
 1

Communication, Collaboration, and Bugs: The 
Social Nature of Issue Tracking in Software Engineering 

Dane Bertram, Amy Voida, Saul Greenberg and Robert Walker 
Department of Computer Science, University of Calgary 

2500 University Drive NW, Calgary, Alberta, CANADA T2N 1N4 
{dbertram, saul.greenberg, avoida, walker}@ucalgary.ca 

 
ABSTRACT 
Issue tracking systems help organizations manage issue 
reporting, assignment, tracking, resolution, and archiving. 
Traditionally, it is the Software Engineering community 
that researches issue tracking systems, where software 
defects are reported and tracked as ‘bug reports’ within an 
archival database. Yet issue tracking is fundamentally a 
social process and, as such, it is important to understand the 
design and use of issue tracking systems from that 
perspective. Consequently, we conducted a qualitative 
study of the use of issue tracking systems by small, 
collocated software development teams. We found that an 
issue tracker is not just a database for tracking bugs, 
features, and inquiries, but also a focal point for 
communication and coordination for many stakeholders 
within and beyond the software team. Customers, project 
managers, quality assurance personnel, and programmers 
all contribute to the shared knowledge and persistent 
communication that exists within the issue tracking system. 
We articulate various real-world practices surrounding issue 
trackers and offer design implications for future systems. 

Author Keywords 
Shared knowledge, issue tracking, software engineering 

ACM Classification Keywords 
H.5.3 [Information Interfaces and Presentation (e.g., HCI)]: 
Group and Organization Interfaces—CSCW; K.6.3 
[Management of Computing and Information Systems]: 
Software Management—Software development. 

INTRODUCTION 
Commercial software development is by and large a group 
activity. Project managers create specifications, developers 
implement features, and quality assurance (QA) teams find 
and verify defects along with their associated fixes. 
Because of the large number and broad range of 
stakeholders involved in this form of group work, 
communication and collaboration become an integral part 
of the process. 

In addition to requiring the efforts of many, the creation of 
quality software also requires the careful management of 
many small, interrelated parts. Features and implementation 
tasks are borne out of specifications and defects or ‘bugs’ 
are inevitably discovered. These defects are often managed 
through the use of an issue tracking system. The issue 
tracker helps software teams manage issue reporting, 
assignment, tracking, resolution, and archiving via a 
reliable, shared to-do list that also serves as an archive of 
completed work [16]. 

A software product progresses from initial conception to 
version completion to ongoing maintenance work and then 
to preparation for subsequent releases. Issues arising during 
this lifecycle are typically manipulated by a number of 
stakeholders on the software team. Various statuses and 
other attributes can be applied to each issue to help 
distinguish among the phases of this lifecycle. Additionally, 
the issue’s current ownership can be ‘assigned’ back and 
forth among project managers, developers, and quality 
assurance staff. All of a bug’s many states, transitions, and 
annotations are tracked, archived, and made available to the 
team through the various interfaces provided by the issue 
tracker and its underlying database. 

We discovered that many software teams rely on issue 
trackers to serve as both an “outboard brain” and implicit 
communication hub to help coordinate the intricate dance 
that comprises the production of any large software system. 
Thus, issue tracking is fundamentally a social process and, 
as such, it is important to understand the design and use of 
issue tracking systems from that perspective. 

We conducted a qualitative study of the use of issue 
tracking systems by small, collocated software development 
teams. For each development team studied, we interviewed 
multiple stakeholders—each fulfilling a different role—in 
order to gain a more holistic understanding of the team’s 
relationship with the issue tracker. From our results, we 
argue that the issue tracker for a software team serves as 
much more than a simple bug database. The issue tracker 
serves as a key knowledge repository, a communication and 
collaboration hub, and as a communication channel in and 
of itself. In addition, we identify and characterize several 
aspects of issue tracking about which its stakeholders hold 
differing and sometimes conflicting perspectives. Finally, 

Cite as: 
Bertram, D., Voida, A., and Greenberg, S. (2009) 
Communication, Collaboration, and Bugs: The Social Nature of 
Issue Tracking in Software Engineering. Report 2009-933-12, 
Department of Computer Science, University of Calgary, 
Calgary, AB, Canada T2N 1N4. June. 



 2

we provide implications for the design of issue tracking and 
software development coordination tools. 

RELATED WORK 
Just as strong leadership is required to guide a team toward 
success, so too are strong communication and collaboration 
tools essential in completing that journey. Much research 
has been done in the field of computer-supported 
cooperative work and software engineering to examine how 
software teams communicate with each other and 
coordinate their work. Perry et al., for example, studied 
individual developers’ perceived and actual time allocation 
for various activities throughout their day-to-day work  
[14]. Their studies found that over half of each developer’s 
time was spent interacting with co-workers. Ye  argued that 
software development is both knowledge-intensive and 
collaborative [18]. Her work identified not only the 
technical axis of knowledge collaboration undertaken by 
software developers, but also its social axis. The deeply 
social element of software development has also been 
illustrated by LaToza, Venolia, and Deline [12]. In addition 
to noting developers’ reliance on their social network for 
determining code rationale, their study also found that 
developers at Microsoft “reported spending nearly half their 
time fixing bugs.” 

In spite of all the analysis that has been done on software 
development in general, little if any of this attention has 
been directed toward the in-depth study of how issue or bug 
tracking systems fit into the role of facilitating 
communication and collaboration. 

If we look at issue tracking systems specifically, we see a 
body of work that has primarily focused on improving the 
quality of bug reports [4], identifying who should work on a 
given issue [2], and improving developers’ ability to detect 
defects in their systems [9]. In contrast, much of the broader 
software development literature mentions issue tracking 
only in passing; few have specifically brought its 
communication and collaboration aspects to the forefront. 

Fortunately, the coordination component of specific 
development tools, such as configuration management 
systems, have been studied (e.g. [10]) and more recently 
Aranda and Venolia’s work has started to bridge the gap 
between broader CSCW research and specific software 
engineering tools such as the bug tracker [3]. 

