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ABSTRACT 

Innovative possibilities of interacting with touch-based devices come with the cost of having 

interaction designers to determine if users consider the interactions natural and easy to use. It is 

safe to assume that user-centered design helps creating applications that better fit user 

requirements and one of its steps is prototyping. However, interaction designers sometimes skip 

the prototyping phase due to time or economic constraints or for a lack of proper tools. In order 

to help designers of touch-based applications this research presents an approach that allows 

designers to create their own application-specific hand, finger or tag-based gestures and evaluate 

these gestures using sketch-based prototypes for touch-based applications without requiring any 

textual programming. The development of a sketch based prototyping tool followed a user 

centered design approach with requirements provided by user experience designers from 

industry. The whole application suite was evaluated to determine its fitness for helping designers 

of touch-based applications. The evaluation process was conducted in three steps: first, a study 

with software developers determined the efficacy of the tool to create custom gestures for 

performing tasks in sketch based prototypes. A follow up evaluation investigated the 

performance of the tool as a prototyping tool for tangible applications. Finally this thesis reports 

two cases where this solution helped in the design of real touch-based applications.  
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CHAPTER ONE : INTRODUCTION 

“We must design our technologies for the way people actually behave, not the way we would like 

them to behave” [1 p. 12] 

Designing Windows, Icons, Menus and Pointers (WIMP) based applications is a well-known 

challenge. This challenge becomes even bigger to design for touch-based devices and gesture 

based applications [3, 5, 6, 11, 12, 34 and 35]. The increasing popularity of multi-touch tabletop 

and surface computing opens up new possibilities for interaction paradigms, which allows 

designers to design applications that can be interacted with in new and different ways, through 

gesture-based and touch-based interactions that can improve or hamper the user experience [1, 2 

and 3]. Interactive Tabletops and Surfaces (ITS) are highly visual systems, which are usually 

controlled by touches and gestures performed on the device, enabling users to directly interact 

with the application using their hands or tangible objects. For ITS applications, a preferable user 

interface integrates gesture-based interactions into the applications [6]. Frameworks such as 

Windows Presentation Foundation (WPF) [7] provide a set of pre-defined gestures that 

application developers can use easily [8 and 9]. However, the literature shows many examples of 

gestures that are not available out of the box [6 and 10]. When creating gestures for interacting 

with ITS applications, interaction designers have to determine if users consider them natural, 

understandable and easy to use [6].  

In the context of ITS applications, designers can explore innovative ways for users to interact 

with their applications; this design might drastically hamper the user experience if Human 

Computer Interaction (HCI) principles are not taken in consideration [2]. What is necessary is a 

way to help designers follow HCI principles not only on the design of the interface of ITS 
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applications but also the interactions. Previous research on gesture-based interaction has shown 

problems with the design of gestures, the meaning of touch and gestures and how context 

influences them [3, 5, 6, 11, 12, 34 and 35]. In the gesture design scenario, there are two main 

challenges: 

 the effort, time and technical expertise required to create gestures [13, 14 and 15]; 

 the design of gestures that are suitable for specific tasks, context and users [5 and 12]. 

Research in the current state of design of multi-touch applications shows a lack of processes and 

tools to support the design of these applications [3, 5 and 16]. The authors of these studies bring 

up the need to allow designers to follow up methods to improve the design of multi-touch 

applications, such as user-centered design [35].  

Having users involved early in the process through iterative prototypes has being widely 

researched and the advantages of sketching and prototyping to improve the design of 

applications has been proved successful [4, 17, 18, 19, 20, 21 and 22].  Especially in the novel 

scenario of gesture and tangible based applications, where Norman and Nielsen [2] argued that 

gestures might be harmful for usability designers need to evaluate if the gestures are improving 

usability. As shown by Moggride [4], Krippendorff [23] and Buxton [24] sketching has shown to 

be a valuable aid to designers in order to validate ideas with users in early stages of the design. In 

any activity of design, sketching has been proved to be a crucial part of it and several 

contributions [4, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 39 and 42] defend the importance 

and the benefits of sketching and prototyping to improve design ideas by failing early, often and 

then, learning from mistakes. While these authors defend the use of paper as a medium to 
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transmit ideas, sketching the dynamic of applications lacks tool support [24] especially in 

applications that use innovative interactions, mainly ITS applications.  

Memmel et al. [25] studied how prototyping can elicit requirements. They recommend the use of 

abstract prototypes, as filling in details too early might lead to premature decisions, leading to 

wasted effort and time spent on these details. Abstract prototypes help designers get important 

aspects of the content and organization of the user interface while deferring details about how the 

final application will look like and operate [26]. These studies motivated this research by 

showing the importance of prototyping in a UCD process which ultimately can help designers fit 

the workflow in agile iterations.  

Prototypes allow designers to evaluate the output of a system, while the input is assumed to be 

obvious; they allow designers to evaluate what users want to do, while the interactions and how 

users want to do certain tasks is not a trivial task [22]. If the interaction input is more complex, 

paper prototypes are not sufficient [17]. Based on this limitation, the motivation to this thesis is 

to make developing of usable and gesture-based applications easier and better fitting user’s 

needs. For this issue, a desired solution has to: 

 make it easy to design gestures, respecting the time and cost constraints of prototyping; 

 make it easy to evaluate if these gestures are usable. 

1.1 Research Goals 

This research focuses on identifying the challenges in designing the interface and interaction of 

multi-touch and tangible applications. The questions the author wants to answer are: 
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 new technologies allow new and unconventional ways of interaction. How can this 

solution serve as a basis to help basic HCI principles such as user-centered design to be 

followed in designing new interaction ideas? 

 How does a prototyping tool that can evaluate custom gestures affect the design of touch 

and tag-based applications? 

 What are the benefits of allowing designers to create custom gestures?  

The overall goal of this research is to provide designers with a tool that helps them deliver highly 

useable ITS applications (multi-touch, gestures and tangibles). This goal consists of the 

following sub-goals:  

 helping designers create custom gestures with no programming effort;  

 support quick idea generation through sketching;  

 support usability studies through prototyping evaluation.  

The chosen approach is to provide designers with a sketch based tool for evaluating ITS 

interfaces and interactions in the context of the tasks in the application.  

1.2 Contributions 

This research has two main contributions: first, ProtoActive which is composed of: 

 a storyboarding sketching tool, designed to draft prototypes for ITS applications; 

 an integrated gesture learning tool – Intelligent Gesture Toolkit (IGT) that uses a 

specialized machine learning (anti-unification) method to create gesture definitions based 

on samples of gestures; 
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 a tool that emulates ITS applications and allows designers to gather feedback on their 

usability. 

Second, this research provides a study that evaluates the benefits and limitations of ProtoActive. 

An overview of ProtoActive functionality is shown in Figure 1. It explains the cycle proposed in 

this research, where a designer creates a prototype of an ITS application and evaluates the 

interactions in it, having through this, early user feedback about the design of the interface and 

interactions of the application. The whole cycle shown in Figure 1 can be done without any 

programming effort or any of the implications of it e.g.: setting up work station or managing 

source code.  

 
Figure 1 ProtoActive evaluation cycle 
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1.3 Thesis Structure 

The following chapter discusses background information necessary to better understand this 

thesis. This is followed by related work of this thesis, showing studies that relate to this research. 

Chapter Four explains ProtoActive in detail, showing the user centered design approach used to 

design it and how it integrates with IGT. Chapter Five explains IGT, the gesture definition tool 

and its contributions regarding the anti-unification approach used to learn custom gestures and 

the capabilities of the gesture recognizer framework used, including it capabilities to detect hand 

postures and fiduciary markers. Chapter Six shows the evaluation of our solution, how it was 

conducted and how the results found answer our research questions. Finally Chapter Seven 

concludes this thesis, showing the contributions of our findings and how this thesis can be 

improved as a future work in the area.  
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CHAPTER TWO : BACKGROUND 

In order to facilitate the understanding of this thesis, this chapter will explain the application 

domain of the solution proposed here. This will be followed by a presentation based in the 

current research about the taxonomy of prototyping and how it relates to sketching in the 

designing domain. Finally, this chapter provides a definition for gestures and tangibles that will 

be used in this thesis. 

2.1 Application domain and technical aspects 

ProtoActive is a prototyping tool designed to help designers to create and evaluate Interactive 

Tabletop and Surface (ITS) applications and its interactions. For understanding purpose these 

interactions will be referenced as gestures and are described with further detail in section 2.2. 

ProtoActive is currently supported in the following devices: 

 Microsoft Surface 1 [27]; 

 Microsoft Surface 2 (PixelSense) [28]; 

 Tabletops, tablets or desktop computers with touch enabled monitors, running Microsoft 

Windows 7 or Microsoft Windows 8. 

ProtoActive is a Windows Presentation Foundation (WPF) [7] application. It has two versions: 

one using the Surface SDK 1 and another one using Surface SDK 2. The differences between the 

two versions are: 

 The version for Microsoft Surface 1 uses Microsoft Surface SDK 1 visual controls and 

the class that manipulates the touch points uses the Microsoft Surface 1 contact points. 

This version can only be used in a Microsoft Surface 1 device. The sketching canvas on 

ProtoActive allows multi-touch drawing. 
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 The version for Microsoft Surface 2 uses WPF standard controls and Microsoft Surface 

SDK 2 controls. In the Microsoft Surface SDK 2, the touch points from standard WPF 

applications were unified with Microsoft Surface 2 touch points. This allowed the version 

for Microsoft Surface 2 to be used in any device running Microsoft Surface 2 Runtime. 

Due to performance issues, the sketching canvas in ProtoActive for Microsoft Surface 2 

had to use a canvas from standard WPF as using the multi-touch canvas from Microsoft 

Surface SDK 2 showed performance issues for multi-touch. This makes that the drawing 

canvas for ProtoActive in Microsoft Surface 2 only working with single touch. 

ProtoActive gesture learning and recognition mechanisms use a modified version of Gesture 

Toolkit and its proprietary language Gesture Definition Language (GDL) using MGrammar [4]. 

The details of the modifications to Gesture Toolkit and to GDL are explained in section 5.3. 

2.2 Gestures 

As defined by Mitra and Acharya in 2007, gestures can be static or dynamic [29]. In static 

gestures, a user assumes a certain pose using hands and fingers, while a dynamic gesture can be a 

stroke or set of strokes on the touch surface. Some gestures combine both, dynamic and static 

elements. Gestures defined in IGT, differently from stroke based gesture recognizes such as $N 

[65] and RATA [15], contain information about order, direction and time, allowing IGT to 

recognize both types of gestures (static and dynamic). ProtoActive contains a gesture recorder 

(IGT) which allows the designer to create custom gestures and use them during the evaluation of 

the prototype. In this thesis, gestures are considered as the following interactions on an ITS 

device: 

 single or multi-touch 2D touches; 
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 hand postures; 

 detection of fiduciary markers; 

 concurrent interactions (multiple fingers, hands and fiduciary markers). 

The gestures defined in IGT are available to be used in prototypes created in ProtoActive, 

allowing designers to evaluate the interaction of the prototypes through custom gestures. 

ProtoActive considers the touch based interactions that occur on the surface of the devices, it 

does not include interactions above tabletop, interactions in front a display (only when it 

touches), and multi-surface interactions. The detection of fiduciary markers allows the definition 

of a subset of interactions: tangibles interactions. 

2.2.1 Tangibles  

By allowing designers to define gestures that detect fiduciary markers, ProtoActive allows 

designers to prototype the detection of physical tangibles. By attaching a fiduciary tag in a 

physical object, a designer can use it as a tangible in ProtoActive and have users evaluate them. 

Figure 27 and Figure 41 illustrate tangibles that can be detected on ProtoActive by their fiduciary 

markers. Any physical object with a flat surface where a fiduciary mark tag can be attached can 

be used in ProtoActive. 

2.3 Sketching and prototyping 

Having more sophisticated and interactive sketches allows designers to take advantages of 

having users involved and providing feedback about the interactions in ITS applications. 

Memmel et al. [25], propose the iterative use of low-fidelity prototypes in order to validate steps 

of design and development, resulting in a more iterative and agile process. Further in the design 

process, sketches can become more sophisticated and goal oriented, thus the time spent onto 
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them changes, also changing the expectations regarding them. This distinction defines the 

sketches as prototypes [24 p.139].  

Buxton [24 p.139] makes a distinction between sketches and prototypes as having different 

purposes due to the difference between the time spent on them (see Figure 2); even though both 

are tools that can be used in early stages of the design, sketches are earlier drafts whereas 

prototypes are created later in the design process when ideas are starting to converge. By using 

prototypes, not only design ideas but also requirements of software can be brought to attention 

and properly addressed in early stages of the development. The advantage of prototyping is that 

it allows designers to experiment and invent [30]. Interactive prototypes then help “interaction 

designers to define user interfaces, and evaluate usability issues in early stages of design” [31]. 

While designing ITS applications, interactions play an important part in the design of interfaces 

and can drastically hamper interfaces by having complicated or non-intuitive gestures for 

interacting with them.  

 
Figure 2 - Sketch x Prototype. Extracted from [24 p.138] 



 

11 

Rudd et al. [32] suggest advantages and disadvantages of low-fidelity and high-fidelity 

prototyping, as shown in Table 1. Considering the advantages and disadvantages in Table 1, the 

solution proposed in this thesis aims to take the advantages of low-fidelity prototypes and it 

proposes to address the disadvantages.  

Table 1 Low- & High-Fidelity Prototyping, based on [32], extracted from [25] 

Type Advantages Disadvantages 

Low-Fidelity less time & lower cost  

 

evaluate multiple design 

concepts  

 

communication device  

 

address screen layout issues 

limited usefulness for 

usability tests  

 

navigational and flow 

limitations  

 

facilitator-driven poor 

specification 

High-Fidelity partial/complete functionality 

 

interactive  

 

user-driven  

 

clearly defines navigational 

scheme 

 

use for exploration and test  

 

marketing & sales tool 

time-consuming to create  

 

inefficient for proof-of-

concept designs  

 

blinds users to major 

representational flaws  

 

management may think it is 

real  

 

The disadvantages that motivated this research are drawbacks in low-fidelity prototyping that 

could be addressed and some of the features from high-fidelity prototyping that could be 

incorporated. This research aims in providing a prototyping tool that incorporates interactivity in 

the level of high-fidelity prototypes allowing usability tests based on interaction but having the 

low effort cost of low-fidelity prototypes allowing the evaluation of multiple design and 

interaction concepts. Rudd et al. [32] also discuss the flow limitations of low-fidelity prototypes 
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as due to interactivity by the user being somewhat restricted. In low-fidelity prototypes, the user 

is dependent on the facilitator to respond to the commands of the user to turn pages on the 

prototype or advance screens to simulate the flow of the application. This issue was addressed by 

providing a set of facilities that allow designers to create the simulations of different flows with 

low effort (see section 4.4).  

The previous categorization of prototypes in a dichotomy between low-fidelity and high-fidelity 

is not always valid due to the complexity of some prototypes and their purpose. The following 

section shows what has been researched to improve a formalization of prototypes categories.  

2.4 Types of prototypes 

An early study in 1984 by Zelkowitz [33] visualizes the different types and purposes of 

prototypes as branches in the vertical life of software cycle. An example can be seen in Figure 3. 

 
Figure 3 Tree visualization of a prototype in a software life cycle. Extracted from [33] 

 

The study is limited to a certain variety of trees, thus limiting the validity of the study. This study 

shows that the concern about a taxonomy to categorize prototypes is not a recent problem. 

Nevertheless, terms need to be coined in order to facilitate communication, so prototypes are 
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commonly classified in a fidelity dichotomy that can be low-fidelity or high-fidelity. Low-

fidelity prototypes are considered ostensibly low-cost methods that often are presented as 

sketches on paper. High-fidelity prototypes have a higher cost and are often used in late stages of 

development, with a presentation closer to the final product. With the popularity of prototypes, 

this dichotomy is becoming insufficient to describe the variety of prototypes being used today 

[20]. In order to avoid misclassifying the prototyping approach used in this thesis, we will first 

present the current state of research in formalizing the types of prototypes. This will be followed 

by an explanation about which type of prototypes can be covered with ProtoActive on the light 

of the presented categories. This should not be mistaken by classifying the prototyping tools as 

done by Van den Bergh et al. [31]. The following studies classify the type of prototype and will 

be used to classify ProtoActive in terms of the kind of prototypes that can be created with it. 

2.4.1 Mixed fidelity 

McCurdy et al. [20] propose a mixed-fidelity classification that differs from mid-fidelity. In mid-

fidelity, prototypes are neither low nor high-fidelity while in mixed-fidelity prototypes have 

aspects of low and high-fidelity. They present a framework for characterizing prototypes along 

five dimensions:  

2.4.1.1 Level of Visual Refinement 

The prototypes created in ProtoActive are sketch based with a low level of refinement. As 

mentioned by Buxton [24], prototypes with a low level of detail and refinement encourage users 

to provide more feedback. In later stages of design, ProtoActive can be used in collaboration 

with image editors and tools to create high-fidelity prototypes to explore the functionality and 

present flow between pages of the prototype. This functionality is better explained in section 

4.3.1.7. 
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2.4.1.2 Breadth of Functionality 

Different breadth of functionalities can be covered with ProtoActive as it allows designers to 

easily create several pages in the prototype that can cover a wide range of functionality.  

2.4.1.3 Depth of Functionality 

Different depths of functionality can also be achieved with ProtoActive. In the same fashion that 

a whole application can be prototyped using ProtoActive, a single task or behavior can be 

designed and evaluated using ProtoActive. 

2.4.1.4 Richness of Interactivity 

In the design of touch-based applications, ProtoActive is heavily based in interactivity as it 

allows designers to create their own interaction techniques through custom gestures and use them 

to interact with the prototype, simulating the behavior of the application through page transitions 

triggered by gestures. 

2.4.1.5 Richness of Data Model 

No mechanism to communicate with any form of data source was provided to keep designers 

from spending too much time with the prototypes in details such as populating data sources. 

