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Abstract 

Through the use of radiative transfer theory for primary scattering with and without 

extinction, observations by the ISIS 2 satellite of scattered 391.4 nm sunlight by 

upper atmospheric N during the large geomagnetic storm of 18 December, 1971, 

have produced estimates of the temperature and number density of the Nt. Due to 

instabilities in the spin axis of ISIS 2, and errors inherent in computing the satellite's 

overall orientation, the ordering of the data is open to correction. The algorithm 

that uses primary scattering with extinction (PSE) yielded suitable corrections for a 

series of 5 spins of the satellite; the PSE analysis also provided an effective plasma 

temperature of the ionized gas of T = 2420 ± 70 K and a number density at 300 km 

of no = (2.4 ± 0.7) x 109m 3. Using these corrections, a second method, which is an 

adaptation of an commonly used algorithm, could be applied. Systematic errors of 

hundreds of kilometers in the related altitudes are possible without the corrections 

to the ordering of the data. The second method used primary scattering with no 

extinction (PSN), and could only be applied to one spin at a time. However, the 

PSN approach provided weighted means of T = 2320 ± 80 K and no = (1.61± 0.03) x 

109m 3, where the lower estimate of no can be accounted for by extinction of the 

391.4 nm sunlight by upper atmospheric Nt. 
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Chapter 1 

Introduction 

1.1 Main Objectives 

The main objective of this investigation is to determine the distribution of molecular 

nitrogen ions (Nt) in the upper atmosphere. The actual determination w ill utilize 

an indirect method of curve fitting, in which observations of a particular wavelength 

of sunlight scattered by the Nt and observed by a satellite will be compared to 

the results of a mathematical model. The model requires the numerical evaluation 

of a non-trivial integral; hence, a straightforward least-squares best fit analysis is 

not possible. Secondly, part of the purpose of this task is to identify, or eliminate, 

physical processes that are involved in controlling the actual distribution of upper 

atmospheric ions. Having to choose from possibilities that follow from the current 

understanding of aeronomy, the problem is not to test an accepted model, rather it 

is to piece together theoretical and empirical fragments that describe a particular 

feature of the observations. Any conclusions will have to recognize the restrictions 

that the uncertainties in the data imply. Because of some of the large uncertainties 

associated with the data, and the absence of accepted models, it is apparent that 

the fundamental objective is to examine the proposed method of analysis and decide 

if it is appropriate for the given type of data. 

1 
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1.2 Overview 

1.2.1 Processes of interest 

Ionization 

As we are to consider the distribution of Nt in the upper atmosphere, then the ion-

ization of neutral diatomic nitrogen seems an appropriate subject to start with in this 

short overview. The principal mechanism for the production of all ions in the terres-

trial ionosphere wherethe density of ions reaches its maximum—is photoionization. 

At wavelengths less than 's-' 100 nm, incident sunlight induces photoionization of the 

three major upper atmospheric species: diatomic nitrogen, N2, diatomic oxygen, 02, 

and atomic oxygen, 0. Due to the exponential decrease of the density of the neutral 

atmosphere with altitude and the variation in the direction from which the ionizing 

sun light is incident over the course of a day, it is not surprising that the ion density 

distribution is a function of latitude and time of day. Sunlight can also produce 

ions through photodissociation, where larger molecules are destroyed by energetic 

photons, leaving charged atomic or molecular fragments behind. 

Next in importance for the production of ions is collisional ionization. Although 

this source of ions can at times be greater than photoionization, it is sporadic rather 

than continuous, because it depends upon the channeling of energetic particles into 

the upper atmosphere. The conditions necessary for guiding the ionizing particles 

into the ionosphere coincide with the presence of aurora; however, the link is not 

absolute. Electrons, e, are the most important particle providing for collisional 

ionization, as they are the lightest and most numerous among the possibilities, which 

include protons, ions, and neutral particles. Chemical reactions are also an important 
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source of ions. The numerous reactions that affect the concentrations of all the ionic 

species are dependent on a variety of conditions; in fact, under some conditions a 

chemical reaction, or a series thereof, will be initiated such that a sink for some 

species of ions will be in effect. Deciding when the local chemistry of the upper 

atmosphere will provide for a source or a sink of an ion of interest is an area of active 

research. 

Resonant Scattering 

Given the presence of N, then the next physical process of interest to us is that 

of resonant scattering. The scattering of light can be accomplished by many known 

mechanisms; in any given instance, it is the frequency of radiation and the physical 

characteristics of the matter that govern the actual interactions between radiation 

and matter. It is the case where the radiation is absoibed and then emitted at the 

same frequency that distinguishes resonant scattering from other forms. The specific 

case of interest is the aborption of a 391.4 nm photon by N in its ground energy 

state and the subequent return of the ion to the ground state after a 391.4 nm 

photon is emitted in some direction, not necessarily in the direction of the incident 

photon. If the direction of the scattered photon is independent of the direction of 

the incident photon, then the scattering is called isotropic; this property is not found 

in real atmospheres in most types of scattering, including resonant scattering. 

Radiative Transfer 

The third major topic pertaining to the physics of our problem is radiative trans-

fer. This theory constructs a systematic description of the large scale, or average, 

behavior of radiation as it passes through a non empty medium. Each particle in 
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the medium presents a certain amount of target area to the incident light, and the 

fraction of light that passes through some distance in the medium is proportional 

to the fraction of the total area of the scattering material to the area over which 

the beam of light extends. This idea of radiation continually undergoing losses as it 

passes through matter gives rise to the notion of optical depth—the larger the optical 

depth a particular beam of light has passed, the smaller the fraction of the original 

light will be left. 

Within the scope of radiative transfer theory, there is a useful recipe for modeling 

the satellite observations of 391.4 nm photons by N called primary scattering. This 

model assumes that along any line of sight of an observer, the majority of photons 

observed are due to a single scattering event. This assumption is valid in the context 

of terrestrial N scattering sunlight in the upper atmosphere because the incident 

sunlight at the wavelength of interest is so much more intense than that which is 

scattered out of the incident beam. Going too low into the atmosphere would be 

stepping outside the bounds of the assumption, since the multiple scattering of a 

photon becomes more probable in the denser medium, and other particles colliding 

with an excited N can steal the energy away in a collision before a scattered photon 

is emitted. Primary scattering considers only one scattering event for each incident 

photon—either the photon enters the observer's field of view and is noted by the 

observer, or it is lost. Having discussed briefly some important physical concepts 

related to the production of the observed quantities, which are photons, we can now 

proceed to the satellite that serves as the detector. 
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1.2.2 Observations 

The ISIS 2 satellite returned 391.4 nm intensity measurements, which were gathered 

with the auroral scanning photometer (ASP), to ground based receiving stations. 

The nearly circular orbit with an inclination of about 90 degrees ensured that the 

ISIS 2 satellite had the potential to make auroral observations as it passed over the 

poles of the earth. From a vantage point some 1400 km in altitude, the spinning 

satellite would direct the ASP through a full 360 degree scan. At best, one third 

of the time the ASP was pointed at the earth or into the atmosphere above its 

limbs, which is what we shall be interested in; at worst, no useful measurements 

could be made. The direction of the line of sight of a particular observation of the 

391.4 nm intensity was not a part of the data transmission, rather, the universal 

time of observation was the distinguishing tag on each observation. 

The actual line of sight would be determined from other data, namely 557.7 nm 

(the auroral green line) intensity measurements and an assumed height of the 557.7 nm 

limb. Fitting the data to the expected limb observations provided the ASP line of 

sight as a function of time, and a "best fit" spin axis orientation. Any modeling of 

the data would suffer from a poor determination of either the ASP line of sight , or 

the ISIS 2 spin axis. Much effort has gone into refining this technique; however, the 

uncertainties that it introduces cannot be dismissed. 

1.2.3 Data Analysis 

The data analysis was not as straight forward as one would optimistically anticipate. 

Although the results appear reasonable, the scope of the analysis had to be greatly 

reduced because of problems with the ordering of the data. The aim of including 
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both morning and evening side limb observations had to eventually be abandoned. 

The problem is apparently related to the stability of the satellite; there is evidence, 

discussed in [46], that the spin axis of the satellite wobbles such that the spin axis 

vector is not constant as required. Even worse, there is also good evidence that the 

spin axis does not always coincide with the axis of symmetry. Thus, modeling the 

observations becomes a matter of discovering a segment of data that provides for 

reasonable agreement. The lengthy sifting of the data is the major practical flaw 

of the analysis, because the more data one discards, the greater the probability of 

skewing the results one way or another. 

1.2.4 Results 

The temperature T and number density no results were found to be in reasonable 

agreement with previous observations made by other means. However, the correction 

factor found for the calibration of the auroral scanning photometer is a reduction to 

about 37% of its original value. Thus, it would seem that if the model is correct, 

the cumulative error in estimating the various parameters related to the conversion 

of the photometer's observations to a column density implies a reduction of about 

two thirds in the given calibration. This result is good grounds for being skeptical 

about the accuracy of the rest of the results—one usually expects the calibration 

to be out by a factor of 2, at most, either way. We will attempt to assuage our 

doubts by further discussion and examination of other related factors, such as some 

assumptions used in the construction of the model. 



Chapter 2 

ISIS 2 and the Auroral Scanning Photometer 

2.1 The ISIS 2 Satellite 

The ISIS acronym follows from the International Satellites for Ionospheric Studies 

project of which the ISIS 2 satellite is the fourth to be launched. The launch occurred 

on the first day of April in 1971. While most satellite photometers at the time were 

fixed in one direction and would scan the earth only as a result of the orbital motion 

of the satellite, the dual wavelength photometer on the ISIS 2 satellite was to use 

the spin of the satellite itself to add a second mode of scanning, and method of 

photometer image dissection to add a third. In this way, the joint Canadian and U. 

S. experiment was to produce data that would allow greater detail in the study of 

auroral distributions and morphology. 

The ISIS 2 orbit was nearly circular with a mean orbital altitude a little less than 

1400 km. The inclination of the orbit was about 88 degrees, which means that it 

would pass over both of the earth's poles in the course of an orbit; hence, the orbit 

is referred to as a polar orbit. The orbital period is a nearly two hours, and the spin 

period about 18 seconds. Thus, there was the potential of revisiting an interesting 

auroral event at either pole every two hours. 

Solar cells on the outer faces of the satellite were the main sources of power for 

ISIS 2. The external cells charged internal nickel-cadmium batteries, which could 

deliver some 125 W of power to the onboard experiments and telemetry electron-

7 
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Figure 2.1: ISIS 2 and its instrumentation 

ics. Moreover, the electrical system also provides the attitude control by setting 

up magnetic fields in the satellite that interact with the terrestrial magnetic field 

to provide a means of guiding the direction in which the spin axis points. There 

were two extremes that characterized the relative configuration of the spin axis and 

orbital plane; the first was the orbit aligned mode, where the spin axis was in the 

orbital plane and the photometer would scan perpendicular to the orbital plane; the 

second was the cartwheel mode where the spin axis was perpendicular to the orbital 

plane and the photometer scans were restricted to the same plane. In the former 

mode, each scan covered new territory as the satellite moves in its orbit, whereas in 

the latter mode each scan covered the same territory. 

