottom Up Vs. Top Down

Consider a query-based, logic-programming system, which aims to provide answers

or replies to queries when given the rules of a logic program. There are many ways

of deducing answers, but based on the direction of inference, deductive inference can

be classified into two extremes:

• top-down deduction is query-directed, i.e., the query is used in each inference

step. This form of deduction works its way from the query, the "top" level,

towards the facts in the program—looking for evidence that supports or con-

tradicts the goal. It is also referred to as goal-driven reasoning and backward

chaining [BF81, page 198].

• bottom-up deduction uses the query only in the last inference step to compute

a reply. It builds assertions using the program's facts, the "bottom" level,

and works its way towards the query—trying to draw conclusions that are

appropriate to the goal. It is also referred to as data-driven reasoning, event-

driven reasoning, and forward chaining [BF81, page 198].

Standard Prolog performs top-down deduction via SLD-resolution. Since Starlog

does not support queries, its deduction is closer to the bottom-up form.

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 16

3.1.3 Least-Fixpoint Computation

In [Llo87], a fixpoint of a function Tp is used to characterize a minimal, Herbrand

model of a program P. For a definite program P, the least fixpoint lfp(Tp) is shown

to be the least, Herbrand model of P. A method for computing the least fixpoint in a

bottom-up fashion is defined. This method is based on the result that for any definite

program F, the least fixpoint is unique and lfp(Tp) = Tpw, where Tp is a monotonic

and continuous function defined over the lattice of subsets of P's Herbrand base Bp.

(For a general, stratified, normal program F, Tp has to be modified and lfp(Tp), as

computed by a layered version of this method, is only guaranteed to be one of many,

minimal models of P.) The method starts with an empty interpretation and applies

Tp repeatedly to yield (ground) atoms as logical consequences until an interpretation

is reached that is unaffected by further application of Tp. This final interpretation

is lfp(Tp). It is possible for the lfp of a definite program to be computed only after

infinite applications of Tp.

It would be impractical to implement Tp as defined since it deals with ground

(variable-free) interpretations, which are often infinite. So, we replace ground terms

in an "interpretation" by general terms containing variables. There are, as well, the

following efficiency issues:

• suppose that there is a clause p - q(X), r(X) and that Tp has already deduced

tuple r(a) to be true. Suppose also that there is a complicated clause r with

a head q(Y) and whose many assertions will be generated only after many-

more applications of Tp. Then, there is no need to repeatedly unify r(X) with

r(a) and to test for the unifiability of the atom q(X) with each of the many

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 17

assertions generated through F. Therefore, the body atom r(X) should be

unified with r(a); then, for the body atom q(X), the search for unifiers with

heads of assertions would be constrained to just the possible assertion q(a) -.

Therefore, maintaining specialized versions of the original program to indicate

possible unifications would help efficiency.

• "flat" or unstructured interpretations do not allow direct access to "relevant"

atoms. If an atom A in the body of a clause cannot unify with the head of some

clause r, then A need not be tested for unifiability with atoms introduced via

F. Therefore, some form of indexing would help efficiency.

• if an atom A has been inferred as a logical consequence of the program and

introduced into an interpretation, then there is no need to infer it repeatedly,

on each application of Tp. Redundant inferences should be avoided.

3.2 Starlog Execution

We now introduce Starlog's execution, which resembles application of Tp and which

also caters to the aforementioned issues of efficiency.

3.2.1 Program 2-3-5

Hamming's problem [L1o87, page 189] or the 2-3-5 problem is to construct the sorted

sequence of positive integers that have no prime factors other than 2, 3, or 5. Con-

sider a simplified version of this problem that allows the integers to be generated

in any order and even more than once. The Starlog program in Fig 3.1 solves this

version. Its rule R5 states that multiplying an element U in the "sequence" by an ele-

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 18

% Program 2-3-5.
% The predicate 'seq(T)' will be true at those times that are in the sequence
% 1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,... Multiplying an element in the sequence
% by a factor of 2, 3, or 5 gives another element in the sequence.

(RI) seq(1.0).
(R2) factor(2.0).
(R3) factor(3.0).
(R4) factor(5.0).
CR5) seq(T) <- seq(U), factor(V), *(U,V,T).

Figure 3.1: Program 2-3-5.

ment V gives another element T. U is guaranteed by the predicate seq(U) to lie in the

Hamming "sequence." V is guaranteed to be 2, 3, or 5 by the predicate f actor M.

Rule Ri sets up an initial fact that 1 is an element of the desired "sequence."

An execution of a Starlog program is called an X-computation. Starlog executes

the program in Fig 3.1 to deduce tuples, which are logical consequences of the pro-

gram. It selects each rule in the program in turn and generates a tuple or deduces a

new rule-instance from it. We shall depict the progress of Starlog execution by in-

crementally building a tree, called the X-tree. The X-tree's nodes are rule-instances,

and its edges or arcs, shown as thick lines, link a rule-instance to rule-instances de-

duced from it. Additionally in this X-tree, each user-defined, predicate call or atom

in the body of a rule-instance is associated with a directed pointer, shown as a thin

arrow. When executing a rule-instance r, suppose an atom A is selected. Then, the

use of A's pointer is as follows:

Suppose A points to a rule-instance L. Then, only the leaves of the sub-

tree whose root is A need to be used as input rule-instances, henceforth

called input-rules, when deducing from P.

Regarding notation, we further use the symbol 'r- ' to show bindings of variables:

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 19

X—[1,3) means that X is bound to the (internal) arithmetic interval [1,3), and

Y-f (Z, a) means that Y is bound to the data structure or term f (Z , a). Fig 3.2

summarizes the legend for the diagrams and programs in the rest of this thesis.

Legend:

X—U Shows that variable 'X' is bound or instantiated to a term 'U'.
Links parent to child in an X-tree.

- - - - Delimits a stage of an X-computation used to construct an X-tree.
Links an atom in the body of a rule-instance to a rule-instance that it

points to in an X-tree.

Figure 3.2: Legend.

Returning back to Fig 3.1, rule Ri is selected first for execution. It is a unit clause,

and so, its head is a tuple, and the clause need not be further executed. Similarly,

rules R2, R3, and R4 are selected, and their heads are classified as tuples. Now, the

non-tuple rule R5 is selected for execution. Since this is an initial execution, each

user-defined predicate call in its body is made to point to the root of the X-tree.

Fig 3.3 shows the X-tree at this stage in the X-computation; the thin, dashed line

delimits successive stages in the X-computation.

oot

seq(T) <- seq(U), factor(V), *(U,V,T').
seq(1.0).

factor(2.0).

factor(3.0).

factor(5.0).

Figure 3.3: Initial X-tree for Program 2-3-5.

Assume that all the atoms in the body of a rule are to be selected, in turn, from

left to right. On selection, an atom is to be unified with the head of an input-rule to

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 20

yield a new rule-instance. Now, consider the execution of rule R5. When the leftmost

atom seq(U) in R5 is selected, it unifies with the following:

1. Ri's head, which is a tuple. This satisfies the selected atom and results in

a new rule-instance seq(T) <- factor(V), *(1,V,T). (Ignore renaming of

variables, for now.) When this factor (V) is selected, it unifies with the fol-

lowing:

(a) R2's head, which is a tuple. This results in seq(T) <- *(1,2,T), a new

rule-instance. Selection of * (1, 2, T) invokes Starlog's arithmetic built-in,

and a tuple seq(2. 0) is yielded.

(b) R3's head, which is a tuple. This results inseq(T) <- *(1,3,T), a new

rule-instance. Selection of * (1,3, T) invokes Starlog's arithmetic built-in,

and a tuple seq(3.0) is yielded.

(c) R4's head, which is a tuple. This results in seq(T) <- *(i,5,T), a new

rule-instance. Selection of * (1,5 , T) invokes Starlog's arithmetic built-in,

and a tuple seq(5 .0) is yielded.

2. seq(T), which is the head of the non-tuple rule R5. (Note that R5 is a recursive

rule.) No fresh binding can be inferred for U to constrain its values, and the

selected atom seq(U) remains unsatisfied, resulting in the original rule (mod-

ulo renaming). (A model-theoretic, bottom-up form of deduction—instead of

resolution—is being used here.) When the next atom factor (V) is selected, it

unifies with the following:

(a) R2'shead, which is atuple. This results in seq(T) <- seq(U), *(U,2,T),

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 21

a new rule-instance. Selection of * (U, 2, T) invokes Starlog's arithmetic

built-in, which is helpless at this stage and returns the same rule-instance.

(b) R3's head, which is a tuple. This results in seq (T) <- seq (U), * (U, 3, T),

a new rule-instance. Selection of * (U, 3, T) invokes Starlog's arithmetic

built-in, which is helpless at this stage and returns the same rule-instance.

(c) R4's head, which is a tuple. This results in seq(T) <- seq(U), *(U, 5 ,T),

a new rule-instance. Selection of * (U, 5, T) invokes Starlog's arithmetic

built-in, which is helpless at this stage and returns the same rule-instance.

Therefore, execution of the non-tuple R5 resulted in the new tuples seq(2. 0),

seq(3.0), and seq(5 .0). In addition, the following rule-instances await further

execution and are placed in a list for scheduling.

seq(T) <- seq(U), *(U,2,T).

seq(T) <- seq(U), *(U,3,T).

seq(T) <- seq(U), *(U,5,T).

Fig 3.4 shows the X-tree constructed this far and the new links of atoms. Each rule-

instance in the X-tree has been standardized apart, i.e., made variable independent.

Note that if an atom A is unified with the head of a non-tuple rule r, then in the

deduced rule-instance, (an instance of) A is made to point to F.

The next stage in the X-computation highlights the efficiency gained by using

pointers. Refer to Fig 3.5, which shows the result of executing the rule-instance:

seq(Ta) <- seq(Ua), *(Ua,2,Ta).

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 22

oot

seq(T) <- seq(U), factor(V), *(TJ,V,T).
seq(1.0).

factor(2.0).

factor(3.0).

factor(5.0).

seq(Ta) <- seq(Ua), *(Ua,2.O,Ta). seq(2.0).

seq(Th) <- seq(Ub), *(UIJ,3.O,Th). seq(3.0).

seq(Tc) <- seq(Uc), *(TJc,5.O,Tc). seq(5.0).

Figure 3.4: Two Stages in an Execution of Program 2-3-5.

Atom seq(Ua) is selected for unification. Each leaf node of the subtree to whose root

it points is used, in turn, as an input-rule. This results in six, new rule-instances.

In these, when the (further-instantiated) atom *(Ua,2,Ta) is selected, the three

tuples seq(4.0), seq(6.0), and seq(1O.0) and the following three, non-tuple rule-

instances result:

seq(Td) <— seq(Ud), *(Ud,2,Td).

seq(Te) <— seq(Ue), *(Ue,2,Te).

seq(Tf) <- seq(Uf), *(Uf,2,Tf).

As shown in Fig 3.5, the atoms seq(Ud), seq(Ue), and seq(Uf) point to the non-

tuple input-rules used for unification when the atom seq(Ua) was selected. By using

pointers, Starlog avoids "reusing" input-rules in a redundant fashion. In this case,

specialized, logical consequences of Ri were used, but Ri and R5 were not. In future

executions, none of the non-tuple rule-instances generated in this stage will "reuse"

the tuples seq(2.0), seq(3.0), and seq(5.0) of the previous stage.

CHAPTER 3. STARLO G EXECUTION: AN INFORMAL TREATMENT 23

oot

..1•555>_7
seq(T) <- seq(U), factor(V), *(U,V,T).

seq(1.0).

factor(2.0).

factor(3.0).

factor(5.0).

seq(Ta) - seq(Ua), *(Ua,2.O,Ta). seq(2.0).

seq(Tb) <- seq(Ub), *(TJb,3.O,Th). seq(3.0).

seq(Tc) <- seq(Uc), *(Uc,5.O,Tc). seq(5.0).

seq(Td) <- seq(Ud), *(Ud,2.O,Td). seq(4.0).

seq(Te) <- seq(Ue), *(Ue,2.O,Te). seq(6.0).

seq(Tf) <- seq(Uf), *(Uf,2.O,Tf). seq(1O.0).

Figure 3.5: Three Stages in an Execution of Program 2-3-5.

Starlog execution continues as a sequence of such steps until there are no more

non-tuple rule-instances to be executed. The tuples are "returned" as part of Star-

log's solution as and when they are computed. In the case of Fig 3.5, Starlog does

not terminate in a finite number of steps and the (full) X-tree will be infinite. This

is acceptable in view of the infinite nature of the Hamming sequence.

3.2.2 Gleaning Information from Heads

Starlog's bottom-up deduction is a little cleverer than just shown. Suppose the

rule-instance p(T,X) <- q(T,X) is executed against a non-tuple rule-instance:

q(U,f(Y,Zr...[1.7,3.2))) <- r(U,Y).

(As stated earlier, the latter rule-instance is an input-rule since it is used as input for

a deduction step from the former rule-instance.) Then, the following rule-instance is

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 24

deduced by Starlog:

p(Ta,f(Ya,Za.—'[1.7,3.2))) <— q(Ta,f(Ya,Za—'[1.7,3.2)))

This means that even partial bindings appearing in the head of a rule-instance R are

propagated into the body-atoms that refer or point to R via links in the X-tree; this

helps constrain search.

3.2.3 Program Assignment

Here, we take up an execution of a program involving negation. Fig 3.7 shows an X-

tree for the Assignment program, which is reproduced in Fig 3.6. (Fig 3.6 appeared

earlier as Fig 1.2.) Since this example is complicated to explain in-line, we urge the

% Program Assignment.
% A variable War' has a value 'Val' from---and inclusive of---the time 'Ts',
% when it was set, until---but not including---a time 'Tn', when it is set again.

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Va1),
not-exists Tn,New: (r >= Tn, Tn> Ts, set(Tn,Var,New)).

set(1.0,a,v). % at time 1.0, set variable 'a' to a value Y.

set(3.0,a,w). % at time 3.0, set variable 'a' to a value W.

Figure 3.6: Program Assignment.

reader to refer to Fig 3.8 and Fig 3.9 for tracing through Starlog's deduction of the

tuplesval([1.O,3.0),a,v) and val([3.O,+inf),a,w).

3.2.4 Recapitulation

Given a program F, Starlog's interpreter aims to construct a tree, called the X-tree,

whose nodes are rule-instances. When completely built, this X-tree has as leaves

tuples that cover F's minimal model, i.e., give P's minimal model when grounded.

val([1.O,3.0),a,v).

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 25

oot

val(T,Var,Va1) <- T >= 0, T >= Ts, set(Ts,Var,Va1),
not-exists Tn,New: (T >= Tn, Tn> Ts,

set(Tn,Var,New)).

set(3.0,a,w).

set(1.0,a,v).

val([3.0,+int),a,w).

Figure 3.7: A "Compressed" X-tree for Program Assignment.

Each atom in the body of a rule-instance is associated with a pointer to some node in

the X-tree, the significance being that exactly those rule-instances that appear at the

leaves of the subtree being referred to need to be used as input-rules for deduction

with that atom. Initially, the X-tree is a dummy node root, whose children are the

program's rules; each atom in the body of a program's rule is made to point to the

root, as in Fig 3.3. The links between parent and child and the pointers between

body-atom and head of rule-instance are maintained in the X-tree in order to avoid

redundant, deduction sequences.

Starlog first places all the non-tuple rules into a list for scheduling. Execution

proceeds by picking a non-tuple rule-instance from the list and applying a form of

bottom-up deduction to it. The rule-instances that result are rewritten—according to

the rewrite rules introduced later in Chapter 5—and made children of the executed

rule-instance in the X-tree, and the non-tuples amongst them are placed in the

scheduling list for future execution. Execution terminates when there are no more

(non-tuple) rule-instances to be executed. This execution mechanism is very similar

to the execution of discrete-event simulations by using event lists [Mis86].

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 26

In the previous examples and in the Starlog interpreter that we have implemented,

we use all-atom selection: when executing a rule-instance, each atom in its body is

selected in sequence, from left to right. This is true of even the atoms nested within

negations. Although a fair, single-atom selection is sufficient to guarantee correctness

of search, all-atom selection is preferable because it improves efficiency by quickening

the success or failure of deduction paths in the X-tree. This quickening is because

it avoids unnecessary branching, in the X-tree, to create children rule-instances.

