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ABSTRACT

This thesis investigates uncertainty in object-based Geospatial Information Systems (GIS).
This issue is of vital importance to users since uncertainty information aids users in

determining the fitness of the data to their particular application.

The theories that are used to deal with uncertainty - information theory, probability
theory, evidential theory, fuzzy sets theory and geostatistics - are briefly reviewed. Each of
these theories can be used to analyze a specific aspect of uncertainty. A general theory to

handle all aspects of geospatial uncertainty has yet to be developed.

The techniques for modeling uncertainty in GIS are classified into four categories:
analytical, simulation, experimental and error descriptors. Analysis of the categories has
shown that each method has associated advantages and disadvantages and that the method
selection is directly related to functional approximation errors, computer efficiency, and

economic constraints.

Current models of geospatial uncertainty are analyzed. It is found that they are
oversimplified. Therefore, more complete uncertainty models that describe the positional

variations of spatial objects are proposed and evaluated.

A data reduction strategy for representing curvilinear boundaries is proposed. This
recursive spline approximation has shown that a 70% data reduction can be achieved in
boundary delineation for the cases studied in this thesis. However, data reduction depends

on the assumed approximation error.



Uncertainty management problems are viewed as closely related elements. The
components of the framework are uncertainty identification, uncertainty modeling,
uncertainty communication, uncertainty reduction, and uncertainty absorption. A
framework is proposed to deal systematically with uncertainty management issues in

object-based GISs.

Finally, a software package for uncertainty modeling and visualization has been
developed which facilitates the implementation of the proposed uncertainty management

techniques.

Further research may be directed towards studying the uncertainty implications due to
scale changes, integrating temporal and topological uncertainty in the management
strategies, searching for the most effective methods for uncertainty communication, and
analyzing the impact of spatial database uncertainty upon decision making and risk

analysis.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis examines the management of uncertainty in object-based Geospatial
Information Systems (GIS). In recent years, this issue has become of increasing
importance to GIS users, as well as decision makers. Rigorous modeling, efficient
algorithms, and proper communication of uncertainty to GIS users are important issues in
uncertainty management and, as such, they constitute important parts of this research.
However, it is argued that they represent only part of the solution, and that such work
should be contained in an overall strategy that can be effectively applied. By properly
modeling and communicating uncertainty, the quality of derived database products may
then be assessed, so as to determine whether the products are satisfactory for the task for

which they are to be applied.

This opening chapter explores the scope of the uncertainty problem, its significance,
and its consequences if left unresolved. First, the importance of modeling and managing
uncertainty in GIS is identified. Next, the problems that are the focus of this research
study are highlighted. Finally, the research study is introduced in terms of method used,
scope, objectives, and relation to the current body of knowledge in this field. The chapter
concludes with an explanation of the structure and content of the thesis, giving readers a

clear guide to the dissertation.
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1.2 The Significance of Uncertainty Management

Geospatial Information Systems are used in almost every discipline which handles spatial
data. A GIS can be conveniently defined as a software package for the storage, analysis,
and presentation of geospatial data [Worboys, 1995]. GISs have thus quickly become an
indispensable tool for the efficient management of spatial data and are now routinely
being employed by academics, government agencies and private industry [Maguire et al.
1991; Goodchild et al. 1993; Chrisman, 1997]. The incomplete treatment of uncertainty

within GIS products, however, may limit their usefulness.

Over the last fifteen years, the issue of uncertainty and GIS has gained increasing
prominence at national and international conferences, resulting in much discussion of the
problems but few solutions [Hunter, 1996]. Many users are now becoming anxious at the
apparent inability to quantify the accuracy of system products, while others still question
whether there is any real cause for concem. It is now a well recognized fact that while
accuracy might not be a ‘money-making’ subject [Kitchen, 1989], it could well become a
‘money-losing’ one for those who ignore the warnings [Epstein, 1991]. The following

explains the importance of uncertainty management in GIS.

1.2.1 The revolution of the digital era

The progression from hardcopy maps to digital data started in earnest several years ago
[Alesheikh, 1993]. This revolution made uncertainty assume greater importance than it
did with previous cartographic products [Goodchild and Gopal, 1989]. This is due, in

part, to the larger variety of spatial manipulations which may now be performed with ease
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to create a host of displays and tailored images. The volume of spatial analysis that GISs

are capable of accomplishing raises a false feeling of security -“computers do not make

mistakes”- among GIS users.

It is not just cartographers who make maps now. The creation and management of
spatial data bases has passed from the domain of ‘the expert few’ into the hands of a far
larger portion of the community, such as land administrators, emergency service
managers, environmental scientists, business analysts, bankers, retailers, market analysts
and many others [Hunter, 1993]. However, it is now recognized that only the
cartographers possessed fair knowledge about inherent uncertainty, and took appropriate
precautions in the processes involved, such as the amounts of generalization that were

allowed for particular maps [Hunter and Goodchild, 1995].

Traditional paper maps often contained useful forms of accuracy indicators, such as
accuracy standards for horizontal and vertical positional errors [Bureau of the Budget,
USA, 1947]. These indicators represented an attempt by cartographers to convey product
limitations to users. Unfortunately, in the digital age, this information is missing from
many GIS outputs, and new users of GIS are often unaware of the defects that can lie in

the misuse of their data and associated technology [Hunter et al. 1994].

While GIS’s capability to easily change the scale of geospatial data is categorized as
one of its strengths [Goodchild, 1989], the false feeling of scale-free, and hence error-

free, data should adequately be addressed [Quattrochi and Goodchild, 1997].



1.2.2 Protecting GIS growth

As geospatial information is increasingly relied upon for decision support [Alexander and
Waters, 1996; Karimi and Hwang, 1996], the lack of accuracy and reliability estimates
have the potential to harm both the integrity of agencies and the public’s confidence in
them [Davis and Simonette, 1991]. This is particularly so in cases where administrative
decisions are subject to judicial review and, where the use of GIS may be open to

question before the courts [Epstein, 1991].

For example, geospatial data accuracy has become one of the key factors in
challenging government orders to clean up contaminated land in the USA. The
Environmental Protection Agency in that country has allocated $1 billion to fund court
battles with affected land owners seeking to overturn decisions against them. which were
made in part by using GIS [Hunter, 1993]. Clearly, when the problem has such

significance, issues such as accuracy quickly come to the forefront.

1.2.3 Fitness for use

The growth in consumer awareness in recent years has fostered a culture of skepticism.
Court cases are already occurring where users of geographic data are claiming
compensation for damages arising from use of expensive datasets which were allegedly

of a quality that was inappropriate for their needs.

Data purchasers simply should not accept this situation, and similarly, data producers
should not leave themselves so open to litigation by disaffected customers [Hunter et al.,

1994]. Users would not think of buying GIS software or hardware without a guarantee or
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a set of manuals so why should geospatial data (which usually costs many times more

than the technology) be the exception to the rule?

1.2.4 Spatial data transfer standards

One of the key reasons for establishing GISs in the first place was to enable institutional
sharing of data between agencies [Guptill, 1991]. Yet the literature contains many
examples where integration of data sets became difficuit when their respective accuracies
were undefined [Star et al. 1991]. For example, in discussing parcel-based mapping
programs, Raymond [1989] cites the attitude common amongst some users that ‘rubber
sheeting’ can solve any problem, and that data from any source and scale can be easily
integrated through such methods. In his experience those same users are often
disappointed when data sets from different sources are overlaid and they discover “....
telephone poles displaced out into a road, roads overlapping wetlands or other water
bodies, or infrastructure appearing disconnected between adjacent maps” [Raymond,

1989, p. 82].

On the other hand, if products are developed with a knowledge of the errors
associated with a set of data and operations, then there can be cost savings in avoiding
over-engineering. Jackson and Woodsford [1991] propose that the key to the reduction of
the burden of data capture costs on a project is data sharing. The most important aspect of
data sharing is validation to ensure the data are of a quality acceptable to the needs of a

wide community of users.

Most spatial data transfer standards around the world have followed the United States
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lead, and have set a mandatory requirement for data quality statements to accompany data
sets upon transfer [DCDSTF, 1988]. Marketing requirements will ultimately force data

producers to provide comprehensive data quality statements.

Information describing data is often called metadata or data about data. Metadata
provide the necessary information on availability, fitness for use, access requirements and
transfer protocols. Because of the diverse nature and multiplicity of data formats and
standards, a need for some type of metadata standards harmonization is required.
Throughout the world, there are efforts to develop a standard that can be used for the
description of digital georeferenced data sets. Because of the importance of data
uncertainty, all the metadata standards accommodate a section for the information about

data uncertainty [Plunkett and McKenna, 1996].

1.2.5 Scientific advancements

Researchers in GIS should be concerned with quantifying the accuracy of geospatial data
and derived products simply as part of the scientific advancement of the discipline
[UCGIS, 1994]. If geographic information science is to become a recognized field of
scientific endeavor, then it is imperative that its researchers be able to describe how close

the information is to the truth it represents.

Goodchild [1992a] noted that the spatial information research community, in general,
is now handling intellectual and scientific questions which go well beyond the limited
technical capabilities of current technology in geospatial information systems. He

suggested that the study of geographical data will become a science in its own right,
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containing its own set of scientific questions, studied by researchers who are motivated
by intellectual curiosity. Achieving these aims is a critical component of any program of

scientific inquiry and researchers cannot ignore the responsibilities.

1.2.6 Information completeness

To represent fully an item of spatial information, the object, attribute, relationship, and
uncertainty must all be included. The object identifier specifies the spatial object type,
such as a point, line, or polygon. The spatial and other attributes are used to describe the
characteristics of a spatial object. Spatial attributes position the object, and other
attributes specify its value, color, size and other features [Blais, 1996]. Relationships refer
to the object’s relation to other objects, and the uncertainty indicates the accuracy of the
item of information whether it be an attribute, or the relationship of the spatial object
[Zhou, 19952a]. Therefore, the spatial information is incomplete without a specification of

uncertainty values [Chrisman, 1991].

1.3 The Problem of Uncertainty Management

Uncertainty management problems reviewed by this research study are discussed here,

1.3.1 Local uncertainty measures of vector data

Although research on uncertainty has made some progress [Goodchild and Gopal, 1989],
there are still many unsolved problems. Currently, most uncertainty representations and
uncertainty propagation methods for spatial analysis are based on the raster data structure.
Goodchild and Min-Hua [1989] discuss the difficulty of modeling errors in spatial

databases, and suggest that error models based on fields are fundamentally easier to
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construct than models based on objects. Dunn et al. [1990] indicate that vector data
uncertainty management is much more complex, and that it is unclear whether general

expressions for accuracy may be found.

Furthermore, current error models in GIS are inherited from hard-copy maps and are
of a global nature. For example, map accuracy standards are designed as a global measure
of uncertainty and fail to answer such questions as “what is the positional accuracy of a
particular point?” Other examples of global measures of uncertainty are the digitizing
errors in GIS, registration errors in remote sensing, and Digital Terrain Model (DTM)
errors. The usually quoted error measures apply uniformly to an entire region, and do not

take into account local variability in these measures [Edwards and Lowell, 1996].

1.3.2 Uncertainty modeling and representation

Modeling and representation of uncertainty are the most important issues in uncertainty
management. Currently used uncertainty models lack analytical support (e.g. epsilon
band model), and oversimplify the uncertainty behavior of GIS objects (e.g. error band
model). If the true uncertainty of spatial data is not explicitly represented, data from
different input sources with different levels of innate accuracy can be mixed, integrated,
and manipulated, which totally disguises the likely reality of the situations. Since most
GIS operations are not transparent, the users are not aware of all the limitations of the

data, as well as the influence on them of spatial operations.



1.3.3 Data reduction

Boundaries of geospatial objects are frequently approximated by straight-line segments.
Consequently, the uncertainty models applied are specific to straight-line segments
[Dutton, 1992]. Regardless of the jagged nature of the boundary and its uncertainty,
approximating a curvilinear boundary by small straight-line segments imposes a heavy
load on databases. The problem is compounded if the uncertainty information of each

small segment must also be saved.

1.3.4 Uncertainty handling strategies

Even when geospatial data uncertainty is adequately modeled, and properly
communicated to GIS users, the problem of “how to deal with uncertainty?” is not fully
answered. It is argued that the modeling and communication of uncertainty must be
embodied in an overall strategy that can be effectively and operationally applied
[Chapman et al. 1997]. Such strategy should track the uncertainty from its sources, and
continue to the propagation of uncertainty, communication of uncertainty, and finally the

decision that might be made in the presence of a given uncertainty.

1.3.5 Proper software packages

Current GIS software operates under the assumption that data are free from uncertainty
[Lam, 1992]. The preparation of prototype software packages that can handle uncertainty
is important [Hunter, 1996], because they pave the way for quantifying the errors, and
because they may be used to educate untrained users and to make them aware of the

probable uncertainty in GIS products.
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1.4 The Scope and Objectives of the Thesis

There are many different aspects of the problem of handling error in GIS [Chrisman
1991]. Therefore, any research that aims at obtaining concrete solutions should
necessarily start with selecting a particular segment within the whole research area of
error management in GIS. This study restricts itself to the modeling, communicating and
management of uncertainty of geospatial primitives: points, lines, and polygons in a 2D

object-based GIS.

Since this thesis deals only with the problem of positional accuracy, it ignores the
remaining four error components of attribute accuracy, lineage, logical consistency and
completeness [DCDSTF, 1988]. This does not mean that these are not significant issues,
but they appear to be of secondary practical importance to many applications in

Geomatics.

The uncertainty information of geometric primitives depends on the scale and
resolution of the original maps or images that the primitives are derived from. For
instance, small polygons may not appear in small scale maps. Moreover, the issue of
resolution is broader than the spatial component and can encompass the spectral and
temporal domains. This research implicitly assumes that the proper scales are used in

presenting the geospatial data.

The research ceases with the communication of uncertainty to users, which means
that it does not continue into the area of quality assessment, that is, testing for ‘fitness for

use’. It is really up to the users to determine what is required for their needs. However,
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once uncertainty is communicated to a particular user community, the thorough report
may assist in deciding what level of uncertainty they are willing to accept. Obviously,
there is a need for greater research in determining how uncertainty in GIS transmutes to
uncertainty in decision making, and how such tools may be embodied in Spatial Decision
Support Systems (SDSS). But these issues cannot be dealt with until the basic topic of

managing spatial database uncertainty has been first addressed.
The main objectives of this research are:

i) To model rigorously the spatial distribution of positional uncertainty of linear and

areal objects in a GIS, and respect the effects of all the error parameters.

ii) To reduce the volumes of data required for representing boundary lines and their

uncertainties.
iif) To propose and test a strategy for managing uncertainty in a GIS.
iv) To develop a prototype software package that facilitates the management of

uncertainty in an object-based GIS.

Once the uncertainty of the geometric primitives is properly modeled, the metadata
file can be updated. The completed metadata file facilitates the process of decision-

making.

1.5 Structure of the Dissertation

This thesis is composed of seven chapters. Following this introduction, in Chapter 2, a
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taxonomy of errors in GIS is developed, which helps to synthesize current knowledge and
clearly distinguishes between sources of errors, forms of errors and the resultant error
which may reside in a product. It also analyzes the major theories on which most of
today’s uncertainty analysis methods are based. The limitations of each theory are

discussed and the theories used in this research are indicated.

In Chapter 3, a review of the methods and models generally used in error analysis are
presented and analyzed. The applicable fields of these models and methods are examined.
Based on these analyses, the models that should be further developed for handling

positional uncertainty are identified.

Chapter 4 describes the proposed general uncertainty models of line and polygon
objects in GIS. In identifying such models, major error factors are considered. The
derivation of the polygon uncertainty model is also presented here. Implementation of the
polygon uncertainty model in solving the point-in-polygon problem is explained. A
technical comparison between the proposed models and the currently used ones is carried

out and, then, the generality and completeness of the proposed models are discussed.

Chapter 5 deals with curvilinear features and their uncertainty. Ways to reduce the
volume of data required for presenting curvilinear boundary lines are examined.
Algebraic polynomials are used to represent the boundary segments, and the Akaike
Information Criterion (AIC) is introduced to determine the statistically best-fit function to
a given set of observations. A recursive spline approximation is then proposed to

approximate boundary lines. The proposed method reduces the data volume and
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preserves the smoothness of the boundary. Uncertainty indicators of the curvilinear

boundaries are proposed and examined.

Chapter 6 introduces the proposed uncertainty management strategy for GIS as a
Spatial Decision Support System (SDSS). The dissertation ends with conclusions and

recommendations in Chapter 7.

1.6 Chapter Summary

In this chapter, the importance of management of uncertainty in GIS was identified. The
problems associated with managing uncertainty in an object-based GIS were recognized.
It is recommended that dealing with uncertainty in GIS should accompany any spatial
analysis. The scope, objectives and limitations of this study are presented. The chapter

ends with a brief description of the organization of the thesis.

-

2
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CHAPTER 2

IDENTIFICATION OF UNCERTAINTY AND RELEVANT THEORIES IN GIS

2.1 Overview

This chapter deals with the basic problem of identifying sources of uncertainty and
classifying them. A three-level taxonomy of uncertainties is presented that establishes a
connection between uncertainty sources, uncertainty forms and final product uncertainty.
The objectives of the taxonomy are to: (i) clarify the relationship between the sources of
uncertainty and the forms that uncertainty may take (cause and effect), (ii) identify the
potential sources of uncertainty that may exist in a database (whether the uncertainty was
there when the database acquired from producers, or whether it was caused by some
subsequent actions), and (iii) help focus research on specific forms of uncertainty.
Identifying sources of uncertainty is the first step in modeling and managing, as such, it

composes a part of this chapter.

Many theories have been developed for dealing with uncertainty in spatial databases.
However, a comprehensive theoretical framework that can handle all the existing
uncertainty forms in GIS has not been developed, yet. Existing theories such as spatial
statistics, fuzzy set theory, probability theory and mathematical theory of evidence can be
adapted and applied to certain forms of inexactness in databases. Every theory is based on
specific assumptions and as such can only be effectively applied to those uncertainties
that conform to the a priori assumptions. In this chapter, the theories that are most

frequently used in uncertainty handling in GIS are introduced, and the uncertainty
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measures in each theory are specified. Based on the analysis of these theories, and the
uncertainties that this research is concerned with, the theories that are applied in the

course of this research are selected.

2.2 Classification of Uncertainty in GIS
An error taxonomy in uncertainty handling in GIS is essential, since it clarifies the
framework for greater focus on the problems at hand. In fact, it algorithmically partitions

the problem into elements that are manageable for modeling.

Although the terminology varies in the literature on this subject [Veregin, 1989a], it is
generally agreed that there are several categories of errors which may contribute to the
overall accuracy of products derived from GIS. What is usually unclear are the
relationships among these errors and there is often confusion between their sources and
the forms they may take [Veregin, 1989b]. Classification would help to clarify this

confusion.

While taxonomic study is a science in itself, it need not always be complex to be
effective [Obermeyer, 1989]. Calkins and Obermeyer [1991] have elaborated on the
application of taxonomies to describe the use and value of spatial databases, and make it
clear that though the classification process is not a simple task, it is nevertheless an

achievable one.

Efforts to classify spatial database uncertainty have been made by many authors, such
as Dangermond [1983], Hudson [1988], Goodchild [1992b], and Zhou [1996] to name

but a few. Other authors have also tried to understand database errors through their
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classification. For instance, Burrough [1986] organizes errors into three groups, (i)
obvious sources of errors (such as the age of the data and the extent of area coverage), (ii)
errors resulting from the original measurement or through natural variation, and (iii)
errors resulting from computer processing (such as rounding). Error classification can
also be based on the GIS functionality [Alai, 1993]. The most widely used error
taxonomy is embedded in the U.S. Spatial Data Transfer Standard (SDTS) [NIST, 1992].
Although SDTS places emphasis on the data quality elements, it does not classify the
sources of error nor does it clarify the cause and effect relationships. According to the

standard, a quality report should accompany all spatial data and must cover the following
aspects:

e Lineage, describing the source material, how data were derived, information

of transformations and dates of updates;

e Positional accuracy, providing quality measures (for example, of control

surveys) based on established geodetic standards and procedures;

e Attribute accuracy, providing numerical estimates of expected variation of
non-spatial characteristics, in a manner similar to positional accuracy

measures;
e Logical consistency, describing the integrity of relationships of data; and

e Completeness, describing the exhaustive extent of spatial and taxonomic
properties, the consistency with which features have been assigned, the

selection criteria, and standards employed.
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Given the variations among respected researchers in organizing uncertainties, the
question of uncertainty classification in this research is answered by the following three-

level taxonomy (see Figure 2.1).

Resultl.ng Final Product Uncertainty
Uncertainty
Positional Attribute Time

Forms of

. Logical-Consistency ~Completene

AR AT PR

e Ao,

Sources of
Uncertainty

Figure 2.1 A taxonomy of uncertainty in GIS

First, it is clear that several operations cause uncertainty in GIS. However, these are
not the forms that uncertainty takes - they are only the contributing factors. Uncertainty
manifests itself in several ways. Aronoff [1989] divides the data quality elements into (i)
micro level components of positional accuracy, attribute accuracy, resolution and logical
consistency, and (ii) macro level components of completeness, time and lineage. He
argues that the former apply to individual data elements, while the latter apply to the data
set as a whole. In other words, the consideration of micro level components takes place
prior to studying the macro level components, when determining whether a data set is

suitable for the task to be applied.

While lineage constitutes a critical component of the data quality element, it is not a
form of uncertainty - it is merely a historical report on what has happened to the dataset -

and as such, it does not form part of the taxonomy, though it remains extremely valuable.
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2.3 Major Sources of Uncertainty

Uncertainty may arise from the very first step of conceptualizing the real world
(conceptual data models) through the last operations of the decision making process. In
this research, uncertainty will be tracked until the decision to be made using uncertainty
management strategy (Chapter 6). Starting at the bottom of the classification, the various

sources of error are now described.

