Introduction

In recent years, there have been many studies of both exactly self-
similar and statistically self-similar fractal curves in space [5,
11]. The property of self-similarity [5] is a central concept in
fractal geometry. A curve in 2 space dimensions is exactly self-
similar if it can be divided into N smaller copies of itself that
are exactly the same as the original except for being scaled down
by a factor r in both dimensions. In other words, the curve is in-
variant under identical changes of scale in two space dimensions.
The fractal, or self-similarity, dimension D, which is a measure of
the extent to which the curve is space filling [9], is given by the
equation D = (log N)/log (1/r). A example of an exactly self-
similar curve is the Koch curve with D = 1.26 [11]. In contrast, a
curve is only statistically self-similar if on division into N
smaller copies of itself, each copy is statistically similar to the
original object, a coastline being the best-known example.

Fractal curves occur in space. In the case of two
dimensional space, a fractal curve will have a fractal dimension
less than 2 but greater than 1, for example, the Koch curve with
dimension 1.26. A fractal dimension close to 1 means that the curve
does not occupy a great deal of the space, that is, it has a low
level of wiggliness; a curve with fractal dimension close to 2 oc-
cupies most of the space and has a very high level of wiggliness.
Thus in 2 dimensions fractal dimension can be usefully interpreted

as a wiggliness measure. In the case of a fractal surface in 3
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dimensional space, a fractal dimension close to 3 means that the
surface is very jagged, whereas a dimension close to 2 means that
it is very smooth, so that, in three dimensional space fractal
dimension is a measure of the jaggedness of surfaces.

Time functions are quite different from curves in 2 dimens-
nional space, even though they are frequently represented as space

curves on a 2-dimensional medium. A time function may exhibit ap-

parent exact or statistical sélf—similarity, when so represented.
However, this is deceptive, because a time function is always a
physical magnitude that is a function of time, for example, the
short term interest rate over a period of hours, or the temperature
over a period of time, or the price of the S&P 500 index over a pe-
riod of hours. With such curves, the scales that can be used for
the physical magnitude and the time may be varied independently,
which is not possible in the case of a geometric curve in 2-
dimensional space. For example, in the case of the interest rate
time function, when representing the curve on a 2-dimensional me-
dium, in one representation 1 centimeter could be used for 2 basis
points of interest on the y-axis, and 10 minutes of time on the x-
axis; in another representation, 1 centimeter could represent 5
basis points and 60 minutes. The two curves would nevertheless be
the same, although one would appear more wiggly than the other.
Thus the concept of fractal dimension cannot be applied to time
functions without ambiguity [8, 9, 111].

However, time functions can exhibit self-affinity, as op-
posed to the self-similarity of geometric curves in two dimensions.

An exactly self-similar curve repeats exactly when magnified or



scaled by the same factor in both space dimensions, that is, in
both the y and x-dimensions. In contrast, a time function has exact
self-affinity if it repeats exactly when magnified by one scaling

h in the physical magnitude (y) axis and another scaling

factor r
factor r in the time (t) axis [9]. Furthermore, a time function ex-
hibits statistical self-affinity [8] if it repeats statistically
when magnified by a scaling factor ! in the physical magnitude
axis and a scaling factor r in the time axis. Any time function
that follows a random walk or Brownian motion, for example, ex-
hibits statistical self affinity [8].