2.4.2 The Anatomy of Prototypes 

The study by Lim et al. [21] focuses on the support for design exploration in the prototype. Their 

studies reveal two key dimensions: prototypes as filters and prototypes as manifestations. Their 

framework is based on two fundamental aspects of prototypes: prototypes leading the creation of 

meaningful knowledge about the final design as envisioned in the design process; or prototypes 

as manifestation of design ideas. Here this difference is explained in prototypes as filters or 

prototypes as manifestations. 
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2.4.2.1 Prototypes as Filters 

The term filtering is used to imply that a designer uses prototypes to screen out certain details 

and put emphasis in others. ProtoActive allows designers to create interaction based prototypes, 

where the design and visual details can be set apart and the gestures used to interact with the 

application can be evaluated. The author of this thesis recommends that the study by Hinrichs 

and Carpendale [5] is considered, which suggested that interaction design should take into 

consideration the context in where the gestures used to interact with the application occur. 

2.4.2.2 Prototypes as Manifestations 

The manifestation of a prototype can be determined considering the economic principle of 

prototyping: “the best prototype is one that, in the simplest and most efficient way, makes the 

possibilities and limitations of a design idea visible and measurable” [37]. On the light of this 

definition, by allowing designers to evaluate their prototypes in the device where the final 

application will be used, ProtoActive makes clear the constraints and possibilities of a design 

idea, taking advantage of aspects of the device such as size constraints, orientation of the device 

and interaction possibilities. This allows users to have a good grasp of the experience the final 

product will offer.  

 

 

  



 

16 

CHAPTER THREE : RELATED WORK 

This thesis proposes a process for designing ITS applications and presents a prototyping tool 

coupled with a gesture learning tool that together allows designers to define gestures and 

evaluate them in early stages of the design process with no programming effort. This chapter 

presents the current research in the following fields: 

 design of multi-touch applications; 

 research in prototyping; 

 existing tool support for prototyping; 

 gesture recognition and definition with emphasis on tools to aid the definition of custom 

gestures; 

 design of tangible applications, its problems and tools to help designers. 

The following sections in this chapter will show the related work in the fields mentioned above. 

3.1 Design of multi-touch applications 

Hesselmann and Boll propose Surface Computing for Interactive Visual Applications (SCIVA), a 

user-centered and iterative design approach addressing some challenges in designing ITS 

applications [3]. Their design process gives a general overview of the most important aspects in 

design of ITS applications. The solution in this thesis provides a tool suite that allows designers 

to follow three steps of the SCIVA design process: defining manipulation functions, conducting 

user studies to create gestures and evaluating the system with the user to detect flaws from 

previous steps.  Also studying ways to interact with tabletops, Hinrichs and Carpendale found in 

2011, that the choice and use of multi-touch gestures are influenced by the action and social 

context in which these gestures are performed, meaning that previous gestures and context 
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influence the formation of subsequent gestures [5]. Also supporting the contextualization of 

interaction is Krippendorff [23] highlighting that design is not only about making things but also 

about making sense of things. Both studies suggest that to evaluate gestures it is necessary to 

contextualize them in the scenario that they will be used. 

North et al. [34] studies how users interact with objects in multi-touch surfaces and how 

designers can create intuitive and natural gestures. They start from the assumption that 

interacting with objects on a multi-touch surface is an experience closer to manipulating physical 

objects on a table than using a desktop computer with keyboard and mouse. They study whether 

familiarity with other environments influences how users approach interaction with a multi-touch 

surface computer as well as how efficiently users complete a simple task. Among their findings, 

they show that users who started with the physical model had a better performance when 

accomplishing the task on the surface, which supports their initial assumption, but they also 

suggest that more complex gestures, (e.g.: using two hands for a selection) might not work well 

in a surface tabletop, meaning that there should be a balance between physical metaphors and 

supporting gestures to invoke automation. 

Trying to understand users’ preferences for surface gestures, Morris et al [35] compare two 

gesture sets for interactive surfaces: one created by end-user elicitation and one authored by three 

HCI researchers. The study used the feedback of 21 participants on 81 gestures which were 

previously created by a mixture of end-users and HCI researchers. Their results showed three 

main findings:  

 their participants had similar gesture preference patterns;  

 these preferences were towards physically and conceptually simple gestures; 
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  these simple gestures had been designed by larger sets of people, even though 

participants did not know how many authors created the gesture.  

Their findings suggest that participatory design methodologies should be applied to gesture 

design, such as the user-centered gesture elicitation methodology. 

Studying the inconveniences that can be generated by touch based interactions, Gerken et al. [36]   

focuses on how users compensate for conflicts between non-interactivity and interactivity 

created by unintended touch interaction when using a multi-touch enabled tabletop. They 

conclude that touch-enabled devices can lead to “touch-phobia”, reducing pointing and leading 

to less efficient and fluent communication. They suggested solution is to make touch smarter and 

more context-aware.  

Norman and Nielsen [2] published a usability study that highlights the new concerns that should 

be addressed by designers when creating new touch-based interfaces and ways of interacting 

with them. The authors propose a balance between creative means of interacting while 

preserving basic HCI principles, but guidelines for processes that can help designers follow a 

user centered design approach in the development of ITS applications are limited [3]. Hence, 

there needs to be an objective way to evaluate the usability of gesture-based applications that can 

be conducted in early stages of the design preserving HCI principles and having users involved 

in early stages of the design, helping designers follow a user centered approach.  

3.2 Research in prototyping 

Holzman and Vogler [37] studied the problem of prototyping applications that have a major 

focus in interactivity. They state that due to mobile applications being used in a rich real world 

context that for example affects how a user holds the phone or how many fingers a user can use, 
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paper prototypes do not provide a good emulation of the scenario. However high-fidelity 

prototypes developed for the mobile device are costly and require too much effort for a 

prototype. They propose a system that allows the creation of sketch prototypes for mobile 

applications. Despite their focus in interactivity and taking advantage of the device, their 

prototyping approach does not allow designers to try different gestures that do not come built in 

the prototype. A similar study with designing mobile applications [38] also suggests that the 

prototypes should follow the size constraints of the device the application it will run on. Despite 

ProtoActive currently not being supported by any mobile device, evaluating the prototypes with 

the constraints of the target device was also considered when developing ProtoActive. This 

allows designers to have a real-size control design allowing users to evaluate the prototypes 

within the size constraints of the final application. 

Unger and Chandler [39] explain the benefits of paper prototyping as a low-cost, fun and 

effective way to get user feedback and uncover design-related issues before being heavily 

invested in the project. For digital prototypes, the authors describe the outcome of these digital 

prototypes based on the timeline, the audience (or who will use the prototype) and what type of 

resources, tools and skills are available to create the prototype. The timeline will define how 

much effort and time a team wants to put into prototyping. By knowing your audience, a team 

can define specific parts of the software to prototype and where the prototype should the focus 

(e.g.: depending on task to be tested, does it matter if the prototype is black-and-white or if it 

actually reflects the colors of the intended final application?). Finally, the type of resources and 

skills will set the constraints for which tools a designer will use to create a prototype. 

Considering these factors, a digital prototyping tool will benefit a wider range of designers by: 

 allowing the creation of rapid sketches that can fit into time-constrained projects; 
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 giving designers the chance to focus in different aspects of a prototype, for example the 

visuals or the interactions; 

 focusing in its learnability by not requiring expert skills such as software programming in 

order to create prototypes. 

The potential differences between paper-based or computer based low-fidelity prototypes are 

also studied by Sefelin et al. [18]. Their study leads to two main results: paper and computer-

based prototypes lead to almost the same quality and quality of user statements; and subjects in 

general prefer to evaluate computer prototypes. The second result suggests that computer-based 

low-fidelity prototypes should be the one to always use, keeping in mind how comfort the 

participant is, as this is one of the major factors of a successful usability study, but the authors 

claim three points on where papers should be a preferable medium for prototyping:  

 when there are no available prototyping tool to support the ideas;  

 when the tool requires expertise that members of the design team might not have;  

 when tests should lead to a lot of drawings.  

Based on these results, the advantages of the paper prototype over a computer-based low-fidelity 

prototype can serve as requirements for a prototyping tool that aims to have the benefits of low-

fidelity prototyping. This tool should allow the expression of the ideas and customization from 

the designers and require minimum expertise to use. A low-fidelity prototyping tool should also 

allow participants to easily sketch over the interface as a medium of feedback during evaluation. 

The importance of creating prototypes for ITS applications is shown in a study by Derboven et 

al. in 2010 [22]. Their study introduces two low-fidelity prototype methods for multi-touch 

surfaces. In comparison to this thesis, their approach consists of “physical” materials such as 
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paper, cardboard and markers, while our approach proposes an ITS tool, allowing users to 

evaluate the prototypes on the device the applications are designed for as well as the custom 

interactions that will be used in the final application. 

The following sections will discuss prototyping tools created in academia and published as 

scientific papers. 

3.2.1 CrossWeaver 

CrossWeaver [40] allows a user interface designer to sketch storyboard scenes on the computer, 

specifying command transitions between scenes. CrossWeaver also allows scenes to target 

different output devices, this means that prototypes can run across multiple standalone devices 

simultaneously, processing multimodal input from each one this allows for a wider variety of 

inputs. The prototypes can be interacted via keyboard, mouse, stylus pen or speech commands. It 

also allows designers to track the interactions of users evaluating the prototype. One of the 

drawbacks is the lack of customization as the interactions that are possible to evaluate are the 

pre-built interactions that come with CrossWeaver (with the exception of using wizard of Oz 

recognition). 

3.2.2 Raptor 

Raptor is a sketching tool for tabletop games [41]. Raptor shows how tabletop interaction can 

support game design by enabling collaboration in the design and testing process. One of the 

drawbacks of the tool is that it requires a preparation process in order for a designer to be able to 

get the benefits from the tool. It requires a software developer to create a library of the objects 

used in the gameplay to allow designers to create prototype of games with them (e.g.: in their 

study, a 3D model of a racing car), which adds cost and effort to the prototyping stage. Also, 
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raptor was built to enable designers to prototype a specific subset of tabletop games, this 

limitation precludes games with large amounts of vertical motion or occlusion from above. 

3.2.3 Sketchify 

Obrenovic and Martens propose Sketchify, a tool for sketching user interfaces [42]. Sketchify 

combines elements of traditional freehand sketching functional extensions and end-user 

programming tools, such as spreadsheets and scripting.  Sketchify’s approach choose to cover a 

wide range of different technologies by allowing designers to interact with these technologies 

during prototype. This approach allows designers to control a wider range of technologies still in 

the prototype phase but comes at the cost of requiring the expertise to work with these 

technologies and textual programming from the designers. 

3.2.4 UISKEI 

UISKEI is a pen-based sketch prototyping tool that converts sketches into known User Interface 

(UI) widgets (e.g.: buttons and drop down lists). The designer can use the generated UI 

components to navigate through the pages in the prototype [43]. While UISKEI is a pen-based 

prototyping tool, it creates prototypes of WIMP applications while ProtoActive creates 

prototypes of gesture and tag based interfaces. A drawback from UISKEI is that it turns sketch 

interfaces into UI widgets which takes off what according to Buxton [24] is one of the benefits of 

sketch-based prototypes is that the unfinished look of the interface allows users to focus in what 

the designer wants to evaluate and encourages users to provide more feedback.    

3.2.5 SILK 

SILK (Sketching Interfaces Like Krazy) [44] was an early prototyping tool developed by James 

Landay in 1996. SILK is a sketch-based user interface design tool where a designer can sketch 
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various states of the user interface, to specify the behavior of the interface. The sketches are 

assembled together into a storyboard. It also incorporates widget recognition, which means that 

when a designer draws a sketch similar to a button, SILK will recognize it and turn it into a 

button. By using the storyboard to visualize all the pages, by drawing an arrow from a user 

interface object in one sketch to another sketch page, the designer says that, in the user interface, 

if the user clicks on the object, the program will transition to the screen shown at the end of the 

arrow. The functionality to turn sketches into UI widgets has the same drawback as explained in 

UISKEI (section 3.2.4). SILK also does not allow the evaluation of the input of the user, only 

evaluating the output of an interaction (e.g.: turning pages when user clicks).  

3.2.6 DENIM 

DENIM is a sketching tool for prototyping web and desktop applications [45]. It allows designers 

to free-hand draw on canvas and also provides custom drag and drop controls that can be used. 

Its main feature is to allow designers to change visualization of perspective by having a 

zoomable canvas which gives designers different perspectives of the prototypes, from a really 

detailed level to an overview of the pages, giving a good sense of the flow between the pages. 

Similar to SILK (section 3.2.5) it only evaluates the output of the user interaction and not the 

interaction itself.  

3.2.7 DEMAIS 

DEMAIS (Designing Multimedia Applications with Interactive Storyboards) [46] is a sketch-

based, interactive multimedia storyboard tool that uses ink strokes and textual annotations as an 

input design vocabulary. By operationalizing this vocabulary, the tool transforms an otherwise 

static sketch into a working example. The behavioral sketch can be quickly edited using gestures 

and an expressive visual language. In a similar fashion as SILK (see section 3.2.5) it also 
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analyzes ink strokes to turn into widgets, but it also tries to recognize the stroke as a behavior. It 

also contains a narration feature that allows designers to leave comments in sketches that can be 

listened to during evaluation. DEMAIS lacks the support to explore interaction as gesture or 

tangibles as it focuses in visualizing multimedia, adding a layer of complexity for the usability of 

the tool.  

3.2.8 Active Story Touch   

ProtoActive is based on Active Story Touch (AST) a tool developed by Hosseini-Khayat et al. 

that targets the creation of low-fidelity prototypes for touch-based applications [47]. AST had to 

be modified in order to cover the needs of an ITS application and to incorporate custom gestures. 

3.3 Existing tool support for prototyping 

Besides the efforts in academia to improve prototyping, there are several prototyping or 

sketching tools available for designers to use. In order to create a list, we crossed the results from 

four HCI websites [48, 49, 50 and 51] that had ranks of prototyping tools and included in this list 

the five most cited ones and compared them to our solution. In addition, trying to avoid bias 

from price affecting the choice of the tools by the websites, the top ranked results in a Google 

search of the term “prototyping tool” were added to this list. 

3.3.1 Balsamiq Mockups 

Balsamiq Mockups [52] is a web-based tool that rapidly creates wireframes, and exports the 

created wireframes to PDF or PNG files. It offers designers pre-made controls with a sketchy 

interface that helps to rapidly create the prototype of an interface. To help finding controls, 

Balsamiq Mockups divides controls into categories, including an iPhone category with interface 

elements that can be commonly found in iPhone applications. It also offers skin customization 
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for sketches and wireframes. But it does not allow designers to free-hand draw controls limiting 

creativity and it lacks creating multiple pages to simulate system behavior. 

 
Figure 4 Using iPhone controls in Balsamiq Mockups [52] 

 

3.3.2 Pencil 

Pencil [53] is a Mozilla Firefox add-on to that helps designers with GUI prototyping and simple 

sketching of web applications. It allows inter-page linking and allows designers to export their 

prototypes to several formats, including HTML, PNG and PDF. It uses a drag and drop widget 

feature with the possibility to have sketchy controls in a fashion similar to the one used in 

Balsamiq Mockups (see section 3.3.1). It lacks support for extensive evaluation of interaction as 
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it only allows the page movement to be triggered by mouse clicking. It has an easy setup as it can 

be used as a Firefox add-on or standalone application, but it does not allow free-hand sketching 

or interaction through the specific capabilities of a device (e.g.: fiduciary markers detection on 

the Microsoft Surface or multi-touch gestures). 

 
Figure 5 Pencil GUI interface with page linking, extracted from [53] 

 

3.3.3 iPlotz 

In iPlotz, designers can create clickable, navigable wireframes of websites or software 

applications [54]. iPlotz also has a manager feature for designers and developers to build the 

project. A designer can easily change the appearance of the prototype by switching between 

sketchy, Windows or Mac appearance. It allows the creation of interactive prototypes, but only 

through mouse click events that trigger page transitions, not allowing the evaluation of touch-
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based interactions. iPlotz also lacks the support for free-hand drawing of interface, making the 

designer limited by the widget options or to use lines or a set of shapes. 

 
Figure 6 iPlotz interface using sketchy appearance, extracted from [54] 

3.3.4 AxureRP 

AxureRP [55] can generate interactive HTML pages for user evaluation. However, it provides 

considerably more complex interactions than those provided in other HTML-based prototyping 

tools. It works with UI widgets, not allowing designers to free-hand sketch interfaces, which can 

be seen as a drawback as it limits designers to create prototypes that contain only pre-built 

widgets. It allows designers to create low, medium and high-fidelity prototypes. However, in 

order to create low-fidelity prototypes, the designers can’t use free-hand sketches and are 

constrained to use UI widgets with a sketchy look (as seen in Figure 7), which limits also the 

creativity as the design can only use controls that are pre-built with the tool. For interaction, the 

widgets on canvas have events that can be triggered depending of the widget (e.g.: an image 

widget has a mouse click, mouse enter, mouse out event, while a button only has a mouse click 

event). A pre-built set of actions can be triggered, adding another layer of complexity that 
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escapes from the simple page transition used in papers. It is destined to create prototypes of 

websites, having a different focus than our solution, but it lacks the support for touch or gesture-

based interactions that can already be used in browsers, depending of the device support. 

 
Figure 7 Axure RP showing a prototype page and the actions tab 

3.3.5 Mockingbird 

Mockingbird [56] is an online tool that makes it easy for designers to create mock-ups of 

applications, link them together to preview and interact with them. It is a drag and drop based 

prototyping tool that has widgets with a sketchy appearance. As an advantage over the other drag 

and drop prototyping tools, it comes with a non-standard set of widgets, like maps or video 

widgets, but does not allow designers to free-hand draw their interface, constraining creativity. It 

comes with a functionality to duplicate pages, helping to simulate behaviors with page 

transitions, and it does not allow designers to evaluate the interactions with the prototypes. 
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Figure 8 Mocking bird screen with a map and a video player widget 

 

 

3.3.6 Microsoft Sketch Flow 

Microsoft Sketch Flow [57] provides support for sketching user interface designs, as well as 

interactive WPF controls. It allows designers to create wireframes using standard WPF controls. 