Aranda & Venolia set out to verify the seemingly rational 
assumption that bug tracking databases provide developers 
(and in turn, researchers) with an accurate—or at the very 
least sufficient—account of the history of the work items 
stored within them. They did so by tracing the complete 
lineage of 10 randomly selected, recently closed bugs. After 
exhausting all available electronic breadcrumbs, they 
proceeded to interview every person directly or indirectly 
involved in each bug’s “life” until either a complete history 
was formed or the trail petered out. Through their intensive 
study they identified the following challenge: 

“If we want to understand and improve coordination 
dynamics we need our bug histories to include the social, 
political, and otherwise tacit information that is also part of 
the bread and butter of software development. This is often 
subtle, not always apparent, and it must be read between the 
lines of the evidence collected.” 

It was precisely these hidden coordination dynamics we set 
out to uncover in our study. 

STUDY DESIGN AND MOTIVATION 
Despite software engineers’ best efforts to accurately model 
and manage the presence of bugs within the software 
development process, there is still an inescapably human 
component to the process. Therefore, we employed 
qualitative research methods to better understand the use of 
issue trackers within small software development teams. 

Design 
We conducted a qualitative study of collocated software 
development teams that make use of one or more formal 
issue tracking systems. We recruited 15 participants spread 
across 4 North American software teams. Each participant 
was asked to engage in two research activities: 

1. Questionnaire. Participants were asked how long they 
had worked with the support of an issue tracking 
system, both continuously and including any gaps. They 
were also asked to identify their primary uses for the 
issue tracking software along with the frequency with 
which they used each of a collection of communication 
channels (instant messaging, email, micro-blogging, 
face-to-face, etc.). Basic demographic information such 
as sex and age were also collected. 

2. Semi-structured interview. Participants were asked to 
describe various aspects of their issue tracking system 
and the processes and communication surrounding it. 
The interview protocol included questions pertaining to 
workflow, coordination, issue lifecycle, information 
seeking habits, and motivations for selecting specific 
communication channels. We also explored 
shortcomings and workarounds related to existing 
tools—both related to communications and those 
targeting general software development. 

The interviews were carried out in each participant’s 
regular workspace whenever possible. One team’s 
participants each met with the interviewer at a common 
office due to logistical constraints. In this situation, a 
terminal remotely connected to the participant’s regular 
workstation was provided to maintain as much software 
work-context as possible. 

The results presented below were obtained through a 
grounded theory analysis of our interview data [6]. We 
generated concepts inductively from the data  (e.g., 
“outboard brain” and “evidentiary system”) and then 
refined and structured the concepts to arrive at the higher-
level themes that make up the outline for much of this 



 3

Software Team 

Participant Demographics 
Issue Tracker 

Used 
Developer/Team 

Lead 
Quality 

Assurance/Tester 
Project/Program 

Manager 
Male Female Male Female Male Female 

Team A 
University IT Dept. P1   P2   SharePoint & 

Excel 
Team B 
Gaming Company P6  P4, P5   P3 ExtraView & 

proprietary 
Team C 
Issue Tracker Vendor 

P8, P9, 
P11   P7 P10  

 FogBugz 

Team D 
Large Display Vendor P15 P13  P12 P14  FogBugz & 

Excel 

Table 1. Overview of participant population 

paper. We used selected questionnaire data to help 
characterize our participant population. 

Participants 
The participants in this study included 15 individuals from 
4 different software development teams (Table 1). Each 
team belonged to a different organization and wrote 
software targeting a different market within the software 
development field. Each team made use of at least one 
formal issue tracking system in support of their day-to-day 
development tasks. Team A was part of a university’s IT 
department whose job was maintaining and customizing a 
third party human resource management system. Team B 
was a product development team within a large gaming 
company. Team C wrote commercial issue tracking and 
project management software as well as a remote desktop 
application. Team D was a product development team 
writing software to accompany a large display hardware 
product. 

Participants were recruited from three primary roles within 
the software team: developer/team lead, quality 
assurance/tester (QA), and project/program manager. 
Because of their constant, intimate interaction with the 
issue tracker, we focused, in particular, on the first two of 
these roles and the interplay between them. Participants’ 
ages ranged from 25 to 51 years with a mean of 33.4. Our 
participants’ experience with issue tracking software ranged 
from 2 to 16 years (including gaps) with a mean of 5.6 
years. Gender balancing did not play a role in the recruiting 
process; however we were fortunate in having at least one 
female participant in each of the roles of interest. 

WHAT IS AN ISSUE TRACKER? 
In this research, we have identified a number of social 
dimensions to issue trackers that extend well beyond the 
conventional definitions found elsewhere in the literature. 

Conventional definition 
Most definitions approximate a defect or issue tracker as a 
software tool “that enables the [development] team to 
record and track the status of all outstanding issues 
associated with each configuration object” [15]. While this 
may be a perfectly functional surface reading, in reality, 
most issue trackers also track a variety of other artifacts 
including feature requests and inquiries. 

An issue tracker serves as a 
centralized database for 
tracking bugs, features, and 
inquiries as they progress 
from their initial creation to 
a final closed state. Bugs 
outline defects in the 
software that need to be 
addressed by the 
development team and may 
be reported by customers, 
the QA team, or anyone 

else with sufficient access to the tracker. Features represent 
new functionality or enhancements to existing code and 
usually originate from project managers or team leads. 
Inquiries largely originate from customers and can include 
everything from sales questions to technical support. 

As issues transition among various states (open, resolved, 
closed, etc.) various annotations are stored along with each 
issue. These annotations include attributes such as the title 
or due date for resolving a bug, as well as a history of 
ownership and discussion about the issue. Through our 
interviews and the analysis of their transcripts, our research 
has uncovered a number of other social dimensions of issue 
tracking systems. 

Issue Tracker as a Knowledge Repository 
In addition to recording a simple list of all the bugs, 
features, and customer inquiries worked on by a team, the 
issue tracker also stores a massive amount of organizational 
knowledge [1]. 