The experiments on board the ISIS 2 satellite, shown in Figure 2.1, are: 

• Swept frequency sounder 
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• Fixed frequency sounder 

• Very low frequency receiver 

• Cosmic noise experiment 

• 136/137 beacon experiment 

• Energetic particle detector 

• Ion mass spectrometer 

• Cylindrical electrostatic probe 

• Ion temperature measurements 

• Red line photometer 

• Auroral scanning photometer (ASP) 

A good brief description of the ISIS 2 instruments is given in [46], and a more detailed 

discussion can be found in [15]. 

2.2 The Auroral Scanning Photometer 

The ASP has two viewing directions separated by approximately 180 degrees, each 

of which corresponds to a different wavelength of interest. In one direction there is a 

557.7 nm filter with a full width at half maximum (FWHM) of 1.8 nm, in the other 

direction there is a 391.4 nm filter with a FWHM of 2.6 nm. By directing incoming 

light with lenses and mirrors, it is possible to have the two viewing directions share 
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a common photo cathode. The data from the two viewing directions did not, for the 

most part interfere with each other, as one line of sight would be off earth; however, 

the off earth field of view could contain stars, which would produce noise in the data, 

and if either the moon or sun were in the off earth field of view the data would not 

be of use. 

Through the use of an image dissector, the common cathode was divided into 13 

individual elements, roughly analogous to solid state pixels. The data from only one 

element was gathered at any one time. By passing from one element to the next, 

the field of view was effectively moved parallel to the spin axis, which is in addition 

to the spinning motion that would move the field of view perpendicular to the spin 

axis. This method of scanning is shown in Figure 2.2. Each element had a nearly 

square field of view that was some 0.4 by 0.4 degrees in extent, which corresponds to 

about 28 km at the point where the line of sight is tangent the earth at a height of 

300 km—this altitude of 300 km is also referred to as the tangential height of the line 

of sight. The lower end of the dynamic ranges of either of the wavelengths were set 

to correspond to the lowest airgiow or auroral intensities expected to be of interest 

as suggested by previous ground based observations. 

The problem of keeping direct sunlight out of the ASP was to be solved through 

the use of a two stage baffle system. The outer baffle was to provide protection when 

the angle 0 between the line of sight and the incident sunlight was greater than 

40°, and the inner baffle was to act as a back up for 0 < 17°. Regardless of the 

minimum value of 0 for any scan, a fail-safe detector protects the photomultiplier 

from destructive exposures. The black coating on the inner baffles still produced 

2.8 % total hemispheric reflectance; hence, contamination continued to be a problem 
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Figure 2.2: The scanning pattern of the auroral scanning photometer, where the 
5° strips are scanned during successive rotations due to the orbital motion of the 
satellite. 
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with direct sunlight reflected 6ff the baffles mixed with the desired scattered light. 

Baffle contamination was strong for the cases where 0 < 600, and the noise was 

worse when the angle between the spin axis and the incident sunlight was such 

that < 1200. It is unfortunate that large amounts of data suffer from the problem 

of baffle scattering, and attempts to find a useful correction for the noise have failed, 

simply because of the dependence of the contamination on both 0 and C 

The other sources of uncertainty in the ASP observations are directly related to 

the photometer itself. For a given standard light source, the 13 elements provided by 

the image dissector did not respond in a uniform manner. Thus, correction factors 

must be applied to the data according to the element from which it came. A common 

correction that must be made to all counting detectors such as the ASP is a dead 

time correction. These become important when high intensities are being observed, 

because the probability of a photon striking the photocathode while the effects of the 

previous photon are still present becomes greater. A dependence of the dead time 

correction on the intensity was also found to be a feature of the ASP. The signal that 

the ASP produces even when no light hits the cathode is the dark current, which 

was found to be correlated with the temperature measured by a probe on the ISIS 2 

satellite. However, both the temperature and the dark current vary with , which 

is the angle between the spin axis and the incident sunlight. 

Data from the ASP was processed on board the satellite at a bit rate of 4410 Hz. 

The information from the 13 elements was gathered one at a time at a rate of 630 Hz, 

an extra "element" was included for the purposes of signal processing syncronization. 

The 14 elements, 13 of which were ASP data, are referred to as a data frame and 

were processed at a rate of 45 Hz. An inertial or relative indication of the direction 
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of the ASP line of sight was not a part of the data output from the satellite, nor 

was the ISIS spin axis. Both of these important pieces of information result from 

the fit of the 557.7 nm data to an assumed altitude of the actual 557.7 nm limb. 

The precision of our knowledge of the attitude of the satellite is limited by both the 

precision of the observed data and its organization, and an assumption of a fixed 

ionospheric feature in a system that is highly dynamic. The uncertainties that this 

introduces into the data are far from negligible and must be considered before any 

conclusions drawn from the data are entertained. 

2.3 Earlier Observations 

The observations of airgiow began with the twentieth century. The earliest inves-

tigations were interested in establishing where the airgiow originated. It was not a 

matter of where in the terrestrial atmosphere the light originated, rather the pos-

sibilities included faint stars and zodiacal light. The theory describing the airgiow 

source region that is now generally accepted was proposed by Sidney Chapman in 

1931. This successful theory provides for other atmospheric emissions of light, such 

as aurorae, through the presence of an ionosphere, where photons are emitted due 

to ever present activity that includes ionization, recombination, and the reduction 

of excited particles to their ground state. 

Having established where the airgiow originated, the next step was to identify 

the particles involved. This required both the detailed laboratory results and the 

theoretical studies of spectroscopy. The band structure of molecular spectroscopy, 

which will be discussed further below, introduced an obvious indicator of the presence 
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of molecules in airgiow spectra; however, the overlapping of the bands of several 

species also complicated the process of identifying an individual molecule. Hence, a 

prominent feature in the observed spectrum that could be associated with a specific 

molecule was valuable. This feature is present at 319.4 nm in the band spectrum 

emitted by N, and for this reason molecular nitrogen ions were the first species 

identified and studied in the early years of twilight airgiow investigations. 

A full review of the early airgiow work is given in [35], where the first attempts to 

combine new instruments and theory in the study of the upper atmospheric compo-

sition were discussed. In addition, mention is made of the difficulties of calibrating 

detectors, and the unsatisfying data reduction techniques that were employed. Some 

twenty years later, these same problems still continue to bedevil airgiow (and auroral) 

investigations that include ground, rocket, and satellite based detectors. 

Due to the work of A. L. Broadfoot and others, in [14] and [12], an important 

parameter associated with the emissions of N called g, the photon scattering coeffi-

cient, was established. A table of g values for commonly observed upper atmospheric 

species is given in [17], among others. It was with the fixing of g, although somewhat 

uncertain, that allowed for the possibilty of quantitative investigations of upper at-

mospheric Nt in absolute, rather than relative, terms. This type of investigation 

was performed on ISIS 2 data in [73], which serves as the prototype for the analysis 

to follow. 

However, it was eventually conceded that the value of g was not the greatest 

source of error in the analysis of airgiow observations, rather it was the neglect of 

radiative transfer effects. Our attempt to remove this obstacle is discussed next. 



Chapter 3 

Scattering of Sunlight by N 

3.1 Fundamentals 

3.1.1 Electrodynamic Basis for Scattering 

The following discussion is adapted from [38], where the consideration of radiative 

effects on the motion of a charged particle led to the definition of a characteristic 

time i-, which is a parameter estimated with the use of the nonrelativistic Larmor 

formula for the power radiated by an accelerated particle 

2 e2 
T  3 inc- 3 (3.1) 

where e is the elementary charge, in is the particle's mass, and c is the speed of 

light. If the acceleration of a charge occurs over some time t, where t >> r, then 

radiative effects are not important; when t .-'. r, then the emission of radiation by the 

accelerated particle will greatly affect the particle's motion. The Abraham-Lorentz 

equation of motion is an approximate and time-averaged description of the motion of 

a charged particle when i-. If a radiative reaction force is included in the Newton 

equation of motion, and the work done by the reaction force is related to the power 

radiated according to the Larmor formula, then the Abraham-Lorentz equation of 

motion is found to be 

d 2 d3x 
in d2 =F+mrj-- 

15 

(3.2) 
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where F is the external force on the particle, and the second term on the right hand 

side of (3.2) is the radiative reaction force. 

The limitations of the Abraham-Lorentz model are many; however, the ease with 

which it provides rudimentary physical insight into the problem of radiation scatter-

ing leads us to neglect the deficiencies. By adding a term, inwx, to mathematically 

describe a restoring force, then (3.2) can be modified such that it now portrays, to 

first order, the scattering of radiation by bound charges. Of course, the external 

force F is now due to the incident radiation 

F = epEoe"t (3.3) 

where pi is the incident polarization vector, E0 is the electric field at the center of 

force, and w is the frequency of the incident radiation. In addition, a resistive term, 

mr's, which is first order in the velocity, can be included in order to allow for 

dissipative processes, with r' being the damping constant. Adding the restoring and 

resistive terms to the left hand side of (3.2), and then substituting (3.3) for F yields 

d3x d 2 + wx = pjEoe)t 
-T± + m 

This linear third order differential equation has the following steady-state solution 

e Eoe_t 
x= (3.4) 
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where rt is 

Iw \2 
F(w) = r' + r 

WO 

and r = WT is the radiative decay constant. 

The Lienart-Wiechert radiation electric field due to the nonrelativistic accelera-

tion of charges is, at a point distant from the bound charges, 

where n is a unit vector indicating the direction of the observer relative to the bound 

charges, r is the distance from the charges to the observer, and R is the second total 

time derivative of x given by (3.4). In order to find the magnitude of E for some 

scattering polarization p, we first form the inner product of the field and polarization 

vectors with one of the two in its complex conjugate form 

e2 2  E0e  (P Pi'\ 

r ) (3.5) 

With o denoting cross sectional area per unit frequency interval and n denoting the 

solid angle about the scatterer, then by the definition of differential scattering cross 

section, which is 

EO 

rp E 
2 

such that when it is combined with (3.5) the result is 

do, / e2 \ 2 * 

(w ,p3)= MC IPs•PiI L(w_w2)2+w2r] (3.6) 
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The Rayliegh law of scattering corresponds to the condition w << w0 placed on 

(3.6), and the differential cross section is 

do Ra (Mc e2  (df , = 2) 2 1 *  Pu2 \WO 
)4 

where the required fourth power dependence on frequency is present. At the other 

extreme, w >> wo, the Thomson differential cross section is obtained 

doT 
--(w,p3) = e 2 ) 21p*  . Pi 12 (1 +wr)' 

however, the free particle value is subject to the radiation damping correction term 

(1 + wr)', which in the classical domain is unity because w << 1/i-. Thus, at lower 

frequencies, the scattering of radiation follows the Rayleigh law, while at higher 

frequencies, Thomson scattering is important. It is between these two types of 

scattering that resonant scattering is found. When w w0, then (3.6) provides the 

following approximation 

doR 9 ' c' 2 
-(w, Ps) = 16 too ) (w - wo) 2 + (r/2)2 P d 3 (3.7) 

If (3.7) is integrated over all solid angles and scattering polarizations, the total 

scattering cross section per unit frequency is 

3. / c\ 2 

= -- () (w_wo) 2 + (r2/2)2 
(3.8) 

The relative scattering cross section, crR(w)/oR(wo), versus the relative frequency, 
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Figure 3.1: The relative total scattering cross section for relative frequencies near 
resonance. The solid line corresponds to r'/w0 = 1, the dotted line r'/w0 = 0.1 and 
the dashed line r'/w0 = 10. 