2.3.1 The inherent uncertainty of phenomena being mapped

Unlike geographic information data structures, the real world is not always distinct and
clear, but changes gradually from one object to another. Topographical features are
usually surveyed to a very high degree of accuracy, that is appropriate for the specific
application purpose, and tested against well defined objects such as roads, houses and
land parcel boundaries. In contrast, the position of soil or forest boundaries often reflect
the judgment of the interpreter about where a dividing line should be placed. A boundary
line represents a change from one coverage to another. Locating a line involves
discrimination of the adjacent features. The border between some features might not be a
line at all. It might be a fuzzy zone of transition in spatial phenomena. Carefully drawn
soil or forest boundaries are elegant misrepresentations of changes that are often gradual

and fuzzy [Burrough, 1989; Goodchild et al. 1994a].

Seddon [1971, pp. 20-21] elaborated on this issue, and states that: “Any attempt ... to
demarcate vegetation boundaries must be a crude simplification which ignores the
transitional changes determined by micro climate and topography within a border zone. It

is excusable for practical reasons in small scale maps, but should not be allowed to
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disguise the real nature of the changes represented.” Thus, the current model of natural
phenomena introduces uncertainty into GIS. More accurate modeling of the phenomena

will require modification of the models.

2.3.2 Measurement uncertainties

Another major uncertainty in GIS stems from the nature of the measurements of spatial
phenomena. All observations are of limited accuracy. A survey done for the purpose of
producing a database is prone to various kinds of measurement errors, the two common
ones being limitations of measuring equipment, ranging from leveling to photogrammetry

to GPS, and human errors [Lichti, 1998].

The scale at which the measurements are made leads to another potential source of
measurement uncertainty. Scale determines the smallest area that can be drawn and
recognized on the paper maps, and influences the level of detail included on thematic
maps [Goodchild and Quattrochi, 1997). The issue of scale is not limited to the spatial
domain and can be extended to the temporal as well as the spectral domain. A coarse
image taken from a satellite platform may not exhibit the small features at all. Searching
in color-blind images for features that exhibit the prevalent red radiance may raise
measurement uncertainty too [Larouche, 1995]. The frequency of updating databases can

also introduce uncertainty.

The assignment of a class of vegetation to an area depends on the degree of
generalization made, which is often influenced by the scale of the map. A larger scale

map reveals more detail than the smaller scale map, and shows fewer dominant species.
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A digital database may at first glance appear to be scale independent (through

zooming functions). However, if the data originated from a map, then the scale of the
source determines the size of the minimum mapping unit and the material included or
omitted. Scale change capability of GIS is one of its major benefits over hardcopy maps.
However, it may well be misleading too, as noted in the description of the process leading
to the establishment of National Center for Geographic Information Analysis (NCGIA), *
Two GIS capabilities that excite enthusiasm among potential users are the ability to
change map scales and the ability to overlay maps at random. ... both capabilities may
mislead decision makers who are untutored in the ways errors compound when map

scales are changed or when maps are merged™ [Abler, 1987 p. 305].

2.3.3 Model uncertainty

The third major source of uncertainty arises due to the models that are used to
communicate the measurements. A model refers to an abstraction of the real world. Since
spatial objects are inherently complex, preserving their entire complexity is impossible,
the objects are then simplified for analysis and inference purposes. Model uncertainty is
implied by this simplification process. Simplification operations may take place at the
very beginning of the conceptualization stage (conceptual model), before any physical
measurement is accomplished, for example, in assuming a homogeneous distribution of
attributes over space. Model error may also happen at the operational level, for example,
in spatial linear interpolation. When a concept is formed, the uncertainty has already been

introduced into the model {Zhou, 1995a].
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GIS literature is frequently focused on analyzing the effects of model errors in

empirical processes [Heuvelink, 1993]. It is because the model is calibrated for specific
conditions which are not respected in practice. However, it should be emphasized that the
simplification of the model is not restricted to the empirical models [Chapman et al.

1997].

2.3.4 Processing and transformation uncertainty

Raw spatial data frequently undergo some processing to answer GIS queries. Uncertainty
resulting from the processing of data refers to the secondary uncertainty caused during
computer manipulation of data, following the data measurement. These can be
categorized in two classes: numerical errors in the operations, and aggregation errors due

to computer processes.

Computers have a limited precision to store and manipulate spatial data. If the
precision of the computer is not sufficient for the required mathematical manipulations,
particularly multiplying or subtracting two large numbers, erroneous results may be
derived. Burrough [1986] elaborated on this issue and discussed the consequences of

rounding and truncation errors using examples.

Uncertainty of the input data seldom resembles the uncertainty in the GIS output, due
to the uncertainty contribution of the processes themselves. GIS users commonly think of
overlay operations as the main source of uncertainty in processing, but the GiS operations
are composed of thousands of data manipulations, and each process has the potential to

introduce uncertainty. The operation could range from raster-to-vector conversion, data
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adjustment, editing and generalization, data input, surface modeling, display and analysis.

Chapter 3 of this thesis analyzes methods of computing the uncertainty propagated during
GIS processing. Table 2.1 presents typical data processing functions which potentially

introduce errors.

Table 2.1 Potential sources of uncertainty in data processing (after [Hunter 1993]).

Coordinate Adjustment

*  Rubber Sheeting - Transformation

e Edge Matching - Mosaicking

®  Projection Changes - Datum
Conversion

® Scaling - Rotating

Feature Editing

* Line Snapping

e Extension of lines to intersection
¢ Elimination of Spurious Polygon

Attribute Input and Editing
¢ Data Base Modeling

* Attribute Entry

e Auribute Modification

e  Auribute Extraction

®  Numeric Calculation

Boolean Operations

Generalization

s Line Simplification

¢ Spline - Curve Fitting

e Addition - Deletion of Vertices

Raster - Vector Conversion
Pixels to Polygons

Polygons to Pixels
Thresholding

Assigning Attribute to Pixels
Post-Scanning Line Thinning

Data Input

* Split/extract/append/merge Files

¢ Topological construction

* Dissolving Polygons with same
attributes

Surface Modeling
e  Contour/Lattice/TIN Generation

* Qverlay ®  Cross Section - Profile Generation
® Polygon on Polygon * Line of Sight - Visibility Determination
* Point on Polygon e  Slope - Aspect Determination
* Lineon Line

Display and Analysis
*  Cluster Analysis * Adjacency - Contiguity
¢  Perimeter Length - Area Calculation *  Spatial Autocorrelation
¢  Shortest Route ®  Areal Iterpolation
®  Buffer Creation *  Raster/Vector Integration

[ ]

Spatial Statistics
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2.3.5 Data usage uncertainty

Data usage uncertainty, which has only recently received attention among researchers, is
concerned with the manner in which spatial data are used [Beard. 1989]. This is probably
because of the fact that while the traditional producers and users of spatial data have been
aware of the limitations, inexperienced users are now being encountered, who are not
necessarily familiar with the accuracy, techniques or processes involved in product
creation. Proper creation of metadata is thus of vital importance in reducing data usage

uncertainty.

Data usage uncertainty occurs when a user misapplies processes given the types and
limitations of the data. Level of measurement, scale and spatial variation of data can all
dictate which processes or operations are valid [Chrisman, 1997]. Data may be
considered accurate and the algorithm mathematically correct, but in misapplying a

process a user can generate incorrect results.

Examples of this can happen during Boolean operations of raster data, where it
usually occurs that ordinal valued layers are added, generating invalid results, or else
interval or ratio values that are not independent are added, which may overestimate
results [Hopkins, 1977]. In these cases, data misuse is revealed as atiribute uncertainty.
However, in other examples, vector overlay is misapplied in a case where data of very
different scales are overlaid, and misapplication of interpolation routines can occur when
users attempt to derive dense contours from sparse data sets. In these instances, positional

errors might result. Common uncertainty arising from data misuse is listed in Table 2.2.
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Table 2.2 Potential sources of uncertainty due to inappropriate data usage

* Lack of knowledge about scale of data (spatial,
spectral, temporal) and its uncertainty implications
Lack of user training and education

Differences in terminology

Lack of adherence to map accuracy standard
Convenience of digital data regardless of scale
Inappropriate usage compared to initial purpose
Map space limitation

Easy accessibility of data

Extent of coverage

Cost considerations

2.4 Forms of uncertainty

Uncertainty in GIS databases may take one or a combination of several forms, as depicted
in Figure 2.1. Positional data occur when one tries to answer questions of the “where?”
type, for instance “where is Calgary?”, while attribute data are concerned about “what?”
question types, e.g. “what feature may be found at the specified location?”. Information
about time is supplied when questions of the “when?” type, such as “when the sea height
reaches a particular elevation?”, are raised. Positional, attribute, temporal uncertainty are
those uncertainties that arise during answering the above questions precisely. Veregin
[1989a] refers to the first two types of errors as “cartographic” and “thematic”

uncertainties, while Bedard [1987] calls them “locational” and “descriptive” errors.

Logical consistency, and completeness tend to be more global and affect the database
as a whole, while positional, attribute, and temporal errors are assigned to each data
element. Logical consistency deals with topological integrity of the database. Typical

concemns that might be raised about a database are, (i) Do lines intersect where intended?
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(ii) Are there any dangling lines? (iii) Are there any overshoots or undershoots in the

network? (iv) Do all of the polygons have attributes? Fortunately, topological tests are
frequently done automatically, but users must be aware of the effects of inappropriate

tolerances being set.

Completeness is related to data collection procedures and policies. It is concerned
with aspects such as the selection of minimum mapping areas (in soil and land cover

mapping), minimum widths or lengths (for roads and rivers in topographic maps).

2.5 Resulting Uncertainty

The separation of the final product uncertainties from the forms of uncertainties is done
because of the manner in which they may occur in the product. For instance, a GIS
product may be composed of several different forms of uncertainty (e.g. positional and
attribute) within it but the relationship between them may not be apparent. It is
constructive to decompose the final product errors into its components, and report them
individually [Alesheikh, 1994]. The rationale for this approach is that different
applications may have different sensitivities to different forms of errors. For example, the
development of a computer-base land tax register may have 100% sensitivity to attribute

errors and be robust to positional errors.

2.6 General Theories of Reasoning about Uncertainty
Several theories have been adapted to handle and reason about uncertainty in GIS. Each
theory has basic assumptions, and can only deal with certain aspects of uncertainty in GIS

[Zadeh, 1995]. The types of uncertainty that may occur in the database were reviewed
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before. Analysis of the corresponding theories will aid in the selection of an appropriate

theory for the uncertainty problems dealt with in this research.

2.6.1 Information theory

Information theory provides a mathematical definition of uncertainty. Information theory
has its origin in the theory of communication, that studies the transmission of electronic
signals from a source to its recipient. The measure of information proposed by Shannon
and Weaver [1959] is based on the probability of selection of each of the decision

alternatives facing an information source. The amount of information, H[p], is given by:
n
Hlp] =-k % pilogp. @D

where, p; represents the probability of the signal occurring and k is an appropriate
constant. If the probability of a signal occurring is zero, then p; log p; = 0, and no

information results. When the probability of the signal is one, then again, p; log p; = 0,

and no information results. These two extremes represent states of certainty. On the other
hand, if probabilities of signals lie between zero and one, then some amount of
uncertainty is present. This demonstrates the notion that information is the dispelling of

uncertainty, and that if there is no uncertainty, there can be no information [Blais, 1988].

Although Shannon provides a measure of information (or uncertainty), he did not
specify it. He was concerned about the technical aspect of information transmission, and
did not include semantic aspects of information. Information theory and other

information measures have been used in digital image processing and pattern recognition
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[Blais and Boulianne, 1988] and appear to be valuable in studying complex systems. The

information theory has been used to some degree in cartographic communication and also
been applied to GIS. However, little research has been done with respect to the
application of information theory in information systems such as GIS [Zhou, 1995b].
Information theory, as it is applied to digital images, may be able to provide measures of
uncertainty that can be adopted in conjunction with GIS. For instance, the current attempt
in the GIS industry to integrate vector and raster data structures may benefit from
information theory. Blais [1991b] pointed out that information theory has a real potential
in spatial information processing, and suggested that it can help in quantifying

information in terms of ambiguity, fuzziness, and other types of uncertainties.

2.6.2 Probability theory

Probability theory can be applied to model uncertainty caused by random errors rather
than imprecision or incompleteness. Consequently, it is appropriate for positional and
attribute uncertainties where the quantitative or qualitative characteristics have a
statistical basis. In this theory, uncertainty is modeled as the conditional probability that a
hypothesis is true given some observations. Bayes’ rule uses conditional probability to
estimate or update the probability of a hypothesis by combining the prior probability of
the event, and the likelihood of the evidence given that hypothesis is true. The probability
of a hypothesis indicates a quantitative measure between 0 and 1 of the belief in that

hypothesis. The following equations presents the Bayes’ theorem.
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P(hle) = &L}g‘@ , (2.2)
where,
P(h) is the probability that hypothesis h is true (the a priori probability);
P(e| h) is the conditional probability of observing e given that hypothesis h
is true (likelihood of the event);
P(e) is the probability of observing e
pth|e) is the conditional probability that hypothesis h is true given

observation e (a posteriori probability)

The above equation can be extended to handle multiple competing hypotheses and
several pieces of evidence, as shown in the following equations. This causes serious
issues, since it is required to know all possible combinations of all possible hypotheses,

hence it is unworkable.

P(e},....em|hj)P(hi)
lemj)P(el:---aethj)
J=

Phile ..ooeqm) = (2.3)

As an example, in the classification of remote sensing data, h; might indicate the
68293 &M

hypothesis that a given pixel belongs to class “i”. “e” can be the vector of responses for

the pixel in different spectral bands. The uncertainty is then reflected by the conditional

probability P(h; | €y, .-., €y ), which indicates the degree to which one might assume the

class to be correct given the vector of responses.
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This model assumes that a predefined and uniform distribution of values is known,

and that probabilities P(h;) can be assigned correctly, which is not true in many
applications. The commitment of partial belief to hypothesis leaves the remaining belief
to its negation or alternative hypothesis, which is counter intuitive, and thus it cannot
distinguish between uncertainty and ignorance. The use of conditional probability, which
assumes mutually exclusive and exhaustive hypotheses and conditional independence of

evidence, is not always true [Cohen, 1985].

2.6.3 Mathematical theory of evidence

The evidential theory [Shafer, 1976] is a generalization of probability theory, and differs
from Bayes’ theorem in some aspects. In evidential theory, the probability measure that
the hypothesis h; is true is substituted by a measure of probability that the existing
evidence supports the truth of that hypothesis. Evidential theory accepts degrees of belief
in hypothesis or their subsets. In other words, a set of all propositions about the exclusive
and exhaustive possibilities in the domain is defined as a frame of discernment, ®. This
frame of discernment is given a basic probability assignment with values between 0 and
1. Therefore, ® has a maximum potential of a probability of 1. Contrary to Bayes’
theorem, probability assignment for the subset of hypotheses need not sum to one. The
choice of assigning values between one and zero to ®, in this theory, represents what is
not known about the situation, and this allows a degree of doubt or ignorance to exist. It

also allows the modification of ® when new evidence becomes available.

Evidential theory is based on an interval defined by a belief function and a

plausibility function. A belief function measures the probability that the evidence
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supports the hypothesis, and is a lower bound on the probability of the truth of that

hypothesis. The lower bound of the interval is sometimes termed the support or necessity
for that hypothesis. A plausibility function on the other hand measures the degree to
which the evidence fails to refute the hypothesis and, therefore, it is the upper bound of
the interval. The inferential interval [Bel(h,), Pl(h;)] presents the uncertainty due to the

incompleteness of evidence for hypothesis h; because of uncommitted support (®).

For example, let us assume that X is a set of possible hypotheses and the probability

that each hypothesis is true is given. In mathematical terminology;
X = {Pfhy], Phy], P[hs], ..., P[], ©}, 2.4)
where; P[h,] is the probability that hypothesis b is true

® is the uncommitted or distributed support.
By definition:
0+ 3 Ph-1 25)
The belief function is simply the probability of h; Bel[h] = P[h], and the plausibility
function is given as ;

Plfh]=1- il P [b] = Bel[h] + ® P#]. (2.6)
7

When © is zero, then Bel{h] = Pi{h] = P[h;], that is equivalent to probability theory.

Therefore, the probability theory is a special case of evidential theory.
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Evidential theory may address types of uncertainty that concern incompleteness of the
information and, as such, can be applied to both attribute and positional uncertainty. This
theory is becoming popular in expert system design. In the field of GIS, where integration
is the topic of the day, this inferencing technique may have merit. However, this theory
relies on assumptions of independence of evidence that may not be justified in real
applications. The theory cannot distinguish between different hypotheses having similar

levels of support.

2.6.4 Fuzzy set theory

The theory of fuzzy sets is concerned with a subset A of the universe of discourse X,
where the transition between full member and non member is gradual, rather than abrupt.
The fuzzy set has no distinctive boundaries where the universe of discourse, X, covers a
definite range of objects. Fuzzy classes are often encountered in the real world, and are

applied frequently in those fields that are subjective to some degree.

Fuzzy set theory, introduced by Zadeh [1956], is a generalization of abstract set
theory [Kaufmann, 1975]. In other words, the former always includes the latter as a
specific case; definition, theorems, and proofs of fuzzy-set theory always hold for non-
fuzzy sets. Intuitively, a fuzzy set is a class that allows the possibility of partial

membership in it. A fuzzy set A in its universe of discourse X is a set of ordered pairs,
A={x p ) |xeX} 2.7

where, p,(x) is termed the grade of membership or the characteristic function for x in A.
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This theory is well suited to handle uncertainty of an imprecise or vague type, such as

the linguistic imprecision of natural language (e.g. “steep”, “moderate™ or “flat” slope).
Fuzzy set theory is effectively applied in handling positional and thematic uncertainties,

where the concept or measurement of either quantitative or qualitative characteristics

involves an interpretation of natural language.

A number of fuzzy set operations such as union, intersection, and complement, are
available and are suitable for many types of geographic operations in GIS. Lam [1992]
has successfully applied fuzzy set theory to classify soil types and Leung [1988] used the
theory in a study of the vagueness of climatic boundaries. He categorized geographic
areas to its core (non-fuzzy zone), boundary (zone of transition) and edge (the outermost
extremity) and therefore demonstrated that the fuzzy concepts can model the transition of

one class to another.

2.6.5 Spatial statistics
Over the last decade or so, statistics has evolved from the collection of numbers that
summarize a complex phenomenon to the science of uncertainty [Cressie, 1991]. Spatial

data can be classified into three different categories:
e geostatistical data, that describe spatial processes indexed over continuous space;

e lattice data that deal with spatial processes indexed over lattices in space (the spatial

analogue of time series), and

e point pattern data that describe spatial point processes.
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The term geostatistics is now widely applied to a special branch of applied statistics,
originally developed by Georges Matheron of the Centre de Morphologie Mathematique
in Fontainebleau, France. Geostatistics was devised to solve problems encountered when
conventional statistical theory is unable to estimate changes in ore grade within a mine.
Because geostatistics was a general theory of statistical behavior, it is applicable to many

circumstances in different areas of natural sciences.

In an attempt to generalize a model for geostatistical data, lattice data, and point
pattern data, Cressie [1991] proposed his general spatial model. Heuvelink [1993]
proposed a similar model to account for continuity or discontinuity of spatial variations.
Shi [1994] used spatial statistics to model the uncertainty in classifying remotely sensed
images. He argued that the classical non-spatial model is a special case of a spatial model.
Spatial statistics is a more general theory than non-spatial statistics; it may be assumed as
a spatial extension to non-spatial variables. Statistics for spatio-temporal data have to be
even more general. The theory has been extended from the non-spatial field, and could be

further extended to spatial-temporal models.

2.7 Chapter Summary

In this chapter, a taxonomy of uncertainty was presented. The objectives of the taxonomy
are to understand the specific uncertainty that this study deals with, and to focus on the
related theories that can be applied to handle the uncertainties. Sources of uncertainty
have been classified into five categories: (i) the inherent uncertainty of the phenomena
being mapped, (ii) measurement uncertainty (iii) model uncertainty (iv) processing and

transformation uncertainty, and (v) data usage uncertainty.
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In the GIS literature, several theories have been proposed to handle uncertainties. The
theories evaluated in this chapter are five examples of the most frequently used theories in
modeling uncertainties in the GIS field. Each has its own merit. Based on the specific
problems that this study deals with, and the analysis of the existing theories, two
perspectives have been selected in this research. They are probability theory, and (spatial)
statistics. There is, however, a considerable ongoing debate about the theoretical strength

of each of these, and the respective applications.

The modeling problem considered in this study is to devise uncertainty models for line
and polygon objects in GIS. The nature of this problem is to deal with pseudo-random
errors in the spatial domain. Consequently geostatistical theory will be used, and to

quantify the quality of the results, probability theory will be applied.
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CHAPTER 3

UNCERTAINTY MODELING AND VISUALIZATION IN GIS

3.1 Overview

The purpose of this chapter is to survey and analyze the methods by which the
uncertainty of geospatial objects (points, lines, and polygons) can be modeled, and
communicated to users. Based on the analysis, the study identifies the needs for further

development of the existing uncertainty models, and uncertainty communication.

Since this study involves modeling, visualizing, and managing uncertainty in an
object-based GIS, formal definitions of space partitioning data models are presented first.
Next, methods for uncertainty modeling are classified and evaluated. The applications of
the methods in computing the uncertainty of geospatial objects are examined and current
models are evaluated. Approaches that can be employed to communicate uncertainty to

GIS users are discussed.

It is argued that the methods of uncertainty modeling differ in cost, time,
computational efficiency, and rigor. As such these factors should be considered in
choosing one method. It is also elaborated that while the uncertainties of geospatial
objects may entirely be presented in their respected covariance matrices, visualization
tools readily help users to appreciate the uncertainty information in the matrices. Since
most GIS users are familiar with maps; static visualization, graphic representation of

uncertainty is adopted to represent errors in this study.
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This chapter provides a basis for presenting general uncertainty models in the
subsequent chapters. As mentioned in Chapter 1, and which will be elaborated upon in
Chapter 6, modeling and reporting uncertainty constitute a major part in uncertainty
management. Therefore, this chapter will pave the way for the discussion of uncertainty

management to be presented there.