We’ve had this thing for 8 years, starting from case 1, and 
now we’re at 1,354,487 cases. All these little bits… little bits 
of insight and little bits of things are in there and you can 
search them. … It has been really valuable for us, and in the 
future it’s just going to grow and grow and be more valuable 
(P08). 

Over time, the issue tracker builds up a staggering amount 
of information concerning nagging customer support issues, 
partially fleshed out feature ideas, and a large portion of the 
communication surrounding these developments. This 
enormous pool of information is often useful for both the 
organization and the software team on a number of different 
levels [7]. 

Project managers in our study argued on behalf of 
customers and used the issue tracker’s rich history to back 
up their arguments with concrete data by querying the issue 
tracker: “We’ve had 50 customers who have complained 
about this problem. It’s time to stop punting this issue and 
actually fix it” (P10). 

With the source control integration provided by many of 
our participants’ issue trackers, programmers delved into 
previously resolved bug discussions to gain a better 
understanding of how a section of code came to be: 



 4

Say I came across this code and I didn’t understand why they 
implemented it this way. Then I would look up the [issue 
tracker] cases to see what they’re trying to fix (P13). 

More broadly speaking, this massive store of interrelated 
data is highly valued by those who use the issue tracker, 
even when they can’t find the words to succinctly quantify 
it: “Having this archive is huge, in the bug tracker. It’s one 
of the biggest…one of the primary reasons we use [our 
issue tracker]” (P09). 

This ever-growing knowledge store is not entirely 
contained within the walls of the issue tracker, however. 
Instead, this knowledge is distributed across the issue 
tracker and those who use it both directly (such as 
programmers and testers) and indirectly (such as 
customers). It is in this way that the issue tracker plays a 
significant role in the distributed cognition of the software 
development team [11]. Each stakeholder in the issue 
tracking lifecycle contributes information and knowledge to 
the issue tracker via individual bugs and features. This 
knowledge is then distributed amongst those who add to 
these records as well as those who simply monitor issues 
and keep abreast of their progress. 

We talked at length with project managers, developers, and 
those on QA teams about how they use their issue trackers. 
After doing so, we uncovered a multitude of other 
stakeholders involved in the process of entering, tracking, 
and resolving issues. 

Issue Tracker as a Boundary Object 
Although primarily aimed at software developers and 
quality assurance, the issue tracker’s social network extends 
to include a wide range of roles and stakeholders within the 
broader software ecology. We found that project managers 
would use feature requests from customers to help 
formulate the direction of the software product; customer 
support leveraged the ability to create, view, and monitor 
bug status to fix customer problems and notify them of 
important updates and potential workarounds; and some 
teams even integrated the issue tracker with the sales team 
to track potential clients and resolve their inquires. Finally, 
and perhaps most importantly, our developer and quality 
assurance participants used the issue tracker on a day-to-
day basis for prioritizing work and steadily improving the 
quality of their product. 

Initially, it may seem that many of these stakeholders 
operate in relative isolation. After interviewing participants 
in project management, developer, and quality assurance 
roles, we found this was most definitely not the case. Issues 
were frequently assigned between project managers and 
developers to clarify priority and direction. Customer 
support assigned potential bugs to QA to confirm their 
existence and refine their reproduction steps (step-by-step 
instructions on how to recreate or ‘repro’ the problem). 
After this stage was complete, we found that QA would 
then either assign the bug directly to the developer who was 
likely responsible for that area of code or to the lead 

developer of the team for them to triage the bug’s priority 
and determine who best to tackle it. It is the nuance 
between these roles and the flexibility of the underlying 
issue tracking system that has resulted in the tracker serving 
as not merely a repository of data, but also as a 
communication hub that fosters coordination among the 
entire product team and its related stakeholders. 

Each of these stakeholders has a different set of needs they 
look to the issue tracker to satisfy. While each participant 
recognized a similar overarching goal of what the issue 
tracker was for, each had a slightly different set of 
expectations and uses for the underlying issues based on 
their role within the development process. The issue 
tracker, and in some ways its issues, served as boundary 
objects within this setting; that is, participants in different 
roles leveraged the data stored in the issue tracker in 
different ways and had differing views on what the 
underlying issues represented [17]. 

One example of the different ways in which stakeholders 
viewed the issue tracker was reflected in the way 
participants in different roles filtered and sorted cases 
within the issue tracker. Project managers often looked at 
high-level summaries of outstanding issues broken down by 
their priority level to get a feel for how close the release 
under construction might be to shipping. In contrast, team 
leads would break down outstanding tasks by the members 
of their team to ensure that no individual team member was 
over- or under-burdened. Finally, quality assurance 
regularly grouped open and resolved cases by project area 
or category to ensure that an even distribution of product 
coverage had been met through their testing or to focus 
their attention on under-tested areas of the product. 

As well, the collection of people who interacted with the 
issue tracker wasn’t strictly limited to those who fell inside 
the development team or even company boundary. The 
sales team, management higher up the organizational 
hierarchy, and contract workers (often testers) also 
periodically worked with the issue tracking system. 
Customers external to the organization would interact with 
the tracker, although usually in an indirect manner such as 
via automated crash reports or email integration (see 
below). This wide range of people working and influencing 
the contents of the issue tracking system begins to illustrate 
the broad communicative power it provides. 

Issue Tracker as Communication & Coordination Hub 
With the large role that issue trackers often play in the 
development process, it is not surprising that a significant 
body of communication surrounds the data stored in them: 
priority discussions during triage meetings, repro step 
clarifications between the person who created an issue and 
its current owner, fix verification and regression testing, 
etc. All these conversations are communicated across a 
number of different channels and frequently end up being 
stored along with the associated bug in one way or another. 
Tracking all this information can be challenging but proves 



 5

to be crucial in providing the team the necessary tools to 
coordinate their work. 