1.0 

1og10(w/wo), is shown for (3.8) in Figure 3.1 with three values of of the damping 

constant F'—note that in the classical domain, the radiative decay constant r = W 02 T 

can be neglected. 

Quantum mechanics provides for a similar expression for 0a; however, the angular 

momenta of the ground and excited states enter into the solution. That is, if the 

right hand side of (3.8) is multiplied by the following factor, then it will agree with 

the result obtained with quantum mechanics 

2  2J+1  

3 2(2.J+1) 

where J0 is the angular momentum number of the ground state, and Ji is the angular 
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momentum of the i1h excited state. The classical result corresponds to Ji = 1 and 

Jo=0. 

From the above mathematical sketch, it can be seen that the resonant scattering 

of radiation is a part of a continuum of interactions between radiation and matter, 

which has been modeled similar to a damped oscillator. In addition to resonant 

scattering not being an isolated feature for a particular mode of oscillation, there are 

further complications due to the fact that there are many different modes in which 

a molecule might oscillate and store the excitation energy. Let us move on now to 

consider the notation by which the different spectroscopic features are labeled such 

that a common identification of the different modes can be made. 

3.1.2 Molecular Spectroscopy 

A quantum mechanical analysis of the structure of a molecule is a search for "good" 

quantum numbers that correspond, in some regular way, to the observed behavior of 

the molecule—especially as far as spectroscopic features are concerned. The quan-

tity of useful quantum numbers are limited by the symmetry present in the molecule; 

the structure of the molecule also limits the extent to which a meaningful, or use-

ful, mathematical model can be constructed to describe the molecule. Diatomic 

molecules, such as Nt which is of direct interest, offer the fewest barriers to a theo-

retical analysis. If the two atoms in the molecule differ, the detail to which the state 

of the molecule can be specified is immediately reduced. Polyatomic molecules that 

have little or no symmetry defy anything other than a statistical analysis. 

The energy states associated with the electronic structure of a molecule show 

the greatest separation (in energy) between adjacent states. Diatomic molecules can 
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be assigned a good orbital momentum number because of the symmetry about the 

internuclear axis. However, since the force on the orbiting electrons is not central, the 

orbital momentum is not a conserved quantity. The projection along the internuclear 

axis of the total orbital angular momentum provides the quantum number A. It is the 

rotational symmetry about the internuclear axis that A indicates. In an analogous 

manner to S, P, D, and F of atomic spectroscopic notation, capital Greek letters 

correspond to the integer values of A: E = (A = 0), II (A = 1), A = (A = 2), 

etc. 

Reflection symmetries allow for further description of the state of a molecule. 

Homonuclear molecules, like N, are characterized by reflection symmetry about a 

plane which is perpendicular to the internuclear axis, and which bisects it. The 

term gerade, meaning even and abbreviated to g,'is applied in the case where the 

wave function does not change sign when reflected across that plane; similarly, the 

term ungerade, meaning odd and abbreviated to u, is applied in the case where the 

wave function does change sign upon reflection. For the plane that contains the 

internuclear axis, symmetry exists only for the A = 0, or E, state because this state 

is characterized by cylindrical symmetry about the internuclear axis, whereas for 

A > 0 no similarly useful feature is present. If the wave function does not change 

sign about this second plane, then the state is labeled with a +, and the opposite 

behavior is labeled with a -. 

The total spin of the electrons, which is denoted with a E and is not to be 

confused with the usage discussed above where E (A = 0), is a second useful 

quantum number related to the specification of the electronic state of a molecule. 

The total electron angular momentum Q, is conserved and is given by Q = IF, + Al. 
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The standard notation that displays the above infromation is 

T2'' A+ or - 
uorg 

where T symbolizes a capital Roman letter that is used to indicate the electronic 

energy state: and X denotes the ground state, while letters near the beginning of the 

alphabet, such as A, B, C, etc, are understood to be excited states. Unfortunately, 

there is no direct correspondence between the relative energies of each state and the 

alphabetical order of the letters labeling them. The transition of interest, which 

gives rise to the resonant scattering of 391.4 nm sunlight by Nt, is 

B2E - 

In contrast to atoms, molecules have ways other than the variation of electron 

configurations to store energy. First, molecules can vibrate along the axes connecting 

nuclei. Diatomic molecules can be approximated by a simple harmonic oscillator for 

vibrations of relatively low energy. The energy E is quantized according to the 

following quantum mechanical result 

E(n) = hv (n + 1 ) 

where h is Planck's constant, ii is the frequency of oscillation, and n is the quantum 

number. For larger n, higher order terms must be included if the anharmonic char-

acter of the larger vibrations is to be well described. A second way that molecules 

can store energy, which atoms cannot, is through rotation of the extended molecular 
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structure about some axis. For a diatomic molecule, the discrete energy levels B, 

are given by 

-E, V) 
J(J+ 1) h2 

21, 

where J is the rotational number, I,, is the moment of inertia that depends upon 

the distance between the nuclei and so is dependent upon the vibrational state of 

the molecule, and /l is Planck's constant divided by 2ir. If we associate B with 

the energy related to changes in the electronic structure of the molecule, then when 

the relative magnitudes of vibrational energies B,, and rotational energies B, are 

compared with B8 the following order is established 

Ee>>Ev>>Er 

This ordering accounts for the observed spectroscopic band structure associated with 

molecules. The distance (in energy) between bands is determined by B8, the extent 

of a band is determined by B,,, and the spacing of lines featured within a band is 

determined by Er. 

For diatomic molecules, the dipole selection rules for allowed transitions are 

LE=O 

LA= O,±1 

L=O,±1, (noO — O) 
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In addition, for homonuclear diatomic molecules, we have 

u - g or g —4 u 

+ - + or - - - 

However, all of the above selection rules are subject to the Frank-Condon principle: 

the internuclear distance must be nearly equal before and after the transition. That 

is, if the vibrational/rotational states of two different electronic states do not provide 

for an overlap in the internuclear separation, then the probability of the transition 

is greatly reduced. 

3.2 Radiative Transfer 

3.2.1 General Equations 

The problem of primary scattering has been developed using radiative transfer theory. 

Before discussing the particular case of primary scattering of 3914A sunlight by Nt, 

the relevant general concepts of radiative transfer are to be considered. For any 

geometry, the transfer equation can be written for some point r in space 

. VI(r,) - —cre(r)[I(r,fZ) - J(r,f)] (3.9) 

where E2 denotes the direction of propagation of the radiation, I is the radiance or 

specific intensity, o is the volume extinction coefficient, and J is the source function 

for the radiation field. There are two radiative processes that contribute to 0e: they 
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are absorption and scattering of the radiation by material in the medium. That is, 

o is given by 

a, (r) = o,, (r) + o,,, (r) (3.10) 

with o being the volume scattering coefficient, and 0a being the volume absorption 

coefficient. 

The optical depth (optical length), r of a medium along a line L is defined as 

= f e(r(1)) dl (3.11) 

where 1 is a parameter along the line of integration, which is initially a and finally b. 

Thus, (3.11) gives the optical depth that the radiation must traverse between points 

r(a) and r(b) on L. If the extinction cross section; of some matter of number 

density n(r) is independent of r then 

oe(r) = aen(r) (3.12) 

By substituting (3.12) into (3.11), it is apparent that when ce, is given, then the 

calculation of r is dependent upon knowledge of n(r) 

r = fb n(r(l)) dl (3.13) 

It is (3.13) that will be of interest when a particular form of (3.9) is applied to the 

problem below. 

The phase function, p, for radiation of frequency 1 provides the probability that 
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radiation propagating in direction f2o will be scattered at point r into the direction 

i. The phase function is normalized over all possible scattering angles 

If an angle 8 is defined as 

1 j p(rMoMi)clfi = 1 (3.14) 

cos(B) = (3.15) 

and p is. dependent only upon 0 and r, then (3.14) reduces to 

fp(r,0) sin(0)d0 = 1 (3.16) 

Isotropic scattering is equivalent to 

p(r, 8) = 1 (3.17) 

which is a property never found in real atmospheres. However, unless very precise 

measurements are being considered, then (3.17) is a useful simplification. 

Now it is possible to make the most general statement about the source function, 

J(r, ), 

J(r,fZ) = ° ip(r,f2o,f2)1(r,f2o)df2o+Jl(r,O) (3.18) 
47rcTe  

where Ji(r, f) is due to local internal and/or external sources of radiation, and the 

definition of net flux, F, through a surface with a normal vector n is 

F = (3.19) 
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3.2.2 Primary Scattering 

Briefly stated, the conditions for primary scattering are 

°a <<° 3 (3.20) 

r<1 

Ii(r,fZ) >> Ik(r,≤T); k = 2,3,4,... 

(3.21) 

(3.22) 

The first condition, (3.20), states that there is little absorption of the radiation of 

interest; it is mainly scattering that contributes to the extinction, o o. The 

second statement, (3.21), implys that the medium is, by definition, optically thin to 

the radiation; in the terminology of transport theory, the observer is within one mean 

free path of the point at which the radiation of interest was scattered. Condition 

(3.22) holds that the radiance due to one scattering event, which, by definition, is 

radiance due to primary scattering, is always far greater than the radiance that has 

been subject to secondary, tertiary, etc., scattering. In addition, for the sake of 

completeness it should be stated. that along the direction of propagation, f2o, of the 

incident radiation, lo, it is the case that 

Io(r,fZo) >> Ii(r,f o) (3.23) 

Obviously, observations in the direction of — o can not be included in observations 

of radiation subject to primary scattering. 

Under conditions (3.20), (3.21), and (3.22), the equation of transfer (3.9) along 
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the direction of propagation of the scattered radiation, I, becomes 

d11 - 

— cen(ri(sj))[Ij(si) - Ji(s1)] (3.24) 

where (3.12) was substituted into (3.9), ae is the extinction cross section of the 

scattering material, which is present at a number density n(s1), and s is a parameter 

along the line of sight of the observer, such that any point, r1, along the line of sight 

is given by 

r1(sj)=P_s1c1, .9≥O 

where P is the location of the observer, whose line of sight is in the direction 

Note that the chain rule and (3.25) provide 

d11 dri 

ds1 ds1 

C 

Similarly, in the direction of propagation, 920, of the incident radiation, 10, 

d10 

ds0 

(3.25) 

= an(so,si)Io(so,si) (3.26) 

where Jo = 0 as (3.23) implies, and so is a parameter along fo to ri(s1) such that 

ro(so,si) = ri(s1) - So ≥ 0 (3.27) 

where r0 is any point along the path of the incident radiation before or at the point 
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Figure 3.2: A sketch of the scattering geometry, where all vectors are in a plane 
containing the earth and sun and the scattering ion is located on the line of sight L 
ats1=s 

of scattering in the line of sight. Combining (3.25) with (3.27) gives 

ro(so, s) = P -  sono  - (3.28) 

If we limit the vectors given in (3.25) and (3.28) to a plane which contains the earth 

and sun, then Figure 3.2 gives an indication of the geometry under consideration. 