Atoms that serve to constrain search or fail are picked up immediately—instead of

eventually, as would be the case in a fair, single-atom selection. X-trees constructed

using all-atom selection are called "compressed" X-trees, to distinguish them from

the X-trees got by single-atom selection, which will be formally defined in Chapter 4.

3.2.5 Debugging

Starlog's rule-instances and tuples interact as though they were placed in a shared

dataspace or globally-accessible pool. (This is similar to the way computation pro-

ceeds in Linda [CG89].) The public nature of communication between rule-instances

helps to debug and monitor execution. For example, to fire off an error tuple "when-

ever" the value of a modelled variable 'a' is not unique for some period of time T,

only the following rule needs to be included as part of the Assignment program in

Fig 3.6:

error(T,a,V1,V2) <- val(T,a,V1), val(T,a,V2), V1 =/= V2.

This is a means of debugging Starlog programs using Starlog!

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 27

3.2.6 X-computations Exploit Parallelism

Each rule-instance in an X-tree can be viewed as a process, and the value of its ar-

guments can be seen as the process's state. X-computations, then, execute multiple

processes and in or-parallel (concurrent) fashion to search for alternative solutions.

As stated in [Sha87, pages 42-43] for the language Concurrent Prolog, a process can-

not actively change its state, but can only reduce itself to other processes. Therefore

theoretically, Starlog and Concurrent Prolog support only ephemeral processes whose

state is not self-modifiable. However, both from an intuitive and an implementation

point of view, a process that calls itself recursively with different arguments can

be viewed as a perpetual process that changes its state. The ability to implement

multiple, perpetual processes is one reason for the increased power of Starlog and

Concurrent Prolog over (sequential, standard) Prolog, which can implement only one

perpetual process without side-effects.

The all-atom selection strategy used by our Starlog interpreter exploits the and-

parallel nature of programs and can be classified along with the Sync model [LM86],

which is categorized in [Con87]:

AND processes in the Sync model of Li and Martin [LM86] do not use

a parallel backtracking algorithm. Instead, they perform an incremen-

tal join operation on the values returned by the parallel solution of the

literals. Analysis of the body of the rule is used to order the literals,...

Our Starlog interpreter is a sequential interpreter. Its distributed version would re-

semble more the model of [LM86] in the execution of conjuncts. Its present execution

of literals in a conjunct looks more like pipelining, with the (partial) solutions of one

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 28

conjunct constraining the solutions of another.

In summary, Starlog uses tuples, which are not grounded as in the application of

Tp, for bottom-up deduction. In addition, the tree-based execution scheme uses non-

tuple rule-instances to constrain search; also, only "relevant" input-rules are used in

each step. Thus, the Starlog interpreter "intelligently" indexes on the entire predicate

or atom appearing in the head of a rule-instance. In the following Chapter 4, we will

formally define and prove the correctness of Starlog's execution method for definite

(Horn-clause) programs.

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 29

Deduction of Tuple 'val([1.O,3.0),a,v)'.
The following rule is selected for execution:

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val),
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)).

Selection of the leftmost constraint in the body satisfies it and gives the following:
val(T—[0.O,+inf),Var,Val) <- T—[0.0,+inf) >= Ts, set(Ts,Var,Val),

not-exists Tn,New: (T—{0.0,+inf) >= Tn, Tn > Ts, set(Tn,Var,New)).
Selection of the new, leftmost constraint results in the following:

val(T—{0.0,+intT),Var,Val) <- T—[0.0,+int) >= Ts—(-inf,+inf), set(rs—(-inf,+int),Var,Val),
not-exists Tn,New: (T—[0.O,+int) >= Tn, Tn > Ts—(-inf,+inf), set(Tn,Var,New)).

Now, the positive 'set' atom is selected and unified with the tuple 'set(l.O,a,v)'.
val(T—[0.0,+inf),a,v) <- T—[0.0,+int) >= 1,

not-exists Tn,New: (T—(0.0,+inf) >= Tn, Tn> 1, set(Tn,a,New)).
Since 'Ts' was bound to 1, the "delayed" constraint 'T >= Ts' is woken to give the
following rule-instance:

val(T—[1.0,+inf),a,v) <- not-exists Tn,New: (T—{1.0,+inf >= Tn, Tn> 1, set(Tn,a,New)).

Now, the negation is selected. The result of executing the following rule-instance
will be used to rewrite the negation:

h(T—[1.0,+inf)) <- T—[1.0,+int) >= Tn, Tn> 1, set(Tn,a,New).
Selection of the leftmost constraint, '>=', gives the following:

h(T.'-[l.O,+int)) <- T—[l.0,+int) >= Tn—(-inf,+int), Tn—(-inf,+inf)> 1, set(Tn—(-inf,+int),a,New).
Selection of the next-leftmost constraint, '>', gives
h(T—(1.O,+int)) <- T—[l.0,+inf) >= Tn—(l .O,+int), set(Tn—(1.O,+inf),a,New).

Since 'Tn' was squeezed, the "delayed" constraint 'T >= Tn' is woken to give
h(T—(1.O,+int)) <- T—(1.0,+int) >= Tn—(1.0,+inf), set(Tn—(1.O,+inf),a,New).

The 'set' atom is now selected. It cannot unify with the tuple 'set(l.O,a,v)'.
Unifying it with the tuple 'set(3.0,a,w)' gives

h(T—(l.0,+ink)) <- T—(1.0,+inf) >= 3.
Now, we have 'Tn-3.0' and 'New—w'.
Binding 'Tn' wakes the "delayed" constraint, 5=', giving the following solution to the body:

h(T—[3.O,+inf)).

Taking this solution of the body back to the negation in 'C' and further rewriting the
binding of the non-local variable 'T' in terms of constraints, we have

val(T—[1.0,-l-intT),a,v) <- not-exists Tn-3.0,New—w: (T—[1.0,+inf) >= 3).
Dropping the variables that cannot be further bound from the list of existentially-
quantified variables within the negation, we get

val(T—[1.0,+intT),a,v) <- not-exists: (T—[1.0,+inl) >= 3).
Since the negation does not existentially quantify any variables, we rewrite as

val(T—[l.0,+inf),a,v) <- not(T—[1.0,+int) >= 3).
Since there are no calls to user-defined predicates, we decide to invert the

val(T—[1.0,+inf),a,v) <- 3 > T—[l.0,-i-inf).
The lone constraint in the body is then selected to give the tuple:

val(T—[1.0,3.0),a,v).

Figure 3.8: Deduction of Tuple val([1.0,3.0) ,a,v).

CHAPTER 3. STARLOG EXECUTION: AN INFORMAL TREATMENT 30

Deduction of Tuple 'val([3.0,+inf),a,w)'.
The following rule is selected for execution:

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val),
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)).

Selection of the leftmost constraint in the body satisfies it and gives the following:
val(T—[0.0,+int),Var,Val) <- T—[0.0,+inf) > Ts, set(Ts,Var,Val),

not-exists Tn,New: (T—[0.0,+inf) >= Tn, Tn > Ts, set(Tn,Var,New)).
Selection of the new, leftmost constraint results in the following:

val(T—[0.0,+infT),Var,Val) <- T—[0.0,+inf) >= Ts—(-inf,+int), set(Ts—(-inf,-i-inf),Var,Val),
not-exists Tn,New: (1'—[O.O,+inf) >= Tn, Tn > Ts—(-inf,+inf), set(Tn,Var,New)).

Now, the positive 'set' atom is selected and unified with the tuple 'set(3.0,a,w)'.
val(T—[0.0,+int),a,w) <- T—[0.0,+int) >= 3,

not-exists Tn,New: (I—[0.0,+inf) >= Tn, Tn >3, set(Tn,a,New)).
Since 'Ts' was bound to 1, the "delayed" constraint 'T >= Ts' is woken to give the
following rule-instance:

val(T—[3.0,+int),a,w) <- not-exists Tn,New: (I—[3.0,+int) >= Tn, Tn >3, set(Tn,a,New)).

Now, the negation is selected. The result of executing the following rule-instance
will be used to rewrite the negation:

h(r—[3.0,+inf)) <- T—[3.0,+inf) >= Tn, Tn >3, set(Tn,a,New).
Selection of the leftmost constraint, '>=', gives the following:

h(T—[3.0,+int)) <- T—{3.0,+inf) >= Tn—(-inf,+inf), Tn—(-inf,+int) >3, set(Tn—(-inf,+inf),a,New).
Selection of the next-leftmost constraint, '>', gives

h(T—[3.0,+inf)) <- T—[3.0,+int) >= Tn(3.0,+inf), set(Tn.(3.0,+int),a,New).
Since 'Tn' was squeezed, the "delayed" constraint 'T >= Tn' is woken to give

h(T—(3.0,+int)) <- T—(3.0,+int) >= Tn—(3.0,+inf), set(Tn-(3.0,+int),a,New).
The 'set' atom is now selected. It cannot unify with either tuple 'set(l.O,a,v)' or 'set(3.0,a,w)'.
Therefore, no tuples can be inferred from the rule-instance for W.

Taking this solution of the body back to the negation, we have
val(T—[3.0,+inf),a,w) <- not-exists Tn,New: (fail).

Since the negation's body is failed, the negation is satisfied and is deleted.
This results in the following tuple:

val(T—[3.0,+inf),a,w).

Figure 3.9: Deduction of Tuple val([3.0,-i-inf) ,a,w).

Chapter 4

Formal Semantics for Definite Starlog

Having introduced Starlog execution in an informal manner in Chapter 3, we are

now ready to formalize its execution. We restrict ourselves to the class of definite

programs, which consist of a finite number of single-headed, Horn clauses [Llo87,

pages 8-10]; there should be no use of negation in the bodies of clauses. We call this

class of programs, along with its execution method in Starlog, "definite Starlog."

Restricting to definite Starlog simplifies matters since we do not have to deal with

the semantics of negation or arithmetic in Starlog rules. Our results also become

generally applicable to Horn-clause programs. Although definite programs lack the

expressive power offered by negation, they are an important subset of logic programs

since they are computationally adequate, i.e., they are Turing complete [Llo87, The-

orem 9.6].

Recall from 3.1.1 that definite Starlog's model-theoretic semantics is given by

least, Herbrand models. These models are characterized denotationally by least

fixpoints of function Tp [Llo87, pages 37-38]. In this chapter, we formally define

definite-Starlog execution and prove that it is semantically both sound and complete

with respect to least, Herbrand models. We, therefore, are providing a procedural

semantics for definite Starlog.

First, we first introduce our notation. Next, we explicitly assume the use of

idempotent unifiers in definite Starlog. Then, we set up apparatus for proving the

soundness of definite Starlog. With respect to least, Herbrand models, we define

31

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 32

correct tuples, which provide a declarative description of the desired output from a

program. The procedural counterpart of a correct tuple is a computed tuple, which

is defined using X-computation. We prove that every computed tuple is correct,

establishing thereby the soundness of X-computation. Finally, we identify the control

elements—of atom- and clause-selection rules—governing X-computation during its

search for tuples and prove that every correct tuple is an instance of a computed

tuple. This establishes the completeness of X-computation. Therefore, we have the

final result that a fair X-computation produces only and all correct tuples.

4.1 Notation and Terminology

Unless redefined, the terminology used here has been borrowed from [Llo87]. LHS

and RHS are abbreviations for "left hand side" and "right hand side" of an impli-

cation; TPT abbreviates "to prove that." Upper-case Greek letters, except and

are reserved for clause-instances (defined ahead), lowercase Greek for substitu-

tions, and upper-case Arabic—optionally subscripted with lowercase Arabic letters

or numerals—for atoms in clauses; the upper-case Arabic letter P is an exception

and always denotes the definite program in question. The upper-case Greek letters,

and IF, are reserved for naming sets of clause-instances. Lists, which are sequences

or ordered collections, are enclosed in box brackets, [and]; sets, which are unordered

collections are enclosed in curly brackets, { and }. (Note that [L1o87, page 44] uses

[A] differently to mean the set of ground instances of atom A.) Overlined, low-

71
ercase Arabic letters or numerals, e.g., i, are reserved for names of (pointers to)

clause-instances. We show the names of clause-instances being referred to only when

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 33

essential to the discussion. The symbol --optionally subscripted with lowercase

Arabic letters or numerals—is reserved for the names of X-trees (defined ahead),

the symbol i9—optionally subscripted with an upper-case, Greek symbol denoting

some clause-instance—is reserved for the names of X-derivations (defined ahead),

the symbol ?5 is reserved for X-computations (defined ahead), and the symbol R is

reserved for selection rules.

Bp denotes the Herbrand base [Llo87, page 16], and Mp denotes the least, Her-

brand model [Llo87, page 36] of a definite program P. If F is a clause, then 1'+

is its head, and r— is its body. The abbreviation "mgu" stands for "most general

unifier." We use "suitable variant" to mean a variant that is standardized apart, i.e.,

a variant that is variable independent from the clause-instances in question.

4.2 Idempotent Unifiers: An Assumption

We assume that definite Starlog's unification algorithm incorporates the occur check

[Llo87, page 24] and produces only idempotent mgus. This is because in certain

proofs ahead, e.g., in Theorem 31, we have to consider idempotent substitutions.

Such mgus can be constructed as in [Llo87, page 24]. (For the set S = {a, a}, both

the idempotent unifier a = I and the non-idempotent unifier /3 = {X/Y, Y/X} are

mgus.) Since mgus are unique modulo renaming [Llo87, page 23], our assumption

does not compromise on correctness with respect to unification.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 34

4.3 Soundness of Definite Starlog

Given a program P, Starlog's objective is to compute a (possibly-infinite) set of

tuples that when grounded equal P's minimal model. Each tuple is an instance of

the head of some clause in P. Tuples can have variables, i.e., they need not be

ground. Starlog uses X-computation to compute tuples.

Our aim is to prove definite Starlog's soundness. First, we define correct tuples,

which provide a declarative description of the desired output from a program. The

procedural counterpart of a correct tuple is a computed tuple, which is defined using

X-computation. X-computation enhances the method for computing least fixpoints

in [Llo87] by additionally using pointers and non-unit input-clauses when executing

bottom up. We prove that every computed tuple in an X-computation is a correct

tuple. This establishes the soundness criterion.

Pointers as Names: In Chapter 3, we have introduced pointers from atoms in the

bodies of rule-instances to rule-instances in the X-tree. For this chapter, we shall

represent these pointers using names. The named objects are the clause-instances of

P. Each atom A in the body of a clause-instance refers to some clause-instance via

the latter's name, say, i; this reference is depicted by A. i is said to be the pointer

associated with or of A. We use a countably-infinite, absolute name space, wherein

names uniquely identify the objects being named. (This is in contrast to a possible

relative name space wherein a context may be required, in addition to the name,

to uniquely identify an object, e.g., file-names on UnixTMl, which need the context

provided by the full path from the file-system's root node in order to uniquely identify

I Unix is the trademark of AT&T Bell Laboratories.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 35

a physical file.) Names may be hierarchical or flat without affecting our results. We

take A = {, f, I,. . . } as our flat name space here. The named objects are the clause-

instances of P. Let 0 be reserved to refer to the root of the program's X-tree (in

Def 14 ahead).

Now, we launch into formal treatment.

Def 1 An atom A is a correct tuple of iffV(A) is a logical consequence of P.

Any further instantiation of a correct tuple always gives a correct tuple.

Def 2 Deleting or dropping zero or more atoms in the body of a clause constitutes

atom dropping.

If F = H A,,—, . , Am ,. . . , Aj then an example clause got by atom dropping r is

H All ... , Am -,, Am+i, . . . , Ai.

Def 3 Changing zero or more pointers associated with atoms in the body of a clause

constitutes pointer changing.

If F = H - A,... , Am, ... , A then an example clause got by pointer changing r is

H - At,. . . , A,.. . , A; here, 2 may or may not be All the pointers referred to

are assumed to be names of valid clauses. This is to avoid unnecessarily complicating

the discussion.

Def 4 (Clause-instance, Stage) Let F be a definite clause. Then, there exists a

minimal (non-empty) set of all clause-instances of r such that:

9 r is in C and

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 36

. is closed under atom dropping, pointer changing, and substitution.

Any subset ofD is called a stage. The union of sets of clause-instances of different

clauses is also a stage.

The stage consisting of exactly the clauses in P such that each atom in the body

of a clause refers to 0 is given a special name mu, signifying the initial stage in

P's X-computation. A clause-instance of a clause in P is sometimes called a clause-

instance of P. We use "clause" to mean a clause in P and "clause-instance" to mean

any clause-instance of P.