In the case of the random walk time function, if time t is
magnified by a factor r then the amplitude A must be magnified by

D Ghere h is 0.5. As first pointed out in 1900 by

the factor r
Bachelier [2], in his famous doctoral thesis, with a random walk
the standard deviation of amplitude changes in fixed-length time
intervals is proportional to the square root of the time interval.
It is this statistical property that is preserved under (r, rh)
scaling [8, 11], thus making a random walk statistically self-
affine. (Loosely, it takes 4 times as long for the amplitude, on
average, to move twice as far, so that if the time axis is scaled
by a factor of four the physical amplitude axis must be scaled by a
factor of two to have a statistical replica of the original time
function.) This fundamental property of a random walk is caused by
amplitude changes in fixed time segments being independent, that
is, they follow a Gaussian distribution, which leads to zero values

for covariances and thus correlation coefficents between sets of

amplitude changes in equal time segments. Consider an amplitude
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change A, made up of a succession of amplitude changes A1, Ay, o

AL, in n successive equal time segments. The variance of a large

number of such amplitude changes A, denoted by V(A), must obey

V(A) = V(Ap + Ay + ... A))

V(Al) + V(Az) + ... V(Al’l)

+ C(AlAz) + C(A1A3) + ...C(An_lAn)

where C(AlAz) is the covariance between sets of Ay, Ay amplitude

changes. This must reduce to

V(A)= nV(Ap)

since the covariances are zero, because successive changes are in-
dependent, and since the variances in equal length time segments

are all equal. Thus, if S(A) is the standard deviation:

S(A) = (v(A))0:5 = gn0.5

so that S(A) is proportional to the square root of the number of
time segqments and thus to square root of the time.

In the 1930s, an obscure accountant, R.N. Elliot, proposed,
in a series of vaguely worded articles in Financial World, later
published in book form [3], an idealized time function concept as a
model for the price-time behaviour of the Dow-Jone-Industrical
Average. The concept was a time function that was potentially ex-

actly self-affine since it allowed for an infinite number of



6
replications of an 8-movement or 12345abc sequence, where the suc-
cessive movements are labelled 1, 2, 3, 4, 5, a, b, and ¢. [To make
the model fit the actual behaviour of the index, Elliot also intro-
duced a large array of, sometimes simple, but more often complex,
rules for permissible deviations from the ideal function concept.
These complex rules and deviations, together with the issue of the
extent to which they model the behaviour of the DJIA are not
relevant to this paper.]

This paper is concerned with defining members of a class of
precisely-defined exact self-affine time functions that have the
common property of being consistent with infinite replication of
the basic 8-movement 12345abc sequence. Functions belonging to this
class are referred to as Elliot time functions or E(t) functions.

E(t) functions are interesting in their own right because
they exibit exact self affinity, and in this paper the main
amplitude and time ratios, and scaling factors for what appear to
be the more obvious E(t) functions are derived. One of these func-
tions described will be shown to have the unusual property of scal-

ing like a random walk.

Self-affine time function definition

Both fractal curves and self-affine time functions can be
defined by means of algorithms. However, it is often more con-
venient to define them by means of L-systems, also called string-
rewriting systems, which were introduced by Lindemayer, and further

developed by Prusinkiwicz [12], for computer graphics modelling of
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the growth of plants. Essentially a first string, or string axiom

is given. Then each character from the string axiom is replaced by
a further string using a rewriting rule from an allowed set of pro-
duction rules. In the case of any E(t) function, infinite replica-
tion of a 12345abc segment requires the following axiom and produc-

tion rules:

ud axiom

U -> Ududu up-impulse decomposition

d -> DuD down-correction decomposition
D -> DuDuD down-impulse decomposition

u -> UdU up-correction decomposition

A sequence of rewritings is:

U d 1+ 1 = 2

UdUudU DuD 3+ 5 = 8
UdUdUDuDUdUdUDuDUdUdU DuDuDUdUDuDuDd 13 + 21 = 34
PN 55 + 89 = 144

The number of characters at each rewriting level follows the
Fibonacci sequence. The strings are displayed as a time function in
Figure 1. At any level, U corresponds to an upward movement or up-
impulse, followed by a correcting downward movement, or down-
coorection, d. D corresponds to a downward movement, or down-

impulse, followed by correcting upward movement, or upcorrection,

u.
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An E(t) function is constructed, at all levels except for
the axiom level, of sets five movements upwards (UJdUdU) or
downwards (DuDuD), followed by 3 movements in the reverse direction
either downwards (DuD) or upwards (UdU). At any level, it is con-
venient to label the various movement points on the curve as O, 1,
2, 34, 5, a, b, c. It is evident that an E(t) function can have no
derivitive anywhere, and moves in a series of zigzags in an upward
trend, in a manner reminiscent of market averages behaviour.