In this special case, where (3.22) applies, the source function along the line of 

sight, J1, is proportional to the the solution of (3.26), which on the line of sight is 

Io(O, Si) = Io(oo, s) exp Jo 00 n(ro(so, si)) dso} (3.29) 
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Applying (3.18) to this problem where local sources are neglected, J1 = 0, and the 

incident radiation is unidirectional, Io(ro,f) = 0 for 92 54 f2o, gives 

Ji(si) --  0•  p(s, e)I0(o, .$) (3.30) 

The unidirectional nature of Io applied to (3.19) yields, for a surface perpendicular 

to 00 

Fo(so,si) = !I(r,c o) 

The definition of single scattering albedo is 

= 

(3.31) 

(3.32) 

Combining the above definition with (3.29), (3.30), and (3.31), the following expres-

sion for J1(81) results 

J1(si) = -p( (9)F. (3.33) 

where the abbreviation F = Fo(oo, s) has been introduced, because, at infinity, 

the flux is assumed constant at its maximum value regardless of the value of s, and 

p, the phase function, is assumed to depend only on 0. 

The general solution to (3.24) is now obtained through the use of (3.33), for which 

formal integration yields 

11 (0) = aep(®)F f° on(ri(si)) exp{—ro(si) - r1 (s1)} ds1 (3.34) 
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where the optical depths r0 and r1 along 920 and 01 respectively are 

oo 

To(si) = —ae  n(ro(so,sj))dso 

psi 

ri(ri(.$)) ds 
Jo 

Note that the above integration utilized e-TI as an integrating factor. 

3.2.3 Airgiow Photometry 

(3.35) 

(3.36) 

A practical form of (3.34) has been developed to meet the specific requirements of 

airglow photometery. The goal is to remove as many physical constants from the 

problem as possible such that what variables remain are isolated and easily identified. 

For a distant source, as the Sun is for Earth, it is found that the solution can be 

reduced to an integration involving two variables: the number density distribution of 

the scattering material (N in this case) and any matter that may participate in the 

collisional deactivation of the excited particles before they can radiate the absorbed 

light. The development begins with supposing that at some point r1(s1) along the 

observer's line of sight the resonant scattering of sunlight yields a directional (energy) 

volume emission rate, e, , at some frequency ii such that over the entire absorption 

line the directional (photon) volume emission rate, E, is 

S(, r1) - fline &,(f,ri)-  dv 
h  

(3.37) 

where f2 is some direction in space, and h is Planck's constant. However, it is the 

photons along the line of sight, f2 = f2j, that are of interest; thus, letting J denote 
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the flux of photons at si = 0, ie, at the observer, then j is the sum of all the sources 

along 

00 J(f) = fE(f i,ri(si))dsi (3.38) 

Note that if j is measured in 1010 photons per square meter, per second, per stera-

dian, then 4irJ is in rayleighs. 

For resonant scattering, e can be expressed in the following particular form 

= n(ri)0(0S1) e2 f (Jo J') o(rj,J'Jo) 0 
hi.' 4e0m ec 4ir 

(3.39) 

where n is the number density of the scattering particles, irFo(0, 31)/hli is the net 

flux of incident photons at ri(s1) along the line of sight, and 

e2 c3(v)du=  f (JO J') 
ne 40mc 

(3.40) 

is the integrated scattering cross section (in SI units) with e denoting the elementary 

charge, e, is the electrical permittivity in vacuo, me is the mass of an electron, c 

is the speed of light in vacuo, and f(J0J') is the upward oscillator strength for the 

transition from a lower state Jo to an excited state Y. The oscillator strength for 

the resonant scattering of 391.4 nm sunlight by Nt is f = 2.46 x 10 2, given in [12]. 

The next to last term in (3.39) is the albedo for single (or primary) scattering, which 

was discussed above, and is, in this problem, given as 

A(J'J0)  
coo (r1, 'Jo) = 1{A(J'J) + (J'Jo)[X](ri)} (3.41) 
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where A(J'J) is the Einstein spontaneous emission coefficient for the transition from 

the excited level J' to some lower level J, where Ji is not necessarily the initial state 

Jo; i(J'Jo) is the rate coefficient for collisional deactivation of the scattering material 

due to the presence of other particles, which have a number density of [X]. Finally, 

the last term, P(0), is the phase function that was discussed above with the definition 

of 0. 

Before inserting (3.39) into (3.38), the emission rate factor, g, is introduced 

 f(J0J')  A(J'J0) 
4e0mec Ej A(J'J) 

(3.42) 

where .F F/hu, and it was given above that F = Fo(co, .$) for all s1. With 

this definition of g, a compact expression for J is possible 

= 

4r 
(3.43) 

where A/ q is an equivalent column density, which is expressed mathematically as 

A1'eq = j 00 n(ri(.s1)) exp{—ro(si) - ds1 
1+ r( 1(1)) 

(3.44) 

where S is the value of .s, where the line of sight, r1, emerges from the Earth's shadow 

into the sunlit atmosphere; it is also possible for S = 0 if the observer is immersed 

in direct sunlight—as in the case when the observer is above the poles. The factor 

r is defined as 
r(r1(s1)) = I i(J'Jo)  

A(J'J) [X](ri(si))} (3.45) 
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Neglecting collisional deactivation is simply the case of F = 0, which will be the value 

adopted in the data analysis, because the uncertainties in data do not warrent an 

investigation of F 0. Theoptical depths To and T1 were defined above in (3.35) and 

(3.36), however, the form of the extinction cross section, c, has yet to be considered. 

3.2.4 Extinction Cross Section 

From spectroscopic theory, any transition from a lower state Jo to an upper state J' 

due to the absorption of a photon of frequency i' has an interaction cross section 

F, 2  

460m6cf(JoJ')q(zi) 

where the normalized spectral intensity distribution, 0, satisfies 

1+00 -00 q(v)du=1 

(3.46) 

(3.47) 

The functional form of 0 is mainly dependent upon two physical processes: natural 

broadening of the line that follows from the Heisenberg uncertainty principle, and 

Doppler broadening due to the thermal motion of the material affecting the radiation, 

which in the problem of interest is thermospheric Nt. Natural line broadening yields 

a Lorentzian profile 

ç6L(v) - L.vL/21r  

- (ii - vo) 2 + (/. vL/2)2 
(3.48) 
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where v0 is the frequency at the line centre and LuL is the full width at half maximum 

of cl)L(V) and is defined in terms of the radiative damping constant, TR, 

LVL = T'R/27r (3.49) 

with 

R = F(J') + F(J0) = 1/t(J') + 1/t(Jo) (3.50) 

where t(Y) and t(J0) are the mean radiative lifetimes of the material in energy levels 

J' and J0 respectively. For atmospheric conditions, r(j) is calculated as follows 

r(J') = EA(J'J) (3.51) 

Using Einstien spontaneous emission coefficient data from [12] for the First Negative 

bands of Nt the values of r(Y) and r(J0) are 

r(J') A(00) = 1.07 < 107 s_i (3.52) 

T(J0) = 0 (3.53) 

Using (3.52) and (3.53), then (3.49) can be evaluated 

LVL = 1.703 x 106 Hz (3.54) 

Assuming thermodynamic equilibrium, the Doppler broadening gives rise to a 
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Gaussian line profile 

G(V,T) = M  1/2 o () exp {_(v - v0)2 2 (3.55) 

where )¼0 is the wavelength of scattered sunlight, 3914A, and T and M are the 

temperature and mass, respectively, of the Nt. The full width at half maximum of 

bG(Z',T) is 

IZ'G(T) - 1 / 1fl2- ) 8kT\ 1/2 
; (  (3.56) 

For a typical "quiet" thermospheric temperature of T = 900 K, then the evaluation 

of (3.56) yields 

LvG(900K) = 3.1 x 109 Hz (3.57) 

Inspection of (3.54) and (3.57) reveals that LvG(900 K) >> / vL; therefore, the 

following simplifying approximation can be made 

O(V) G(V,T ≥ 900 K) (3.58) 

otherwise the line profile would be a convolution 

+00 

(v) = L L(V')G(U - ', T) dv' (3.59) 00  

The cross section (3.46) for the resonant scattering of 391.4 nm sunlight by Nt can 

now be given as a function of frequency and temperature 

e2  
a3(v,T) = f (JO J')qG(v,T) (3.60) 
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From the definition, (3.32), of the albedo for single scattering, ''o, along with the 

expression (3.10) under the condition that the scattering cross section is independent 

of position, gives the following relationships 

a(r) = a3 + aa(r) = a3 
Z'o(r) 

(3.61) 

The ratio on the far right of (3.61) is preferable when a direct measure of aa is not 

possible. Instead, the formula (3.41) can be combined with (3.61) to give 

((a/JO)) 
a(r) = 44J  {A(J'J) + i(J'Jo)[X](ri)} (3.62) 

By inspection of (3.62), it is apparent that the extinction coefficient is not constant, 

but varies with the number density of particles, [X], that provide for the collisional 

deactivation. The value of [X] can usually be estimated from atmospheric models, 

and typically involves a single major species. At higher altitudes, [X] -* 0 such 

that D0 -* 1 and a a3; expression (3.62) is useful when it is desired to attempt 

to include the upper ionosphere in an analysis of sunlight scattering. However, for 

exospheric observations, a useful estimate of ae = a3 can be made for a line using 

u = vo and a possible value of the thermospheric temperature in (3.55). 

3.3 Upper Atmospheric Model 

3.3.1 ASP Counts to Column Densities 

Now that all of the quantities needed to find A/ q have been discussed, it is now 

possible to move on to the task of determining a conversion factor x that transforms 



38 

raw ASP counts C to a column density Afeq, that is 

JVeq = KC (3.63) 

Multiplying (3.43) by 4ir gives us a relationship between the measurement of the 

intensity, in Rayleighs (R), and the column density 

47rJ =  Jveq 
1010 (3.64) 

where the factor of 1010 is needed when ltfCq is in m 2, and g = 0.051 is the emission 

rate factor, in photons per ion, given in [17, 68], and defined by (3.42). From the 

ASP calibration,, we also have 

4irJ = 77C (3.65) 

where i = 232 R per ASP count. Substituting (3,.64) and (3.65) into (3.63) yields 

?71010 

Me) 
(3.66) 

Note that only p(®) and (iV q) are model dependent variables, with the former being 

constant for a given line of sight, and the latter being an estimate of the mean value 

of the equivalent column density given by 

1 +e 
(A1eq)  (3.67) 

where 6 is the angular extent of the ASP field of view, a is the scan angle of the - 

ASP line of sight measured from the ISIS orbital plane in the direction of the the 
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satellite's spin. A practical method of evaluating (3.67) employs a local polynomial 

approximation to the model generated .N q, which is calculated at a series of a that 

are spaced regularly in time. Given that we do not expect the precision of ASP 

observations to be all that high and that the model count calculation is based upon 

many simplifying assumptions, setting p(0) 1 for all 0 will be a negligible source 

of error in the estimation JV q for an assumed distribution, n(r), of N; this gives a 

conversion factor of 

r. = 4.55 >< iO m 2 per ASP count 

The problem of constructing n(r) will be considered next.-

3.3.2 Ion Distribution 

Given that the solution of the radiative transfer problem will require lengthy com-

puter numerical analysis, then it would be advantageous to keep the assumed ion 

distribution as simple as possible. To this end, we can avoid the development through 

the Boltzmann transport equation by assuming that the gas of interest is in equilib-

rium and isothermal. First we should look at the possibility of a real thermosphere 

being isothermal, or even approximately isothermal, over a useful range of altitudes. 