From now on, we will need two naming functions: IV and U. IV is the name

binder, and CC is the name resolver. Our use of an absolute name space guaran-

tees that these are bijections. We take them as inverse bijections of one another:

given a clause-instance, IV provides a name, and given a name, CC provides a

clause-instance. Formally stated, if S is the set of all clause-instances of P then

IV: Si—*A(, and CC: Hi— S.

Def5 Let F=H<—Al,...,A,...,Ak(k≥O),L-- F---Bl,...,Bfl (n≥O),and

IV(L) = . Then F' is derived from r using L if all the following hold:

• k > 0 and Am is an atom, called the selected atom, in r—.

• there exists an mgu a for Am and F', a suitable variant of F, i.e., = Ama = Pa.

• if n > 0 then r, is a suitable variant of (H +- A1,. . . , A,. . . ,Ak)a. If n = 0,

which means L. is a unit clause, then r, is a suitable variant of the clause-

instance (H .' A1,. . . ,Am_i, Am+i,. . . , Ai).

L is called the input-clause for the derivation of r, from F.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 37

The pointers of unselected atoms cannot change during a derivation step.

Def 6 Let r be a clause-instance of P. A sequence consisting of only r is an X-

derivation from r. A (possibly infinite) sequence [F0(= F), Ft,. . .} of clause-instances

of r is an X-derivation from r if all the following hold:

. each P1 is derived from ri.

• if A is a selected atom in the derivation of F 1 from ri then the input-

clause zj in that derivation step is X-derivable from CL(il).

We refer to this process as X-execution of F.

Each clause-instance in the X-derivation from r is said to be yielded, X-derived, or

X-derivable from F. Abusing usage slightly, if a tuple B is X-derived from r, i.e.,

the unit clause-instance B - is X-derived from r, we say that B is yielded by an

X-derivation from F. An X-derivation involves ≥ 0 derivations, each of which has to

additionally satisfy the aforementioned restriction on the origin of the input-clause.

Note that each L.j, in turn, is required to be X-derivable.

All the clauses in P are assumed to be X-derivable from CC() and are written

with each atom in the body referring to 0. This will be clearer after Def 10 ahead.

Def 7 The length of an X-derivation from a clause-instance r is the number of

clause-instances of r in it.

The minimum length of an X-derivation is one. Every clause-instance is X-derivable

in unit length from itself.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 38

Corollary 8 (Non-Closure Under Composition) The composition of unit-length

X-derivations does not result in an X-derivation.

The composition of two unit-length X-derivations would be expected to be of length

two. This resultant should have used some input-clause (see Def 6). No input-clause

has been used in the two original, unit-length X-derivations, and hence, we have

a contradiction. Furthermore, the composition of X-derivations of non-unit length

does not always result in an X-derivation because the terminating and initial clause-

instances in the two X-derivations have to "match" at the point of composition.

Del 9 Let F be a definite clause in P. An X-assertion from r is a finite X-derivation

from r whose sequence of clause-instances ends in a unit clause.

A finite X-derivation may be successful or failed. A successful X-derivation is an

X-assertion. Let F be a definite clause and r' be a clause-instance of r that is also

X-derivable from F. If F' is not a unit clause and there is no clause-instance of r

that is X-derivable in non-unit length from v, then the X-derivation from r ending

in r, is said to be failed.

Del 10 If 4 = {root} then init is said to descend from 4, and root is said to bear

each clause-instance in it. If {F1,. . . , Fm,. . .}, where each ri is a clause-

instance of P, is a stage then 'I' descends from 4 if the following hold:

• Fm is a non-unit clause-instance, called the selected clause, in .

9 let A6n E Fm be the selected atom.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 39

- if there is no clause-instance that occurs in , is X-derivable from CC(c),

and whose head is unifiable with An then V = jr, .. , Fm+i,. .

and we say Fm fails.

- otherwise, let zi,... be the (potentially-infinite) clause-instances that oc-

cur in 4, that are X-derivable from CC(cl, and each of whose heads j+

is unifiable with A. Let Fm,,... be (suitable variants of) the clause-

instances derived from Fm using L,... as input-clauses. We say Fm

bears each of The descendant ' is got by replacing Fm in D by

all the clause-instances in

= ' = {r1,. .. ,Fm_i,Fmi,

Fig 4.1 shows an example, descendant stage. Note that unifiability of a clause-

Assume that from the following stage, the clause-instance for 'p', numbered '2#',
is the selected clause and the atom for 'q' in its body is the selected atom.
Assume also that CL(7#) X-derives CL(1#), CL(4#), and CL(3#), but does not X-derive
CL(1O#).

2# p(X,Y) <- r(g(X,Y)), q(f(X)). 1O# q(f(b)). 3# q(Z). 1# q(f(a)) <- s(a).

4#q(h(V)).
9#

The following is a descendant stage:

6# p(Xz,Yz) <- r(g(Xz,Yz)). 5# p(a,Y) <- r(g(a,Y)), q(f(a)). 1O# q(f(b)).

9#... 9#...

3# q(Z). 4# q(h(V)). 1# q(f(a)) <- s(a).

Figure 4.1: Descendance: An Example.

instance's head with A6 is not implied by the former's X-derivability from Cr(). If

an atom A is selected for derivation when computing the descendant for a given

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 40

stage, then only the clause-instances that are X-derivable from ff and that appear in

the given stage have to be considered as candidate input-clauses; the search space

for input-clauses has thus been pruned from both "above" and "below." Also, the

descendants can be computed in a layered or stratified fashion. Each stage may

have many possible descendants, which differ in the selection—in some derivation

step—of either a clause-instance or an atom within a selected clause-instance. Given

a finite stage, each of its descendant stages is guaranteed to be (modulo variants)

finite simply because each input-clause, which is used to compute the descendant,

has to appear in the given stage.

Del 11 An X-computation of consists of a (possibly-infinite) sequence:

[,,Do(= {root}), oDj(= mit) 1.

Each (i > 0) is a finite stage; each i+1 (i ≥ 0) descends from j. Complete X-

computations are those that are either infinite or that finitely terminate at a stage

that has no descendants.

An X-computation can be viewed as a mapping that operates on stages, analogous

to Tp operating on Herbrand interpretations. For a given program F, there could be

many X-computations, which differ in at least one stage. Each X-computation carries

out or weaves through concurrent threads of X-derivations from clause-instances in

its stages. From some clause-instances of F, there could be X-derivations that are

not carried out by any X-computation of P. X-computations terminate at the first

stage that is either empty or made up of only unit clauses, i.e., when there are no

more descendants. Although for certain programs, complete X-computations do not

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 41

terminate, Starlog attempts to carry an X-computation to completion. The following

program is one such that continues forever when executed by Starlog:

p(f(X)) <- p(X).

p(a).

Def 12 An atom A is said to be a computed tuple of P if there exists an X-

computation U of P such that the unit clause-instance A i- occurs in some stage

of U.

Equivalently, A should be yielded by some X-assertion 0 from a clause in F, and

0 should be carried out by U. Further instantiation of a computed tuple need not

give a computed tuple; computed tuples have to be "exactly" X-assertible. Both the

computed and the correct tuples can be non-ground, i.e., they can have variables.

Starlog is computationally interested in tuples, which are asserted from the entire

program, rather than in answers, which are bindings to variables in a main query or

goal.

Def 13 The success set SSp of P is the set of all A E Bp such that A = A'a, for

some computed tuple A' and ground substitution a.

Note that SSp may be got by grounding tuples computed by different X-computations

Of P.

Def 14 An X-tree for P is a tree that is based on a complete X-computation U of

P and satisfies the following properties:

• each node—except the root—in the tree is a definite (possibly-unit) clause-

instance of P.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 42

• the root node is named 0.

• each node in this tree has as children the clause-instances that it bears in U.

Nodes that are unit clauses have (bear) no children.

• a node that fails signifies the failure of the X-derivation path it appears on.

In an X-tree, each node is distinct from every other node; the process of X-execution

ensures that no variables are shared across nodes. X-trees offer a different view

of complete X-computations without placing additional restrictions on them. Each

path in the X-tree is an X-derivation from some clause in P. Paths corresponding to

successful X-derivations (X-assertions) are called success paths, paths corresponding

to infinite X-derivations are called infinite paths, and paths corresponding to failed

X-derivations are called failure paths. Note that these X-trees are complete—unlike

the (partial) trees constructed, descendant by descendant, in Chapter 3.

Example Consider the definite program Pqrl in Fig 4.2. As shown by Fig 4.3

% Program Pqrl'.
p(X) <- q(X).
q(Y) <- r(Y).
r(1).

Figure 4.2: Definite Program Pqrl.

and Fig 4.4, both finite and infinite X-trees are possible for Pqrl.

Corollary 15 For each complete X-computation of F, there is at least one X-tree

of P based on it. For each X-tree of F, there is at least one complete X-computation

of on which it could be based.

Tuples, which are yielded by finite paths in an X-tree , are eventually computed in

each X-computation on which is based. The stages of a complete X-computation

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 43

r ot

p(X) <- q(X). . q(Y) <- r(Y).

I
p(Xy) <- q(Xy)

:
p(1).

I
q(1).

Figure 4.3: A Finite X-tree for Pqrl.

root

p(X) <- q(X). . q(Y) <- r(Y).

I
p(Xy) <- q(Xy).

I
p(Xz) <- q(Xz).

Figure 4.4: An Infinite X-tree for Pqrl.

are the sets of leaves, i.e., the yield, during the construction of the X-tree based on it,

descendant by descendant. It is easy to see that for each complete X-computation,

there is exactly one X-tree of P based on it, but for our proofs, we need only the

weaker statement expressed in Corollary 15.

Now, we define a notion of depth in an X-tree. This will be used ahead to prove

properties about X-trees.

Def 16 Consider an X-tree containing a finite X-derivation Or from a clause-

instance F. In , the depth V(5-) of 8r is defined recursively as follows:

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 44

• if 0r is of unit length, then V(ôr) = 0.

• otherwise, let of be that initial subsequence of or that ends in the penultimate

clause-instance of 0r, and let 8A be the X-derivation in ≥ from some clause in

P yielding the last input-clause L used in or. Then,

D(Or) = V(5f) + V(8) + 1.

One more than the combined depths of the X-derivations yielding r and A gives

the depth of the clause-instance derived from r using input-clause L. Note that

Or can have different depths depending on the X-derivations 0Aj selected for each

input-clause Lj. By fixing the X-tree , we are guaranteed that the clause-instances

corresponding to its nodes are variable independent and that their X-derivations

and those of the input-clauses are fixed and appear in 9. Therefore, for any X-

derivation Or in an X-tree, V(Or) is uniquely defined.

Now, we come to the first of our results. This result will be used to prove definite

Starlog's soundness.

Theorem 17 Consider a stage of an X-computation of P. Each clause-instance

in is a logical consequence of P.

Proof Let r+1 be a clause-instance in 4. Then, there exists an X-derivation or

from some clause r in P (using Def 11) such that Or is carried out by an X-

computation of P and such that Or = {F0(= F), F1, . . . , Fm]. Therefore, there must

exist some X-tree 9 of P in which or occurs as a subpath (using Corollary 15). Let

d = D(Or) in 9. We induce on d TPT r 1 is a logical consequence of P.

Basis: d=0.

Or = [F+1] = [i

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 45

= r = r1 is a unit clause in P (using Def 16).

= Basis is true.

Hypothesis: Assume that for 0 < d < k - 1 (k> 1), the Theorem is true.

Induction: d = k. In , let I..1 be derived from ri using an input-clause /, and

let 0j-j be that initial subsequence of or that ends in the clause-instance I'2.

= In , there exists an X-derivation Ot from some clause in P yielding L (using

Def 10).

d = V(8r1) + V(&) + 1 (using Def 16).

.V(')<k-1 and V(8)<k-1.

Both r1 and A are logical consequences of P (using Hypothesis).

Now we shall work through Def 5. Let Pj = H - A,,—, Am,— ,A (r>0),

= F - B1,... ,B (n ≥ 0), Am be the selected atom, and a be the mgu for Am

and F', the suitable variant of F. Here, r > 0 since r+1 is derived from r using an

input-clause (using Def 5).

• if n > 0 then r1+1 is a suitable variant of (H A1,. . . ,Am ,. . . , A) a, which

is certainly a logical consequence of r, and hence, of P. In this case, the

Theorem is true irrespective of a.

• if n = 0 then Li is the unit clause F <-, and P+1 is a suitable variant of

(H A,,—, . , Am ..i, Am+i,. . . , A,)ø. Effectively, F 1 is a resolvent.

can be deduced from A and r, and so, is a logical consequence of P.

0

Theorem 18 (Soundness of X-computation) Every computed tuple of P is a

correct tuple of P.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 46

This result establishes the soundness of definite Starlog.

Proof Consider a computed tuple A of P.

= There exists an X-computation ZJ of P such that A - occurs in some stage of J

(by Def 12).

A - is a logical consequence of P (using Theorem 17).

=t V(A) is a logical consequence of P.

= A is a correct tuple of P (using Def 1). 0

Corollary 19 (SSp Mp) The success set of a definite program is contained in

the program's least, Herbrand model.

Proof Let P be a definite program, SSp be its success set, and Mp be its least,

Herbrand model. TPT VA E Bp, A E SSp - A E Mp.

TPT VA E Bp, A E SSp - A is a logical consequence of P (using Theorem 6.2

in [Llo87, page 37]). Let LHS be the proposition A E Bp A A E SSp and RHS be

the proposition that A is a logical consequence of P.

LHS => There exists a computed tuple A' such that A for some ground

substitution a (using Def 12).

= A' is a correct tuple (using Theorem 18).

= V(A') is a logical consequence of P (using Def 1). Since A is a ground instance of

A', the RHS is true. 0

4.4 Completeness of Search

In §4.3, we set up the apparatus for a procedural semantics of definite Starlog and

proved its soundness. We now identify the control elements in definite-Starlog execu-

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 47

tion and prove that its search for tuples is complete with respect to least, Herbrand

models. Our aim, therefore, is to prove that every correct tuple is an instance of

some computed tuple.

Def 20 Let 4 be the stage containing all clause-instances of P. An atom-selection

rule is a function from to a set of atoms such that the value of the function for

a clause-instance is an atom, called the selected atom, in the body of that clause-

instance.

In theory, there need be no ordering on atoms in the body of a clause-instance and on

clause-instances in a stage. In practice, as in our Starlog interpreter, both orderings

are imposed to simplify scheduling.

Def 21 Let r be a clause-instance of P and JA be an atom-selection rule. An X-

derivation from r via IA is one that uses JA to select atoms.

An X-assertion from r via JA is defined similarly.

Def 22 An X-computation of P via an atom-selection rule JA is one that uses RA

to select atoms.

An X-tree via R A is similarly defined.

Def 23 Let R A be an atom-selection rule. An atom A is anRA-computed tuple

of P if there exists an X-computation 73 via IA of P such that the unit clause-

instance A - occurs in some stage of U.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 48

A is yielded by an X-assertion that is carried out by an X-computation via RA. Note

that this is stricter than asking for just the X-assertion yielding A to be via A; this

restriction is imposed only to simplify the proofs.

Def 24 Let RA be an atom-selection rule. TheRA-success set of P is the set of all

A E Bp such that A = A'a, for someRA-computed tuple A' and (ground) substitu-

tion a.

Def 25 A search rule is a strategy for searching or constructing X-trees.

We explore here an or-parallel search of the X-tree of a program F, or-parallel in

that different paths of this tree are constructed concurrently, i.e., in an interleaved

fashion. Concurrency in the search is essential for completeness since the input-

clauses for derivations on one path may be X-derived on other paths. Starting with

root, Starlog constructs the X-tree downwards; computed tuples appear at the leaves

of the X-tree as it is being constructed. It may take forever before all the computed

tuples appear on the X-tree being constructed. This means that a set of all computed

tuples of a program may not be finitely computable by Starlog. For example, Starlog

takes forever to compute the following program's tuples:

p(f(X)) <- p(X).

p(a) <-.

Unfortunately, Starlog cannot deduce that tuples p (a) and p (f (X)) would, when

grounded, equal the program's minimal model. This means that even if there is a

finite set of tuples that when grounded equals a program's minimal model, Starlog

might not terminate finitely.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 49

Def 26 Let 4 be the set of all clause-instances of P. A clause-selection rule R0 is a

function from 2 to such that given a stage, Ja selects (decides) a single non-unit

clause-instance from that stage.

