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Abstract 

Logic-programming languages allow logical formulae to be executed as programs. 

These languages are lacking when used to model change. Towards a declarative 

solution to this problem, Cleary designed a logic-programming language Starlog, 

which uses negation and arithmetic constraints over an explicit, real-valued time. 

In this thesis, we introduce Starlog's bottom-up execution, give a procedural 

semantics to the execution method, and prove its correctness for definite, logic pro-

grams. (Definite programs do not use negation.) To demonstrate Starlog's feasibil-

ity, we have implemented an interpreter that executes bottom up, provides a notion 

of real-valued time, supports logical arithmetic, and deduces negations efficiently. 

Here, we describe the rewrites used for implementing negation and our extension of 

Cleary's logical, interval arithmetic to the domain of negations. Finally, we compare 

Starlog with related approaches and suggest directions for shaping it as a practical, 

logic-programming language. 
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Chapter 1 

Introduction 

Language shapes the way we think, 

and determines what we can think about. 

- B. L. Whorf 

Logic-programming languages permit declarative or logical formulae to describe 

computation and be executed as programs. A problem troubling these languages 

is that of expressing change, both mutation and persistence. This problem arises 

in areas as varied as event-driven simulation, databases, operating systems, and 

hardware verification. Starlog [CK91], a new, logic-programming language, is de-

signed to address this problem declaratively. It advocates the use of negation and 

arithmetic constraints over a real-valued time to express change. Starlog resembles 

the well-known, logic-programming language Prolog [CM81] in syntax, but executes 

differently. 

In Chapter 2, we provide an overview of the Starlog language. We demonstrate 

Starlog execution in Chapter 3 as a prelude to the following Chapter 4, which for-

mally defines Starlog execution and proves its semantic correctness. Chapter 4 is the 

core of this thesis, but might jolt the reader with its sudden recourse to very-formal 

definitions and proofs. Care has been taken to ensure that it can be safely skipped 

on the first reading. Chapter 5 discusses Starlog's active negation. Chapter 6 com-

pares Starlog with related approaches. Finally, Chapter 7 takes a look at how we 

1 



CHAPTER 1. INTRODUCTION 2 

implemented the Starlog interpreter, suggests future work, and presents our conclu-

sions. The rest of this chapter discusses the problem of mutation and persistence to 

introduce Starlog's approach. 

1.1 Mutation and Persistence 

Mutation of an object is destructive or in-place assignment to it. For example, by as-

signing to a variable in a (conventional-language) program, the variable is mutated— 

its old value is over-written by another one. (We use the word "object" in a general 

sense, to encompass structures that might be as simple as a variable or as complex 

as an entire database.) Persistence of an object is its value's existence over a period 

of time, e.g., a variable's value persists from the time an assignment caused it until 

the next assignment. Mutation and persistence are general phenomena. Therefore, 

it is important for programming languages to support them. 

1.1.1 Approaches to Assignment 

Imperative-programming languages offer operators to carry out assignments on vari-

ables in a program. Functional-programming languages, such as Lisp [W1181], realize 

that assignment transgresses their formal basis in the )-calculus, but for efficiency— 

both space reuse and fast execution—they offer operators such as setq and set!. 

Similarly, many logic-programming languages have sacrificed their declarative se-

mantics and offer operators such as assert and retract to simulate assignment 

and to improve efficiency by adding lemmata that store intermediate results for later 

reuse [Kow85]. 
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Preserving state information is complicated in pure functional and classical-logic 

languages because their formal calculi—involving A-expressions and predicates—do 

not support variables that can be accessed and mutated globally, i.e., by different 

parts of a program. Destructive assignment requires locations to be associated with 

variables and a notion of ordered execution; neither requirement is directly supported 

by classical logic. Therein lies the problem in supporting mutation and persistence. 

In [Kow85], after discussing the problem of destructive assignment, Kowalski con-

cludes that it is "possibly the single most important problem of logic programming." 

Starlog offers a declarative way of simulating destructive assignment. In Starlog, 

constraints on explicit timestamps are used to enforce the notion of sequencing. We 

now motivate Starlog's approach by simulating assignment to variables. 

1.1.2 Assignment: The Problem 

Since arithmetic intervals allow a compact notation, we will use them for illus-

trating ranges of real values. For example, instead of the conjunction of con-

straints (3 > T, T >= 1) over T, we bind T to the more compact [1,3). Fig 1.1 

depicts the life—in terms of a real-valued time—of a variable 'a'. At time 1. 0,  the 

Lifetime of Variable 'a': 

. . . 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 

val([1.0,3.0),a,v) I val([3.0,+int),a,w) 
0. 

set(1.0,a,v) set(3.0,a,w) 

Figure 1.1: A Variable's Lifetime. 
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variable is assigned or set to a value v, and at time 3. 0, it is assigned a value w. 

(We are considering simple, ground values only to simplify this discussion.) From 

the "definition" of assignment, the variable should have a value v at each point in 

time from 1 .0 until—but not including-3 . 0, i.e., the value v should persist over 

the half-open interval [1.0,3.0) of real-valued time. (There are many definitions 

that can be used for assignment. Let us use this one for discussion.) Similarly, the 

value w should persist through each point in time after—and including-3 .0, i.e., 

over the time interval [3. 0 .1 +inf). (+inf and -inf denote the positive and negative 

infinities, +oo and —oo, limiting the scale of real values.) 

1.1.3 Assignment in Starlog 

Fig 1.2 shows a program that simulates the assignments in Fig 1.1 and specifies the 

variable's lifetime. (We generally follow the convention that capital letters be used to 

% Program Assignment. 
% A variable 'Var' has a value 'Val' from---and inclusive of---the time 'Ts', 
% when it was set, until---but not including---a time 'Tn', when it is set again. 

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val), 
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)). 

set(1.0,a,v). % at time 1.0, set variable 'a' to a value Y. 

set(3.0,a,w). % at time 3.0, set variable 'a' to a value W. 

Figure 1.2: Program Assignment. 

denote variables and small letters to denote constants in a program. The symbols '-' 

and '<-' are used interchangably to mean "implies.") In this program, the rule for 

val(T, Var, Val) states that a variable named Var has a value Val at a time T if 

there is a time Ts in T's present or past—this is the constraint T >= Ts—when Var 

was set to a value Val. Now, the value Val should be given by the most-recent 
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assignment with respect to T. So, through the not-exists negation in the body, the 

rule additionally states that there should not be any time Tn between T and Ts—this 

is through the constraints T >= Tn and Tn > Ts—when Var is set to some value New. 

The not-exists construct, which denotes "there does not exist," allows the fresh 

variables Tn and New to be introduced locally within the negation. 

val([1. 0,3.0) ,a,v) and val([3 .0 ,+inf) ,a,w) are assertions of the program 

in Fig 1.2, when viewed declaratively as a piece of logic. Henceforth called tu-

ples, assertions are logical consequences of the program. As we will see later, in 

Chapter 3, Starlog can execute the program to produce these tuples, as well as the 

tuples set(1.0,a,v) and set(3.0,a,w). 

In general, we would like tuples that faithfully extract as much as is specified 

by the bodies of rules. If an arithmetic variable appears in the head of a rule, we 

would like its range of values narrowed or squeezed as much as is permitted by 

the constraints appearing in the rule's body. We would also prefer that solutions be 

simplified. If a variable T is constrained to lie in the interval [1. 0,3. 0), then instead 

of solutions that instantiate T to each real number in turn in that range, which is 

infinite, the range itself should be presented. Ranges should also be used, wherever 

possible, for efficiency. As can be seen from the predicate definition for val in Fig 1.2, 

the positive atom T >= Ts in the body can only serve to compute the lower bound 

of T's interval; the upper bound has to be deduced from the atom T >= Tn, which is 

within a negation. This means that both negation and arithmetic have to be active 

and logical in Starlog. They must be able to generate bindings and constrain search 

to make Starlog's execution effective and efficient. 

In essence, Starlog advocates the use, over explicit time, of arithmetic constraints 
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and negation to express mutation and persistence. Having briefly introduced Star-

log's approach, we take a look at the language itself in the following Chapter 2. 

For more interesting programs, the reader may refer to Appendix B, [CK91], and 

[Cle9O], which develops a Starlog program that uses sectors to carry out a mixed-

mode—continuous-time and discrete-event—simulation of colliding objects. 



Chapter 2 

Starlog: The Language 

Starlog is a logic-programming language that supports, arithmetic constraints and 

a notion of time. Its negation works like a logical constraint—being capable of 

both receiving and generating bindings (or values) for variables. The rules in a 

Starlog program can be non-clausal since existentially-quantified variables can be 

introduced through the not-exists predicate, but they must belong to a subclass of 

first-order formulae that are expressed in prenex conjunctive normal form (PCNF) 

[Llo87, page 18]. Henceforth in this thesis, we use "rule" to mean an acceptable 

formula in a Starlog program, "rule-instance" to mean a Starlog formula deduced 

from a program, and "tuple" to mean the head of a unit rule-instance or assertion 

deduced from a program. 

In this chapter, we discuss Starlog's primitives, syntax, pragmatics, notion of 

time, and logical arithmetic. 

2.1 Primitives, Syntax, and Pragmatics 

2.1.1 Primitives 

The following are Starlog's declarative, built-in predicates: 

• >, >=, and =: = are the "greater than," "greater than or equal to," and "equal 

to" arithmetic constraints. 

7 



CHAPTER 2. STARLOG: THE LANGUAGE 8 

• <, <=, and ! = are the "less than," "less than or equal to," and "not equal to" 

arithmetic constraints. 

• + (X, Y, Z) and * (X, Y, Z) are the relational, arithmetic constraints that the sum 

and product, respectively, of X and Y is Z. 

• real (X) and notreal (X) are the constraints that X is or is not real valued. 

• mt (X) is the constraint that X is an integer. 

• = and =1= are the general equality and inequality constraints for arbitrary 

terms. 

As yet, there are no primitives for input and output from programs or for user 

interaction, but declaratively incorporating these and other real-world requirements 

into Starlog is being considered. 

2.1.2 Syntax 

Starlog programs follow the Edinburgh-style syntax for Prolog [CM81]. The bodies 

of rule-instances can be of the following forms: 

• a user-defined predicate of the form p(T,U1,... ,Un) where T is a timestamp, 

and Ui,... ,Un are arbitrary terms. We use the word "timestamp" to mean an 

arithmetic variable (or value) that can take on only time values. 

• a built-in predicate, e.g., Ui >= TJ2. 

9 a negation of a valid body L, e.g., not (L). 
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• a quantifying negation of the form not-exists Xl,... ,Xm: (L). 

Here, Xl,... ,Xm are variables quantified existentially within the negation, and 

L is a valid body. 

• a conjunction of valid bodies, e.g., (Li, L2, ...). 

• a disjunction of valid bodies, e.g., (Li; L2; ...). 

Appendix A formally specifies Starlog's syntax in Backus-Naur Form (BNF). 

2.1.3 Pragmatics 

If p (Th , Ui ,.. • , Un) is the head of a rule-instance, the following constraints should 

be contained in or obeyed by the body: 

• Th >= 0. This ensures that the first term of each user-defined predicate is a 

timest amp. 

• Th >= Tb for each user-defined predicate q(Tb ,Vl ,... ,Vm) in any literal, even 

those within negations, in the body of a rule-instance. This ensures that the 

program is causal, i.e., the truth of the head depends only on the truth of 

predicates that are contemporary or earlier in time. 

For logic programming, in general, unrestricted use of negation causes serious, 

semantic problems. Therefore, Starlog restricts its domain to a class of temporally-

stratified programs. A sufficient condition for a program to be temporally stratified is 

that each recursive, predicate-call loop involving negation should be accompanied by 

a time advance, i.e., there should be no zero-delay loops involving negation [CK91]. 
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2.1.4 Programs 

The simplest form of Starlog programs is a unit clause, which states that a particular 

tuple is true. For example, the following clause says that p (T, a, b) is true at the 

instant 1.5: 

p(1.5,a,b). 

As will be explained ahead in Chapter 3, Starlog uses a forward-reasoning procedure 

for execution. Therefore, each program must contain one or more such unit clauses 

so that tuples, which are the useful products of execution, may be generated. 

To assert that a tuple is true over an interval of time, constraints need to be 

placed on the timestamp. The following clause generates the tuple p((1.5,2.3],c,d): 

p(T,c,d) <- T > 1.5, 2.3 >= T. 

To create more-interesting programs, it is necessary to allow more-general con-

ditions in the body of a rule. For example, to say that p will be true 1.5 time units 

after q, the following clause can be used: 

p(Th) <- q(Tb), Tb >= 0, +(Tb,1,Th). 

In this clause, the body (tail) contains one call to a user-defined predicate q(Tb) 

and two calls to Starlog's arithmetic primitives Tb >= 0 and + (Tb, 1, Th). The head 

(consequent) of the clause is p (Th). 

2.2 Logical Arithmetic 

Arithmetic in Prolog-like, logic-programming languages is dependent on the order 

of execution, and errors that are due to limited, floating-point precision are propa-
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gated [Cle87]. Also, arithmetic in Prolog is based on functions, and so, it loses the 

generality for expressing constraints, which are multi-directional relations. 

Since Starlog's time is real valued and since Starlog advocates the logical expres-

sion of mutation and persistence via constraints on time, it is important that its 

arithmetic be simple to express, correct, and constructive, i.e., capable of forcing so-

lutions. We chose the logical, interval arithmetic of [Cle87] to implement arithmetic 

in Starlog. Internally, this method represents arithmetic variables as intervals— 

closed or open—of real numbers and executes relational, arithmetic operations on 

these intervals. The arithmetic is unharmed by the order of parameter instantiation. 

Cleary [Cle87] illustrates the expressive power and declarativeness of this method by 

producing invertible programs that compute factorials and solve general polynomi-

als. We have extended the logical, interval arithmetic of [Cle87] to the domain of 

negations; this will be clarified in Chapter 5. 

2.3 Explicit Time 

In Starlog programs, each user-defined predicate is explicitly timestamped. Time in 

Starlog has the following topology: 

• continuous. Time has infinitely-many, real values. (Starlog's implementations 

may impose bounds on precision and allow only a finite number of values.) 

• totally, linearly ordered via the arithmetic operator >=. This is as opposed to 

the alternatives of branching and circular time [Gal87]. 
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• bounded by a value 0. 0, which is the smallest value time can take, on one 

side of the ordering. Although this restriction might require some applications 

to be temporally translated—a minor effort—in order to be programmed in 

Starlog, it makes Starlog's arithmetic more efficient and constructive. There is 

no finite, upper bound on time. 

The Starlog interpreter uses timestamps to force solutions out of negations—this 

is explained in Chapter 5—and can use it to schedule execution, and thereby, detect 

and eliminate tautologies—this is suggested in 7.4.3. 

Having taken a look at Starlog as a language, we now move on to Chapter 3, 

where Starlog's execution will be informally discussed. 



Chapter 3 

Starlog Execution: An Informal Treatment 

In this chapter, we provide a broad overview of Starlog execution. First, we discuss 

some of the important terms used in this thesis, and then, we illustrate the tree-

based execution of simple, Starlog programs. Execution will be formally treated in 

Chapter 4. In this thesis, the word "interpretation" is used to denote an assignment 

of truth values to predicates [Llo87, page 12], "execution" is used to denote the 

execution of programs by an interpreter, and "atom" is used for an atomic formula 

[Llo87, page 6]. 

3.1 Background 

3.1.1 Model Theory Vs. Proof Theory 

Both model theory and proof theory are means of formalizing the "meaning" or 

semantics of a given (logic) program. A logic program is a collection of rules, which 

are clauses in the case of Prolog programs and possibly non-clausal in the case of 

Starlog programs. According to [Llo87], a model-theoretic view of programs sees the 

output of a program as a model' of its rules. A reply to a query should make the 

query true in the model given by the program. This is in contrast to a proof-theoretic 

view, wherein the program is a theory based on the first-order, predicate calculus 

and its rules are axioms or invariants of the theory. In this view, answering a query, 

'An interpretation wherein the program's rules hold true. 

13 
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by means of outputs or bindings, constitutes an inference drawn from the program. 

Given a program, different model-theoretic views can be adopted; they might be 

"natural" or "intended." For definite programs, which use only Horn clauses, both 

Prolog and Starlog subscribe to denotational semantics via a least-fixpoint charac-

terization of least, Herbrand models. Some model-theoretic views will be inadequate. 

For example, it is not generally possible to show that a conjunction of non-clausal 

formulae is unsatisfiable, i.e., has no model, when restricting attention to Herbrand 

interpretations [Llo87, pages 17, 39]. Therefore, more general interpretations need to 

be considered in such cases. Similarly, different proof-theoretic views are possible for 

a given program, and if their inference rules are applied in a semantically-incorrect 

manner, they can produce different results. 

These views assume that answering a query or goal is the objective. Starlog takes 

a different stance. As introduced ahead, its rules of inference are similar to those 

used in [Llo87, page 38] for computing a program P's minimal model via the least 

fixpoint of a mapping Tp. Given a program P, Starlog's objective is to compute a set 

of tuples that when grounded equal P's minimal model. Therefore, Starlog execution 

mirrors its model-theoretic view—it has no notion of queries, and the "model" itself 

is the objective. 

X-computation, which is formally treated in Chapter 4, is used to execute Starlog 

programs. X-computation and SLD-resolution [Llo87, pages 40-41] differ greatly in 

their inference rules, and yet, they produce equivalent results when a fair search 

is used. Standard Prolog is an execution strategy that uses SLD-resolution and 

selects the leftmost atom in a goal. It selects clauses to resolve against in their order 

of textual appearance in the program. Due to this unfair, depth-first search rule, 
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standard Prolog is incomplete—though sound—even for definite programs [L1o87, 

pages 59-60]. Although the Starlog interpreter might not terminate, we will prove, 

in Chapter 4, that for definite programs, it is both sound and complete. 

3.1.2 Deduction: Bottom Up Vs. Top Down 

Consider a query-based, logic-programming system, which aims to provide answers 

or replies to queries when given the rules of a logic program. There are many ways 

of deducing answers, but based on the direction of inference, deductive inference can 

be classified into two extremes: 

• top-down deduction is query-directed, i.e., the query is used in each inference 

step. This form of deduction works its way from the query, the "top" level, 

towards the facts in the program—looking for evidence that supports or con-

tradicts the goal. It is also referred to as goal-driven reasoning and backward 

chaining [BF81, page 198]. 