Empirical data back up this assumption, as can be found in [28], or in the appen-

dices of [55], to the extent that within several degrees Kelvin, the thermosphere is 

isothermal above 300 km. Granted, the models cited are for neutral gases; however, 

we expect the thermosphere in equilibrium to be neutral, that is, the number density 

of all ions is equal to the electron number density. 
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The isothermal assumption is inappropriate during a thermospheric disturbance 

if one has observations that allow for the identification of temperature variations. It 

must be stressed that the ASP observations are esentially integrations of activity 

(resonant scattering) occuring over thousands of kilometers of space. Evidence of 

structural variations, other than those to be considered below, is lost in the smooth-

ing effects of the integration. While we recognize the weakness of the isothermal 

assumption, we cannot ignore the futility of trying to extract more information from 

our observations than the data can provide. 

This derivation of the ion distribution is based on the idea of chemical potentials. 

First the fundamental reaction that provides for the N ions is considered 

Nt+eN2 

The above reaction is assumed to proceed in either direction at equilibrium, such 

that no changes in pressure or temperature occur. We then take the Gibbs free 

energy to be at a minimum in this equilibrium, and then, as in [34], the law of mass 

action follows 

tuilLi = 0 

where the numbers vi are the stoichiometric coefficients of the reaction, the pi are 

the chemical potentials of the species involved in the reactions. Let the index i = 1 

denote quantities related to the ions, let i = 2 refer to the electrons, and let i = 3 

refer to the molecules; then the law of mass action becomes 

(3.68) 
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Each of the 1i are functions of space and time. We suppose that there are radial 

variations only, and we assume that the chemical potential Y3 of the N2 molecules is 

constant. The distribution of N2 is static if p3 does not vary, which is a reasonable 

assumption. However, it now follows from (3.68) that the sum i+t2 is also constant; 

thus, if the sum is known at some radius r0, then at any radius r 

Y1 (r) + /-t2 (r) = hi (To) + hL2(ro) (3.69) 

The chemical potentials of both the ions and the electrons are similar, in that they are 

the sum of internal and external potentials. Given the rarefied gaseous environment 

in the upper atmosphere, then the internal chemical potential, hint, can be taken to 

be that of an ideal gas 

hint = kTln{!1.} 
nQ 

(3.70) 

where ic is Boltzmann constant, T is the temperature of the gas of number density 

n, and no is the quantum concentration 

/  mkT 3/2 i 
nQ =( 2 \ 2irh 

with m being the particle's mass, and /1 Planck's constant over 2ir. For an ideal 

gas: n << flQ. The external part of the potential, hext, is due to external force fields, 

which we will take to be gravitational and electrical 

GMm 
[text   + qqf 

r  (3.71) 
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where G is the gravitational constant, M is the mass of the earth, q is the particle's 

charge, and q is the electric potential at the point of interest. Using (3.70) and 

(3.71), then the total chemical potentials of the ions and electrons are 

kTln + GMm1 + 
l..flQiJ r 

= kTln + GMm2 + 
1. flQ2J 

(3.72) 

(3.73) 

Substituting (3.72) and (3.73) into (3.69) yields an expression for the product of the 

ion and electron number densities, from which q is absent because the charge of the 

N ions is equal in magnitude and opposite in sign to the charge of the electrons 

fin2 = nojn02 exp 
fGM(mi+m2) (1 1 ) I 

kT r 
(3.74) 

where n01 ni(ro) and no2 = n2(ro). Assuming charge neutrality, n1 = n2, and 

utilizing the fact that m1 >> M2, then (3.74) reduces to 

ni = no, exp 
) I fGM mi (1 1 

. 2lcT r r0 
(3.75) 

Hence, the mixture of ions and electrons behave as a neutral gas with a mass of 

approximately half that of the neutral parent N2. The temperature is not the usual 

definition—it is only claimed that the ionized gas is expected to be distributed like 

a neutral gas with a temperature T; however, even early observations, such as [50], 

revealed that the temperature of the electrons Te is usually greater than that of the 

ions Ti. Therefore, we adopt the concept of an effective plasma temperature, which 
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is clearly defined in [55] 

T=  (3.76) 

The temperature that will be found in the data analysis will be interpreted as (3.76)— 

the average of the ion and electron temperatures. It, should be stressed once again 

that the exact behavior of the ionized gas is not being considered, because this would 

entail non-equilibrium equations of state for a minor ion, as discussed in [47, 60]. 

Instead, we are seeking to evaluate the average properties of the gas. 

With this aim, we can also roughly account for the decrease in the ion density as 

we contimue below r0 past the observed density maximum. We can roughly approx-

imate a Chapman layer with a translated cosine function, which has its maximum 

set to unity at r0 and its minimun set to zero at r 80 km, where ri is the lower 

bound of the ionosphere. In effect, we multiply (3.75) by the function 

1 1 — 
(ro g(r)=---co.s r r1  

2 2 —r 
(3.77) 

over the range ri ≤ r < r0. Below r, we simply set n(r) = 0. Thus, we emulate—to 

a crude approximation—the observed properties of the lower ionosphere. A plot of 

1og10 {n(r)/n(ro)} is shown in Figure 3.3 for different temperatures. 

Since (3.75) is independent of q, then even if q should vary with r, the charges 

in the gas are not affected by the electric field. This is also true even for higher 

orders of ionization, because the stoichiometric coefficients are such that the electric 

potential dependence vanishes. 

However, we should not be deceived by the absence of 0 from the earlier equation 
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Figure 3.3: The relative number density as a function of altitude. The solid line is 
T = 2400K, the dashed line is T = 1600K, and the dotted line is T = 2000K. 

(3.74). Suppose that ri1 0 n2, then the charge density p is 

P = e(n1 - 722) 

which can be applied to (3.74) to give the following expression for ri1 

0.5 

2 (GM m1 1 1 
n1=+v/+nol(n.ol_ Lo )exPi kT (r o) (3.78) 

where po = p(ro)., and p must satisfy Poisson s equation. Therefore, an electric field 

will affect the distribution of N at some r if and only if p 0 at r. It should also be 

pointed out that (3.78) applies to a static situation only; there may exist unbalanced 

charge and electric fields, but there is no net current. 



45 

3.4 Elementary Tomography 

The tomographic inversion of photometric observations made from satellites is out-

lined in [65, 66], which is based upon the early works on the mathematics of tomog-

raphy, such as [20, 21]. The idea behind tomography is that if one knows the line 

integrals of a function in a plane (ideally, we know an infinite number), then one can 

invert the problem to provide the form of the function in the plane. Unfortunately, 

the ASP observations of the 391.4 nm limb number far less than infinity and are 

subject to random noise and systematic errors. Thus, it is all but useless to attempt 

to recover an image of the ASP scan plane of the quality one finds in tomographic 

images produced in medical applications. The poor results reported in [65, 66] were 

obtained from data far superior to that provided by ISIS 2; hence, we will attempt 

a more elementary tomographic inversion. 

If we limit our analysis to regions of the upper atmosphere where we can expect 

it to be optically thin r < 0.1, then (3.44) reduces to 

l00 

Jfeq = I s n(ri(.si)) ds1 
J 

Note that ri(s1), which has its functional form given by (3.25), reaches a minimum 

length p, also called the tangential height of the line of sight (see Figure 3.2), for 

some value of s. For any particular ISIS 2 spin, the observations can be ordered as 

a function of p. If we assume that the ASP is at a great distance from the scattering 

atmosphere, then 

V q(p) = Jn(r(si,p))dsi 
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In addition, since the number density is assumed to vary with radius r only, then 

a change of variables is in order. From (3.25), the replacement of .s with r as the 

variable of integration yields 

(.00 rn(r) dr 
J\Ieq(P)=2j \/r2_p2 (3.79) 

The result (3.79) is an Abel integral equation. The inversion, or solution, of (3.79) is 

discussed briefly in [5] and in detail in [26]. That is, a change of variables and then 

the application of both the Laplace transform and its convolution theorem to (3.79) 

yields 

n(r) _ 1 - -- rp  dp 
ir  /p2 _r2 

(3.80) 

This method of determining the radial number density profile n(r) can be com-

pared to the method presented above; however, it can only be applied to the optically 

thin portion of the ASP scan. This is the problem, because even though the path 

along the line of sight may satisfy r < 0.1, the path of the incident sunlight does 

not. Hence, we can only hope for agreement to the same extent that the premises of 

the two models coincide. 



Chapter 4 

Data Analysis 

4.1 Systematic Errors 

After an extensive preliminary inspection of the data, it was found that the accu-

racy to which the data was ordered was less than that required by the radiative 

transfer model discussed above. The uncertainty of the actual location, in space, 

of the satellite is negligible compared to the uncertainties in the quantities we shall 

discuss next. The systematic errors in the ASP data are nontrivial and must be 

acknowledged before the validity of any experimental result is to be considered. 

4.1.1 Line of Sight 

Let L denote the unit vector of the line of sight of the ASP as a function of time. 

It is known that L is always perpendicular to the satellite's spin axis. Hence, once 

the spin axis vector is determined, the specification of L is a matter of computing 

a reference angle and a spin rate. However, if there is an error in the spin axis 

orientation, then there will be anerror in L. 

We shall, for the moment, ignore any error in the spin axis vector, and consider 

the problem of correcting for systematic errors in the reference angle a0 and the spin 

rate w. That is, L is given by 

L(t) = b1 cos a() + b2 sin a(t) 

47 
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where the unit vectors b1, b2, and b3 form an orthonormal basis for the ISIS 2 spin 

orientation; b3 is the ISIS 2 spin axis, b1 is perpendicular to b3 and in the satellite's 

orbital plane, and b2 follows from the requirement that the three basis vectors be 

mutually orthogonal. The scan angle a is given by a previously written computer 

programme as a function of time 

a(t) = w(t - to) + ao (4.1) 

where to is the reference time. Higher order terms, such as angular acceleration, may 

be present; however, in the event to be examined, terms of higher order than w were 

found to be zero. 

Now suppose that there exist small systematic errors in w and a0, and let us 

denote these errors, respectively, as —Sw and —Sao; thus the corrected scan angle 

acorr is given by 

a0 (t) = (w + Sw)(t - t0) + (ao + Sac) (4.2) 

We seek some function f(t) such that 

a(f(t)) = a0,(t) (4.3) 

That is, (4.3) defines a transformation f(t) such that the scan angle function (4.1) 

derived from the 557.7 nm data is now the correct angle ceco,. Inserting (4.1) and 

(4.2) into (4.3) yields 

f(t) =t+ 
Sw(t -  t0) + 6a0  

w 
(4.4) 
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Result (4.4) provides us with the means to avoid the repeated computation of 

model ASP scans. The numerical analysis is performed once for each temperature 

and reference number density, and then in a minimization procedure Sw and Sao are 

variable parameters for which best fit values are sought. The time at which a model 

ASP observation is calculated is then transformed according to (4.4), and since all 

other quantities of interest, such as the geometry of L, are functions of time, they are 

similarly transformed. If a correction &.' for angular acceleration is to be included, 

then (4.4) becomes 

Sc.(t—to)2+Sw(t— to) +Sa 

W 
(4.5) 

It will be found, however, that & will not improve the best fit to any significant 

amount; therefore, the inclusion of correction terms of higher order than & is un-

warranted. 