3.2 Partitions of Space

Any measurement of spatial data in GIS may involve three basic components: location,
theme and time [Chrisman, 1997]. A specific item of spatial information is always related
to a certain theme of specific time at a particular location. The critical development in any
measurement is the recognition of the three distinct roles that location, theme and time
may play. While the goal here is to obtain uncertainty measurement, measurement of one
component can only be made with explicit constraints on the other components. The three
roles that basic components can take are: fixed, controlled and measured. In order to carry
out a measurement, one component is fixed, the second one is controlled leaving the third
one to be measured. For instance, in the case of maps, it is time which is normally fixed
leaving space and attribute for control and measurement. The map of the 1988
landuse/landcover of Banff National Park contained the spatial information at a fixed
time: 1988. The control is the location: Banff National Park, and the measured attribute is
the landuse/landcover. In this categorization, the fixed component does not allow any
variation. The variation of a controlled component is restricted and predicted [Sinton,

1978].
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Based on the controlled component, the space on which spatial phenomena exist can
be partitioned or classified into location-based known as raster data, and feature-based

which mostly exhibits itself in vector data models.

The controlled component in location-based partition is the location. Attributes are
measured at the specific locations. Tessellation of space is an example of a location-based
partition. The most frequently used tessellation for space partition is uniform cells: square
grids [Goodchild, 1989]. Most remote sensing data sources fall into this general category
using nearly regular ceils as control. These remote sensing sources include satellite

platforms and photogrammetric equipment used to create digital elevation arrays.

The other way to partition the space is to control the theme. That is, in feature-based
models, attribute is used to measure location. The geometry of spatial objects is
delineated by uniform attribute distribution. For instance the geometry of the spruce
coverage in the 1988 map is determined by the areal range of the spruce trees. Since the
geometric data in this model is derived from its attribute, the model is called an object-

based partition [Zhou, 1995a].

Space partitioning data models impose structure and pattern on geospatial data. They
are closely related to the two broad and opposing classes of models of geographic

information, namely field-based and object-based models [Worboys, 1995].

The class of field based models treats such information as collections of spatial

distributions, where each distribution is formalized as a mathematical function mapping
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from a spatial framework (for example, a regular grid placed upon Earth’s surface) to an

attribute domain. Patterns of topographic altitudes, rainfall and temperature manifest this

view [Laurini and Thompson, 1992].

The class of object-based models treats the information space as populated by
discrete, identifiable entities, that exhaust the geographic space. These two model types
result in two GIS implementation methodologies, namely vector and raster [Masry and

Lee, 1988].

Geospatial primitives in a 2-dimensional object-based data model can be categorized
in points (0-simplex), lines (1-simplex) and triangles (2-simplex) [Foley et al. 1990].
Points are considered the base for constructing higher order simplexes, since lines,
triangles, and polygons can be assumed as an extension of the points into higher

dimensions.

It is important to note that currently applied object-based partitions in GIS software
does not comply with the gradual transition between different objects [Lam, 1992]. In this
model the object has sharp boundaries and totally ignores the fuzzy boundaries of spatial

objects [Burrough, 1989; Alesheikh and Li, 1994].

3.3 Methods of Uncertainty Modeling
An error model refers to a stochastic process capable of simulating the range of
possibilities known to exist for spatial data. These possibilities may exist because

measuring instruments are known to be of limited accuracy, or because vital information,



39

such as datum or map projection, is missing [Blais, 1998].
The methods by which geospatial data uncertainty can be modeled may be
categorized into four classes: analytical, simulated, experimental, and uncertainty

descriptors.

The basic geometric components in 2-D object-based GIS are points, lines and
polygons. They are considered as different objects since their spatial properties and their
uncertainty behavior are different [Zhou, 1995a]. Consequently, the uncertainty models
that describe the behavior of the objects should be different. The following sections
classify the methods of uncertainty modeling and the application of the methods to

various geometrical primitives.

3.3.1 Analytical method of uncertainty modeling
Analytical methods refer to obtaining the stochastic characteristics of (functionally)
dependent variables, given the characteristics of the independent variables and the

functional relationships relating to the two sets of variables.

Let L =1, L, ..., 1] be a set of random variables with a known n-dimensional
probability density function f(l;, L, ..., I,). Let X = [x,, X,, ..., X,] be another set of random

variables that is related to L by F =[f}, £,, .., £,] such as:

F(X,L)=0 (3.1)

The task is to determine the stochastic properties of X from those of L, i.e., to

determine the probability density function g(x,, X,, ..., X,) [Krakiwsky, 1992].
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3.3.1.1. Propagation of distribution

In most local or global GIS operations, the general Equation 3.1 can be simplified to a set

of continuous, differentiable functions F [Cressie, 1991] such that

X =F(L) (3.2)

where X is the output, L is the input of GIS operation, and F is the function that relates
the input and output data. Let us assume that there exist unique, continuous, Inverse

functions, such that

L=HX) (3.3).

If f1,, L, .., L) is the joint density function of the random vector L, then by

substitution

g(xl’ X35 -evs xu) = f[hl(xl’ X35 -ees xu): hz(xu X35 --e Xu), i h-n(xl’ X3y ooy xu.)] IJXI_I (34)
is the joint density function of the derived random variable (x;, Xj, ..., X)s and the

problem is solved [Mikhail, 1976; Shi, 1994]. Here |Jy,| is the determinant of the Jacobian

matrix of the inverse transformations.

L=HX) and Jg=0L/3X i=1,2,..,n (3.5)

The difficulty with propagation of distribution is that the inverse function should be
identified first, and it must be unique, continuous and differentiable. However, in the case
of linear mapping of normally distributed variables the result g will also be normally

distributed variables. Therefore, propagation may be limited to linear or linearized
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functions, which will be discussed next.

3.3.1.2. Covariance propagation

The distribution of the unknown parameters g(xi, X2, ..., Xu) can be uniquely identified by
its first, second, and joint moments if g’s distribution follows a Gaussian function. This
assumption is usually applied in surveying, photogrammetric and geodetic measurements
[Mikhail, 1976]. The reason for this lies mainly in the central limit theorem, which roughty
states that the averaging of a sufficiently large number of random variables yields a normal
distribution, no matter what the distribution of an individual random variable is
[Dougherty, 1990]. Since GIS data are functions of several errors introduced in different
stages (see Chapter 2) it is reasonable to assume they are following normal functions.
Another reason for invoking the normality assumption is that it makes the computation

simple [Vanicek, 1992].

The covariance propagation method relies on approximating the relation F(X, L) by a
truncated Taylor series. In the case of the first-order Taylor method, F is linearized by

taking the tangent of F in initial values (X°, L°) as follows :

F
F(XL)=F(xX° 1%+ = (L - I%) + remainder =0 (3.6)

oF
0
0.0 (X =X+ =]

x0.1°
Assuming the magnitude of the reminder to be negligible, it can be written as:
W+ A5 +Br=0 (3.7)

where W =F(X°, L) is the misclosure vector
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oF
A=—|

3% X,L° is the first design matrix, and

& = (X - X°) are the corrections to the parameters

oF

B= Elxo

L0 is the second design matrix, and

r= (L - L% are the corrections to the input data.

The remainder of Equation 3.6 contains the higher-order Taylor series terms of F,

whose contribution to the result of F is comparatively small in the neighborhood of X,

L°. By neglecting the higher-order terms, the output (X) and their covariance matrix C
X

can be computed by:
x=X°-[aTBc BT)'A +ch-1]‘1AT(BcLBT)"W (3.8)
Cx = [AT(BCLBT)“A+cxo-1]‘l (3.9)

where C, is the covariance matrix of the input data and C,, is the a priori covariance
matrix of the output map.

3.3.1.2.1 Point uncertainty model

The application of covariance propagation to estimate the uncertainty of points in

Geomatics is common. It can range from the adjustment of terrestrial observations in

surveying engineering to satellite observation adjustment in GPS.

Covariance propagation in a GIS application is frequently accomplished with some

simplifications. Consider Equation 3.2. If the random variables L(1;, L, ..., 1) are mutually
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independent, the variances of the dependent variables X are:

n
(6xi)* = ,-El(axi 131;)%(oy;)? (3.10)

Further, if the variables 1;, 1, ..., I are also contribute equally to x, i.e. dX/dl j= 1 then;

o
(ox)* = 2 (oy)? 3.11).
J:

The above equation is usually used to approximate the point uncertainty in GIS. For
example assuming that the point data are gathered by digitizing a map that was compiled
photogrammetrically. If it is also assumed that the point error in GIS were independently
introduced by control, photography, aerotriangulation, compilation, drafting, printing, and
digitization, then its uncertainty in some form of standardized units may be approximated

by:
2 2 2 2 2
G“GIS =0 control + O photograph + O triangulation + " compilation +

+ szrafting + 0'2pr inting + szigitization (3.12)

Similar assumptions have been made by several researchers [Alai, 1993; Chrisman,
1982; Drummond, 1995] and organizations [Canada Map Office, 1977] in different
applications. It is worth mentioning that Equation 3.11 is an approximate method for
estimating the variance of a variable derived from more than one different and
independent measurements. Compatible units of uncorrelated components are assumed in

deriving the Equation 3.12.



3.3.1.2.2 Line uncertainty model

Unlike the point uncertainty model that is studied frequently in Geomatics, the line
uncertainty model has been left untouched. The most frequently mentioned line uncertainty
model in GIS that is derived from the application of covariance propagation is the ‘error

band’ model [Caspary and Scheuring, 1992; Shi, 1994; Zhou, 1996].

Under the assumption that a straight-line segment is built by connecting the endpoints,

and the coordinate variances of the endpoints are independent and equal
ol = 0'2X = czy, the covariance propagation law yields the positional RMS (Root Mean

Square) errors of points P, along the line P,Py:
X,=X1+D,(X53-X))/D and Y,=h+D,(",-Kh)/D (3.13)

where Dy, is the distance between point n and Py and D is the Euclidean distance between

Piand Py,and 0<Dn< D.

Cyys = Opn2 = (1-2Dn/ D +2Dn* | D*)c? (.14)

The envelope of the point errors is then submitted as the line error (See Figure 3.1).

Figure 3.1 The concept of Error Band model
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Under the above assumption, the standard deviation in the middle of the line, D; =
D/2,is 1/ J2 smaller than at the endpoints. The error band model is based on the circular

error assumption at the endpoints of a line segment. Therefore, the error band model:

(i) neglects the correlation between endpoint coordinates,

(ii) assumes the magnitudes of uncertainty in perpendicular directions (X, Y) for

each endpoint are similar, and

(iii) assumes model errors do not affect the errors of the intermediate points.

These restrictions may not be realized once the endpoint positions are determined
using a similar method or when the linearity of the model is questionable [Chapman et al.
1997]. An error-free line segment connecting endpoints may also be doubtful, particularly

when the line represents natural feature boundaries.

3.3.1.2.3. Polygon uncertainty model

Polygons are enclosed by straight line segments, and each line segment is recognized by
its endpoints. If so, the uncertainty of the polygon is closely related to the statistical
properties of points. An exhaustive description of the statistical behavior of a polygon is
contained in the covariance matrix of the random vector formed by the coordinates of the
vertices of the polygon. However, since GIS users are interested in a special aspect of
accuracy, it is usual to select useful functions of the random vector and to use the
corresponding variance to characterize the accuracy of the polygon. One widely used

function is the area of the polygon.
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The variance of the area is computed by applying the covariance propagation law. The
area (A) is computed by [Davis et al., 1981]:
n
2A = X (Y1 - Yi-DX; where Yo=Yn. You1=Yp (3.15)
i=l

2

The variance of the area, 0“4, under the assumption of the independence of

coordinates is then given by:
2, 05 (%24 72V — S (Y. T . e
024 =053 (XF + )= X (YY1 + X; 1 X;41) with o=0x =0y (3.16)
i=1 i=1
Another function that might be used to represent the locational uncertainty of a
polygon is the accuracy of the perimeter of the polygon [Caspary and Scheuring, 1992].
An alternative method is to compute the area that the boundary line uncertainty covers
and divide it by the total area of the polygon. Figure 3.2 depicts the uncertainty of an areal

object.

3.3.2 Monte Carlo simulation method

In principle the problems of uncertainty transmission in GIS operations can be handled by
using covariance propagation [Burrough, 1986]. The lack of single continuous
differentiable functions renders the use of explicit equations for error propagation
impossible. Instead, it is simpler and more general to use a universal solution based on

Monte Carlo simulation approach.

The Monte Carlo method [Openshaw, 1989] uses an entirely different approach to

determine the uncertainty of geospatial objects. In this method, the results of Equation 3.2
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Figure 3.2 Positional uncertainty of an area object (adopted from Shi [1994])

are computed repeatedly, with input values L = [11, Iz, ..., lo] that are randomly sampled
from their joint distribution. The outputs of the equation construct random samples of
which parameters of its distribution, such as mean and variance, can be estimated. The

basic algorithm as might be applied in GIS is as follows:
(i) Decide what levels and types of error characterize each data set as input to a GIS.

(i) Replace the observed data by a set of (M) random variables drawn from

appropriate probability distributions assumed to represent the uncertainty in the

data inputs.

(iii) Apply a sequence of GIS operations to the step (ii) data.

(iv) For this set of realizations I;, store the results x;
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(v) Compute summary statistics.

The Monte Carlo method is general and can be applied to spatial or attribute data.
Heuvelink [1993] showed that the standard deviations of output mean (M,) and output
variance (S*) are approximately inversely related to the square root of the number of
Monte Carlo runs M. Therefore, the accuracy of the method can also be controlled.

However, the method is computationally intensive.

3.3.2.1 Point data

The application of the Monte Carlo simulation method in computing the uncertainty of
point data in GIS is gaining momentum as researchers realize its advantages [Keefer et al.
1988; Heuvelink 1993]. Because of its generality, most of the geomatics point
densification methodologies, such as aerotriangulation, could also benefit from the
approach, though little research has been carried out in randomization procedures in

Geomatics [Blais, 1998].

3.3.2.2 Line data

The application of the simulation methods in representing line uncertainty can be realized
by:
(i) randomly generating several endpoints from their corresponding density
functions,

(ii) connecting the generated random points, and
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(iii) computing the confidence region around the line segment.

By simplifying the coordinate error - the endpoints coordinates are assumed
independent and their variances are equal - Dutton [1992] constructed an error model for

line object based on simulation method called the “error band™ model.

3.3.2.3 Polygon data
One way to determine the uncertainty of a polygon object using Monte Carlo method is

to:

(i) construct one realization for each vertex based on the stochastic characteristics of

the points,
(ii) connect the vertices — creating one realization of a polygon
(iii) repeat this procedures M times, and
(iv) approximate the spatial distribution of the polygon.

Dutton [1992] conducted such experiments to simulate the distribution of polygons.

3.3.3 Experimental method

The standard method of measuring accuracy of any object-based primitive is to compare
the positional attribute of samples of primitives to their ‘true’ positions. For instance to
carry out the method for point objects, first select the number and distribution of test
points according to the sampling method employed. Then the coordinates of these points
are compared to those that assume higher accuracy. From these two sets, the root mean

square error can be obtained and presented as an uncertainty indicator for the point



objects;

n
RMS =( S - x5 )2 /m)V/2 G.17)
=1

where the y;’s are the coordinates of the points having higher accuracy and the x;’s are the

coordinates of the points to be checked.

The method can be extended to line objects (comparing the length of the lines) and
polygon objects (comparing the area of the polygons). Though rigorous, the method
suffers from the cost and time involved in determining the values of the geospatial object

in more accurate data sets.

3.3.4 Error descriptors

Error descriptors are not error models in the sense that they do not provide the statistical
variation of geospatial objects. However, in the early quest for providing uncertainty
information to users, descriptors were widely used to inform the users of possible
uncertainty inherent in the data. The following section describes the two most widely
error descriptors, namely the epsilon band model for describing the uncertainty of line
objects, and point-in-polygon proposed as an indication of positional uncertainty for area

objects.

3.3.4.1 The epsilon band
The basic concept of the epsilon band model is founded upon the principle that a

cartographic line is surrounded on each side by an area of constant width, epsilon (g),
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similar in appearance to a buffer zone. The concept may be visualized as the effect of a
ball with a radius ¢ that is rolling along the line as shown in Figure 3.3. Different
interpretations exist about the shape of the band at the endpoints. While GIS software

mostly represents the endpoints errors as circle (see Figure 3.3), Blakemore’s [1984]

model assumes a box surrounded each line segment (see Figure 3.4 and 3.5),.

A Ball

X
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Digitized Line
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Figure 3.3 The concept of the Epsilon Band model

The model was designed to provide users with a measure of the error associated with
digitizing cartographic lines. Developed and enhanced by researchers such as Perkal
[1966], Blakemore [1984], and Chrisman [1989], many other authors have since applied

the idea in a variety of ways.

Though many interpretations of the epsilon band exist, they can be categorized in two
groups: deterministic and probabilistic. In the deterministic case, the true position of the
line is considered to lie somewhere in the buffer zone. Deterministic interpretation of the

epsilon band is questionable because:

(i) it provides no model of error distribution inside the band, and,
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(ii) it proposes that the true line lies within the epsilon region.

In the probabilistic interpretation of the epsilon band, the width of the zome is
assumed to be a function of different parameters such that their uncertainties accumulate
to the final stage. For instance, Alai [1993] assumed that scale, digitization, slope and
attributes of the polygons adjacent to the lines were the related variables, while
Blakemore [1984] related the bandwidth to the digitizing error, round off error and

generalization error.

Probabilistic interpretations of the epsilon band are apparently inconsistent with what
analytical [Caspary and Scheuring, 1992; Shi, 1994] and simulation [Dutton, 1992]

procedures determine.

However, in spite of the weaknesses, the epsilon band has the following advantages

[Carver, 1991]:

(i) it involves little extra processing time,

(ii) it uses existing spatial operations for implementation (buffer zone operation),

(iii) different feature categories can have different epsilon values assigned to them

as attributes,

(iv) the concept is easily understood and can be applied in many spatial

operations, and
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(v) the uncertainty can be readily integrated with the positional data and require a

modest amount of storage.

3.3.4.2 The polygon uncertainty indicator

An extension of the epsilon band can be used to represent the uncertainty of a polygon
object. The uncertainty of the area object is thus represented by the area covered by the
epsilon band. Blakemore [1984] related the positional uncertainty of a polygon with
respect to the positions of nearby points. He categorized five relationships (see Figure

3.4);

\.

Figure 3.4 Uncertainty of an area object
(i) definitely in (point 5)
(ii) possibly in (point 4)
(iii) ambiguous (point 3)
(iv) possibly out (point 2), and

(v) definitely out (point 1)
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Points in the interior (core) area are ‘definitely in’; if the points lie within the inner
half area of the epsilon band, they are ‘possibly in’; if the points fall on the boundary line
segment they are ‘ambiguous’. Points are categorized as ‘possibly out’ if they locate in
the outer half area of the epsilon band. If the points fall outside the polygon and epsilon
band, they are ‘definitely out’. The smaller the epsilon band area, fewer points lie in the

‘possibly in’ and ‘possibly out’ regions, and the uncertainty of the area object is lower.

The limitation of applying this error descriptor is that it cannot describe a continuous
change in quantifying the location of the points with regards to a polygon. Therefore, a
quantitative model which can describe the continuous change in the probability that a

point belongs to an area object should be developed.

3.4 Evaluation of the Methods

The analytical method which is based on covariance propagation is modest in
computational load. It is also attractive because it yields an analytical expression for the
variances of the output errors, although it should be noted that the solution is approximate
only. The means, variances and correlations of the input data explicitly appear in
Equation 3.9, and these allow one to examine quickly how the output uncertainty changes

under variations in the input error parameters.

The disadvantage of the method is that it is an approximate method only. When the
function F is strongly non-linear, then the approximation error may become unacceptably
large. Iteration may be required to reduce the error, however it will be at the cost of

computational load. On the other hand, the approximation error is zero when F is linear.
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Another disadvantage of the first-order Taylor covariance propagation method is that it
requires that the function F be continuously differentiable. Covariance propagation may
not respect the ease of computation if the function F is a complicated computational
model that consists of many inputs. The method may not determine the real statistical

properties of errors in GIS, since systematic errors may exist in the process.

The most important advantage of the Monte Carlo method is that it can provide the
entire distribution of output data at an arbitrary level of accuracy. Other advantages are
that the method is easily implemented and generally applicable. The method merely treats
the function F as a black box, whose response to the perturbed inputs is studied from the

resulting outputs.

The main disadvantage of the Monte Carlo method is that it is computationally
intensive. Another disadvantage is that any sensitivity analysis requires the repeated

execution of the entire process.

Experimental methods provide the best indication of accuracy. As such, they can be
used to detect any possible biases in other methods. However, the results depend on the
sampling procedures and the number of check points used. The most important
disadvantages of this method is that it is costly, and time consuming. It is frequently used
in the remote sensing discipline, where check points are needed for classification

processes.

It is worthwhile mentioning that only those methods that have found their way into

GIS are described. Approaches such as second-order Taylor [Heuvelink et al., 1989], and
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Rosenblueth methods [Heuvelink, 1993] are excluded.
3.5 Communicating Uncertainty
As stated before, the uncertainty of geospatial objects can be entirely represented by their
respective covariance matrices, which are derived from statistical processes. Statistical
terms, particularly in text format, attempting to convey uncertainty to GIS users are often

misunderstood by those users.