• bottom-up deduction uses the query only in the last inference step to compute 

a reply. It builds assertions using the program's facts, the "bottom" level, 

and works its way towards the query—trying to draw conclusions that are 

appropriate to the goal. It is also referred to as data-driven reasoning, event-

driven reasoning, and forward chaining [BF81, page 198]. 

Standard Prolog performs top-down deduction via SLD-resolution. Since Starlog 

does not support queries, its deduction is closer to the bottom-up form. 
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3.1.3 Least-Fixpoint Computation 

In [Llo87], a fixpoint of a function Tp is used to characterize a minimal, Herbrand 

model of a program P. For a definite program P, the least fixpoint lfp(Tp) is shown 

to be the least, Herbrand model of P. A method for computing the least fixpoint in a 

bottom-up fashion is defined. This method is based on the result that for any definite 

program F, the least fixpoint is unique and lfp(Tp) = Tpw, where Tp is a monotonic 

and continuous function defined over the lattice of subsets of P's Herbrand base Bp. 

(For a general, stratified, normal program F, Tp has to be modified and lfp(Tp), as 

computed by a layered version of this method, is only guaranteed to be one of many, 

minimal models of P.) The method starts with an empty interpretation and applies 

Tp repeatedly to yield (ground) atoms as logical consequences until an interpretation 

is reached that is unaffected by further application of Tp. This final interpretation 

is lfp(Tp). It is possible for the lfp of a definite program to be computed only after 

infinite applications of Tp. 

It would be impractical to implement Tp as defined since it deals with ground 

(variable-free) interpretations, which are often infinite. So, we replace ground terms 

in an "interpretation" by general terms containing variables. There are, as well, the 

following efficiency issues: 

• suppose that there is a clause p - q(X), r(X) and that Tp has already deduced 

tuple r(a) to be true. Suppose also that there is a complicated clause r with 

a head q(Y) and whose many assertions will be generated only after many-

more applications of Tp. Then, there is no need to repeatedly unify r(X) with 

r(a) and to test for the unifiability of the atom q(X) with each of the many 
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assertions generated through F. Therefore, the body atom r(X) should be 

unified with r(a); then, for the body atom q(X), the search for unifiers with 

heads of assertions would be constrained to just the possible assertion q(a) -. 

Therefore, maintaining specialized versions of the original program to indicate 

possible unifications would help efficiency. 

• "flat" or unstructured interpretations do not allow direct access to "relevant" 

atoms. If an atom A in the body of a clause cannot unify with the head of some 

clause r, then A need not be tested for unifiability with atoms introduced via 

F. Therefore, some form of indexing would help efficiency. 

• if an atom A has been inferred as a logical consequence of the program and 

introduced into an interpretation, then there is no need to infer it repeatedly, 

on each application of Tp. Redundant inferences should be avoided. 

3.2 Starlog Execution 

We now introduce Starlog's execution, which resembles application of Tp and which 

also caters to the aforementioned issues of efficiency. 

3.2.1 Program 2-3-5 

Hamming's problem [L1o87, page 189] or the 2-3-5 problem is to construct the sorted 

sequence of positive integers that have no prime factors other than 2, 3, or 5. Con-

sider a simplified version of this problem that allows the integers to be generated 

in any order and even more than once. The Starlog program in Fig 3.1 solves this 

version. Its rule R5 states that multiplying an element U in the "sequence" by an ele-
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% Program 2-3-5. 
% The predicate 'seq(T)' will be true at those times that are in the sequence 
% 1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,... Multiplying an element in the sequence 
% by a factor of 2, 3, or 5 gives another element in the sequence. 

(RI) seq(1.0). 
(R2) factor(2.0). 
(R3) factor(3.0). 
(R4) factor(5.0). 
CR5) seq(T) <- seq(U), factor(V), *(U,V,T). 

Figure 3.1: Program 2-3-5. 

ment V gives another element T. U is guaranteed by the predicate seq(U) to lie in the 

Hamming "sequence." V is guaranteed to be 2, 3, or 5 by the predicate f actor M. 

Rule Ri sets up an initial fact that 1 is an element of the desired "sequence." 

An execution of a Starlog program is called an X-computation. Starlog executes 

the program in Fig 3.1 to deduce tuples, which are logical consequences of the pro-

gram. It selects each rule in the program in turn and generates a tuple or deduces a 

new rule-instance from it. We shall depict the progress of Starlog execution by in-

crementally building a tree, called the X-tree. The X-tree's nodes are rule-instances, 

and its edges or arcs, shown as thick lines, link a rule-instance to rule-instances de-

duced from it. Additionally in this X-tree, each user-defined, predicate call or atom 

in the body of a rule-instance is associated with a directed pointer, shown as a thin 

arrow. When executing a rule-instance r, suppose an atom A is selected. Then, the 

use of A's pointer is as follows: 

Suppose A points to a rule-instance L. Then, only the leaves of the sub-

tree whose root is A need to be used as input rule-instances, henceforth 

called input-rules, when deducing from P. 

Regarding notation, we further use the symbol 'r- ' to show bindings of variables: 
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X—[1,3) means that X is bound to the (internal) arithmetic interval [1,3), and 

Y-f (Z, a) means that Y is bound to the data structure or term f (Z , a). Fig 3.2 

summarizes the legend for the diagrams and programs in the rest of this thesis. 

Legend: 

X—U Shows that variable 'X' is bound or instantiated to a term 'U'. 
Links parent to child in an X-tree. 

- - - - Delimits a stage of an X-computation used to construct an X-tree. 
Links an atom in the body of a rule-instance to a rule-instance that it 

points to in an X-tree. 

Figure 3.2: Legend. 

Returning back to Fig 3.1, rule Ri is selected first for execution. It is a unit clause, 

and so, its head is a tuple, and the clause need not be further executed. Similarly, 

rules R2, R3, and R4 are selected, and their heads are classified as tuples. Now, the 

non-tuple rule R5 is selected for execution. Since this is an initial execution, each 

user-defined predicate call in its body is made to point to the root of the X-tree. 

Fig 3.3 shows the X-tree at this stage in the X-computation; the thin, dashed line 

delimits successive stages in the X-computation. 

oot 

seq(T) <- seq(U), factor(V), *(U,V,T'). 
seq(1.0). 

factor(2.0). 

factor(3.0). 

factor(5.0). 

Figure 3.3: Initial X-tree for Program 2-3-5. 

Assume that all the atoms in the body of a rule are to be selected, in turn, from 

left to right. On selection, an atom is to be unified with the head of an input-rule to 
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yield a new rule-instance. Now, consider the execution of rule R5. When the leftmost 

atom seq(U) in R5 is selected, it unifies with the following: 

1. Ri's head, which is a tuple. This satisfies the selected atom and results in 

a new rule-instance seq(T) <- factor(V), *(1,V,T). (Ignore renaming of 

variables, for now.) When this factor (V) is selected, it unifies with the fol-

lowing: 

(a) R2's head, which is a tuple. This results in seq(T) <- *(1,2,T), a new 

rule-instance. Selection of * (1, 2, T) invokes Starlog's arithmetic built-in, 

and a tuple seq(2. 0) is yielded. 

(b) R3's head, which is a tuple. This results inseq(T) <- *(1,3,T), a new 

rule-instance. Selection of * (1,3, T) invokes Starlog's arithmetic built-in, 

and a tuple seq(3.0) is yielded. 

(c) R4's head, which is a tuple. This results in seq(T) <- *(i,5,T), a new 

rule-instance. Selection of * (1,5 , T) invokes Starlog's arithmetic built-in, 

and a tuple seq(5 .0) is yielded. 

2. seq(T), which is the head of the non-tuple rule R5. (Note that R5 is a recursive 

rule.) No fresh binding can be inferred for U to constrain its values, and the 

selected atom seq(U) remains unsatisfied, resulting in the original rule (mod-

ulo renaming). (A model-theoretic, bottom-up form of deduction—instead of 

resolution—is being used here.) When the next atom factor (V) is selected, it 

unifies with the following: 

(a) R2'shead, which is atuple. This results in seq(T) <- seq(U), *(U,2,T), 
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a new rule-instance. Selection of * (U, 2, T) invokes Starlog's arithmetic 

built-in, which is helpless at this stage and returns the same rule-instance. 

(b) R3's head, which is a tuple. This results in seq (T) <- seq (U), * (U, 3, T), 

a new rule-instance. Selection of * (U, 3, T) invokes Starlog's arithmetic 

built-in, which is helpless at this stage and returns the same rule-instance. 

(c) R4's head, which is a tuple. This results in seq(T) <- seq(U), *(U, 5 ,T), 

a new rule-instance. Selection of * (U, 5, T) invokes Starlog's arithmetic 

built-in, which is helpless at this stage and returns the same rule-instance. 

Therefore, execution of the non-tuple R5 resulted in the new tuples seq(2. 0), 

seq(3.0), and seq(5 .0). In addition, the following rule-instances await further 

execution and are placed in a list for scheduling. 

seq(T) <- seq(U), *(U,2,T). 

seq(T) <- seq(U), *(U,3,T). 

seq(T) <- seq(U), *(U,5,T). 

Fig 3.4 shows the X-tree constructed this far and the new links of atoms. Each rule-

instance in the X-tree has been standardized apart, i.e., made variable independent. 

Note that if an atom A is unified with the head of a non-tuple rule r, then in the 

deduced rule-instance, (an instance of) A is made to point to F. 

The next stage in the X-computation highlights the efficiency gained by using 

pointers. Refer to Fig 3.5, which shows the result of executing the rule-instance: 

seq(Ta) <- seq(Ua), *(Ua,2,Ta). 
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oot 

seq(T) <- seq(U), factor(V), *(TJ,V,T). 
seq(1.0). 

factor(2.0). 

factor(3.0). 

factor(5.0). 

seq(Ta) <- seq(Ua), *(Ua,2.O,Ta). seq(2.0). 

seq(Th) <- seq(Ub), *(UIJ,3.O,Th). seq(3.0). 

seq(Tc) <- seq(Uc), *(TJc,5.O,Tc). seq(5.0). 

Figure 3.4: Two Stages in an Execution of Program 2-3-5. 

Atom seq(Ua) is selected for unification. Each leaf node of the subtree to whose root 

it points is used, in turn, as an input-rule. This results in six, new rule-instances. 

In these, when the (further-instantiated) atom *(Ua,2,Ta) is selected, the three 

tuples seq(4.0), seq(6.0), and seq(1O.0) and the following three, non-tuple rule-

instances result: 

seq(Td) <— seq(Ud), *(Ud,2,Td). 

seq(Te) <— seq(Ue), *(Ue,2,Te). 

seq(Tf) <- seq(Uf), *(Uf,2,Tf). 

As shown in Fig 3.5, the atoms seq(Ud), seq(Ue), and seq(Uf) point to the non-

tuple input-rules used for unification when the atom seq(Ua) was selected. By using 

pointers, Starlog avoids "reusing" input-rules in a redundant fashion. In this case, 

specialized, logical consequences of Ri were used, but Ri and R5 were not. In future 

executions, none of the non-tuple rule-instances generated in this stage will "reuse" 

the tuples seq(2.0), seq(3.0), and seq(5.0) of the previous stage. 
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oot 

..1•555>_7 
seq(T) <- seq(U), factor(V), *(U,V,T). 

seq(1.0). 

factor(2.0). 

factor(3.0). 

factor(5.0). 

seq(Ta) - seq(Ua), *(Ua,2.O,Ta). seq(2.0). 

seq(Tb) <- seq(Ub), *(TJb,3.O,Th). seq(3.0). 

seq(Tc) <- seq(Uc), *(Uc,5.O,Tc). seq(5.0). 

seq(Td) <- seq(Ud), *(Ud,2.O,Td). seq(4.0). 

seq(Te) <- seq(Ue), *(Ue,2.O,Te). seq(6.0). 

seq(Tf) <- seq(Uf), *(Uf,2.O,Tf). seq(1O.0). 

Figure 3.5: Three Stages in an Execution of Program 2-3-5. 

Starlog execution continues as a sequence of such steps until there are no more 

non-tuple rule-instances to be executed. The tuples are "returned" as part of Star-

log's solution as and when they are computed. In the case of Fig 3.5, Starlog does 

not terminate in a finite number of steps and the (full) X-tree will be infinite. This 

is acceptable in view of the infinite nature of the Hamming sequence. 

3.2.2 Gleaning Information from Heads 

Starlog's bottom-up deduction is a little cleverer than just shown. Suppose the 

rule-instance p(T,X) <- q(T,X) is executed against a non-tuple rule-instance: 

q(U,f(Y,Zr...[1.7,3.2))) <- r(U,Y). 

(As stated earlier, the latter rule-instance is an input-rule since it is used as input for 

a deduction step from the former rule-instance.) Then, the following rule-instance is 
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deduced by Starlog: 

p(Ta,f(Ya,Za.—'[1.7,3.2))) <— q(Ta,f(Ya,Za—'[1.7,3.2))) 

This means that even partial bindings appearing in the head of a rule-instance R are 

propagated into the body-atoms that refer or point to R via links in the X-tree; this 

helps constrain search. 

3.2.3 Program Assignment 

Here, we take up an execution of a program involving negation. Fig 3.7 shows an X-

tree for the Assignment program, which is reproduced in Fig 3.6. (Fig 3.6 appeared 

earlier as Fig 1.2.) Since this example is complicated to explain in-line, we urge the 

% Program Assignment. 
% A variable War' has a value 'Val' from---and inclusive of---the time 'Ts', 
% when it was set, until---but not including---a time 'Tn', when it is set again. 

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Va1), 
not-exists Tn,New: (r >= Tn, Tn> Ts, set(Tn,Var,New)). 

set(1.0,a,v). % at time 1.0, set variable 'a' to a value Y. 

set(3.0,a,w). % at time 3.0, set variable 'a' to a value W. 

Figure 3.6: Program Assignment. 

reader to refer to Fig 3.8 and Fig 3.9 for tracing through Starlog's deduction of the 

tuplesval([1.O,3.0),a,v) and val([3.O,+inf),a,w). 

3.2.4 Recapitulation 

Given a program F, Starlog's interpreter aims to construct a tree, called the X-tree, 

whose nodes are rule-instances. When completely built, this X-tree has as leaves 

tuples that cover F's minimal model, i.e., give P's minimal model when grounded. 



val([1.O,3.0),a,v). 
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oot 

val(T,Var,Va1) <- T >= 0, T >= Ts, set(Ts,Var,Va1), 
not-exists Tn,New: (T >= Tn, Tn> Ts, 

set(Tn,Var,New)). 

set(3.0,a,w). 

set(1.0,a,v). 

val([3.0,+int),a,w). 

Figure 3.7: A "Compressed" X-tree for Program Assignment. 

Each atom in the body of a rule-instance is associated with a pointer to some node in 

the X-tree, the significance being that exactly those rule-instances that appear at the 

leaves of the subtree being referred to need to be used as input-rules for deduction 

with that atom. Initially, the X-tree is a dummy node root, whose children are the 

program's rules; each atom in the body of a program's rule is made to point to the 

root, as in Fig 3.3. The links between parent and child and the pointers between 

body-atom and head of rule-instance are maintained in the X-tree in order to avoid 

redundant, deduction sequences. 

Starlog first places all the non-tuple rules into a list for scheduling. Execution 

proceeds by picking a non-tuple rule-instance from the list and applying a form of 

bottom-up deduction to it. The rule-instances that result are rewritten—according to 

the rewrite rules introduced later in Chapter 5—and made children of the executed 

rule-instance in the X-tree, and the non-tuples amongst them are placed in the 

scheduling list for future execution. Execution terminates when there are no more 

(non-tuple) rule-instances to be executed. This execution mechanism is very similar 

to the execution of discrete-event simulations by using event lists [Mis86]. 
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In the previous examples and in the Starlog interpreter that we have implemented, 

we use all-atom selection: when executing a rule-instance, each atom in its body is 

selected in sequence, from left to right. This is true of even the atoms nested within 

negations. Although a fair, single-atom selection is sufficient to guarantee correctness 

of search, all-atom selection is preferable because it improves efficiency by quickening 

the success or failure of deduction paths in the X-tree. This quickening is because 

it avoids unnecessary branching, in the X-tree, to create children rule-instances. 

Atoms that serve to constrain search or fail are picked up immediately—instead of 

eventually, as would be the case in a fair, single-atom selection. X-trees constructed 

using all-atom selection are called "compressed" X-trees, to distinguish them from 

the X-trees got by single-atom selection, which will be formally defined in Chapter 4. 

3.2.5 Debugging 

Starlog's rule-instances and tuples interact as though they were placed in a shared 

dataspace or globally-accessible pool. (This is similar to the way computation pro-

ceeds in Linda [CG89].) The public nature of communication between rule-instances 

helps to debug and monitor execution. For example, to fire off an error tuple "when-

ever" the value of a modelled variable 'a' is not unique for some period of time T, 

only the following rule needs to be included as part of the Assignment program in 

Fig 3.6: 

error(T,a,V1,V2) <- val(T,a,V1), val(T,a,V2), V1 =/= V2. 

This is a means of debugging Starlog programs using Starlog! 
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3.2.6 X-computations Exploit Parallelism 

Each rule-instance in an X-tree can be viewed as a process, and the value of its ar-

guments can be seen as the process's state. X-computations, then, execute multiple 

processes and in or-parallel (concurrent) fashion to search for alternative solutions. 

As stated in [Sha87, pages 42-43] for the language Concurrent Prolog, a process can-

not actively change its state, but can only reduce itself to other processes. Therefore 

theoretically, Starlog and Concurrent Prolog support only ephemeral processes whose 

state is not self-modifiable. However, both from an intuitive and an implementation 

point of view, a process that calls itself recursively with different arguments can 

be viewed as a perpetual process that changes its state. The ability to implement 

multiple, perpetual processes is one reason for the increased power of Starlog and 

Concurrent Prolog over (sequential, standard) Prolog, which can implement only one 

perpetual process without side-effects. 

The all-atom selection strategy used by our Starlog interpreter exploits the and-

parallel nature of programs and can be classified along with the Sync model [LM86], 

which is categorized in [Con87]: 

AND processes in the Sync model of Li and Martin [LM86] do not use 

a parallel backtracking algorithm. Instead, they perform an incremen-

tal join operation on the values returned by the parallel solution of the 

literals. Analysis of the body of the rule is used to order the literals,... 