The 13 element average (one data frame, see Figure 2.2) of the ASP data is 

plotted in Figures 4.1 and 4.2 for spins 5 and 9 respectively. The line of sight is 

on the Earth for the earlier times, and in the limb for the later. Therefore, we 

expect that the observations of interest end at the highest time for which acceptable 

data is available. The problem is determining where, in time, the observations of 

interest begin. Note that in Figure 4.1 there is a prominent peak; this feature is 

due to auroral emissions and this interpretation is backed up by the fact that the 

line of sight is near the earth's surface at the time the peak is observed—when the 

corrections (defined in (4.4) and determined by a best fit analysis) are applied to 

the line of sight, it is on the earth. There is a similar, but less obvious, feature in 
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Figure 4.2, supporting the interpretation that the maximum ASP count for either 

spin is due to the observation of an auroral feature; it appears to be a discrete arc 

in spin 5, and a more diffuse one in spin 9. 

4.1.2 ASP Count 

The calibration of the ASP before launch is discussed in [3]. Further refinements were 

made, such as the correction for the higher spin temperature of Nt as mentioned 

in [73] based on the results of [14]. The uncertainties in the raw ASP count were 

found by [3] to match that which is expected for counting, or Poisson, statistics. 

The systematic errors that we are interested in cannot be accounted for before the 

satellite was launched, simply because the harsh orbital environment, as well as the 

trauma of the launch, provide for the degradation of the ASP data collection. 

The updated calibration will be used as a first estimate of the sensitivity of the 

ASP. We will then correct for background noise SJV, and correct also for changes in 

the sensitivity SiV. Thus, the equivalent column density, given by (3.44) is trans-

formed to a corrected value A1c01.1., as follows 

JVCorr = (1 + SJV1)J\feq + 8) 0 (4.6) 

The background noise is estimated from ASP observations when L is directed 

away from the earth. On average, SA/J was found to be 

SAl0 = +1.9 x 1013m2 
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which corresponds to about 0.42 ASP counts. For the values of column densities of 

interest, this background is negligible. 

The correction SA(I cannot be associated with any one major source of noise. In 

fact, if any of the factors in (3.66) are inaccurate, then letting SA/ vary in a best fit 

analysis will correct for the resultant systematic error due to all of those factors. 

4.1.3 Spin Axis 

The error in the determination of the ISIS 2 spin axis, b3, falls into the realm of 

a systematic error. However, we shall not try to correct for this systematic error, 

simply because b3 may be subject to precession about some axis that is changing 

with time. It would require a a large number of parameters to begin to account for 

both the error in the best estimate of b3 and time variations in b3. Thus, we shall 

try a different approach. 

The ASP is divided into 13 cells, as mentioned above, such that observations are 

made parallel ,to b3. This parallel scanning allows for a angular sweep of 2.4 degrees 

above and below the plane perpendicular to b3. If we suppose that the actual spin 

axis is within about 2.4 degrees of the estimated direction (errors as large as 10 

degrees have been estimated in some cases), then we can treat the observations of 

the'13 cells as a sample from a population that includes the observation of interest. 

Then we use the mean in as our best estimate of the ASP observation orthogonal to 

b3 and the standard deviation of the mean 0m as the estimate of the uncertainty of 

m due to both an erroneous determination of b3 and the usual Poisson uncertainty. 
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4.2 Search for the Best Fit 

The determination of the best fit model for a given data set can be done in a variety 

of ways, some of which are discussed in [49, 52]. Some methods involve knowledge of 

the gradients of the model function; however, given the form (3.44) of .iV q, then this 

type of search for a minimum is not preferred. Instead, we shall opt for a reliable, 

but slower, algorithm that does not require the numerical integration of the gradients 

of JV q in addition to the computation of J\feq itself. 

In this way, the choice of the simplex method is made. What the simplex method 

lacks in sophistication, it makes up for in reliability. This is a desirable trait in a 

prototypical analysis. However, it will be found that the inevitable settling of the 

simplex in some multidimensional minimum does not lead to a sensible determination 

of the physical parameters. We will find that we must monitor the wanderings of the 

simplex so that it does not tumble into some meaningless minimum, such as fitting 

the model to the low count rate regions where the large uncertainties would allow 

for a good fit of almost any curve. 

4.2.1 Least Squares Best Fit 

The fundamental strategy adopted in this analysis is to use the simplex algorithm 

to minimize the reduced chi-squared, x, measure of the goodness of fit of the model 

y to the data Y. In particular, we are aiming to minimize 

1 N IY(t) —y(t,a)2  
X — ; o2(t) (4.7) 
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where N is the number of observations used in the analysis, ti is the time of observa-

tion, a is the M dimensional vector of parameters to be varied in the simplex method, 

ii = N - M are the degrees of freedom of the fit, and cr2(t) is the variance of the 

mean of the observation Y(t) made at time t. In principle, this algorithm is straight 

forward, and should yield some useful results; however the poor quality of the data 

can exclude such a desirable goal from the realm of possible outcomes. Because of 

the systematk errors discussed above, it will be found necessary to methodically 

discard data as we update our estimates of the elements of a, which include the 

number density no, the temperature T, the ISIS 2 spin corrections 8ao, Sw and &i, 

and the calibration correction SA/1. Hence, when it is recalled that W o has already 

been determined from the data, M = 7. 

It is the process of eliminating data that makes it clear why it is x and not 

the usual x2 that is being used in this least squares search for the best fit model—a 

consistent comparison can be made from one determination of X2 to the next when 

N is altered. The first segment of data to be discarded is the noise floor. If all 

of the data is included, the simplex method immediately finds a deep minimum by 

squeezing the model down into the noise. By restricting the analysis to ASP counts 

greater than 4, this meaningless result can be avoided. 

The next problem to face is the presence of spurious data, such as when a star is 

in the ASP field of view. These data are large counts that are far above the obvious 

data trend. We can eliminate the outlying points by imposing the following condition 

Y(t) - y(t,a)2 <9 (x) 
012 (ti) - Y(ti)included (4.8) 
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The condition (4.8) is the same as eliminating spurious data which are more than 3 

standard deviations away from the model (or mean), except that (X  )n acts as a 

weighting factor on the order of unity that favours better fits. In short, we first find 

a minimum using all of the data above 4 ASP counts, and then impose (4.8) on the 

next iteration. 

As our analysis provides a better identification of the limb data of interest, we 

can impose further restrictions on the data to be considered. Specifically, we extract 

the data that is associated with the range of altitudes where our model is expected 

to be useful. The observations of auroral forms are then the last of the data to be 

rejected. At last we hope that we end up with a set of data and a best fit search 

method that will provide a result in which we can be confident. 

4.2.2 Uncertainties 

The uncertainties, both systematic and random, associated with the results of the 

determination of the best fit number density no and temperature T preclude an 

accurate result; hence, the precision of our results may not give a true indication of 

their inherent error. For this reason, a detailed search for no and T was abandoned. 

A coarse grid upon which log10 (no) varied in steps of about 0.5 and T varied in 

steps of 400 K was constructed. At values of no and T in the search grid, the model 

J'Teq(no, T) was computed. Holding no and T constant, the simplex method would 

find the best fit under the imposed conditions discussed above, where all parameters 

other than no and T are allowed to vary. 

The grid surrounding the search grid minimum value of x was filled such that 

it was obvious the best fit model was contained in that neighbourhood. Next, the 
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nine values (eight boundary, one interior) nearest this region of the m inimum were 

used to construct a least squares paraboloid of X2 (no, T). That is, the nine points 

were used in a simple linear least squares determination of the six parameters that 

describe a paraboloid. 

Let uio and t denote the best fit number density and temperature, as yet un-

known. We define the new variables u and v as follows 

Thus, where u = v = 0 we have the global minimum of the paraboloid. Now, if 

we rotate the u-v axes through an angle &, such that the coordinate axes corre-

spond to the semi-major and semi-minor axes of the paraboloid, then we have the 

transformation 

X = U COS & + V Sm 

y = —u sin i' + v cos 

The paraboloid is given by 

x2 2 

x&io,i1) f(x,y)=—+ + 
A2 B2 

such that from all of the above relations we have 

f(no,T) = c1n 2 + c2T2 + c3n0T + c4n0 + c5T + c6 (4.9) 
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where the following parameters are found from a best fit analysis 

Cos 20 sin 20 
Cl =  A2+ B2 

sin  '/' Cos 2,0 

C2 = A2 + B2 

C3 = 2cos?1'sinb (  1 -) 
- 

c4 = - c3T 

C5 = —c3Ii0 - 2c2T 

= ci + c2 + c3ñoi + x(no, 2') 

From the definitions of c4 and c5 and some elementary linear algebra we obtain 

no = 
2c2c4 - c3c5 

- 4c1c2 

= 2e1c5 - C3C4 

- 4c1c2 

Similarly, from the definitions of c1 and c2 and c3 and some algebra 

A2= 
2 

Cl+C2±/(Ci —c2)2+4 

B2= 
1 

CI + C2 - A-2 

= arcsin  C3{ A-2 - B-2 } 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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where we choose signs such that A2 > 0 and B2 > 0. The m inimum value of 

follows immediately from the definition of c6 

x(ño, I) = c6 - c1i - c2t2 - c3i0T (4.15) 

We are now in a position to calculate the uncertainties 0n0 and or of ho and 

respectively. It is convenient to rewrite (4.9) as 

f(rto,T) = ci(no - io)2 + c2(T - T)2 + C3(flo io)(T - ri') + x(uio4) (4.16) 

The level at which we find the variables have departed from ho and 1' by k standard 

deviations, is where chi-squared has increased by k2 above its minimum value; since 

we are using the reduced chi- squared, then the k standard deviation level corresponds 

to 

k2 
f(no,T) = —+(ffo,) 

ii 
(4.17) 

where k = 1 for one standard deviation. As discussed in [49, 52], the uncertainties 

are the projections of the exfrema of the ellipse at the level (4.17) onto the no and 

T axes. That is, oj' = (T - 1) for some T such that 1L (no, T) = 0 and (4.17) hold; 

using these conditions and (4.16), we find for Ic = 1 

V (C2 - 4cl) 
(4.18) 
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Similarly, the standard deviation of no is 

'7n0 = ± 
1 

V Z1 

(c1_) 

(4.19) 

We have accomplished the task of defining an algorithm to compute the best 

estimate and uncertainty of both no and T, which are the end result of the least 

squares fitting procedure discussed above. 

4.3 Numerical Inversion of the Abel Integral Equation 

Having used the assumption that ISIS 2 is a distant observer in our derivation of 

(3.80), then we have a situation that is similar to a spacecraft passing by a planet. 