Def 27 A fair clause-selection rule RC is one that guarantees that each non-unit

clause-instance in an input stage is eventually selected in each X-computation using

c.

A fair 1a offers a non-zero, though not necessarily equal, probability of selection to

each clause-instance in a given stage. In a stage of an X-computation, i.e., leaves

of the corresponding X-tree as it is being constructed, a clause-instance upon X-

execution is replaced by some different clause-instances, each of which will be selected

eventually by a fair Rc. Fairness of clause-selection ensures that each finite path

in the X-tree is fully enumerated within a finite number of X-computation stages;

infinite paths may only be partially enumerated. A first-come-first-served (FCFS)

clause-selection rule is fair and is used by our Starlog interpreter.

We will prove ahead that fair clause-selection rules are semantically equivalent.

(In practice, depending on F, some fair clause-selection rules may perform better

than others, e.g., by computing tuples in fewer steps or by reducing branching in

the X-tree.) We are interested in fair rules since they guarantee asproved ahead in

Theorem 36—Starlog's completeness and not just soundness. Note that the X-tree

for a program is dependent on both the atom-selection and clause-selection rules.

Def 28 Let JA be an atom-selection rule and RC be a clause-selection rule. An X-

computation U of F via JA and RC is an X-computation of P in which R A is used

to select atoms and RC is used to select clause-instances.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 50

An X-tree based on a complete X-computation of P via 1A and RC is an X-tree of P

via JA and Rc. X-computations and X-trees are (modulo variants) uniquely defined

given F, R A, and 2a because RA and ia are total (pure) functions.

Def 29 A fair X-computation of is one that uses a fair clause-selection rule. Fair

X-trees are based on fair, complete X-computations.

Example Consider the definite program Pqr2 in Fig 4.5. Each X-tree—including

% Program 'Pqr2'.
p <- q, r.
q<-q.

Figure 4.5: Definite Program Pqr2.

the fair ones—of Pqr2 is infinite, but some are smaller than the others, merely due

to a different atom-selection rule. Fig 4.6 shows an X-tree based on leftmost atom-

selection, and Fig 4.7 shows one based on rightmost-atom selection; both the X-trees

are based on (fair) FCFS clause-selection.

Pf , r.

p <- q, r.

I-

root

q<- q.

q<- q.

/

Figure 4.6: A Big X-tree for Pqr2.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 51

root

p <- q, r. q

(fails)

q <- q.

Figure 4.7: A Small X-tree for Pqr2.

Def 30 Let be some X-tree of P. In , an atom A, in the body of some clause-

instance, points* in to a clause-instance r if there exists in £ an X-derivation

from C/(ni) yielding P.

Theorem 31 Let P = H — A 1,. . . , A (q> 0) be a clause-instance occurring in

an X-tree £ of F, and let each Ai point* in S to a unit clause-instance Ai. For the

set {[&. .. , Ar,], [Li+,. .. , q+]}, let a be an mgu. Then in ,

(a) let n be some clause-instance in the X-assertion from CC(fSm) yielding Lm,

where 1 ≤ m ≤ q. (Assume that each Ai, 1, and r are suitable variants,

i.e., are standardized apart.) Then, in a derivation from r yielding r, if an

atom Am is selected with Q as the input-clause then there exists an mgu /3

such that Am /3 = (1+)i3.

(b) there exists substitution 7 such that Vi, Af3-y = Aa = (i+)a = (L+)7 and

H/3'y = Ha.

(c) after such a derivation, each atom in r— may be further instantiated with

respect to r, but only the pointer of Am can change.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 52

(d) after such a derivation, Vi, i 0 m - A118 (E F'—) points* in to Aj. If R =

then Am disappears; otherwise, if IV(11) = r then Aj3 replaces Am in r',

meaning thereby that Am/3 points* to Am.

This means that if the body atoms in a clause-instance r point* in to unit clause-

instances, and if the sequence of body atoms is unifiable with the sequence of the

clause-instances, then there exists a derivation from r such that the unifiabilty is

retained and the resulting instantiated body atoms continue to point* in ≥ to the

corresponding unit clause-instances. Also, (b) states that in this derivation, the

atoms in F never become "over"-instantiated so as to "lose" tuples that can be

computed from r via some X-assertion. Note that may be an unfair X-tree.

Proof Given fl is a clause-instance in the X-assertion from II = C.C(ilm) yielding

E-'m is a clause-instance of Q (using Def 4).

= There exists an idempotent substitution 5 such that (/m+) = (+)5. (As stated

in §4.2, we consider only idempotent substitutions.) Let S be constructed by taking

the composition of idempotent mgus used in the X-assertion in from R yielding

Lm. We are given that Ama = (L m+)a.

Ama = (1+)5a = AmSa (5 does not act on variables in r due to standardization

apart).

Am and fl+ are unifiable via Sa.

There exists an mgu unifying Am and 1+.

= There exists an idempotent mgu @ such that Am /i = (1+)/i, and there exists

substitution 0 such that 00 = Sa (using mgu definition in [Llo87, page 23]).

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 53

= (a) is true.

Now Vi, i 0 rn -4 A/30 = A5a. It is implicit that 1 ≤ i ≤ q.

= Vi, i 0 m - A/30 = Aa = (+)a = (L+)5a (6 only acts on variables in the

X-assertion from Q yielding Lm).

Vi, i m A1/30 = Aa = (+)a = (+)#O = (+)O (8 only acts on vari-

ables in 1 and r).

Also, (I.m+)a = Ama = Amöa = Am /30 = (+)8a = (11+)SSa (6 is idempotent).

Am/30 = (1,,,+)5a = (&+)i30.

A,n18(/30) = Amc = (.m+)a = (1m+)(/30) (9 is idempotent). Combining this

with the previous result that Vi, i 54 in -+ A/3(/.30) = Aa = (L+)a = (i+)(,80),

we have that there exists substitution y such that the following holds:

Vi, A37 = Aa = (+)a = (i+)7

(by putting /90 =

Also, Ha = H8a = Hf30 (S does not act on variables in).

= Ha = H/3/30 = H,8'y (3 is idempotent).

= (b) is true.

(c) is true simply because Am is the only selected atom in the derivation from F

(using Def 5).

(d) follows from (c) and the given condition that each Ai E F— points* in to

&j (using Def 5). 0

Theorem 32 Let F = H — &. .. , Aq (q ≥ 0) be a clause-instance of P. Let there

be an X-assertion 0 from F using Al,- . . Lq as (suitable variants of) its unit input-

clauses and yielding a tuple B. Then, for the set {[A1,. . . , Aj, [Li+,. . . ,

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 54

there exists a unifier a such that B = Ha.

o may use other non-unit input-clauses too. Since there would exist a "minimal"

X-assertion that used no other input-clauses other than Al,. . . , z, the Theorem

need not and does not argue that a is an mgu.

Proof If q = 0 then the Theorem is trivially true because B H. We now con-

sider the case when q> 0. Given that for each i, there exists some instance of Ai that

disappears, when some clause-instance of r is atom dropped on selection with the
corresponding /.j as unit input-clause (given 0). Let fli be the composition of mgus

applied in 0 in sequence to clause-instances of r until A, or its instance, disappears.

(It is not necessary that a body atom be dropped or disappear after each derivation

in 0.)

= Vi, Aigi = (Most of the bindings in Pi would not act on variables in ij

since only the last mgu that was composed to result in Pi would act on Ai.) Let

Am, or its instance, be the last atom to disappear in 3. Surely, there exists one such

atom for q> 0.

Vi, Ai/3m = (Li+)/3m since /3m is the composition of all the mgus applied to

(clause-instances of) r in 0 (Am is last to disappear). Therefore, /3m is a unifier.

Since B = (P+)/3m = H/3m, we have the proof by replacing /3m by a. 0

Theorem 33 Let r = H _ A1,..., Aq (q ≥ 0) be a clause in F, and let there be an

X-assertion from r using L,. . . , L as its unit input-clauses and yielding a tuple B.

Let £ be the X-tree of F via an atom-selection rule JA and a fair clause-selection

rule R0. If each Ai E P— points* in Qj to a unit clause-instance L, then in ,

there exists an X-assertion 0 from r using L4,. . . , L as its unit input-clauses and

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 55

yielding a tuple B. Here, each L is a suitable variant of Aj, and B' is a suitable

variant of B.

O and the X-assertion from r yielding the tuple B may use other non-unit input-

clauses too. This Theorem states that if a tuple B is yielded by some X-assertion—

not necessarily in some X-computation—from a clause in P and the unit clause-

instances used by the X-assertion are X-asserted in a fair X-tree of F, then a

variant B' is yielded in ≥.

Proof Given an X-assertion from r using Al, . . i. as unit input-clauses and

yielding a tuple B.

= There exists a unifier a for the set {[A1,. . . , Aq], ... A +]} such that

B = Ha (using Theorem 32).

. There exists a unifier cx' for the set {[A1,. . . , Aq] ,[L4+,.. . , +]} such that

B' = Ha' (each L is a suitable variant of 1.j, and B' is a suitable variant of B).

Given that each t& occurs in .

= In , there are X-assertions from clauses in P yielding each L (z is a unit

clause-instance).

= Each Ai E F— points* in £j to the corresponding L (each Ai is A6 in mit).

= In a, there exists an X-derivation 0 from r such that in each of the clause-instances

comprising 0:

• the sequence of body atoms is unifiable, via a', with the corresponding unit

clause-instances, and

• each A, or its instance, either has disappeared on selection with L as unit

input-clause or points* in to L (using Theorem 31).

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 56

Successive clause-instances in the X-assertions yielding each E are being yielded as

the X-computation of P via JA and RC proceeds (X-assertions for each L exist in

Each L is eventually X-asserted in a complete X-computation via 1A and

Each clause-instance in 0 is eventually—and in sequence—X-executed (c is fair).

This forces the eventual selection of each L as input-clause with A, or its instance,

as the selected atom (using Def 10). Hence, each A, or its instance, eventually

disappears on selection with L as unit input-clause (Jc is fair, Def 10).

Tuple Ha' = B' is eventually yielded. 0

Def 34 Let RA be an atom-selection rule and Rc be a clause-selection rule. An

atom A is anRAC-computed tuple if there exists an X-computation 73 via JA and

a of such that the unit clause-instance A +- occurs in some stage of U.

Every X-computation is carried out by some clause-selection and atom-selection

rules. We try to mention the rules only when necessary.

Def 35 Let JA be an atom-selection rule and RC be a clause-selection rule. The

Ac-success set SSp:Aa is the set of all A E Bp such that A = A'a, for some AC

computed tuple A' and (ground) substitution a.

Unlike SSp (see Def 13), SSp:Ac contains grounded tuples computed by exactly one

X-computation (modulo variants), the one via RA and Rc.

Theorem 36 (SSP:AC = MP, Completeness of Search) Let JA be an atom-selec-

tion rule and Jc be a fair clause-selection rule. The RACnsuccess set of a definite

program is equal to its least, Herbrand model.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 57

Given a correct ground tuple A, we show that there exists a corresponding (possibly

non-ground) Ac-computed tuple, which is X-asserted finitely. However, this is not

to say that tuples corresponding to all (ground) correct tuples will be computed in a

predetermined, finite number of steps. Also, some X-trees may not have computed

tuples corresponding to some of the correct tuples, but overall, corresponding to each

correct tuple, a computed tuple will appear on at least one X-tree. What does this

mean in practice? Do all the X-trees have to be constructed and the computed tuples

collected from each of them to build a program's minimal model? Or, is there some

magical, nondeterministic manner in which a "correct" X-tree can be constructed?

We dispel the magic and prove that any fair X-tree can be selected for construction,

guaranteed that it will be "correct." This result establishes the completeness of fair

X-computations.

Proof Let P be a definite program, SSp be its success set, SSP:AC be its RAC-

success set, Mp be its least, Herbrand model, and be the X-tree of P via 1A

and Rc. Since SSP:AC SSp, it suffices TPT Mp is contained in SSP:AC (using

Corollary 19).

TPT VA, A E Mp A E SSP:AC. We are given that P is definite.

TPT VA, A E Tplw - A E SSP:AC (using Theorem 6.5 in [Llo87, page 38]). Now,

VAn(nEw), AETpw<—AETp1m.

TPT VA, A E Tpin for some n E w -* A E SSP:AC (using Theorem 6.5 in [L1o87,

page 38]).

- TPT VA, A € Tpin for some n E w - p there exists RAC-computed tuple A', which

occurs in , such that A - A'a, for some ground substitution a (using Def 35). We

induce on n to prove this implication. Let LHS be the proposition that A € Tpin

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 58

and RHS be the proposition that there exists an Ac-computed tuple A' such that

A = A'a, for some ground substitution a.

Basis: For n = 0, the statement LHS - RHS is vacuously true since Tp10

Just as an exercise, we try TPT LHS - p RHS for n = 1. Given A E Tp11.

= There exists a clause A' - in P such that A = A'a, for some ground substitu-

tion a.

=' There exists an X-assertion of unit length from A' - yielding itself (using Def 6).

This X-assertion is carried out by each X-computation of P (using Def 11).

=> RHS (using Def 12).

Hypothesis: Assume that for 1 <n Ic - 1 (k> 1), LHS - RHS.

Induction: TPT for ri = Ic, LHS - RHS. Given that A E Tpk.

= There exists a clause F = B +- B1,. . . , Bq in P such that for some ground substi-

tution a, A = Ba and {Bia,.. . , Ba} is contained in Tp1(k - 1) (using definition

of Tp in [Llo87, page 37].

' There exist AC-computed tuples C1,. . . , Cq such that for some ground substi-

tution 8, Vi (1 ≤ i ≤ q), Ba = Cf3 (using Hypothesis). These tuples are surely

X-asserted in ≥.

= In , each atom Bi in r— points* to a unit clause-instance C . This is because

each body atom of clause-instances in iriit refers to 0.

Now, Vi (1 ≤ i ≤ q), there exists an X-assertion from some clause in P ending in

the unit clause C - (using Def 12). Each clause-instance C - may be used as an

input-clause in a derivation from a clause-instance in init. Also, each body atom B

is unifiable with C, e.g., by the unifier a/3, which means that [B1,. . . , Bq] is unifiable

with [C1,.. . , Cq], say, via mgu 'y.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 59

= a/3 = yO, for some (ground) substitution 0.

= There exists an X-assertion, possibly outside , from r such that each body

atom Bi is selected in turn with C - as input-clause. Let this X-assertion yield a

tuple A', which would be a variant of By. Surely, A = Ba = Bag = B70 = A'S, for

some ground substitution S.

= In , a tuple A" is X-asserted such that A" is a variant of A' (using Theorem 33).

= RHS is true (using Def 12). 0

As shown by Theorem 36, given a definite program, the policy of atom selection

does not affect an X-computation's soundness and completeness. (We had proved an

atom-switching lemma stating that switching selected atoms in an X-assertion gives

another X-assertion such that the tuples yielded by the two X-assertions are variants.

Since this lemma was not required for proving completeness, we did not include it in

this thesis.) This means that we can arbitrarily fix an atom-selection rule before be-

ginning to execute a definite program. This is not true when negation is allowed and

normal programs are considered because the finite failure of X-derivations becomes

important.

As described in Chapter 3, our Starlog interpreter uses all-atom selection. In all-

atom selection, all the atoms in the body of the clause-instance are selected in some

arbitrary sequence and a descendant is computed. All-atom selection shrinks paths

in X-trees and thereby may cause "early" failures and successes. All-atom selection

ensures fairness towards atoms and greater interleaving in the search, which resembles

a breadth-first search. Thus, we circumvent the problem of fairness towards atoms

within a clause-instance. This is a requirement stricter than required for guaranteeing

completeness of search in case of normal programs.

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 60

Theorem 37 Let F = H - A,,— , . , Aq (q ≥ 0) and A = F - B1,. .. ,B (r ≥ 0) be

clauses in P that have been standardized apart. Let be the X-tree of P via an

atom-selection rule RA and a fair clause-selection rule Jcj.

(a) suppose, in an X-tree C is a tuple X-asserted from LS in depth n using

as its unit input-clauses. Then in £, there exists an X-assertion

from L yielding C' using E'1,. . . , E as its unit input-clauses. Here, C and

,Er are suitable variants of C' and Ei,. . , E'.