Our Starlog interpreter is a sequential interpreter. Its distributed version would re-

semble more the model of [LM86] in the execution of conjuncts. Its present execution 

of literals in a conjunct looks more like pipelining, with the (partial) solutions of one 
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conjunct constraining the solutions of another. 

In summary, Starlog uses tuples, which are not grounded as in the application of 

Tp, for bottom-up deduction. In addition, the tree-based execution scheme uses non-

tuple rule-instances to constrain search; also, only "relevant" input-rules are used in 

each step. Thus, the Starlog interpreter "intelligently" indexes on the entire predicate 

or atom appearing in the head of a rule-instance. In the following Chapter 4, we will 

formally define and prove the correctness of Starlog's execution method for definite 

(Horn-clause) programs. 
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Deduction of Tuple 'val([1.O,3.0),a,v)'. 
The following rule is selected for execution: 

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val), 
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)). 

Selection of the leftmost constraint in the body satisfies it and gives the following: 
val(T—[0.O,+inf),Var,Val) <- T—[0.0,+inf) >= Ts, set(Ts,Var,Val), 

not-exists Tn,New: (T—{0.0,+inf) >= Tn, Tn > Ts, set(Tn,Var,New)). 
Selection of the new, leftmost constraint results in the following: 

val(T—{0.0,+intT),Var,Val) <- T—[0.0,+int) >= Ts—(-inf,+inf), set(rs—(-inf,+int),Var,Val), 
not-exists Tn,New: (T—[0.O,+int) >= Tn, Tn > Ts—(-inf,+inf), set(Tn,Var,New)). 

Now, the positive 'set' atom is selected and unified with the tuple 'set(l.O,a,v)'. 
val(T—[0.0,+inf),a,v) <- T—[0.0,+int) >= 1, 

not-exists Tn,New: (T—(0.0,+inf) >= Tn, Tn> 1, set(Tn,a,New)). 
Since 'Ts' was bound to 1, the "delayed" constraint 'T >= Ts' is woken to give the 
following rule-instance: 

val(T—[1.0,+inf),a,v) <- not-exists Tn,New: (T—{1.0,+inf >= Tn, Tn> 1, set(Tn,a,New)). 

Now, the negation is selected. The result of executing the following rule-instance 
will be used to rewrite the negation: 

h(T—[1.0,+inf)) <- T—[1.0,+int) >= Tn, Tn> 1, set(Tn,a,New). 
Selection of the leftmost constraint, '>=', gives the following: 

h(T.'-[l.O,+int)) <- T—[l.0,+int) >= Tn—(-inf,+int), Tn—(-inf,+inf)> 1, set(Tn—(-inf,+int),a,New). 
Selection of the next-leftmost constraint, '>', gives 
h(T—(1.O,+int)) <- T—[l.0,+inf) >= Tn—(l .O,+int), set(Tn—(1.O,+inf),a,New). 

Since 'Tn' was squeezed, the "delayed" constraint 'T >= Tn' is woken to give 
h(T—(1.O,+int)) <- T—(1.0,+int) >= Tn—(1.0,+inf), set(Tn—(1.O,+inf),a,New). 

The 'set' atom is now selected. It cannot unify with the tuple 'set(l.O,a,v)'. 
Unifying it with the tuple 'set(3.0,a,w)' gives 

h(T—(l.0,+ink)) <- T—(1.0,+inf) >= 3. 
Now, we have 'Tn-3.0' and 'New—w'. 
Binding 'Tn' wakes the "delayed" constraint, 5=', giving the following solution to the body: 

h(T—[3.O,+inf)). 

Taking this solution of the body back to the negation in 'C' and further rewriting the 
binding of the non-local variable 'T' in terms of constraints, we have 

val(T—[1.0,-l-intT),a,v) <- not-exists Tn-3.0,New—w: (T—[1.0,+inf) >= 3). 
Dropping the variables that cannot be further bound from the list of existentially-
quantified variables within the negation, we get 

val(T—[1.0,+intT),a,v) <- not-exists: (T—[1.0,+inl) >= 3). 
Since the negation does not existentially quantify any variables, we rewrite as 

val(T—[l.0,+inf),a,v) <- not(T—[1.0,+int) >= 3). 
Since there are no calls to user-defined predicates, we decide to invert the  

val(T—[1.0,+inf),a,v) <- 3 > T—[l.0,-i-inf). 
The lone constraint in the body is then selected to give the tuple: 

val(T—[1.0,3.0),a,v). 

Figure 3.8: Deduction of Tuple val([1.0,3.0) ,a,v). 
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Deduction of Tuple 'val([3.0,+inf),a,w)'. 
The following rule is selected for execution: 

val(T,Var,Val) <- T >= 0, T >= Ts, set(Ts,Var,Val), 
not-exists Tn,New: (T >= Tn, Tn > Ts, set(Tn,Var,New)). 

Selection of the leftmost constraint in the body satisfies it and gives the following: 
val(T—[0.0,+int),Var,Val) <- T—[0.0,+inf) > Ts, set(Ts,Var,Val), 

not-exists Tn,New: (T—[0.0,+inf) >= Tn, Tn > Ts, set(Tn,Var,New)). 
Selection of the new, leftmost constraint results in the following: 

val(T—[0.0,+infT),Var,Val) <- T—[0.0,+inf) >= Ts—(-inf,+int), set(Ts—(-inf,-i-inf),Var,Val), 
not-exists Tn,New: (1'—[O.O,+inf) >= Tn, Tn > Ts—(-inf,+inf), set(Tn,Var,New)). 

Now, the positive 'set' atom is selected and unified with the tuple 'set(3.0,a,w)'. 
val(T—[0.0,+int),a,w) <- T—[0.0,+int) >= 3, 

not-exists Tn,New: (I—[0.0,+inf) >= Tn, Tn >3, set(Tn,a,New)). 
Since 'Ts' was bound to 1, the "delayed" constraint 'T >= Ts' is woken to give the 
following rule-instance: 

val(T—[3.0,+int),a,w) <- not-exists Tn,New: (I—[3.0,+int) >= Tn, Tn >3, set(Tn,a,New)). 

Now, the negation is selected. The result of executing the following rule-instance 
will be used to rewrite the negation: 

h(r—[3.0,+inf)) <- T—[3.0,+inf) >= Tn, Tn >3, set(Tn,a,New). 
Selection of the leftmost constraint, '>=', gives the following: 

h(T—[3.0,+int)) <- T—{3.0,+inf) >= Tn—(-inf,+inf), Tn—(-inf,+int) >3, set(Tn—(-inf,+inf),a,New). 
Selection of the next-leftmost constraint, '>', gives 

h(T—[3.0,+inf)) <- T—[3.0,+int) >= Tn(3.0,+inf), set(Tn.(3.0,+int),a,New). 
Since 'Tn' was squeezed, the "delayed" constraint 'T >= Tn' is woken to give 

h(T—(3.0,+int)) <- T—(3.0,+int) >= Tn—(3.0,+inf), set(Tn-(3.0,+int),a,New). 
The 'set' atom is now selected. It cannot unify with either tuple 'set(l.O,a,v)' or 'set(3.0,a,w)'. 
Therefore, no tuples can be inferred from the rule-instance for W. 

Taking this solution of the body back to the negation, we have 
val(T—[3.0,+inf),a,w) <- not-exists Tn,New: (fail). 

Since the negation's body is failed, the negation is satisfied and is deleted. 
This results in the following tuple: 

val(T—[3.0,+inf),a,w). 

Figure 3.9: Deduction of Tuple val([3.0,-i-inf) ,a,w). 



Chapter 4 

Formal Semantics for Definite Starlog 

Having introduced Starlog execution in an informal manner in Chapter 3, we are 

now ready to formalize its execution. We restrict ourselves to the class of definite 

programs, which consist of a finite number of single-headed, Horn clauses [Llo87, 

pages 8-10]; there should be no use of negation in the bodies of clauses. We call this 

class of programs, along with its execution method in Starlog, "definite Starlog." 

Restricting to definite Starlog simplifies matters since we do not have to deal with 

the semantics of negation or arithmetic in Starlog rules. Our results also become 

generally applicable to Horn-clause programs. Although definite programs lack the 

expressive power offered by negation, they are an important subset of logic programs 

since they are computationally adequate, i.e., they are Turing complete [Llo87, The-

orem 9.6]. 

Recall from 3.1.1 that definite Starlog's model-theoretic semantics is given by 

least, Herbrand models. These models are characterized denotationally by least 

fixpoints of function Tp [Llo87, pages 37-38]. In this chapter, we formally define 

definite-Starlog execution and prove that it is semantically both sound and complete 

with respect to least, Herbrand models. We, therefore, are providing a procedural 

semantics for definite Starlog. 

First, we first introduce our notation. Next, we explicitly assume the use of 

idempotent unifiers in definite Starlog. Then, we set up apparatus for proving the 

soundness of definite Starlog. With respect to least, Herbrand models, we define 

31 
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correct tuples, which provide a declarative description of the desired output from a 

program. The procedural counterpart of a correct tuple is a computed tuple, which 

is defined using X-computation. We prove that every computed tuple is correct, 

establishing thereby the soundness of X-computation. Finally, we identify the control 

elements—of atom- and clause-selection rules—governing X-computation during its 

search for tuples and prove that every correct tuple is an instance of a computed 

tuple. This establishes the completeness of X-computation. Therefore, we have the 

final result that a fair X-computation produces only and all correct tuples. 

4.1 Notation and Terminology 

Unless redefined, the terminology used here has been borrowed from [Llo87]. LHS 

and RHS are abbreviations for "left hand side" and "right hand side" of an impli-

cation; TPT abbreviates "to prove that." Upper-case Greek letters, except and 

are reserved for clause-instances (defined ahead), lowercase Greek for substitu-

tions, and upper-case Arabic—optionally subscripted with lowercase Arabic letters 

or numerals—for atoms in clauses; the upper-case Arabic letter P is an exception 

and always denotes the definite program in question. The upper-case Greek letters, 

and IF, are reserved for naming sets of clause-instances. Lists, which are sequences 

or ordered collections, are enclosed in box brackets, [and ]; sets, which are unordered 

collections are enclosed in curly brackets, { and }. (Note that [L1o87, page 44] uses 

[A] differently to mean the set of ground instances of atom A.) Overlined, low-

71 
ercase Arabic letters or numerals, e.g., i, are reserved for names of (pointers to) 

clause-instances. We show the names of clause-instances being referred to only when 
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essential to the discussion. The symbol --optionally subscripted with lowercase 

Arabic letters or numerals—is reserved for the names of X-trees (defined ahead), 

the symbol i9—optionally subscripted with an upper-case, Greek symbol denoting 

some clause-instance—is reserved for the names of X-derivations (defined ahead), 

the symbol ?5 is reserved for X-computations (defined ahead), and the symbol R is 

reserved for selection rules. 

Bp denotes the Herbrand base [Llo87, page 16], and Mp denotes the least, Her-

brand model [Llo87, page 36] of a definite program P. If F is a clause, then 1'+ 

is its head, and r— is its body. The abbreviation "mgu" stands for "most general 

unifier." We use "suitable variant" to mean a variant that is standardized apart, i.e., 

a variant that is variable independent from the clause-instances in question. 

4.2 Idempotent Unifiers: An Assumption 

We assume that definite Starlog's unification algorithm incorporates the occur check 

[Llo87, page 24] and produces only idempotent mgus. This is because in certain 

proofs ahead, e.g., in Theorem 31, we have to consider idempotent substitutions. 

Such mgus can be constructed as in [Llo87, page 24]. (For the set S = {a, a}, both 

the idempotent unifier a = I  and the non-idempotent unifier /3 = {X/Y, Y/X} are 

mgus.) Since mgus are unique modulo renaming [Llo87, page 23], our assumption 

does not compromise on correctness with respect to unification. 
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4.3 Soundness of Definite Starlog 

Given a program P, Starlog's objective is to compute a (possibly-infinite) set of 

tuples that when grounded equal P's minimal model. Each tuple is an instance of 

the head of some clause in P. Tuples can have variables, i.e., they need not be 

ground. Starlog uses X-computation to compute tuples. 

Our aim is to prove definite Starlog's soundness. First, we define correct tuples, 

which provide a declarative description of the desired output from a program. The 

procedural counterpart of a correct tuple is a computed tuple, which is defined using 

X-computation. X-computation enhances the method for computing least fixpoints 

in [Llo87] by additionally using pointers and non-unit input-clauses when executing 

bottom up. We prove that every computed tuple in an X-computation is a correct 

tuple. This establishes the soundness criterion. 

Pointers as Names: In Chapter 3, we have introduced pointers from atoms in the 

bodies of rule-instances to rule-instances in the X-tree. For this chapter, we shall 

represent these pointers using names. The named objects are the clause-instances of 

P. Each atom A in the body of a clause-instance refers to some clause-instance via 

the latter's name, say, i; this reference is depicted by A. i is said to be the pointer 

associated with or of A. We use a countably-infinite, absolute name space, wherein 

names uniquely identify the objects being named. (This is in contrast to a possible 

relative name space wherein a context may be required, in addition to the name, 

to uniquely identify an object, e.g., file-names on UnixTMl, which need the context 

provided by the full path from the file-system's root node in order to uniquely identify 

I Unix is the trademark of AT&T Bell Laboratories. 
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a physical file.) Names may be hierarchical or flat without affecting our results. We 

take A = {, f, I,. . . } as our flat name space here. The named objects are the clause-

instances of P. Let 0 be reserved to refer to the root of the program's X-tree (in 

Def 14 ahead). 

Now, we launch into formal treatment. 

Def 1 An atom A is a correct tuple of  iffV(A) is a logical consequence of P. 

Any further instantiation of a correct tuple always gives a correct tuple. 

Def 2 Deleting or dropping zero or more atoms in the body of a clause constitutes 

atom dropping. 

If F = H A,,—, . , Am ,. . . , Aj then an example clause got by atom dropping r is 

H All ... , Am -,, Am+i, . . . , Ai. 

Def 3 Changing zero or more pointers associated with atoms in the body of a clause 

constitutes pointer changing. 

If F = H - A,... , Am, ... , A then an example clause got by pointer changing r is 

H - At,. . . , A,.. . , A; here, 2 may or may not be All the pointers referred to 

are assumed to be names of valid clauses. This is to avoid unnecessarily complicating 

the discussion. 

Def 4 (Clause-instance, Stage) Let F be a definite clause. Then, there exists a 

minimal (non-empty) set of all clause-instances of r such that: 

9 r is in C and 



CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 36 

. is closed under atom dropping, pointer changing, and substitution. 

Any subset ofD is called a stage. The union of sets of clause-instances of different 

clauses is also a stage. 

The stage consisting of exactly the clauses in P such that each atom in the body 

of a clause refers to 0 is given a special name mu, signifying the initial stage in 

P's X-computation. A clause-instance of a clause in P is sometimes called a clause-

instance of P. We use "clause" to mean a clause in P and "clause-instance" to mean 

any clause-instance of P. 

From now on, we will need two naming functions: IV and U. IV is the name 

binder, and CC is the name resolver. Our use of an absolute name space guaran-

tees that these are bijections. We take them as inverse bijections of one another: 

given a clause-instance, IV provides a name, and given a name, CC provides a 

clause-instance. Formally stated, if S is the set of all clause-instances of P then 

IV: Si—*A(, and CC: Hi—  S. 

Def5 Let F=H<—Al,...,A,...,Ak(k≥O),L-- F---Bl,...,Bfl (n≥O),and 

IV(L) = . Then F' is derived from r using L if all the following hold: 

• k > 0 and Am is an atom, called the selected atom, in r—. 

• there exists an mgu a for Am and F', a suitable variant of F, i.e., = Ama = Pa. 

• if n > 0 then r, is a suitable variant of (H +- A1,. . . , A,. . . ,Ak)a. If n = 0, 

which means L. is a unit clause, then r, is a suitable variant of the clause-

instance (H .' A1,. . . ,Am_i, Am+i,. . . , Ai). 

L is called the input-clause for the derivation of r, from F. 
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The pointers of unselected atoms cannot change during a derivation step. 

Def 6 Let r be a clause-instance of P. A sequence consisting of only r is an X-

derivation from r. A (possibly infinite) sequence [F0(= F), Ft,. . .} of clause-instances 

of r is an X-derivation from r if all the following hold: 

. each P1 is derived from ri. 

• if A is a selected atom in the derivation of F 1 from ri then the input-

clause zj in that derivation step is X-derivable from CL(il). 

We refer to this process as X-execution of F. 

Each clause-instance in the X-derivation from r is said to be yielded, X-derived, or 

X-derivable from F. Abusing usage slightly, if a tuple B is X-derived from r, i.e., 

the unit clause-instance B - is X-derived from r, we say that B is yielded by an 

X-derivation from F. An X-derivation involves ≥ 0 derivations, each of which has to 

additionally satisfy the aforementioned restriction on the origin of the input-clause. 

Note that each L.j, in turn, is required to be X-derivable. 

All the clauses in P are assumed to be X-derivable from CC() and are written 

with each atom in the body referring to 0. This will be clearer after Def 10 ahead. 

Def 7 The length of an X-derivation from a clause-instance r is the number of 

clause-instances of r in it. 

The minimum length of an X-derivation is one. Every clause-instance is X-derivable 

in unit length from itself. 
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Corollary 8 (Non-Closure Under Composition) The composition of unit-length 

X-derivations does not result in an X-derivation. 

The composition of two unit-length X-derivations would be expected to be of length 

two. This resultant should have used some input-clause (see Def 6). No input-clause 

has been used in the two original, unit-length X-derivations, and hence, we have 

a contradiction. Furthermore, the composition of X-derivations of non-unit length 

does not always result in an X-derivation because the terminating and initial clause-

instances in the two X-derivations have to "match" at the point of composition. 

Del 9 Let F be a definite clause in P. An X-assertion from r is a finite X-derivation 

from r whose sequence of clause-instances ends in a unit clause. 

A finite X-derivation may be successful or failed. A successful X-derivation is an 

X-assertion. Let F be a definite clause and r' be a clause-instance of r that is also 

X-derivable from F. If F' is not a unit clause and there is no clause-instance of r 

that is X-derivable in non-unit length from v, then the X-derivation from r ending 

in r, is said to be failed. 

Del 10 If 4 = {root} then init is said to descend from 4, and root is said to bear 

each clause-instance in it. If {F1,. . . , Fm,. . .}, where each ri is a clause-

instance of P, is a stage then 'I' descends from 4 if the following hold: 

• Fm is a non-unit clause-instance, called the selected clause, in . 