With advances in computer technologies and more specifically in GIS software and
hardware, new techniques are becoming available for communicating uncertainty. These
include visualization, animation, sound, and holography [Fisher, 1994]. Deciding on the
most appropriate method of uncertainty communication is the subject of perception and
involves neuro-psychological tests that are beyond the scope of this thesis. However,
since most GIS users are familiar with maps (static visualization), the 2-D graphical
representation is adopted in relaying the uncertainty messages to users. DeFranti et al.
[1989] added to this point and claimed that the visual presentation of uncertainty

measures has the ability to:
(i) organize abstract concepts into a meaningful display,
(ii) transform numerical values into understandable images, and
(iii) permit manipulation of geometry, color and motion.

Moreover, it speeds pattern recognition, eases the motion and facilitates change

detection. Figure 3.5 demonstrates the difference between the visual approach to
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presenting uncertainty and its statistical modeling counterpart. It is important to notice

Question: What is the Accuracy?

/\

Answerl: Modeling/Statistical Answer2: Visual/Psychological

Don’t you see it? [t’s

AT * (¥ +B) /& * enQ - O} 1!

Figure 3.5 Alternative ways of answering similar question depending upon the user

needs (adapted from Csillag [1991]).

that visualization changes the text format of the statistical terms to the graphical display.
Both approaches are, thus, valid; it only depends on who the user is and how the

information is required to be presented.

In the static mode, cartographic representations of uncertainty should be guided by
application of Bertin’s [1985] visual variable, including, size, shape, texture, color and
orientation. With respect to data uncertainty, the visual variables seeming to offer best
opportunities for display include color and texture [Goodchild et al., 1994b]. The visual
metaphor of fog has been proposed [Beard et al., 1991] to alter viewers to uncertainty in
data position. Fog may be created graphically by manipulating color or defocusing a

display for visual impact.
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Dynamic visualization, may provide several advantages, for instance when data and

metadata displays are toggled at some speed, or glued together. Another advantage is that
for positional accuracy, symbol movement overcomes the problem of viewers attaching

too much weight to particular cartographic representations [Fisher, 1994].

3.5.1 Point uncertainty visualizations
If the coordinates of a point in (X, Y) plane are random variables having a bivariate

normal distribution, their joint density function can be expressed as:

fx,y)= 1 expl- [ty opE ey X Ty,
270,0, 1-p? 2(01-p°) o o, o, o,
(3.18)

in which g and o, are the mean and standard deviation, of X; y,and o, are the mean

and standard deviation of Y and p is the normalized correlation coefficient of X and Y as

defined by:
(e}

Pry =— . (3.19)
0.0,

This density function has a bell-shaped surface over the X, y coordinate plane,

centered at x = 4,, y = M, as depicted in Figure 3.6.

A plane that is parallel to the X, y coordinate plane will cut the bivariate density
surface in an ellipse. A statistical interpretation of this ellipse is that it is the locus of
points having equal probability. To obtain the mathematical formula of the ellipse, it is
sufficient to assign a constant value to f(x, y) = K in Equation 3.18. After simplification it

reduces to:
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Figure 3.6 2D normal function together with its contour plots (error ellipses).

JC—”’)(y-u’)ﬂy-”’)z=(1—/32)c2 (3.20)

el - 2 N
( ) =2 o, o, o,

o

x

where ¢ is a constant. The probability associated with an error ellipse P[E < c2], is

represented by the volume under the bivariate normal density surface. P[E < c2] for

various values of ¢ can be determined from xzdistrﬂ)ution tables.
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If there is a need to focus on the random error component only, as is the case in

surveying, 4, and 4, can be set to zero to get a probability distribution that centers on

the origin of the x, y coordinate plane. When x, = u, = 0, Equations 3.18 and 3.20

reduce to:

= —)P -2 = 3.21
flx,p)= ,waf—e"p{ [( ) p( X ,”( ,”} (3-21)
and
X X Y N XN - p2)\e2
(0,) 2p(ax )(a,)+(ay) (A=p")e (3.22)
respectively.

Equation 3.22 represents a family of error ellipses centered on the origin of the
coordinate system. When ¢ = 1, equation 3.22 is the equation of standard error ellipse.

The size, shape and orientation of the error ellipse are governed by the distribution

parameters o,, o, and p. Several examples demonstrating the effects of different

combination of distribution parameters are shown in Figure 3.7.

3.5.2 Line and polygon uncertainty visualization

Unlike point, line uncertainty visualization is quite immature, since the models
representing its statistical behavior are immature. Moreover, to determine the line
uncertainty model, the line segment is frequently assumed to be straight. The philosophy

behind this is that even curvilinear functions can be approximated by straight line
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Figure 3.7 Different realization of error ellipses (adopted from Mikhail and Gracie
[1981]).

segments. The only available models for line objects are the “epsilon band’ model, and
the ‘error band’ model. Their uncertainty visualizations are presented in Figures 3.1 and
3.3. Polygon uncertainty may be structured from the uncertainty of its boundary line

segments as represented in Figure 3.8.

3.6 Practical Considerations

The techniques that are highlighted in this chapter can be applied to determine the
uncertainty distribution of geospatial objects. The following considerations should be

respected when using the methods.
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Figure 3.8. The uncertainty visualization of a polygon object (adopted from Shi [1994]).

3.6.1 Incorporation of model error

As mentioned in the previous chapter measurement error is only one source of
uncertainty, and a GIS output may be affected by other error sources such as model error.
Consequently, not only does the input error aggregate to the output of a GIS operation,
but model error does as well. This means that the output of a GIS process may disagree
with reality even if the input data are error free. This is due to the fact that the model is an
approximation of reality. Although, the uncertainty modeling described so far neglects
the contribution of model error, this may be a major source of error in many situations.

Thus it should be included in error analysis.



63

Model error can be included by assigning errors to model coefficients or by adding a
residual error term to the model function F. A residual uncertainty occurs because rarely

will all the variability in the input data be accounted for by the function.

The effects of model error in empirical functions are more noticeable, because an
empirical model has no universal accuracy. For example, an underwater flow function
that is developed and calibrated for one area may perform poorly when it is applied to

another area.

3.6.2 Scales of data

There are several ways in which geospatial data can be grouped, the most widely used
being scales of measurement. Scale of data can be categorized into four classes: nominal,
ordinal, interval, and ratio. Nominal data have sufficient information associated with
them to classify them into categories, or classes; for example, the type of landuse can be
classified as water, forest, or desert. Ordinal data contains sufficient information such that
the data can be ranked in ascending or descending order. Interval data have the
characteristics that distances between categories are defined as fixed equal size units and
that they have no fixed zero value. For the elevation attribute, for example, only distances
and not absolute values may be measured. Ratio data have in addition an absolute zero. A
value of zero metre of elevation does not mean that it has no elevatinn. On the other hand,

a value of zero mm of rainfall as ratio data indicates no rainfall.

Uncertainty models identified in this chapter are all based on interval/ratio data, since

location attributes are of interval/ratio scale. If uncertainty of categorical data are of
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concermn, other strategies such as use of a confusion matrix should be adopted [Goodchild,

1995].

3.6.3 Storage efficiency

Any algorithm or model in GIS may be evaluated based on its efficiency. The efficiency
of a model deteriorates with the volume of data it manipulates. As such when designing
any uncertainty model two opposing requirements should be considered: the rigor of the
model, and its efficiency. For instance epsilon band which requires less computation time
than error band might be considered as a close approximation to the error band model,
and be sufficient for some applications. However, GIS users should be able to access both

general and efficient models to decide which one best fits to their requirements.

3.7 Chapter Summary

In this chapter, the extent of the research into the methods, modeling and visualization of
uncertainty in spatial databases has been reviewed and analyzed. In Section 3.2 formal
definitions of space partitioning data models were presented. Partitioning of space is
important in uncertainty modeling since it decomposes the problem of complex reality

into manageable data models.

Section 3.3 examines the three methods of modeling uncertainty in GIS databases: the
analytical method, the Monte Carlo simulation procedure, the experimental approach, and
error descriptors. It was emphasized that while analytical methods based on covariance
propagation are modest in computer manipulation, they can be employed only when the

functional relationships among independent and dependent variables are continuously
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differentiable. Moreover, the linearization of the function around the point of
linearization must be a valid approximation of the function. Simulation methods may be
generalized for all GIS processes, however they are storage and time consuming
procedures. The experimental approach is constrained by its cost and time, but can be
employed to check the result of other methods, i.e. the concept of check points in

photogrammetric processes. Applications of each method in geospatial primitives are also

highlighted.

Section 3.5 has been devoted to the analysis of the present method of communicating
uncertainty. Statistical terms (text format) currently predominate the uncertainty
communication media. It is, however, argued that the visualization method provides a

better way of uncertainty presentation.

This chapter identified the following deficiencies in the current line uncertainty

models:

(i) they oversimplify the true statistical variation that a line segment may assume,

(ii) they neglect the uncertainty that may arise due to the imperfection of the

mathematical model,

(iii) they model straight line segments, and consequently a lack of smoothness is

apparent in a map presentation of natural boundaries.

(iv) they do not attempt to reduce the amount of data volume needed for uncertainty

determination.
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CHAPTER 4

PROPOSED POSITIONAL UNCERTAINTY MODELS OF GEOMETRICAL
ENTITIES IN GIS

4.1 Overview

Previous chapters elaborated on the methods by which uncertainty may be modeled, and
indicated the deficiencies of the currently used uncertainty models in GIS. It was also
argued that a major constraint in the operations of a GIS is the lack of appropriate models
of geospatial data uncertainty, and the means by which the uncertainty may be
communicated to users. Rigorous uncertainty models and proper communications media
are of vital importance in a GIS, because they do not only help GIS users assess the
quality of the system products, but also assess if the decisions taken upon the uncertain
products are in jeopardy. Indeed, as spatial information is being viewed as a marketable
commodity the potential for litigation exists, and failure to deal with uncertainty
problems rigorously may well endanger GIS technology. Without proper uncertainty

modeling, management of uncertainty in GIS is difficult, if not impossible.

Accordingly, this chapter proposes general uncertainty models of geometrical
primitives (particularly straight line and polygon object) in a GIS. The visualization aid is
used to communicate the output of the general model to users. This chapter is then
structured such that the general uncertainty model of geometric entities, together with
their parameters (with particular attention to the observational and model errors), and

hypothesis are defined in Section 4.2. Point uncertainty together with the methods to
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determine the magnitude of the measurement error for point data are discussed in Section
4.3. Observational error of a straight line segment is determined using the Monte-Carlo
simulation method, and described in Section 4.4. Observational errors of line segments
can also be calculated analytically using covariance law. The designed strategy for the
analytical method is highlighted in Section 4.5. In Section 4.6 model error is investigated
and a method for determining the magnitude of model error along the line segment is
proposed. The union of the boundary line uncertainties are used to represent the
uncertainty of a polygon cbject in Section 4.7. A logical representation of uncertainty
information in GIS databases is proposed in Section 4.8. Having modeled the uncertainty
of polygon objects, the solution to the point-in-polygon problem is augmented by

probability statements and given in Section 4.9.

4.2 The Proposed General Uncertainty Model of GIS Dataset

The first step in any rigorous uncertainty modeling is to identify the parameters that affect
the model, and determine their magnitudes. Knowing all the contributing components in
the model helps to determine the components with maximum effects. Once the more
important contributing factors in the model are identified, further research on

characterizing their behaviors can be accomplished.

A significant portion of geospatial data uncertainty stems from measurement, since all
measurements aze of limited accuracy [Wolf and Ghilani, 1997]. Measurements are
frequently mixed in a mathematical model to estimate the unknown quantities. As a

mathematical model is a simplification of a complex process, it introduce uncertainty.
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Other important factors that can influence the magnitude of data uncertainty are
computational and fuzzy errors. The computational media introduce uncertainty because

of their inherent ‘round off’, and possible ‘truncation’ processes [Burrough, 1986].

Presenting the real world by objects having crisp boundaries is in error too, as
natural objects rarely have clear cut boundaries [Burrough, 1991]. Moreover, the
parameters of the general model may have correlation, as such their correlation should
also be considered in the uncertainty model. Therefore, a general error model of a GIS

product might be presented by the following mathematical function:
2 2 2 2 2
G Total = (O Measurement>C~ Model-C~ Computation:S~ Fuzzy ) (4.1)

2 - . qe .
where G141 is an indication of the total error for a GIS data.

Since the precision used in GIS exceeds the accuracy of its data the contribution of
computational model can be assumed negligible [Goodchild, 1989] in the model. To
make the model manageable, and the research conceivable, this chapter focuses on the
first two elements of the general model. Moreover, the correlation between the two

parameters are assumed negligible, hence the uncertainty model is simplified to, namely:

2 2 )
G Total = O Measurement ©~ O Model 4.2).

4.3 Determination of Positional Uncertainty of Point Objects
Point data (e.g. power poles or elevation data) may cover a significant portion of any
GIS database. Point data can also be used as building blocks for structuring higher

dimensional data, 1D lines and 2D polygons. Therefore, the determination of positional
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uncertainty of a point is important not only due to being a measure of a point quality, but
also because of providing the first step towards modeling the uncertainty of higher

dimensional data in a GIS.

Since the majority of GIS data is gathered by the digitization process, the following
simple trials were conducted to construct the covariance matrix of the digitized points.
Statistical information derived from this trial was averaged to determine a representative
covariance matrix (2x2 for a point; or 4x4 for a line) for all the points (or lines). The
configuration was made such that a study of possible correlations due to distance and

orientation can be carried out. The following steps explain the proposed trials:

(i) A set of precise mathematically definable geometric entities were generated in
a GIS system. The entities included a point, a straight line, a triangle, and an
octagon (Figure 4.1). Since the entities are mathematically defined their
coordinates were used as the ‘true’ values in the calculation of accuracy

[Goodchild et al, 1992].
(ii) The entities were plotted and digitized in point mode at the convenient speed.
(Each point is digitized 10 times.)

(iii) Variances in the X and Y direction was computed for each point, and an
average computed for all the points digitized. These values fill the diagonal

elements of the covariance matrix of digitized points.

(iv) Covariances of X and Y are computed for each point, the numbers are then

averaged through all the points. Similar procedures were followed to
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Figure 4.1. Digitized entities, together with the magnitude of the model error

determine the covariance of the line’s endpoints. Since no trends were
observed in the covariance of the coordinates due to angle and distance for
line segments, the covariance of the end point coordinates were also averaged.

These elements fill the off diagonal elements of the covariance matrix.

0.32 0.08

0,08 035] are in square

The following 2x2 matrix resulted from the test. The results [

millimetres. The study of possible correlation due to distance and orientation was
inconclusive, the reason was attributed to the mode of digitization. It is argued if the
stream mode digitization was employed possible correlations might have been

encountered [Keefer et al., 1988].
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4.4 Simulated Procedure of Determining Observational Uncertainty of Lines

Every measured point is to some degree uncertain, as are the straight line segments
generated by connecting the points. Hence, modeling the observational uncertainty of a
line segment may be determined by considering (a) the observational uncertainty of the
coordinates of endpoints, and (b) the correlation among the points that construct the line

(a full covariance matrix should be considered).

A nearly correct map of the region, where the random lines are located with a
particular probability, e.g. 39% or 87%, may be derived by the Monte-Carlo simulation
method. The coordinates of the endpoints of the line are generated according to their
distributions, and to the endpoint correlation. Figure 4.2 illustrates several realizations of
such a model. By connecting a large number of endpoints, random positions of the

straight lines can be simulated.

Several different shapes and orientations of error ellipses have been examined, once a
correlation factor between two endpoints was assigned. As indicated in Figure 4.2.a,
when the correlation factor approaches one, the shape of the line variation follows the
epsilon band model [Alesheikh, 1997]. When the correlation factor becomes close to zero
(no correlation), the uncertainty of the middle point of the line segment gets smaller
(Figure 4.2.b). In fact, when the two endpoints are independent, the error band model
[Shi, 1994] is reached (Figure 4.2.c). If the correlation factor moves towards negative
one, the variance of the middle point gets smaller than error band model (Figures 4.2.d,

and 4.2.e).
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e) Endpoints are fully negatively correlated

- /

Figure 4.2. Different realizations of line uncertainty models

An immediate conclusion that may be derived from these simulation results is that
both the epsilon band and error band models are special representations of the general

variations that a line segment may assume.

To visualize the area of constant probability a mesh has been superimposed on top of
the random lines. Each simulated line intersects a number of pixels (see Figure 4.3).
These intersections are summed up for each cell resulting in a lookup table of
intersections which can then be presented in 3D (Figure 4.4.a.). The cells and the relative
frequencies show the probability density of the random straight line. Lines of constant

probability density can now be constructed in the same way as contour lines in digital
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Figure 4.3. Random lines and the intersected pixels

terrain models (Figure 4.4.b, and 4.4.d). The probability associated with the contours of
(e.g. 38%) can be determined by the summation of the relative frequency of pixels (f(X,
Y)) located inside the contour (Figure 4.4.a). This area presents the confidence interval of
a line segment and is proposed as the best presentation of the observational errors of the

line segment.

4.5. Analytical Procedure of Determining Observational Uncertainty of Lines

A straight line segment may be defined as a combination of points conforming to a linear
function. Hence, the uncertainty of a line segment may be determined as the aggregate of
the uncertainty of points constructing the line. Point uncertainty is usually represented by
error ellipses that are computed from the variance-covariance matrices of the point

coordinates. So, the problem of line uncertainty modeling turns out to be:

(i) the determination of the uncertainty, C,, of any arbitrary point located along the line

segment, based on the statistical information, Cag, of the endpoints coordinates, and

(ii) the computation and visualization of the region that the point ellipses cover.



Figure 4.4. The visualization of the line uncertainty using simulation method. a) 2-D

view of the Line Density Function (LDF), b) Contour line representation of the LDF, C)
3D view of the LDF, and d) 3D contour of the LDF.

If U is an arbitrary point located along a line segment AB, its coordinates can be

defined as (from Equation 3.13):

Xu (1-r)*XaA +r*Xp - = -
[Yu]= [a- >*YA+r*YB] oo  Xy(a.f)=cXs+pXp (4.3)

Dau \[(XU - XA)2 +(Yy —YA)Z

Pas \/(XB - XA)Z +(Yg _YA)Z

where, r,, =B = , 0y <1, and a=1-8. 44).

13)
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The variance-covariance matrix of U may be derived by applying the error

propagation law as follows:
Cy=J Cag J7 4.5)

where J is a Jacobian matrix and Cag is the covariance matrix of the coordinates of the

endpoints. Once the error matrix is defined, the error ellipse of the arbitrary points may be

represented by:
2 2
X-X X-X Y-Y Y-Y,
Ox Ox Oy Oy
U U 74 U
where: Sxy and Oy, are the diagonal elements of the covariance matrix of U,
o-"U Yu . .
0< p=—""x1 is the correlation factor, and
c,, O

Xy “ Yy
C is a constant that determines the probability level of the error ellipse

(see Chapter 3).

Once the error ellipses for arbitrary points along the line segment are defined, the
region that these ellipses encompass creates the confidence level of the line. It is this
region that represents the rigorous observational uncertainty indicator of a line segment

computed analytically. Figure 4.5 illustrates this concept for a line segment.
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a) Error ellipse 4 confidence region
determination  getermination c) Probability contours

Figure 4.5. Generation of line uncertainty model

An interesting property of this model is that it can easily be extended to determine the
uncertainty of a curve, if the curve function y = f(x) is known (for example, in the case of
a road design). The only change that occurs in the method is that the distance from two
points on the curve should be computed by the arclength equation:

X

u d
Dau= | /1+(3§)2dx 4.7).
XA

4.6. The Effects of Model Errors in the General Line Uncertainty Model

The previous section addressed the problem of observational uncertainty while assuming
the underlying mathematical model, Equation 4.3, is error free. In contrast, this section
questions the uncertainty arising from the underlying mathematical model, and

determines the effects of such an error in the rigorous uncertainty model.

Model error refers to the deviation between the ‘true’ function representing a

boundary line and its approximated linear function. Model errors in GIS are frequently
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caused by:

(i) not knowing the curvilinear function (i.e. where the digitizing operator

processes the boundary of a natural feature),

(ii) a simplification assumption (i.e. where the digitizing operator compromises

between the magnitude of model error and a simple linear function), and

(iii) a restriction of the software (i.e. where the software cannot represent a
nonlinear model at the time of digitization [Davis, 1996] or representation (e.g

contours generated in PCI)).

Although the effects of model error may be negligible when line segments represent
the boundaries of man-made structures or cadastral boundaries (where the boundaries are
straight Figure 4.6.b), they may be of considerable magnitude when the linear function

delineates a natural feature (Figure 4.6.c).

Line segment
in question

E—

Ceae’

<. Real boundaries
——— Digitized boudaries

A, B, C - Points
1,2, 3 - Lines
I, IO, IIT - Polygons

Point 9

a) A polygon representation  b) Cadastral boundaries ¢) Natural boundaries

Figure 4.6. The digitized representation of different polygons
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Assuming a perfect linear model representing a boundary line causes the uncertainty
of the points located along the line to be always less than or equal to the uncertainty of the
endpoints. If the model error is under question or the model error is of a considerable

magnitudé, then its effect should be quantified.

The next section will show that based on the magnitude of the model error the shape
of the line uncertainty model may well be approximated by a convex curve rather than a
parabola (concave) suggested by the error band model. Figure 4.7 demonstrates the

differences between line uncertainty models.

/ Rigorous Model —_— \

(with Model  Error)

Error Band Modeb;

Rigorous Model
(Without Model
Eoqot) —m—>»

o

Functions representing the model error can be determined empirically. As such, they

Figure 4.7. Realizations of various line uncertainty models

may vary from case to case and from operator to operator. Sur:h an empirical function
may be obtained from experience with similar problems, i.e. an operator may determine a
suitable model error for his/her operation capability by comparing his/her digitization

results with more accurate samples, or from simply knowing something about the
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behavior of the problem [Kraus and Mikhail, 1972]. The function depicted in Figure 4.7

is the Gaussian function corresponding to the equation
Me (d) = aexp(-Bd?) (4.8)

that is added to the observational uncertainties. Here, d is the separation distance from the
center of gravity of the line, and P are constants that determin: the maximum deviation
and damping parameter, respectively. For instance, & may be close to zero once the model
error is negligible, e.g. in the case of cadastral boundaries, and be higher in the case of
digitizing natural feature boundaries. The following sections elaborate on the ways that

model error can be quantified.