Simple inspection shows that an E(t) function exhibits
self-affinity in principle; for example, the 12345abc segments of
the function in boxes in Figure 1 could all be exact replicas of
each other. Although it is clear from Figure 1 that an E(t) func-
tion could replicate itself infinitely many times, in order to pre-
cisely define a specific E(t) function, exact information is needed
for both amplitude and time scales. For example, with reference to
the y-axis, we need to know the precise ratio of the height of any
U movement to the subsequent corrective d movement; with reference
to the time axis, we need the ratio of the time taken for a U-
movement and the time taken for the subsequent d-movement. In this
paper we show that for a specific E(t) function, these ratios may
be derived from simple assumptions of the extent of amplitude and
time movements and from the self-replicating requirement of the
function. Since amplitude and time ratios are necessarily indepen-
dent, they can be taken separately. We begin with possible

amplitude ratios.

Amplitude ratio derivations
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On examination of any 5-movement sequence of the type found

in E(t) functions, it can be seen that there are three major types,

depending on the extent of movement 4, as shown in Figure 4. These

are:

1. Corrective movement-4 does not correct back as far as the

end of movement-1.

2. Corrective movement-4 corrects back exactly to the end of

movement-2.

3. Corrective movement-4 correct back beyond the end of

movement-2.

These three cases are analysed below.

Case-1: Corrective movement-4 never corrects as far as point 1.

Consider
E(t), as
which we

will not

an arbitrary 5-movement segment of an E(t) function, y =
shown in Figure 2a. It begins at an arbitrary y value,
set to zero for convenience. Setting it to any other value

affect the result, but simply make the algebra less

readable. The end of movement-1 is set to amplitude level b, of

movement -

2 to level ¢, of movement 3 to level a, movement-4 to

level x and movement-5 to level m. Thus movement-1 moves a distance

b in the

y-direction, and movement-5 moves a distance m-x in the y-

direction and so on. In this portion of the analysis we are con-
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cerned only with the size and ratios of y-direction movements and

not with time.
Four basic equations about the size of the movements can be

deduced. These are as follows:

c¢/b = x/m (1)
(x-c)/(a-c) = x/m (2)
b = m-x (3)
(a-¢)/m = (x-b)/(x-c) (4)

The first two equations follow from the self-affinity property of
the function. Each impulse movement and subsequent correction must
replicate or be congruent to every other impulse movement and sub-
sequent correction. Thus the movement from level zero to level m
corrects back to level x and this must be congruent to the movement
from level zero to level b correcting back to level c¢; thus the
ratio of x to m must equal the ratio of ¢ to b, giving equation
(1). Similarly movement-3 followed by correcting movement-4 gives
equation (2). Equation (3) follows from an assumed symmetry proper-
ty, which dictates that the size of movement-5 equal that of
movement-1.

Finally, equation (4) comes from the decomposition of
movement-3 into a 5-movement replica of the movement from level
zero to level m. Thus, appealing to the congruence in the situa-

tion, equation (4) is one of several ratios that must hold.
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The equations are solved as follows:

Combining (4) and (2):

(x-b)/(x-¢) = (x-c¢c)/x (5)

Combining (5) with (1) and simplifying:

x(1-b/m)2 = x - b (6)

Combining (6) with (3) gives:

(x/m2)(m - m + x)2 = x - m + x

or: (x/m)3 = 2(x/m) - 1

The ratio x/m is the key amplitude ratio in the function. If we let

this be k, then the amplitude ratio in the E(t) function obeys the

cubic equation:

k3 -2k +1 =0

This can be factored as:

(k - 1)(k? + k - 1) =0

It has one non trivial positive solution:
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k = (-1 + 59:5)/2 = 0.618

This result enables the relative magnitudes in decomposi-
tion movements to be computed, and thus fully characterizes the es-
sentials of the upward impulse movements of the function. Referring
back to Figure 1, for this case the (vertical) scaling ratio in
each replication of the basic 12345abe segment is m/b, which com-
putes to 2.618. To see this recall that x = 0.618m, from the
definition of k and the solution for k, and that b = m - x from
equation 3, so that b = m(1 - 0.618). Hence m/b is 1/(1l - 0.618) or
2.618.

Although the above equations require that the vertical
scaling factor operating in Figure 2a always be 2.618, the equa-
tions tells us nothing about the actual scale itself used along the
y-axis. It could be a linear scale, or a logarithmic scale, or
something else, depending on the application. For example, if the
function were to be used as a basis for a model of the price-time
behaviour of the Dow-Jones Industrial Index, or any other index, it
should clearly be logarithmic, since it is percentage changes that
matter over a long period [1, 6, 10]. In that case, the basic scal-

ing ratio would be:

Log (P5) - Log (Pp)/(Log (Py) - Log (Py)) = 2.618

where Py is the index level at the beginning of movement 1, Py is

the level at the end of movement 1, and Ps is the level at the end

of movement 5.
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Case-2: Corrective movement-4 corrects exactly to point 1.

Consider an arbitrary

5-movement segment of an E(t) function, y =

E(t), as shown in Figure 2b. It begins at an arbitrary y value,

which we set to zero for convenience, as before. The end of

movement-1 is set to level x, of movement-2 to level b, of

movement-3 to level a, movement-4 to level x and movement-5 to

level m. Thus movement-1 moves a distance x in the y-direction, and

movement 5 moves a distance m-x in the y-direction, and so on. We

are again concerned only with the size and ratios of y-direction

movements and not with time.

The following

b/x = x/m

(x - b)/(a - b) = x/m

Equations (7) and (8)

equations hold:

e (T)
.(8)
.. (9)

follow from corrective movements always being

the same fraction of impulse movements. Equation (9) follows from

movement-5 being equal to movement-1. The case is relatively trivi-

al. From (8) it follows that x is m/2, so that, from (7) b/x is

0.5, so that each corrective movement corrects half of each impulse

movement.
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Referring back to Figure 1, for this case, the (vertical)
scaling ratio in each replication of the basic 12345abc segment is

clearly 2.0.

Case-3: Corrective movement-4 corrects past point 1.

This case was analysed in the same manner as the previous two. The
ma jor assumption was that all corrective movements must be the same
fraction of impulse movements. However, this time, no solution for
the key ratio was possible. The reader is left to attempt it as an

exercise.

Time ratio derivations

At any decomposition level, for any 5-movement upward im-
pulse movement and subsequent 3-movement downward corrective move-
ment of any E(t) function, as far as the time taken for each move-
ment is concerned, there are two major possibilities. At any level

of decomposition the major possibilities are:

Case-1: The time taken for each impulse movement is the same,
as is the ratio of the time for an impulse movement and the

ensuing corrective movement.

Case-2: The time taken for each impulse movement may differ,
although the ratio of the time for an impulse movement and the

ensuing correction is always the same.
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The first case is the simplest.