9 let A6n E Fm be the selected atom. 
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- if there is no clause-instance that occurs in , is X-derivable from CC(c), 

and whose head is unifiable with An then V = jr, .. , Fm+i,. . 

and we say Fm fails. 

- otherwise, let zi,... be the (potentially-infinite) clause-instances that oc-

cur in 4, that are X-derivable from CC(cl, and each of whose heads j+ 

is unifiable with A. Let Fm,,... be (suitable variants of) the clause-

instances derived from Fm using L,... as input-clauses. We say Fm 

bears each of ....... The descendant ' is got by replacing Fm in D by 

all the clause-instances in  

= ' = {r1,. .. ,Fm_i,Fmi, . . . . 

Fig 4.1 shows an example, descendant stage. Note that unifiability of a clause-

Assume that from the following stage, the clause-instance for 'p', numbered '2#', 
is the selected clause and the atom for 'q' in its body is the selected atom. 
Assume also that CL(7#) X-derives CL(1#), CL(4#), and CL(3#), but does not X-derive 
CL(1O#). 

2# p(X,Y) <- r(g(X,Y)), q(f(X)). 1O# q(f(b)). 3# q(Z). 1# q(f(a)) <- s(a). 

4#q(h(V)). 
9# 

The following is a descendant stage: 

6# p(Xz,Yz) <- r(g(Xz,Yz)). 5# p(a,Y) <- r(g(a,Y)), q(f(a)). 1O# q(f(b)). 

9#... 9#... 

3# q(Z). 4# q(h(V)). 1# q(f(a)) <- s(a). 

Figure 4.1: Descendance: An Example. 

instance's head with A6 is not implied by the former's X-derivability from Cr(). If 

an atom A is selected for derivation when computing the descendant for a given 
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stage, then only the clause-instances that are X-derivable from ff and that appear in 

the given stage have to be considered as candidate input-clauses; the search space 

for input-clauses has thus been pruned from both "above" and "below." Also, the 

descendants can be computed in a layered or stratified fashion. Each stage may 

have many possible descendants, which differ in the selection—in some derivation 

step—of either a clause-instance or an atom within a selected clause-instance. Given 

a finite stage, each of its descendant stages is guaranteed to be (modulo variants) 

finite simply because each input-clause, which is used to compute the descendant, 

has to appear in the given stage. 

Del 11 An X-computation of  consists of a (possibly-infinite) sequence: 

[,,Do(= {root}), oDj(= mit) .. .. 1. 

Each (i > 0) is a finite stage; each i+1 (i ≥ 0) descends from j. Complete X-

computations are those that are either infinite or that finitely terminate at a stage 

that has no descendants. 

An X-computation can be viewed as a mapping that operates on stages, analogous 

to Tp operating on Herbrand interpretations. For a given program F, there could be 

many X-computations, which differ in at least one stage. Each X-computation carries 

out or weaves through concurrent threads of X-derivations from clause-instances in 

its stages. From some clause-instances of F, there could be X-derivations that are 

not carried out by any X-computation of P. X-computations terminate at the first 

stage that is either empty or made up of only unit clauses, i.e., when there are no 

more descendants. Although for certain programs, complete X-computations do not 
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terminate, Starlog attempts to carry an X-computation to completion. The following 

program is one such that continues forever when executed by Starlog: 

p(f(X)) <- p(X). 

p(a). 

Def 12 An atom A is said to be a computed tuple of P if there exists an X-

computation U of P such that the unit clause-instance A i-  occurs in some stage 

of U. 

Equivalently, A should be yielded by some X-assertion 0 from a clause in F, and 

0 should be carried out by U. Further instantiation of a computed tuple need not 

give a computed tuple; computed tuples have to be "exactly" X-assertible. Both the 

computed and the correct tuples can be non-ground, i.e., they can have variables. 

Starlog is computationally interested in tuples, which are asserted from the entire 

program, rather than in answers, which are bindings to variables in a main query or 

goal. 

Def 13 The success set SSp of P is the set of all A E Bp such that A = A'a, for 

some computed tuple A' and ground substitution a. 

Note that SSp may be got by grounding tuples computed by different X-computations 

Of P. 

Def 14 An X-tree for P is a tree that is based on a complete X-computation U of 

P and satisfies the following properties: 

• each node—except the root—in the tree is a definite (possibly-unit) clause-

instance of P. 
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• the root node is named 0. 

• each node in this tree has as children the clause-instances that it bears in U. 

Nodes that are unit clauses have (bear) no children. 

• a node that fails signifies the failure of the X-derivation path it appears on. 

In an X-tree, each node is distinct from every other node; the process of X-execution 

ensures that no variables are shared across nodes. X-trees offer a different view 

of complete X-computations without placing additional restrictions on them. Each 

path in the X-tree is an X-derivation from some clause in P. Paths corresponding to 

successful X-derivations (X-assertions) are called success paths, paths corresponding 

to infinite X-derivations are called infinite paths, and paths corresponding to failed 

X-derivations are called failure paths. Note that these X-trees are complete—unlike 

the (partial) trees constructed, descendant by descendant, in Chapter 3. 

Example Consider the definite program Pqrl in Fig 4.2. As shown by Fig 4.3 

% Program Pqrl'. 
p(X) <- q(X). 
q(Y) <- r(Y). 
r(1). 

Figure 4.2: Definite Program Pqrl. 

and Fig 4.4, both finite and infinite X-trees are possible for Pqrl. 

Corollary 15 For each complete X-computation of F, there is at least one X-tree 

of P based on it. For each X-tree of F, there is at least one complete X-computation 

of  on which it could be based. 

Tuples, which are yielded by finite paths in an X-tree , are eventually computed in 

each X-computation on which is based. The stages of a complete X-computation 
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r ot 

p(X) <- q(X). . q(Y) <- r(Y). 

I 
p(Xy) <- q(Xy)  

:   
p(1). 

I 
q(1). 

Figure 4.3: A Finite X-tree for Pqrl. 

root 

p(X) <- q(X). . q(Y) <- r(Y). 

I 
p(Xy) <- q(Xy). 

I 
p(Xz) <- q(Xz). 

Figure 4.4: An Infinite X-tree for Pqrl. 

are the sets of leaves, i.e., the yield, during the construction of the X-tree based on it, 

descendant by descendant. It is easy to see that for each complete X-computation, 

there is exactly one X-tree of P based on it, but for our proofs, we need only the 

weaker statement expressed in Corollary 15. 

Now, we define a notion of depth in an X-tree. This will be used ahead to prove 

properties about X-trees. 

Def 16 Consider an X-tree containing a finite X-derivation Or from a clause-

instance F. In , the depth V(5-) of 8r is defined recursively as follows: 
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• if 0r is of unit length, then V(ôr) = 0. 

• otherwise, let of be that initial subsequence of or that ends in the penultimate 

clause-instance of 0r, and let 8A be the X-derivation in ≥ from some clause in 

P yielding the last input-clause L used in or. Then, 

D(Or) = V(5f) + V(8) + 1. 

One more than the combined depths of the X-derivations yielding r and A gives 

the depth of the clause-instance derived from r using input-clause L. Note that 

Or can have different depths depending on the X-derivations 0Aj selected for each 

input-clause Lj. By fixing the X-tree , we are guaranteed that the clause-instances 

corresponding to its nodes are variable independent and that their X-derivations 

and those of the input-clauses are fixed and appear in 9. Therefore, for any X-

derivation Or in an X-tree, V(Or) is uniquely defined. 

Now, we come to the first of our results. This result will be used to prove definite 

Starlog's soundness. 

Theorem 17 Consider a stage of an X-computation of P. Each clause-instance 

in is a logical consequence of P. 

Proof Let r+1 be a clause-instance in 4. Then, there exists an X-derivation or 

from some clause r in P (using Def 11) such that Or is carried out by an X-

computation of P and such that Or = {F0(= F), F1, . . . , Fm ]. Therefore, there must 

exist some X-tree 9 of P in which or occurs as a subpath (using Corollary 15). Let 

d = D(Or) in 9. We induce on d TPT r 1 is a logical consequence of P. 

Basis: d=0. 

Or = [F+1] = [i 
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= r = r1 is a unit clause in P (using Def 16). 

= Basis is true. 

Hypothesis: Assume that for 0 < d < k - 1 (k> 1), the Theorem is true. 

Induction: d = k. In , let I..1 be derived from ri using an input-clause /, and 

let 0j-j be that initial subsequence of or that ends in the clause-instance I'2. 

= In , there exists an X-derivation Ot from some clause in P yielding L (using 

Def 10). 

d = V(8r1) + V(&) + 1 (using Def 16). 

.V(')<k-1 and V(8)<k-1. 

Both r1 and A are logical consequences of P (using Hypothesis). 

Now we shall work through Def 5. Let Pj = H - A,,—, Am,—  ,A (r>0), 

= F - B1,... ,B (n ≥ 0), Am be the selected atom, and a be the mgu for Am 

and F', the suitable variant of F. Here, r > 0 since r+1 is derived from r using an 

input-clause (using Def 5). 

• if n > 0 then r1+1 is a suitable variant of (H A1,. . . ,Am ,. . . , A) a, which 

is certainly a logical consequence of r, and hence, of P. In this case, the 

Theorem is true irrespective of a. 

• if n = 0 then Li is the unit clause F <-, and P+1 is a suitable variant of 

(H A,,—, . , Am ..i, Am+i,. . . , A,)ø. Effectively, F 1 is a resolvent. 

can be deduced from A and r, and so, is a logical consequence of P. 

0 

Theorem 18 (Soundness of X-computation) Every computed tuple of P is a 

correct tuple of P. 



CHAPTER 4. FORMAL SEMANTICS FOR DEFINITE STARLOG 46 

This result establishes the soundness of definite Starlog. 

Proof Consider a computed tuple A of P. 

= There exists an X-computation ZJ of P such that A - occurs in some stage of J 

(by Def 12). 

A - is a logical consequence of P (using Theorem 17). 

=t V(A) is a logical consequence of P. 

= A is a correct tuple of P (using Def 1). 0 

Corollary 19 (SSp Mp) The success set of a definite program is contained in 

the program's least, Herbrand model. 

Proof Let P be a definite program, SSp be its success set, and Mp be its least, 

Herbrand model. TPT VA E Bp, A E SSp - A E Mp. 

TPT VA E Bp, A E SSp - A is a logical consequence of P (using Theorem 6.2 

in [Llo87, page 37]). Let LHS be the proposition A E Bp A A E SSp and RHS be 

the proposition that A is a logical consequence of P. 

LHS => There exists a computed tuple A' such that A for some ground 

substitution a (using Def 12). 

= A' is a correct tuple (using Theorem 18). 

= V(A') is a logical consequence of P (using Def 1). Since A is a ground instance of 

A', the RHS is true. 0 

4.4 Completeness of Search 

In §4.3, we set up the apparatus for a procedural semantics of definite Starlog and 

proved its soundness. We now identify the control elements in definite-Starlog execu-
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tion and prove that its search for tuples is complete with respect to least, Herbrand 

models. Our aim, therefore, is to prove that every correct tuple is an instance of 

some computed tuple. 

Def 20 Let 4 be the stage containing all clause-instances of P. An atom-selection 

rule is a function from to a set of atoms such that the value of the function for 

a clause-instance is an atom, called the selected atom, in the body of that clause-

instance. 

In theory, there need be no ordering on atoms in the body of a clause-instance and on 

clause-instances in a stage. In practice, as in our Starlog interpreter, both orderings 

are imposed to simplify scheduling. 

Def 21 Let r be a clause-instance of P and JA be an atom-selection rule. An X-

derivation from r via IA is one that uses JA to select atoms. 

An X-assertion from r via JA is defined similarly. 

Def 22 An X-computation of P via an atom-selection rule JA is one that uses RA 

to select atoms. 

An X-tree via R A is similarly defined. 

Def 23 Let R A be an atom-selection rule. An atom A is anRA-computed tuple 

of P if there exists an X-computation 73 via IA of P such that the unit clause-

instance A - occurs in some stage of U. 
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A is yielded by an X-assertion that is carried out by an X-computation via RA. Note 

that this is stricter than asking for just the X-assertion yielding A to be via A; this 

restriction is imposed only to simplify the proofs. 

Def 24 Let RA be an atom-selection rule. TheRA-success set of P is the set of all 

A E Bp such that A = A'a, for someRA-computed tuple A' and (ground) substitu-

tion a. 

Def 25 A search rule is a strategy for searching or constructing X-trees. 

We explore here an or-parallel search of the X-tree of a program F, or-parallel in 

that different paths of this tree are constructed concurrently, i.e., in an interleaved 

fashion. Concurrency in the search is essential for completeness since the input-

clauses for derivations on one path may be X-derived on other paths. Starting with 

root, Starlog constructs the X-tree downwards; computed tuples appear at the leaves 

of the X-tree as it is being constructed. It may take forever before all the computed 

tuples appear on the X-tree being constructed. This means that a set of all computed 

tuples of a program may not be finitely computable by Starlog. For example, Starlog 

takes forever to compute the following program's tuples: 

p(f(X)) <- p(X). 

p(a) <-. 

Unfortunately, Starlog cannot deduce that tuples p (a) and p (f (X)) would, when 

grounded, equal the program's minimal model. This means that even if there is a 

finite set of tuples that when grounded equals a program's minimal model, Starlog 

might not terminate finitely. 
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Def 26 Let 4 be the set of all clause-instances of P. A clause-selection rule R0 is a 

function from 2 to such that given a stage, Ja selects (decides) a single non-unit 

clause-instance from that stage. 

Def 27 A fair clause-selection rule RC is one that guarantees that each non-unit 

clause-instance in an input stage is eventually selected in each X-computation using 

c. 

A fair 1a offers a non-zero, though not necessarily equal, probability of selection to 

each clause-instance in a given stage. In a stage of an X-computation, i.e., leaves 

of the corresponding X-tree as it is being constructed, a clause-instance upon X-

execution is replaced by some different clause-instances, each of which will be selected 

eventually by a fair Rc. Fairness of clause-selection ensures that each finite path 

in the X-tree is fully enumerated within a finite number of X-computation stages; 

infinite paths may only be partially enumerated. A first-come-first-served (FCFS) 

clause-selection rule is fair and is used by our Starlog interpreter. 

We will prove ahead that fair clause-selection rules are semantically equivalent. 

(In practice, depending on F, some fair clause-selection rules may perform better 

than others, e.g., by computing tuples in fewer steps or by reducing branching in 

the X-tree.) We are interested in fair rules since they guarantee asproved ahead in 

Theorem 36—Starlog's completeness and not just soundness. Note that the X-tree 

for a program is dependent on both the atom-selection and clause-selection rules. 

Def 28 Let JA be an atom-selection rule and RC be a clause-selection rule. An X-

computation U of F via JA and RC is an X-computation of P in which R A is used 

to select atoms and RC is used to select clause-instances. 
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An X-tree based on a complete X-computation of P via 1A and RC is an X-tree of P 

via JA and Rc. X-computations and X-trees are (modulo variants) uniquely defined 

given F, R A, and 2a because RA and ia are total (pure) functions. 

Def 29 A fair X-computation of  is one that uses a fair clause-selection rule. Fair 

X-trees are based on fair, complete X-computations. 

Example Consider the definite program Pqr2 in Fig 4.5. Each X-tree—including 

% Program 'Pqr2'. 
p <- q, r. 
q<-q. 

Figure 4.5: Definite Program Pqr2. 

the fair ones—of Pqr2 is infinite, but some are smaller than the others, merely due 

to a different atom-selection rule. Fig 4.6 shows an X-tree based on leftmost atom-

selection, and Fig 4.7 shows one based on rightmost-atom selection; both the X-trees 

are based on (fair) FCFS clause-selection. 

Pf , r. 

p <- q, r. 

I-

root 

q<- q. 

q<- q. 

/ 

Figure 4.6: A Big X-tree for Pqr2. 
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root 

p <- q, r. q 

(fails)  

q <- q. 

Figure 4.7: A Small X-tree for Pqr2. 

Def 30 Let be some X-tree of P. In , an atom A, in the body of some clause-

instance, points* in to a clause-instance r if there exists in £ an X-derivation 

from C/(ni) yielding P. 

Theorem 31 Let P = H — A 1,. . . , A (q> 0) be a clause-instance occurring in 

an X-tree £ of F, and let each Ai point* in S to a unit clause-instance Ai. For the 

set {[&. .. , Ar,], [Li+,. .. , q+]}, let a be an mgu. Then in , 

(a) let n be some clause-instance in the X-assertion from CC(fSm) yielding Lm, 

where 1 ≤ m ≤ q. (Assume that each Ai, 1, and r are suitable variants, 

i.e., are standardized apart.) Then, in a derivation from r yielding r, if an 

atom Am is selected with Q as the input-clause then there exists an mgu /3 

such that Am /3 = (1+)i3. 

(b) there exists substitution 7 such that Vi, Af3-y = Aa = (i+)a = (L+)7 and 

H/3'y = Ha. 

(c) after such a derivation, each atom in r— may be further instantiated with 

respect to r, but only the pointer of Am can change. 
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(d) after such a derivation, Vi, i 0 m - A118 (E F'—) points* in to Aj. If R = 

then Am disappears; otherwise, if IV(11) = r then Aj3 replaces Am in r', 

meaning thereby that Am/3 points* to Am. 

This means that if the body atoms in a clause-instance r point* in to unit clause-

instances, and if the sequence of body atoms is unifiable with the sequence of the 

clause-instances, then there exists a derivation from r such that the unifiabilty is 

retained and the resulting instantiated body atoms continue to point* in ≥ to the 

corresponding unit clause-instances. Also, (b) states that in this derivation, the 

atoms in F never become "over"-instantiated so as to "lose" tuples that can be 

computed from r via some X-assertion. Note that may be an unfair X-tree. 

Proof Given fl is a clause-instance in the X-assertion from II = C.C(ilm) yielding 

E-'m is a clause-instance of Q (using Def 4). 

= There exists an idempotent substitution 5 such that (/m+) = (+)5. (As stated 

in §4.2, we consider only idempotent substitutions.) Let S be constructed by taking 

the composition of idempotent mgus used in the X-assertion in from R yielding 

Lm. We are given that Ama = (L m+)a. 

Ama = (1+)5a = AmSa (5 does not act on variables in r due to standardization 

apart). 

Am and fl+ are unifiable via Sa. 