You’re not going to be able to do it in your head or in files or 
in multiple emails that are being sent to all these different 
people…they’re not connected. … If it’s in this one central 
place that other people can see, maybe there’s a chance for it 
to get fixed twice. Not just fixed once for the customer we 
fixed it for, but fixed for all the customers (P08). 

The idea of the issue tracker serving as an easily accessible 
place to tie together all the various threads of information 
involved in software development came up again and again 
in our interview data. During triage meetings, the newly 
agreed-upon priority would be stored in the audit log of 
each bug under discussion. The assignment back and forth 
between a bug’s filer and whoever is currently working on 
it was also logged when reproduction steps were being 
clarified. Similarly, the verification of resolved bugs and 
their transition into a closed or verified state was also 
recorded. Not only were all the state and field changes 
recorded, but other forms of communication were also 
frequently transposed into the issue tracker: copied-and-
pasted portions of instant messenger conversations or email 
threads, summaries of face-to-face meetings, and even self-
reflective notes and ideas for potential causes and solutions 
to problems. 

The bug tracker also served our participants as both the 
starting and ending point for various links between 
development artifacts. Duplicate and related bugs often 
linked amongst each other. Developers working on a case 
would often ask for a co-worker’s opinion or suggestions 
on how to proceed, and in the process they would often 
synchronize their view by sharing the bug id of the issue in 
question via instant messenger or email (P04, P05). 
Outbound links from the issue tracker tied individual 
feature cases to their respective specifications in wiki 
documents and links to shared document repositories also 
frequently originated within the issue tracker. Finally, 
countless reports were either generated directly from the 
issue tracker itself or leveraged the data stored within it. 

Additionally, many of our participants’ issue trackers also 
supported tight integration with email. Email addresses 
could be configured to serve as public-facing entry-points 
to the issue tracker. Whenever an email was sent to such an 
address, an issue would be created in the tracker and a pre-
designated person would be notified of its existence. As one 
might expect, replies could be sent from the issue tracker to 
the original email sender and later replies would be 
appended to the issue via a bug id that was automatically 
inserted into the email subject line.  

These many interconnected channels all funneled their way 
through the issue tracker in a variety of baroque ways. Part 
of the glue that held these paths together was the tracker’s 
ability to serve as a communication channel, in and of itself. 

Issue Tracker as Communication Channel 
Each of our participants’ issue trackers provided a means 
for them to communicate directly with others about an 
issue. Sometimes this capability was presented as a 
“comments” field that could be filled in whenever an issue 
was being assigned from one person to another and was 
appended onto the end of an existing list of comments. In 
other systems, there was a single “task discussions” field 
that was edited collectively and repeatedly by the various 
stakeholders in the bug (P01, P02). Both variations of this 
practice were often augmented by the ability to attach or 
associate email messages, screenshots, or other artifacts to 
the issue. 

This comment history or issue discussion was frequently 
viewed as the single most valuable asset of using an issue 
tracking system: 

Comment history. So this is huge. This running dialog on the 
bug, this is just…this is necessary. Like, you can’t work 
without this. … You can just see a history and figure out what 
the decision pattern was. … Just having this record is 
invaluable (P04). 

The majority of our participants explained that by providing 
a consolidated view of an issue’s entire history, it became 
possible to later review that history and gain the necessary 
context to understand the rationale behind decisions made 
and directions taken. 

The communication channel provided by each issue’s 
comment history was often favored over other channels, 
such as instant messaging, that were viewed to be more 
interrupting for less urgent and timely communication [13]. 
Whenever an issue was assigned to someone, the new 
assignee would be notified of the event via email. Most of 
the issue trackers used by our participants also supported 
the idea of “subscribing” to an issue and being notified, 
again via email, whenever anything about that issue 
changed. Due to most instant messaging systems’ 
propensity to alert, flash, and otherwise grab their users’ 
attention, this more subtle form of back-and-forth 
communication was often favored and in this way, the case 
itself served as a persistent, asynchronous, and oftentimes 
multicast communication channel. 

Because the comment history was an integral part of each 
issue and remained attached and visible throughout the 
issue’s entire lifecycle, it served as a form of anchored 
conversation [5] that kept relevant communication 
embedded within the context of the issue to which it 
referred: 

Ok, so in that specific case I would use [the issue tracker] for 
sure because then there’s a record of the communication with 
the bug, which is where I want it anyway. Like, if I ask 
someone separately in a different way than I am just going to 
write it in the bug anyway (P07). 

After interviewing our participants, we came to realize that 
each issue was treated much like a threaded chat room 
conversation in which the comment history formed the 



 6

body of the conversation and the issue itself provided the 
topic for each thread. Participants in the conversation came 
and went over time (either via being assigned the issue or 
by subscribing to its changes) and the persistence of the 
issue allowed for asynchronous communication, and 
collaboration among its stakeholders [8]. 

CONTRASTING PERSPECTIVES ON ISSUE TRACKING 
As we have already seen, our participants’ issue trackers 
have served a variety of roles above and beyond that of a 
simple bug database. And although the description of an 
issue tracker’s high-level purpose may be fairly consistent 
across its primary stakeholders, once examined more 
closely, we identified a number of different and sometimes 
contrasting perspectives on issue tracking processes and the 
applicability of various features of issue tracking systems. 
We also found that these perspectives suggested design 
implications for future bug-tracking systems. 

A Bug List, a Task List, or a To-do List? 
As discussed earlier, issue trackers and the issues contained 
within them form boundary objects among the various 
stakeholders involved in the software development process; 
that is, “they have different meanings in different social 
worlds but their structure is common enough to more than 
one world to make them recognizable, a means of 
translation” [17]. Although the primary purpose of an issue 
tracker was described consistently across participants on the 
whole, when examined more closely, the perspectives of 
participants in differing roles revealed fine-grained 
distinctions in the function the issue tracker served. 

Developers and members of the QA team expressed the 
need for an organized list of their work to-be-completed: 
“primarily when I log in on a day-to-day basis I look at the 
cases that are assigned to me and I use it as a to-do list” 
(P07). The issue tracker’s ability to apply a sense of order 
to outstanding tasks was largely what allowed developers to 
“just come in and sit down and start working” (P09). 