(b) suppose, in an X-tree b, D is a tuple X-asserted from r in depth n + 1 using

• . . , E q as its unit input-clauses. Then, each atom Ai E F— points* in to

E. Each E is a suitable variant of E.

Both C and D may be X-asserted using other non-unit input-clauses, in addition. A

computed tuple A of F, which is X-asserted in some X-tree of F, is also X-asserted

in each fair. X-tree of P.

This Theorem is not referred to by any other theorem in this chapter, but it is

an important result and can aid future improvements on or extensions to Starlog's

procedural semantics.

Proof We induce on the depth m.

Basis: n = 0.

In length of X-assertion yielding C - is 1 (using Def 16).

= F -= C i— is a unit clause in P.

= In , there exists an X-assertion from A of unit length yielding C -. There are

no input-clauses in this X-derivation.

=- Basis for (a).

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 61

In , D is X-asserted from r in depth n + 1 = 1.

= I' has only one atom A1 in its body, and in the X-assertion in from r yielding

D, a unit clause E, in P is used as the input-clause (using Def 16). Being a clause

in F, EE, is X-assertible in depth 0 in every X-tree of P. Now in , body atoms in

clause-instances in irtit point to root.

= A1 points* in to each clause in P since each clause in P is assumed X-derivable

(in) from root.

A points* in to E1.

Basis for (b).

Hypothesis: Assume that for each n such that 0 <n ≤ k (k > 0), the Theorem

is true.

Induction: n = k + 1. Given that in , C - is X-assertible from A in depth k+1

using E1,. . . , E, as the unit input-clauses.

= Each Ej is X-assertible in a from some clause in P in a depth ≤ k (using Def 16).

=t. In £, each B E i- points* in £j to E (using Hypothesis (b)), and there exist

X-assertions yielding each E (using Hypothesis (a)).

= In , there exists an X-assertion from A yielding C', where C' is a suitable variant

of C (using Theorem 33).

=> Hence, the proof for (a).

Given F = H &. .. , Aq (q ≥ 0), and that D is a tuple X-asserted in b from

r in depth n + 1 = k + 2 using Ei, .. nq . as unit input-clauses.

= In b, each Ei is X-asserted in depth ≤ ic + 1 (using Def 16) from a clause 1, in

P using unit input-clauses, say, A1,...

' Each atom Ej € ≤— points* in to A (using Hypothesis (b)). Each A is a

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 62

suitable variant of A2.

==> In £, for each , there exists an X-assertion from Oi yielding it (using Theorem 33

on each).

In ≥, each body atom in init refers to root.

= Each Ai E r- points* in ≥ to each and every clause, including Qi, in P.

= Each Ai E r- points* in to (using Def 30). Hence, the proof for (b). 0

In this chapter, we have formally defined definite-Starlog execution, via fair X-

computations, and have proved both its soundness and completeness with respect

to least, Iierbrand models. Although inspired by the proofs for SLD-resolution in

[Llo87], the proofs here are novel and tackle more-complicated problems:

• our results are for Starlog's X-computations, which employ a bottom-up, model-

theoretic form of deduction; the results in [Llo87] are for top-down SLD-

resolution.

• X-computations may use as input-clauses clause-instances that are not part of

the original program, but are deduced from it. Therefore, correctness proofs

are more complicated for X-computations than for SLD-resolution, which uses

only clauses from the given program as input-clauses.

• according to Lloyd [Llo87, page 56], while any two SLD-trees may have greatly

different size and structure, they are essentially the same with respect to success

branches. SLD-trees differ in their selection of atoms from a query or goal.

An X-tree for a Starlog program is built according to a clause-selection rule,

and there can be an X-assertion (success path) in one for which there is no

equivalent in another. Except for fair X-trees, X-trees are not alike with respect

CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 63

to success paths.

• in an SLD-tree, goals deduced along one path from a node (goal) do not affect

goals deduced along a different path from that node. Therefore, although

Lloyd [Llo87] does not present an explicit proof of completeness of search, i.e.,

for finding success branches in an SLD-tree, such a proof would be trivial—

when considering fair clause-selection—given the strong completeness of SLD-

resolution [Llo87, Theorem 9.5]. In contrast, in an X-tree, a clause-instance

deduced along one path from a node (clause-instance) may be used as an input-

clause when deducing along a different path from that node. Due to this

interconnection between paths, our results leading to a proof of completeness

of search, Theorem 36, are complicated.

We now move on to Chapter 5, which describes Starlog negation.

Chapter 5

Negation in Starlog

Starlog uses negation and constraints on explicit time to model mutation and per-

sistence. Therefore, improved, correct handling of negation will improve Starlog's

promise of an effective, declarative paradigm for updates. Starlog negation has to

be efficient, and negations should be satisfied or failed quickly.

Starlog negation is based on the completed program and equality axioms, as

in [Llo87, §14], but negation via SLD with Negation as Failure (SLDNF) [L1o87]

is unsatisfactory. In plain or unsafe SLDNF, a negated literal can be selected for

execution even if there are non-ground, non-local variables within it, i.e., there is

no floundering or delaying for a safe condition. (Non-local variables are those that

are existentially or universally quantified outside the negation.) Unsafe SLDNF

is unsound with respect to Herbrand models [L1o87, §15]; so, it cannot be used

for Starlog. Safe SLDNF flounders (delays) a negated literal until each non-local

variable in the negation's body is ground. Therefore, it is sound, but being a test, it

does not permit a negation to generate bindings for non-local variables. Therefore,

generate-and-test programs can be inefficient and might never terminate. Consider

the program in Fig 5.1. With SLDNF, the constraints on the bindings of variables

occurring within a negation are not exported outside the negation. Therefore, given

a goal p (N), the interpreter would test the negation on each of the hundred, possible

integers N given by num (N). This is instead of using the negation to deduce the

rule-instance p (N" (- inf , 3]) <- num (Nr. (- mt , 3]), which constrains the search

64

CHAPTER 5. NEGATION IN STARLOG 65

% Program Gen-Test.
% 'num' generates integers lying between 0 and 100,
% and 'p' tests whether they are less than or equal to 3.

p(N) <- num(N), not(N> 3).
num(0).
num(N) <- num(Nprev), Nprev >= 1, +(Nprev,1,N), 100> N.

Figure 5.1: A Generate-and-Test Program.

for num tuples.

For logic programming—as opposed to theorem proving, which checks for consis-

tency—it is desirable to use negations as constructors or generators of bindings rather

than as mere tests. Negations should be used to constrain the search space.

Negation in Starlog is not based on passive SLDNF, as it is in Prolog [CM81].

Instead, it is constructive. A negated literal can be selected at any stage for execution

and can generate bindings for all of its variables—just like any other constraint.

This chapter does not attempt to prove that Starlog negation is sound and com-

plete. (Some intuition on how to approach such a proof is given in §7.3.) It only

presents the motivation for temporal stratification and describes the rewrites and

general strategy used to implement negation in Starlog. We use "extended, Her-

brand model" to mean a Herbrand model that includes equality axioms and the set

of real numbers as implicit constants in a given program. We do not enumerate the

equality axioms, though, when writing out such a model.

5.1 Temporal Stratification

A program is said to be consistent if it has a model. Every normal program, which

allows negated literals in the bodies of its rules, is consistent, but its completion may

CHAPTER 5. NEGATION IN STARLOG 66

not be consistent [Llo87, page 83]. Temporal stratification, mentioned in Chapter 2,

is a syntactic condition sufficient to ensure that the completion of a normal program

is consistent. Its motivation, as for ordinary stratification [Llo87, page 83], is to limit

the use of negation in recursive rules to keep the model theory manageable.

As mentioned in Chapter 2, Starlog restricts its domain to a class of temporally-

stratified programs. This ensures that when negation is used, Starlog's bottom-up

execution proceeds monotonically, i.e., tuples once yielded do not have to be deleted

or undone. Recall that a sufficient condition for a Starlog program to be temporally

stratified is that each recursive, predicate-call loop involving negation should be

accompanied by a time advance, i.e., there should be no zero-delay loops involving

negation [CK91]. (This condition can be checked for during execution.) Clearly,

this class of temporally-stratified programs is a superset of the class of programs

stratified, as per [Llo87, page 83], on predicate symbols alone.

5.2 Type Mismatch: Error or Failure?

Before we produce the rewrites for negation, we digress here to point out the question

of incorrect types of arguments to language primitives. If a primitive expects an

argument of some type and receives one of a different type, then whether the primitive

should fail silently or raise an error or exception is a controversial question. Consider

the following program:

p(X) <- not(X > 5).

r(a).

CHAPTER 5. NEGATION IN STARLOG 67

The extended, llerbrand model {r(a), p(a), p((-inf,5])} is the intended model

according to the view of "silent failure on type mismatch," which requires that

literal (a > 5) fail silently. The other view seeks {r(a), p((-inf , 5])} as the

intended model of the program. Although important, this controversy is beyond the

scope of this thesis, and we shall not discuss it any further. Suffice to say that the

rewrites in this chapter take the view of "silent failure on type mismatch."

5.3 Negation Strategy

As mentioned in Chapter 3, Starlog selects from its scheduling list a rule-instance,

rewrites it, deduces new rule-instances or tuples from it in the X-tree, rewrites the

resultant rule-instances, and places the non-tuples amongst them in the scheduling

list for future execution. We now describe the forward and return rewrites.

5.3.1 Forward Rewrites

The period after a rule-instance's selection from the scheduling list and before de-

duction in the X-tree is called the forward phase. In our Starlog interpreter, some

rewrites are performed during a forward phase; these are called forward rewrites.

Fig 5.2 lists the forward rewrites, which are applied repeatedly on the rule-instance

until they can cause no further change. not (A, B, ...) is rewritten into the more-

general form not-exists: (A, B, ...) and then executed.

In the forward phase, the ';' call is "eagerly" expanded to yield as many rule-

instances as there are literals in its argument, and then, each of those rule-instances

is executed in some order. The ';' expansion is "eager" because a possible failure

CHAPTER 5. NEGATION IN STARLOG 68

Argument Forward Rewrite

Fl p(U) <- q(V), (r(W); s(X); ...), t(Y). p(Uw) <- q(Vw), r(Ww), t(Yw).

p(Ux) <- q(Vx), s(Xx), t(Yx).

p(Uz) <- q(Vz), ..., t(Yz).

F2 X=/=Y not(X=Y)

F3 not(A,B,...) not-exists: (A, B,...)

Figure 5.2: Forward Rewrites.

of other literals in the rule-instance's body is not awaited. On the other hand, by

"delaying" the ';' expansion of a rule-instance B till the forward phase—instead of

expanding B at the end of the earlier execution that generated B—branching in the

X-tree is delayed till it is clear that the expanded rule-instances will not trivially fail.

5.3.2 Return Rewrites

After the forward rewrites have been repeatedly applied, a rule-instance is executed

using Starlog's bottom-up deduction. This may result in some tuples and some

non-tuple rule-instances. Now, the return phase follows. In the return phase, the

resultant, non-tuple rule-instances are subjected to rewrites, called return rewrites,

before they are placed into the scheduling list for future execution. Like their forward

counterparts, the return rewrites too are applied repeatedly until they can cause no

further change. They are also applied right at the beginning of Starlog execution,

when the program's rules are being placed into the scheduling list. We now describe

these rewrites under three categories: those for inversion, those for (back-) converting

not-exists literals into the more-specialized not literals, and those for partitioning.

CHAPTER 5. NEGATION IN STARLOG 69

Rewrites for Inversion

Fig 5.3 summarizes the return rewrites used for inverting the arithmetic primitives

when the arguments are known to be timestamps. Recall from Chapter 2 that times-

Literal Rewrite

Ri
R2
R3
R4
R5
R6

not(T>U)
not(T>=U)
not(T!=U)
not(T=:=U)
not(real(T))
not(notreal(T))

U>=T
U>T
T=:=U
U>T;T>U
false
true

Figure 5.3: Rewrites for Inversion of Timestamp Constraints.

tamps occur as the first arguments in user-defined predicates and are real valued.

Although most arithmetic constraints in Starlog programs would involve times-

tamps, we need to cater to general arguments too. Fig 5.4 summarizes the general

rewrites used for inverting arithmetic primitives. (Refer to Chapter 2 for a list of

Starlog's primitives.) Fig 5.4 generalizes Fig 5.3 in that it additionally handles argu-

Literal Rewrite

RI
R2
R3
R4
RS
R6

not(X> Y)
not(X >= Y)
not(X != Y)
not(X =:= Y)
not(real(X))
not(notreal(X))

notreal(X); notreal(Y); Y >= X
notreal(X); notreal(Y); Y > X
notreal(X); notreal(Y); X =:= Y
notreal(X); notreal(Y); Y > X; X> Y
notreal(X)
real(X)

Figure 5.4: Rewrites for General Inversion of Arithmetic.

ments that are not real valued and yet occur in arithmetic constraints. Rewrite R4,

in both Fig 5.3 and Fig 5.4, prefers (X > Y; Y > X) over (X ! = Y), although these

rewrites are equivalent; we disclose the reason for this only later in §7.2.2.

CHAPTER 5. NEGATION IN STARLOG 70

Argument Literal Rewrite

R7
R8
R9
RiO
R11

not(X=Y)
not(not(A, B, ...))
not(not-exists X,Y : (A, B, ...))
not(A, B, C, ...)
not(A;B; ...)

X=/=Y
A, B,
A, B,
not(A); (A, not(B)); (A, B, not(C));
not(A),not(B),...

Figure 5.5: Remaining Rewrites for Inversion.

Fig 5.5 lists the remaining rewrites for inversion. Rewrite R9 of Fig 5.5, as

formulated, may be used only at the top level of a rule-instance so that correctness

is not sacrificed. Rewrite RIO of Fig 5.5 is done only when each positive literal,

or atom, within (A, B, ...) is a primitive that is incapable of forcing solutions

on its own, i.e., whose repeated execution does not cause further instantiations or

"squeezing" of real intervals associated with arithmetic variables. Since the disjuncts

rewritten into end up in different rule-instances in the X-tree--as explained earlier—

this "delay" in using Rewrite RiO of Fig 5.5 serves to reduce the branching in the

X-tree.

Rewriting not-exists as not

This is an important, return rewrite that drops variables local to a not-exists

literal; a not literal results if all such variables can be dropped. The not literal is

more active since it can invert its body; hence the importance of this rewrite.

Fig 5.6 shows some examples where local, existentially-quantified variables can be

dropped from within a not-exists literal. A local, existentially-quantified variable

can be dropped when it satisfies any of the following conditions:

• it is fully instantiated.

CHAPTER 5. NEGATION IN STARLOG 71

Example Rewrite

not-exists X-a: (r(X-.a))
not-exists X: (r(Y), p(Z))
not-exists X-f(Z,b),Y-[1,3): (r(Y-[1,3)), p(X-f(Z,b)))

not(r(a))
not(r(Y), p(Z))
not-exists Y-{1,3): (r(Y-[1,3), p(f(Z,b)))

Figure 5.6: Rewriting not-exists As not: Examples.

• it does not occur in the body of the negation.

• it has been bound to a structure whose variables are universally quantified.

A not-exists call is specialized into or rewritten as a call to a not if it does not

(existentially) quantify any variables within it.

Partitioning

Now, we discuss a return rewrite called partitioning that reasons about arithmetic

intervals to quicken the satisfaction of negations. Consider the execution trace in

Fig 5.7. Left alone, the rule-instance for q would have to fail or bear tuples before

Execution of rule-instance
p(T-(2.O,1O.O]) <- not(q(T-(2.O,1O.O])).

with the non-tuple input-rule
q(U-[4.O,6.0)) <- r(U-[4.O,6.0)).

gives the following rule-instance:
p(T-(2.O,1O.O]) <- not(q(T-(2.O,1O.O]), T-(2.O,1O.O] >= 4,6> T-(2.O,1O.O]).