Sketch Flow has an option to add controls with a sketchy look, trying to give a low-fidelity 

prototype idea. It also has a feedback area where a user can provide some comments and a map 

area where the whole flow of the pages in the prototype can be seen. It does not allow designers 

to create free-hand sketches thus limiting the creativity. As it allows the creation of low-fidelity 

and high-fidelity prototypes in the same tool with no distinction, it might mislead designers in 

spending too much time on details and polishing its visual for low-fidelity prototypes which is 

one of the advantages of low-fidelity prototypes (see Table 1). 
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Figure 9 Microsoft Sketch Flow 

3.3.7 Fore UI 

ForeUI [58] is a UI prototyping tool, that similar to iPlotz (see section 3.3.3) allows designers to 

easily change the appearance of their prototypes, varying for a sketchy looks to more refined 

prototypes. It allows designers to use drag and drop widgets and to customize and store widgets 

that can be used among different projects (e.g.: a custom button with different background color 

and size). In a similar fashion to iPlotz (see section 3.3.3), it allows designers to create 

customization and different shapes by allowing designers to drag lines onto the canvas. This 

solution is counter-productive to simply free-hand draw.  Designers can design the behavior of 

prototypes by defining events on specific widgets to be used in simulation. It only allows a 

predefined list of events that are mouse or keyboard based, which makes this tool only valuable 

to evaluate the interaction of prototypes of WIMP applications. As an advantage, it allows the 
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prototype to be exported to wireframe images, PDF documents or HTML5 simulation, making it 

easier to have users to evaluate it. 

 
Figure 10 Fore UI showing the list of possible events for a button widget 

  

3.3.8 Proto.io 

Proto.io [59] is a UI prototyping tool tailored for mobile and tablet applications. It was designed 

to be used in a web-based environment allowing designers to start by creating a project for 

mobile phones or tablets, having the device constraints already built in. It allows designers to 

link pages together by using a predefined set of actions that are custom to hand held devices 

allowing designers to simulate interactivity such as clicks, taps, tap & holds as well as swipes. It 

also allows designers to simulate transitions such as slides, pops, fades and flips, creating a 

closer resemblance to the real experience through the prototype. It comes with a predefined set of 

gestures that does not allow to be extended by custom gestures created, which might restrict the 
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evaluation of the interactions in the prototype. Proto.io also works based on drag and drop 

widgets, constraining creativity and allowing designers to only create prototypes with known 

widgets. In a similar fashion to our solution, it allows designers to define interaction areas that 

can be triggered by a list of events without being attached to any widget. 

 
Figure 11 Proto.io interface using iPad widgets 

3.4 Comparing features of existing tools 

Based on the prototyping tools mentioned in sections 3.2 and 3.3, Table 2 compares these tools 

features: the type of interaction, the level of customization, the features for drawing and any 

special features. 
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Table 2 Prototyping tools comparison 

Tool name Interactions  Customization Drawing feature Additional  

CrossWeaver Keyboard, 

mouse, stylus 

pen or speech 

commands 

pre-built only Free-hand sketch 

and shapes 

Allows multi-

device 

interaction 

Raptor Joystick based  Pre-built only 3D design using 

gesture to 

manipulate 

scenarios 

Requires 

programming 

phase, can be 

used in tabletops 

Sketchify From different 

I/O devices 

Programmable Free-hand sketch Allows 

communication 

with different 

devices but 

requires 

programming 

expertise 

UISKEI Mouse click only  Pre-built only Converts 

sketches into pre-

built widgets 

 

SILK Mouse click only Pre-built only Converts 

sketches into pre-

built widgets 
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DENIM Mouse click only Pre-built only Free-hand and 

draggable 

widgets 

 

DEMAIS Mouse click only Pre-built only Converts 

sketches into pre-

built widgets 

Allows designers 

to leave 

comments in 

sketches that can 

be listened to 

during evaluation 

Active Story 

Touch 

Gestures Pre-built only Sketches and 

draggable 

widgets 

Served as a basis 

for ProtoActive 

Balsamiq 

Mockups 

Mouse click only Pre-built only Draggable 

widgets 

 

Pencil Mouse click only Pre-built only Draggable 

widgets 

Browser add-on 

iPlotz Mouse click only Pre-built only Shapes and 

draggable 

widgets 

Different fidelity 

levels 

AxureRP Mouse and 

keyboard based 

events (e.g.: 

click, drag…) 

Pre-built only Draggable 

widgets 

Different fidelity 

levels 
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Mockingbird Mouse click only Pre-built only Draggable 

widgets 

Different fidelity 

levels and with 

non-standard set 

of widgets 

Microsoft Sketch 

Flow 

Mouse and 

keyboard based 

events (e.g.: 

click, drag…) 

Pre-built and 

programmable 

interactions 

Shapes and 

draggable 

widgets 

Prototypes can 

be turned into 

working 

applications 

Fore UI Mouse and 

keyboard based 

events (e.g.: 

click, drag…) 

Pre-built only Shapes and 

draggable 

widgets 

Different fidelity 

levels 

Proto.io Mouse click and 

gestures 

Pre-built only Draggable 

widgets 

For mobile and 

tablet 

ProtoActive Gestures Pre-built and 

custom 

Free-hand sketch Can be used in 

tablet and 

tabletops; allows 

the addition of 

images  

 

3.5 Gesture recognition and definition 

Wobbrock et al. published in 2009 a study to gather the gestures that people would use for 

specific tasks [6]. For the same tasks, they compared gestures created by HCI experts and users. 
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The result showed the gestures created by the experts did not cover half of the ones created by 

users, meaning that designer opinion or expertise alone is not sufficient and user opinions are 

also required. This enforces the need for a user-centered design process when defining the 

gestures that will be used to interact with the application. In the same study, users are presented 

with an animation showing an application behavior and are then asked which gesture the users 

think should be used to trigger the respective behavior. This study also proposes a taxonomy of 

surface gestures and a user-centered gesture set generated based in their study that included 1080 

gestures. One of the drawbacks of the study, as stated by the authors themselves, is that the 

application context could impact on the choice of gestures by the user, as could the larger 

contexts of organization and culture. This drawback is one of the motivations to ProtoActive, as 

it allows designer to evaluate the gestures in the context of the application they will be used in, 

by allowing the evaluation of the gestures in prototypes of the final application.  

A statistical modeling approach, namely Hidden Markov Models (HMM), is used by Damaraju 

and Kerne [60]. They propose a system that uses video processing and HMM to learn gestures. 

Similarly to the approach proposed in this research, their system learns gestures by examples, 

however, while their system detects only finger gestures, our approach also detects and combines 

hands and tags in a single gesture definition. 

GISpL [61] is a gesture specification language that allows the description of the behavior of 

device-independent gestures using JSON syntax [62]. Languages to describe gestures have been 

widely researched with examples including the study by Scholliers et al. [63], Kammer et al. 

[64], Khandkar and Maurer [10] or $N proposed by Anthony and Wobbrock [65]. These 

languages provide the necessary tools and abstractions to help developers create custom gestures, 

but creating a new gesture definition usually requires some understanding of programming which 
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leaves designers out of the creation process of custom gestures and only allows users to give 

feedback about the interactions late in the design process.  

Some studies focus on gesture recognition and gesture definition as a specific problem. In 2007, 

Mitra et al. [29] published a survey that covers several approaches used in gesture recognition 

and in 1997 Bobick et al. [66] proposed a state-based approach to the representation and 

recognition of gestures. 

In 2010, Khandkar and Maurer proposed a Gesture Definition Language (GDL) to be used by 

developers to define new gestures and also created a Gesture Toolkit [10]. This thesis presents an 

extension of this work as it adds three main features to the domain-specific language defined by 

Khandkar and Maurer: 

 recognition of the image of the BLOBs in order to allow the recognition and definition of 

hand gestures;  

 adds a new type of primitive value, which allows primitives to have their value based on 

the value of other primitives. 

The contributions of the tool regarding the Gesture Toolkit are explained in more depth in 

Chapter Five. Also in 2010, Khandkar et al. proposed a tool to support testing complex multi-

touch gestures [67]. This enables automated testing for gesture-based applications. The testing 

tool by Khandkar focuses on how accurate a system recognizes a gesture while my work answers 

the question of how useable the gesture actually is for the application it will be used on. This 

solution differs from the one proposed in this thesis as it focuses more on unit testing (i.e. 

software engineering) while the solution proposed in this paper focuses on sketch-based 
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prototype evaluations which involve users. In a similar fashion as the approach in this thesis, 

there are tools that provide users with user-friendly ways for creating gestures.  

A gesture recognition toolkit, GART, is described by Lyons et al. [13]. The toolkit provides an 

abstraction level to the machine learning details, helping software developers to create gestures. 

This approach allows the use of different machine learning algorithms as well as different 

sensors (mouse, camera, Bluetooth accelerometers). One of GART drawbacks is that it does not 

allow continuous gesture recognition or to work with multi-touch devices. 

PROTON is a tool by Kin et al. that uses regular expressions to define gestures [14]. The authors 

present an editor to help create the regular expressions as well as an input ambiguity and callback 

handling mechanism. PROTON does not allow the definition of gestures that contain directions, 

being impossible to define “Left Swipe” and “Right Swipe” as different gestures. Both GART 

and PROTON, require software development expertise to create gestures which adds time and 

cost, leaving users to only evaluate the gestures late in the process of designing the application.  

The machine learning approach used in this paper is also explained in a study published by the 

author of this thesis [68] and is similar to that applied in 2007 by Cottrell et al., who presents a 

proof-of-concept plug-in to Eclipse for automatically determining correspondences as an early 

step in a generalization task [69]. 

Instead of having a user training the tool, the paper in 2009 by Freeman et al. [70] proposes a 

tool to help users learn multi-touch and whole hand gestures on a tabletop surface. The users 

learn by studying an example provided by the tool and obtaining feedback on their attempted 

gestures.  
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3.6 Designing tangible applications 

Studying the benefits of prototyping TUI applications, Wiethoff et al. proposed a method called 

Sketch-A-TUI, which allows users to create lo-fi 3D paper objects that can be recognized by a 

capacitive surface using conductive ink in the paper objects to simulate touch points [16]. 

Different than Sketch-A-TUI, ProtoActive does not require any programming effort, and 

tangibles can be used in prototypes of the scenario they will be used, as suggested by Hinrichs 

and Carpendale in a study using interactive tabletops [5].  

In a similar fashion as Sketch-A-TUI, Yu et al. presented TUIC, a technology that consists of 

three approaches to simulate and recognize multi-touch patterns using both passive and active 

circuits embedded inside objects [71]. TUIC only provides the technology to generate tangibles, 

not providing designers with a way to evaluate the tangibles in the applications they are designed 

to be used in.  

The study by Esteves considers the design of TUI applications problematic and a challenging ad-

hoc process that requires the adoption of guidelines and methodologies if the area continues to 

grow [72]. The paper considers theories of embodied cognition as source for guidelines that are 

suitable for designing tangible interactions. It also presents a toolkit that records and presents the 

interactions with tangible applications. This paper is a continuation of the toolkit proposed by 

Esteves and Augusto [73]. The toolkit logs the manipulation of tangible objects in order to create 

empirical methods for the study of tangible applications. The paper argues that the logs acquired 

by the toolkit can be used: 

 to compare tangible interaction with other interaction paradigms; 

 to compare among different tangible interfaces performing the same tasks; 
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 via integration into a structured design process. [73]. 

This thesis argues that a toolkit for recording manipulations of tangible interactions is a step 

towards developing a mature methodology to quantify and evaluate a tangible application. 

Whereas the toolkit proposed by Esteves and Augusto gives important information to help 

designers create TUI applications, this thesis offers designers with a tool that helps not only the 

design of tangibles and the tangibles interactions but also does it so in a sketch-based prototype 

scenario that can be achieved with minimum effort and in the scenario of the application where 

the tangibles will be used. 

In a similar approach to this thesis, DART-TUI is proposed by Gandy et al. [74] and aims to 

make a particular class of TUIs accessible to a broader range of designers and HCI researchers 

by exposing TUI specific tools in a mixed-reality (MR) rapid prototyping environment. While 

DART-TUI offers designers an opportunity to create rapid prototypes using their toolkit, the 

complexity of the prototypes created suggests that they will receive a feedback similar to a high-

fidelity prototype, only involving users late in the design process. 

Papier-Mâché is a toolkit proposed by Klemmer et al. that helps developers create tangible 

applications. It abstracts the input hardware layer, allowing developers whom are not input 

hardware experts to develop TUIs [75]. It facilitates the implementation stage as it provides 

application developers a monitoring window that displays the current input objects, image input 

and processing, and behaviors being created or invoked. For simulating input when hardware is 

not available during implementation and debugging, it has a Wizard of Oz generation and 

removal of input. Papier-Mâché helps developers in the implementation stage of development 

which might lead to only involving users late in the design process.  
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CHAPTER FOUR : PROTOACTIVE 

“The low-fidelity prototype is informal and fast. No one will mistake it for the finished product. 

Because it is easy to change, stakeholders are willing to iterate, experiment, and investigate 

alternative ideas” [30 p.88]. 

In order to help designers of ITS applications, this thesis proposes ProtoActive, a prototyping 

tool that: 

 elicits user feedback through sketch-based prototypes that take in consideration the size 

constraints of an ITS application 

 allows the evaluation of how users interact with the application by having prototypes that 

can be used through a pre-built set of gestures that can be expanded through a tool that 

allows the creation of custom gestures without requiring any programming effort. 

ProtoActive is a sketch based prototyping tool for multi-touch devices that integrates with a 

gesture learning tool (IGT) to evaluate custom gestures in prototypes. This chapter will explain 

the process of designing ProtoActive involving requirements gathered from related work and 

from a qualitative study with participants from industry. The following sections will also explain 

ProtoActive features and the workflow of a designer using ProtoActive to create interactive 

prototypes. 

To gather requirements for a sketch-based prototyping tool, the author used: 

 existing research about computer-based prototyping tools and problems found in existing 

tool support for prototyping; 

  a qualitative study that consisted of semi-structured interviews with five User 

Experience (UX) designers from different companies.  
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The two following sections will explain the design guidelines of ProtoActive that were gathered 

from drawbacks of the studied prototyping tools (section 4.1) and from a qualitative user study 

(section 4.2) with five UX designers from industry. Finally, the features of ProtoActive (section 

4.3) are presented, incorporating the findings from the design guidelines. 

4.1 Design guidelines based on drawbacks from related work 

The existing research was discussed in sections 2.3, 3.2 and 3.3. The studies and tools discussed 

in these sections served to elicit requirements of a prototyping tool. For each study or tool 

discussed, the author highlighted potential drawbacks.  The author derived requirements from the 

existing work that allow ProtoActive to overcome drawbacks that were identified in the previous 

chapter. 

4.1.1 Improve the paper experience 

Sefelin et al. [18] compares paper prototyping with prototyping using software tools. They study 

suggests three scenarios where paper prototyping would be a preferable medium. These 

scenarios are addressed by ProtoActive as follows. 

4.1.1.1 Allow expression of ideas and customization from the designers 

ProtoActive allows designers to create free-hand sketches on a drawing canvas. As mentioned in 

section 4.2.1, free-hand sketching allows designers to better explore their creativity.  

4.1.1.2 Require minimum expertise to use 

In order to simulate paper experience, ProtoActive should have an intuitive and easy-to-learn 

interface that allows designers to create prototypes without requiring much time to learn the 

application. In order to do so, the design of ProtoActive kept the functionality to the minimum 

required, having a sketching tool with basic commands found in any sketching tool: free-hand 
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sketching, sketch eraser, color picker, and strokes selection. Additionally two features were 

added: adding and removing background which allows designer to import images into their 

prototypes. Finally to have a flow between the pages, designers can specify areas in the 

prototype page that when interacted with, will trigger a page movement set by the designer. 

4.1.1.3 During evaluation, allow participants to easily sketch over the interface as a medium of 

feedback. 

This guideline suggests two features:  

 a designer should be able to save multiple copies of a prototype, so during evaluations 

users can suggest modifications on the prototype itself;  

 the tool should be simple enough that making modifications to a page is as simple as 

sketching on a paper. 

ProtoActive allows designers to save multiple copies of a prototype. By having a prototype per 

evaluation, a designer can make changes or even allow the user to make changes to pages of the 

prototype himself, during evaluation. As ProtoActive was designed to have a simple and easy-to-

learn interface, drawing over a page can be easily accomplished by simply exiting evaluation 

mode and accessing the page the user wants to modify or add suggestions. 

4.1.2 Help designers follow design guidelines for ITS applications 

SCIVA [3] is an iterative process for designing gesture-based interfaces for interactive surfaces. 

In order to help designers have a more systematic approach in the design of ITS applications, 

ProtoActive helps designers follow three steps of the SCIVA design process: defining the right 

visualization, conducting user studies to create gestures and evaluating the system with the user 
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to detect flaws from previous steps. The following sections explain how ProtoActive addresses 

these steps.  

4.1.2.1 Defining the right visualization 

In ITS applications there is a tight coupling between input (gestures and touch) and output 

(visualized objects on the screen). ProtoActive deals with this problem by allowing designers to 

create prototypes without constraining creative ideas by allowing the creation of free-hand sketch 

prototypes that will allow for any type of object on the screen. If designers decide to have a more 

accurate or consistent object visualization among different prototypes, ProtoActive allows 

designers to import pictures inside their prototypes. According to SCIVA, ProtoActive helps in 

two of the recommendations for this step: brainstorming and gathering feedback from users; and 

optimizing visualizations according to characteristics of ITS. The visualization optimization can 

be achieved by letting designers create and evaluate the prototypes in the ITS devices 

themselves. This allows for a realistic evaluation of distance, position and orientation of objects 

in the screen. 

4.1.2.2 Conducting user studies to create gestures 

For ITS applications, there are sets of defined gestures offered [9, 8] that help designers define 

the input of ITS applications. However these sets can be insufficient due to particularities of 

devices, location, context and orientation.  In order to improve the user experience, it is 

necessary to evaluate the interaction of ITS applications with users. ProtoActive gives designer a 

pre-built set of gestures that can be extended by using a gesture recorder application (IGT). 