However, some participants expressed frustration with the 
issue tracker being overloaded for non–bug-tracking 
purposes. One of the lead members of a QA team 
articulated strong opinions about the specific types of issues 
that should and should not be stored in the tracker and how 
that reflected its primary purpose: 

[The issue tracker is there] to track problems. Not tasks, 
problems. Totally different. You can track tasks with Excel if 
you have to. It can be done. You don’t want to track problems 
with Excel. Because a problem is not perception, it’s reality, 
right? That’s the difference (P04). 

From the perception of this QA team, the issue tracker 
needed to be an infallible depiction of what problems were 
still outstanding and which had been addressed. Schedules 
of non-bug tasks could “show you your perception of how 
things will go, but in [the] issue tracker you want to know 
the reality of the situation” (P04). 

Project managers and members of the QA team felt the 
issue tracker also served a major function as a vertical 
communication channel, cutting across colleagues at 
different levels of the organizational hierarchy; that is, it 
served as their “method of communicating to production 
and management of what the outstanding quality-impacting 
work left in the project [was]” (P05). In a similar vein, lead 
developers recognized the importance of integrating 
scheduling alongside the tracker’s list of outstanding work: 

What I’ve found now is that we need something more than just 
bug tracking. We actually need a way to match that to the 
schedule as well and have some sort of time tracking built-in 
(P15). 

While many of the opinions expressed by our participants 
focused on how the issue tracker was used from a personal, 
within-the-development-team perspective, one project 
manager also spoke from the customer’s viewpoint: “I’m 
using it as an outboard brain to keep track of all of the 
things that, from a customer perspective, are important” 
(P10). From their standpoint, the issue tracker served not 
only as a database for tracking bugs and features, but also 
as an interface between the company and their customers. 

These distinct viewpoints suggest that the issue tracking 
system serves different, yet interrelated purposes for each 
of the different roles within the development team. While 
the overarching purpose of the issue tracker remains clear, 
the finer details regarding how individuals with different 
roles use the system suggests the need for custom-tailored 
views for each of its various stakeholders. 

Design implication #1: The issue tracker represents 
different things to different people. These small but 
significant distinctions should be acknowledged and 
exposed in the issue tracker through features catering to 
each of the stakeholder’s individual needs. Customizable, 
role-oriented interfaces that emphasize certain aspects of 
the tracker’s data while abstracting away others may 
provide a better fit for the multitude of stakeholders that 
make up the issue tracking system’s audience. 

Full-fledged Bugs and Almost Bugs 
Ideally, our participants felt that every bug found in a 
system should find its way into the issue tracking system to 
serve as a record of its existence and eventual resolution. In 
realty however, the pragmatics of day-to-day development 
sometimes resulted in a less-than-complete record. 
Ephemeral, even if critical, bugs did not always get entered 
after the fact, and others failed to be created due to a fuzzy 
understanding of their root cause. We also found there were 
varying degrees of existence for bugs as they moved from 
being first reported, to confirmed, to completely fleshed-out 
entities within the issue tracking system. 

Most participants commented indirectly about when an 
issue distinctly crossed the necessary threshold to qualify as 
a bug. This, at times blurry, line sometimes depended upon 



 7

the accuracy of its repro steps or the level of detail known 
about its underlying cause: 

In this case I knew that we were monitoring it, so I didn’t 
create the issue for it right at that point. … As soon as I’d 
figured out what it was I logged the issue because I knew 
which program was causing the problem (P02). 

The consensus among our participants was that the issue 
tracker should have as complete a record as possible of all 
the bugs in the system, however there were still certain 
circumstances under which bugs—sometimes important 
bugs—might be missed: “often bugs that are that critical 
don’t even get filed because by the time that you would go 
to file it, the bug is already resolved” (P05). 

To help avoid this problem, some of the participants’ issue 
tracking systems integrated with their organization’s public-
facing email addresses: “any customer who sends email to 
[our company], it goes immediately into our issue tracking 
system. It automatically creates a case every single time” 
(P07). By automatically generating a case for each 
incoming email, more cases ended up in the tracker, and the 
consolidated view of bugs, features, and customer inquiries 
further contributed to the wealth and robustness of 
knowledge available to the development team. 

Design implication #2: The starting point for a bug was not 
always a well-defined point in time and an issue’s visibility 
to others on the team could place an onus of completeness 
on the filer that may prevent them from filing an issue as 
soon as possible. Providing functionality for stakeholders to 
enter semi-private, lightweight “pre-bugs” may increase 
the number of bugs that eventually end up being recorded. 

 A “Flurry of Fields” vs. Ease of Entry 
Certain members of the development team, such as QA, 
team leads, and management, often turned to the sorting 
and filtering capabilities of the issue tracker to gain insight 
into the state of its contents. Having a large collection of 
small, well-compartmentalized fields gave these 
stakeholders the ability to “slice and dice” the tracker’s data 
in the ways they needed. Those who filed bugs, however, 
felt somewhat compelled to not file bugs due to the never-
ending lists of fields to be completed and required fields on 
new issue entry forms. This tension turned out to be the 
number one complaint from our participants who used issue 
trackers with customizable fields. Balancing the number of 
fields associated with an issue and the ease of creating new 
cases was often an ongoing battle: 

Generally, everyone does feel that there’s too many [laughs]. 
… So, it does get frustrating. And we’ve tried at different 
times to pare it down, but then it always explodes back out 
because someone feels they need to indicate something 
different about the issue and there’s no other appropriate way 
to track that property (P01). 

In contrast, those in QA saw “a value behind every single 
field because it [would help them] narrow a query down” in 
the future (P04). This contention primarily existed between 

highly technical personnel with frequent data-mining tasks, 
and the often less reporting-centric role of bug filers. 
Although QA was the predominant source of new bug 
reports, a large portion of cases in our participants’ issue 
trackers also originated from customers and other 
potentially non-technical users of their software. These 
stakeholders would “tend to skip over a lot of these fields” 
(P02) because they were more interested in simply getting 
an issue recorded in the first place, and returning later to fill 
in the rest of the details. 