Figure 5.7: Execution Trace to Motivate Partitioning.

any tuples of p will be yielded. To improve the efficiency of negation, we look

at the arithmetic intervals constraining T inside and outside the negation—this is

depicted in Fig 5.8. Clearly, the interval constraining T within a negation can only

CHAPTER 5. NEGATION IN STARLOG 72

Tout
 (2.0,10.0]

Tin
[4.0,6.0)

-

 I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
I
u (2.0,4.0) I I [6.0,10.0]

Figure 5.8: Inter-Relationship of Constraining Intervals.

lie within the interval constraining T outside the negation. So, if Tin and Tout

are the respective intervals constraining T within and outside the negation, then

Tin has to lie within Tout. This means that Tout can be split into three, disjoint

intervals, one of which is Tin—from Fig 5.8, Tout".' (2. 0, 10.0] can be split into

(2.0,4. 0), Tin.-..#[4.0,6.0), and EG.0,10.0]. Therefore, the result of Fig 5.7 can

be rewritten into three rule-instances as per Fig 5.9. The tuples p((2.0,'l.0))

Consider the following portion of an X-tree: (q(U-(4.0,6.0)) <- r(U-[4.0,6.0)).
'-(2.0,10.o]) <- not(q(T-(2.0,10.0]), T-'(2.0,10.0) >= 4,6> T-(2.0,10.0j).

This can be rewritten into the following rule-instances:
q(U-[4.0,6.0)) <- r(U-[4.0,6.0)).
p(Ta-(2.0,10.O]) <- Ta-(2.0,10.0] >= 4,6> Ta-(2.0,10.0],

t(q(Ta-(2.0,10.0]), Ta-(2.0,10.0] >= 4,6> Ta-(2.0,10.0]).
p(Th-(2.O,1O.O]) <-4> Th-(2.0,10.0),

not(q(Th-(2.0,10.O]), Th-(2.0,10.0] >= 4, 6 > Tb-(2.0,10.0]).
p(Tc-(2.0,10.0]) <- Tc-(2.0,10.0] >= 6,

not(q(Tc-(2.0,10.0]), Tc-(2.0,10.0] >= 4,6 > Tc-(2.0,10.0]).

This then simplifies on constraint relaxation:
q(U-[4.0,6.0)) <- r(U-[4.0,6.0)).
p(Ta-[4.0,6.0)) <- not(q(Ta-[4.0,6.0))).
p((2.04..0)).
p([6.O,lO.O}).

Figure 5.9: Rewrites Via Partitioning.

and p ([6.0,10.0]) have thus been forced out quickly. Such a rewrite is called

CHAPTER 5. NEGATION IN STARLOG 73

partitioning. Partitioning takes a rule-instance that has negations in its body, selects

a real-valued variable X that appears within a negation and is quantified outside it,

and rewrites it as different—in this case, three—rule-instances by creating disjoint

partitions of the interval of real values in which X lies. In this way, partitioning

extends the logical, interval arithmetic of [Cle87] into the domain of negation.

Partitioning is applicable in the presence of both not-exists and not literals.

When there are multiple not-exists or not literals in the body of a rule-instance,

the timestamp T in the head may be partitioned with respect to various possible

arithmetic intervals:

• T's interval in the "first" negation that (non-trivially) constrains T.

• T's interval in the negation that constrains T the "most."

• all of T's intervals in the negations that constrain T, after optimizing on the

overlap of intervals.

Presently, we use the first option in our interpreter, and restrict partitioning to the

timestamp in the heads of rule-instances. Partitioning can be extended to other

universally-quantified, real-valued variables occurring in the rule-instance, in the

head or in the body.

5.4 Execution of not-exists

5.4.1 Example

Let us first consider an execution of a not-exists literal. Fig 5.10 depicts a portion

of some X-tree.

CHAPTER 5. NEGATION IN STARLOG 74

I

PM <-

r**_•
p(l.0). p(2.0).

r(Y) <-

rN.I.
r(3.0). r(4.0).

s(1) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))).

Figure 5.10: A Portion of an X-tree.

Consider the execution of following rule-instance of Fig 5.10 in some detail:

s(T) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))).

Assume that Starlog has selected it from its scheduling list.

First, the forward rewrites are applied. Rewrite Fl of Fig 5.2 is applied once to

give the following rule-instances:

s(Tt) <- Tt >= 5.

s(Tn) <- (Tn >= 0, not-exists Un: (p(Un), r(Tn))).

Forward rewrites do not affect the first of these rule-instances, which is then executed

to give the tuple:

s(Tt'-..'[S.O,+inf)).

Forward rewrites do not affect the second of these rule-instances too. So, this rule-

instance's execution in the X-tree begins. Its leftmost literal is selected. This con-

straint calls Starlog's >= built-in, which binds Tn to the interval [0.0 ,+inf). Next,

we select the lone not-exists literal in the rule-instance:

s(Tn-'[0.0,+inf)) <- not-exists Un: (p(Un), r(Tn.i[0.0,+inf))).

This causes the negation's body to be executed as though it were a new rule-instance:

CHAPTER 5. NEGATION IN STARLOG 75

h <- p(Un), r(Tn'-'[O.O,+inf)).

(The h tuples are treated specially—they are not placed on the X-tree.) Four equal-

ities, corresponding to four possible solutions, result from this execution:

Un : 1, Tnr.[0.0,+inf) : 3

Un : 1, Tnr'[0.0,+inf) : 4

Un : 2, Tn'--'[0.0,+inf) =:= 3

Un : 2, Tnr.[0.0,+inf) : 4

We take these equalities back to the negation, whose body was being executed, and

since Un is existentially quantified within the negation, we have the following result

after deduction:

s(Tn) <- not-exists

not-exists

not-exists

not-exists

Ua'-'l .0:

Ub-'1.0:

Ucr'2.0:

Ud2.0:

(Tnr.[0.O,+inf) : 3),

(Tn'[0.0,+inf) =:= 4),

(Tn'[0.0,+inf) : 3),

(Tnr[0.0,+inf) 4).

Now comes the turn for the return rewrites to be applied. As exemplified in

Fig 5.6, each of the not-exists conjuncts is specialized into not literals to give the

following rule-instance:

s(Tn) <- not(Tnr[0.0,+inf) : 3), not(Tn'-'-'[O.O,+inf) : 4),

not(Tn.-"[O.O,+inf) : 3), not(Tn--'[O.O,+inf) 4).

Rewrite R4 of Fig 5.3 changes this into the following rule-instance:

s(Tn'[0.0,+inf)) <- (Tnt.'[0.0,+inf) > 3; 3 > Tn.-.'[O.O,+inf)),

CHAPTER 5. NEGATION IN STARLOG 76

(Tn.-'[O.O,+inf) > 4; 4 > Tn-[O.O,+inf)),

(Tnri[O.O,+inf) > 3; 3 > Tn.-.'[O.O,+inf)),

(Tn[0.0,+inf) > 4; 4 > Tn'-'[O.O,+inf)).

Even though its body has only arithmetic primitives, this rule-instance is not a

tuple and is placed into the scheduling list for future execution; unfortunately, our

rewrites are not "intelligent" enough to realize that arithmetic constraints have been

duplicated in the body. In the X-tree, this rule-instance and the previously-computed

tuple s (Tt— [5.0 ,+inf)) are made children rule-instances of the rule-instance we

began execution with:

s(T) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))).

On future selection—guaranteed with a fair scheduling—of the resultant non-

tuple rule-instance, the';' calls are expanded using the forward rewrite Fl of Fig 5.2

to give sixteen, new rule-instances! Only three of these finally succeed to give the

following tuples:

s((0 .0 ,3. 0))

s((3 .0 ,4. 0))

s((4.0,+inf)).

5.4.2 General Execution

In §5.4.1, we have traced through an example execution of a not-exists literal;

here, we try to generalize the execution.

Each (partial) execution of a negation's body can potentially result in a conjunc-

tion of not-exists literals, and these conjuncts have their existentially-quantified

CHAPTER 5. NEGATION IN STARLOG 77

variables standardized apart from one another. In more formal terms, suppose a

negation N, say, not-exists El,... ,Em: (B), is encountered. Let the body B be a

sequence of literals involving a list of variables U that—unlike the variables El,... ,Em-

-are not existentially quantified within N. (The variables in U are quantified outside

N and should not be further bound when executing N.) N is executed as follows:

1. bodies Bi,... , Bn are deduced from B. This is done as though a new rule-

instance h <- B were executed to result in the following rule-instances:

(h <- Bi),... ,(h <- Bn).

(Here, h is a dummy, predicate symbol that does not appear elsewhere in

the program.) This step guarantees that the existentially-quantified vari-

ables El,... ,Em are renamed differently in each Bi.

2. in each Bi, any further instantiations to variables that correspond to or are

renamed versions of those in U are undone and rewritten as equalities or in-

equalities.

3. over each Bi, each variable renaming a variable X in U is (back-) replaced by

X.

4. N is replaced by the following conjunction of literals:

(not-exists Ell,... Em': (Bl)),...,

(not-exists El",...,Em": (Bn))

This chapter has shown how active negation is carried out in Starlog. This active

negation has been successfully implemented and tested in our Starlog interpreter,

CHAPTER 5. NEGATION IN STARLOG 78

which is discussed in §7.1. In the following Chapter 6, we will contrast Starlog with

related approaches.

Chapter 6

Comparison with Related Approaches

Our work has examined various aspects of Starlog: its formal semantics, explicit

time and its use in expressing mutation and persistence, constructive negation and

rewriting, and logical arithmetic. In this chapter, we relate a spectrum of approaches

to the seemingly-disjoint parts of our work.

6.1 Partial Deduction

Partial evaluation, also called projection, is a transformation technique used to spe-

cialize a given program into a semantically equivalent and more efficient one based on

partial, known input. The residual (resultant) program, when given the remaining

input, behaves identically to the original when the latter is given the same, com-

bined input. Partial evaluation is a general technique applicable to programs in

any programming language, logic based or otherwise. According to Lam [Lam89,

pages 5-6], partial evaluation originated in the 1950s and was first applied to logic

programming in 1981. Partial deduction is partial evaluation as applied to programs

in logic-based languages. It is mainly applied in the areas of meta-programming and

compiler generation.

Partial deduction is intended as a static, preprocessing strategy. Typically, pro-

gram rules are specialized to suit known, input goals using top-down, resolution-

based unfolding, which substitutes a call with an instance of the definition. On the

79

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 80

other hand, an X-computation of a Starlog program specializes one stage into the

next. Starting with an initial stage, which is the set of all the program rules, an

X-computation specializes during execution, i.e., dynamically. Starlog specializes by

propagating partial, known bindings from heads of rule-instances into "goals" (body

atoms) referring to them; thus, specialization information flows in a direction exactly

opposite to that in unfolding.

Residual programs generated by partial execution of Starlog may be executed to

completion, e.g., as Prolog programs. Also, if the pointers associated with atoms

in the bodies of rule-instances are retained in such residual programs, redundant

deduction can be reduced.

6.2 Prolog

6.2.1 Updates

Both Starlog and pure Prolog [0M81] are based on first-order, predicate calculus

and share a model-theoretic semantics: a minimal model of rules in the program.

Starlog and Prolog differ primarily in their approach to mutation and persistence of

modelled objects: the problem of updates. This problem has to be tackled in appli-

cations, e.g., databases, that model persistent and mutable stores of data. Prolog

uses assert and retract to force new rules into and remove rules from a program's

database. Unfortunately, these navigational constructs do not have a consistent,

operational meaning across different Prolog implementations, let alone a description

within the static semantics of Prolog. Thus, they can be very confusing and error-

prone in practice. Since Starlog explicitly incorporates time and the sequencing that

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 81

it implies, it can directly model modifications to its database. Thus, Starlog includes

the good from two worlds: it has a static semantics and can model change.

6.2.2 Negation

Negation in Starlog is not based on the passive, SLDNF inference rule [L1o87], as it

is in Prolog. Instead, it is constructive, and aided by constrained arithmetic, it tries

to force solutions. Unlike Prolog, Starlog retains tuples that have been computed

and their deduction paths in the X-tree. This enables its not-exists predicate to

be implemented in an efficient, semantically-clean fashion.

Prolog's "equivalent" of not-exists uses SLDNF negation and an all-solution

retriever, such as bagof, setof, or findall. Due to standard Prolog's unfair search,

these retrievers often execute inefficiently. They begin their search afresh each time

and are executed to completion before they affect or are affected by other goals, i.e.,

they are not coroutining.

Memo-ization [Die87] is an optimization technique that computes the set of tuples

satisfying a predicate and stores it in a table, known as the extension table, for later

reuse. It has been introduced into some Prolog interpreters to improve termination

and completeness in the presence of recursion. The ET* algorithm of [Die87] uses a

least-fixpoint method to compute the "fiat," extension table, but it only uses tuples

for deduction. In contrast, Starlog's X-computation makes use of the "structured"

X-tree, which carries the lineage information of tuples, and even non-tuple rule-

instances to avoid recomputation in a more-general fashion.

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 82

6.2.3 Execution

Although their results are equivalent, SLD-resolution, which is used for executing

pure-Prolog programs, differs greatly from Starlog's X-computation. (There are

forms of Prolog-like languages, e.g., the Logic Data Language discussed ahead, that

also use bottom-up, model-theoretic execution.) Perpetual processes, introduced

earlier in §3.2.6, can be modelled in Starlog as a result of its concurrent search for

deduction sequences; they would cause unbounded growth of standard Prolog's stack

of choice points.

Unlike standard Prolog, where execution is "lazily" triggered by a query (goal),

Starlog "eagerly" tries to compute a minimal model for the given program; a "goal"

is deduced from this model. In Prolog, each answer is a separate binding of variables

in a query rather than part of one overall, model-theoretic reply that Starlog aims

to deduce.

Starlog does not explicitly backtrack over alternatives to search for solutions.

However, it does provide a form of or-parallel search for alternative solutions.

6.3 Committed-Choice, Logic-Programming Languages

The committed-choice languages [Sha87, CG86b, Rin88] are a class of concurrent,

logic-programming languages that attempt to model parallel, process-based execu-

tion. When executing a goal against a program written in these languages, if a

choice of alternative clauses is encountered, then one of the alternative clauses is

"arbitrarily" committed to for resolution. This "arbitrary" manner of choosing from

among alternatives is called don't-care nondeterminism and is particularly suited to

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 83

the efficient execution of perpetual processes, e.g., operating systems. Such perpetual

processes cause an unbounded growth of standard Prolog's stack of choice points and

need special handling. Here, we consider Concurrent Prolog [Sha87] as an example

of a committed-choice language and compare it with Starlog.

Each clause in a Concurrent-Prolog program has in its body a sequence of atoms,

called a guard, followed by the commit operator '' and another sequence of atoms.

Guards of clauses forming a predicate definition should be executed fairly, prefer-

ably in parallel for greater speed, when deciding which clause should be used for

resolution. Fairness is required to enable at least one guard to succeed quickly even

in the presence of guards that are complicated and that have non-terminating sub-

refutations. The clause whose guard is satisfied "first" is selected. This parallel

execution of guards is the or-parallelism exploited in Concurrent Prolog. Atoms in

a conjunction may be executed concurrently to exploit and-parallelism.

Neither completeness nor soundness is lost in Starlog's exploitation of inherent

parallelism since deduction paths are not arbitrarily discarded. The don't-care nature

of Concurrent Prolog renders it incomplete—spurious failures can result even in

the absence of negation. As a result, in the presence of negation, answers may be

unsound.

The committed-choice languages offer elegant, programming techniques such as

streams with partially-completed messages. Streams are pathways of communication

handled through variable names, which are "anonymous" or relative names in that

they can be bound to arbitrary terms. "Producers" and "consumers" are fixed for

each stream via mode declarations; so, streams are directed pathways. Seen by the

programmer as lists, streams allow the shipping of list elements from "producer"

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 84

to "consumer" even before all the elements have been created. In contrast and

like Linda [CG86a, CG89], Starlog must generate unique names for its global or

public communication between rule-instances, which can be viewed as independently-

executing processes. These names are full atoms including a predicate symbol, which

is an absolute name.

Committed-choice languages depart significantly from the underlying, static se-

mantics of Prolog. Their complicated semantics have caused non-trivial problems in

implementing them correctly. For Concurrent Prolog, [Sar85] discusses the problems

with or-fairness and the read-only, control annotation '?', which restrains the ea-

gerness of unification. Although Starlog, as of now, is far from being a full-fledged,

programming language like Concurrent Prolog, it has a strong, declarative basis.

6.4 Logic Data Language

Deductive-database systems employ logic to perform some of their functions, such as

query handling and maintenance of data integrity. Integrity constraints of a database

can be functional dependencies between domains, restrictions on domain values or

typing, etc. Deductive databases reflect a confluence of database theory and logic

programming and are of interest for many reasons, the most important being that

they advocate a demarcation between declarative and procedural concepts, e.g., with

respect to queries [Llo87].