These gestures can be evaluated to interact in the context of the ITS application by being the 

input of prototypes in ProtoActive. 
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4.1.2.3 Evaluate the system to detect flaws resulting from previous steps 

The benefits of user-centered design for ITS applications rely in having users involved in the 

design process [2, 3 and 26]. ProtoActive helps designers involve users in early stages of the 

design process by taking advantage of the low-fidelity prototype’ features of the tool, by being 

easy and fast to use, and by having prototypes with a dirty look, thus eliciting more user 

feedback as affirmed by Buxton [24]. 

4.1.3 Customizable interactions 

A constant drawback among the studied prototyping tools was the lack of customization for users 

to interact with the prototypes during usability studies. Allowing designers to create custom 

gestures allows the creation of new ways to interact that might better suit for a certain task or 

group of users. ProtoActive provides a set of pre-built gestures that can be expanded through the 

use of IGT, a tool that allows designers to provide samples of a gesture to create new gesture 

definitions that can be used to interact with the prototypes. This feature was gathered from 

drawbacks from the following tools: CrossWeaver (section 3.2.1), Balsamiq Mockups (section 

3.3.1), Pencil (section 3.3.2), Fore UI (section 3.3.7) and Proto.io (section 3.3.8). 

4.1.4 No programming step required 

The prototyping tools that allow custom interactions also come with the cost of requiring a 

programming step for customization. This was seen as a drawback as it adds to the cost of 

prototyping (more time or even the involvement of software developers to create the 

customization). In ProtoActive, no step requires any programming effort, allowing designers to 

fully create a prototype without requiring programming skills (also respecting the guideline 

explained in section 4.1.1.2). Creating prototype pages, linking them through gestures, creating 

custom gestures and evaluating them can be accomplished in ProtoActive through its GUI 
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without any programming effort. This feature was gathered from drawbacks from the following 

tools: Raptor (section 3.2.2), Sketchify (section 3.2.3) and Microsoft Sketch Flow (section 3.3.6) 

4.1.5 A prototyping tool should not constrain creativity 

By allowing designers to sketch in a similar fashion as sketching on paper, ProtoActive allows 

designers to create interfaces that are not constrained by a pre-built set of controls. Among the 

tools studied, a constant problem was the lack of a feature that allows designers to free-hand 

sketch pages. Having pre-built UI widgets might increase the productivity and the speed of 

creating prototypes, but this comes at the cost of constraining creativity and especially for the 

design of ITS applications that is a field that is still evolving (and so are the UI widgets used in 

these applications). ProtoActive is a sketch-based prototyping tool that proposes to mimic the 

visual refinement of paper prototypes. This was done according to Buxton’s principles [24] about 

sketching and low-fidelity prototypes looking quick and dirty which encourages users to provide 

more feedback. As a sketching tool, a reference in usability is paper prototyping. Having a 

sketch-based prototyping tool was gathered from drawbacks from UISKEI (section 3.2.4), SILK 

(section 3.2.5), DEMAIS (section 3.2.7), Balsamiq Mockups (section 3.3.1), Pencil (section 

3.3.2), iPlotz (section 3.3.3), AxureRp (section 3.3.4), MockingBird (section 3.3.5), Microsoft 

Sketch Flow (section 3.3.6), Fore UI (section 3.3.7) and  Proto.io (section 3.3.8). 

There is however a way to also help designers in further steps of the design, by allowing them to 

import high-fidelity images of prototypes into ProtoActive and link these pages using 

ProtoActive’s features. Using background images and linking them is better discussed in section 

4.3.1.7. 
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4.2 Design guidelines based on interviews 

A qualitative study was conducted in order to gather requirements for a prototyping tool of ITS 

applications. The author and a collaborator conducted semi-structured interviews with five UX 

designers from industry. The author contacted participants through Calgary UX mailing list, a 

user experience group based in Calgary [76] and the number of participants followed the 

recommendation from Nielsen et al [77]. The semi-structured interviews lasted around 40 

minutes each and covered usability issues of sketching on a multi-touch device. The script used 

as a guide for the interview can be seen in section 9.10. The interviews aimed to collect the 

experience from the designers with other prototyping tools and get their opinion about the 

features that a sketch-based prototyping tool for touch-based applications should have. Besides 

the semi-structured interview, participants could use paper, tablets or tabletop devices that were 

available at the interview location, to demonstrate behavior and functionalities. The recorded 

audio of the interviews was transcribed and among with the notes taken during the interview and 

based on the partial structure of the interview, design guidelines were defined. 

The following sub-sections discuss the requirements for ProtoActive based on these interviews. 

For explanation purposes, the requirements will be discussed in two groups: drag and drop 

controls and sketching tools. 

4.2.1 Drag and drop controls 

This issue was brought up during interviews by suggesting that ProtoActive could be a widget-

based drag and drop tool. The feedback was that standard WIMP controls are not widely used in 

ITS applications therefore having a list or pre-build widgets would bias designers to use pre-built 

widget and thus limiting creativity. One of the participants commented: “I’ve been working with 
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3D applications (for ITS) for a while and the concept of these components (pre-built widgets), 

they don’t quite apply”. 

In order to avoid the use of drag and drop widgets, ProtoActive was designed to be a free-hand 

sketching tool, without drag and drop widgets, any filtering or widget recognition of the 

drawings. Not recognizing widgets follows Buxton’s [24] principle that low-fidelity prototypes 

should look dirty and that they are fast to create. 

4.2.2 Sketching tools 

The distinction between sketching and prototyping can be surpassed in ProtoActive as it gives 

designers the opportunity to create simplistic paper-like sketches that do not demand much time 

and effort. ProtoActive also allows designers to create prototypes that focus on usability (see 

Figure 2), with prototypes that allow the evaluation of design ideas as well as interaction. From 

the feedback of the qualitative study, a sketching tool should be the closest to a real sketching 

scenario with paper and pencil, which differentiates ProtoActive from a drawing tablet where the 

input (on the drawing tablet) is separate from the display space (screen display). In ProtoActive 

sketches are performed on touch-based screens, meaning that in a similar fashion as paper, the 

sketches are visualized on the same display where they are made. Regarding using drawing 

tablets, one of the participants commented: “…I’ve tried to use a drawing tablet but realized that 

it was faster to sketch it and scan it”. 

A sketching tool should be simple and fast to use, or else designers might just opt for traditional 

paper and pencil. In order to improve the sketching experience in ITS devices, participants were 

asked how drawing using ITS applications could be improved and three options were presented 

by the researcher and discussed with the participants: 
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 having the touch bounds determine if the designer wants to erase or draw (e.g. using the 

thumb vs. a fingertip). This option was well accepted but did not perform well due to 

misrecognition between drawing and erasing mode, in principle caused by hardware 

limitations; 

 having a voice activated command that would change the drawing mode regarding to 

voice commands “eraser”, ”selector” and “pen”. This approach was not well accepted as 

it would be disturbing for other co-workers; 

 user presses and holds a button with one hand to change the drawing mode from erasing, 

selecting or drawing; whilst the other hand performs the action on the sketching canvas.  

The approach that received the best feedback was the third option. ProtoActive drawing features 

consist of: 

 a canvas area that can be drawn using fingers or stylus pen; 

 an eraser functionality; 

 a selection button to select strokes on the canvas to move, resize or remove; 

 a color button to change the color of the stroke; 

 an undo button; 

 a gesture area button that allows designers to draw an area on the canvas to define a 

gesture area. 

A gesture area is an area defined in a prototype’s page by the designer that can contain a list of 

gesture and prototype’s page associations. When a designer defines a gesture area in a prototype, 

he can associate a gesture with this area by choosing from a list of pre-defined gestures or define 

a custom gesture. After selecting the gesture, the designer is asked to choose which page of the 
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prototype he wants the prototype to navigate to when the gesture is recognized during a user 

study. To remove selected strokes or gesture areas from the canvas, a designer drags the selected 

strokes or gesture area to the right side of the canvas (to the trash can area), in a similar fashion 

as a designer would move or remove an object placed on top of a sheet of paper.  

The following sections will explain ProtoActive in two aspects: as a tool and its features to 

design prototypes, and as a tool to evaluate prototypes. 

4.3 ProtoActive features 

With the requirements gathered from related work and interviews with UX designers, 

ProtoActive was created to allow designers to feel comfortable to create different flows and 

design concepts without much effort. Section 6.1 describes a study conducted to among other 

features, evaluate ProtoActive`s interface. The final design of the tool accommodating the 

requirements is shown in Figure 12. This section will explain ProtoActive’s features. 

4.3.1.1 Sketching canvas 

ProtoActive was designed to keep the sketching area to a maximum (which can be seen in Figure 

12 as the empty white space). Sketching in ProtoActive can be conducted with free-hand or with 

a stylus pen. No drag-and-drop or sketch recognition was implemented in ProtoActive and the 

only filter added to the sketching canvas is a “FitToCurve” feature that smooths out the stroke. 

4.3.1.2 Define gesture areas 

During usability studies, prototypes in ProtoActive can be interacted with via gestures and this 

can be done through the use of gesture areas. Gesture areas are user-defined areas in a prototype 

page that can be associated with one or many gestures that during evaluation, the recognition of 

these gestures will trigger the prototype to change to the specified page. The gesture area button 
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(Figure 12, item 1) allows designers to define gesture areas by performing a lasso on the screen, 

the bounding area of the lasso will become a gesture area in the prototype. Further explanation 

of gesture areas can be found in the following section 4.3.1.3 and section 4.4. 

 
Figure 12 ProtoActive screenshot 

 

4.3.1.3 Gesture area 

Gesture areas (Figure 12, item 19) are movable and resizable areas on the page of a prototype 

that can be bound to one or multiple pairs of gesture and page. To do so, from a gesture area, the 

designer can select the gesture menu (Figure 12, item 20), which will bring up the gestures 

triggers dialog (Figure 13)  where a designer can use a pre-built set of common gestures and bind 

its detection to showing a specific page on the prototype chosen by the designer: 

 Tap, a single tap with the finger on the surface; 



 

52 

 Double Tap, subsequent taps with the finger on the surface; 

 Pinch, gesture using two fingers moving towards each other; 

 Swipe left, single finger moving left; 

 Swipe right, single finger moving right; 

 Lasso, single finger gesture of an arbitrary shape establishing a closed loop; 

 Zoom, gesture using two fingers moving in opposite directions. 

If a designer wants to use a gesture that is not listed, he can create custom gestures using IGT by 

clicking on Add custom gesture button (Figure 13) or Record Gesture (Figure 12, item 13). 

ProtoActive is integrated with IGT, allowing the designer to create custom gestures and evaluate 

them with the prototypes. Any custom gesture created in ProtoActive through IGT will be 

automatically available for all the projects on the gesture triggers list (Figure 13). The process to 

create custom gestures will be explained in Chapter Five.  Another requirement that came from 

the qualitative study shows that it would be useful to allow designers to fill the gesture area with 

images. By selecting the image menu from the gesture area (Figure 12, item 21) a designer can 

select an image from his computer. 
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Figure 13 Gesture area trigger selection 

 

4.3.1.4 Eraser  

An eraser button (Figure 12, item 2) that when selected allows the designer to erase strokes using 

his finger. 

4.3.1.5 Selecting strokes  

To help designers simulate movement and zoom features in their applications, ProtoActive 

allows stokes to be selected, resized and moved on the canvas. By clicking on the scissors button 

(Figure 12, item 3) a designer can perform a lasso on the canvas to select all the strokes inside 

the lasso. With the selected strokes, a designer can move them on the canvas, remove them (by 

dragging them to the trash can area) or resize them (by using zoom or pinch gesture). 
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4.3.1.6 Undo strokes 

The undo button (Figure 12, item 4) allows designers to undo stroke mistakes. Removing pages, 

gesture areas or selected strokes cannot be undone. 

4.3.1.7 Adding and removing background images 

ProtoActive also allows designers to set the background of a page, by the two buttons: add 

background (Figure 12, item 5) and remove background (Figure 12, item 6). This was required in 

order to create prototypes that work with a static image as a background. An example of the 

value of this feature is shown by Unger and Chandler in their book UX Design [39]. In the 

prototype chapter of the book, the authors explains how a designer can create prototypes in a 

What You See Is What You Get (WYSIWYG) tool such as Dreamweaver CS4 [90] and export the 

prototype pages as separate images and set them as a clickable background in an HTML page. A 

similar solution can be achieved with ProtoActive by using the set background (Figure 12, item 

5) feature to set the background of a prototype page with images from other applications. In 

ProtoActive, after setting the background of a page a designer can still draw on the top of the 

image and add gesture areas, which allow setting specific parts of the background to respond to 

gestures and trigger page transition.  

4.3.1.8 Stroke color button 

In order to allow the design of colored prototypes (allowing designers to highlight some areas 

with a specific color) the color button (Figure 12, item 7) allows the designer to select the color 

of the stroke on the canvas. 



 

55 

4.3.1.9 Page list and navigation buttons 

This feature allows designers to easily navigate through the prototype’s page. List (Figure 12, 

item 8) shows a list of thumbnails of all the pages in the prototype. The navigation buttons 

(Figure 12, item 12) changes the page to the previous (if there is any) or to the next page (if there 

is any). 

4.3.1.10 New, duplicate and remove buttons 

ProtoActive allows designers to create prototypes with multiple pages. The new button (Figure 

12, item 9) creates empty pages on the prototype, while duplicate button (Figure 12, item 10) 

creates a duplicate of the current page in the prototype with the same drawings, and gesture 

areas of the original. It allows designers to have modified versions of the same page without 

much effort. The remove button (Figure 12, item 11) will remove the current page of the 

prototype. 

4.3.1.11 Trash can area 

To facilitate the removal of gesture areas and strokes, the right side of ProtoActive has a trash 

can area (Figure 12, item 14) where gesture areas and selected strokes can be dropped and 

removed from the canvas. 

4.3.1.12 Run evaluation 

The evaluate button (Figure 12, item 15) switches ProtoActive into evaluation mode.  In 

evaluation mode, the canvas turns full screen, non-editable and the pages can be navigated 

through the detection of the gestures defined in the gesture areas. This navigation flow will be 

explained in further detail in section 4.4. 
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4.3.1.13 Saving, loading and exiting a project 

The save (Figure 12, item 16) and load (Figure 12, item 17) buttons allow designers to export 

they designs to different devices running ProtoActive. Loading a ProtoActive project created 

from a different devices works normally, but the gestures detected will be limited by the 

capability of the device (e.g.: detection of hand only works in Microsoft Surface, having a 

prototype that uses hand gestures in another device will work without reacting to hand gestures). 

Finally the exit button (Figure 12, item 18) closes the application. 

4.4 User studies with ProtoActive 

The main purpose of a prototyping tool is to elicit user feedback about design ideas; so in order 

to allow designers to evaluate their prototypes, ProtoActive has an evaluation mode (section 

4.3.1.12) as shown in Figure 14 , in where all the controls from ProtoActive disappear, showing 

only a “leave” button that turns ProtoActive back into designing mode. In evaluation mode, the 

only way to move through pages is through the gesture areas that now are invisible, unless they 

have a background image (for details on this, see section 4.3.1.3). Each gesture area can have 

one or many gesture-page bindings. If a gesture from the gesture-page binding is detected on the 

gesture area, the prototype will show the corresponding page of the binding.  
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Figure 14 ProtoActive in evaluation mode 

 

Figure 15 illustrates how a designer can use a sequence of pages to simulate the behavior of the 

application. When evaluating the prototype in Figure 15, the first screen (quadrant 1) is a login 

screen that has a gesture area that is activated when a certain tag is placed over the gesture area. 

Quadrant 2 shows a scan image screen with images A, B and C. Image B has a gesture area that 

is bound to two gestures: 

 “X” gesture, that navigates to quadrant 3, meaning that image B was deleted; 

 place open right hand gesture that navigates to quadrant 4, where it shows image B 

selected and with a menu. 

Both open right hand detection and “X” gesture can be created using IGT, thus making these 

two gestures available in ProtoActive. Having the newly created gesture available, the designer 

can bind it to a gesture area and use it in the low fidelity prototype to trigger a page transition as 
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seen in Figure 15. It is important to mention that all the binding can be done without writing one 

single line of code.  

In evaluation mode ProtoActive was designed to be used by one user due to its successive state 

in page transition. When a gesture from a gesture/page pair is detected by a gesture area in 

evaluation mode, ProtoActive instantaneously changes the active page to the page from the 

gesture/page pair of the gesture area. Another limitation decided as a design guideline of 

ProtoActive is the absence of animations between transitions. ProtoActive was designed to 

simulate the experience of prototyping using paper; with this guideline, animations can only be 

mimicked as page transitions.  

 
Figure 15 Using gestures to navigate between the pages of the prototype in ProtoActive 
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The process to create gestures will be described in Chapter Five, which will describe IGT, the 

requirements of a gesture learning tool, its usage flow and how it integrates with ProtoActive. 

Figure 14 shows the page in quadrant 1 from Figure 15 in evaluation mode. Having evaluation 

mode starting from the current page instead of the first page allows designers to evaluate a 

specific part of a bigger prototype without having to navigate until the desired page in evaluation 

mode. 

The authors asked participants how they currently collect user feedback when evaluating their 

prototypes. The participants responded that they record the audio of the evaluation sessions using 

personal recording devices and add notes about some of the user’s comments. For video 

recording, participants commented that aspects like posture or ergonomics are important and 

should be taken in consideration when evaluating a prototype, especially for an ITS application 

where size constraints and portability (for tablets) impact the user experience, meaning that a 

screen recording feature would not cover the needs and would most likely not be used. These 

constraints were considered out of the scope for ProtoActive as it was brought up by the 

designers that they would rather use their portable equipment to record as it is what users are 

more comfortable with. This can be considered as future work to this research and will be 

discussed in section 7.5. Another way to gather feedback from users in ProtoActive is to allow 

users to draw suggestions on the prototype pages during user evaluations in ProtoActive.  
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CHAPTER FIVE : GESTURE LEARNING IN PROTOACTIVE WITH IGT 

“As technology becomes more and more pervasive, it is finding itself in increasingly diverse and 

specialized contexts. The technologies that we design do not, and never will, exist in a vacuum. 