Thus, we will use a modified version of the "exponential form" data reduction sug-

gested in [57]. 

4.3.1 Exponential Column Density Profile 

Previous modelling revealed that, to a good approximation, the equivalent column 

density JV q falls off exponentially with the line of sight tangential height p for a 

limited range of p. This implies that a good fitting function over this range of p is 

A1eq =A1oexp{/3(p—po)} (4.20) 

where jVo = A 1eq (po) and both jVo and /9 are found using a singular value decomposi-

tion (SVD) algorithm to produce a stable least squares best fit. The practical aspects 

of the .SVD approach are given in [52], and the theory is presented in [42]. The dis-
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tinct advantage of the SVD algorithm is that it yields a useful solution even when the 

problem is ill conditioned. Detailed solutions of upper atmospheric radiative trans-

fer problems are notoriously ill conditioned; variou difficulties and disappointments 

with inversion methods are revealed in [ 1, 35, 65, 66]. The common conclusion is that 

the presence of noise, even in small amounts, provides for larger errors propagated 

through the inversion process. For these reasons, we will use the SVD least squares 

analysis in an attempt to skirt the expected obstacles. 

Inserting (4.20) into (3.80) yields 

jVj/9e PP0 f 00 ePP 

,/p2_ r24  (4.21) 

A change of variables, p = r sec 0, in (4.21) provides for an integral that is well-suited 

to numerical integration 

.A(o/9ePo ir/2 

n(r) =   I ir o sec 9e °d0 
J (4.22) 

After determining n(r) at the radii r allowed for by the observations, we can de-

termine the temperature T by perf9rming another SVD analysis on the data with 

(3.75) as the fitting function. 

4.3.2 Propagation of Uncertainties 

The variances a10 and u,26 associated with A(O and /3 can be propagated through the 

Abel inversion in order to provide an estimate of the uncertainty in n(r). We shall 

use the following formula for the variance C2 (r) of n(r), where the variances and 
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0,02 are independent and uncorrelated 

2 On 2 (apaivo 82n  \ 2 
= aivo) + (On) + 2ro 0,02 

which is derived in [6, 49]. From (4.22) we have 

an n(r)  
( 

8A"T - jV0 

n(r) (1 _I3Po) A(o/3e 13P0r f -7r/2 sec 20 

C92  1 O 
OP r = 

We can now turn our attention to the results of the data analysis we have de-

signed. 

(4.23) 



Chapter 5 

Results 

First we shall discuss the results obtained from the method in which we account 

for the extinction of 391.4 nm sunlight due to N scattering the light in directions 

other than the ASP line of sight. For convenience we shall refer to this method 

as PSE—primary scattering with extinction. Similarly, we shall name the second 

method, which will consider primary scattering with no extinction, PSN. Before we 

proceed, it would be a good idea to recognize that the uncertainties that will be 

associated with the results are a reflection of the precision of the methods used. The 

accuracy of the results is another problem altogether. Having examined our results, 

we shall then attempt to assess the extent to which we can be confident that they are 

a reflection of the actual physical conditions that provided for the ASP observations 

during the large magnetospheric storm on 18 December, 1971. 

5.1 Primary Scattering with Extinction 

The greatest obstacle to this analysis was finding a series of ISIS 2 spins over which 

the spin vector and rate seemed stable. The evening side observations were very near 

the ASP threshold; hence, very little data above 5 counts was available. At length, 

it was found that the evening side data added little to the analysis, and eventually 

it was ignored. The morning side observations provided good quality data for over 

15 spins. A stable best fit temperature T and number density no were found for 
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spins 4 to 10. What is meant by a stable best fit is that even when the best fit 

parameters were perturbed, the algorithm returned the parameters to their original 

values. This desirable property was an uncommon feature, and is probably the most 

valuable indicator of a best fit. 

The best fit temperature and number density are 

T = 2420 ± 70K (5.1) 

no = (2.4 ± 0.7) x 109m 3 (5.2) 

Note that all densities reported have been subsequently corrected for the fraction of 

N that is in the lowest vibrational state of the ground electronic state; the relevant 

fraction is 0.55 for an ionic temperature of about 1500 K; the data is provided in 

[12]. 

The fits are worst for the two spins at the end of the interval of interest—spins 

4 and 10. Spin 10 is the poorest of them all, yet spin 9 is apparently the best. The 

interior spins 5 to 9 are shown in Figures 5.1 to 5.5 . One notable feature of these 

plots of the best fit PSE limb profiles is how the kink in the model profile, which is 

located at a tangential height p 80 km in Figure 5.1, slowly moves to higher values 

of p in subsequent spins: p 150 for spin 7 shown in Figure 5.3 and p 210 km 

for spin 9 shown in Figure 5.5. This trend is somewhat noticeable in the observed 

data. The physical reason for this kink is that for lower values of p the ASP line 

of sight passes through the earth's shadow cylinder as ISIS 2 proceeds in its polar 

pass from the day side to the night side. The satellite's orbit carries it down into the 

penumbra, such that the apparent angular extent of the shadow cylinder increases. 
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Figure 5.1: PSE model best fit for the morning side—spin 5. 
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Figure 5.3: PSE model best fit for the morning side—spin 7. 
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Figure 5.5: PSE model best fit for lhe morning side—spin 9. 

60'O 

In this way, with each passing spin, the ASP line of sight intersects with the shadow 

cylinder for larger and larger values of p. 

The best fit values for the corrections to the reference angle 5 o, the spin rate 

Sw, and the ASP calibration 8.1V1 were found to be 

8a0 = —0.l4lrad = 8.O80 

Sw = —6.92 x 10 4rads' = —3.96 x 10 2 deg s' 

= —0.624 

The size of 6a0 is far larger than the 1° uncertainty expected in [46] and Sw provides 

a relative uncertainty of 0.2%, whereas [46] anticipated a relative error of 0.01%. 
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Hence, a serious limit on the accuracy of our results is due to the processing of the 

data before the PSE analysis is performed. In addition, the statistics, namely the 

value of x, indicates a poor fit—either the uncertainties in the ASP counts are under 

estimated, or the model is incorrect. Given that the results for So, Sw and S.AI are 

significantly larger than expected, it is hard to decide what is the cause of the poor 

statistics. 

5.2 Primary Scattering with no Extinction 

We use the corrections Soo, and Sw that were found in the PSE analysis in the 

analysis that ignores extinction (PSN). However, if a meaningful comparison is to be 

made between the analyses, the inverse correction must be applied to the data. This 

is because the calculation of .AIeq by either (3.44) or (3.79) involves no parameters 

related to the ASP. Hence, the observed ASP count C is subject to the inverse of the 

transformation given by (4.6) before performing the PNE analysis 

At 

./Veq i+5.M1 

The reason we shall use the corrections & o and Sw for the line of sight is apparent 

from inspection of Figure 5.6, where we can see that the tangential height p of the 

uncorrected line of sight differs significantly from that which has been corrected. For 

instance, at t = 7835.0 s Universal Time, the corrected value of the tangential height 

is p 200 km, while the uncorrected value is p 400 km. This is a significant 

difference; hence we will use 8a0 and Sw in our PSN determination of T and no 

The best fit lines to the logarithm of ASP count versus the line of sight tangential 
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Figure 5.6: Tangential Height as a function of time. The solid line is the function 
due to the corrections found in the PSE analysis, the dashed line is the uncorrected 
form. 

7835.4 

height are shown in Figures 5.7 to 5.11. The resulting temperatures and number den-

sities are in Table 5.1. A plot of the inverted number dehsity profile is uninteresting, 

because the exponential fit (4.20) to the column density smooths the data such that 

the best fit line necessarily passes through all of the points. 

From the results given in Table 5.1, the weighted means and their associated 

uncertainties are 

T = 2320 ± 80K (5.3) 

no = (1.61 ± 0.03) x 109m 3 (5.4) 
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Figure 5.11: PSN best fit for spin 9 only—morning side. 

SPIN T 
K 

no 
i0 m 3 

5 2600±200 1.72±0.08 

6 3300 ± 300 1.25 ± 0.08 

7 2100±100 1.79±0.08 

8 2100 ± 300 1.8 ± 0.2 

9 2600±200 1.61±0.08 

Table 5.1: Temperatures and densities from the PSN analysis. 



72 

5.3 Discussion 

The precision of the results for the temperature T and the number density no at 300 

km we shall expect to be reflected well by the uncertainties provided by the methods 

used to find T and no. Results (5.1) and (5.2) show that for the primary scattering 

with extinction (PSE) analysis, the relative precision of T is ±3%, and for no it is 

±31%. Hence, we shall view our determination of the temperature to be a better 

estimate of the related thermal properties of the upper atmospheric Nt than the 

estimate of the number density. 

In Table 5.1 the results for the method that uses primary scattering with no 

extinction (PSN) are displayed. It reveals a fairly consistent result for the number 

density, except for spin 6, whereas, the temperatures vary widely. We expect the 

PSN estimate (5.4) of no to be systematically lower, since the optical depth of the 

scattered sunlight has not been taken into account—there appear to be fewer scat-

tering ions only because of extinction. However, the temperature is expected to be 

nearly the same; this is because the extinction effects are fairly uniform for limb ob-

servations over the tangential heights (300 km minimum) considered. In fact, within 

experimental uncertainties, the PSE result (5.1) for the temperature T agrees with 

the PSN weighted mean (5.3). The relative uncertainties in the PSN weighted means 

have a closer relationship than that noted above for the PSE best estimates: ±3% 

for T, and ±2% for no. 

We shall now look at the results with the intention of finding observations that 

support the findings of this investigation. The observations will be from a variety of 

sources; most of them will be upper atmospheric temperatures and densities mea-
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sured during a geomagnetic storm—not necessarily during the storm of 18 December, 

1971. We are seeking reasons to reduce our initial skepticism: facts that provide for 

confidence in the accuracy of the results. 

5.3.1 Temperature 

First, we should clarify what is meant by temperature. Our results will be interpreted 

as the effective plasma temperature, as given by (3.76) to be T = (T1 + Te)/2. This 

means that we must consider observations of thermospheric electron temperatur&s Te, 

as well as ion temperatures T1 during geomagnetic storms. In addition, the neutral 

particle temperature T will also be examined, because of the well established result, 

provided in [55], that the temperatures of interest are related as follows 

T≤T1≤T (5.5) 

From the relationship given by (5.5), and the fact that observations of T are 

more common than those of Ti—and far more so than the temperature of Nt in 

particular—then we will 6onsider some measurements of T so as to establish a typ-

ical lower bound on Ti. 

Even the earliest results of observations from rocket borne experiments agree 

with the results of this analysis. In [50], it was found that during the magnetic 

storm of 3 August, 1962, the daytime temperatures of interest above 300 km were 

Ti 1600 K and Te 3000 K; an effective plasma temperature of 2300 K results. 

The observations cease at about 350 km, so that no conclusion can be drawn as to 

what degree the thermosphere was isothermal. During a different storm on the same 
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day, oddly enough, but two years earlier in 1960, [10] found an isothermal (within 

10%) electron temperature of Te 3000 K between the altitudes of 300 and 400 km. 