Standard Prolog is navigational—the ordering of rules and goals is important

for efficiency, termination, and correct operation of non-Horn constructs, such as

updates. This is the major reason for failure to amalgamate Prolog with database

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 85

languages in spite of the existence of declarative, database languages [Zan88], e.g.,

SQL, wherein the underlying, abstract machine determines an efficient control of the

problem solver or query manager. With this in mind, Logic Data Language (LDL)

[Zan88] was designed for deductive databases.

LDL retains the Horn-logic basis of Prolog while extending it with sets and update

operators. Unlike Starlog, LDL distinguishes between predicates that refer to the

program's database of ground facts and predicates that do not, and it uses matching

instead of general unification. The schema for the facts' database and the facts

themselves are managed by a separate, conventional, relational-database manager.

These decisions were taken to make LDL efficient for data-intensive, secondary-

storage-based applications. Further, LDL employs magic-counting methods [SZ87]

for partial deduction based on partial, known inputs in queries. For recursive rules,

LDL computes least fixpoints iteratively; this enables it to exploit the or-parallelism

in database applications.

LDL's use of bottom-up, least-fixpoint computation makes it similar to Starlog.

It uses relational operators, such as join and project, when combining answers from

calls to database predicates. Thus, in the classification of [Con87], LDL provides a

form of and-parallelism similar to Starlog's and akin to the Sync model of [LM86].

LDL executes all queries as transactions, i.e., atomically. It offers operators, viz.,

+ and -, for destructively writing into and reading from the facts' database, but

these operators do not have a static semantics. For example, it is not clear what

should happen when concurrent updates take place on an object. Also, LDL does

not allow tailoring of the meaning of update. Starlog, by virtue of its notion of time,

offers more suitable primitives for fine control over update.

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 86

LDL's safe handling of non-linear, recursive predicates in the presence of a cyclic,

facts' database, its avoidance of redundant computation, rendering of multiple usages

of predicates via the choice predicate, and query-optimization strategy make LDL

efficient and declarative.

When extending conventional, relational databases to more-general, non-ground,

and deductive databases, the proof-theoretic view is more powerful [Llo87]; but with

the improvements being made in efficiency, model-theoretic views are becoming se-

rious contendors for deductive databases. LDL takes a model-theoretic view, but of

ground, deductive databases. Starlog also takes a model-theoretic view and deduces

even with non-ground data.

6.5 Linda

Linda [CG86a, CG89] is a collection of conceptually-simple primitives for inter-

process communication in a distributed network of processes. It models a globally-

and transparently- accessible (virtual) memory, which is organized into tuples. (Linda

has inspired Starlog's use of the word "tuple.") Processes do not communicate di-

rectly with each other, but place their messages into this global, tuple space to be

picked up by other processes. This mechanism is much like a global mailbox. Data

and the code that operates on the data are treated alike.

Both Linda and Starlog consider the computational universe as consisting of

entities that are universally accessible. In Linda's case, these entities are ground, data

tuples and active processes, which after execution turn into data tuples. In Starlog's

case, the entities comprise atoms and rules, which are true over time intervals. Linda

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 87

allows data tuples to be read—via the read operator—by many processes; Starlog

allows a true instance of a predicate to be used for unification with atoms in the

bodies of rule-instances. Linda also allows tuples to be explicitly deleted, via its

in operator; Starlog's tuples cannot be explicitly deleted and may only be garbage-

collected when no rule-instance will use them. Linda achieves object mutation by

deleting and creating new, data tuples; Starlog simulates mutation by making use

of timestamps to access the most-recent instances of predicates. Although Linda's

tuples are not associated with a globally-known, virtual time, a timestamp could be

forced onto the tuples, but as Linda's underlying, abstract machine is "unaware" of

time, the effect would be incomparable with the use of time in Starlog.

Whereas Starlog is a general-purpose, programming language, Linda is a vehicle

for distributed communication, which could be used, e.g., to implement a distributed,

Starlog interpreter.

6.6 Connection-Graph Theorem Proving

Unrestricted use of resolution leads to redundancy in answers. To eliminate this

redundancy, some theorem provers interpret programs by using connection graphs

[Kow79, Bib83]. The links and nodes in connection graphs are akin to those of static,

predicate-call graphs, but are dynamically modified during program execution: links

and nodes may be created and, in some cases, deleted. The X-tree used by Starlog

may be viewed as a connection graph. Here, we compare the connection-graph

theorem proving (CGP) method of [Kow79] with Starlog's X-computation.

CGP is a method for proving theorems, which are presented as queries, and unlike

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 88

other theorem provers, e.g., [Bib83], it attempts to find all answers to a given theorem

(goal). During execution, CGP exploits its basis on queries by deleting clauses that

cannot lead to a refutation. In contrast, Starlog has no notion of queries.

Unlike Starlog, COP uses resolution. Despite this, both CGP and Starlog depend

on fairness to accomplish their goals. CGP depends on fair selection of arcs, which

link clauses to possible input-clauses for resolution, and Starlog depends on fair

selection of rule-instances for execution. COP can be more efficient because of its

greater control over scheduling. By selecting arcs referring to facts, it can simulate

a bottom-up execution, and by selecting arcs originating from the program's goal, it

can simulate a top-down execution.

Even when deducing forward with a rule-instance that refers to non-tuple input-

rules, Starlog propagates—as bindings—information from the heads of the input-

rules into the rule-instance being executed. This, coupled with the maintenance of

clausal lineage, i.e., parent-child relationships within the X-tree, enables the "early"

satisfaction of negations and the avoidance of much recomputation. Neither strategy

is used by COP.

CGP deletes clauses containing unlinked atoms. This simplifies the connection

graph, reduces the search space, and makes it easier to find a solution [Kow79,

page 164]. In 7.4.2, we propose a similar form of garbage collection for our Starlog

interpreter.

CGP detects and deletes tautologies by using pseudo links. Our Starlog inter-

preter does not do this at present, but in §7.4.3, we suggest ways of incorporating

it. Also, CGP is applicable to "arbitrary," clausal programs, not just the programs

with single-headed rules that Starlog caters to.

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 89

6.7 Temporal Logics

A temporal logic is a logical calculus capable of handling inferences involving time.

According to [Gal87], this area has developed according to two major philosophies:

• first-order or "detenser" approach, wherein time is just another variable in a

first-order theory, and anything that exists, exists timelessly.

• modal or "tenser" approach, wherein temporal elements are accorded logical

status by reducing modal notions, such as possibility and necessity, to temporal

ones.

These approaches may be viewed as rivals or as allies [Gal87].

Tempura [Hal87] is a logic-programming language. It is an imperative, parallel-

programming language that is based on a logic, but uses neither unification nor

deduction for executing its programs. It is based on a subset of Moszkowski's In-

terval Temporal Logic [Hal87], which, being a modal logic, extends classical logic

with operators to express the modal notions of possibility and necessity. Tempura

supports algorithmic constructs such as loops, hierarchical specification (via proj),

and destructive assignment, but its greatest offerings are claimed to be the verifiabil-

ity of its programs, ease of modelling change and persistence of objects, and "true"

parallelism rather than arbitrary interleaving. According to Galton's classification

[Gal87], Tempura would be a "tenser" approach and Starlog would be more like a

"detenser," although time in Starlog is a real-valued, logic variable and may be quan-

tified both existentially and universally to lend meaning to the temporal existence

of objects.

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 90

Tempura programs are executed by transformation. Based on a current state,

which presumably comprises values of variables and procedure invocations, a next

state—corresponding to a next instant of Tempura time—is computed based on

the static program; this is called reduction. Synchronization is achieved either

implicitly—due to lock-step execution—or by means of shared variables.

Starlog shares with Tempura the conviction that for expressing mutation and

persistence, a notion of time has to be built into the interpreter. Therein, the simi-

larity ends. From the discussion in [11a187], it appears that an exhaustive search

through Tempura time—an implicit interval of discrete states—for "answers" is

"expensive" because execution proceeds by stepping through time. Starlog's X-

computation does not step through time, although timestamps could be used for

scheduling rule-instances 7.4.3. It exploits time's explicit, real-valued nature for

improving negation. Further, the explicit nature of Starlog time permits clearer

programs and opens up the possibility of modelling physical (real) time directly.

Potential parallelism has to be explicitly specified in Tempura programs in or-

der to be exploited. It also seems that Tempura does not avoid redundant com-

putation. For illustrating Tempura execution, Hale [Hal87] considers a "simple"

term D(A = 1), which says that it is always the case that (A = 1). This example

raises efficiency-related questions that are unanswered in that paper, e.g., whether

the invariant assignment is repeated in each reduction step through Tempura time.

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 91

6.8 Constructive Negation

In Chapter 5, we discussed the uses of constructive negation: to enable logic pro-

gramming rather than theorem proving and to use negations to constrain search—and

thereby, improve efficiency—rather than to just test conditions. Constructive nega-

tion encourages symmetry between (the execution of) negative and positive literals

in a program. Here, we compare Starlog's constructive negation with the resolution-

based one discussed in [Cha88, Cha89], addressed henceforth as CN.

Both CN and Starlog execute a negative literal incrementally by negating the

(partial) solution of a corresponding, positive literal. Consider a negation not (B),

where B is the body. Then, B might have an infinite number of solutions when it is

not grounded. Therefore, it is essential that the execution of B can be arbitrarily

terminated. CN suggests using a depth bound on the sub-refutation used to execute

B. Starlog's execution of B terminates since it rewrites—as explained in Chapter 5—

the (partial) solutions got from a single execution of a rule-instance h <- B and since

each individual execution of a rule-instance terminates.

Given a negation not (B), where B is the body, CN first executes B to get a

(partial) solution involving equalities. It then normalizes the solution by removing

redundant variables and equations, along with irrelevant inequalities. This nor-

malization greatly improves efficiency, and we would like to incorporate it into our

Starlog interpreter.

When negating (partial) solutions, both CN and Starlog rely on rewrites. Unlike

CN, Starlog uses rewrites, such as partitioning, that exploit the real-valued nature

of arithmetic variables to force solutions. As a result of choosing the logical, interval

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 92

arithmetic of [Cle87] for our Starlog interpreter, arithmetic constraints on a variable

are directly reflected in its internal representation as an arithmetic interval. This

has the following advantages:

• some constraints can be "internalized" into the involved variables and deleted,

thereby, reducing the need to awaken or thaw them whenever variables are

instantiated.

• Starlog's unification is more expressive since many constraints are transferred

when arithmetic variables are unified.

Due to the use of resolution, much computation is replicated in CN, and no track

is kept of pre-computed answers. Suppose there is an inequality A =1= B, where

A and B are arbitrary terms. CN defines that this inequality is valid if A and B

are not unifiable, and it is satisfiable if it is valid or if A and B are unifiable only

after binding variables; the inequality is primitive if it is satisfiable, but non-valid,

i.e., if A and B are unifiable only after binding variables. According to CN [Cha89,

page 480], primitive inequalities are never selected from a goal. It appears then that

a goal of the form f (X ,Y) =1= f (5, a) would not be further executed by CN. Starlog

first (forward) rewrites such a primitive inequality as not (f(X,Y) = f (5, a)) and

then executes it to give not (X = 5, Y = a), at the end of the forward phase. This

is then inverted into notreal(X); X < 5; X > 5; (X = 5, Y / a), which is a

simplified result capable of forcing solutions.

CN precludes recursive, predicate calls through negations, and thus, it avoids

the issue of stratification in normal programs. Starlog programs, on the other hand,

often rely on recursion through negation, and therefore, it is important for Starlog

CHAPTER 6. COMPARISON WITH RELATED APPROACHES 93

to allow all temporally-stratified programs. Its clever arithmetic and avoidance of

redundant, deduction sequences serve it well for this purpose.

In this chapter, we have compared Starlog with related approaches. In the fol-

lowing Chapter 7, we present our conclusions and suggest future work.

Chapter 7

Conclusions and Future Work

This far, we have taken a look at the Starlog language, informally traced through

its execution, provided a procedural semantics to its programs, examined its active

negation, and compared it with other approaches. It is time to wind up. This chapter

first offers a glimpse into how we went about implementing our Starlog interpreter.

There is always a future and work to be done. Accordingly, this chapter next suggests

avenues for further research: enhancing programming ease, declarativeness, formal

semantics, and performance. Finally, it presents our conclusions.

7.1 How We Implemented Starlog

7.1.1 Origins

A Prolog interpreter that supported delayed evaluation and propagation of goals

was available to us. This interpreter was written in Scheme [RC86, Dyb87] by John

Cleary, Alan Dewar, and Susan Rempel of the Department of Computer Science,

University of Calgary. In this interpreter, by using when declarations, in the style

of NU-Prolog [TZ88], a goal may be made to delay on a limited set of conditions

involving variables that appear in the goal.

94

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 95

7.1.2 Building Starlog

First, we implemented and incorporated the logical, interval arithmetic of [C1e87]

into the available, Prolog interpreter; a continuation-passing style of programming

was used. Next, we implemented an interpreter for definite Starlog, which called the

earlier interpreter for the backtracking execution of primitives implemented there.

This interpreter shared the earlier one's parsing routines. Finally, we built in ac-

tive negation to realize a Starlog interpreter and tested this interpreter with both

contrived and realistic programs.

The original, Prolog interpreter took up a little over thousand lines of Scheme

code. We took five months and a thousand lines of Scheme code to implement the

arithmetic. It took an additional six months and about two-thousand lines in Scheme

to produce the Starlog interpreter. The entire interpreter, therefore, took up a little

over four-thousand lines. Its constrained arithmetic and active negation, especially

partitioning, are its distinguishing features. Carrying out rewrites for negation and

keeping track of variable renaming when executing the body of a negated literal were

the more-difficult parts to program.

Our Starlog interpreter is intended as a prototype—to give assurances that Star-

log is a practical, programming language. We have tried to keep its implementation

simple and have neither evaluated nor optimized its memory consumption or speed.

Building the interpreter has given good insight into Starlog execution and helped in

verifying its formal correctness in Chapter 4.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 96

7.1.3 Tuples in Practice

We have treated tuples as heads of unit rule-instances, but in practice, we have

to allow non-unit rule-instances to be considered as tuples. This may be due to

insufficient constraints in the body of the rule-instance or due to the inability of

primitives and negation to force solutions as demanded by a declarative reading of

the program. In our interpreter, for a rule-instance R to be classified as a tuple, R

has to satisfy both the following conditions:

• there should be no user-defined predicate calls in R's body.

• no further instantiation of variables should result when R is executed. This

ensures that each primitive in the body has been executed, and that no im-

provement is possible—under the circumstances—by further executing R.

So, it is possible, for example, for a rule-instance with a not-exists call in its body

to be classified as a tuple. We avoided discussing non-unit tuples in this thesis in

the hope of keeping the discussion simple.

Input-rules that are tuples are resolved against; non-tuple input-rules are treated

as described before. When resolution is used, existentially-quantified variables may

accumulate on execution of a negation's body. Rewrite F3 of Fig 5.2 is more mean-

ingful in this context.

7.2 Declarativeness

Our Starlog interpreter does much to support prograris as executable specifications,

but many improvements are desired. In particular, negation and logical arithmetic

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 97

need to be strengthened, i.e., made more active. This will improve the declarativeness

of its programs.

7.2.1 Negation

Rewrite R9 of Fig 5.5, as formulated, may be used only at the top level of a rule-

instance so that correctness is not sacrificed. Otherwise, to retain correctness, the

existentially-quantified variables have to be propagated into the nesting, predicate

call, and the more-complicated rewrites in Fig 7.1 have to be used. If the rewrites of

Argument Literal Rewrite

E12
E13
E14

not(not-exists X,Y : (A, B, ...))
not(exists X,Y : (A, B, ...))
p(T,...)<- exists X,Y :(A,B,...)

exists X,Y : (A, B, ...)
not-exists X,Y : (A, B, ...)
p(T)<-A,B,...

Figure 7.1: Possible Inversion of Existential Negation.

Fig 7.1 are used, adequate, variable-renaming support has to be provided to move

existential quantification outwards in a rule-instance.

The rewrite for partitioning, in Chapter 5, should be generalized to handle every

universally-quantified, arithmetic variable in a rule-instance, or at least those that

appear anywhere in the head. Other rewrites should also be investigated.