This tension often resulted in an ever waxing and waning 
number of fields associated with cases in the issue tracker, 
as illustrated by P01 above. Some participants managed to 
find stopgaps that would give them the sorting and filtering 
capabilities they needed, without adding addition fields: 

So we try to, in the title, go through it…just because there’s so 
many [bugs]…I don’t know what the size is now, but there’s 
120 people logging bugs sometimes, so you just try to go 
through once you get the bug, try to put something in the front 
that helps you query for them and sort by the title (P03). 

This makeshift tagging functionality was a wish reflected 
by others on the development team as well, and was used as 
an alternative to adding more fields, even if it was a less 
than ideal one: “so what we ended up doing is, look 
[referring to the title field]…I’m doing my own 
tags…‘testpilot:’ that’s a tag” (P04). 

Part of the desire for a tagging feature stemmed from the 
way tags could address the all-or-nothing problem of 
adding a custom field; because “unless everyone’s using 
[the fields], they’re not useful to anybody [and] that’s the 
really big problem” (P04). By using tags (or an ad hoc 
facsimile), some of the benefits of having custom fields 
could still be attained. Additionally, makeshift tagging also 
supported the need for transient labels and searchable 
fields, such as tagging bugs that needed to be fixed for a 
rapidly approaching beta release. Such temporary labels 
served as useful search terms during the limited time span 
leading up to the associated deadline. 

The need to minimize the number of fields presented to 
issue filers was well recognized and even resulted in Team 
B going so far as to write their own custom abstraction that 
sat on top of their issue tracker for creating bugs: 

Because you kind of have to be an expert with the bug 
tracking system to file good bugs with this system, we wrote a 
very simple interface to encourage non-experts to file bugs. … 
We found that when we put this in, people in other 
departments who have never filed a bug before ever, were 
filing bugs (P05). 

This sentiment was also reflected in Team C, the issue 
tracking software vendor, by not having a single required 
field when filing a new bug report. Getting bugs into the 
issue tracker in the first place, even if incomplete, was a 
primary concern for many on the QA team: “It’s to get 
information disseminated as quickly as possible and then 



 8

you can go back to the person to get more information if 
you need to” (P07). 

The tension between having a rich set of compartmentalized 
data attributes associated with each bug and the ease with 
which they could be created was a common one. 

Design implication #3: Providing lightweight tagging 
capabilities to issue tracking would likely help ease some of 
the tensions between wanting detailed fields associated with 
issues, and maintaining a simplified, hassle-free interface 
for creating cases. It would be important for these tags to 
leverage the issue tracker’s existing robust infrastructure 
for searching, sorting, and filtering issues. 

Different Perceptions of Priority 
One of the cardinal services provided by the issue tracker, 
as described by our participants, was its ability to prioritize 
and order their team’s outstanding work. This prioritization 
allowed developers and those on the QA team to organize 
their personal work and maintain an accurate idea of which 
issues should be addressed first with the limited time 
available for any given milestone. These categories or 
levels of priority also served as a gauge of where the project 
stood in terms of both completeness and relative quality. 
Having many high-priority or “showstopper” bugs open 
presented a very different potential timeline to management 
than having only lower priority bugs left to resolve. 

We found that the priority assigned to an issue could come 
from a number of different sources depending on the 
development team’s workflow and authority structure. 
Sometimes a bug’s priority initially came from the filer of 
the bug or feature request. Often, this priority would be 
redefined at a later time by project managers, team leads, or 
individual developers later in the issue’s lifecycle. 

For example, Team A worked directly in support of a 
separate department on campus and, as such, that 
department’s manager had a well-defined influence over the 
prioritization of projects for the development team: 

It’s up to them to decide, you know, “Hey, we’ve got 2 
projects of seemingly equal priority, what do you want us to 
do?” And they’ll prioritize “Ok, that one’s higher” or “That’ll 
solve more of our problems” (P01). 

Even though this external manager had the ability to specify 
the priority of certain projects, the development team 
retained its ability to govern its own projects depending on 
their scope and size. Those projects requiring less than “one 
man-week” to be completed did not require approval from 
outside the development team. This hierarchical 
prioritization structure also trickled down to influence 
individual developers’ perception of prioritization factors: 
“developers set the priority, but then, you know, there are 
certain ones that are probably more important to the product 
owner than other ones” (P13). 

When examining a single developer’s list of issues, our 
participants expressed the need for finer granularity when 
prioritizing their work: 

We have a pretty simple priority system in [our issue tracker]. 
There’s low, medium, high, or blocker, but when you have 3 
high bugs “Uh, which one’s the first one?” (P06). 

To work around this, some of our participants repurposed 
other features of their issue tracker to address the lack of 
fine-grained control over the ordering of their bugs: “this 
[favorites] menu has a sense of order to it, so I use it as a 
task list...especially if I’m afraid I’m going to forget to 
work on something” (P11). 

Finally, the “ripple effect” of changing code in the project 
also played a significant role in the prioritization of bugs for 
some of our participants, such as the project manager for 
Team B: 

If we’re going to fix this, is this a low-risk, meaning we can 
fix this, it’s not going to impact anybody else, or is this a high-
risk, meaning that if we fix this one model potentially a cut 
scene could break? (P03). 

Although encapsulated within a single “priority” field, often 
the true priority of an issue proved to be multi-layered. 
Project managers, quality assurance, and developers all 
often played a role in determining the priority for a given 
issue and sometimes these priorities conflicted or left room 
for personal discretion. 

Design implication #4: Acknowledging the multitude of 
factors that compose an issue’s priority is important to 
serving the needs of its stakeholders. It may prove useful to 
present users of the issue tracker with a personal, 
persistent, and easily re-orderable list that is separated 
from those strictly ordered based on issue fields such as 
priority. Giving users the means to articulate their personal 
ordering of issues without explicitly affecting its priority 
may help them to better organize their day-to-day work. 