In any meaningful sense, they only have meaning, or relevance, in a social and physical context” 

[24 p.32]. 

Based on the study by Morris et al [35] that suggests that having user-centered design of gestures 

will produce a gesture set that will better suit users’ needs,  ProtoActive comes with a gesture 

recording tool (IGT)  that allows designers to create gestures without having to deal with the cost 

and difficulty of programming by utilizing a machine-learning algorithm that uses samples 

provided by the designer to learn a gesture definition [68]. After, ProtoActive allows the 

evaluation of the gestures in user-centered studies with prototypes that can be interacted with the 

custom gestures.  The author proposes that this solution will allow designers to explore more and 

different interactions by not having to deal with the cost and difficulty of creating custom 

gestures through programming code, but keeping a user-centered design approach. 

IGT is based on the Gesture Toolkit, a tool developed by Khandkar et al. [10]. To help 

understand IGT, some concepts of Gesture Toolkit and how IGT extends Gesture Toolkit will be 

explained in the following section.  

5.1 Requirements for IGT 

Gesture Toolkit simplifies the process of gesture recognition and definition by providing 

software developers with a toolkit that contains a domain-specific language that helps the 

process of defining new gestures and allows it to be used across multiple hardware platforms 

[10]. Gesture Toolkit recognition framework architecture is shown in Figure 16. 
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The process of gesture recognition and definition in Gesture Toolkit is done through writing code 

and therefore it is target to be used by software developers implying in costs to generate a 

prototype that can be used and evaluated by the user of the application. 

 
Figure 16 The architecture of gesture recognition engine in Gesture Toolkit, extracted from [10] 

 

This thesis aims to modify Gesture Toolkit by removing the need for software development 

expertise to use it and through this also allow: 

 easy definition of gestures based on provided samples; 

 designers to provide samples and try them on a provided interface; 

 the definition of gestures containing fiduciary markers and hand detection; 

 a gesture definition that can cover pre-defined nuances in gestures. 

These motivations served as a requirement to build an interface that allows designers with no 

software development expertise to define gestures (including multi-touch, detection of hand and 

fiduciary markers) by providing samples of the gesture they want to define and this definition 

accomplishes all the nuances between the provided samples. The modification to Gesture Toolkit 

and the interface to provide samples and define gestures was named Intelligent Gesture Toolkit 
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(IGT). Figure 17 shows the architecture of IGT and how it extends Gesture Toolkit. The 

extensions will be explained in the following sections:  

 the interface where designers will provide the samples, manage the samples in a 

repository  and try them; 

 the touch analyzer that analyzes the samples in order to improve the accuracy of the 

gesture definitions; 

 the specific modifications to GDL; 

  and the anti-unification algorithm that receives the sample of the gestures filtered by the 

touch analyzer and outputs a gesture definition. Figure 17 also shows that the gesture 

definition produced by IGT can be used in other applications using IGT as a gesture 

recognition framework, such as ProtoActive.  

 
Figure 17 IGT Architecture 

 

5.2 Recording gestures in IGT 

A gesture definition needs to be as broad as necessary to surpass the nuances of different users 

performing the gesture in different moments. A gesture also needs to be as precise as possible to 
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avoid conflict with other gestures and to be detected only when this gesture is really intended by 

the user. In order to gather the terms and the different nuances to define a gesture, IGT asks the 

designer to train the tool by performing samples of the gesture they want to create. It is up to the 

designer to provide samples that cover all the nuances they desire the gesture definition to cover. 

It is also up to the designer to create the gestures providing the samples himself or by asking 

users to provide samples to generate gesture definitions as based on the study conducted by 

Wobbrock et al [6] that compared gesture sets created by HCI experts to gesture sets created by 

users. 

Based on experimentation and custom heuristics, a sample is considered outside the standard 

when less than 20% of its primitives match any of the previous samples. The designer can 

choose to keep the non-standard sample, which creates a more general gesture, or the designer 

can remove the sample and add another one. IGT does not require a previously defined training 

set in order to be calibrated or to function properly.  However, there is an established moment 

when the designer uses the tool to define the gesture. As an example, we will show how a 

designer can define a gesture that consists of a hand placed on a surface and a finger performing 

a vertical line as shown in Figure 18. 

 
Figure 18 Vertical finger and hand gesture 

 

By clicking the “Record gesture” button as seen in Figure 19, the designer has three seconds to 

perform the “vertical line and hand” gesture on the canvas. Having a time for the designer to 
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perform a gesture, allows the creation of gestures that can be detected by holding a position in 

contrast to only detecting a gesture on the event of releasing the touch. By performing the 

gesture on the canvas, IGT produces a gesture definition in two steps. The first one defines a 

right hand placed open on the tabletop while the second step defines a downward line performed 

with a finger making a path of 100 mm; finally a relation between the two is established, stating 

that the first step is placed to the right of the second step.  

 
Figure 19 IGT screenshot 

 

Using GDL to define gestures allows gesture definitions that are readable (as shown in Figure 

35); the designer can read the definition of the sample in the sample repository dialog as seen in 

Figure 21. If the designer does not agree with the gesture definition shown in Figure 21, he can 
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remove the gesture definition and submit a new sample. If the designer finds the definition too 

specific, they can perform the gesture a second time, which will generate a new definition. For 

this example, consider that the second sample was performed in a similar fashion to the first 

sample but with an upward line making a path of 400 mm. 

 
Figure 20 IGT option dialog 

 

By clicking the “Generate definition” button, IGT creates a gesture definition that would be 

recognized both samples.  
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Figure 21 IGT Sample repository 

In order to create a gesture definition that can recognize. The created gesture definition covers 

the first and second sample, detecting a hand placed on the surface and a finger making a vertical 

line that can vary from 100 mm to 400 mm. If this definition is still too specific, the designer has 

two options: 

 provide more samples to generate more variances for the anti-unification algorithm 

 change “MATCHING ACCURACY” value in options as seen in Figure 20, to a lower 

value. 
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When the designer agrees with the gesture definition provided, he can try the gesture in IGT by 

clicking “TRY” button in the IGT (Figure 19). If the designer is satisfied with the gesture 

recognition, he can save the gesture thus making it available in a .gx file which can be read and 

used by any application using Gesture Toolkit with IGT extension to GDL to detect gestures. In 

order to allow newly created gestures in IGT to be used in other applications without having to 

re-compile the applications, Gesture Toolkit was also modified with a method that searches in 

the folder “/Resources/Custom” inside the application folder  for new “.gx” files that contain 

gesture definitions. The found gestures become available to the application and just need to be 

bound to a user interface element as shown in Figure 22 and to a gesture callback method with a 

signature as shown in Figure 23. 

 
Figure 22 Gesture and UI element binding method 

 

 
Figure 23 Signature of a gesture callback method 

 

As ProtoActive is a tool designed to be used by designers with no software development 

experience, the binding of a gesture to an interface is done by the application without requiring 

the designer to write any code. This binding process is made in ProtoActive through the use of 

gesture areas as explained in sections 4.3.1.2, 4.3.1.3 and 4.4. 
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Figure 24 Skeleton of a gesture definition in GDL 

 

5.3 Gesture Definition Language 

A gesture definition in Gesture Toolkit has a name that uniquely identifies a definition within the 

application; one or more validation blocks that contain combinations of primitive conditions and 

a return block that contains one or more return types. In Gesture Toolkit a gesture is defined in a 

domain-specific language named Gesture Definition Language GDL [10].  A gesture definition 

in GDL consists of a name, a validation section and a return section as shown in Figure 24. GDL 

provides a set of primitive conditions to define the gestures. To allow a wider range of gestures 

and also to better fit the needs of the anti-unification process, it was necessary to add new 

features to GDL: the ability to have a relationship between primitives; primitives that express the 

value of tags and finally a primitive that specifies hand postures.  

name 

 

/* name of the gesture*/ 

 

validate 

 

/* validate block that can consist of one or more primitives and one or more steps*/ 

 

 

return 

 

 /* What will be returned when the gesture is detected*/ 
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Figure 25 IGT diagram of an anti-unified gesture definition 

 

Figure 25 contains a diagram of the functionality flow in IGT:  a designer recording samples of a 

gesture on IGT and then based on the samples; create an anti-unified gesture. The designer 

records samples of a gesture that among with the noise reduction parameter in the options dialog 

(Figure 19) is analyzed by the touch analyzer (for further details see section 5.7). The method 

TouchPointToPrimitive() (pseudo-code of the method can be seen in section 9.3) analyzes the 

touch points in a sample and validates the touch points based on the primitives defined in 

Gesture Toolkit (a list with all the primitives to date can be found in the extended GDL grammar 

in section 9.4). The list of validated primitives is presented to the designer in GDL. The GDL of 

the recorded sample is stored in a sample repository that can be reviewed and removed in the 
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samples dialog (Figure 19) by the designer. Based on the recorded samples in the repository, the 

designer can review the samples and either decide to generate an anti-unified gesture definition 

based on the samples (this will be explained with further details in section 5.9) or remove 

undesirable samples based on the GDL of the samples. After generating the anti-unified gesture 

definition, the designer can perform the gesture on IGT and evaluate its recognition. If the 

designer is not satisfied, he can provide more samples or remove undesired samples. When 

providing samples for a gesture definition in IGT, the touch points from the sample will be 

filtered and then analyzed through a matching process with the pre-built primitives in Gesture 

Toolkit. The matching process between the touch points of a sample and the primitives works in 

four steps: match touch points into pre-defined shapes, add properties to shapes, identify 

relationships between shapes and establish temporal and event values. 

5.3.1 Match the touch points into pre-defined shapes  

These primitives attempt to match the provided touch points with pre-defined shapes based on 

arithmetic calculations for each shape. 

 Tag: detection of a tag placed on the device, this will be seen in more detail in section 

5.8.2; 

 Hand: detection of a hand placed on the device, this will be seen in more detail in section 

5.8.3; 

 Circle: single finger movement where the continuous trajectory of the stroke defines a 

circle; 

 Box: single finger movement where the continuous trajectory of the stroke defines a 

quadrilateral figure; 
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 Line: single finger movement where the continuous trajectory of the stroke defines a line, 

this will be seen in more detail in section 5.8.1 ; 

5.3.2  Add properties to these shapes: 

For the identified shapes, Gesture Toolkit adds values to the primitives that require a value.  

 Length: calculates the length of a continuous stroke; 

 Tag value: on tag detection, gets the value associated with the fiduciary marker; 

 Hand posture: identifies the posture of a detected hand, explained with further detail in 

section 5.6; 

5.3.3 Identify relationships between these shapes 

These primitives identify if there is any relationship between the previously identified primitives. 

 Angle Between: when detecting lines, informs the angle that two lines do between them; 

 Relative Position: with more than one stroke, identifies the relative position between 

them. It can be Top, Bottom, Left or Right. 

5.3.4 Establish temporal and events values  

These primitives specify temporal, directional and event based aspects of a gesture. 

 Number of touch points: Number of touch points on the device at the same time; 

  Touch actions: when a step or whole gesture should be detected. It can be on touch 

detection, on touch movement or when removing the touch point (e.g.: moving up 

finger); 

 Touch time: informs the duration of a gesture; 

 Direction: calculates the direction of a stroke based on the eight orthogonal directions; 
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 Order of the events: defines the order in where the primitives are detected, it is expressed 

in form of steps of a gesture. 

5.4 Relational Primitives 

In order to express relationships between primitives in GDL, the values of the primitives were 

extended to accept values represented as variables. As a variable, a primitive can be proportional 

to another primitive in the gesture definition. 

 
Figure 26 Rectangle gesture defined using relational primitives in IGT 

 

This for example, allows two primitives to have their values expressed as a relation of the other. 

E.g.: primitive 1 is the double of primitive 2. By finding a relationship between steps of a 

validate as step 1 

Touch state: TouchMove 

Touch shape: Line 

Touch direction: Down 

Touch path length: x 

validate as step 2 

Touch state: TouchMove 

Touch shape: Line 

Touch direction: Right 

Touch path length: 1.5x ..2x 

validate as step 3 

Touch state: TouchMove 

Touch shape: Line 

Touch direction: Up 

Touch path length: x 

validate as step 4 

Touch state: TouchUp 

Touch shape: Line 

Touch direction: Right 

Touch path length: 1.5x ..2x 

validate 

Touch limit: 1 

Angle between step1 and step2: y  

Angle between step2 and step3: 1.1y ..1.2y 

Angle between step3 and step4: 1.1y ..1.2y 

Angle between step4 and step1: 1.1y ..1.2y 
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gesture, a gesture definition can for example, represent a rectangle gesture that consists of 2 lines 

of nearly equal length and two other lines that are equally proportional to the first two. Figure 26 

illustrates a definition of the rectangle gesture. The values of the lines are all a multiplications of 

the value of the line found in step 1. The same occurs with Angle Between, where the subsequent 

values are dependent on the first value in AngleBetween. 

5.5 Tag Recognition 

This feature of IGT recognizes fiduciary tags on the tabletop allowing the definition of gestures 

that use such tagged objects. This feature allows designers to recognize any tangible object that 

contains a fiduciary tag attached to it.  A designer can attach fiduciary tags on physical objects 

and have the prototypes detect when they are placed on the device or when they are lifted up 

from the device. By placing two fiduciary tags as shown in Figure 27, a designer can create 

separate gesture definitions that identify the position of the device. For example, in Figure 27, 

considering that the tag on the left is tag 1 and the other is tag 2, a designer can create a gesture 

definition where tag 1 is on the left of tag 2.  

 
Figure 27 iPad with fiduciary tags 
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Similarly, another gesture definition can be created where tag 2 is on the left of tag 1. This will 

allow ProtoActive to determine the position that a tablet was placed on the prototype.  

 
Figure 28 Defining tag based gestures 

5.6 Hand Recognition 

To take advantage of devices that allow the recognition of Binary Large Objects (BLOB), IGT 

also allows the recognition of a set of hand postures allowing the definition of different postures 

of the hand.  

 
Figure 29 Hand postures recognized by IGT 

The hand postures recognized are shown in Figure 29, from left to right: Open, Spread and 

Vertical. The orientation of the hand is also detected and set as a primitive’s value: Right or Left. 

Figure 30 defines when a right hand with a vertical posture is moved up from the device. 

 
Figure 30 Definition of a hand posture gesture 

validate as step 1 

Touch tag: 5 

Touch state: TouchMove 

validate as step 2 

Touch shape: 6 

Touch state: TouchMove 

validate  

 Relative position between step1 and step2: Left 

validate  

Touch blob: Hand, Vertical, Right 

Touch state: TouchUp 
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5.7 Gestures not recognized 

For gestures that consist of touch points that cannot be matched in the pre-defined shapes or 

cannot be divided in steps of pre-defined shapes, the gesture recognizer will create a gesture 

definition that will not cover the nuances of the gesture and will lead to a gesture definition that 

will be more general and not specific to the intended gesture. 

5.8 Touch analyzer 

In IGT the sequence of touch points from the samples are pre-analyzed and matched with 

primitives by the touch analyzer. The architecture of the application is shown in Figure 17, 

which illustrates the touch analyzer and the anti-unification algorithm in the process. The touch 

analyzer is a functionality in IGT that analyzes the touch points of the sample of a gesture; it 

filters noise touch points in hand and tag detection and detects lines in a sequence of touch 

points. These analyses will be explained in the next sub-sections. 

5.8.1 Stroke Analysis 

A stroke is a continuous 2D sequence of touch points that ends when the finger moves up from 

the surface. In Gesture Toolkit, identifying steps of a gesture, helps to create a more accurate 

definition as it allows the identification of relationships between steps (see section 5.3.3). For 

example, Figure 22 shows a gesture definition of a “plus sign” gesture: 
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Figure 31 Gesture definition of a plus sign 

  

Having pre-determined steps help IGT identify relationships between the steps (e.g.: Angle 

between), leading to a more accurate gesture definition. In the “plus sign” gesture example, this 

was possible due to the steps being determined by the designer lifting up his finger from the 

device when performing a line. In a continuous stroke, identifying parts of the stroke in lines can 

help identifying relationships between the lines. For example, in IGT, a “check” gesture 

definition generated without using the stroke analysis:  

 
Figure 32 Check gesture defined without stroke analysis 

 

The problem with this gesture definition is that it is too general in terms of the shape of the 

gesture, leading to false positives in gesture recognition. A similar gesture generated with stroke 

analysis: 

validate as step 1 

Touch state: TouchUp 

Touch shape: Line 

Touch direction: Down 

Touch path length: 290.3 

validate as step 1 

Touch state: TouchUp 

Touch shape: Line 

Touch direction: Right 

Touch path length: 313.2 

validate 

Touch limit: 1 

Angle between step1 and step2: 95.43 

validate 

Touch state: TouchUp 

Touch direction: UpRight 

Touch path length: 353.4 
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Figure 33 Check gesture using stroke analysis 

 

This gesture definition is more specific to the gesture used as a sample and will lead to less false 

positives in recognition. The stroke analysis can be switched on or off through the “Break 

gesture into steps” checkbox in the options box (Figure 20).  

When a designer provides a sample of a gesture, the touch analyzer filters the touch points of the 

sample and reduces the noise by removing unnecessary redundant touch points (touch points in 

the same location). For stroke analysis, a stroke is searched according to the FindLines algorithm 

(pseudo-code can be found in section 9.1) and continuous touch points can be identified as a line. 

The strokes are divided based on the direction of the stroke regarding the orientation of the 

application on the device. For example, by making a stroke in an “L” shape, the designer can 

make it with a downward touch and then moving to the right of the screen. The Stroke analyzer 

will break the stroke in two: one containing the touch points of the stroke that go down and the 

other containing the touch points of the stroke that go right. 

The sensitivity of the analysis is set through the “Noise reduction” value in the option box in 

IGT. The noise reduction value is calculated as a percentage of the length of the stroke to 

validate as step 1 

Touch state: TouchMove 

Touch shape: Line 

Touch direction: DownRight 

Touch path length: 105.3 

validate as step 1 

Touch state: TouchUp 

Touch shape: Line 

Touch direction: TopRight 

Touch path length: 416.2 

validate 

Touch limit: 1 

Angle between step1 and step2: 91.21 
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determine the minimum size of a change in the direction of the stroke. A pseudo-code with the 

algorithm used for the stroke analysis is shown in section 9.1. 