7.2.2 Logical Arithmetic

While the logical, interval arithmetic of [Cle87] is extremely clever, its use does

affect real-world completeness of the Starlog interpreter. For example, the con-

straint mt (X), as formulated in [Cle87}, is not active enough to instantiate X with

integers over an interval of real values—if X lies in E .7,3.2), mt (X) is not con-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 98

structive enough to deduce that X is 2 or 3, but given that Y lies in [1 .7,2 .2),

mt (Y) deduces that Y is 2.

Similar is the case with X ! Y. Given that X'-'(-inf,+inf) != Y.-.-'[2,3),

as formulated in [C1e87], is unable to simplify into the following disjunction:

X.--'(-inf,2); X'--'[3,+inf); X"..'[2,3) != Y[2,3)

This means that selection of the literal not-exists Y—[2,3): (X != Y— [2,3))

results in a variant of the same literal—instead of the following:

not(X >= 2, 3 > X).

In this case, the "lack" in arithmetic constructiveness can be compensated for by a

cleverer rewrite rule for not-exists literals. Since ! = is not discerning enough when

dealing with arithmetic intervals that are not point intervals, Rewrite R4, in both

Fig 5.3 and Fig 5.4, prefers (X > Y; Y > X) over (X ! = Y), although these rewrites

are equivalent.

It appears that Cleary [Cle87] purposely suppresses the activity of arithmetic

constraints in order to control combinatorial explosion, but he does provide a control

primitive split (x), which forces the search for solutions by iteratively splitting X's

interval into disjoint sub-intervals.

In general, the constructiveness of arithmetic and that of rewrite rules should

complement one another. Ways of making the arithmetic more active, without sac-

rificing efficiency, should be investigated.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 99

7.3 Formal Semantics

Chapter 4 gives a procedural semantics for definite (Starlog) programs. It proves that

a fair clause-selection guarantees sound and complete execution of definite programs;

the atom-selection need not be fair. We have not yet proved the correctness of Starlog

negation. To include Starlog's active negation in this semantics, we need to consider

fair selection of literals because finite failure of X-derivations becomes important in

the presence of negation. Since Starlog rules need not be clauses, it is not generally

possible to show that a conjunction of Starlog rules is unsatisfiable, i.e., has no model,

by restricting attention to llerbrand interpretations [Llo87, pages 17, 39]. Therefore,

more general interpretations need to be considered.

For a program F, [Llo87] defines the greatest fixpoint (gfp) of a function Tp. We

feel that an analogue of X-computation can be constructed that attempts to compute

tuples covering a program's "maximal" or gfp-model, i.e., a set of tuples that when

grounded equal gfp(Tp). When computing gfp(Tp), the heads of all rules in F can be

thought of as the initial "interpretation"—instead of the infinite, ground Bp used in

[Llo87]. This would mean that the heads are taken to be true initially. The program

can be applied on this set of heads to generate the next set of heads, and so on.

In any stage in such a computation, the heads cover gfp(Tp). This computation

can be useful for definite programs that either contain no function symbols or have

the property that, for each clause C, each variable in C's body also appears in the

head. Such definite programs have TpJ.w =gfp(Tp) [Llo87, page 67]. (lfp(Tp) need

not equal gfp(Tp), even for definite programs.) We hope that this idea helps model

perpetual processes and negation. It may also prove to be the lever needed for the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 100

formal semantics of negation.

7.4 Performance

7.4.1 Information Flow

As mentioned in 6.1, X-computations specialize an atom in the body of a rule-

instance to the rule-instances it refers to. Being able to reverse the direction of in-

formation flow would help efficiency. It is worth investigating the resulting effect, i.e.,

of specializing rule-instances to the atoms that refer to them. The magic-counting

methods of [SZ87] should be considered in this regard.

7.4.2 Garbage Collection

As an X-computation proceeds, we only need to maintain rule-instances that are re-

ferred to and that may be referred to at some later stage. This means that by working

down from the root of the (partial) X-tree, each deduction path—X-derivation path,

in the case of definite programs—that has either failed or succeeded may be consid-

ered for garbage collection, i.e., for reclaiming its memory. On a succeeded or failed

path, a rule-instance and the links of its body atoms may be deleted if it and its

ancestor rule-instances are not pointed at by any atom in the (partial) X-tree.

The list used for scheduling rule-instances in our interpreter is passive. A rule-

instance may be executed even though the rule-instances pointed at by its body

atoms have not been executed or have just yielded variants upon execution. We feel

that an "inverted," Starlog-execution scheme wherein a rule-instance upon execution

awakens rule-instances referring to it can avoid wasteful re-execution and ease the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 101

detection of loops.

7.4.3 Scheduling

Our interpreter schedules rule-instances on first-come-first-served (FCFS) basis. (Any

fair-scheduling scheme will work correctly.) Rule-instances can also be scheduled in

non-decreasing order of their earliest-satisfaction times, i.e., the lower bounds of

their corresponding timestamp ranges or intervals; this makes it easier to detect

loops and then eliminate "useless" rule-instances. The list of rule-instances to be

scheduled then looks like an event-list in a discrete-event simulation. If a loop is

detected within this list, i.e., the execution of the constituent rule-instances resulted

only in variants, then action based on temporal-stratification requirements can be

taken against the involved rule-instances and their X-derivation paths in the (partial)

X-tree.

Our Starlog interpreter fails to terminate given the following "harmless," definite,

Starlog program:

PM <- T >= 0, p(T).

Failing to terminate not only lowers efficiency, but it also harms the satisfaction of

negations. Scheduling using timestamps can improve termination, but care has to

be taken to ensure that completeness is not sacrificed—even for a definite program,

there might be infinite tuples to be generated at a particular time value!

7.4.4 Active Negation

Given a negation not (B), where B is the body, CN [Cha88, Cha89] first executes

B to get a (partial) solution involving equalities. It then normalizes the solution

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 102

by removing redundant variables and equations, along with irrelevant inequalities.

Its normalization technique is equally applicable to Starlog negation and should be

considered in order to improve efficiency.

7.4.5 Parallel Execution

Starlog exploits inherent parallelism in logic programs. It exploits or-parallelism by

concurrently exploring deduction sequences from different program rules; as men-

tioned in 3.2.6, it resembles the Sync model of [LM86] in its exploitation of and-

parallelism. All this is with a sequential, Starlog interpreter. A distributed, Starlog

interpreter can take advantage of this parallelism to speed up execution.

Nodes in an X-tree do not share variables. Nodes on non-overlapping paths need

to communicate only for unification. During X-tree construction, only its leaves,

which comprise a stage in an X-computation, need to be executed by the interpreter.

Therefore, the interpreter may use timestamps beyond scheduling rule-instances and

active negation. Based on ideas from Time Warp [Jef85], these timestamps can

provide the basis for an optimistic, distributed, or-parallel execution of nodes in

a distributed X-tree. Then, execution can smoothly shift from a sequential to a

distributed or parallel environment.

7.5 Conclusions

This thesis has offered an insight into a model-theoretic execution of logic programs.

It has formalized the execution of definite (Starlog) programs and proved the exe-

cution to be semantically correct. It has described a method for executing Starlog's

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 103

active negation. By building a prototype, Starlog interpreter, we have demonstrated

Starlog's feasibility, and in this thesis, we have pointed out directions that can be

taken to shape Starlog into a practical, programming language.

Bibliography

[BF81] Avron Barr and Edward A. Feigenbaum. The Handbook of Artificial Intel-
ligence, volume 1. William Kaufmann, Inc., Stanford University, 1981.

{Bib83] Wolfgang Bibel. Matings in matrices. Communications of the ACM,
26(11):844-852, November 1983.

[CG86a] Nicholas Carriero and David Gelernter. The S/Net's Linda kernel. ACM
Transactions on Computer Systems, 4(2):11O-129, May 1986.

[CG86b] Keith [L.] Clark and Steve Gregory. Parlog: Parallel programming in logic.
ACM Transactions on Programming Languages and Systems, 8(1):1-49,
January 1986.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications
of the ACM, 32(4):444-458, April 1989.

[Cha88] David Chan. Constructive negation based on the completed database.
In Robert [A.] Kowalski and Kenneth A. Bowen, editors, Logic Program-
ming: Proceedings of the Fifth International Conference and Symposium,
volume 1, pages 111-125. The MIT Press, 1988.

[Cha89] David Chan. An extension of constructive negation and its application
in coroutining. In Ewing L. Lusk and Ross A. Overbeek, editors, Logic
Programming: Proceedings of the North American Conference, volume 1,
pages 477-493. The MIT Press, 1989.

[CK91] John C. Cleary and Vinit [N.] Kaushik. Updates in a temporal logic pro-
gramming language. Research Report No. 91/427/11, The University of
Calgary, Department of Computer Science, Calgary, Alberta, Canada T2N
1N4, March 1991. Submitted to ILPS-1991.

[Cle87] John G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125-
149, January 1987.

[Cle9O] John G. Cleary. Colliding pucks solved using a temporal logic. In Proceed-
ings of the Conference on Distributed Simulation. Society for Computer
Simulation International, January 1990.

[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
1981.

104

CHAPTER 7. BIBLIOGRAPHY 105

[Con87] John S. Conery. Parallel Execution of Logic Programs, chapter 3, page 55.
Kluwer Academic Publishers, 1987.

[Die87] Suzanne Wagner Dietrich. Extension tables: Memo relations in logic pro-
gramming. In Proceedings: 1987 Symposium on Logic Programming, pages
264-271. IEEE Computer Society, IEEE Computer Society Press, August
1987.

[Dyb87] R. Kent Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.

[Gal87] Antony Galton. Temporal logic and computer science: An overview. In
Antony Galton, editor, Temporal Logics and their Applications, chapter 1,
pages 1-52. Academic Press, 1987.

[Hal87] Roger Hale. Temporal logic programming. In Antony Galton, editor, Tem-
poral Logics and their Applications, chapter 3, pages 91-119. Academic
Press, 1987.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems, 7(3):404-425, July 1985.

[Kow79] Robert [A.] Kowalski. Logic for Problem Solving, chapter 8, pages 163-178.
Artificial Intelligence Series 7. North-Holland, 1979.

[Kow85] Robert [A.] Kowalski. Directions for logic programming. In Proceedings:
1985 Symposium on Logic Programming, pages 2-7. IEEE Computer Soci-
ety, IEEE Computer Society Press, July 1985.

[Lam89] John Kwong Kei Lam. Control structures in partial evaluation of pure
Prolog. Master's thesis, University of Saskatchewan, Department of Com-
putational Science, Saskatoon, Saskatchewan, Canada, September 1989.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Univer-
sity of Melbourne, Australia, second, extended edition, 1987.

[LM86] Peyyun Peggy Li and Alain J. Martin. The Sync model: A parallel execu-
tion method for logic programming. In Proceedings: 1986 Symposium on
Logic Programming, pages 223-234. IEEE Computer Society, IEEE Com-
puter Society Press, September 1986.

[Mis86] J. Misra. Distributed discrete-event simulation. Computing Surveys,
18(1):39-65, March 1986.

CHAPTER 7. BIBLIOGRAPHY 106

[RC86] Jonathan Rees and William Clinger. Revised' report on the algorithmic
language Scheme. SIGPLAN Notices, 21(12), December 1986.

[Rin88] G. A. Ringwood. Parlog86 and the dining logicians. Communications of
the ACM, 31(1):10-25, January 1988.

[Sar85] Vijay A. Saraswat. Problems with Concurrent Prolog. Technical Report
CS-86-100, Carnegie-Mellon University, Department of Computing Science,
USA, May 1985. This was revised January 1986.

[Sha87] Ehud [Y.] Shapiro. A subset of Concurrent Prolog and its interpreter. In
Concurrent Prolog: Collected Papers, chapter 2, pages 27-83. The MIT
Press, 1987.

[5Z87] Domenico Sacc and Carlo Zaniolo. Magic counting methods. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, pages 49-59, 1987.

[TZ88] James A. Thom and Justin Zobel. NU-Prolog reference manual: Version
1.3. Technical Report 86/10, University of Melbourne, Machine Intelligence
Project, Department of Computer Science, Australia, January 1988.

[WH81] Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-
Wesley Publishing Company, 1981.

[Zan88] Carlo Zaniolo. Design and implementation of a logic based language for
data intensive applications. In Robert [A.] Kowalski and Kenneth A.
Bowen, editors, Logic Programming: Proceedings of the Fifth International
Conference and Symposium, volume 2, pages 1667-1687. The MIT Press,
1988.

Appendix A

Starlog Syntax

Following is a specification of Starlog's syntax in Backus-Naur Form (BNF). The
symbols ::=, 1, {, }, ['and] are meta-symbols belonging to the BNF formalism; they
are not symbols of the Starlog language. The curly brackets, '{' and '}', denote
possible repetition of the enclosed symbols zero or more times. The box brackets, '['
and ']', denote optional occurrence of the enclosed symbols. Terminal symbols are
shown in bold face, e.g., terminal.

program
formula
rule
unit-rule
head
tail
open-conjunction
exp
end-conjunction
end-disjunction
literal
var-list
atom
composite
term
functor
constant
var
upper-id
lower-id
id

{ formula }
rule . unit-rule
head <- tail
atom
atom
open-conjunction
exp { , exp }
literal I end-conjunction I end-disjunction I (exp)
(exp , exp { , exp })
(exp ; exp { ; exp })
atom I not (exp) I not-exists var-list : (exp)
var { , var }

composite
functor I functor (term { , term })
constant I var I composite
lower-id
integer I real I lower-id
upper-id
upper-case-letter id
lower-case-letter id
{ letter I digit }

107

Appendix B

Example, Starlog Programs

Following are some of the interesting programs that our Starlog interpreter has exe-
cuted.

B.1 Prime Numbers

% The following is a transparent, Starlog program for computing primes.
% It closely reflects the idea of deleting all multiples of each prime
% as it is generated. The constraint J >= K within the negation
% helps remove redundancy.

prime(I) <- integer(I), I >= 0,
not-exists .J,K: (prime(J), integer(K),

I > 3, I > K, .1 >= K, *(J,K,I)).

integer(N) <- integer(Nprev), +(Nprev,1,N), N >= 2.
integer (2)

B.2 Bouncing Ball

% The following Starlog program simulates a bouncing ball. Its

% predicate bounce (T ,Vdown) gives the downward velocity Vdown
% at time T of a bounce; predicate traj (T, Height, Ve1)
% follows the ball's trajectory between bounces.
% The traj tuples computed by Starlog are non-unit rule-instances
% and have unsatisfied, arithmetic constraints in their bodies.
% The bounce tuples come out as unit rule-instances:
% bounce(0,1),bounce(2,O.5),bounce(3,O.25),
% bounce (3.5,0.125),

bounce(T,Vdown) <- T >= 0, Vdown >= 0, traj(T,O,lJup), 0 > Uup,

+(Uup,Udown,0), *(Vdown,2,iJdown).

bounce(O,1).
traj(T,Height,Ve].) <- T >= 0, Height >= 0, bounce(Tb,Udown),

Tb >= 0, T > Tb, Udown >= 0,
+(Tdiff,Tb,T), Tdiff > 0, +(Ve1,Tdiff,Udown),
*(Z1,2,Tdiff), +(ZO,Z1,Udown),

108

APPENDIX B. EXAMPLE, STARLOG PROGRAMS 109

*(ZO ,Tdiff,Height).

B.3 Temporal-Database Update

% The following Starlog program maintains a simple, key-value, temporal
% database via a predicate db. Updates, given by update
% tuples, happen at various times and sometimes a request to increment
% the entire database comes along, via input tuples.
% This program can be executed by Starlog without using partitioning.

% db((1,2] ,a,4), db((2,3] ,a,5), and db((3,+inf) ,a,7)
% are the three db tuples computed by Starlog.
% update (1,a,4), update (3,a,7), and update (2,a,5)

% are the three update tuples computed by Starlog.

db(T,Key,Va1) <- T >= 0, Ts >= 0, T > Ts,
update(Ts,Key,Va1),
not-exists Tp,Any: (Tp >= 0, T > Tp, Tp > Ts,

update(Tp,Key,Any)).

input(2,incr).

update(1,a,4).

update (3 , a, 7)
update(T,Key,NewVal) <- T >= 0, db(T,Key,OldVal),

+(OldVal,1,NewVal), input(T,incr).