There exists an mgu unifying Am and 1+. 

= There exists an idempotent mgu @ such that Am /i = (1+)/i, and there exists 

substitution 0 such that 00 = Sa (using mgu definition in [Llo87, page 23]). 
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= (a) is true. 

Now Vi, i 0 rn -4 A/30 = A5a. It is implicit that 1 ≤ i ≤ q. 

= Vi, i 0 m - A/30 = Aa = (+)a = (L+)5a (6 only acts on variables in the 

X-assertion from Q yielding Lm ). 

Vi, i m A1/30 = Aa = (+)a = (+)#O = (+)O (8 only acts on vari-

ables in 1 and r). 

Also, (I.m+)a = Ama = Amöa = Am /30 = (+)8a = (11+)SSa (6 is idempotent). 

Am/30 = (1,,,+)5a = (&+)i30. 

A,n18(/30) = Amc = (.m+)a = (1m+)(/30) (9 is idempotent). Combining this 

with the previous result that Vi, i 54 in -+ A/3(/.30) = Aa = (L+)a = (i+)(,80), 

we have that there exists substitution y such that the following holds: 

Vi, A37 = Aa = (+)a = (i+)7 

(by putting /90 = 

Also, Ha = H8a = Hf30 (S does not act on variables in ). 

= Ha = H/3/30 = H,8'y (3 is idempotent). 

= (b) is true. 

(c) is true simply because Am is the only selected atom in the derivation from F 

(using Def 5). 

(d) follows from (c) and the given condition that each Ai E F— points* in to 

&j (using Def 5). 0 

Theorem 32 Let F = H — &. .. , Aq (q ≥ 0) be a clause-instance of P. Let there 

be an X-assertion 0 from F using Al,- . . Lq as (suitable variants of) its unit input-

clauses and yielding a tuple B. Then, for the set {[A1,. . . , Aj, [Li+,. . . , 
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there exists a unifier a such that B = Ha. 

o may use other non-unit input-clauses too. Since there would exist a "minimal" 

X-assertion that used no other input-clauses other than Al,. . . , z, the Theorem 

need not and does not argue that a is an mgu. 

Proof If q = 0 then the Theorem is trivially true because B H. We now con-

sider the case when q> 0. Given that for each i, there exists some instance of Ai that 

disappears, when some clause-instance of r is atom dropped on selection with the 
corresponding /.j as unit input-clause (given 0). Let fli be the composition of mgus 

applied in 0 in sequence to clause-instances of r until A, or its instance, disappears. 

(It is not necessary that a body atom be dropped or disappear after each derivation 

in 0.) 

= Vi, Aigi = (Most of the bindings in Pi would not act on variables in ij 

since only the last mgu that was composed to result in Pi would act on Ai.) Let 

Am, or its instance, be the last atom to disappear in 3. Surely, there exists one such 

atom for q> 0. 

Vi, Ai/3m = (Li+)/3m since /3m is the composition of all the mgus applied to 

(clause-instances of) r in 0 (Am is last to disappear). Therefore, /3m is a unifier. 

Since B = (P+)/3m = H/3m, we have the proof by replacing /3m by a. 0 

Theorem 33 Let r = H _ A1,..., Aq (q ≥ 0) be a clause in F, and let there be an 

X-assertion from r using L,. . . , L as its unit input-clauses and yielding a tuple B. 

Let £ be the X-tree of F via an atom-selection rule JA and a fair clause-selection 

rule R0. If each Ai E P— points* in Qj to a unit clause-instance L, then in , 

there exists an X-assertion 0 from r using L4,. . . , L as its unit input-clauses and 
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yielding a tuple B. Here, each L is a suitable variant of Aj, and B' is a suitable 

variant of B. 

O and the X-assertion from r yielding the tuple B may use other non-unit input-

clauses too. This Theorem states that if a tuple B is yielded by some X-assertion— 

not necessarily in some X-computation—from a clause in P and the unit clause-

instances used by the X-assertion are X-asserted in a fair X-tree of F, then a 

variant B' is yielded in ≥. 

Proof Given an X-assertion from r using Al, . . i. as unit input-clauses and 

yielding a tuple B. 

= There exists a unifier a for the set {[A1,. . . , Aq], ... A +]} such that 

B = Ha (using Theorem 32). 

. There exists a unifier cx' for the set {[A1,. . . , Aq] ,[L4+,.. . , +]} such that 

B' = Ha' (each L is a suitable variant of 1.j, and B' is a suitable variant of B). 

Given that each t& occurs in . 

= In , there are X-assertions from clauses in P yielding each L (z is a unit 

clause-instance). 

= Each Ai E F— points* in £j to the corresponding L (each Ai is A6 in mit). 

= In a, there exists an X-derivation 0 from r such that in each of the clause-instances 

comprising 0: 

• the sequence of body atoms is unifiable, via a', with the corresponding unit 

clause-instances, and 

• each A, or its instance, either has disappeared on selection with L as unit 

input-clause or points* in to L (using Theorem 31). 
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Successive clause-instances in the X-assertions yielding each E are being yielded as 

the X-computation of P via JA and RC proceeds (X-assertions for each L exist in 

Each L is eventually X-asserted in a complete X-computation via 1A and 

Each clause-instance in 0 is eventually—and in sequence—X-executed (c is fair). 

This forces the eventual selection of each L as input-clause with A, or its instance, 

as the selected atom (using Def 10). Hence, each A, or its instance, eventually 

disappears on selection with L as unit input-clause (Jc is fair, Def 10). 

Tuple Ha' = B' is eventually yielded. 0 

Def 34 Let RA be an atom-selection rule and Rc be a clause-selection rule. An 

atom A is anRAC-computed tuple if there exists an X-computation 73 via JA and 

a of  such that the unit clause-instance A +- occurs in some stage of U. 

Every X-computation is carried out by some clause-selection and atom-selection 

rules. We try to mention the rules only when necessary. 

Def 35 Let JA be an atom-selection rule and RC be a clause-selection rule. The 

Ac-success set SSp:Aa is the set of all A E Bp such that A = A'a, for some AC 

computed tuple A' and (ground) substitution a. 

Unlike SSp (see Def 13), SSp:Ac contains grounded tuples computed by exactly one 

X-computation (modulo variants), the one via RA and Rc. 

Theorem 36 (SSP:AC = MP, Completeness of Search) Let JA be an atom-selec-

tion rule and Jc be a fair clause-selection rule. The RACnsuccess set of a definite 

program is equal to its least, Herbrand model. 
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Given a correct ground tuple A, we show that there exists a corresponding (possibly 

non-ground) Ac-computed tuple, which is X-asserted finitely. However, this is not 

to say that tuples corresponding to all (ground) correct tuples will be computed in a 

predetermined, finite number of steps. Also, some X-trees may not have computed 

tuples corresponding to some of the correct tuples, but overall, corresponding to each 

correct tuple, a computed tuple will appear on at least one X-tree. What does this 

mean in practice? Do all the X-trees have to be constructed and the computed tuples 

collected from each of them to build a program's minimal model? Or, is there some 

magical, nondeterministic manner in which a "correct" X-tree can be constructed? 

We dispel the magic and prove that any fair X-tree can be selected for construction, 

guaranteed that it will be "correct." This result establishes the completeness of fair 

X-computations. 

Proof Let P be a definite program, SSp be its success set, SSP:AC be its RAC-

success set, Mp be its least, Herbrand model, and be the X-tree of P via 1A 

and Rc. Since SSP:AC SSp, it suffices TPT Mp is contained in SSP:AC (using 

Corollary 19). 

TPT VA, A E Mp A E SSP:AC. We are given that P is definite. 

TPT VA, A E Tplw - A E SSP:AC (using Theorem 6.5 in [Llo87, page 38]). Now, 

VAn(nEw), AETpw<—AETp1m. 

TPT VA, A E Tpin for some n E w -* A E SSP:AC (using Theorem 6.5 in [L1o87, 

page 38]). 

- TPT VA, A € Tpin for some n E w - p there exists RAC-computed tuple A', which 

occurs in , such that A - A'a, for some ground substitution a (using Def 35). We 

induce on n to prove this implication. Let LHS be the proposition that A € Tpin 
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and RHS be the proposition that there exists an Ac-computed tuple A' such that 

A = A'a, for some ground substitution a. 

Basis: For n = 0, the statement LHS - RHS is vacuously true since Tp10  

Just as an exercise, we try TPT LHS - p RHS for n = 1. Given A E Tp11. 

= There exists a clause A' - in P such that A = A'a, for some ground substitu-

tion a. 

=' There exists an X-assertion of unit length from A' - yielding itself (using Def 6). 

This X-assertion is carried out by each X-computation of P (using Def 11). 

=> RHS (using Def 12). 

Hypothesis: Assume that for 1 <n Ic - 1 (k> 1), LHS - RHS. 

Induction: TPT for ri = Ic, LHS - RHS. Given that A E Tpk. 

= There exists a clause F = B +- B1,. . . , Bq in P such that for some ground substi-

tution a, A = Ba and {Bia,.. . , Ba} is contained in Tp1(k - 1) (using definition 

of Tp in [Llo87, page 37]. 

' There exist AC-computed tuples C1,. . . , Cq such that for some ground substi-

tution 8, Vi (1 ≤ i ≤ q), Ba = Cf3 (using Hypothesis). These tuples are surely 

X-asserted in ≥. 

= In , each atom Bi in r— points* to a unit clause-instance C . This is because 

each body atom of clause-instances in iriit refers to 0. 

Now, Vi (1 ≤ i ≤ q), there exists an X-assertion from some clause in P ending in 

the unit clause C - (using Def 12). Each clause-instance C - may be used as an 

input-clause in a derivation from a clause-instance in init. Also, each body atom B 

is unifiable with C, e.g., by the unifier a/3, which means that [B1,. . . , Bq] is unifiable 

with [C1,.. . , Cq], say, via mgu 'y. 
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= a/3 = yO, for some (ground) substitution 0. 

= There exists an X-assertion, possibly outside , from r such that each body 

atom Bi is selected in turn with C - as input-clause. Let this X-assertion yield a 

tuple A', which would be a variant of By. Surely, A = Ba = Bag = B70 = A'S, for 

some ground substitution S. 

= In , a tuple A" is X-asserted such that A" is a variant of A' (using Theorem 33). 

= RHS is true (using Def 12). 0 

As shown by Theorem 36, given a definite program, the policy of atom selection 

does not affect an X-computation's soundness and completeness. (We had proved an 

atom-switching lemma stating that switching selected atoms in an X-assertion gives 

another X-assertion such that the tuples yielded by the two X-assertions are variants. 

Since this lemma was not required for proving completeness, we did not include it in 

this thesis.) This means that we can arbitrarily fix an atom-selection rule before be-

ginning to execute a definite program. This is not true when negation is allowed and 

normal programs are considered because the finite failure of X-derivations becomes 

important. 

As described in Chapter 3, our Starlog interpreter uses all-atom selection. In all-

atom selection, all the atoms in the body of the clause-instance are selected in some 

arbitrary sequence and a descendant is computed. All-atom selection shrinks paths 

in X-trees and thereby may cause "early" failures and successes. All-atom selection 

ensures fairness towards atoms and greater interleaving in the search, which resembles 

a breadth-first search. Thus, we circumvent the problem of fairness towards atoms 

within a clause-instance. This is a requirement stricter than required for guaranteeing 

completeness of search in case of normal programs. 
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Theorem 37 Let F = H - A,,— , . , Aq (q ≥ 0) and A = F - B1,. .. ,B (r ≥ 0) be 

clauses in P that have been standardized apart. Let be the X-tree of P via an 

atom-selection rule RA and a fair clause-selection rule Jcj. 

(a) suppose, in an X-tree C is a tuple X-asserted from LS in depth n using 

as its unit input-clauses. Then in £, there exists an X-assertion 

from L yielding C' using E'1,. . . , E as its unit input-clauses. Here, C and 

,Er are suitable variants of C' and Ei,. . , E'. 

(b) suppose, in an X-tree b, D is a tuple X-asserted from r in depth n + 1 using 

• . . , E q as its unit input-clauses. Then, each atom Ai E F— points* in to 

E. Each E is a suitable variant of E. 

Both C and D may be X-asserted using other non-unit input-clauses, in addition. A 

computed tuple A of F, which is X-asserted in some X-tree of F, is also X-asserted 

in each fair. X-tree of P. 

This Theorem is not referred to by any other theorem in this chapter, but it is 

an important result and can aid future improvements on or extensions to Starlog's 

procedural semantics. 

Proof We induce on the depth m. 

Basis: n = 0. 

In length of X-assertion yielding C - is 1 (using Def 16). 

= F -= C i— is a unit clause in P. 

= In , there exists an X-assertion from A of unit length yielding C -. There are 

no input-clauses in this X-derivation. 

=- Basis for (a). 
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In , D is X-asserted from r in depth n + 1 = 1. 

= I' has only one atom A1 in its body, and in the X-assertion in from r yielding 

D, a unit clause E, in P is used as the input-clause (using Def 16). Being a clause 

in F, EE, is X-assertible in depth 0 in every X-tree of P. Now in , body atoms in 

clause-instances in irtit point to root. 

= A1 points* in to each clause in P since each clause in P is assumed X-derivable 

(in ) from root. 

A points* in to E1. 

Basis for (b). 

Hypothesis: Assume that for each n such that 0 <n ≤ k (k > 0), the Theorem 

is true. 

Induction: n = k + 1. Given that in , C - is X-assertible from A in depth k+1 

using E1,. . . , E, as the unit input-clauses. 

= Each Ej is X-assertible in a from some clause in P in a depth ≤ k (using Def 16). 

=t. In £, each B E i- points* in £j to E (using Hypothesis (b)), and there exist 

X-assertions yielding each E (using Hypothesis (a)). 

= In , there exists an X-assertion from A yielding C', where C' is a suitable variant 

of C (using Theorem 33). 

=> Hence, the proof for (a). 

Given F = H &. .. , Aq (q ≥ 0), and that D is a tuple X-asserted in b from 

r in depth n + 1 = k + 2 using Ei, ..  nq . as unit input-clauses. 

= In b, each Ei is X-asserted in depth ≤ ic + 1 (using Def 16) from a clause 1, in 

P using unit input-clauses, say, A1,... 

' Each atom Ej € ≤— points* in to A (using Hypothesis (b)). Each A is a 
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suitable variant of A2. 

==> In £, for each , there exists an X-assertion from Oi yielding it (using Theorem 33 

on each ). 

In ≥, each body atom in init refers to root. 

= Each Ai E r- points* in ≥ to each and every clause, including Qi, in P. 

= Each Ai E r- points* in to (using Def 30). Hence, the proof for (b). 0 

In this chapter, we have formally defined definite-Starlog execution, via fair X-

computations, and have proved both its soundness and completeness with respect 

to least, Iierbrand models. Although inspired by the proofs for SLD-resolution in 

[Llo87], the proofs here are novel and tackle more-complicated problems: 

• our results are for Starlog's X-computations, which employ a bottom-up, model-

theoretic form of deduction; the results in [Llo87] are for top-down SLD-

resolution. 

• X-computations may use as input-clauses clause-instances that are not part of 

the original program, but are deduced from it. Therefore, correctness proofs 

are more complicated for X-computations than for SLD-resolution, which uses 

only clauses from the given program as input-clauses. 

• according to Lloyd [Llo87, page 56], while any two SLD-trees may have greatly 

different size and structure, they are essentially the same with respect to success 

branches. SLD-trees differ in their selection of atoms from a query or goal. 

An X-tree for a Starlog program is built according to a clause-selection rule, 

and there can be an X-assertion (success path) in one for which there is no 

equivalent in another. Except for fair X-trees, X-trees are not alike with respect 
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to success paths. 

• in an SLD-tree, goals deduced along one path from a node (goal) do not affect 

goals deduced along a different path from that node. Therefore, although 

Lloyd [Llo87] does not present an explicit proof of completeness of search, i.e., 

for finding success branches in an SLD-tree, such a proof would be trivial— 

when considering fair clause-selection—given the strong completeness of SLD-

resolution [Llo87, Theorem 9.5]. In contrast, in an X-tree, a clause-instance 

deduced along one path from a node (clause-instance) may be used as an input-

clause when deducing along a different path from that node. Due to this 

interconnection between paths, our results leading to a proof of completeness 

of search, Theorem 36, are complicated. 

We now move on to Chapter 5, which describes Starlog negation. 



Chapter 5 

Negation in Starlog 

Starlog uses negation and constraints on explicit time to model mutation and per-

sistence. Therefore, improved, correct handling of negation will improve Starlog's 

promise of an effective, declarative paradigm for updates. Starlog negation has to 

be efficient, and negations should be satisfied or failed quickly. 

Starlog negation is based on the completed program and equality axioms, as 

in [Llo87, §14], but negation via SLD with Negation as Failure (SLDNF) [L1o87] 

is unsatisfactory. In plain or unsafe SLDNF, a negated literal can be selected for 

execution even if there are non-ground, non-local variables within it, i.e., there is 

no floundering or delaying for a safe condition. (Non-local variables are those that 

are existentially or universally quantified outside the negation.) Unsafe SLDNF 

is unsound with respect to Herbrand models [L1o87, §15]; so, it cannot be used 

for Starlog. Safe SLDNF flounders (delays) a negated literal until each non-local 

variable in the negation's body is ground. Therefore, it is sound, but being a test, it 

does not permit a negation to generate bindings for non-local variables. Therefore, 

generate-and-test programs can be inefficient and might never terminate. Consider 

the program in Fig 5.1. With SLDNF, the constraints on the bindings of variables 

occurring within a negation are not exported outside the negation. Therefore, given 

a goal p (N), the interpreter would test the negation on each of the hundred, possible 

integers N given by num (N). This is instead of using the negation to deduce the 

rule-instance p (N" (- inf , 3]) <- num (Nr. (- mt , 3]), which constrains the search 

64 
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% Program Gen-Test. 
% 'num' generates integers lying between 0 and 100, 
% and 'p' tests whether they are less than or equal to 3. 

p(N) <- num(N), not(N> 3). 
num(0). 
num(N) <- num(Nprev), Nprev >= 1, +(Nprev,1,N), 100> N. 

Figure 5.1: A Generate-and-Test Program. 

for num tuples. 

For logic programming—as opposed to theorem proving, which checks for consis-

tency—it is desirable to use negations as constructors or generators of bindings rather 

than as mere tests. Negations should be used to constrain the search space. 