Case-1 All impulse movements take the same time, as do all correc-

tive movements

Figure 3a shows shows an impulse movement of time length I that
decomposes into 5 movements, followed by a corrective movement of
time length C that decomposes into 3 movements, without regard to
the amplitudes of the movements. All impulse movements in the
decomposition are assumed to take the same time i, and all correc-
tive movements in the decomposition are assumed to take the same

time c. The following must hold:

3i + 2¢ =1 . ...(10)
2i + ¢ =C Ces e e (11)
¢ = ki cereeeeeaa(12)
C = kI ceeene.a(13)

Equations 10 and 11 follow from the decomposition. Equations 12 and
13 follow from the ratio of the time for a corrective movement

being a fixed proportion k of an impulse movement. Solving for k:

k(31 + 2ki) = 2i + ki

giving k2 + k -1=20

which has the positive solution
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k = (-1 + 50-5)/2 = 0.618

Referring back to Figure 1, for this case the (horizontal)
scaling ratio in each replication of the basic 12345abc segment is

clearly

(I + C)/(i + ¢)

or (31 + 2¢ + 2i + ¢)/(i + ¢)
or (5i + 3ki)/(i + ki)
or (5 + 3k)/(1 + k)

or 6.854/1.818, or 4.236

which is different from the ratios derived for Cases 1 and 2 with

amplitude scaling ratios.

Case-2 All impulse movements do not take the same time, nor do all

corrective movements

There are clearly many possibilities here. We analyse only the ob-
vious one, shown in Figure 3b. Following the relative amplitudes of
impulse movements the time p for impulse movement 1 is assumed to
be the same as that for impulse movement 5, but differs from the
time m for impulse movement 3. The time g for downward impulse
movement a is also assumed to be the same as for downward impulse
movement c. The three corrective movements are all assumed to have

different times q, n, and h. However, everywhere in the function,
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the time for a corrective movement is assumed to be k times the

time for an impulse movement. The following must hold:

G = KD ti it ittt it ettt (14)
L T 1 (15)
h = kg . et et et e (16)
2g + h = k(2p + g + n + m) ..... (17)
p = kg ...... ettt .. .(18)
p =kn ....... BN e (19)

Equations 14-17 follow from the time for a corrective movement al-
ways being k times the time for an impulse movement, no matter what
the impulse movement. Equations 18 and 19 follow from symmetry con-
siderations. These are solved for k as folows:

From equations 16 and 18 it follows that h = p. From equa-
tions 18 and 19, it follows that g = n. From equation 17 we there-

fore have:
2n + p = k(2p + kp + n + n/k)
Applying equation 19 to this, we get:
2n + kn = k(2kn + k2n + n + n/k),
which reduces to 2 + k = 2k2 + k3 k + 1,

giving k3 + 2x2 -1 =0,

which, taking fractions, gives:
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(k + 1)(k%2 + x - 1) =0
This cubic has one real positive solution:
k = (-1 + 50:5)/2, or 0.618.
From this the relative times in Figure 3b can be deduced.
To simplify ratio calculations, it is convenient to (arbitrarily)
set p to unity, so that we get:
q = 0.618, m = 2.618, n = 1.618, g = 1.618, h = 1
Referring back to Figure 1, for this case of unequal im-

pulse move times, the (horizontal) scaling ratio in each replica-

tion of the basic 12345abc segment is clearly

(p+q+m+n+p+g+h+g)/(p+q)
which is 11.09/1.618 or 6.854, or 2.6182, This ratio is again dif-
ferent from either of the ratios for amplitude (vertical) replica-
tion obtained earlier.

Time function constructions

The combination of the amplitude Case-1 construction with time

Case-1 construction gives a definition of a time function with



22

specific amplitude and time ratios. Similarly we can combine
amplitude Case-1 with time Case-2 to define another function. Com-
bining amplitude Case-2 with time Case-1 gives another time func-
tion, and amplitude Case-2 with time Case-2 gives yet another, for
a total of four distinct E(t) time functions for all the combina-
tions of the cases considered in this paper. Probably many other
distinct E(t) functions could be constructed from development of
new amplitude and time ratio cases. In each of the four functions
defined here the amplitude scaling or replication ratio is dif-
ferent from the time scaling or replication ratio. The important
point is that the existence of such differing ratios means that
each of the four functions is an exact self-affine time function.