4.6.1. The magnitude of the model error: empirical method

To determine the variance of the model error along digitized straight line segments,
eighteen segments of the boundaries of water bodies are digitized in two different scales.
Figure 4.8 presents the area in which the test was accomplished. The figure also identifies

a few places that boundary line segments are digitized.

The two versions of the digitized line segments were then compared and the
magnitudes of the error at ten points along each line segment were computed. Figure 4.9

shows the two versions of the digitized boundaries for several trials.

Using 18 observations for each point, variances at these points were computed by:

18
ot =1/18x LV i=12,..,10; (4.9)

i=1

where V? = (X; - X)? +(Y; - Y)? (4.10)
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is the minimum distance (in the perpendicular direction to the straight line segments of

the Figure 4.9) between the two versions of the digitization. The statistical variances at

10.

the ten points were plotted in Figure 4.

L

8 Nt

.
.I\\\.\\'

100,000)

Figure 4.8. The study area for model error determination (Scale 1
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Figure 4.9. Deviations between the two versions of digitized points (assuming some local

coordinate systems)
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Figure 4.10. The model variances
Any approximation function can be used to estimate the variability of the variances
due to model error. A Rayleigh distribution may be more appropriate (Christakos, 1992),
however, due to its simplicity a Gaussian function (Equation 4.8) has been used in this

thesis. It is worthwhile to mention that the magnitude of the model variance reached

about four times the measurement error at the endpoints (1.3 mm? in model vs. 0.33 mm?

in measurement error). This will indicate the importance of the model error in any
rigorous modeling. The variance of the model error was then added to the measurement
error in perpendicular direction of line segments. This presents the proposed general

uncertainty model of line objects which is shown in Figure 4.7.

4.6.2. The magnitude of the model error: Analytical method

Apart from empirical determination of the model error, the effects of it can be analytically
quantified once the non-linear function and its approximating straight line segments are
known. This is the case when man-made structures such as curved roads are digitized.

Because circles constitute the majority of non-linear functions in man-made structures,
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the magnitude of the error is quantified for approximating circles. However, the strategy

may easily be extended to any other non-linear functions.

As Figure 4.1 demonstrates, the magnitude of the model error decreases once the
number of digitized points are increased. The model error is half of the circle’s radius, R,
when the circle is approximated by two points, and decreases to 0.19R when the circle is
estimated by five equidistant points. Once a circle is digitized by n equidistant points, the

maximum deviation, €, can be computed by;
€ =R(1—-cos(Tt/ n)) “4.11)

This € can be used instead of o, if Equation 4.8 is applied. If the distance between
endpoints, D, is known, the digitization case for instance, the following Lemma can be
applied to compute the maximum deviations between a circular curve and its

approximated line segment;

Lemma: If the middle ordinate (g) is the distance from the middle point of the chord to
the middle point of the corresponding circular arc (Figure 4.11), its magnitude can be

computed from;

8=OH—OG=R—RCOS(A/2)=R(1—1/2R\/4R2—Dz) (4.12)

where D= J Xg—-X A)2 +(Yg -YA)2 is calculated from the coordinates of the
digitized points.
A circle (Figure 4.1) is used to determine this individual’s model error. To minimize

the correlation between measurement error and model error, a circle and its
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approximating lines are generated by Arc/Info system (no digitization was carried out).
The number of points approximating the circle (R = 5 cm) are then increased from 2 to
20, until the deviation was in the range that was negligible for the experimenter. Using
Equation 4.11 the variance of the model error reached was 0.72 mm?. This constitutes the
lower level for the magnitude of model error. As previously mentioned, the value also
proves that the magnitude of model error is greater than measurement error for the
digitization process. The same circle was then carefully digitized on the computer screen
to determine the differences between on screen and hard copy map digitization. Using

Equation 4.12 the maximum detected model error was 1.2 mm’ with an avcrage of 0.83

mm?” once a normal speed digitization (less than 3 seconds per point) was carried out. The

dissimilarity between magnitudes of model uncertainty in the two cases (on screen Vvs.

hard copy) were attributed to the variations in the accuracy of the instruments used.

- S——

Figure 4.11. The deviation of a straight line segment from a circle
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4.7. Polygon Uncertainty Model

A polygon object can be assumed as an areal object defined by its boundary lines.
Therefore, polygon uncertainty is closely related to the previously discussed point and
line uncertainties. It is important to notice that the uncertainty of a polygon is different
from the uncertainty of the boundary of a polygon, since the interior of polygons can have
uncertainty too. The interiors of polygons are more homogeneous than the boundaries of
polygons, causing the magnitude of uncertainty to be greater on the boundary than interior
[Zhou and Lee, 1994]. Hence this research work has focused on the modeling of the

boundary uncertainty.

A comprehensive description of the random variations of a polygon may be derived
from the covariance matrix of the vertices of the polygon and the model errors of each
boundary segment. An indicator of the uncertainty of a polygon object is defined as the
combination of the areas that the boundary line uncertainty models cover divided by the
polygon area. In other words, the general uncertainty model of a polygon object that is
proposed is simply the combination of the area of all of the line uncertainty indicators
enclosing the polygon over the polygon’s area. In the following, the visualization of the
polygon uncertainty will be elaborated using various case studies. Areas covered by
various line uncertainty are computed which enables a comparison between different

polygon uncertainty models.

4.7.1 Survey lot data sets
The first case study involves a survey lot consisting of seven points, two of which are

fixed. The angular and distance measurements are reported in Mepham and Nickerson
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[1987]. The coordinate system used is a local coordinate system. The measurements,
together with the approximate coordinates of the points, were used in a least-squares
adjustment to determine the estimated coordinates of the points and their covariance
matrices. The adjustment results were then imported into the general uncertainty model to
illustrate the uncertainty of the line segments and the polygon. Figure 4.12 represents the

output of the module.

Figure 4.12 clearly illustrates that the union of ellipses creates a region similar to the
epsilon band model if model errors are not considered. The reason is attributed to the
predominantly positive correlation among endpoint coordinates, which in turn validates

the results of the simulation (Figure 4.2.b).

Figure 4.12. Uncertainty visualization of survey lot data sets (Ellipses are enlarged for
illustration.)

4.7.2 Simulated data sets

The second case study involves simulation of coordinates of a planar triangle’s vertices



87

together with their covariance matrices. The covariance matrix of the triangle is generated
in such a way that the line uncertainty model resembles the error band when the model
error is not being considered - negative correlation among end points is predominantly
generated. This also supports the results of the simulation procedures (Figure 4.2.d), and
consequently the generality of the proposed uncertainty models. The results of the

simulated datasets are shown in Figure 4.13.

Figure 4.13. An illustration of the uncertainty of the simulated triangle

Figures 4.12, and 4.13 clearly demonstrate the effects of the correlations between

endpoint coordinates on the shape of the line uncertainty model.

4.7.3 Comparison of polygon accuracy’s using different models

A comparison of the different measures of accuracy of a polygon is given below. The area

that is covered by the epsilon band for a line with length D (Figure 3.3) can easily be

determined by:
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Aep =2De+ 77.’82 (4.13).

It can be shown that the area covered by error band model is approximately 0.8 times

the area covered by the epsilon band model (Figure 4.2.c):
1
Ag =2DefV1-2r+2r2dr +me? = 162De + me? = A, —038De = 08A, (4.14)
0

The area covered by the proposed general line uncertainty model depends not only on
the covariance matrix of the endpoints but also on the function representing the model
error. As such a closed formula representing the uncertainty area seems impossible,
though the area can be numerically approximated for each case. Table 4.2 shows the
difference in the area covered by various line uncertainty models for the two case studies.

For the case of the epsilon band and error band models, it is assumed that:
£=0=1/4[Cxa +C2ya +02p +02,51%° (4.15).

Equation 4.8 is used to approximate the model error for the triangle case study which

is characterized by: 0. = 1.2 mm” and B = 7.

Table 4.1. Comparison between areas covered by various line uncertainty measures

Survey Lot Case (mz)’ : Triangle Case (mz)

Sum of e-bands Aep 4.155 44.61

Sum of error bands Aer 3.324 35.69
Sum of general bands (without model error) 3.983 38.72
Sum of general bands (with model error) 53.37
Area 599.86 6820.8
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4.8 Logical Uncertainty Representation in Digital Databases
With the availability of different uncertainty models for geospatial entities, it is suggested
that the current data structures be augmented with uncertainty information. Figure 4.13

shows the logical integration of such information in a vector data structure.

# #
1 1,7,8,5,6 C, Polygon-Line
il 2,9,7 C, List
m 3,489 Cu
Line From To  Uncertainty
# Point Point Line-Poi
1 A B C., 0> me-Pornt
A, B, C- Points 2 B C G o, gm List
1,2,3 - Lines
» 2, D Ceo»
LI, III - Polygons 3 C co» %o , B
Point X Y Uncertain
# Coord. Coord. 24 Point
A X, Y, C, Coordinates
B XB YB CB List
(O X Y. C.

Figure 4.14. Conceptualization of uncertainty inclusion in digital databases

Point uncertainty information is shown as the covariance matrix C, of that point in
the Point-Coordinates list. To visualize the general uncertainty model, information about
the correlation between endpoints coordinates and model error are necessary which is
given in the Line-Point list by Cas, as, Bas. Polygon uncertainty information is
considered as the summation of the area covered by uncertainties of boundary line

segments over the total area of the polygon, C;, that should be provided in the Polygon-
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Line list. This explicit form of representation facilitates the management of uncertainty,
since the manager can assess the quality of the raw data, and aggregate it to determine the

product uncertainty.

4.9. The Point-in-Polygon Problem

The point-in-polygon problem has been addressed by several algorithms; one example is
the half-line algorithm [Worboys, 1995]. However, the quality of the solution to the
point-in-polygon problem has yet to be addressed properly [Leung and Yan, 1997]. A
simple computation of the quality of the point-in-polygon solution could, for example,
avoid displaying buoys on dry land or rivers outside their floodplain [Chrisman, 1991].
Based on the proposed polygon uncertainty model, the solution to the point-in-polygon

problem may be more accurate using probability statements.

In order to enhance the solution to the point-in-polygon problem a two-step procedure

is proposed:

(a) determine whether a point is inside, outside, or on the boundary of a polygon, and

(b) determine in which probability region the point falls.

To determine the position of a point with respect to a polygon, the polygon may first
be decomposed to several triangles (2-D primitive objects), and then, the position of the
point is examined with respect to the triangles. A triangle can be represented in a
normalized homogeneous coordinate system by its vertices coordinates: (0, 0, 1), (0, I, 0),

and (1, 0, 0), as shown in Figure 4.12.
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Assuming that the coordinates of the points to be examined are (a, b, ¢), if any

coordinate of the point is equal to 1, the point is located on the boundary of the triangle. If
P3(0, 1, 0)

P1(0,0, 1) Py(1, 0, 0)
Figure 4.15 Representation of a triangle in a homogeneous coordinate system

any coordinate of the test point is greater than 1 or less than zero, then the point is located
outside the triangle. Finally, if all the coordinates of the desired point in the homogeneous
coordinate system are less than one, and greater than zero, then the point is located inside
the polygon. The above procedure has been used to address the point-in-polygon problem
in the case of the simulated triangle and presented in Table 4.2.

Table 4.2. Results of point-in-polygon tests, probability level is fixed(* without model

error, ** with model error, *** boundary line)

sror . General | Genmeral | In

1
2
3
4
5 * *x
6
7
8
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The position of a point inside, on, or outside the triangle P; P; P3 can be determined

by:

P=P1+l(P2—P1)+u(P3—Pl)=aP1+bP2 +CP3, (4.16)

witha + b + c =1, where
A=b=det(P-P; P3-P;)/det(P;-P; P3-Py),
L=c=det(P,-P; P-P;)/det(P,-P; P3-P)),
a=1-b-c

given P; P; and P;are non collinear, and det stands for determinant [Blais, 1996b].

To determine which probability level the test point falls in, the coordinates of the
point are set in the ellipse equations (Equation 4.6) which create the line uncertainty
model. If the equality is valid, then the test point is located on the boundary of the
specified probability region. If the left side of the equation is less than the right side, then
the test point falls in the ellipses, and consequently within the specified region. If the left
side of the Equation 4.6 is greater than the right side, then the test point is located outside

the specified probability region.

Table 4.3 clearly shows the different answers to the point-in-polygon problem using
various line uncertainty models. The triangle case is examined. In Table 4.3 the locations
of the test points are examined based on a fixed probability (0.39, or C=1) level. Similar

procedures can be used once the probability levels vary.
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4.10 Chapter Summary

At the frontier of the information age, GIS is emerging as a powerful means to handle
spatial data effectively and efficiently. However, a constraint in an ever developing GIS is

the issue of proper modeling and communicating uncertainties of geospatial data.

This chapter has proposed rigorous uncertainty models for GIS positional data. The
major parameters of the model identified and methods to determine the magnitudes of the
parameters are supplied. Test studies showed that the magnitude of the model error
surpasses the observational uncertainty by a factor of 3. As such it should be considered

in the modeling processes.

It is argued that point measurements can be used to build higher-order objects such as
line segments and polygons. Following this line of thought, the uncertainty of points were
aggregated to realize uncertainties of straight line segments and polygons. The Monte-
Carlo simulation and analytical methods were designed and tested to determine the shape
of the line uncertainty model. Based on the results, it is concluded that the currently used
models, the epsilon band and the error band, are specific realizations that line variations

may assume.

Model error is added to the final positional uncertainty to account for the deviation of
the true model from approximated ones. To integrate the uncertainty information of
positional data, logical representation of uncertainty infcrmation in GIS databases was
submitted. This structure will be handy for any error propagation procedure to be
followed. Having the uncertainty of a polygon object modeled, the solution to the point-

in-polygon problem was enhanced by probability statements.
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While the emphasis of this chapter was on the modeling (observational and model)
uncertainty of straight line segments, uncertainty of the curves remain for further

investigation which will be the theme of the next chapter.
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CHAPTER S

UNCERTAINTY MODELING AND DATA REDUCTION OF CURVILINEAR
BOUNDARIES

5.1 Overview

Geospatial Information Systems (GISs) are proving successful in reducing practical
problems of organizing and integrating spatial data and for carrying out complex spatial
analysis. As GIS users become more familiar with the technology and as GIS is accorded
a more sophisticated role through incorporation into decision support systems, the quality
of the results is more frequently questioned. The quality of GIS results is hardly
achievable without rigorous modeling of their spatial data constituents: points, lines and
polygons. Analytical modeling of geospatial data, in turn, requires a functional

representation of the data.

In the previous chapter, the uncertainty of the linear objects was modeled based on the
implicit assumption that endpoints are connected by a straight line. Though the
assumption is valid for most man-made structures, the boundaries of natural features are
frequently not so constrained. One method to get around this problem is to divide the
boundary into several small segments and use the uncertainty models devised in Chapter
4. The jagged representation of the boundary lines, however, lacks the aesthetical
presentation cartographers require. Moreover, the required data volumes for such a
representation are huge, hence, the method hampers the efficiency that computer
specialists look for. An intelligent way to represent natural boundaries might be with the

use of non-linear functions.
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This chapter aims to identify statistically-best functions representing natural
boundaries, and to model their associated uncertainties. In doing so, data reduction and
smoothness of boundaries are of prime concern. As such, this chapter is structured so that
the problem of model identification of the boundary object is addressed first. Efficient
ways of identifying the model are determined. Afterwards, the uncertainties of the best-fit
model to the digitized lines are examined. The chapter will conclude with some practical

considerations and a brief summary.

5.2 Model Identification Strategy

Model identification problems are often encountered in practice, because any data
processing and quality analysis of experimental results can rarely be carried out without
first deciding on an appropriate model. Though model identification can be accomplished
for several purposes, such as enhancing the reliability of results [Blais, 1991a], it is
mainly used to reduce the volume of data and consequently to improve the computational
efficiency of presenting object’s boundaries in this study. Moreover, having boundary

lines presented as mathematical functions enables the study of the function uncertainty.
To approximate such an optimal function, three questions should be answered:

(i) what is the optimal norm for the approximation?
(ii) what are the appropriate base functions?
(iii) do all the estimated parameters of the model significantly contribute to the

accuracy of the results?

For example, given data for regression, an error norm (such as the quadratic norm)
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has to be decided first, and then the base functions for an algebraic or other regression
should be selected. In the curve and surface fitting, the selection of the unknown

parameters to be included in the model very often has to be identified too.

Blais [1991a] aptly elaborated on the selection of optimal norm in model
identification procedures. Due to its computational simplicity [Vanicek and Krakiwsky,

1986] the quadratic norm is used in this thesis.

Selecting the family of the approximating functions (e.g. algebraic, trigonometric, or
exponential polynomials) should be made using external information, such as the
appearance of the true function or previous trials. Therefore, it varies from one

application to another.

Deciding on the order of the approximating function and the significance of the
involved parameters can be carried out using statistical testing procedures. But, it is now
recognized that classical statistical test procedures that are too closely and implicitly
related to specific models (e.g. the normal function) are often inappropriate to identify the
optimum order of a model [Sakamoto et al., 1986]. It is also well known that in selecting
optimal degrees or orders for problems such as regression models, the maximum
likelihood principle fails in the sense that minimizing the error variance (implied by a
Gaussian assumption) simply implies the highest degree or order possible for the

avaiiable data.

Akaike [1971 and 1973] showed an information interpretation of the likelihood and
pointed out that an objective evaluation of the goodness of fit of the assumed models

becomes possible by extending the concept of likelihood. The criterion is now well
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known as AIC (Akaike Information Criterion). The introduction of this objective criterion
is very important since it enables the selection of optimal order and significant parameters

in a candidate mathematical family.

53 AIC

An objective evaluation of the goodness of fit of an approximating model can be made by
the log likelihood function. The function identifies the model as the best if the expected
log likelihood is the largest among the candidate family. The maximum log likelihood is
shown to be a biased estimator, however [Akaike, 1974]. This tendency is more
noticeable for models with a larger number of free parameters. In other words, if the
model with the largest maximum log likelihood is chosen, a model with an unnecessarily

large number of free parameters is likely to be selected.

Through examination of the relationship between the biased and the number of free

parameters of a model, Akaike [1973] claimed that
(maximum log likelihood of a model) - (number of free parameters of the model) (5.1)

is an unbiased estimator. Therefore, the AIC criterion has been defined as

AIC = -2(maximum log likelihood of a model) +

2(number of free parameters of the model) (5.2)

A model which minimizes the AIC (minimum AIC estimate, MAICE) is regarded to
be the most appropriate model. Equation 5.2 implies that when there are several models

whose values of maximum likelihood are about the same level, the one with the smallest
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number of free parameters should be selected.

The originally proposed AIC, that is:
AIC=log 62 +(2m+3)/n (5.3)

for an approximating model with m parameters and n observations, has been shown to

require corrections to the penalty term for different applications [Huang, 1990]. That is:

AICy = log G2 + (m/n)logn for general models, (5.4)
AICy =log G2 + 2(m/n) log n for unstable models (5.5)
AICyH =log 62 +m for explosive models (5.6)

where log 62 denotes the log likelihood of the model fit and where
~2 2 2
6 =E(y—a, - ajx - apx?%-..-apXx™) 5.7

is the model variance in the above equations. Blais [1991a] showed that the previous
three criteria result in the same order of an autoregressive model in practical applications,

supporting the independence of AIC from translations and scaling.

5.4 Polynomial Regression Model and its AIC
Since the boundary delineating two natural features is frequently represented by an
algebraic polynomial [Gong and Chen, 1992], and due to its simplicity, in this section, the

polynomial regression model is developed. AIC will then be derived for such a model and
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used as a tool for determining the optimum order of the model. In the polynomial

regression, a common approach is to fit a function of the form:
= 2 m
y=a,+ax+ax +...apX Te& (5.8)

to data such as those derived from digitization [Alesheikh, 1997], where ¢ is an
independent normal random variable that follows N(O, Gz). The integer m is the order of
the polynomial regression model. This model determines the variation of y as the sum of

the polynomial in the deterministic variable x and the random error €.

Fitting a polynomial to the data is equivalent to estimating a probability distribution for
the variable y as a function of the variable x. The Appendix demonstrates the required
algebraic manipulation for calculating the AIC of such a polynomial. The AIC of a

regression model (Equation 5.8) has the form:
AIC,, =log(6%)+2(m+2)/n (5.9).