Shades of Ownership: Yours, Mine, or Ours? 
During our study, issue ownership was repeatedly reported 
as being an essential component of the software 
development process. Having the ability to assign an issue 
to a single person via the issue tracker—and having a 
record of that assignment—provided the accountability 
needed by the team in order to complete their work 
effectively. However, this ownership of an issue was not 
always a clear case of “mine vs. yours” throughout its 
lifetime. 

Most teams in our study had a workflow that reflected the 
idea of having a single, high-level owner for each bug, 
feature, or inquiry. In the case of bugs, this ownership 
would often start and end with whoever initially filed the 
issue: “When I log an issue I close it because it’s really for 
me to take it from top to bottom” (P02). This full-circle 
approach to issue ownership was supported, sometimes 
indirectly, by all of the issue trackers examined. The 
process was usually facilitated by a workflow where a case 
(once it was resolved) would be automatically re-assigned 
to the person that originally opened it. When not enforced 
directly by the issue tracker’s workflow rules, this behavior 



 9

was instilled in the development team via their standard 
practices and procedures over time. 

In the issue trackers we examined, an issue could generally 
only be assigned to a single person (or sometimes a 
placeholder representing a group) at any given time. At first 
glance, this may appear to be a limitation, but in reality this 
was the main reason accountability was preserved: 

[Issues are] always assigned to an individual—someone’s 
always responsible for them. None of this diffusion of 
responsibility stuff. So at any point your boss can come and 
say “You’re responsible for this. What’s going on?” (P08). 

The restriction of having only a single active owner at any 
point in time did result in some participants monitoring 
bugs even when they were no longer assigned to them 
personally: “In this case, [the bug would] still be active and 
it wasn’t assigned to me, but I was monitoring it because it 
was a showstopper…like it was a really big deal” (P12). 
This monitoring behavior was also sometimes supported via 
the issue subscription and email notification functionality 
described earlier. Other times, monitoring would take the 
form of flagging or bookmarking the issue by its original 
owner before assigning it to someone else to work on: “I 
start by starring the bug so that I remember that I still kind 
of own it and then assigning it to them” (P11). 

A related ownership issue was brought up by a member of 
Team C, who described the distinction between the 
ownership of a customer support inquiry and its underlying 
bug or feature: “by design we try to separate the inquiry and 
ultimately the actual bug case” (P10). This behavior 
allowed for a relatively clean separation between the 
technical discussion around a fix and the potential 
workaround instructions and public-facing discussion with 
the customer. Hyperlinking between these cases was used 
in an attempt to maintain a unified view of both aspects of 
the issue. Using the linking functionality and/or the other 
methods mentioned previously, the contact person 
responding to the customer might also monitor the 
underlying technical bug in order to notify the customer of 
its status and progress over time. 

Design implication #5: Multiple levels of issue ownership 
exist throughout the software development team. By 
supporting this pattern in the issue tracker itself, 
stakeholders can eliminate their need to manually monitor 
issues that they still partially own. 

Design implication #6: Allowing for distinct facets of an 
issue (e.g., customer communication and its technical 
discussion) to be contained within a single entity while 
remaining easily distinguishable may also prove useful in 
acknowledging the multiple identities of certain issues. 

Privacy, Transparency, and the ‘In’ Crowd 
Just as there is a “vital tension between privacy and 
visibility” in supporting general communication [8], a 
similar tension also exists with respect to the contents of the 
issue tracker. Having stakeholders both inside and outside 

the company wall created tension in whether issues should 
be accessible by various audiences and which portions of 
those issues should be visible. Although developers and 
project managers alike agreed that “you want your 
customers to feel like they’re part of forming the features 
[of your product]” (P11), in some cases, this desire 
conflicted with the inherent sensitivity of much of the 
information being stored within the issue tracking system. 

Getting customer feedback on which features to implement 
and keeping them in the loop as bugs were being resolved 
were both important aspects of the organization-customer 
relationship. Exposing appropriate information to customers 
while protecting proprietary or vulnerability-related details 
was a difficult line to walk: “a lot of that stuff is not 
accessible in [our issue tracker] and would take a lot of 
work to make it accessible without exposing private 
information” (P09). 

This dichotomy between “insider” and “outsider” views of 
the issue tracker was a palpable source of frustration to 
those on the development team who frequently interacted 
with customers: 

The benefit of [our issue tracker] is that it’s really rich and you 
can see the entire issue history and a whole bunch of other 
stuff. But the downside is that it’s a fairly closed system in 
terms of there’s a clear sense of who’s in and who’s out, and 
customers are sort of out. Even though we can collect 
information from them, they can’t interact with the system 
directly (P10). 

An issue’s representation as seen by those internal to the 
company was often accompanied by a public-facing 
counterpart in a manner much like the customer 
communication and technical discussion facets described in 
the previous section. Unfortunately, in commercial 
development teams, striking the necessary balance between 
customer transparency and the security of sensitive 
information often resulted in an entirely closed system with 
no public presence outside of a bug reporting interface. 

Design implication #7: Careful consideration of the 
multiple potential audiences for an issue and its attributes 
is necessary when developing external-facing interfaces 
and views. Graduation between fully-private and fully-
public data may be needed and a clear distinction among 
these levels of privacy should be maintained in order to 
gain transparency without risking undue exposure of 
sensitive information. 

DISCUSSION & CONCLUSION 
One of our participants, P14, had been working with issue 
trackers of various sorts for over 28 years: 

My first 8 were actually a paper tracking system. A call would 
come in from a customer and the call would be time-stamped, 
it would indicate on the call what the problem was and it 
would go into some box—physically some little box—and 
then you’d filter through and look for your name and pick it 
up if it was assigned to you (P14). 



 10

Issue trackers have come a long way from this initial 
physical form, but at their core, they still remain primarily 
focused on simply tracking and archiving issues. What has 
changed over time however—in addition to the transition 
from physical to digital media—is the increasing use of 
issue tracking systems as an essential form of 
communication within the development team. 