Negation in Starlog is not based on passive SLDNF, as it is in Prolog [CM81]. 

Instead, it is constructive. A negated literal can be selected at any stage for execution 

and can generate bindings for all of its variables—just like any other constraint. 

This chapter does not attempt to prove that Starlog negation is sound and com-

plete. (Some intuition on how to approach such a proof is given in §7.3.) It only 

presents the motivation for temporal stratification and describes the rewrites and 

general strategy used to implement negation in Starlog. We use "extended, Her-

brand model" to mean a Herbrand model that includes equality axioms and the set 

of real numbers as implicit constants in a given program. We do not enumerate the 

equality axioms, though, when writing out such a model. 

5.1 Temporal Stratification 

A program is said to be consistent if it has a model. Every normal program, which 

allows negated literals in the bodies of its rules, is consistent, but its completion may 
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not be consistent [Llo87, page 83]. Temporal stratification, mentioned in Chapter 2, 

is a syntactic condition sufficient to ensure that the completion of a normal program 

is consistent. Its motivation, as for ordinary stratification [Llo87, page 83], is to limit 

the use of negation in recursive rules to keep the model theory manageable. 

As mentioned in Chapter 2, Starlog restricts its domain to a class of temporally-

stratified programs. This ensures that when negation is used, Starlog's bottom-up 

execution proceeds monotonically, i.e., tuples once yielded do not have to be deleted 

or undone. Recall that a sufficient condition for a Starlog program to be temporally 

stratified is that each recursive, predicate-call loop involving negation should be 

accompanied by a time advance, i.e., there should be no zero-delay loops involving 

negation [CK91]. (This condition can be checked for during execution.) Clearly, 

this class of temporally-stratified programs is a superset of the class of programs 

stratified, as per [Llo87, page 83], on predicate symbols alone. 

5.2 Type Mismatch: Error or Failure? 

Before we produce the rewrites for negation, we digress here to point out the question 

of incorrect types of arguments to language primitives. If a primitive expects an 

argument of some type and receives one of a different type, then whether the primitive 

should fail silently or raise an error or exception is a controversial question. Consider 

the following program: 

p(X) <- not(X > 5). 

r(a). 
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The extended, llerbrand model {r(a), p(a), p((-inf,5])} is the intended model 

according to the view of "silent failure on type mismatch," which requires that 

literal (a > 5) fail silently. The other view seeks {r(a), p((-inf , 5] )} as the 

intended model of the program. Although important, this controversy is beyond the 

scope of this thesis, and we shall not discuss it any further. Suffice to say that the 

rewrites in this chapter take the view of "silent failure on type mismatch." 

5.3 Negation Strategy 

As mentioned in Chapter 3, Starlog selects from its scheduling list a rule-instance, 

rewrites it, deduces new rule-instances or tuples from it in the X-tree, rewrites the 

resultant rule-instances, and places the non-tuples amongst them in the scheduling 

list for future execution. We now describe the forward and return rewrites. 

5.3.1 Forward Rewrites 

The period after a rule-instance's selection from the scheduling list and before de-

duction in the X-tree is called the forward phase. In our Starlog interpreter, some 

rewrites are performed during a forward phase; these are called forward rewrites. 

Fig 5.2 lists the forward rewrites, which are applied repeatedly on the rule-instance 

until they can cause no further change. not (A, B, ...) is rewritten into the more-

general form not-exists: (A, B, ...) and then executed. 

In the forward phase, the ';' call is "eagerly" expanded to yield as many rule-

instances as there are literals in its argument, and then, each of those rule-instances 

is executed in some order. The ';' expansion is "eager" because a possible failure 
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# Argument Forward Rewrite 

Fl p(U) <- q(V), (r(W); s(X); ...), t(Y). p(Uw) <- q(Vw), r(Ww), t(Yw). 

p(Ux) <- q(Vx), s(Xx), t(Yx). 

p(Uz) <- q(Vz), ..., t(Yz). 

F2 X=/=Y not(X=Y) 

F3 not(A,B,...) not-exists: (A, B,...) 

Figure 5.2: Forward Rewrites. 

of other literals in the rule-instance's body is not awaited. On the other hand, by 

"delaying" the ';' expansion of a rule-instance B till the forward phase—instead of 

expanding B at the end of the earlier execution that generated B—branching in the 

X-tree is delayed till it is clear that the expanded rule-instances will not trivially fail. 

5.3.2 Return Rewrites 

After the forward rewrites have been repeatedly applied, a rule-instance is executed 

using Starlog's bottom-up deduction. This may result in some tuples and some 

non-tuple rule-instances. Now, the return phase follows. In the return phase, the 

resultant, non-tuple rule-instances are subjected to rewrites, called return rewrites, 

before they are placed into the scheduling list for future execution. Like their forward 

counterparts, the return rewrites too are applied repeatedly until they can cause no 

further change. They are also applied right at the beginning of Starlog execution, 

when the program's rules are being placed into the scheduling list. We now describe 

these rewrites under three categories: those for inversion, those for (back-) converting 

not-exists literals into the more-specialized not literals, and those for partitioning. 
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Rewrites for Inversion 

Fig 5.3 summarizes the return rewrites used for inverting the arithmetic primitives 

when the arguments are known to be timestamps. Recall from Chapter 2 that times-

# Literal Rewrite 

Ri 
R2 
R3 
R4 
R5 
R6 

not(T>U) 
not(T>=U) 
not(T!=U) 
not(T=:=U) 
not(real(T)) 
not(notreal(T)) 

U>=T 
U>T 
T=:=U 
U>T;T>U 
false 
true 

Figure 5.3: Rewrites for Inversion of Timestamp Constraints. 

tamps occur as the first arguments in user-defined predicates and are real valued. 

Although most arithmetic constraints in Starlog programs would involve times-

tamps, we need to cater to general arguments too. Fig 5.4 summarizes the general 

rewrites used for inverting arithmetic primitives. (Refer to Chapter 2 for a list of 

Starlog's primitives.) Fig 5.4 generalizes Fig 5.3 in that it additionally handles argu-

# Literal Rewrite 

RI 
R2 
R3 
R4 
RS 
R6 

not(X> Y) 
not(X >= Y) 
not(X != Y) 
not(X =:= Y) 
not(real(X)) 
not(notreal(X)) 

notreal(X); notreal(Y); Y >= X 
notreal(X); notreal(Y); Y > X 
notreal(X); notreal(Y); X =:= Y 
notreal(X); notreal(Y); Y > X; X> Y 
notreal(X) 
real(X) 

Figure 5.4: Rewrites for General Inversion of Arithmetic. 

ments that are not real valued and yet occur in arithmetic constraints. Rewrite R4, 

in both Fig 5.3 and Fig 5.4, prefers (X > Y; Y > X) over (X ! = Y), although these 

rewrites are equivalent; we disclose the reason for this only later in §7.2.2. 
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# Argument Literal Rewrite 

R7 
R8 
R9 
RiO 
R11 

not(X=Y) 
not(not(A, B, ...)) 
not(not-exists X,Y .... : (A, B, ...)) 
not(A, B, C, ...) 
not(A;B; ... ) 

X=/=Y 
A, B, 
A, B, 
not(A); (A, not(B)); (A, B, not(C)); 
not(A),not(B),... 

Figure 5.5: Remaining Rewrites for Inversion. 

Fig 5.5 lists the remaining rewrites for inversion. Rewrite R9 of Fig 5.5, as 

formulated, may be used only at the top level of a rule-instance so that correctness 

is not sacrificed. Rewrite RIO of Fig 5.5 is done only when each positive literal, 

or atom, within (A, B, ...) is a primitive that is incapable of forcing solutions 

on its own, i.e., whose repeated execution does not cause further instantiations or 

"squeezing" of real intervals associated with arithmetic variables. Since the disjuncts 

rewritten into end up in different rule-instances in the X-tree--as explained earlier— 

this "delay" in using Rewrite RiO of Fig 5.5 serves to reduce the branching in the 

X-tree. 

Rewriting not-exists as not 

This is an important, return rewrite that drops variables local to a not-exists 

literal; a not literal results if all such variables can be dropped. The not literal is 

more active since it can invert its body; hence the importance of this rewrite. 

Fig 5.6 shows some examples where local, existentially-quantified variables can be 

dropped from within a not-exists literal. A local, existentially-quantified variable 

can be dropped when it satisfies any of the following conditions: 

• it is fully instantiated. 
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Example Rewrite 

not-exists X-a: (r(X-.a)) 
not-exists X: (r(Y), p(Z)) 
not-exists X-f(Z,b),Y-[1,3): (r(Y-[1,3)), p(X-f(Z,b))) 

not(r(a)) 
not(r(Y), p(Z)) 
not-exists Y-{1,3): (r(Y-[1,3), p(f(Z,b))) 

Figure 5.6: Rewriting not-exists As not: Examples. 

• it does not occur in the body of the negation. 

• it has been bound to a structure whose variables are universally quantified. 

A not-exists call is specialized into or rewritten as a call to a not if it does not 

(existentially) quantify any variables within it. 

Partitioning 

Now, we discuss a return rewrite called partitioning that reasons about arithmetic 

intervals to quicken the satisfaction of negations. Consider the execution trace in 

Fig 5.7. Left alone, the rule-instance for q would have to fail or bear tuples before 

Execution of rule-instance 
p(T-(2.O,1O.O]) <- not(q(T-(2.O,1O.O])). 

with the non-tuple input-rule 
q(U-[4.O,6.0)) <- r(U-[4.O,6.0)). 

gives the following rule-instance: 
p(T-(2.O,1O.O]) <- not(q(T-(2.O,1O.O]), T-(2.O,1O.O] >= 4,6> T-(2.O,1O.O]). 

Figure 5.7: Execution Trace to Motivate Partitioning. 

any tuples of p will be yielded. To improve the efficiency of negation, we look 

at the arithmetic intervals constraining T inside and outside the negation—this is 

depicted in Fig 5.8. Clearly, the interval constraining T within a negation can only 



CHAPTER 5. NEGATION IN STARLOG 72 

Tout 
  (2.0,10.0] 

Tin 
[4.0,6.0) 

- 

 I 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 
I 
u (2.0,4.0) I I [6.0,10.0] 

Figure 5.8: Inter-Relationship of Constraining Intervals. 

lie within the interval constraining T outside the negation. So, if Tin and Tout 

are the respective intervals constraining T within and outside the negation, then 

Tin has to lie within Tout. This means that Tout can be split into three, disjoint 

intervals, one of which is Tin—from Fig 5.8, Tout".' (2. 0, 10.0] can be split into 

(2.0,4. 0), Tin.-..#[4.0,6.0), and EG.0,10.0]. Therefore, the result of Fig 5.7 can 

be rewritten into three rule-instances as per Fig 5.9. The tuples p((2.0,'l.0)) 

Consider the following portion of an X-tree: (q(U-(4.0,6.0)) <- r(U-[4.0,6.0)). 
'-(2.0,10.o]) <- not(q(T-(2.0,10.0]), T-'(2.0,10.0) >= 4,6> T-(2.0,10.0j). 

This can be rewritten into the following rule-instances: 
q(U-[4.0,6.0)) <- r(U-[4.0,6.0)). 
p(Ta-(2.0,10.O]) <- Ta-(2.0,10.0] >= 4,6> Ta-(2.0,10.0], 

t(q(Ta-(2.0,10.0]), Ta-(2.0,10.0] >= 4,6> Ta-(2.0,10.0]). 
p(Th-(2.O,1O.O]) <-4> Th-(2.0,10.0), 

not(q(Th-(2.0,10.O]), Th-(2.0,10.0] >= 4, 6 > Tb-(2.0,10.0]). 
p(Tc-(2.0,10.0]) <- Tc-(2.0,10.0] >= 6, 

not(q(Tc-(2.0,10.0]), Tc-(2.0,10.0] >= 4,6 > Tc-(2.0,10.0]). 

This then simplifies on constraint relaxation: 
q(U-[4.0,6.0)) <- r(U-[4.0,6.0)). 
p(Ta-[4.0,6.0)) <- not(q(Ta-[4.0,6.0))). 
p((2.04..0)). 
p([6.O,lO.O}). 

Figure 5.9: Rewrites Via Partitioning. 

and p ( [6.0,10.0]) have thus been forced out quickly. Such a rewrite is called 
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partitioning. Partitioning takes a rule-instance that has negations in its body, selects 

a real-valued variable X that appears within a negation and is quantified outside it, 

and rewrites it as different—in this case, three—rule-instances by creating disjoint 

partitions of the interval of real values in which X lies. In this way, partitioning 

extends the logical, interval arithmetic of [Cle87] into the domain of negation. 

Partitioning is applicable in the presence of both not-exists and not literals. 

When there are multiple not-exists or not literals in the body of a rule-instance, 

the timestamp T in the head may be partitioned with respect to various possible 

arithmetic intervals: 

• T's interval in the "first" negation that (non-trivially) constrains T. 

• T's interval in the negation that constrains T the "most." 

• all of T's intervals in the negations that constrain T, after optimizing on the 

overlap of intervals. 

Presently, we use the first option in our interpreter, and restrict partitioning to the 

timestamp in the heads of rule-instances. Partitioning can be extended to other 

universally-quantified, real-valued variables occurring in the rule-instance, in the 

head or in the body. 

5.4 Execution of not-exists 

5.4.1 Example 

Let us first consider an execution of a not-exists literal. Fig 5.10 depicts a portion 

of some X-tree. 



CHAPTER 5. NEGATION IN STARLOG 74 

I 

PM <-

r**_• 
p(l.0). p(2.0). 

r(Y) <-

rN.I. 
r(3.0). r(4.0). 

s(1) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))). 

Figure 5.10: A Portion of an X-tree. 

Consider the execution of following rule-instance of Fig 5.10 in some detail: 

s(T) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))). 

Assume that Starlog has selected it from its scheduling list. 

First, the forward rewrites are applied. Rewrite Fl of Fig 5.2 is applied once to 

give the following rule-instances: 

s(Tt) <- Tt >= 5. 

s(Tn) <- (Tn >= 0, not-exists Un: (p(Un), r(Tn))). 

Forward rewrites do not affect the first of these rule-instances, which is then executed 

to give the tuple: 

s(Tt'-..'[S.O,+inf)). 

Forward rewrites do not affect the second of these rule-instances too. So, this rule-

instance's execution in the X-tree begins. Its leftmost literal is selected. This con-

straint calls Starlog's >= built-in, which binds Tn to the interval [0.0 ,+inf). Next, 

we select the lone not-exists literal in the rule-instance: 

s(Tn-'[0.0,+inf)) <- not-exists Un: (p(Un), r(Tn.i[0.0,+inf))). 

This causes the negation's body to be executed as though it were a new rule-instance: 
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h <- p(Un), r(Tn'-'[O.O,+inf)). 

(The h tuples are treated specially—they are not placed on the X-tree.) Four equal-

ities, corresponding to four possible solutions, result from this execution: 

Un : 1, Tnr.[0.0,+inf) : 3 

Un : 1, Tnr'[0.0,+inf) : 4 

Un : 2, Tn'--'[0.0,+inf) =:= 3 

Un : 2, Tnr.[0.0,+inf) : 4 

We take these equalities back to the negation, whose body was being executed, and 

since Un is existentially quantified within the negation, we have the following result 

after deduction: 

s(Tn) <- not-exists 

not-exists 

not-exists 

not-exists 

Ua'-'l .0: 

Ub-'1.0: 

Ucr'2.0: 

Ud2.0: 

(Tnr.[0.O,+inf) : 3), 

(Tn'[0.0,+inf) =:= 4), 

(Tn'[0.0,+inf) : 3), 

(Tnr[0.0,+inf) 4). 

Now comes the turn for the return rewrites to be applied. As exemplified in 

Fig 5.6, each of the not-exists conjuncts is specialized into not literals to give the 

following rule-instance: 

s(Tn) <- not(Tnr[0.0,+inf) : 3), not(Tn'-'-'[O.O,+inf) : 4), 

not(Tn.-"[O.O,+inf) : 3), not(Tn--'[O.O,+inf) 4). 

Rewrite R4 of Fig 5.3 changes this into the following rule-instance: 

s(Tn'[0.0,+inf)) <- (Tnt.'[0.0,+inf) > 3; 3 > Tn.-.'[O.O,+inf)), 
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(Tn.-'[O.O,+inf) > 4; 4 > Tn-[O.O,+inf)), 

(Tnri[O.O,+inf) > 3; 3 > Tn.-.'[O.O,+inf)), 

(Tn[0.0,+inf) > 4; 4 > Tn'-'[O.O,+inf)). 

Even though its body has only arithmetic primitives, this rule-instance is not a 

tuple and is placed into the scheduling list for future execution; unfortunately, our 

rewrites are not "intelligent" enough to realize that arithmetic constraints have been 

duplicated in the body. In the X-tree, this rule-instance and the previously-computed 

tuple s (Tt— [5.0 ,+inf)) are made children rule-instances of the rule-instance we 

began execution with: 

s(T) <- T >= 5; (T >= 0, not-exists U: (p(U), r(T))). 

On future selection—guaranteed with a fair scheduling—of the resultant non-

tuple rule-instance, the';' calls are expanded using the forward rewrite Fl of Fig 5.2 

to give sixteen, new rule-instances! Only three of these finally succeed to give the 

following tuples: 

s( (0 .0 ,3. 0)) 

s( (3 .0 ,4. 0)) 

s((4.0,+inf)). 

5.4.2 General Execution 

In §5.4.1, we have traced through an example execution of a not-exists literal; 

here, we try to generalize the execution. 

Each (partial) execution of a negation's body can potentially result in a conjunc-

tion of not-exists literals, and these conjuncts have their existentially-quantified 
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variables standardized apart from one another. In more formal terms, suppose a 

negation N, say, not-exists El,... ,Em: (B), is encountered. Let the body B be a 

sequence of literals involving a list of variables U that—unlike the variables El,... ,Em-

-are not existentially quantified within N. (The variables in U are quantified outside 

N and should not be further bound when executing N.) N is executed as follows: 

1. bodies Bi,... , Bn are deduced from B. This is done as though a new rule-

instance h <- B were executed to result in the following rule-instances: 

(h <- Bi),... ,(h <- Bn). 

(Here, h is a dummy, predicate symbol that does not appear elsewhere in 

the program.) This step guarantees that the existentially-quantified vari-

ables El,... ,Em are renamed differently in each Bi. 