5.8.2 Tag Analysis 

In order to allow the definition of tag-based gestures, the touch analyzer needs to remove noise 

touch points from the samples. This will allow IGT to create a more concise gesture definition. 

For tag recognition, noise touch points are defined as touch points that are detected from the 

placement of the tag on the device (e.g.: detecting parts of an object before detecting the tag of 

the object). 

In order to filter noise touch points, the touch analyzer identifies whether there is a tag 

recognized in the touch points. If there is, all the points that are within the tag bounds are 

removed. For example, when placing a tangible object that contains a tag, some other parts of the 

tangible might touch the device and be recognized as touch points, the touch analyzer will 

remove these touch points. This filter only needs to be applied in the learning phase as for the 

recognition phase, the intermediate touch points that do not compose any registered gesture are 

not considered. Section 9.2 shows the algorithm used to remove noise touch points for tag 

detection. 

5.8.3 Hand Analysis 

Hand recognition is divided in two moments; the first one deals with acquiring images from the 

device on the event of a blob detection and the second deals with treating the acquired images to 

identify hand postures during gesture recognition (for pseudo-code, see section 9.8 and 9.9) and 

it is executed during gesture recognition. 
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5.8.3.1 Acquiring snapshots for hand recognition 

In order to analyze specific hand details, the frames of the touch events are captured in a rate of 

10 frames per second, using a custom heuristic based on results that aimed to get the best 

performance and the best recognition rate. In a similar fashion as Chang et al. [78] the hand 

analysis process can be divided in three steps:  

1. segmenting a static gesture image into a binary hand silhouette; 

2. cropping the image area to accommodate only the detected hand; 

3. decomposing the image into palm and fingers. 

For every hand touch, several snapshots are captured and attached to the touch point (for pseudo-

code, see section 9.6). Each snapshot is converted to a binary image using a brightness threshold 

of 0.05, a measure that was determined based on experimenting with Microsoft Surface 1, for 

other devices or for environment with changes in lighting, a calibration process in the code will 

be necessary. Next, the snapshot that contains the biggest amount of white (meaning the biggest 

contact area) is selected and the other snapshots removed. 

Retrieving the image of a frame during a touch event will return the whole area of the device. To 

guarantee that the snapshot shows only content of the touch point it belongs to, the contact area 

of the touch point, which is the bounding area of the contact, is used to set the ROI (Region of 

Interest) of the snapshot. The ROI will identify a part on the image that will be used for 

calculations. The ROI is defined to show only the contact area of the touch point avoiding 

associating of snapshots with incorrect touch points. This also allows the detection of several 

hands at the same time. The snapshot at first contains all the hands currently placed on the 

device, but by using the ROI of the touch point to crop the image, the final image will contain 

only the image of the hand of that touch point. As the hand is an uneven surface, intermediate 
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touch points are detected when different parts of the hand touch on the surface of the tabletop. 

With the cropped snapshot containing only the binary image of the hand, the palm of the hand 

and the position of the fingers are detected by computing a convex hull for the white portion of 

the binary snapshot and its convexity defects [87]. Figure 34 illustrates how convexity defects 

can be used to determine fingers. Section 9.7 shows the pseudo-code of the implementation of 

this approach, based on [88]. 

 
Figure 34 Convexity defects: the dark contour line is a convex hull around the hand; the gridded regions (A–H) are 

convexity defects in the hand contour relative to the convex hull. Extracted from [88] 

 

The touch analyzer analyzes the points, removing this redundancy in two steps: first by selecting 

points that are concentric to the detected BLOB and second by removing finger points detected in 

the surrounds of the detected BLOB with a fixed margin of 300 mm. This margin was defined 

based in custom heuristics using different hand sizes and establishing a value that would allow 

the detection of the fingers and reduce noise detection of different touch points. 
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5.9 Anti-unification process 

To define a gesture based on samples requires a definition that is the most specific pattern among 

certain variations. In order to achieve this solution, IGT treats the problem as an anti-unification 

problem which means that it finds the most specific template or pattern between two terms, 

namely gesture definition of samples of gestures written in GDL. This section first provides an 

example to explain the overall functionality of the anti-unification process and then, explain how 

the algorithm works.  

The example in Figure 35 shows how a designer can create a gesture that involves tangibles and 

a check gesture that will be recognized in both directions (avoiding the problem of defining 

gestures for left or right handed users, for example). The first sample in Figure 35 on the top left 

side, defines a gesture that is composed of a tag placed and removed from the device and a check 

gesture made from left to right that contains one line of 200 mm and another one of 600 mm, 

forming an angle of 98 degrees between them. The second sample on the top right side, shows a 

similar gesture but in a reduced scale and in an opposite direction (from right to left). The gesture 

definition generated has made three generalizations: the length of the lines is now a proportion 

where the second line can vary from 2.7 times to 3.2 times the length of the first line. As the 

direction varied, it is not contained in the definition and finally the angle can now vary from 84 

to 100 degrees.  

To deal with the arithmetic around the values of the primitives, formally we would have to 

perform anti-unification modulo the arithmetic theory. In general, anti-unification modulo 

theories is undecidable [79] and unfortunately also the arithmetic theory is undecidable. 

Therefore, we decided in our implementation to approximate this theory using the user-given 

sequence of the gesture parts to limit the search space for the anti-unification (and concentrating 
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on a vaguely defined subset of the theory: multiplication and how we want to use it in a gesture 

definition) [79]. 

 
Figure 35 Anti-unification of two samples of a gesture 

 

In order to teach IGT a new gesture, a designer provides samples of a gesture he wants to create 

a definition for. For example, in Figure 35, a designer wants to create a gesture that is recognized 

with the placement of a specific tag and a “check” gesture. By providing the first sample (on top 

left corner of Figure 35), the touch analyzer will filter the noise touch points for the tag 

recognition (as explained in section 5.8.2) and perform stroke analysis on the “check” gesture 

(as explained in section 5.8.1). After the analysis phase, the touch points will be converted to 

GDL as explained in section 5.3. After being filtered by the touch analyzer the sample is defined 



 

83 

in GDL. The GDL of the samples are then provided to the anti-unification algorithm (a pseudo-

code of the algorithm can be seen in section 9.5).  

The anti-unification process in IGT works in two main stages; first, as proposed by Nilsson in 

2005 [80], it analyzes the primitives for one sample of the gesture and creates relational 

primitives based on relations between the different steps of that gesture. The anti-unification 

algorithm will take each primitive of a sample and if the primitive is numeric, it will check if that 

primitive exists in other steps of the same sample. If so, it will create a new primitive containing 

the proportion between these two steps. In the second step, the algorithm will compare the same 

primitives between different samples, and it will create a new gesture definition in GDL, 

containing primitives from the samples in which: 

 literal values are constant among the samples; 

 numeric values are within the threshold;  

 proportional primitives are consistent among the samples; 

The threshold used to verify the numeric values consistency is based on the matching accuracy 

parameter provided in the options box (Figure 20). The matching accuracy will affect the range 

of the gesture recognition. The value is calculated according to the formula in Figure 36. 

 
Figure 36 Matching accuracy based on the value from option box 

 

For example, for a primitive Touch Path Length with 200 px, values accepted in a threshold 

having the matching accuracy of 80% will imply that values can only vary on the spectrum from 

160 px to 240 px. Reducing the matching accuracy to 30% for the same Touch Path Length value 

Final Matching accuracy = 1 – [(Matching accuracy from option box) / 100] 
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would imply in a gesture definition that accepts Touch Path Length varying from 60 px to 340 

px. 

Given a number n of samples of a gesture {               }, the algorithm creates an anti-

unifier of the first two samples and then anti-unifies the created anti-unifier with the next sample 

to create the next anti-unified pattern. It repeats this process until it compares with the sample   . 

Based on the final pattern, the algorithm generates a gesture definition that is the most specific 

definition that matches all the samples provided. If the designer is not satisfied with the gesture 

recognition he can remove previous samples or provide new ones to change the gesture 

definition. When satisfied with the gesture recognition, the designer can save it and use it in 

ProtoActive through the process defined in sections 4.3.1.2, 4.3.1.3 and 4.4. ProtoActive 

assumes that it is in the best interest of the designer to provide samples that are representative of 

the gesture that should be used in the application. Providing samples of a gesture too similar to 

each other will make the resultant gesture definition too specific. However, providing gesture 

definitions that are too different will result in a gesture definition that is too general, thus 

generating false positives by recognizing undesirable interactions. The gesture definition created 

in IGT can be saved and it automatically becomes available in ProtoActive, where a designer can 

assign it to an area in a prototype page, as described in section 4.3.1.3. 
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CHAPTER SIX : EVALUATION 

“The choice of evaluation methodology - if any - must arise and be appropriate for the actual 

problem or research question under consideration” [89] 

In order to evaluate the different aspects of ProtoActive, the evaluation was conducted in three 

stages: first, a pilot study was conducted to evaluate the ability of ProtoActive to design ITS 

applications by having developers with experience in developing multi-touch applications for 

tabletops; after incorporating the results of the first pilot study the second pilot study was 

conducted with designers with experience in designing tangible applications and focused in 

getting qualitative feedback from the designers about using ProtoActive to design tangible 

applications for tabletops; the third stage was an evaluation of ProtoActive in the wild, providing 

ProtoActive to designers and have them use it for the period of at least two weeks in their 

projects. 

6.1 Pilot study of gesture based prototypes and ProtoActive usability 

A pilot user study of ProtoActive was conducted with seven participants; each one of the 

participants had a minimum of six months of experience developing ITS applications for 

academic projects. Participants were presented with a demo of ProtoActive usage that lasted on 

average ten minutes. The demo explained how to draw, navigate between pages in ProtoActive 

and how to use IGT to create a gesture. In order to reduce biasing users, no gestures were created 

in the system before the evaluation. A scenario proposed that participants are designers in a 

company that needs to create a prototype for an ITS medical application to select MRI scans. 

The scenario given to participants covered three main functionalities in a similar fashion as 

shown in Figure 15: 
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 a log in screen; 

 selecting a scan image; 

 bringing up a menu over an image to delete it. 

The participants were asked to create the prototypes using ProtoActive on a Microsoft Surface 

and see the results by clicking “evaluate prototype” when done. According to the Think Aloud 

Protocol [81], participants were encouraged to verbalize their impressions and comment 

throughout their experience with ProtoActive. By the end of the evaluation, participants were 

asked to complete a survey that asked for their impression of using ProtoActive. Table 3 shows 

the mean time to complete each task.  

Table 3 Average time to complete each task per user 

Login page Select image 
Bring up menu and 

delete image 

4:46 5:20 5:15 

 

The most amount of time was spent when the participant was not satisfied with gesture 

recognition. Defining a gesture in IGT had usability issues regarding the information that is 

shown to participants. While providing a sample gesture to IGT, the only feedback that 

participants used for checking whether the provided sample was analyzed properly was the 

canvas that contained the strokes from the gesture. One of the participants that tried to look at the 

GDL of the gesture, said that it did not mean a lot to him and that “it seemed fine”. Another 

participant mentioned that “(GDL) it doesn’t look clear enough to read it”. The participants were 

asked to create any gesture they thought to be appropriate for the task. Figure 37, Figure 38 and 

Figure 39 show the gestures created for each task and the occurrence of the gesture for that task. 
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With a few exceptions (e.g.: hand, circle, square, check), the gestures created were simple and 

usually found out of the box with frameworks such as WPF [20] (e.g.: tap, swipe). 

The second biggest factor for increasing the time was due to usability issues that generated 

misunderstandings about the application state. E.g.: not assigning a gesture to a gesture area, this 

created the impression among participants that the application did not recognize the gesture. 

 
Figure 37 Gestures used for login 
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Figure 38 Gestures used for selecting an image 

 
Figure 39 Gestures used to open menu over an image and delete 

 

 

A task that consists of two gestures, opening a menu and deleting an image, produced a wide 

range of gestures as can be seen in Figure 39. This shows the potential of different interaction 

approaches that can be used for the same task and emphasizes the need of a tool like ProtoActive 

that allows designers to explore different interaction approaches but evaluating these interactions 

in user studies using prototypes. The survey showed that overall the participants were satisfied 

with both IGT and ProtoActive, with IGT having a few remarks when it appeared that a gesture 
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was not recognized: feedback about the samples recognized for a gesture definition and problems 

with sketching in ProtoActive. 

6.1.1 Providing feedback about samples recognized for gesture definition 

The problem of showing designers how a sample was recognized is not trivial as: 

 having detailed information about the recognized sample might require expertise from 

designers to understand it; 

 not having any information won’t allow designers to identify potential recognition 

problems. 

The approach chosen by the author was to show a thumbnail of the print of the sample on the 

canvas (the stroke generated while providing the sample) next to the definition of the sample in 

GDL.  A designer isn’t required to read the GDL of each sample but if assumed necessary, he 

can look for this more detailed information of the steps recognized in the provide sample that 

might affect the gesture recognition. 

6.1.2 Problems with sketching in ProtoActive 

A problem noticed during this evaluation was caused by a design decision about the sketching 

features of ProtoActive. To take advantages of a multi-touch device (for the study, Microsoft 

Surface 1), selecting strokes, erasing and defining gesture area would need a combination of two 

hands to happen: while one finger stays pressing the correspondent button, the other would 

perform the action on ProtoActive drawing canvas (e.g.: one hand holds the selection button 

while the other performs a lasso on canvas to select strokes). This feature was not well accepted 

by participants, due to: 
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 hardware limitation, in some occasions an event would be miss-triggered, detecting that a 

finger was moved up from the device, changing the drawing mode; 

 depending on the distance between the button and the place on the canvas that the action 

was performed, it felt uncomfortable for participants; 

 in some occasions, participants would move up the finger holding the button by mistake. 

The solution found by the author was to change this functionality to a regular button on the 

screen that doesn’t need to be held. 

6.2 Prototyping TUI applications 

This qualitative study investigated the value of prototyping in the design of tangible applications. 

The study was conducted with five designers that had being involved with designing tangible 

applications in the past, four designers from academia and one from industry. In order to validate 

the proposed cycle (Figure 40) in the tangible application context, designers were asked to create 

a prototype in ProtoActive which was followed by giving participants some clay, printed tags 

and plastic toys with a tag attached to it. The aim of this study was to have participants think 

aloud about prototyping for tangible applications, to collect information about the value of 

prototyping for tangible applications and how a tool could better improve this process. 
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Figure 40 Evaluation of a tangible application and its tangibles. Adapted from Figure 1 

Participants were given a scenario where they need to design some functionalities of a 

Geographical Information System (GIS) application. Participants were asked to sketch 

prototypes of: 

 a login screen; 

 placing a specific tag that activates a weather layer on the map; 

 placing another tag that activates a vegetation layer on the map.  

According to the Think Aloud Protocol [81], participants were encouraged to verbalize their 

impressions and comment while creating the prototypes in ProtoActive. After creating the 
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prototypes, a semi-structured interview was conducted. The interview covered the following 

points about ProtoActive: 

 the importance of prototyping for tangible applications, regarding the application and the 

physical tangibles; 

 which kind of interaction they have implemented in the tangible applications with which 

they were involved; 

 their impressions about ProtoActive and how they think ProtoActive could have aided 

them in their projects. 

None of the participants had previously used prototypes for their tangible applications. In all the 

cases no formal prototyping stage was conducted in the development of the applications. Design 

ideas were communicated through paper sketches and tangibles were used with a trial and error 

approach. The participants were impressed with the amount of design ideas that could be covered 

in a prototype that cost less than thirty minutes to be created with ProtoActive. When asked 

about how useful ProtoActive would be to quickly evaluate design ideas for tangible 

applications, one of the participants commented: “coding the interface and the interactions 

would take forever (…) but if I would use sketches on a paper, I am not sure that I could 

represent it (tangibles interactions) just as nicely”. 

Using ProtoActive, as mentioned by the participants, consumed less time that some bad design 

decisions had cost in previous projects and can even help to communicate design ideas between 

teammates:  "(to communicate ideas between teammates) it is so much easier if you can see what 

you're talking about".  
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Participants found that using tangibles to interact with the applications was an important asset 

which becomes crucial if the final application is used on larger displays or with several users. An 

example given by one of the participants indicates that an approach using tangible instead of 

buttons would make more sense in a scenario where the interaction through buttons on the 

application is problematic due to positioning the buttons in a place that is not reachable by all 

users.  This kind of problem could be detected and the solution shown to users by using 

ProtoActive. Figure 41 shows tangibles that were shown to participants and that could be used in 

the evaluation; Figure 41 compares a tree created by a participant with a fiduciary tag that was 

used to activate the vegetation layer on the study and a plastic toy that was also used.  

Having the participants commenting about these two options allowed the researcher to 

understand how crucial to this stage of design the shape of the tangible is. This was mentioned 

by one of the participants: "sometimes the concept is still too abstract that the shape of the 

tangible doesn't matter (…) but there are other cases when it might be important to differentiate, 

some shapes automatically represent what you want to show, for example, this is a tree and 

represents vegetation". 

The interviews showed that participants found that creating clay prototypes of the tangibles is a 

valuable asset, especially for tangibles that imply movement and require ergonomics studies. For 

situations where a tangible does not need any special shape, the clay did not seem necessary, and 

the participants chose to use tags simply attached to colored plastic toys. Participants also 

commented that a valuable asset of this approach is to also bring clay and printed tags for the 

evaluation of the prototypes with users, allowing them to make suggestions and even have them 

create their own clay prototypes during the prototype evaluation. As mentioned by one of the 

participants: “you need to prototype it (the tangible) as well as it might affect the interaction”. 
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Figure 41 Clay custom tangibles and the plastic toy tangible 

 

Regarding the mixture of hand gestures and tangibles, only one participant chose to use it, for the 

login screen: the participant placed a tag and made a right swipe with his finger. When asked 

about this mixture, participants said that users could find this mixture confusing and should 

rather have a clear distinction of functionalities for tangible interactions and gestures. 