Issues still frequently come in from outside customers, but 
instead of taking the form of a phone call that is transcribed 
onto a physical card, new issues may now be automatic 
crash reports submitted by the customer’s software, online 
entry forms completed by customers, or generated from 
incoming email. Instead of assigning bugs to one another 
and indicating their status by placing them into physical 
boxes, these operations are now done electronically. 

As issue trackers have evolved to become more central to 
the software development process, they have also begun to 
service many of the conversational, archival, and 
organizational needs of that process. Addressing the vastly 
varying needs of the software team has not come without its 
challenges, however. Supporting customer inquiries while 
maintaining the highly technical conversation surrounding 
its resolution has sometimes resulted in a fragmented 
representation of what is essentially a single issue. The 
issue itself now ties together a wide variety of resources and 
is leveraged by an increasing number of stakeholders in 
varying ways. In order to support these stakeholders, 
properly faceted views of this wealth of underlying data 
within the issue tracker need to be presented. These may 
take the form of per-developer to-do lists, filtered public-
facing views, or lists that distinguish between the 
perception of future work and the reality of identified bugs. 

From a CSCW perspective, issue tracking systems now 
play a significant supporting role in the communication and 
collaboration within software development teams. In 
addition to providing developers with prioritized to-do lists, 
issue trackers have come to embody a massive amount of 
organizational knowledge. 

To conclude, we have presented results from a qualitative 
study of small, collocated software development teams and 
have responded to Aranda and Venolia’s call to uncover the 
“hidden coordination dynamics” surrounding issue tracking 
systems [3]. Our contributions include: 

• Articulating the many roles of the issue tracker 
(knowledge repository, boundary object, coordination 
hub, and communication channel); 

• Describing the many areas where stakeholder perceptions 
vary (types of lists, degrees of issue existence, field 
congestion, priority perceptions, shades of ownership, 
and the tension between transparency and privacy); 

• Identifying seven implications for the design of issue 
tracking and software development coordination tools. 

ACKNOWLEDGEMENTS 
We would like to thank the software companies and their 
employees that participated in our study for their time. We 
would also like to thank Steven Voida for his input and 
feedback on early drafts of this paper. This research was 
supported in part by the National Sciences and Engineering 
Research Council of Canada, the Informatics Circle of 
Research Excellence, Alberta Ingenuity, the 
NSERC/iCORE/Smart Technologies Chair in Interactive 
Technologies, and by NSERC’s NECTAR Strategic 
Networks Grants Program. 

REFERENCES 
1. Ackerman, M.S. and Halverson, C. Considering an 

organization’s memory. In Proc. CSCW 1998, ACM 
Press (1998), 39–48. 

2. Anvik, J., Hiew, L., and Murphy, G.C. Who should fix this 
bug? In Proc. ICSE 2006, ACM Press (2006), 361–370. 

3. Aranda, J. & Venolia, G. The secret life of bugs: Going 
past the errors and omissions in software repositories. In 
Proc. ICSE 2009, ACM Press (2009). 

4. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, 
R., and Zimmermann, T. What makes a good bug report? 
In Proc. FSE 2008, ACM Press (2008), 308–318. 

5. Churchill, E.F., Trevor, J., Bly, S., Nelson, L., and Cubranic, 
D. Anchored conversations: Chatting in the context of a 
document, In Proc. CHI 2000, ACM Press (2000), 454–461. 

6. Corbin, J. and Strauss, A. Basics of qualitative research: 
Techniques and procedures for developing grounded 
theory (3rd Ed.). Sage Publications, Los Angeles, 2008. 

7. Dingsøyr, T. and Røyrvik, E. An empirical study of an 
informal knowledge repository in a medium-sized 
software consulting company. In Proc. ICSE 2003, 
IEEE Computer Society (2003), 84–92. 

8. Erickson, T., Smith, D.N., Kellogg, W.A., Laff, M., Richards, 
J.T., and Bradner, E. Socially translucent conversations: 
Social proxies, persistent conversation, and the design of 
“Babble.” In Proc. CHI 1999, ACM Press (1999), 72–79. 

9. Fenton, N. and Neil, M. A critique of software defect 
prediction models. IEEE Transactions on Software 
Engineering, 25, 5 (1999), 675–689. 

10. Grinter, R. E. Using a configuration management tool to 
coordinate software development. In Proc. COCS 1995, 
ACM Press (1995), 168–177. 

11. Hollan, J., Hutchins, E., and Kirsh, D. Distributed 
cognition: Toward a new foundation for human-
computer interaction research. ACM TOCHI, 7(2), 
(2000), 174–196. 

12. LaToza, T.D., Venolia, G., and DeLine, R. Maintaining 
mental models: A study of developer work habits. In 
Proc. ICSE 2006, ACM Press (2006), 492–501. 

13. Nardi, B.A., Whittaker, S., and Bradner, E. Interaction 
and outeraction: Instant messaging in action. In Proc. 
CSCW 2000, ACM Press (2000), 79–88. 

14. Perry, D.E., Staudenmayer, N., and Votta, L.G. People, 
organizations, and process improvement. IEEE 
Software, 11, 4 (1994), 36–45. 



 11

15. Pressman, R.S., Software engineering: A practitioner’s 
approach (6th Ed.), New York, McGraw-Hill, 2004. 

16. Reis, C.R. and de Mattos Fortes, R.P. An overview of the 
software engineering process and tools in the Mozilla project. 
In Proc. Workshop Open Source Software Development, 
University of Newcastle upon Tyne (2002), 155–175. 

17. Star, S.L. and Griesemer, J.R. Institutional ecology, 
‘translations’ and boundary objects: Amateurs and 
professionals in Berkeley’s Museum of Vertebrate Zoology, 
1907–39. Social Studies of Science 19, 3 (1989), 387–420. 

18. Ye, Y. Supporting software development as knowledge-
intensive and collaborative activity. In Proc. WISER 
2006, ACM Press (2006), 15–22.  

 