Figure 5.1 depicts simulated data (using Equation 5.8 with a; = 1 and other a; zero)
together with several fitted algebraic polynomials. The deviations between the lower order
polynomials are much greater than the higher order ones, showing that increasing the
order of the complex models will not necessarily contribute significantly to improvement
of its error variance. To determine which order constructs the statistically-best fit function,

the AIC criterion (Equation 5.9) was applied.
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Table 5.1 demonstrates the resulting AICs together with the parameters of the model. As

expected, the variance of the model (the third column) decreases when the order of the

Table 5.1. The values of AICs for several algebraic polynomials

Case No. | Order &2 AIC | AICH | 4 a; a: a; a,
1 0 1478.00 | 133.2 | 3.15 | 33.00 | —- —— — —
2 1 25408 | 1153 | 243 |-2440} 228 | -—- e —
3 2 8.63 79.1 1.21 560 | -147 | 750 [ -—- ———-
4 3 0.27 421 | -040 | -0.14 | 05 |-026| 1.03 | -
5 4 0.254 433 | -038 | -062 | 24 |-1.28 | 1.21 | -0.01
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polynomial increases. However, the improvement of the variance slows down when the
model reaches higher order polynomials. To compare different AIC criteria, the values of
Equation 5.4 were also computed and presented in Figure 5.2.b. Figures 5.2.a and 5.2.b
clearly demonstrate that both criteria pinpoint a similar model, in this case a third order
polynomial, meaning that AICs are independent of the translation and scaling. The

statistically best function in this case is then:

y =—01415+05396x —0.2603x 2 + 10348x> (5.10)
(a) (b)
150 4
2 e & 3¢
2100+ - 2 21
> o =ty
o S0 . s ol
< ol— : g 1 ; '
0 2 4 6 0 2 4 6
No. of Unknowns No. of Unknowns

Figure 5.2. AIC values of polynomial regression. (a) Using Equation 5.7 (b) Using
Equation 5.4

5.5 The Multiple Regression Model and its AIC

The proceeding approximation procedure estimates the unknown model by a polynomial
of order zero first, and goes on by increasing the order of the model until the minimum
AIC is reached (See Table 5.1). The model that lays the minimum AIC is then selected as

the statistically best function. For instance, to identify a function of the form
y=ax°+€ (5.11)

it starts with y = ag, then y = ag + ajx then y = ap + ;X + a;x”, and so on to reach a

minimum AIC where that model will be chosen. Consequently the method is unable to
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identify the desired Equation (5.11) in its original form. Moreover, because of the need
to store all the model’s parameters, ao, a;, 3, ..., it may be categorized as an inefficient
algorithm. As this example shows, the stored parameters may not contribute significantly
to the information contents of the model. An estimated model with an unnecessarily large

number of independent variables may be difficult to handle too [Burrough, 1986].

To identify the most significant independent variables of the model and to reduce the

storage inefficiency of the method, it is proposed that the AIC of all possible
combinations of the independent variables be computed and the model with minimum

AIC be selected.

To accommodate for such a modification, Equation 5.8 can easily be changed to:
y=a,+ajx+axxet ... amXm T € (5.12)

in which m independent variables are assumed. Following similar algebraic manipulation

as described in Appendix, the AIC for Equation 5.12 can be derived as:

AIC(m) = log(G(m)?) +2(m+2)/n (5.13)

where log(é'(m)?') denotes the error variance of the model fit due to m independent

variables. This method has been applied in several trials. Table 5.2 presents the results of

such a test for the data used in Figure 5.1.
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Table 5.2 clearly demonstrates how well the method can detect the desired function.

The storage requirements of this method is one-fourth of that needed by using Equation

5.10. Compared to Equation 5.10, the statistically best function determined by

Table 5.2 AICs of possible combinations of independent variables

No. Variables No. of Residual AIC ag a a; az
Unknowns  Variance

1 L. xy, X2, X3 4 0.274 42.110  -0.142 0.540 -0.260 1.035
2 1, x;, X2 3 8.632 79.090 5570 -14680 7.501 —
3 I, x1, X3 3 0271 39.998 0.075 0.006 —_ 1.001
4 1. X3, X3 3 0.270 39.981 0.112 — -0.016 1.006
5 X1, X2, X3 3 0.264 39.692 - 0.332 -0.179 1.026
6 1, x 2 254080 115280 -24432 22823 — —_—
7 1, x2 2 43.400 95330  -7.843 — 4.760 —
8 I, x3 2 0.260 37520 0.082 — — 1.001
9 X1, X2 2 12610 81.370 — -10.314 6787 —
10 X1, X3 2 0.260 37560 — 0.047 — 1.000
11 X2, X3 2 0.263 37.650 — —_— 0.017 0.999
12 1 | 1477.860 133.160 33.000 —_ —_— —
13 X 1 408.040 118.630 e 15.637 — ——
14 X2 1 70.760 98.850 — —_— 4.258 —
15 X3 1 0.253 35.230 1.002

multiregression model has the form:

y = 1.0024x° (5.14).

In reality, the data shown in Figures 5.1 and 5.2 were obtained by assuming the

following model as the true structure:
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Vi=X +& (.15)

where &;’s are normal random numbers with zero mean and variance 0.25.

5.6 The Piecewise Polynomial Approximation

The previous sections of this chapter were concerned about the approximation of the
boundary features by the use of algebraic polynomials. While this method of
approximation is appropriate for many circumstances, its use is restricted by the
oscillatory nature of high degree polynomials, and because a fluctuation over a small
portion of the interval can induce large fluctuations over the entire range restricts their
use [Burden et al., 1978]. Moreover, the higher order of the approximated polynomial

may results in an unstable solution [Burrough, 1986].

An alternative approach that is suggested is to divide the interval into a collection of
segments and to construct an approximating polynomial on each section. Approximating
the model by this type of functions is referred to as piecewise polynomial approximation.
The orders of the piecewise polynomial may vary to accommodate some constraints on

the approximating model. The following is a general expression for a piecewise

polynomial function:
p(x) = pi(x) Xi £ X £ Xjs1 i=0,1, ..., k-1 (5.16)
pid(x) = pin1 P (x1) j=0,1,...,r-1; i=0,1,...,k-1 (5.17)
The points X, ..., X1 divide the interval into k subintervals. The functions p;(x) are

polynomials similar to Equation 5.8. Equation 5.17 governs the order, r, of the continuity
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constraints at the breakpoints. The most widely used piecewise polynomial for

approximation purposes is the cubic spline.

5.6.1 Cubic spline approximation

Cubic splines are piecewise polynomials that are constrained to preserve smoothness at
the nodes between the subintervals or segments. The curve defined by a cubic polynomial
can pass exactly through four points, but in order to fit a longer sequence it is necessary to
use a succession of polynomial segments. To ensure that there are no abrupt changes in
slope or curvature between successive segments, the polynomial function is not fitted to
four points, but only to two. This allows the use of additional constraints which will
determine that the resulting spline has continuous first derivatives between segments (the
slope of the line will be similar on both sides of the endpoints) and continuous second
derivatives (the rate of change in the slope of the line will not change across the
endpoints). To fully identify the function for each segment, the coordinates of the points
together with the slope of tangent lines at the points are required. Moreover, end
conditions that determine the shape of the line in the first and last segment should be
specified. Various end conditions may be selected depending on the desired shape of the
line at the end points. Relaxed or natural end conditions [Davis, 1986] that do not require

specifying tangent vectors at the end points are used in this chapter.

5.6.2 Breakpoint determination
A natural spline normally passes through all the data points, leaving no room for errors.
Applied in this way, the procedure partitions the n digitized boundary points into n-1

segments which may then be presented by n-1 spline segments. If carried out, the method
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burns the storage dramatically. It is proposed to relax the error restrictions to some limit,

T, to compromise for storage load. If so, the defined threshold can be used to determine

/

-

Select the First Point X, and the Last
Point X, as Initial Breakpoints

v

Pass Spline(s) Through Breakpoints

y

Compute the Approximation Errors
at each Data Point g,s

Determine the Data Point X; That Has
Maximum Error g,

Yes

Add the X; To the Breakpoint sets
and Order the Set Ascendingly

Y

Store the Splines Parameters

\

Figure 5.3 Algorithms for determining the breakpoints
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the position of the breakpoint. Depends on the magnitude of the threshold, the amount of

data reduction varies. The above flowchart presents the proposed algorithm for specifying

the location of breakpoints.

At the first step, all the data points are approximated by one linear spline passing
through the two end points. The error at each data point is then computed. Error is
defined as the distance between the data point (X;, Y;) and the approximation function (a
line in this case). The magnitude of the errors at the data points in the first run is

computed by:
€; .—.-i(yi —ap —alxi) /(1'{"312)05 i=2,3,...,0-1 (5.18)

where the sign is chosen so that the distance is nonnegative, and ag, a; are the parameters

of the linear spline.

If the maximum error (max(g;)) is less than the magnitude of the threshold, the
algorithm stops and the parameters of the line together with the position of the endpoints
are saved. Otherwise, the point with maximum error is selected as a new breakpoint, a
quadratic spline is fitted to the three nodes, and the error at each data point is computed.
Similar to the first run, if the maximum error gets greater than the assigned tolerance, the
point with maximum error is selected as a new breakpoint. Cubic splines are then fitted to
the four breakpoints. To determine the error, the distance function (Equation 5.19) is

minimized (making its first derivative with respect to X equal to zero and solving for X):

Z(x) =% =(X-Xg)% +(P—Yp)? (5.19)
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where, P=ap + ;X + 2,X? + 23X> (5.20).
0 1 2 3

Once X is computed, it is used in Equation 5.20 to determine the corresponding Y
coordinates on the spline. The distance between the points (X, Y) and (X;, Y)) is the
required error at i-th point. It is worth mentioning that at the second run, Equation 5.20

will be a quadratic polynomial.

In summary the algorithm starts with a linear spline passing through two end points
and then continues with a quadratic spline using three points. Once the number of the
breakpoints gets larger than three, cubic splines are used to pass through all the
breakpoints. If the maximum error is greater than the specified threshold, the point with
maximum error is added to the breakpoint sets. The algorithm recursively runs till the
maximum error gets smaller than the threshold, where spline parameters together with the

position of breakpoints are stored.

5.7 Uncertainty Modeling of Curvilinear Boundaries
To estimate the level of uncertainties of curvilinear boundary features, two types of
models are proposed. They can be categorized as simulation and simplified analytically

based models.

5.7.1 Simulation based uncertainty model

In this procedure, the estimated regression models are assumed to be the ‘true’ boundary
section. The realizations y; for several values of x (e.g. x; =i/100,i =0, 1, 2, ... 100) were
obtained using the Monte Carlo method (See Section 3.6). Proper random components are

then added to the values of the y;’s. Polynomials of orders similar to the ‘true’ function
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were then fitted to the generated points. Figure 5.4 presents the results of such a

simulation model for Equation 5.14.

To determine the probability regions around the approximated line, the procedures
outlined in Section 4.4 can be applied.

4 N
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Figure 5.4 A realization of the Monte Carlo approach for Equation 5.14

Although the model provides uncertainty indicators and is easily extended to all
processes, it is computationally intensive and the selection of an appropriate probability

density function for the data values may be questionable (See Chapter 3).

5.7.2 Simplified uncertainty model

Sections 4.5 and 4.6 highlighted the procedures for determining rigorous analytical
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uncertainty models of linear objects. Similar methods can be implemented for
determining the uncertainty of curvilinear objects. However, a simplified method has
been suggested for the cases when storage and simplicity are of primary concern. In the
proposed method, a confidence level is selected first and is used to create a buffer around
the curvilinear boundary. The buffer zone constructs a region so that the true line is
located inside the threshold with the specified probability level. Figure 5.5 depicts two
regions around the fitted model.

140 1

120 +

100 . Data points

80} — 3rd-order model
— Confidence Level A /S
- Confidence Level B 4 Vs

Figure 5.5. Regression model with the visualization of approximation error

If the observational error is assymed to be constant along the function, then a similar

shape will result.

5.8 Logical Spline Representatidn in GIS Database
Once the parameters of the spline functions, and their approximating uncertainty have

been identified, they should be stored in the database. It is recommended that the
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following modification be implemented in the logical data model presented in Section 4.8

(see Figure 5.6).
6 Fs E 4D Poly Sp#line Uncertainty (%)
#
C i 1,7,8,5,6 C, Pol;;?i:tn-Spﬁne
2 ii 2,9,7 G
B iii 3,4,8,9 Ca
A Spline From To Spline Uncer.
#  Point Point  Para. Soline-Point
1 A B a,a,a,a, € plne-t'o
- i List
45,0 mgnaods | 2 B € Laldll o
§ i, ii - Polygons 3 C D demud.a, &
Point X Y Uncertain
# Coord. Coord. 4 Point
A X, Y, C. Coordmate
B X, Y, C, List
C X Y. Ce

Figure 5.6. A logical representation of geospatial data and their uncertainty

In the above figure, most data reduction occurs in the Point-Coordinate table because

some of the digitized points will be deleted and only those that construct the breakpoints

will remain. The approximated functions are uniquely identified by their parameters,

which is stored in the Spline-Parameter field of the Spline-Point table. If the simplified

uncertainty model is applied, the uncertainty column will be affected too. Assuming a

constant width throughout the approximation, the uncertainty column of the Spline-Point

table can be removed. Instead, a tag can then be used to indicate the uncertainty of the

approximated function. If the uncertainty of the approximated function varies from one

spline to another one, the uncertainty column of the Spline-Point should remain as
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indicated in Figure 5.6. The magnitude of the data reduction varies from one case to

another. The following case studies determine the data reduction ratio in each case.
Regardless of the data reduction effect, the appearance of the boundary lines are much

closer to reality than the jagged representation of straight line segments.

5.9 Case Studies
Several case studies have been analyzed to examine the methods suggested for
polynomial regression, model identification, and spline approximation and their

uncertainties. Two studies will be highlighted here.

5.9.1 Matlab data sets

The first case study uses the data sets that resemble the shape of Matlab’s Titanium data
[Matlab 1992]. Since the variation of the data were claimed to be difficult to model, it
will be used to illustrate the rigor of the proposed methodologies. It is worth noting that
the units of the data sets are assumed similar in the perpendicular directions, since the
shape of the data sets is the important aspect. Original data sets recorded a property of

titanium measured as a function of temperature.

5.9.1.1 Polynomial regression
Figure 5.7 presents the data points together with their fitted algebraic polynomials. As the

figure shows, adding to the order of the polynomial by one does not substantially reduce
the errors magnitudes when the regression polynomials reach higher order. Moreover, the

greater the order of the polynomial, the more resonance the shape of the model took.



Figure 5.7 Titanium data sets together with its fitted algebraic polynomials
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Table 5.3 presents the results of the test for identifying the Minimum AIC Estimate

(MAICE). Since the values of the AICs wave from one model to the other, the selection

Table 5.3. The values of AICs and the estimated parameters of fitted polynomials

Case No. | Order G2 AIC ag ay az as ay as
1 0 0.1406 | 5036 | 0.805 | —- —_ — — —
2 1 0.1351 | 5151 00 0378 | —- — — —
3 2 0.1171 | 5047 | 0221 | 0378 | -7.70 | —- — —
4 3 0.1022 | 49.57 | -.142 | 054 | -26 | 1.034 | -— R
5 4 0.0983 | 50.75 | -617 | 2409 | -1.28 | 1.21 | -0.01 | —
6 5 0.0736 | 46.59 | 0.326 | 6.586 | -19.9 | -263 | 165.7 | 2323
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of the best model gets difficult. Table 5.3 also shows the parameters of the fitted models,

together with the model variances.

Blais [1991a] argued that in cases such as this, the selected mathematical model may

not represent the data variation well, hence reformulating of the problem using different

base functions might be in order.

5.9.1.2 Spline approximation

To approximate the Titanium data sets with splines and determine the data storage

efficiency, procedures highlighted in Section 5.6.2 were followed. It was assumed that the

maximum error should not exceed, T = 0.1. Figure 5.8 represents the results of such a

trial. It was found that using seven segments can satisfy the threshold requirement.

~

X

vonenn

Data points
1 Spline

2 Splines
3 Splines

o

~

Breakpoints and their orders
5 Splines
6 Splines

Figure 5.8. Spline approximation to Titanium data sets
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This means a saving of about 84% of the storage required for the Point-Coordinate table

of Figure 4.11. Splines needed only eight breakpoints, whereas straight lines required 49

points, all of which must be stored in the table. Though the addition of the spline

parameters in the Spline-Point table may, at first glance, seem a burden on storage, the

number of cubic polynomials required to present an arc is much less than what is required

by straight line segmentation. This fact accounts for a saving of 66% on the Spline-Point

table of Figure 5.6. Titanium data sets were represented by 48 straight line segments (and

hence by 48*3=144 data elements), while only seven cubic spline segments (7x7=49 data

elements) were needed to represent the same data set. In total, a saving of about 75% (1-

73 /7 291) in data storage is observed in this case. Moreover, the functions are smooth as

cartographers used to represent the natural feature boundaries.

/
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Figure 5.9 Spline approximation and its simplified uncertainty region
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To show the uncertainty of the approximation function, a buffer zone of specific

width (i.e. confidence level) was created along the spline as shown in Figure 5.9.

5.9.2 Digitized boundary data set

The second case study involved the data sets gathered through on screen digitization of an
scanned image. Several algebraic polynomials have been used to approximate the data.
Since polynomials are the best way to approximate a smooth function locally, the degree
of the approximating polynomial has to be chosen unacceptably large when the function

approximates a large interval such as an arc, as shown in Figure 5.10.
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530+, -.  2nd Order
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520 __ 4th order _
___ 5th Order
o 6th Order
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500 : : —~ - :
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X

Figure 5.10. Digitized data points together with their fitted polynomials
Applying the ‘principle of parsimony’ in the model identification, AICs of the fitted
models were computed and are presented in Table 5.4. Since the AIC values are

oscillating, deciding on the best-fit model may be problematic. Table 5. 4 shows the
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parameters of the fited model and the accuracy of the model fit. It is clear that the

accuracy of the model gets better as the orders of the polynomials increase, but the
deviations between their variances get smaller, once the polynomial order gets larger.

Table 5.4 Parameters of the algebraic polynomials together with their AIC values

No. | Order | G2 AIC ag a az as as as

1 0 198.8 { 90.03 | 549.7 | — — — — —
2 1 188.6 | 91.55 | 5449 | 0035 | —- — — —
3 2 49.94 | 81.43 | 524.5 | 0.498 | -0.002 — — —
4 3 30.42 | 78.91 | 516.2 | 0.905 | -0.005 | 8.le-6 — —_
5 4 12.28 | 72.64 | 507.9 | 1.567 | -0.016 | 6.3e-5 | -9.2¢-8 —

6 5 10.84 | 75.50 | 505.8 | 1.853 | -0.023 | 1.3e4 | -3.6e-7 | 3.6e-10

Based on the assumption that the value of threshold should be equal to eight, T = 8

pixels, the breakpoints have been identified. Figure 5.11 demonstrates the fitted spline

650}
600}
Y
550t
S00F™ ¢ Data points -~ 2 Splines
o Break points -— 3 Splines
450! 1 Spline __ 4 Splines

0 50 100 150 200 250 300
X
Figure 5.11 Spline approximation and its simplified uncertainty region
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together with its uncertainty region. The number of breakpoints, as shown in Figure 5.11,
are 5. The Spline-Point list requires only 4*7=28 data elements to fully represent the
spline. Compare to Line-Point list of Figure 4.14, which needs 20*3=60 data elements, it
reduces the volume of data by a factor of 53%. In total the magnitude of saving for this

case study reaches the 65% level.

5.10 Practical Considerations
For determining the statistically-best function, AIC should be carefully used. Since the
values of AIC may not decrease for the few first orders as expected. Without a clearly

defined minimum, an alternative model formulation should be considered.

AIC is shown to be an effective mathematical tool in identifying the best model
within one family of models. In the case study, it was assumed that the boundary can be
represented by a polynomial regression. AIC was then used to identify the optimum order
of the polynomial. The AIC cannot identify the optimum model among different
mathematical models. Therefore, in the case study, AIC would probably not identify an
optimal trigonometric or exponential model. In other words, information about the type of
the mathematical model should come from the nature of the problem; AIC will identify
the optimum model within one category of mathematical models. Moreover, an

appropriate coordinate system should be assumed in the use of algebraic polynomials.

5.11 Chapter Summary
Linear objects cover a large proportion of any GIS databases. As such their uncertainty is

of vital significant since they provide criteria for the assessment of fitness for use. The
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quality of the linear objects may not be determined if the functions representing the

objects are not identified first.

Due to its simplicity, algebraic polynomials were selected for approximating
boundary lines. AIC was then used to identify the best order and the most significant
parameters of the polynomial. Simulation results indicated that a saving of about 75%
could be achieved if statistically non-significant parameters of the regression were

ignored.

Algebraic polynomials are best for approximating a function locally. To approximate
a sequence of large data points, such as an arc, a polynomial of high order is often

required, implying possibly large oscillations between data points

Piecewise polynomials were used to approximate data sets of relatively large extent.
A logical data model have been proposed for keeping the parameters of the approximated
function. The average results of the tests showed that a data reduction of about 70% may
be achieved through the use of the proposed spline approximations. It is aiso indicated
that the magnitude of the data reduction directly related to the amount of error tolerance

an operator considers acceptable.

Two types of uncertainty models have been proposed for the approximated function;
simulation, and simplified analytically based models. The simplified model reduced the

data storage significantly, though it may not be categorized as rigorous model.
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CHAPTER 6

A PROPOSED DECISION SUPPORT STRATEGY IN GIS

6.1 Overview

So far, this thesis has evaluated the sources of errors, the forms these errors may take, and
the theories that may be used to handle the errors. This thesis has also reviewed and
proposed some of the means by which errors may be measured, modeled and
communicated. However, even if the uncertainties of GIS products are modeled and
presented properly, the question of “how to handle the uncertainty” still remains [Hunter

1993].

Accordingly, the objective of this chapter is to present a strategy for handling
uncertainty in GIS as a decision support system. The chapter begins with an introduction
to the proposed strategy, and examines its three key elements. This includes the
uncertainty assessment, communication to users, handling through reduction and
absorption. Different data transfer standard formats are also discussed. The application of
the strategy in a case study is tested and the results evaluated.

For implementation purposes, an uncertainty management prototype is designed to
test the concepts and methods developed in this thesis. The prototype is used to deal with
uncertainty of different spatial objects, such as points, straight line segments, curvilinear
segments, and polygons. The chapter ends with a brief description of the prototypes
implemented. The software package together with its Graphic User Interface (GUI) have

been prepared to facilitate the application of the strategy.
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6.2 A Decision Support Strategy

The proposed decision support strategy is presented in Figure 6.1. The strategy is
comprised of the key stages of problem identification, evaluation of alternative methods,

and implementation of the adopted solution to simplify a decision.