Participants were also asked about the tangible interactions they have implemented in their 

previous projects. From the tangible applications previously created by the participants, the 

tangible interactions could be validated using ProtoActive as they were based on the detection of 

fiduciary markers on a tabletop, with the exception of two cases where the tangibles used were 

electronic devices that should also respond to the interactions and one case where a 3D 

movement capture was used instead of working with a multi-touch display. With the electronic 

device applications ProtoActive could still be used but cannot cover the interaction with the 

application embedded in the tangible.  

Interviews were conducted with participants to better understand the needs of tangible 

application designers in early stages of the design process and show that low-fidelity prototyping 
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proves to be a valuable aid in the development of tangible applications and the proposed cycle 

will help as a productive and useful way to evaluate interactions and tangibles for such 

applications. 

6.3 Evaluations in the wild 

A final evaluation was conducted with two participants to take a look into ProtoActive efficacy 

for designing applications in the wild [84]. This evaluation was conducted by asking UX 

designers in industry and in the academy to use ProtoActive in their design process. The aim of 

this evaluation was to have designers using ProtoActive in their own environment and to help the 

design of applications they care about. The evaluation was structured in two phases. First, we 

provided the tool installation and a brief explanation of the tool, explaining the features of the 

tool, in the case where this could not be done personally, a video of ProtoActive’s functionality 

was sent to the participant. Later, when the participant spent at least two weeks with ProtoActive, 

the author contacted the participants individually, sending a survey (survey structure in section 

9.11) and using the responses on the survey as a guide to a semi-structured interview aiming to 

collect data about the gestures created using ProtoActive, the application being designed by the 

participant and the sketches created. 

6.3.1  Using ProtoActive to design a tabletop game  

The first participant is a PhD candidate with no previous experience in designing ITS 

applications or programmatically creating gestures, but with experience in using pen and paper to 

prototype interfaces. The device used to create prototypes was an Asus Eee Slate tablet [85] with 

4 GB RAM using Windows 7 and a touch-monitor supporting up to two touch points. The final 

application will be used in a tabletop device, but a tablet was used to for prototyping due to: 
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 availability of the device, as the tabletop that could be used to prototype is shared among 

other teammates for different projects; 

 portability, as sometimes the design had to be shown or evaluated in different locations, 

having a tabletop would impair the evaluation process. 

 
Figure 42 Prototype of a tabletop game in ProtoActive 

 

ProtoActive was used to prototype a new version of the high automation interface for a tabletop 

version of the pandemic game described by Wallace et al. [86]. According to the participant, 

ProtoActive was used in the following scenario: 

 using ProtoActive as a tool to brainstorm and sketch different ideas, later if needed, 

interactivity can be added to the sketches on ProtoActive and they can be evaluated; 

 creating a prototype of small tasks and guide users to play with the prototype to elicit 

discussion about the interface and the interactions in it; 
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 prototypes were used to transmit ideas about design and interaction options, in this 

scenario the designer was the one interacting with the prototypes and was mostly used 

during meetings to communicate the design ideas to supervisors and teammates. 

In total, the participant estimated to have used ProtoActive for fifteen hours spread along three 

weeks, generating twelve different prototypes, and having four users that evaluated the 

prototypes throughout three weeks. Regarding the gesture definition feature, the participant 

commented: “I think the defining custom gesture functionality was pretty good. It is unclear 

what order to carry out actions for first time users. However, once learnt, I think it is pretty 

good”. For interacting with the prototypes, the participant used pre-built gestures with the 

addition of two custom gestures: two fingers hold and two fingers swipe.  

Figure 42 shows the main screen of one of the prototypes created for the pandemic game, 

illustrating how by adding images, a designer can mix different levels of refinement for a 

prototype. Figure 43 illustrates how the participant used ProtoActive to better illustrate specific 

points of a prototype. The top of Figure 43 shows how a menu will appear contextualized within 

the game screen; the bottom of Figure 43 shows the menu in more detail, showing how a 

designer can have feedback about different depth of functionalities. Also, as can be seen in 

Figure 43, a prototyping tool based in pre-built UI widgets would change the level of abstraction 

as most of the interface items in the prototypes are undefined shapes.  
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Figure 43 Using ProtoActive to provide more detail about items 

 

When prototypes were used to transmit ideas, in some cases ProtoActive’s feature of copy page 

was used to mock an animation by having sequential pages with small changes on the sketches. 
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Figure 44 shows a prototype in ProtoActive that was used to transmit ideas rather than having 

users interacting with it.  

 

Figure 44 ProtoActive being used to transmit ideas 

 

The “next frame” area set in the prototype contains a gesture area that responds to a Tap gesture 

that the participant used to move forward on the pages. The participant used frame concept to 

mock up an animation and show other people involved in the project how an animation should be 

shown to users. 

Figure 45 shows the “animated” feature in detail. The “next frame” is used to transition between 

two pages of the prototype in a loop. The only difference between the pages is shown on the left 

and right side of Figure 45, simulating a movement on the blue concentric circles. 
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Figure 45 Detail of a prototype page, mocking up an animation 

 

6.3.2 Using ProtoActive to design for a multi-touch device to be used in oil platforms 

ProtoActive was used by a UX designer from a company to evaluate design ideas of a gesture-

based application to be used in a company proprietary dual-capacitive touch display that supports 

two simultaneous touch points and runs on Windows 7. The display was created to resist extreme 

temperature conditions.   

The participant had the tool for the period of three weeks and estimated to have used the tool for 

4 hours. The participant is a UX designer who has eight years of experience in UX design and no 

experience in programmatically creating gestures for touch-devices.  The participant uses low-

fidelity prototypes regularly in his job and has experience with Balsamiq Mockups , pen/paper, 

AxureRP, Microsoft PowerPoint and when asked about the importance of prototyping as a tool to 

help the design of ITS applications, he defines it as a critical step. The designed application is a 

main system navigation to be used in oil platforms that will likely be used by users wearing 

protective gloves. Besides evaluating interface and gestures, ProtoActive will be used to study 
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how designers in an environment with extreme temperature conditions will interact with a touch-

based device: using gloves or stylus pens. Also, as working with a proprietary custom device, 

during the design of the applications in ProtoActive, UX designers were able to test the device 

capabilities and identify a problem when working with two simultaneous touch points. The 

overall comment from the participant was: “Overall it’s a very promising tool. We had no other 

tools at all for looking at gestures, so it fills a necessary void. We are unfortunately in an early 

development stage of our device and with ProtoActive discovered some issues with our touch 

screen drivers with dual touch and gestures”. For the device and software evaluation, the device 

will be sent to the environment where it is supposed to be used with ProtoActive prototypes to be 

evaluated.   

 
Figure 46 Double circle gesture defined by participant 

 

Regarding the drawbacks and problems found using ProtoActive, the participant found that is not 

clear how many samples would be enough for a good gesture definition and suggested that for 

the anti-unified gesture definition, an image was shown illustrating a heat map of an overlap 

between all the gestures, where overlapping strokes would have a visualization of higher 
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temperatures. Regarding reading GDL the participant said that he got more comfortable and 

could understand better the language after the time he spent using it. Figure 46 shows the 

definition of a “double circle” gesture, created by the participant to bring up a menu on the 

screen. The gesture consists of two fingers simultaneously making a circle shape on the screen, 

to the right direction. The participant’s only suggestion to how the gesture definition process 

could be improved would be to provide a list with all the possible primitives that can be 

identified in GDL, but in the overall, the participant was satisfied with reading GDL and said that 

it was a good way to determine if a sample was properly recognized. Regarding usability issues 

with ProtoActive, the participant’s only suggestion was to have a way to fix the position of some 

gesture areas, avoiding unintended drags on the page. 
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CHAPTER SEVEN : CONCLUSION 

7.1 Goals achieved 

This research specified three goals to be accomplished. They will be reviewed and the results 

found in our evaluation will be used to demonstrate how the goals were achieved. 

7.1.1 How can this solution serve as a basis to help basic HCI principles such as user 

centered design to be followed in designing new interaction ideas? 

Prototyping is one of the steps of user centered design that has been proven to be an effective 

way to include users early in the design process, producing products that better fit user’s need by 

getting early feedback. ProtoActive allows designers to evaluate two aspects of ITS applications: 

layout ideas through sketches of the prototype and interactions through pre-built or custom 

gestures. The first pilot study (section 6.1) gathered different gestures that participants created to 

perform similar tasks. The variety of gestures created for the same task suggests that designers 

could benefit from such a tool as ProtoActive to evaluate different and innovative interactions. 

During the evaluation in the wild studies (section 6.3), ProtoActive was also used to 

communicate design and interaction ideas among team members, serving also as a tool to help 

brainstorming among team members. 

ProtoActive actually allowed study participants to create and evaluate interactive prototypes of 

gesture-based ITS applications. 

7.1.2 How does a prototyping tool that can evaluate custom gestures affect the design of 

touch and tag-based applications? 

The first (section 6.1) and second (section 6.2) pilot studies had participants use ProtoActive and 

discuss its gesture creation and evaluation feature. The first study gave the same task for 
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participants and had them create a gesture to accomplish the task in the prototype. The variety of 

gestures and the feedback from the participants suggest that such a feature (create custom 

gesture) might allow designers to innovate and try new design ideas with users due to the low 

cost and easiness to create and evaluate different ideas. The second pilot study evaluated 

ProtoActive feature of evaluating prototypes that can be interacted through tangibles, using 

fiduciary markers. One of the participants stated that by using such a tool, hours of development 

could be saved by evaluating the tag-based gesture in a prototype that took thirty minutes to be 

created. This shows that potential problems and design critiques might be addressed before the 

implementation phase. Another feedback from the second pilot study also mentioned that by 

being so easy to use, such a tool might also be used to explain a design idea and as a 

communication artifact between team members. The feedback anecdotally suggests that using 

ProtoActive to evaluate gestures that would be time consuming to create allows designers to 

experiment and evaluate ideas in an early stage. The feedback coming from experienced 

designers highlights ProtoActive’s potential to reduce development effort for ITS applications. 

7.1.3 What are the benefits of allowing designers to create custom gestures?  

Allowing designers to create custom gestures allows the evaluation of different interaction ideas 

contained in the costs and time constraints of low-fidelity prototyping. This was shown by the 

evaluations (sections 6.1 and 6.2) that contained gestures that are not contained in any of the 

prototyping tools investigated in Chapter Three. Providing designers with ways to evaluate these 

gestures in the final application context (through using the custom created gestures in interactive 

prototypes) allows these innovative interactions to be developed following a user-centered 

approach as recommended by Norman and Nielsen [2]. 
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7.2 Contributions 

This thesis offers a pragmatic prototyping approach for ITS application development that is 

supported by two integrated tools. The first is ProtoActive, a sketch based prototyping tool for 

ITS applications. The main contribution of ProtoActive is to allow designers to evaluate not only 

the output of sketch based prototypes (namely what happens when a user wants to accomplish a 

task) but also the input on the prototypes and how a user wants to interact and accomplish a task. 

For ITS applications, interactions often use gestures and in order to allow the evaluation of these 

interactions, the prototypes in ProtoActive can be interacted via a pre-built set of gestures or 

through customized gestures created with an embed gesture learner tool, which is the thesis 

second contribution: IGT. 

IGT uses samples of a gesture performed on the device to create a gesture definition that can 

recognize all the samples provided for a specific gesture. The novelty of IGT relies on the unique 

anti-unification approach used to identify all the common aspects between the samples of the 

gestures thus creating a gesture definition that is the most specific template between the samples. 

The gestures created in IGT are available in external files that can be used by any other 

application using Gesture Toolkit framework to recognize gesture. 

7.3 Limitations of the thesis 

As for the main contributions, the limitations of the solution proposed in this thesis can be 

explained in terms of its two main features: prototyping and learning gestures. 

7.3.1 Prototyping 

The different evaluations showed that ProtoActive fills the needs for creating prototypes for ITS 

applications, but it arguably has limited support for gathering data during evaluation. Designers 
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often rely on their own equipment to record the video and audio of evaluation sessions of the 

prototypes. ProtoActive support for evaluation relies on the same as paper prototyping. Due to 

the easiness to create prototypes and to manipulate the tool: using a finger or a stylus pen to 

draw, users with the support of designers can suggest and even make modifications to the 

prototype during the evaluation session.  

7.3.2 Learning gestures 

IGT and ProtoActive use Gesture Framework [10] for gesture recognition and definition. This 

means that some of the limitations in Gesture Toolkit are inherited. While the GDL supports 

multi-step gestures, it is currently limited to gestures with sequential steps and that need to fit in 

the primitives described in Chapter Five. The feature to allow the gesture recognizer to break the 

gesture into parts facilitates the sequential process but it requires some experience from the 

designer to decide if dividing a gesture into steps or not will generate the best gesture definition 

for its needs. 

7.4 Limitations of the studies 

The two first studies were designed to evaluate separate aspects of the current study. A final 

evaluation had a more horizontal approach to see the user’s feedback after using ProtoActive for 

their projects and for a more extend period. The author recognizes that a comprehensive user 

study involving more participants will provide more insights about ProtoActive. 

7.5 Future Work 

The usability issues commented on the evaluation process should be addressed for a next version 

of ProtoActive. These design critiques are: 

 for a large display, the buttons might be too far from the user; 
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 the shape of the gesture area concerned some students in scenarios such as a circular 

button; 

 depending on the background image set, a gesture area might be hard to notice; 

 the color picker feature might suffer from “fat finger” problem, where the area to click is 

too small for a finger; 

 allow gesture areas to contain other gesture areas, allowing a stacking mechanism that 

will group gesture areas. The current state of the application does not allow gesture 

areas to be placed on top of each other; 

ProtoActive and IGT’s method of defining and recognizing gestures could be improved to avoid 

two main problems detected during the evaluation: 

 unreliable hardware: misrecognition of touch-points when providing samples to IGT will 

generate inconsistent samples that might not represent the gesture a designer is trying to 

teach the tool; 

 conflict during gesture recognition, as a gesture area can support multiple gestures, a 

conflict mechanism should detect potential conflicts and warn designers; 

The evaluation of ProtoActive might also be improved by including more extensive evaluations 

(including evaluation in the wild of tangible based applications and participating in the whole 

cycle of an application development) and  as well as use in real projects as further evaluations. 

Using ProtoActive for designing real world applications might allow the author to gather 

feedback from the final users of the application which will give a better understanding of 

ProtoActive’s impact in the final product. 
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The future of ProtoActive looks promising as after the evaluations in the wild it is being 

considered to be used for one of the companies that participated in the study to be used to 

evaluate prototypes with users in oil platforms for further evaluations. It is also being considered 

by other participants and university professors to be used in an educational context: as a 

prototyping tool to be used by students in an HCI for tabletops class. 
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CHAPTER NINE : APPENDIX 

9.1 Finding lines in a continuous stroke 
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public  <List of TouchPoints> FindLines(TouchPoints points) 
        { 
            switch (NoiseReduction) 
            { 
                case NoiseReductionType.Low: increment = LOW_INCREMENT; 
                    break; 
                case NoiseReductionType.Medium: increment = MEDIUM_INCREMENT; 
                    break; 
                case NoiseReductionType.High: increment = HIGH_INCREMENT; 
                    break; 
             
            } 
            string sPreviousDirection = ""; 
   int idxIni = 0; 
            for (i = increment; i < points.Count; i = i + increment) 
            { 
                StylusPoint p1 = simplerPoints[i - 1]; 
                StylusPoint p2 = simplerPoints[i];             
                double slope = GetSlopeBetweenPoints(p1, p2); 
                string sDirection = SlopeToDirection(slope); 
 
                if (sPreviousDirection == "") 
                    sPreviousDirection = sDirection;           
                 
                if (sPreviousDirection != sDirection) 
                {    
     TouchPoints newLine = CreateTouchPoints()  
     {  
      Points = points.GetRange(idxIni, i),  
      Action = Move       
     }     
     result.Add (newLine); 
                    lastDirection = sCurrentDirection; 
                    sPreviousDirection = sDirection;                     
                    idxIni = i;                     
                } 
            } 
            // If nothing was added then, there is only one step which is the whole 
gesture 
            if (result.Count == 0) 
                result.Add(points);             
            // If there are several points after the last recognized step add the last 
remaining points as a new step 
            else if (i > idxIni) 
            {                 
               TouchPoints newLine = CreateTouchPoints()  
     {  
      Points = points.GetRange(idxIni, i),  
      Action = Up       
     }     
       result.Add (newLine); 
            } 
            
            return result; 
        } 
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9.2 Removing noise touch points for tag recognition 

private <List of TouchPoints>  
removeConcentricBlobs(int pointIndex, <List of TouchPoints> > points) 
        { 
            TouchPoint p1 = points[pointIndex]; 
            if (!p1.isFinger) 
            {    
                var concentricBlobs =  

       from p in points  
                     where  p.Action == p1.Action 
                     && p.Tag == null  
                     && p != p1 
                     && p.isFinger == false 
                     && (GetDistanceBetweenPoints(p1.Position, p.Position) <= REDUNDANCY) 
                                   select p; 

<List of TouchPoints> temp = concentricBlobs.ToList(); 
                
                foreach (TouchPoint2 point in temp) 
                {                    
                   if (GetSmallerBound(p1, point) == p1) 
                   { 
                       points.Remove(p1); 
                       p1 = point; 
                   } 
                   else 
                       points.Remove(point); 
                }                 
            } 
             
            pointIndex++; 
            if ((points.Count > 1)&&(pointIndex < points.Count)) 
                return removeConcentricBlobs(pointIndex, points); 
            else  
                return points; 
        } 
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9.3 Creating valid primitives from touch points 

public static GDL TouchPointsToPrimitives(FilteredTouchPoints allpoints) 
        { 
             
      primitives = GetAllPrimitivesFromGestureToolkit();             
 
            if (PointAnalyzer.BreakIntoSteps) 
                allpoints = PointAnalyzer.FindLines(allpoints);             
             
            allpoints = PointAnalyzer.analyzeTags(allpoints); 
            allpoints = PointAnalyzer.removeHandRedundancy(allpoints);             
 
            var simple = from p in primitives  
      where p.isComplex() == false  
      select p; 
 
            var complex= from p in primitives  
        where p.isComplex() == true  
       select p; 
      ValidPrimitives simplePrimitives = loadPrimitives(allpoints, simple);  
      ValidPrimitives complexPrimitives = loadPrimitives(allpoints, complex)); 
 
            samplePrimitives.AddRange(simplePrimitives); 
            samplePrimitives.AddRange(complexPrimitives); 
 
            return samplePrimitives; 
        } 

 