2. in each Bi, any further instantiations to variables that correspond to or are 

renamed versions of those in U are undone and rewritten as equalities or in-

equalities. 

3. over each Bi, each variable renaming a variable X in U is (back-) replaced by 

X. 

4. N is replaced by the following conjunction of literals: 

(not-exists Ell,... Em': (Bl)),..., 

(not-exists El",...,Em": (Bn)) 

This chapter has shown how active negation is carried out in Starlog. This active 

negation has been successfully implemented and tested in our Starlog interpreter, 



CHAPTER 5. NEGATION IN STARLOG 78 

which is discussed in §7.1. In the following Chapter 6, we will contrast Starlog with 

related approaches. 



Chapter 6 

Comparison with Related Approaches 

Our work has examined various aspects of Starlog: its formal semantics, explicit 

time and its use in expressing mutation and persistence, constructive negation and 

rewriting, and logical arithmetic. In this chapter, we relate a spectrum of approaches 

to the seemingly-disjoint parts of our work. 

6.1 Partial Deduction 

Partial evaluation, also called projection, is a transformation technique used to spe-

cialize a given program into a semantically equivalent and more efficient one based on 

partial, known input. The residual (resultant) program, when given the remaining 

input, behaves identically to the original when the latter is given the same, com-

bined input. Partial evaluation is a general technique applicable to programs in 

any programming language, logic based or otherwise. According to Lam [Lam89, 

pages 5-6], partial evaluation originated in the 1950s and was first applied to logic 

programming in 1981. Partial deduction is partial evaluation as applied to programs 

in logic-based languages. It is mainly applied in the areas of meta-programming and 

compiler generation. 

Partial deduction is intended as a static, preprocessing strategy. Typically, pro-

gram rules are specialized to suit known, input goals using top-down, resolution-

based unfolding, which substitutes a call with an instance of the definition. On the 

79 
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other hand, an X-computation of a Starlog program specializes one stage into the 

next. Starting with an initial stage, which is the set of all the program rules, an 

X-computation specializes during execution, i.e., dynamically. Starlog specializes by 

propagating partial, known bindings from heads of rule-instances into "goals" (body 

atoms) referring to them; thus, specialization information flows in a direction exactly 

opposite to that in unfolding. 

Residual programs generated by partial execution of Starlog may be executed to 

completion, e.g., as Prolog programs. Also, if the pointers associated with atoms 

in the bodies of rule-instances are retained in such residual programs, redundant 

deduction can be reduced. 

6.2 Prolog 

6.2.1 Updates 

Both Starlog and pure Prolog [0M81] are based on first-order, predicate calculus 

and share a model-theoretic semantics: a minimal model of rules in the program. 

Starlog and Prolog differ primarily in their approach to mutation and persistence of 

modelled objects: the problem of updates. This problem has to be tackled in appli-

cations, e.g., databases, that model persistent and mutable stores of data. Prolog 

uses assert and retract to force new rules into and remove rules from a program's 

database. Unfortunately, these navigational constructs do not have a consistent, 

operational meaning across different Prolog implementations, let alone a description 

within the static semantics of Prolog. Thus, they can be very confusing and error-

prone in practice. Since Starlog explicitly incorporates time and the sequencing that 
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it implies, it can directly model modifications to its database. Thus, Starlog includes 

the good from two worlds: it has a static semantics and can model change. 

6.2.2 Negation 

Negation in Starlog is not based on the passive, SLDNF inference rule [L1o87], as it 

is in Prolog. Instead, it is constructive, and aided by constrained arithmetic, it tries 

to force solutions. Unlike Prolog, Starlog retains tuples that have been computed 

and their deduction paths in the X-tree. This enables its not-exists predicate to 

be implemented in an efficient, semantically-clean fashion. 

Prolog's "equivalent" of not-exists uses SLDNF negation and an all-solution 

retriever, such as bagof, setof, or findall. Due to standard Prolog's unfair search, 

these retrievers often execute inefficiently. They begin their search afresh each time 

and are executed to completion before they affect or are affected by other goals, i.e., 

they are not coroutining. 

Memo-ization [Die87] is an optimization technique that computes the set of tuples 

satisfying a predicate and stores it in a table, known as the extension table, for later 

reuse. It has been introduced into some Prolog interpreters to improve termination 

and completeness in the presence of recursion. The ET* algorithm of [Die87] uses a 

least-fixpoint method to compute the "fiat," extension table, but it only uses tuples 

for deduction. In contrast, Starlog's X-computation makes use of the "structured" 

X-tree, which carries the lineage information of tuples, and even non-tuple rule-

instances to avoid recomputation in a more-general fashion. 
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6.2.3 Execution 

Although their results are equivalent, SLD-resolution, which is used for executing 

pure-Prolog programs, differs greatly from Starlog's X-computation. (There are 

forms of Prolog-like languages, e.g., the Logic Data Language discussed ahead, that 

also use bottom-up, model-theoretic execution.) Perpetual processes, introduced 

earlier in §3.2.6, can be modelled in Starlog as a result of its concurrent search for 

deduction sequences; they would cause unbounded growth of standard Prolog's stack 

of choice points. 

Unlike standard Prolog, where execution is "lazily" triggered by a query (goal), 

Starlog "eagerly" tries to compute a minimal model for the given program; a "goal" 

is deduced from this model. In Prolog, each answer is a separate binding of variables 

in a query rather than part of one overall, model-theoretic reply that Starlog aims 

to deduce. 

Starlog does not explicitly backtrack over alternatives to search for solutions. 

However, it does provide a form of or-parallel search for alternative solutions. 

6.3 Committed-Choice, Logic-Programming Languages 

The committed-choice languages [Sha87, CG86b, Rin88] are a class of concurrent, 

logic-programming languages that attempt to model parallel, process-based execu-

tion. When executing a goal against a program written in these languages, if a 

choice of alternative clauses is encountered, then one of the alternative clauses is 

"arbitrarily" committed to for resolution. This "arbitrary" manner of choosing from 

among alternatives is called don't-care nondeterminism and is particularly suited to 
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the efficient execution of perpetual processes, e.g., operating systems. Such perpetual 

processes cause an unbounded growth of standard Prolog's stack of choice points and 

need special handling. Here, we consider Concurrent Prolog [Sha87] as an example 

of a committed-choice language and compare it with Starlog. 

Each clause in a Concurrent-Prolog program has in its body a sequence of atoms, 

called a guard, followed by the commit operator '' and another sequence of atoms. 

Guards of clauses forming a predicate definition should be executed fairly, prefer-

ably in parallel for greater speed, when deciding which clause should be used for 

resolution. Fairness is required to enable at least one guard to succeed quickly even 

in the presence of guards that are complicated and that have non-terminating sub-

refutations. The clause whose guard is satisfied "first" is selected. This parallel 

execution of guards is the or-parallelism exploited in Concurrent Prolog. Atoms in 

a conjunction may be executed concurrently to exploit and-parallelism. 

Neither completeness nor soundness is lost in Starlog's exploitation of inherent 

parallelism since deduction paths are not arbitrarily discarded. The don't-care nature 

of Concurrent Prolog renders it incomplete—spurious failures can result even in 

the absence of negation. As a result, in the presence of negation, answers may be 

unsound. 

The committed-choice languages offer elegant, programming techniques such as 

streams with partially-completed messages. Streams are pathways of communication 

handled through variable names, which are "anonymous" or relative names in that 

they can be bound to arbitrary terms. "Producers" and "consumers" are fixed for 

each stream via mode declarations; so, streams are directed pathways. Seen by the 

programmer as lists, streams allow the shipping of list elements from "producer" 
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to "consumer" even before all the elements have been created. In contrast and 

like Linda [CG86a, CG89], Starlog must generate unique names for its global or 

public communication between rule-instances, which can be viewed as independently-

executing processes. These names are full atoms including a predicate symbol, which 

is an absolute name. 

Committed-choice languages depart significantly from the underlying, static se-

mantics of Prolog. Their complicated semantics have caused non-trivial problems in 

implementing them correctly. For Concurrent Prolog, [Sar85] discusses the problems 

with or-fairness and the read-only, control annotation '?', which restrains the ea-

gerness of unification. Although Starlog, as of now, is far from being a full-fledged, 

programming language like Concurrent Prolog, it has a strong, declarative basis. 

6.4 Logic Data Language 

Deductive-database systems employ logic to perform some of their functions, such as 

query handling and maintenance of data integrity. Integrity constraints of a database 

can be functional dependencies between domains, restrictions on domain values or 

typing, etc. Deductive databases reflect a confluence of database theory and logic 

programming and are of interest for many reasons, the most important being that 

they advocate a demarcation between declarative and procedural concepts, e.g., with 

respect to queries [Llo87]. 

Standard Prolog is navigational—the ordering of rules and goals is important 

for efficiency, termination, and correct operation of non-Horn constructs, such as 

updates. This is the major reason for failure to amalgamate Prolog with database 
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languages in spite of the existence of declarative, database languages [Zan88], e.g., 

SQL, wherein the underlying, abstract machine determines an efficient control of the 

problem solver or query manager. With this in mind, Logic Data Language (LDL) 

[Zan88] was designed for deductive databases. 

LDL retains the Horn-logic basis of Prolog while extending it with sets and update 

operators. Unlike Starlog, LDL distinguishes between predicates that refer to the 

program's database of ground facts and predicates that do not, and it uses matching 

instead of general unification. The schema for the facts' database and the facts 

themselves are managed by a separate, conventional, relational-database manager. 

These decisions were taken to make LDL efficient for data-intensive, secondary-

storage-based applications. Further, LDL employs magic-counting methods [SZ87] 

for partial deduction based on partial, known inputs in queries. For recursive rules, 

LDL computes least fixpoints iteratively; this enables it to exploit the or-parallelism 

in database applications. 

LDL's use of bottom-up, least-fixpoint computation makes it similar to Starlog. 

It uses relational operators, such as join and project, when combining answers from 

calls to database predicates. Thus, in the classification of [Con87], LDL provides a 

form of and-parallelism similar to Starlog's and akin to the Sync model of [LM86]. 

LDL executes all queries as transactions, i.e., atomically. It offers operators, viz., 

+ and -, for destructively writing into and reading from the facts' database, but 

these operators do not have a static semantics. For example, it is not clear what 

should happen when concurrent updates take place on an object. Also, LDL does 

not allow tailoring of the meaning of update. Starlog, by virtue of its notion of time, 

offers more suitable primitives for fine control over update. 
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LDL's safe handling of non-linear, recursive predicates in the presence of a cyclic, 

facts' database, its avoidance of redundant computation, rendering of multiple usages 

of predicates via the choice predicate, and query-optimization strategy make LDL 

efficient and declarative. 

When extending conventional, relational databases to more-general, non-ground, 

and deductive databases, the proof-theoretic view is more powerful [Llo87]; but with 

the improvements being made in efficiency, model-theoretic views are becoming se-

rious contendors for deductive databases. LDL takes a model-theoretic view, but of 

ground, deductive databases. Starlog also takes a model-theoretic view and deduces 

even with non-ground data. 

6.5 Linda 

Linda [CG86a, CG89] is a collection of conceptually-simple primitives for inter-

process communication in a distributed network of processes. It models a globally-

and transparently- accessible (virtual) memory, which is organized into tuples. (Linda 

has inspired Starlog's use of the word "tuple.") Processes do not communicate di-

rectly with each other, but place their messages into this global, tuple space to be 

picked up by other processes. This mechanism is much like a global mailbox. Data 

and the code that operates on the data are treated alike. 

Both Linda and Starlog consider the computational universe as consisting of 

entities that are universally accessible. In Linda's case, these entities are ground, data 

tuples and active processes, which after execution turn into data tuples. In Starlog's 

case, the entities comprise atoms and rules, which are true over time intervals. Linda 



CHAPTER 6. COMPARISON WITH RELATED APPROACHES 87 

allows data tuples to be read—via the read operator—by many processes; Starlog 

allows a true instance of a predicate to be used for unification with atoms in the 

bodies of rule-instances. Linda also allows tuples to be explicitly deleted, via its 

in operator; Starlog's tuples cannot be explicitly deleted and may only be garbage-

collected when no rule-instance will use them. Linda achieves object mutation by 

deleting and creating new, data tuples; Starlog simulates mutation by making use 

of timestamps to access the most-recent instances of predicates. Although Linda's 

tuples are not associated with a globally-known, virtual time, a timestamp could be 

forced onto the tuples, but as Linda's underlying, abstract machine is "unaware" of 

time, the effect would be incomparable with the use of time in Starlog. 

Whereas Starlog is a general-purpose, programming language, Linda is a vehicle 

for distributed communication, which could be used, e.g., to implement a distributed, 

Starlog interpreter. 

6.6 Connection-Graph Theorem Proving 

Unrestricted use of resolution leads to redundancy in answers. To eliminate this 

redundancy, some theorem provers interpret programs by using connection graphs 

[Kow79, Bib83]. The links and nodes in connection graphs are akin to those of static, 

predicate-call graphs, but are dynamically modified during program execution: links 

and nodes may be created and, in some cases, deleted. The X-tree used by Starlog 

may be viewed as a connection graph. Here, we compare the connection-graph 

theorem proving (CGP) method of [Kow79] with Starlog's X-computation. 

CGP is a method for proving theorems, which are presented as queries, and unlike 
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other theorem provers, e.g., [Bib83], it attempts to find all answers to a given theorem 

(goal). During execution, CGP exploits its basis on queries by deleting clauses that 

cannot lead to a refutation. In contrast, Starlog has no notion of queries. 

Unlike Starlog, COP uses resolution. Despite this, both CGP and Starlog depend 

on fairness to accomplish their goals. CGP depends on fair selection of arcs, which 

link clauses to possible input-clauses for resolution, and Starlog depends on fair 

selection of rule-instances for execution. COP can be more efficient because of its 

greater control over scheduling. By selecting arcs referring to facts, it can simulate 

a bottom-up execution, and by selecting arcs originating from the program's goal, it 

can simulate a top-down execution. 

Even when deducing forward with a rule-instance that refers to non-tuple input-

rules, Starlog propagates—as bindings—information from the heads of the input-

rules into the rule-instance being executed. This, coupled with the maintenance of 

clausal lineage, i.e., parent-child relationships within the X-tree, enables the "early" 

satisfaction of negations and the avoidance of much recomputation. Neither strategy 

is used by COP. 

CGP deletes clauses containing unlinked atoms. This simplifies the connection 

graph, reduces the search space, and makes it easier to find a solution [Kow79, 

page 164]. In 7.4.2, we propose a similar form of garbage collection for our Starlog 

interpreter. 

CGP detects and deletes tautologies by using pseudo links. Our Starlog inter-

preter does not do this at present, but in §7.4.3, we suggest ways of incorporating 

it. Also, CGP is applicable to "arbitrary," clausal programs, not just the programs 

with single-headed rules that Starlog caters to. 
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6.7 Temporal Logics 

A temporal logic is a logical calculus capable of handling inferences involving time. 

According to [Gal87], this area has developed according to two major philosophies: 

• first-order or "detenser" approach, wherein time is just another variable in a 

first-order theory, and anything that exists, exists timelessly. 

• modal or "tenser" approach, wherein temporal elements are accorded logical 

status by reducing modal notions, such as possibility and necessity, to temporal 

ones. 

These approaches may be viewed as rivals or as allies [Gal87]. 

Tempura [Hal87] is a logic-programming language. It is an imperative, parallel-

programming language that is based on a logic, but uses neither unification nor 

deduction for executing its programs. It is based on a subset of Moszkowski's In-

terval Temporal Logic [Hal87], which, being a modal logic, extends classical logic 

with operators to express the modal notions of possibility and necessity. Tempura 

supports algorithmic constructs such as loops, hierarchical specification (via proj), 

and destructive assignment, but its greatest offerings are claimed to be the verifiabil-

ity of its programs, ease of modelling change and persistence of objects, and "true" 

parallelism rather than arbitrary interleaving. According to Galton's classification 

[Gal87], Tempura would be a "tenser" approach and Starlog would be more like a 

"detenser," although time in Starlog is a real-valued, logic variable and may be quan-

tified both existentially and universally to lend meaning to the temporal existence 

of objects. 
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Tempura programs are executed by transformation. Based on a current state, 

which presumably comprises values of variables and procedure invocations, a next 

state—corresponding to a next instant of Tempura time—is computed based on 

the static program; this is called reduction. Synchronization is achieved either 

implicitly—due to lock-step execution—or by means of shared variables. 

Starlog shares with Tempura the conviction that for expressing mutation and 

persistence, a notion of time has to be built into the interpreter. Therein, the simi-

larity ends. From the discussion in [11a187], it appears that an exhaustive search 

through Tempura time—an implicit interval of discrete states—for "answers" is 

"expensive" because execution proceeds by stepping through time. Starlog's X-

computation does not step through time, although timestamps could be used for 

scheduling rule-instances 7.4.3. It exploits time's explicit, real-valued nature for 

improving negation. Further, the explicit nature of Starlog time permits clearer 

programs and opens up the possibility of modelling physical (real) time directly. 

Potential parallelism has to be explicitly specified in Tempura programs in or-

der to be exploited. It also seems that Tempura does not avoid redundant com-

putation. For illustrating Tempura execution, Hale [Hal87] considers a "simple" 

term D(A = 1), which says that it is always the case that (A = 1). This example 

raises efficiency-related questions that are unanswered in that paper, e.g., whether 

the invariant assignment is repeated in each reduction step through Tempura time. 
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6.8 Constructive Negation 

In Chapter 5, we discussed the uses of constructive negation: to enable logic pro-

gramming rather than theorem proving and to use negations to constrain search—and 

thereby, improve efficiency—rather than to just test conditions. Constructive nega-

tion encourages symmetry between (the execution of) negative and positive literals 

in a program. Here, we compare Starlog's constructive negation with the resolution-

based one discussed in [Cha88, Cha89], addressed henceforth as CN. 

Both CN and Starlog execute a negative literal incrementally by negating the 

(partial) solution of a corresponding, positive literal. Consider a negation not (B), 

where B is the body. Then, B might have an infinite number of solutions when it is 

not grounded. Therefore, it is essential that the execution of B can be arbitrarily 

terminated. CN suggests using a depth bound on the sub-refutation used to execute 

B. Starlog's execution of B terminates since it rewrites—as explained in Chapter 5— 

the (partial) solutions got from a single execution of a rule-instance h <- B and since 

each individual execution of a rule-instance terminates. 