Of the four functions that can be defined from the cases
considered here, one of them, the one constructed by combining
amplitude Case-1 with time Case-2, has an unexpected property. The
amplitude scaling or replication ratio is 2.618. The time scaling
or replication ratio is 2.6182, Remembering that we are dealing
with an exact self-affine function that has no derivitive anywhere,
these amplitude and time scaling ratios mean that the structure
(and the wiggliness) of the‘curve is preserved under scaling the
time by an arbitrary factor r, provided the amplitude is also
scaled by a factor rh where h is 0.5. But recall that in the case
of the random walk time function, if time t is magnified by a fac-
tor r then the amplitude must be magnified by the factor rP where h
is 0.5.

Thus a fundamental property of this particular exact self-

affine time function is that it scales like a random walk. However
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it is clear that it is not a random walk. The scaling is a result
of a specific well-ordered structure (a 12345abc segment) that is
continually replicated using an amplitude scaling ratio of 2.618
and a time scaling ratio of 2.618%2, Preservation of this property
under (r,rh) scaling makes the E(t) function exactly self affine.
In contrast with a random walk the (r, rh) scaling, with h = 0.5,
is due to the standard deviation of amplitude changes in fixed-
length time intervals being proportional to the square root of the
time interval. It is this statistical property that is preserved
under r, ch scaling, thus making a random walk statistically self-
affine.

The existence of an E(t) function with random walk scaling
leads to speculation about the possible existence of an E(t) func-
tion that is a random walk forgery [13]. In principle, such a func-
tion might be constructed as follows. For each impulse movement,
instead of the single possibility allowed by an exact self affine
E(t) function, allow one of a large number to be selected at ran-
dom, perhaps as a result of a set of coin tosses, so that the im-
pulse movements selected would distribute according to the binomial
distribution, or if the pool were large enough, according to the
Gaussian distribution. Corrective movements would be selected
similarly. Things could thus conceivably be arranged so that on
average the ratio between 12345abc amplitude replications is 2.618,
and on average the ratio between 12345abc time replications is
2.6182, With such a function the 12345abc structures would repli-
cate with random walk scaling only on average, however. But, in

addition, because of the Gaussian distribution of impulse and cor-
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rective movements, the standard deviation of movements in fixed
time periods should be proportional to the square root of the time
period, as in a random walk. Such a function would have to be clas-
sified as a statistically self affine E(t) function. The casual ob-
server of such a function, particularly with segments that are many
levels down, where the replicating structures are not apparent,
could easily, as a result of measurement, conclude that the func-
tion was a random walk, when in reality it was an E(t) function
that was a random walk forgery. The proof that such a function
could exist, although currently lacking, would be an algorithm for
its generation [4]. This speculative line of reasoning leads to a
final speculation, namely that in spite of the construction of very
large financial data bases and careful statistical research in the
past forty years, showing that the major market averages essential-
ly follow a random walk (or at least a stochastic) [1, 2, 6, 7, 91,
the existence of an exact self-affine E(t) function with random
walk scaling also raises the possibility that these averages have
more inherent order than can be detected by conventional statisti-

cal tests and are in reality random walk forgeries.

Conclusions

Self-affine time functions have much in common with frac-
tals in two-dimensional space but are different from fractals in
that they scale differently in the amplitude and time axis. An ex-
act self-affine time function replicates exactly when scaled by ap-

propriate ratios in the amplitude and time axes. A statistical self
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affine time function replicates only statistically when scaled ap-
propriately in the amplitude and time axis, the best known example
being a random walk, where the time scaling factor is the square of
the amplitude scaling factor. The existence of at least four exact
self affine time functions, called Elliot or E(t) functions, that
allow for infinite number of exact replications of 12345abec struc-
tures, has been demonstrated. These E(t) functions are defined al-
gorithmically and have no derivitive anywhere. One of these E(t)
functions has the unexpected property of scaling like a random
walk. This leads to speculation that it might be possible to con-
struct a statistically self-affine E(t) function that would be a

random walk forgery.
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