 

9.4 Extended grammar for GDL 
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module GDL 
{ 
     language GDL 
    { 
         
syntax PrimitiveCondition 
= r:TouchState => r | r:TouchTime => r | r:TouchLimitRule => r | r:TouchPathLength => r| 
r:TouchStepRule => r| r:ClosedLoop => r | r:DistanceBetweenPoints=> r | r:TouchShape =>r| 
r:TouchPathBoundingBox =>r | r:TouchDirection =>r | r:PerpendicularTo => r | 
r:AngleBetween => r | r:TouchHand => r | r:Tag => r | r:TouchRelativePosition=> r;             
             
          /* AngleBetween*/ 
syntax AngleBetween =  "Angle between" g1:ValidName "and" g2:ValidName ":" x:ValidNum => 
 AngleBetween {Gesture1=>g1, Gesture2=>g2, Min=>x} 
|"Angle between" g1:ValidName "and" g2:ValidName ":" x:ValidNum ".." y:ValidNum => 
 AngleBetween {Gesture1=>g1, Gesture2=>g2, Min=>x, Max=>y}; 
  
 /* TouchRelativePosition*/ 
syntax TouchRelativePosition =  "Relative position between" g1:ValidName "and" 
g2:ValidName ":" p:ValidName => TouchRelativePosition {Gesture1=>g1, Gesture2=>g2, 
Position=>p}; 
    
     /* TouchHand*/ 
syntax TouchHand = "Touch blob" ":" k:ValidName => TouchHand{Kind=>k} 
| "Touch blob" ":" k:ValidName "," t:ValidName => TouchHand {Kind=>k,Type=>t} 
| "Touch blob" ":" k:ValidName "," t:ValidName "," s:ValidName => TouchHand {Kind=>k, 
Type=>t,Side=>s};    
    
       /* TouchTag*/ 
 syntax Tag =  "Touch tag" ":" x:ValidNum => Tag {Value=>x}; 
         
        /* Perpendicular to*/ 
syntax PerpendicularTo = g1:ValidName "perpendicularTo" g2:ValidName 
    => PerpendicularTo {Gesture1=>g1, Gesture2=>g2}; 
             
        /* Touch shape */ 
syntax TouchShape = "Touch shape" ":" s:Shape =>TouchShape{Values=>s}; 
token Shape = x: "Line" => x | x: "Rect" => x | x: "Check" => x | x: "Circle" => x; 
             
        /* Touch direction */ 
syntax TouchDirection = "Touch direction" ":" d:DirectionOptions 
            =>TouchDirection{Values=>d}; 
             
token DirectionOptions = x: "Left" =>x | x: "Up" =>x | x: "Down" => x| x: "Right" => x 
     | x: "UpLeft" => x | x: "UpRight" => x | x: "DownLeft" => x  | x: "DownRight" => x; 
             
syntax DistanceBetweenPoints_Behaviour = "Distance between points" ":" 
x:DistanceBetweenPointsOptions => DistanceBetweenPoints{Behaviour=>x}; 
token DistanceBetweenPointsOptions 
= x: "increasing" => x  | x: "decreasing" => x;              
                
        /* Rule: Closed loop */ 
syntax ClosedLoop = "Closed loop" ":" t:Boolean => ClosedLoop{State=>t}; 
             
        /* Rule: Touch Limit */ 
syntax TouchLimitRule = r:FixedValue => r | r:Range => r; 
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syntax Range = "Touch limit" ":" x:ValidNum ".." y:ValidNum 
            =>TouchLimit{Type=>"Range", Min=>x, Max=>y}; 
             
syntax FixedValue = "Touch limit" ":" x:ValidNum   
            =>TouchLimit{Type=>"Fixed", Min=>x}; 
         
        /* Rule: Touch Step */  
syntax TouchStepRule = "Touch step" ":" x:ValidNum "touches" "within" 
y:ValidNum z:TouchStepUnitsForTime => TouchStep{TouchCount=>x, TimeLimit=>y, Unit=>z}; 
token TouchStepUnitsForTime  = "sec" | "msec";             
         
        /* Touch Area */ 
syntax TouchAreaRule = t:CircularArea => t | t:RectangleArea => t  
            | t:EllipseArea => t; 
             
syntax EllipseArea = "Touch area" ":" "Ellipse" x:ValidNum "x" y:ValidNum => 
TouchArea{Type=>"Ellipse", Value=>x+"x"+y}; 
         
syntax RectangleAre = "Touch area" ":" "Rect" x:ValidNum "x" y:ValidNum => 
TouchArea{Type=>"Rect", Value=>x+"x"+y} 
| "Touch area" ":" "Rect" x:ValidNum "x" y:ValidNum "including" "last" h:ValidNum "touch" 
"within" time:ValidNum "sec"=> TouchArea{Type=>"Rect", Value=>x+"x"+y, HistoryLevel=>h, 
HistoryTimeLine=>time}; 
         
syntax CircularArea = "TouchArea" ":" "Circle" x:ValidNum => TouchArea{Type=>"Circle", 
Value=>x}; 
             
       /* Touch Time */ 
syntax TouchTime = "Touch time" ":" val:ValidNum unit:TouchTimeUnit 
            =>TouchTime{Value=>val, Unit=>unit }; 
token TouchTimeUnit  = "sec" | "secs" | "msec" | "msecs";             
             
        /* Touch State */ 
syntax TouchState = "Touch state" ":" opt:TouchStateOptions =>TouchState{States=>opt}; 
             
syntax TouchStateOptions= opt:TouchStateOption+ => opt; 
token TouchStateOption = "TouchUp" | "TouchDown" | "TouchMove"; 
           
        /* Touch Path Length */ 
syntax TouchPathLength  = "Touch path length:" min:ValidNum ".." max:ValidNum => 
TouchPathLength{Min=>min, Max=>max} 
|"Touch path length:" min:Variable ".." max:Variable => TouchPathLength{VariableMin=>min, 
VariableMax=>max} 
|"Touch path length:" v:Variable => TouchPathLength{VariableMin=>v} 
|"Touch path length:" min:ValidNum  => TouchPathLength{Min=>min}; 
     
    } 
} 
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9.5 Algorithm that anti-unifies samples of gestures 

public <List of Primitives> void checkRules() 
        { 
 
           // Always create a new solution based on the gestures 
            solution = new <List of Primitives>(); 
 
            // This loop will search for a relation between the primitives 
            Foreach (Sample sample in Samples ) 
            { 
  Foreach  (Primitive in sample) 
  { 
                 
                if (primitive has more than 1 step)// complex gestures                   
                {  
   //checks for constant or values that vary inside the established  
   // threshold in primitives that have a numeric value  
   // e.g.: AngleBetween 90 
                    checkValueComplexPrimitives(primitive); 
 
   //checks for constant string in primitives 
   checkStringComplexPrimitives(primitive); 
                } 
                else 
                { 
   //Goes to all the primitives with numeric values 
   //and checks to see if they vary inside a threshold 
   //or if there is a multiplication relationship between them 
                    checkProportionforPrimitive(primitive, i); 
   //checks for constant string in primitives 
                    checkStringListPrimitives(primitive, 0); 
 
                } 
             } 
     } 
        } 
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9.6 Acquiring images from the device and attaching to correspondent touch points 

    //Occurs when a new frame of contact data is available 
     void _contactTarget_FrameReceived(object sender, FrameReceivedEventArgs e) 
        {      //Update image  
                if ((touch is not a finger) &&(touch does not contain a tag)))  
   && (ticksDelta > 300000)) 
                { 
                    getImage(e); 
                    oldTimeStamp = now; 
                }              
            } 
        } 
 
        private void getImage(FrameReceivedEventArgs e) 
        {          
            bool imageAvailable = false; 
            imageAvailable = e.TryGetRawImage(Normalized,0, 0, Surface.Width, 
                        Surface.Height, out normalizedImage, 
                        out normalizedMetrics); 
             
            if (imageAvailable) 
            { 
                imageAvailable = false; 
                GCHandle h = GCHandle.Alloc(normalizedImage, GCHandleType.Pinned); 
                IntPtr ptr = h.AddrOfPinnedObject();          
                Image imageBitmap = new Image(normalizedMetrics.Width, 
                                      normalizedMetrics.Height, 
                                      normalizedMetrics.Stride, 
                                      Format8bppIndexed,ptr); 
                ImageHelper.BinarizeImage(imageBitmap); 
                 // Creates a new bitmap in order to avoid  memory leakage 
                Image imgClone = new Image(imageBitmap); 
                imgClone.Palette = imageBitmap.Palette; 
                DateTime now = DateTime.Now; 
                // Adds the captured image with a timestamp 
                snapshots.Add(now, imgClone); 
            } 
          } 
        } 
        // Occurs every time a touch event is updated 
        public TouchPoint UpdateActiveTouchPoints(TouchPoint touchPoint) 
        { // gets the images captured during the touch   
      GetSnapShotsFromTouch(touchPoint); 
            Image bitImg = getBetterImage(AddSnapshots(touchPoint), touchPoint); 
 
            if (bitImg != null) // there are hand images for this point 
            { 
                // Add snapshots of hand images with a binarizing filter 
    // and calculates the biggest area (palm of hand) and defect areas 
    // which are points outside the biggest area (fingers) 
                touchPoint.Snapshot = ImageHelper.ExtractContourAndHull(bitImg); 
            }          
            return touchPoint; 
        } 
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9.7 Identifying palm of hand and fingers from a binary image 

// Receives an image, filters, binarizes it 
// and identifies the biggest area (palm) and its 
// defects (fingers) 
public static TouchImage ExtractContourAndHull(Image<Bgr, Byte> newImg) 
        { 
            TouchImage touchImage = new TouchImage(); 
            touchImage.Image = newImg; 
            using (MemStorage storage = new MemStorage()) 
            { 
                Image<Gray, Byte> grayImage = touchImage.Image.Convert<Gray, Byte>(); 
                Contour<System.Drawing.Point> contours = 
grayImage.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, 
Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST, storage); 
                Contour<System.Drawing.Point> biggestContour = null; 
                Double Result1 = 0;  Double Result2 = 0; 
                while (contours != null) 
                { 
                    Result1 = contours.Area; 
                    if (Result1 > Result2) 
                    { 
                        Result2 = Result1; 
                        biggestContour = contours; 
                    } 
                    contours = contours.HNext; 
                } 
 
                if (biggestContour != null) 
                { 
                    Contour<System.Drawing.Point> currentContour =     
   biggestContour.ApproxPoly(biggestContour.Perimeter  
   * 0.0025, storage);                     
                    biggestContour = currentContour; 
                    touchImage.Box = biggestContour.GetMinAreaRect(); 
 
                    touchImage.Defects = biggestContour.GetConvexityDefacts(storage,  
   Emgu.CV.CvEnum.ORIENTATION.CV_CLOCKWISE).ToArray();                     
                } 
                storage.Dispose(); 
            } 
            return touchImage; 
        } 
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9.8 Analyzing images to identify hand postures 

 
// On gesture recognition, validate to see if touchpoints are a hand posture  
 public <List of Primitives> ValidateHandPosture(<List of TouchPoints> touchPoints) 
        {             
     <List of Primitives> rules; 
            foreach (TouchPoint point in points) 
            { 
                if (points is not tag  
   and point is not a finger 
   and point contains images) 
     {  
                     
                    Primitive hand; 
                    HandType type = getHandType(out _type, out _side,  point); 
                    if (_type != "") 
                    { 
                        hand.Type = _type; 
                        hand.Side = _side; 
                        rules.Add(hand); 
                    } 
                } 
            } 
            return rules; 
        } 

 
public static void getHandType(out string _type, out string _side, TouchPoint2 point) 
        { 
            accuracy = 0.9; 
            int fingers = ComputeFingersNum(point.Snapshot, out _side); 
 
            if (fingers >= 4)  { _type = TouchHand.OPEN;} 
            else if (fingers == 0 && _side == ""){ _type = ""; } 
            else { _type = TouchHand.VERTICAL;}             
        } 
 
 private static bool isVertical(Rectangle rect) 
        { 
            return (rect.Width < rect.Height * 0.45); 
        } 
 

9.9 Calculating the number of fingers and their position 
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 public static int ComputeFingersNum(TouchImage touchImage, out string orientation) 
        { 
            if (touchImage.Box.MinAreaRect().Width  
  * touchImage.Box.MinAreaRect().Height < 12000) 
            { 
                orientation = ""; 
                return 0; 
            } 
 
            if (isVertical(touchImage.Box.MinAreaRect())) 
            { 
                orientation = ""; 
                return 1; 
            } 
            int fingerNum = 1; orientation = ""; PointF LeftEdge = touchImage.Box.center; 
            double lowest = 0; 
            if (touchImage.Defects == null) {  return 0;} 
 
            for (int i = 0; i < touchImage.Defects.Count(); i++) 
            { 
      //Calculates the start, depth and endpoint of each defect (potential finger) 
                PointF startPoint = new PointF((float)touchImage.Defects[i].StartPoint.X,                                                        
     (float)touchImage.Defects[i].StartPoint.Y); 
                PointF depthPoint = new PointF((float)touchImage.Defects[i].DepthPoint.X,                                                
     (float)touchImage.Defects[i].DepthPoint.Y); 
                PointF endPoint = new PointF((float)touchImage.Defects[i].EndPoint.X, 
                                  (float)touchImage.Defects[i].EndPoint.Y); 
  using (touchImage.Defects[i]) { 
                LineSegment2D startDepthLine = new LineSegment2D(StartPoint, DepthPoint); 
                LineSegment2D depthEndLine = new LineSegment2D(DepthPoint, EndPoint); 
                CircleF startCircle = new CircleF(startPoint, 5f); 
                CircleF depthCircle = new CircleF(depthPoint, 5f); 
                CircleF endCircle = new CircleF(endPoint, 5f); 
  } 
  //Detecting the orientation of the hand based on the position of the lowest       
  // finger, if the lowest finger (thumb) is to the right, then it is left  
              // hand, if the lowest finger is to the left, then it is right hand 
              //Custom heuristic based on experiment 
                if ((startCircle.Center.Y < touchImage.Box.center.Y 
                    || depthCircle.Center.Y < touchImage.Box.center.Y) &&    
   (startCircle.Center.Y < depthCircle.Center.Y) 
                    && (Math.Sqrt(Math.Pow(startCircle.Center.X - depthCircle.Center.X,2) 
                        + Math.Pow(startCircle.Center.Y - depthCircle.Center.Y, 2)) >  
    touchImage.Box.size.Height / 6.5)) 
                { 
                    fingerNum++; 
                    if (startCircle.Center.Y > lowest) 
                    { 
                        lowest = startCircle.Center.Y; 
                        if (startCircle.Center.X < depthCircle.Center.X) 
                            orientation = TouchHand.LEFT; 
                        else 
                            orientation = TouchHand.RIGHT; 
                    } 
              return fingerNum;   
               }  
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9.10 Semi-structure interview script 
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Interview questions  
  

1. Name, company that the volunteer works in, role the volunteer has in the company  

2. Has the volunteer used prototypes before? As a designer? As a user?  

a. What is his opinion about it?  

3. Which prototyping tools have you used?  

4. What is his opinion regarding paper prototype x software prototype?  

5. Can the designer be more specific with the low-fidelity prototypes used, guide him to mention if 
they are drag’n drop or sketching tools.  

6. Prototyping in a tabletop? Has the participant done it?  

7. Ask the volunteer to rate the need of some requirements in a low-fidelity prototype tool for 
tabletop (Fundamental-5, Not relevant-0)  

a. Copy Page (5-0)  
b. Select Components (5-0)  
c. Thumbnails visualization (5-0)  
d. Drag and drop controls  

i. Radiobutton (5-0)  
ii. TextBox (5-0)  

iii. Image (5-0)  
iv. DropDownList (5-0)  
v. Button (5-0)  

e. Annotation tool  
i. Voice (5-0)  

ii. Marker/Sketch (5-0)  
iii. Typing (5-0)  

f. Drawing with a pen x Drawing with finger  
  

8. Ask his take on drag’n drop x sketching tools. Guide him in explaining in what drag and drop  

tools are good for and in what sketching tools are good for  

  

9. What about the evaluation of the prototypes? Is an annotation tool necessary? Voice or  

marker? Both?  
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9.11 Survey for the evaluations in the wild 
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ProtoActive Survey 

 
Name: _________________________________ Occupation: ______________________________ 
(optional) (optional) 

 
 

1. What is your experience in designing touch-based applications? Choose an item. 
 
 
Comments: 
 
 
 
 

 

2. What is your experience using low-fidelity prototype? Choose an item. 
 
 
Comments: 
 
 
 
 
 
 

3. What tools have you used for prototyping? (including paper) 
 
 
 
 
 

4. How would you rate the importance of prototyping 
in designing  touch-based applications? 

Important   If there is time  Not necessary   

5. Have you ever tried to implement (in code) any gestures? 
 
If you did, were you satisfied creating gestures in ProtoActive? 

Yes No 
 
 
 
 

6. What improvements do you suggest for defining gestures in ProtoActive? 
 
 
 
 
 
 
 

7. What improvements do you suggest for ProtoActive? 
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  8. Please, list the devices in which you used ProtoActive 

Device Specification 

  

  

  

  

9. Please, list the devices in which the final application will be used 

Device Specification 

  

  

  

  

10. Please give a brief description of the application you are using ProtoActive to prototype 

11. Please rate your experience with ProtoActive Choose an item. 
 
Comments: 
 
 
 

 

 Additional comments and suggestions 
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9.12 Certification of institutional ethics review 
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9.13 Ethics approval  

 



 

138 
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9.14 Ethics approval extension #1 
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9.15 Ethics approval extension #2 
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9.16 Consent form  
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