Given a negation not (B), where B is the body, CN first executes B to get a 

(partial) solution involving equalities. It then normalizes the solution by removing 

redundant variables and equations, along with irrelevant inequalities. This nor-

malization greatly improves efficiency, and we would like to incorporate it into our 

Starlog interpreter. 

When negating (partial) solutions, both CN and Starlog rely on rewrites. Unlike 

CN, Starlog uses rewrites, such as partitioning, that exploit the real-valued nature 

of arithmetic variables to force solutions. As a result of choosing the logical, interval 
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arithmetic of [Cle87] for our Starlog interpreter, arithmetic constraints on a variable 

are directly reflected in its internal representation as an arithmetic interval. This 

has the following advantages: 

• some constraints can be "internalized" into the involved variables and deleted, 

thereby, reducing the need to awaken or thaw them whenever variables are 

instantiated. 

• Starlog's unification is more expressive since many constraints are transferred 

when arithmetic variables are unified. 

Due to the use of resolution, much computation is replicated in CN, and no track 

is kept of pre-computed answers. Suppose there is an inequality A =1= B, where 

A and B are arbitrary terms. CN defines that this inequality is valid if A and B 

are not unifiable, and it is satisfiable if it is valid or if A and B are unifiable only 

after binding variables; the inequality is primitive if it is satisfiable, but non-valid, 

i.e., if A and B are unifiable only after binding variables. According to CN [Cha89, 

page 480], primitive inequalities are never selected from a goal. It appears then that 

a goal of the form f (X ,Y) =1= f (5, a) would not be further executed by CN. Starlog 

first (forward) rewrites such a primitive inequality as not (f(X,Y) = f (5, a)) and 

then executes it to give not (X = 5, Y = a), at the end of the forward phase. This 

is then inverted into notreal(X); X < 5; X > 5; (X = 5, Y / a), which is a 

simplified result capable of forcing solutions. 

CN precludes recursive, predicate calls through negations, and thus, it avoids 

the issue of stratification in normal programs. Starlog programs, on the other hand, 

often rely on recursion through negation, and therefore, it is important for Starlog 
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to allow all temporally-stratified programs. Its clever arithmetic and avoidance of 

redundant, deduction sequences serve it well for this purpose. 

In this chapter, we have compared Starlog with related approaches. In the fol-

lowing Chapter 7, we present our conclusions and suggest future work. 



Chapter 7 

Conclusions and Future Work 

This far, we have taken a look at the Starlog language, informally traced through 

its execution, provided a procedural semantics to its programs, examined its active 

negation, and compared it with other approaches. It is time to wind up. This chapter 

first offers a glimpse into how we went about implementing our Starlog interpreter. 

There is always a future and work to be done. Accordingly, this chapter next suggests 

avenues for further research: enhancing programming ease, declarativeness, formal 

semantics, and performance. Finally, it presents our conclusions. 

7.1 How We Implemented Starlog 

7.1.1 Origins 

A Prolog interpreter that supported delayed evaluation and propagation of goals 

was available to us. This interpreter was written in Scheme [RC86, Dyb87] by John 

Cleary, Alan Dewar, and Susan Rempel of the Department of Computer Science, 

University of Calgary. In this interpreter, by using when declarations, in the style 

of NU-Prolog [TZ88], a goal may be made to delay on a limited set of conditions 

involving variables that appear in the goal. 

94 
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7.1.2 Building Starlog 

First, we implemented and incorporated the logical, interval arithmetic of [C1e87] 

into the available, Prolog interpreter; a continuation-passing style of programming 

was used. Next, we implemented an interpreter for definite Starlog, which called the 

earlier interpreter for the backtracking execution of primitives implemented there. 

This interpreter shared the earlier one's parsing routines. Finally, we built in ac-

tive negation to realize a Starlog interpreter and tested this interpreter with both 

contrived and realistic programs. 

The original, Prolog interpreter took up a little over thousand lines of Scheme 

code. We took five months and a thousand lines of Scheme code to implement the 

arithmetic. It took an additional six months and about two-thousand lines in Scheme 

to produce the Starlog interpreter. The entire interpreter, therefore, took up a little 

over four-thousand lines. Its constrained arithmetic and active negation, especially 

partitioning, are its distinguishing features. Carrying out rewrites for negation and 

keeping track of variable renaming when executing the body of a negated literal were 

the more-difficult parts to program. 

Our Starlog interpreter is intended as a prototype—to give assurances that Star-

log is a practical, programming language. We have tried to keep its implementation 

simple and have neither evaluated nor optimized its memory consumption or speed. 

Building the interpreter has given good insight into Starlog execution and helped in 

verifying its formal correctness in Chapter 4. 
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7.1.3 Tuples in Practice 

We have treated tuples as heads of unit rule-instances, but in practice, we have 

to allow non-unit rule-instances to be considered as tuples. This may be due to 

insufficient constraints in the body of the rule-instance or due to the inability of 

primitives and negation to force solutions as demanded by a declarative reading of 

the program. In our interpreter, for a rule-instance R to be classified as a tuple, R 

has to satisfy both the following conditions: 

• there should be no user-defined predicate calls in R's body. 

• no further instantiation of variables should result when R is executed. This 

ensures that each primitive in the body has been executed, and that no im-

provement is possible—under the circumstances—by further executing R. 

So, it is possible, for example, for a rule-instance with a not-exists call in its body 

to be classified as a tuple. We avoided discussing non-unit tuples in this thesis in 

the hope of keeping the discussion simple. 

Input-rules that are tuples are resolved against; non-tuple input-rules are treated 

as described before. When resolution is used, existentially-quantified variables may 

accumulate on execution of a negation's body. Rewrite F3 of Fig 5.2 is more mean-

ingful in this context. 

7.2 Declarativeness 

Our Starlog interpreter does much to support prograris as executable specifications, 

but many improvements are desired. In particular, negation and logical arithmetic 
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need to be strengthened, i.e., made more active. This will improve the declarativeness 

of its programs. 

7.2.1 Negation 

Rewrite R9 of Fig 5.5, as formulated, may be used only at the top level of a rule-

instance so that correctness is not sacrificed. Otherwise, to retain correctness, the 

existentially-quantified variables have to be propagated into the nesting, predicate 

call, and the more-complicated rewrites in Fig 7.1 have to be used. If the rewrites of 

Argument Literal Rewrite 

E12 
E13 
E14 

not(not-exists X,Y .... : (A, B, ...)) 
not(exists X,Y .... : (A, B, ...)) 
p(T,...)<- exists X,Y .... :(A,B,...) 

exists X,Y .... : (A, B, ...) 
not-exists X,Y .... : (A, B, ...) 
p(T .... )<-A,B,... 

Figure 7.1: Possible Inversion of Existential Negation. 

Fig 7.1 are used, adequate, variable-renaming support has to be provided to move 

existential quantification outwards in a rule-instance. 

The rewrite for partitioning, in Chapter 5, should be generalized to handle every 

universally-quantified, arithmetic variable in a rule-instance, or at least those that 

appear anywhere in the head. Other rewrites should also be investigated. 

7.2.2 Logical Arithmetic 

While the logical, interval arithmetic of [Cle87] is extremely clever, its use does 

affect real-world completeness of the Starlog interpreter. For example, the con-

straint mt (X), as formulated in [Cle87}, is not active enough to instantiate X with 

integers over an interval of real values—if X lies in E  .7,3.2), mt (X) is not con-
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structive enough to deduce that X is 2 or 3, but given that Y lies in [1 .7,2 .2), 

mt (Y) deduces that Y is 2. 

Similar is the case with X ! Y. Given that X'-'(-inf,+inf) != Y.-.-'[2,3),  

as formulated in [C1e87], is unable to simplify into the following disjunction: 

X.--'(-inf,2); X'--'[3,+inf); X"..'[2,3) != Y[2,3) 

This means that selection of the literal not-exists Y—[2,3): (X != Y— [2,3)) 

results in a variant of the same literal—instead of the following: 

not(X >= 2, 3 > X). 

In this case, the "lack" in arithmetic constructiveness can be compensated for by a 

cleverer rewrite rule for not-exists literals. Since ! = is not discerning enough when 

dealing with arithmetic intervals that are not point intervals, Rewrite R4, in both 

Fig 5.3 and Fig 5.4, prefers (X > Y; Y > X) over (X ! = Y), although these rewrites 

are equivalent. 

It appears that Cleary [Cle87] purposely suppresses the activity of arithmetic 

constraints in order to control combinatorial explosion, but he does provide a control 

primitive split (x), which forces the search for solutions by iteratively splitting X's 

interval into disjoint sub-intervals. 

In general, the constructiveness of arithmetic and that of rewrite rules should 

complement one another. Ways of making the arithmetic more active, without sac-

rificing efficiency, should be investigated. 
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7.3 Formal Semantics 

Chapter 4 gives a procedural semantics for definite (Starlog) programs. It proves that 

a fair clause-selection guarantees sound and complete execution of definite programs; 

the atom-selection need not be fair. We have not yet proved the correctness of Starlog 

negation. To include Starlog's active negation in this semantics, we need to consider 

fair selection of literals because finite failure of X-derivations becomes important in 

the presence of negation. Since Starlog rules need not be clauses, it is not generally 

possible to show that a conjunction of Starlog rules is unsatisfiable, i.e., has no model, 

by restricting attention to llerbrand interpretations [Llo87, pages 17, 39]. Therefore, 

more general interpretations need to be considered. 

For a program F, [Llo87] defines the greatest fixpoint (gfp) of a function Tp. We 

feel that an analogue of X-computation can be constructed that attempts to compute 

tuples covering a program's "maximal" or gfp-model, i.e., a set of tuples that when 

grounded equal gfp(Tp). When computing gfp(Tp), the heads of all rules in F can be 

thought of as the initial "interpretation"—instead of the infinite, ground Bp used in 

[Llo87]. This would mean that the heads are taken to be true initially. The program 

can be applied on this set of heads to generate the next set of heads, and so on. 

In any stage in such a computation, the heads cover gfp(Tp). This computation 

can be useful for definite programs that either contain no function symbols or have 

the property that, for each clause C, each variable in C's body also appears in the 

head. Such definite programs have TpJ.w =gfp(Tp) [Llo87, page 67]. (lfp(Tp) need 

not equal gfp(Tp), even for definite programs.) We hope that this idea helps model 

perpetual processes and negation. It may also prove to be the lever needed for the 
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formal semantics of negation. 

7.4 Performance 

7.4.1 Information Flow 

As mentioned in 6.1, X-computations specialize an atom in the body of a rule-

instance to the rule-instances it refers to. Being able to reverse the direction of in-

formation flow would help efficiency. It is worth investigating the resulting effect, i.e., 

of specializing rule-instances to the atoms that refer to them. The magic-counting 

methods of [SZ87] should be considered in this regard. 

7.4.2 Garbage Collection 

As an X-computation proceeds, we only need to maintain rule-instances that are re-

ferred to and that may be referred to at some later stage. This means that by working 

down from the root of the (partial) X-tree, each deduction path—X-derivation path, 

in the case of definite programs—that has either failed or succeeded may be consid-

ered for garbage collection, i.e., for reclaiming its memory. On a succeeded or failed 

path, a rule-instance and the links of its body atoms may be deleted if it and its 

ancestor rule-instances are not pointed at by any atom in the (partial) X-tree. 

The list used for scheduling rule-instances in our interpreter is passive. A rule-

instance may be executed even though the rule-instances pointed at by its body 

atoms have not been executed or have just yielded variants upon execution. We feel 

that an "inverted," Starlog-execution scheme wherein a rule-instance upon execution 

awakens rule-instances referring to it can avoid wasteful re-execution and ease the 
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detection of loops. 

7.4.3 Scheduling 

Our interpreter schedules rule-instances on first-come-first-served (FCFS) basis. (Any 

fair-scheduling scheme will work correctly.) Rule-instances can also be scheduled in 

non-decreasing order of their earliest-satisfaction times, i.e., the lower bounds of 

their corresponding timestamp ranges or intervals; this makes it easier to detect 

loops and then eliminate "useless" rule-instances. The list of rule-instances to be 

scheduled then looks like an event-list in a discrete-event simulation. If a loop is 

detected within this list, i.e., the execution of the constituent rule-instances resulted 

only in variants, then action based on temporal-stratification requirements can be 

taken against the involved rule-instances and their X-derivation paths in the (partial) 

X-tree. 

Our Starlog interpreter fails to terminate given the following "harmless," definite, 

Starlog program: 

PM <- T >= 0, p(T). 

Failing to terminate not only lowers efficiency, but it also harms the satisfaction of 

negations. Scheduling using timestamps can improve termination, but care has to 

be taken to ensure that completeness is not sacrificed—even for a definite program, 

there might be infinite tuples to be generated at a particular time value! 

7.4.4 Active Negation 

Given a negation not (B), where B is the body, CN [Cha88, Cha89] first executes 

B to get a (partial) solution involving equalities. It then normalizes the solution 



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 102 

by removing redundant variables and equations, along with irrelevant inequalities. 

Its normalization technique is equally applicable to Starlog negation and should be 

considered in order to improve efficiency. 

7.4.5 Parallel Execution 

Starlog exploits inherent parallelism in logic programs. It exploits or-parallelism by 

concurrently exploring deduction sequences from different program rules; as men-

tioned in 3.2.6, it resembles the Sync model of [LM86] in its exploitation of and-

parallelism. All this is with a sequential, Starlog interpreter. A distributed, Starlog 

interpreter can take advantage of this parallelism to speed up execution. 

Nodes in an X-tree do not share variables. Nodes on non-overlapping paths need 

to communicate only for unification. During X-tree construction, only its leaves, 

which comprise a stage in an X-computation, need to be executed by the interpreter. 

Therefore, the interpreter may use timestamps beyond scheduling rule-instances and 

active negation. Based on ideas from Time Warp [Jef85], these timestamps can 

provide the basis for an optimistic, distributed, or-parallel execution of nodes in 

a distributed X-tree. Then, execution can smoothly shift from a sequential to a 

distributed or parallel environment. 

7.5 Conclusions 

This thesis has offered an insight into a model-theoretic execution of logic programs. 

It has formalized the execution of definite (Starlog) programs and proved the exe-

cution to be semantically correct. It has described a method for executing Starlog's 
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active negation. By building a prototype, Starlog interpreter, we have demonstrated 

Starlog's feasibility, and in this thesis, we have pointed out directions that can be 

taken to shape Starlog into a practical, programming language. 
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Appendix A 

Starlog Syntax 

Following is a specification of Starlog's syntax in Backus-Naur Form (BNF). The 
symbols ::=, 1, {, }, ['and ] are meta-symbols belonging to the BNF formalism; they 
are not symbols of the Starlog language. The curly brackets, '{' and '}', denote 
possible repetition of the enclosed symbols zero or more times. The box brackets, '[' 
and ']', denote optional occurrence of the enclosed symbols. Terminal symbols are 
shown in bold face, e.g., terminal. 

program 
formula 
rule 
unit-rule 
head 
tail 
open-conjunction 
exp 
end-conjunction 
end-disjunction 
literal 
var-list 
atom 
composite 
term 
functor 
constant 
var 
upper-id 
lower-id 
id 

{ formula } 
rule . unit-rule 
head <- tail 
atom 
atom 
open-conjunction 
exp { , exp } 
literal I end-conjunction I end-disjunction I ( exp ) 
(exp , exp { , exp }) 
(exp ; exp { ; exp } ) 
atom I not (exp ) I not-exists var-list : (exp) 
var { , var } 

composite 
functor I functor (term { , term } ) 
constant I var I composite 
lower-id 
integer I real I lower-id 
upper-id 
upper-case-letter id 
lower-case-letter id 
{ letter I digit } 
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Appendix B 

Example, Starlog Programs 

Following are some of the interesting programs that our Starlog interpreter has exe-
cuted. 

B.1 Prime Numbers 

% The following is a transparent, Starlog program for computing primes. 
% It closely reflects the idea of deleting all multiples of each prime 
% as it is generated. The constraint J >= K within the negation 
% helps remove redundancy. 

prime(I) <- integer(I), I >= 0, 
not-exists .J,K: (prime(J), integer(K), 

I > 3, I > K, .1 >= K, *(J,K,I)). 

integer(N) <- integer(Nprev), +(Nprev,1,N), N >= 2. 
integer (2) 

B.2 Bouncing Ball 

% The following Starlog program simulates a bouncing ball. Its 

% predicate bounce (T ,Vdown) gives the downward velocity Vdown 
% at time T of a bounce; predicate traj (T, Height, Ve1) 
% follows the ball's trajectory between bounces. 
% The traj tuples computed by Starlog are non-unit rule-instances 
% and have unsatisfied, arithmetic constraints in their bodies. 
% The bounce tuples come out as unit rule-instances: 
% bounce(0,1),bounce(2,O.5),bounce(3,O.25), 
% bounce (3.5,0.125), 

bounce(T,Vdown) <- T >= 0, Vdown >= 0, traj(T,O,lJup), 0 > Uup, 

+(Uup,Udown,0), *(Vdown,2,iJdown). 

bounce(O,1). 
traj(T,Height,Ve].) <- T >= 0, Height >= 0, bounce(Tb,Udown), 

Tb >= 0, T > Tb, Udown >= 0, 
+(Tdiff,Tb,T), Tdiff > 0, +(Ve1,Tdiff,Udown), 
*(Z1,2,Tdiff), +(ZO,Z1,Udown), 
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*(ZO ,Tdiff,Height). 

B.3 Temporal-Database Update 

% The following Starlog program maintains a simple, key-value, temporal 
% database via a predicate db. Updates, given by update 
% tuples, happen at various times and sometimes a request to increment 
% the entire database comes along, via input tuples. 
% This program can be executed by Starlog without using partitioning. 

% db((1,2] ,a,4), db((2,3] ,a,5), and db((3,+inf) ,a,7) 
% are the three db tuples computed by Starlog. 
% update (1,a,4), update (3,a,7), and update (2,a,5) 

% are the three update tuples computed by Starlog. 

db(T,Key,Va1) <- T >= 0, Ts >= 0, T > Ts, 
update(Ts,Key,Va1), 
not-exists Tp,Any: (Tp >= 0, T > Tp, Tp > Ts, 

update(Tp,Key,Any)). 

input(2,incr). 

update(1,a,4). 

update (3 , a, 7) 
update(T,Key,NewVal) <- T >= 0, db(T,Key,OldVal), 

+(OldVal,1,NewVal), input(T,incr). 