Error source recognition

Step 1: Identify the sources
of errors and classify
them

Error level assessment

Step 2: Detect and measure
the significant errors

Error communication

Step 3: Report the
errors properly

Error absorption? Error reduction

No
Step 4: Determine if Step 5: Apply

e product error reduction
s quality is techniques
acceptable

l Decision '

Figure 6.1 The proposed decision support strategy

It is clear that the way in which a GIS is used varies between users with different
skills and responsibilities, similar to the effect of different types of decision and

application areas. The proposed strategy not only works when the decision maker knows
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the required quality indicators in advance, but also when the needed accuracy has been

decided on through pre-analysis.

While the concept is relatively new to GIS, a derivation of the strategy has already
been used in geodetic surveying where, for instance, proposed locations of survey stations
and a priori observations together with their estimated precision, are input into a network
adjustment program. The output of the program will be the estimate of the unknowns and
their respective precision. Thus, if a priori information of the network configuration and
their measurements do not give the required precision, alternative locations and
measurements are investigated until satisfactory results are achieved. The difference
between the pre-analysis approach and the proposed strategy is that the strategy is
applicable for any type of data element (such as spatial, and other attribute) quality. If the
quality of the selected data elements does not satisfy the application requirements,

methods of uncertainty reduction or uncertainty absorption must then be considered.

6.2.1 Error source recognition and error classification

The first level of the strategy addresses the basic problem of identifying the sources of
errors and classifying their forms in spatial data. The significance of this step is the
recognition that every GIS application imposes a specific level of accuracy in associated
data elements. Recognizing the most important source of error allows data reduction
efforts to focus on the specific cause of the uncertainty. Chapter 2 clearly indicated that

errors in GIS products originated in the data, system, model, operation and user.
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The significant forms of uncertainty for a specific application should also be
identified, since particular data reduction strategies are required for various types of
uncertainty. It has already been shown that different applications will place different
priorities on the various uncertainty forms (refer to Chapter 2). While positional errors are
the focus of this thesis and more generally the focus of Geomatics methodology, other
attribute errors are a major concern in other applications such as human geography, or
perhaps the combination of the two may be significant. In addition other forms of
uncertainty such as logical consistency and time require more attention in applications

where topological or temporal information is paramount.

6.2.2 Error level assessment

Once the significant aspects of the errors have been identified for a particular application,
the magnitude of the uncertainty should be measured and modeled. The objective of this
step is to compute an uncertainty indicator. The error descriptor facilitates the assessment
of ‘fitness for use’. Various methods have been proposed for assessing spatial error

[Alesheikh, 1997], and this thesis contributes significantly to the endeavour.

When considering a specific form of uncertainty such as positional uncertainty, the
accuracy needed for one application may be drastically different from one GIS user to
another. For example, a Geomatics engineer monitoring dam movement needs very
accurate positional data (e.g. millimetre level) while the use of such accurate data for
estimation of timber land revenue is a waste of time and money. At the other extreme, the
GIS industry has witnessed many cases where some locations “ ... seemed suddenly to be

2 or 3 kilometres out into the sea” due to inappropriate and inaccurate data usage
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[Blakemore 1985, p.346]. Attention to error level assessment early in project is essential

in reducing the risks of making inappropriate data modeling assumptions.

It is important to notice that the uncertainty modeling and uncertainty analysis offer
much more than only the computation of the output error. An error analysis can also
determine how significantly each individual input affects the output error. This
information is quite useful, since it allows users to determine how much the quality of the
output improves, given a reduction of error in a particular input. This indeed facilitates
the cost-benefit analysis. Thus the improvement foreseen due to any uncertainty reduction

procedures such as intensified sampling can be weighed against extra sampling costs.

6.2.3 Error communication

Ideally, the error indicator computed in the previous section should be understood by
users regardless of their educational background. The existing metadata can facilitate this
understanding. Several tests (psychological, aesthetical) may be conducted to determine
the best medium for presenting uncertainty. Methods of communicating uncertainty vary
from one application to the another [Fisher, 1994]. Since most people are familiar with
static visualization (i.e. conventional maps) to convey a model of the Earth, this thesis
practiced such a method in communicating the uncertainty model. However, animation,
holographic, and sonic uncertainty representations are attracting researchers [Pang et al.

1996].

The concept of reporting the quality of a product is not new to Geomaticians, with
some of the earliest forms being positional accuracy statements found on hardcopy

topographic maps. However, it is just recently that GIS users recognized the need for
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standardized data quality representation [Plunkett and McKenna, 1996]. To represent the

fitness of data for a specific application, some measures of accuracy of the data
(metadata) should be provided.

As for digital spatial data, the first example of quality reporting was perhaps
implemented by Statistics Canada over a decade ago to inform users about the accuracy
of the data that they were using [Lundin et al. 1989). Although during the first era of
digital data transfer the quality report was not mandatory, it is fortunate that, this situation
is now rapidly changing. In the United States, considerable time and effort have been
devoted to the development of the US Spatial Data Transfer Standards [Fegeas et al.
1992]. Other countries, such as Australia, are poised to adopt the standard, aibeit with
local modifications. Regarding data accuracy and quality, the standard has specific
provisions for the following components: data lineage, positional accuracy, attribute
accuracy, logical consistency, and completeness. The objective here is that this
information will constitute a better data quality report that gives sufficient information to
make users able to assess the appropriateness of data.

Canada has long been active in the development of transfer standards such as the Map
Data Interchange format (MDIF) and the Map and Chart Data Interchange Format
(MACDIF). Transfer standards in Finland are being developed and special considerations
have been made to record time attributes which will help users assess the currency of data
[Rainio 1991]. The Hungarians have accepted the US Standards and see the two main
problems as being (i) the evaluation of data quality, and (ii) the transfer of qualitative

information [Divenyi, 1991]. South Africa’s National Exchange Standard (NES) has
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followed the US practice of data quality reporting, but only in text format. Finally, the
NATO Digital Geographic Information Exchange Standard (DIGEST) embodies the same
data quality components as the US standards but contains additional parameters to ensure

security and privacy [Smith, 1991].

6.2.4. Error absorption

The next stage of the decision strategy deals with deciding whether product quality
satisfies the requirements for the task at hand, and recognizing what can and cannot be
modified. Indeed, if the quality is found to be acceptable, then the issue of uncertainty has
effectively been dealt with. However if the quality is not acceptable, then further action is
required. Regardless of the efforts put on the error reduction techniques, it should be
realized that there will always remain some residual uncertainty which users must decide
to either absorb (accept) if they wish to use the data, or reject. This is simply because all
of the measurements are of limited accuracy and no model will ever perfectly reflect the
real world. The amount of uncertainty absorbed can be considered to be the risk

associated with using the data or product [Miller, 1992].

6.2.5 Error reduction

The purpose of this stage is to reduce the magnitude of uncertainty to an acceptable level.
If the uncertainty of the product does not meet the requirements, then error reduction
techniques should be applied. With regards to parcel-based systems, Bedard [1987]
recognized that actions such as field checking of observations, strengthening geodetic
control networks, defining and standardizing technical procedures, mandatory registration

[19

of all rights in land, and improved professional training all contribute to confirming “...
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the precision and crispness in the description and location in space and time of a spatial
entity” [Bedard, 1987, p. 181]. Other provisions such as the use of more rigorous data
models, collecting more data, sampling with higher frequency, improving the spatial and
temporal resolution, and improving procedures for model calibration may be taken to
improve the accuracy of the product. However, it should be pointed out that more

accurate data requires greater investment in effort and time.

If uncertainty reduction is required, all the contributing factors should be considered.
Improving the accuracy of the parameter with the highest error contribution may not be
the best solution. This is due to the fact that some input data may be much more
expensive to acquire than the others [Agumya and Hunter, 1996]. However, in most cases
it is reasonable to struggle for a balance of errors [Heuvelink, 1993]. When the error has a
marginal effect on the output, then there is little to gain from collecting it more
accurately. For instance, if the data gathered through a digitization process that is more
sensitive to the scale of map and less so to the digitizing device, then it is more important

to find a larger scale map than buying a more accurate digitizer.

The digitization example draws attention to the fact that the balance of errors must
also include model error. It is unwise to spend much effort in collecting data if it is
thrown away by using a poor computational model. On the other extreme, a simple
computational model may be as good as a complex model if the latter needs lots of data

that cannot be accurately acquired.
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6.3 Case Study

In this section, an application of the proposed strategy, subject to the use of the proposed
uncertainty models, is investigated. It is argued that for the application in question, the
use of error estimates (determined in Chapter 4) and current computer capabilities, can

provide a manager with effective means to handle the uncertainty of the product.

The problem is to determine the area of a polygon together with its accuracy. This
issue can be of critical concern to managers in applications such as computing the timber
land revenue in planning a recreational area. From a decision-maker’s perspective it is
vital to be aware of the uncertainty of GIS products so that proper action may be taken to
reduce and absorb the risks associated with decisions based on a particular methodology

and product.

The dataset for this test digitized from paper topographic maps covers an area of
approximately 245 hectares of the Barrier Lake Provincial Recreation Area of Alberta,
Canada, at the scales of 1:100,000 and 1:50,000. The area is enclosed by Highways 40, 68
and a contour representing 1440m as shown in Figure 6.2. What follows presents
different decision-based approaches that can be selected to address the uncertainty issues

in determining the area of the polygon.

6.3.1 Uncertainty ignorance

This solution, that is unfortunately used by most untrained users, ignores uncertainty
totally — i.e. the ‘do nothing’ option. The manager simply generates the polygon from the
digitized points, computes the enclosed area, and calculates the timber revenue. This

method makes no attempts to provide any accuracy indicators of the product and hardly
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provides an acceptable solution.
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6.3.2. Epsilon band

A skilled user may attempt to provide an uncertainty indicator of the boundary lines by
drawing epsilon bands around them and determines the uncertainty of the polygon by
dividing the area covered by the band over the polygon’s area. The idea is to assume
that the true positions of the boundary lines are lying somewhere within the bands with

a specific probability. Figure 6.3 presents the results of such an assumption.

+5650000m

6500 |  « Digitized Point
Digitized Boundary
6000 | == FEpsilon Band

Northing

4
3.6 365 37 375 38 385 39 395 4x10
Easting

Figure 6.3. Use of Epsilon Band to portray polygon uncertainty
While the idea of the epsilon band has been evaluated in Chapter 3, it should be
understood that the epsilon band is an error descriptor and does not satisfy the

requirements of an error model. This is because it does not provide a means of

generating various randomized versions that satisfy all the requirements of the feature
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concerned — in this case, boundary lines. Therefore, it is considered that epsilon bands are
inappropriate for displaying polygon uncertainty; however, portrayal of uncertainty by
epsilon bands is better than not portraying uncertainty at all. The uncertainty of the

polygon may then be computed, as shown in Table 6.1.

6.3.3 Error band

An improved approach that a manager may follow is to create an error band around all of

the linear features, determine the area covered by such a model, and compute the polygon

uncertainty. Figure 6.4 presents the results of such an assumption.

+5650000m

6500 | * Digitized Pts

— Digitized Boundary
6000 | g Error Band

3.6 3.65 3.7 375 38 3.85 39 395 4x10,
Easting

Figure 6.4. Use of Error Band to portray the polygon uncertainty

Though supported by analytical method, the amount of simplifications made to derive

such a model makes the suitability of this uncertainty indicator minimal. A thorough
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evaluation of this uncertainty model was made in Chapter 3. The uncertainty of the

polygon is presented in Table 6.1.

6.3.4. The general uncertainty model
If the manager decides to determine the uncertainty in calculating the area of the polygon
completely, he or she should use the general uncertainty models proposed in Chapter 4 of

this thesis. Figure 6.5 represents the visualization of the polygon uncertainty.

The appropriateness and generality of this model have been evaluated in previous
chapters. The area covered by different error models together with their uncertainty
indicators are presented in Table 6.1. Information provided in Chapter 4 was used to

determine the area, each model covers.

If the general model is applied the total uncertainty of the area is about 60 hectares.
Assuming a revenue of $10000 per hectare, the total revenue may bear a risk of $600,000.
It is worth noting that a smaller uncertainty indicator in the following table does not
necessarily mean a better model since the model does not respect the general line

variations.

Table 6.1 Uncertainty area and error indicator of test polygon

Polygon (He) ~ Polygon Uncertainty
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6.3.5 Uncertainty management

Once a manager receives and visualizes the uncertainty associated with the polygon, the
important question remains as to how the information shall be applied in practice. From a
decision-strategy point of view, the users must select between reducing the uncertainty in
the product, or else absorbing it. For instance if the manager determines that the accuracy
does not fit to the application requirements, he or she should use an error reduction
strategy. The most common form of error reduction would be to recollect and reprocess
digitized data from a larger scale map, e.g. 1:50,000. Figure 6.6 shows the visualization

of the polygon uncertainty using the larger scale map.

The test shows if such a larger scale map is used the uncertain area reduces to 29
hectares which may mean a risk of $290,000 for the decision to be made - a considerable

improvement from the previous indicator.

Once the uncertainty of the area is satisfactorily reduced, the user should absorb the
remaining error. This comes from the fact that all of the data are of limited accuracy, and
there always remains a slight chance of uncertainty in data due to modeling and

measurement of reality.

6.4 Prototype Development

Ultimately, the success of any research rests on whether it can be effectively used by
people, integrated with other systems, and improved by other researchers. However, the
research community has sometimes been guilty of viewing the system as being devoid of

the human factor. Recent history can provide salutary lessons by showing examples of
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what can happen if ease of use of the research products have not been fully account for

in system design, system interface, and its implementation [Preece et al. 1994].

To alleviate these problems a prototype software package has been developed. The
package aims at applying the concepts developed in this thesis. A Graphical User
Interface (GUI) was also designed. The interface opens a gateway to the collection of
software modules for modeling and visualization of uncertainties of different spatial
objects, such as points, straight line segments, curvilinear segments, and polygons. The
GUI to the prototype software package is shown in Figure 6.7. The interface was written

in Matlab script and implemented in Matlab 4.2.c version.

Several interactions are allowed between the user and the software programs. They
are: Push buttons, Command entry, Popup menus, and Editable text. A complete
description of these interactions can be found in Matlab Reference Guide [Matlab,
1992]. The software can be integrated into any commercial GIS software as an
uncertainty layer, or can be stand alone as the data gathered through GIS operations
(e.g. digitization) might be directly introduced to the system. What follows are brief
descriptions of some of the algorithms and the results of the algorithm executions. The
software can be used interactively where the required data are entered through keyboard
or mouse. This mode may be used for instructional purposes or when the data volume
are not huge. The software makes necessary provisions to read the required data from a
text file. This mode may be used if the software are integrated with currently used

digitizing programs.
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6.4.1 Point uncertainty visualization

A point is the simplest form of geometric entities. Its uncertainty in 2D can be modeled
and visualized by its coordinates, its covariance matrix (2x2), and a tag (C) which
indicates the probability associated with the model. The software provides two options
for entering these elements: interactive and reading from a text file. The following
algorithm that uses Equation 3.20 is applied to display the point uncertainty. Figure 6.8

presents the results of executing the algorithm.

Point Uncertainty Visualization:
Algorithm 6.1 (PtUnVis.m)

2
. . . i ) . c°x ©
Given the position of a point (L, [y), its covariance matrix Cy = I: ;y }

cxy Gy

and the probability level C to construct the point uncertainty visualization

and return the points on the boundary of the ellipses.

function [x, y1] = PtUnVis(uy, Ky, Cx, C)

Rho = Oxy /(O O'y);

x=-C* o, :0001l: C * 0oy,

Temp = sqrt(Rho2 * x2 -(1- Rhoz) * Cz);

y1 = Rho * x +Temp;

y2= Rho * x - Temp;

plot (X + Wy, y1 + Hy, X+ HUx, Y2 + [y ); % Draw the ellipse
fill (x+ Wy, y1 + Uy, ‘) % Fill the ellipse with
fill (x + My, y2 + Uy, ‘g’ ); end % green color
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6.4.2 Line uncertainty visualization: Measurement error

The observational uncertainty of a straight-line segment is defined as the envelope of the
uncertainty of points along that line. As such Equations 4.3 and 4.5 are computed for
several points (k) along the line and displayed on the screen using the Algorithm 6.2. The
results of the execution of the algorithm is shown in Figure 6.9. The GUI allows the

algorithm to be executed in both interactive and batch using a text file.

Visualization of Measurement Line Uncertainty:

Algorithm 6.2 (V isMeLU.m)
Given the coordinates of the two endpoints {(Xa, Ya), (XB, YB)}, their
4x4 covariance matrix (COVaB), and the probability level C to

construct the observational uncertainty of straight line segment

function [] = VisObLU(Xa, Ya, Xg. Y8, COVag, C)

J = zero(2, 4) 9% Initialize Jacobian matrix
forr=0:1/k:1;

Xo=Q-1)Xa+rXB;
Yu=(1-1) Ya+rYs;
IJa,n=1-r; I(1,3)=r; 9%Fill the Jacobian matrix
J2,2)=1-1; J2,4)=r;
Cu.=JCOVABJ’;
PtUnVis(Xu, Yu, Cu, C); end %Call Algorithm 6.1
plot(Xa, Ya, T, Xg, YB, T%);
plot((Xa, XB), (Ya, YB), ‘-’); % Draw a line between endpoints

end
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6.4.3 Line uncertainty visualization: Measurement plus model errors
A straight-line segment may be affected by both measurement and model errors. If so,
the magnitude of the observational error for each point along the line segment should be
added to its model error. Model error is approximated by Equation 4.8 and is added to
the measurement error in perpendicular to the line segment. Algorithm 6.3 represents the
pseudo-code for visualizing such an uncertainty model. Figure 6.10 shows the results of

executing the algorithm.

Visualization of Measurement and Model Line Uncertainty:

Algorithm 6.3 (ViMeMoLU.m)
Given the coordinates of the two endpoints {(Xa, Ya), (X, YB)}, their
4x4 covariance matrix (COVaB), the probability level C and the parameters

of model error (o, B) to construct the observational and model

uncertainty of a straight line segment

function [] = ViObMoLU(Xa, Ya, XB, YB, COVap, C, a, B)
m=(Yg- Ya)/ (XB - Xa); % Line slope

Alfa = atan(m); Rmalfa = [cos(Alfa) sin(Alfa); -sin(Alfa) cos(Alfa)];
Ralfa = [cos(Alfa) -sin(Alfa); sin(Alfa) cos(Alfa)];

b=Yp-mXg; % Line intercept

J = zero(2, 4) %Initialize Jacobean matrix

Dist =0; AllXmax = []; AllYmax =[], AllXmin = []; AllYmin = [];
forr=0:1/k:1;

Xu=(1Q-1)Xa+1rXp,

Yu=(1-0)Ya+rY¥Yp;




J,,D=1-; J(1,3)=r1; %Fill the Jacobian matrix
J2,2)=1-1;]J2,4)=r;
C,=JCOVAB J’;

[x,y1] =PtUnVis(Xy, Yu, Cy, C);  %Call Algorithem 6.1
fori= 1: length(x),
%Determine the position of the points with maximum distance from a line
temp = abs((m * x(i) - y1(i) ) / SQRT(m” + 1));
if (temp > Dist)
Dist = temp;
Xmax=x+ X, ;
Ymax=y; +Yy;
end
end
% Add the model error in perpendicular direction to the line segment
[Xmaxt; Ymaxt] = Rmaifa * [Xmax; Ymax];
% Rotate the coordinates (the direction of the line coincides with the x).
Ymaxt = Ymaxt + o*exp(-B(r * k - k/2)%);
[Xmax; Ymax] = Ralfa * [Xmaxt; Ymaxt]; %Rotate back to original
Xmin = 2x - Xmax; Ymin=2y,- Ymax; %system
AllXmax = [AllXmax; Xmax]; AllYmax = [AllYmax; Ymax];
AllXmin = [AlXmin; Xmin]; AllYmin = [AllYmin; Ymin];
end
fill(AllXmax, AllYmin, ‘b’);
fill (AllXmin, AlYmin, ‘b’);

end

144
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6.4.4 Line uncertainty visualization: Simulation method

A straight-line segment may be visualized as the connection of its endpoints. If so, the
uncertainty of a line segment may also be visualized by connecting randomly generated
endpoints. The locational uncertainty of the endpoints may be computed using Equation
3.20. Algorithm 6.4 applies such a concept. It first generates several endpoints that are
constrained to Equation 3.20, and then connects the endpoints. To visualize the locational
uncertainty of the line, a dense mesh may be superimposed on the random lines and the
frequency of the intersected pixels displayed in color shades (See Figure 4.4). Figure 6.11

presents the results of running the algorithm.