This was compared with a quiet day temperature of Te 1800 K; hence, systematic 

errors in detection or data reduction seem remote. No value of Ti was reported. 

Although ground based incoherent radar measurement of upper atmospheric tem-

peratures are less direct (the data reduction depends on assuming the unknown ion 

composition and distribution), there is also no stark inconsistencies with our results. 

Some observations made duriiig sunspot minimum and geomagnetically quiet condi-

tions are presented in [23]. At 300 km it was found that Ti 800 K and Te 2200 K. 

Thus, even during quiet conditions, the ion and electron temperatures are definitely 

different. It was also found that the temperatures increased significantly with height, 

such that by 600 km they were calculated to be Ti 1700 K and Te 3000 K, which 

are typical temperatures measured by the rocket experiments during disturbed con-

ditions. This observation certainly weakens the soundness of our assumption of an 

approximately isothermal thermosphere; however, radar based calculations of tem-

perature become less certain with increasing altitude, because errors in the assumed 

ion distribution also accumulate. 

A comparison of radar observations of the same disturbed ionosphere by two dif-

ferent stations was presented in [54]. The temperatures at 300 km were 1700 K 

and Te 3100 K such that T 2400 K, which agrees well with our result. There was 

also a discussion of a systematic difference of about 200 K between the two stations, 

but this was seen to be less worrisome than the large uncertainties introduced by the 

required conjecture regarding the arrangement of ions with altitude. 

A Fabry-Perot spectrometer was used by [32] to observe a neutral thermospheric 
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temperature of T 1600 K during the geomagnetic storm of 2 March, 1983. This 

was the peak temperature, and according to (5.5), it gives us a lower bound on the 

typical T associated with a thermospheric disturbance, and it is not inconsistent 

with the ion temperatures discussed so far. 

Satellite observations of the upper atmosphere provide another important test of 

our result. Our assumption of a roughly uniform thermospheric temperature inde-

pendent of longitude or latitude was found to be in disagreement with the findings 

of [37], where it was concluded that the upper atmospheric temperature increases 

from the geomagnetic equator, and reaches a peak in the auroral zone. However, 

it was also found that this temperature gradient dissipates with the propagation 

of a density wave from the higher auroral latitudes toward the lower—more about 

this in our discussion of densities. ISIS 2 electron temperatures at 1400 km (orbital 

altitude) during the 18 December, 1971 large storm, which is our event of interest, 

are presented in [15]. During spins 5 to 9 on orbit 3306, the electron temperature is 

scattered widely about T. 3000 K; since other observations lead us to expect the 

electron temperature to increase with altitude, this observation gives an upper bound 

estimate on the electron temperature of the event we have analyzed. Unfortunately, 

ion temperatures at the ISIS 2 orbit could not be measured, as the instrument was 

useless when the ASP was collecting data by scanning perpendicular to the orbital 

plane. In [11], ISIS 2 temperatures are reported for a different storm; the electron 

temperature stayed in the range of 3000 to 4000 K, even to lower latitudes, whereas 

the ion temperature was highly variable, and it reached a peak of 3000 K at about 

50 degrees geomagnetic latitude (1400 km altitude). 

The measurements of the Dynamics Explorer 1 satellite also show a lack of van-
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ation in Te with latitude, where the observations are at altitudes lower than ISIS 2: 

about 700 to 1000 km. However, large variations in Te were found to be associated 

with the crossing of localized magnetospheric features, such as the plasmapause. At 

these thermospheric altitudes, it was found that Te 1500 K at quiet times to 

Te 4000 K at disturbed times. Another result from the Dynamics Explorer con-

cerns a solar proton event, 13 July, 1982, where [58] provide a neutral thermospheric 

temperature over the poles of T 2000 K, which gives us an extreme measurement 

of T that is not commonly found in geomagnetic storms. 

So far we have discussed observations made on the day side, in direct sunlight, 

but our results follow from observations of the morning side limb. Night side obser-

vations during large storms show systematically lower temperatures in the thermo-

sphere; however, the temperatures are seen to be step functions, as reported by [56], 

where the twilight temperatures change nearly instantly from one extreme to the 

other. During quiet upper atmospheric conditions, the step in temperature can be 

1000 K or more for electrons, less for ions. Disturbed periods, in contrast, are char-

acterized by higher temperatures and smaller day and night differences. Of course, 

the polar thermosphere, which is of chief interest, is always in sunlight, and so twi-

light temperature behaviour is of interest only for the lowest tangential heights of 

our observations—a region we are not claiming to model. 

Through a different method, [73] attempted to determine the temperature of 

upper atmospheric ionized N2 gas. Although [73] calculated a best fit temperature 

of T 1750 K, this result was not immediately acceptable, because it was expected 

that the ionized gas would have the same temperature T 900 K as the neutral 

thermospheric components. If we take this value of T as an estimate of the lower 
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bound of Ti and use a typical quiet time electron temperature, say Te 2200 K as 

given in [23], then inserting these two temperatures into (3.76) yields 1550 K as a 

lower bound estimate of the effective plasma temperature. Looking at the results of 

[73] in this way, the temperature now appears physically reasonable and acceptable. 

5.3.2 Number Density 

Ground based observations of thermospheric Nt number densities are available; how-

ever, they tend to be searches for the emitting layer (altitude of maximum density), 

rather than being concerned with the determination of composition as a function of 

altitude. In addition, tropospheric Rayleigh scattering of 391.4 nm light, discussed in 

[13], all but eliminates the possibility of acquiring the observations that are necessary 

for detailed descriptions of density variations with altitude. 

Photometers carried to lower thermospheric altitudes by rockets provide better 

observations than the earth bound experiments. Unfortunately, in most cases the 

rocket does not go as high as 300 km; instead, they end their ascent at the Nt 

density maximum, which is at about 230 km. We shall use (3.75) to extrapolate the 

densities at any altitude to that which is to be expected at 300 km. For instance, 

[75] provides an afternoon number density of [Nt] 3 >< i0 m 3 at 220 km. With a 

quiet temperature of the ionized gas of 1500 K, this gives an estimate of the density 

at 300 km of no 1 x iO m 3, which is of the same order of magnitude as our PSE 

and PSN results. Another daytime measurement under quiet geomagnetic conditions 

is reported by [24], in which the rocket ascended to the 300 km level, where it was 

found that no 6 x 108 m 3. This is lower than our results, as would be expected 

for quiet conditions in direct sunlight. A last example is from [64], where it was 
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found that [Nt] 1 x i0 m 3 at 260 km; which gives no 7 x 108 m 3. Thus, both 

our PSE and our PSN results are 5 times larger than quiet thermospheric densities, 

which we expect to be lower, bound estimates. 

An upper bound estimate on our no result can be obtained from the fact that the 

earliest detection of any N at the ISIS 2 orbital altitude was stated in [33] to be 

associated with the 4 August, 1972 geomagnetic storm—none were detected during 

the event we have considered, because the ion mass spaectrometer was inoperative 

when the satellite was in orbit aligned mode. Suppose that at the orbital altitude 

of 1400 km the Nt number density is of the same order of magnitude, 108 m 3, as 

observed during the August 1972 storm. For a temperature of 2400 K, the density 

at 300 km is no m 3. This upper bound estimate indicates that our result is 

of an acceptable magnitude. - 

The number densities of about no 2 x iO m 3 obtained by [73] is associated 

with the so-called winter enhancement of Nt in the polar thermosphere. This agrees 

well with our result, even though, as mentioned above, the method of analysis was 

different than either of the two used in this investigation. An undisturbed mid-

latitude density measurement, by satellite, of [Nt] 1 x i09 m 3 at 225 km is 

recorded in [70], which can be extrapolated to 300 km to give no 5 x 10 m 3. 

In contrast, [58] reported Nt densities, observed by the Dynamics Explorer satellite 

during the solar proton event of July, 1982, for polar latitudes, no 1 x 1010 m 3, and 

mid-latitudes, no 3 x iO m 3. We shall take these last densities as extreme values, 

because solar proton events are characterized by extreme ionospheric conditions. 

The increase of ion density with latitude was also revealed in [53] under stormy 

geomagnetic conditions. Our assumption that number density is a function of alti-
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tude only is clearly violated. However, [37] discussed evidence from neutral particle 

data that the density surplus at auroral latitudes propagates in a wave to the lower 

latitudes—this is time dependent behaviour we have not considered. Since we have 

adopted the observed property of bulk neutrality for our gas of ionized N2, then we 

can expect the ion densities will also tend to toward uniformity in a similar fashion. 

This is supported by a theoretical study presented in [63], where local ionic enhance-

ments of ten times the ambient value decay away in, at most, eleven hours during 

winter (the season in which our event occurred); but density depletions are far less 

stable, and are calculated to last no more than a few hours. Thus, it is the equatorial 

depletions that determine the time it takes for the ion density gradient with latitude 

to diminish. 

The amount by which the N2 density increases with temperature was found in 

[8] to double for an increase of 200 K in the thermospheric temperature. For the 

geomagnetic storm of February, 1974, [30] reported an increase of ten times over the 

density associated with typical conditions. It was also verified that all of the heavier 

neutral components—N2 included—of the thermosphere were enhanced, regardless 

of latitude. 

5.4 Conclusion 

We have reviewed a sample of typical observations that bear directly upon our re-

suits for the number density no of N at 300 km and its thermospheric effective 

plasma temperature T. The conclusions dealing with T and no that follow from our 

discussion can now be stated. 
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• T is probably overestimated, but not by much more than 300 K. The fact that 

two different methods yielded values of T which agree within their respective 

uncertainties and that other observations do not contradict our results are 

two reasons to be confident in the accuracy of our determination of T. The 

assumption of a uniform value of T for the thermosphere is a fair approximation 

at best, and under some extreme circumstances—such as the beginning of a 

storm—it is an entirely inappropriate assumption. 

• We may have underestimated no, but not by more than an order of magnitude. 

We have accounted for the difference in the results obtained by two different 

methods: the difference being the extinction of 391.4 nm light by thermospheric 

N. Other observations do not discount our findings as unprecedented; in fact, 

they lie well within the realm of the physically possible. The assumption that 

ri varies only with altitude suffers from the same problems as our isothermal 

conjecture. 

The data analysis algorithm for primary scattering with extinction (PSE) can be 

deemed neither a complete success nor a dismal failure. It is a fact that, with a little 

coaxing, the algorithm did not collapse under the burden of poorly ordered data 

(due to a wobbling satellite) and, for a limited segment of data, was able to produce 

corrections to the observations and their ordering in time (hence altitude) such that 

an independent, but previously successful, method could produce similar results. 

This seems like enough evidence to propose that our prototype PSE algorithm is 

at least worthy of some attention. However, the overall accuracy is questionable, 

because of the unexpectedly large values of the corrections required by our best fit 
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model. 

If our PSE analysis passed testing on better quality data, if such were extant or yet 

to be obtained, then it could be upgraded for general applications—it could be used 

to analyze other scattered or emitted wavelengths Of other particles in order to test 

any assumed number density distribution. The scattered radiation need not have a 

natural source, but could be introduced as part of the experiment. Further extensions 

to include multiple and Rayleigh scattering would make sophisticated ground based 

observations possible, and that would allow for a detailed determination of the spatial 

structure of the scattering material. 
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