Visualization of Observational Line Uncertainty:
Simulation method
Algorithm 6.4 (ViObLUS.m)
Given the coordinates of the two endpoints {(Xa, Ya), (XB, YB)}, their
covariance matrix (Cag), and the probability level C to construct the
observational uncertainty of straight line segment
function ] = ViObMoLUS(Xa, Ya, Xg. YB. Cas, C)
Rhol = Cag(l, 2)/ (CaB(1, 1) ¥ CaB(2,2)) ;
Rho2 = Cap(3.4) / (CaB(3, 3) * Cag(4,4)) ;
fori=1:10,
XY1 =randn(l, 2) + [Xa, Yal;
Templ = (XY1(1, 1) - Xa) / Cap(l, 1);
Temp2 = (XY1(1,2) - Ya) / CaB(2, 2));
while (Temp1? - 2*Rhol Temp1*Temp2 + Temp2® > (1 - Rho1%)*C?),
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XY1 =randn(l, 2) + [Xa, Yal;

end,

XYr =randn(l1, 2) + [Xg, Ygl;

Templ = XYr(1, 1) - Xg) / Cag(3. 3);

Temp2 = (XY1(1, 2) - Ya) / Cap(4, 4));

while (Temp12 - 2*¥Rho2 Templ*Temp2 + Tempz2 > (1 - Rho2*)*C?),
XYr =randn(l, 2) + [Xa, Yal;

end

end
plot(XY1, XYT, ‘T-%);

end,

6.4.5 Polygon uncertainty visualization

The uncertainty of a polygon object is defined as the area that the surrounding line
uncertainty models covers over the area of the polygon. The preceding line uncertainty
algorithms can be used to visualize the uncertainty of a polygon object. Equation 3.15 may
be used to compute the area of the polygon. To compute the area that uncertainty of each
line covers; a) the line uncertainty model is computed, b) points on the boundary of the
line uncertainty model that have the maximum perpendicular distance from the line are
selected, and c) the area of the polygon that these vertices construct is computed.
Algorithm 6.5 follows this concept. Figure 6.12 shows the output of the algorithm. The
information for computing the polygon uncertainty model can be entered interactively or

read from a text file.
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Visualization of Polygon Uncertainty:
Algorithm 6.5 (ViPoUn.m)
Given the coordinates of polygon vertices X = [X, X3, ..., Xal,
Y =[Y;, Ya, ..., Y, ], their Covariance matrix Cys; , the probability level
C, aseries of tags indicating the line numbers that have model
uncertainty tag = [T}, T, ... , Tpl, and the parameters of model
error (¢, B) to construct the uncertainty of the polygon objects and return
the position of points on the error ellipses that have maximum distance
from the lines
function [Xendspl, Yendspl] = ViPoUn(X, Y, Cy#y, C, T)
LineArea = 0; ntmp = length(X);
fornt =2 : ntmp

Xa=[]; Ya=[]; Xendspl =[]; Yendspl ={];

Xmax = []; Ymax = []; Xmin = []J; Ymin ={];

%Find the points that have the maximum distance from the line

m = (Y(nt) - Y(nt -1)) / (X(nt) - X(nt - 1));

J = zeros (2, 4);

forr=0.0:1/k:1;
Xu=(1-r) *X(nt -1) +r * X(nt);
Yu=(1-r)*Y(nt-1) +r* Y(nt);
J,D=1-5; J(1,3)=r;, J(2,2)=1-1;](2,4)=1;
JsigmaXY = J*C(((2*nt - 3)): (2*nt), ((2*nt - 3)):(2*nt));
sigmaU = JsigmaXY*J';
[x, y1] = PtUnVis(Xy, Yy, Cy, C); %Call Algorithm 6.1

%Determine the position of the points with maximum distance from the line

fori= 1: length(x),
temp = abs((m * x() - y;(i) ) / SQRT(m? + 1));
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if (temp > Dist)
Dist = temp;
Xmax=x+Xy;
Ymax=y; + Yy
end
end
for ntt = 1, length(tag)
if (nt-1 =tag(ntt)) % If needed add model error
%Add the model error in perpendicular direction to the line segment
[Xmaxt; Ymaxt] = Rmalfa * [Xmax; Ymax];
Ymaxt = Ymaxt + o*exp(-B(r * k - kIZ)Z);
[Xmax; Ymax] = Ralfa * [Xmaxt; Ymaxt];
end,
end,
Xmin =2x - Xmax; Ymin =2y, - Ymax;
AllXmax = [AllXmax; Xmax]; AllYmax = [AllYmax; Ymax];
AllXmin = [AllXmin; Xmin]; AllYmin = [AllYmin; Ymin];
end,
end,
%0Order the vertices
for i = 1: length(Xmin),
Xmt(i) = Xmin(length(Xmin)-+1-i);
Ymt(i) = Ymin(length(Ymin)+1-i);
end,
Ya = [Ymax;Ymt];
Xa = [Xmax;Xmt];
%Determine the area of the line uncertainty models
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Xendspl = [Xa(l);Xa];
Yendspl = [Ya(length(Ya)); Ya; Ya(1)];
sum = 0;
for j = 2: length(Xendsp1),
sum = sum + (Yendspl(+1) - Yendsp1(j-1)) * Xendsp1(j);
end
lineArea = lineArea + abs(sum/ 2) ;
end
% Determine the area of the polygon
Xendsp2 = [Xends(1);Xends(1:length(Xends)-1)];
Yendsp2 = [Yends(length(Yends)-1); Yends(1:length(Yends)-1); Yends(1)]:
sum = 0;
for j = 2: length(Xendsp2),
sum = sum + (Yendsp2(j+1) - Yendsp2(j-1)) * Xendsp2(j);
end
polArea = abs(sum/ 2);
polUnc = 100 * lineArea/polArea;
title(['The polygon Uncertainty is: ', num2str(polUnc), ‘%’]);

end

6.4.6 Uncertainty of points with respect to a polygon

The uncertainty of a point with respect to a polygon may be computed by determining n
which probability level the point is located. Algorithm 6.6 applies this concept. The
algorithm first determines the region of constant probability by its boundary vertices and
then decides whether the point is located inside, on, or outside the boundary of the region.

Figure 6.13 shows the results of the execution of the algorithm for a simple polygon.
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Point Uncertainty with Respect to a Polygon:
Algorithm 6.6 (PoUnRPo.m)
Given the coordinates of a polygon vertices X = [Xj, X», ..., Xqal,

Y =[Y;, Y2, ..., Y, 1, their Covariance matrix Cy+q , the probability level

C, aseries of tags indicating the line numbers that have model uncertainty

tag = [T1, T2, ... , Tm], the parameters of model error (a, B), and the

coordinates of the test point (xpoint, ypoint) to determine whether the
point is located out, or on the specified probability region.

function [] = PoUnRPo(X, Y, Cy#y, C, T, Xp, Yp)
[Xends, Yends] = ViPoUn(X, Y, Cyeq, C, T); %Call algorithm 6.5
n = length(Xends) - 1;
x = Xends(1: n);
y = Yends(1:n);
plot (xpoint, ypoint, 'w+');
inpgon=0; smalld=0.1;
fori=1:n-1
if (abs(xpoint - x(i)) < smalld & abs(ypoint - y(i)) < smalld)

% Point is on boundary
title(["The selected point is on the specified confidence region’]);
return;

end
x1 =x(@); yl=y@); x2=x(@+1); y2=y(@(i+1);
if (y2<yl)
x1=x@+1); yl=yG+1); x2=x(); y2=y(@);
end
if (ypoint > y1 & ypoint <=y2)




dx =x2 - xI;
if (abs(dx) > smalld)
xint = x1 + (ypoint - y1) *dx/ (y2 - y1);
if(xpoint - xint < 0.0)
inpgon = 1 - inpgon,;
else
if((abs(xpoint - xint)) < smalld)
title(['The selected point is on the specified
confidence region’});
return;
end
end
else
if (xpoint - x1 < 0.0)
inpgon =1 - inpgon;
else

if(abs(xpoint - x1) < smaild)

title(['The selected point is on the specified confidence region’]);

return;
end
end
end

else

if(abs(ypoint - y1) < smalld & abs(ypoint - y2) < smalld)

if (xpoint >= x1 & xpoint <= x2)

title(['The selected point is on the specified confidence region’);
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return;
end,
if (xpoint >= x2 & xpoint <= x1)
title(['The selected point is on the specified confidence region’])
return,
end
end
end
end
if inpgon =2
title([The selected point is on the specified confidence region’]);
return;
elseif inpgon =1
title([The selected point is on the specified confidence region’]);
return;
elseif inpgon =0
title(['The selected point is outside the specified confidence region’]);
return;

| end

6.4.7 Data reduction through spline approximation

Splines can be applied to reduce the data volume and to smoothen the boundary of the
geospatial features. Algorithm 6.7 applies the procedure highlighted in Section 5.6.2
recursively. It first approximate all the data points with a straight line segment connecting
the first and the last points. It then computes the maximum error. If the magnitude of the

maximum error is greater than the specified threshold it considers the point with maximum
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error as the new nodes. The algorithm continues till the error gets less than the predefined

threshold. Figure 6.14 shows the results of the algorithm execution for some digitized

points.

Data Reduction Through Spline Approximation:
Algorithm 6.7 (DaReTSA.m)

Given the coordinates of digitized points Xd = [X;, X2, ..., Xal,
Yd =[Yy, Y2 ..., Yq ], and the value of the threshold T to construct the

spline approximation and return the break points location, the coefficients

of the spline, the number of break points, and the order of the spline;

function [breaks, coefs, L, k] = (Xd, Yd, T)
step 1;
X =X, Xal; Y=[Y1, Yal;
%Connect the two points;
m=(Y,-Y1)/(X,-X;); %the slope of the line
b=Y, -mX; %the intercept of the line
%Determine the approximation error
Dist =T;
for k = 2: length(Xd) -1
error = abs((m * X - Yk)/(sqrt(m2 +1));
if (error > Dist)
Dist =error; Xtmp =Xk; Ytmp =Yy;
end

end

if (Dist < T)




breaks =X; coefs=[m,b]; 1=lengthX); k=1;
else
X = sort([X; Xtmp]) ; Y = sort([Y; Ytmp]);
step 2;
lb=1; mpg=0; z=0;
forj=2:length(X) - 1;
o= 3(Yj1(Xj — Xj=1) — YjXje1 — Xj—1) + Yj-1 Xj1 — XD) /
(Xj41 - XX —X5-1))
l; =2Xj41 = Xj-1) (X - X;-1)mj—g
m; = (X1 - X)) /1
zj=(a; - (Xj-Xj-1)zj-1)/1;
end,
ln=1 zy=0;cp=2
for j = length(X) - 1:-1:1,
Cj =Zj —M{Cj+15
b; =(Yj41 - Yj)/ Kje1 — Xj) - (Xj+1 ~Xj)cje1 +2¢5)/3;
dj =(cj+1 —¢j) /3(Xj+1 = X;)
end
%The procedure is complete for this iteration. The natural cubic spline
%in each interval is S;(x) = Yj + by(x - X)) + ¢j(x - x))° + dj(x - x;)°
%Determine the approximation error
Dist=T;
for k = 2: length(Xd) -1
forl =13,
error = min(Dist[(Xy, Yy), Sil;
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end
if (error > Dist)
Dist =error; Xtmp=X); Ytrp=Yy
end
end
if (Dist > T)
X = sort([X; Xtmp]) ; Y =sort([Y; Ytmp]);
Go to step 2;
end
breaks =X; coefs = [Y], bj, ¢j, dj]; I =length(X); k=3;

end

6.5 Chapter Summary

In this chapter, a decision-based strategy for managing uncertainty in geospatial databases
has been presented. Using this strategy, users should consider the significant forms of
uncertainty likely to be present in their product, the ways that those uncertainties may be
modeled and measured, and how they can be communicated. Finally, the users must
compare the uncertainty present in the product with what they need. If it happens that the
magnitude of uncertainty is unacceptable, the uncertainty must be reduced. However, no
matter how precise the uncertainty reduction is carried out, there always remains a slight
amount of uncertainty that should be accepted by users. The case study presented was a
common one - determining the area of a polygon under the presence of uncertainty. The

successful handling of uncertainty in the case study can be extended to other applications.
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For the implementation purposes, a prototype software package controlled by a GUI

has been designed and tested. The GUI allows several easy interactions between the user

and the computer.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Overview

This research study explored uncertainty management in object-based Geospatial
Information Systems, a topic of considerable concemn to users of GISs throughout the
world. This investigation included evaluating uncertainty related theories, assessing
available uncertainty models, improving the uncertainty models of geometric primitives,
incorporating model error into modeling processes, identifying the statistically best
function representing curvilinear boundaries, and analyzing methods to reduce the data
volume in GIS databases. Furthermore, a strategy was proposed for handling uncertainty
in spatial databases. The proposed models and design methods for uncertainty

management were implemented in software packages and successfully tested.

In summary, the research clearly has both practical and theoretical significance for
users and managers since it not only presents a conceptual framework for uncertainty
management, but also provides required implementation considerations. Moreover. the
research has an added significance for spatial database system designers interested in
incorporating uncertainty reporting in their own systems, and to those people concerned
with modeling and communicating the impact of data uncertainty on spatial decision

making. The following conclusions can be drawn from this dissertation:
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7.2 Conclusions

Handling uncertainty in GIS is of vital importance if the GIS technology is to
continue advancing at the current rate. In spite of little research in uncertainty
management in GIS, the revolution of the digital era, the assessment of fitness of data
for their intended use, the mandatory spatial data transfer standards, the advancement
in science, and the protection of GIS growth, forces the GIS discipline to further

expand the study of uncertainty in GIS.

The effect of error taxonomy in uncertainty handling in GIS is essential. The proposed
three-part taxonomy of uncertainties which synthesized the dimensions of the
uncertainty problem, and distinguished between error sources and the forms that they

might take is intended to facilitate the management of uncertainty.

Among several theories that have been considered to handle uncertainty, geostatistics
and probability theory can be used to manage those uncertainties caused by random
components. Fuzzy set theory may be applied to handle vague concepts, e.g. linguistic
variables, while evidential theory may be of use to manage the uncertainty due to
information incompleteness. It is argued that a single theory that can handle all types

of uncertainty is yet to come.

Different methods exist in GIS uncertainty modeling. Four classes of methods have
been identified and formulated. They are: analytical, Monte Carlo, empirical, and
error descriptors. It is elaborated that the analytical method is just an approximation

technique. The Monte Carlo method requires several iterative operations and hence,
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the method may not be efficient in practice. Empirical method is based on comparing

the object with its ‘true’ value, making it time and money consuming. Error
descriptors cannot simulate the possible locations of the spatial objects; therefore,
they lack the conditions of being statistical error models. It is concluded that the

selection of the best method depends on the application, time, and cost.

Relatively few models or procedures exist by which errors may be quantitatively
assessed. Even those models that were expected to identify the behavior of
uncertainty lack generality. Communicating uncertainty to GIS users should be

improved by implementing new technologies such as visual or sonic aids.

Current uncertainty models of straight line segments are enhanced by considering all
the significant factors: measurement and model errors. The theoretical comparison
among the proposed line uncertainty model and the previous models show that the
former is more general, and as such can handle general variations that a line segment
may take. It is also shown that the error band and epsilon band model are special

cases of the proposed model.

The empirical comparisons between the proposed line uncertainty model and the
epsilon band model revealed that the magnitude of uncertainty of linear objects have
been underestimated by the later model. The difference is attributed to the magnitude
of the model error and correlation among the endpoint coordinates. The value of the
underestimation was magnified once the comparison made between the proposed

model and the error band model.
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Using the proposed line uncertainty models, an uncertainty model for polygon objects
is proposed. Using the polygon uncertainty model, the solution to the point-in-polygon

problem is enhanced by probability statements.

Due to their simplicity, algebraic polynomials are proposed to represent boundary
lines. AIC is used to parsimoniously select the significant model parameters.
Numerical results reveal that the application of the method for a large interval causes
unwanted resonance. As the order of the polynomials gets large, numerical instability

may occur which needs extra care.

The proposed recursive procedure of parameter selection can make the data reduction

level reach 75%. However it requires much computational efforts.
q p

Data reduction and the smooth appearance of curvilinear boundaries are achieved once
they were approximated by nonlinear splines, and represented by their parameters in
the GIS databases. Numerical results show that in average 70% storage efficiency is
observed once spline parameters stored instead of the coordinates of points. It is
argued that the amount of data reduction directly depend upon the presumed error
threshold. The proposed data structure for saving the uncertainty information
associated to geometrical primitives uses the current relational model. As such its

application to off-the-shelf GIS is simple.

A general strategy for handling uncertainty in GIS is formulated. The recursive
methodology aims at reducing the magnitude of error until the predefined uncertainty

level is reached. The developed prototype software package assists the
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implementation of the proposed strategy. The gateway to the software packages was
established through a GUL By using the software, users are able to visualize the
uncertainty associated with each geometric primitive. Moreover, due to its user
friendliness it can be used to train lay users about the inherent uncertainty of GIS

data.

7.3 Contributions

This thesis significantly contributed to the management of uncertainty in object-based GIS.

The following summarizes the contributions:

e The thesis has proposed a framework for uncertainty management. The components of
the framework have been identified and their integration has been investigated. A
software package with GUI has been developed to assist the implementation of the
proposed uncertainty strategy.

¢ In this thesis, positional uncertainty is analyzed, modeled and managed for vector data
elements. As such, it represents the local variation of the geospatial primitives: points,

lines and polygons.

e Given feature information with uncertainty measures (e.g. point positions with their
covariance matrices) the research modeled uncertainty propagation to derive the
proposed line uncertainty models. Model errors were also included in the proposed

generalization of the usual line uncertainty representations.

e The uncertainty of the line segments was then used to develop the corresponding

uncertainty of the polygon boundaries. The models not only provided the uncertainty
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distribution of spatial objects, but also made it possible to efficiently monitor
uncertainty propagation of spatial analysis on those spatial data (e.g. point-in-polygon
problem). The models were applied in several case studies, which have demonstrated

their generality.

e Instead of saving point coordinates to represent linear objects, this thesis proposes to
store the parameters of mathematical functions. Due to their simplicity, algebraic
polynomials are used to approximate the functions. Because of unbiased property of
AIC in model identification, it is then proposed to identify the best statistical model.
Uncertainty of the curvilinear boundary was then modeled using simulation and

analytical techniques.

o The proposed multivariate linear regression identified the most significant parameters
of the polynomial. The proposed strategy in determining the significant parameters
was based on iteration and exhibited 75% savings in data volume compared to the

polynomial regression.

e Uncertainty modeling and management problems in GIS are considered as closely
related matters rather than independent issues. A framework to systematically deal
with uncertainty management questions in GIS was established. The framework

provided a new systematic way to deal with uncertainty management in GIS.

7.4 Recommendations

Future research is recommended in the following areas:
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How is the uncertainty of geospatial objects related to the resolution (spatial, spectral,

and temporal) of the primary data sources?

ii) What is the relationship between spatial database uncertainty and its impact upon

decision making and risk analysis? A method should be devised to determine
acceptable levels of uncertainty in spatial information by analyzing the risks

associated with decisions based upon use of that information.

iii) How is temporal and logical uncertainty to be handled in decision based systems?

This thesis examined the positional uncertainty in GIS. However, the uncertainty
caused by logical inconsistency (topological errors) is not considered in the proposed
strategy. Furthermore, assuming data to be static over a long period of time is likely

erroncous.

iv) What uncertainty communication methods are most effective for different

V)

combinations of users, applications, and type of decisions? It is shown that visual
techniques offer fresh alternatives to the reporting and understanding of the problem,
and new methods using multimedia, aural senses and virtual reality are already
appearing. However, there are still problems in determining which techniques are best
suited to particular combinations of user skills, applications, and the decisions to be

made.

The prototype software package prepared during the course of this study, has been

written in Matlab script. It would be desirable to have the programs rewritten in a



169
current high level language such as C++. Such development would facilitate the

integration of the current GIS systems with error handling capability.
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APPENDIX
DERIVATION OF AIC FOR ALGEBRAIC POLYNOMIAL
In this section the maximum likelihood of the algebraic polynomial is derived first, and
AIC will then be presented for the polynomial [Sakamoto et al. 1986].

Polynomial Regression Model

Let us assume the polynomial regression model is of the form
2 m
y=apt+apx;+axx; +...ap% +E&

where g; is independent normal random variable that follows N(O, o’ ). The integer m is
called the order of the polynomial regression model. This model determines the variation

of y as the sum of the polynomial in the deterministic variable x and the random error €.

The polynomial regression model of order m is a conditional distribution model of which,

given the independent variable x, the distribution of the dependent variable y is a normal

distribution with the mean a, + a,X + a,X+ ... apx™ and the variance ¢° i..,

1
eXP{——Z (y—aq —alx—...—amxm)z}

f(y la, ... am,0°) =
2102 20

Let us denote the polynomial model of order m by MODEL(m). Fitting a polynomial to
the data is equivalent to estimating a probability distribution for the variable y as a

function of the variable x.
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The Likelihood of a Polynomial Regression Model

Given the probability density function of y that follows MODEL(m) as and a set of n data

points { (x;, y; );i=1, ...,n}, the likelihood is given by

LYL - Yn\ o, .. Gm &)= TCP1 /131 G, .. Om, &)

7r
)2 exp{—2 Z(}’z ao~alxi----—amxmi)2}-
O‘

The values of ag_ ay, ..., am and o> that maximize the likelihood constitute the maximum
likelihood of the regression coefficient and the residual variance of the polynomial
regression model, MODEL(m), respectively.

Maximum Likelihood Estimates of the Parameters

By taking the natural logarithm of the likelihood function; the log likelihood can be

obtained by:

Iy12, ... 8 6°)=logL(y1, .- Ya !B, --- 8, 0" )

2
= -—Iog27t-510g0'2 —20'2 lZ(y, —-ap—. L

To obtain the maximum likelihood estimates, values of the parameters that maximize

the log likelihood must be found. It can be proven that the log likelihood is maximized

with respect to ag, a, ..., amp When
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is minimized. Thus in the case of the polynomial model fitting, the maximum likelihood

is equivalent to the ordinary least squares methods. S will be maximized when

r

dy =
as
— =23 x(y; —ap—..~amx") =0
4 &11 i=ll 4 (/] m+i 3
as n
Fo 2 Xx"™(y; —ap—..~amx{") =0
L m i=

Thus the maximum likelihood estimates dy.,....,dy, are obtained by solving the above
system of linear equations (normal equations). The necessary condition that > maximizes

the log likelihood is

n 1

Z()’z-ao ’&m"zm)2=0

After algebraic manipulations, the maximum likelihood estimate of the residual variance

is

G2 ‘—{2)‘1 zal 2 x_l]}’z}
i=l1 =0 j=1
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n

2

n

[yl dy, ... am o )=~ >

log2nm - %logd (m) -

MODEL(m) has m + 2 free parameters, namely the regression coefficients a, ... , an and
the variance o° . Therefore, on substituting k = m+ 2 the AIC of MODEL(m) can be

found as (Sakomoto et al., 1986)
AIC(m) = nlog2rm +nlogd(m) +n+2(m+2).

Because AIC is independent of any scale or translation changes, the above formula can be

devided by n and subtracted from a constant. The AIC of MODEL(m) is the

parsimoniously found as

AIC(m) = logd(m)+2(m+2)/n.
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