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Abstract

We study the Merton investment problem in insurance where the risk process is based on the general

compound Hawkes process. That means the arrival of claims modeled with a Hawkes process and the

modeled claim sizes follow a finite number of fixed jump sizes governed by a Markov chain evolution. The

Merton investment problem in insurance is an optimal control problem and we use the dynamic programming

method to derive the stochastic Hamilton-Jacobi-Bellman (SHJB) equation satisfied by the value function.

The stochastic HJB equation yields a means to obtain the optimal control and thus the optimally controlled

stochastic differential equation. Finally, using the claim size from the empirical data set, we simulate the

optimal investment portfolio and risk process.
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Chapter 1

Introduction

1.1 Overview

Any investors who invest money in the financial markets aim to maximize their expected returns while lim-

iting the risk of losing money. Potential objects of investment can basically be divided into two categories:

risky assets (stocks, derivatives, real estate, raw materials, etc.), which are subject to price volatility, and

risk-free assets (bonds and T-bills), which are assets with a beforehand known future return. Normally risky

assets have higher expected rate of return compared to risk-free assets. Depending on the degree of risk

aversion, an investor will want to compose an investment portfolio as a mix of both risky and risk-free assets

to match the level of risk the investor is comfortable with. This problem of finding optimal investment

strategy is known as “Merton’s portfolio problem”. This problem can be modeled as a stochastic optimal

control problem. In a stochastic optimal control problem, an investor wants to find the optimal control

(optimal investment strategy) so that the criterion function(risk/revenue) is being optimized.

Under the Markovian setting, stochastic optimal control problem leads to the deterministic Hamil-

ton–Jacobi–Bellman (HJB) equation. The HJB equation is a result of the theory of dynamic programming.

For an optimal control problem, it is a prerequisite to solve the associated HJB equation to execute optimal

control. In general, it is a nonlinear partial differential equation in the optimal value function, which means

its solution is the value function itself. Under non-Markovian setting, the stochastic optimal control problem

leads to the stochastic Hamilton–Jacobi–Bellman (SHJB) equation, which is a stochastic partial differential

equation for optimal value function.
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For processes that can be categorized as ”Self-exciting”, occurrence of each event increases the rate of

future occurrence for certain amount of time. For example, each earthquake excites the process in the sense

that the chance of aftershocks is increased for some time period after the first earthquake. The same thing

happens for gang violence, trade order, or bank defaults. The Hawkes process (HP) is a point process named

after Alan G. Hawkes (1971). The HP models the sequence of event occurrence (arrival) for ”self-exciting”

process. There is a few generalizations of the Hawkes process. General Compound Hawkes process (GCHP)

was used to model for the mid-price by Swishchuk and Huffman (2019).

Insurance is a form of risk management which is used to hedge against the risk of a accidental or uncertain

loss. An insurer or insurance company or an underwriter provides insurance. A person who buys insurance

policy is known as a policyholder, while the person under the policy is called an insured. The insured receives

the insurance policy which is a contract explains the conditions and circumstances under which the insurer

will compensate the insured, or their designated beneficiary. The amount of money charged by the insurer

to the policyholder in exchange for the coverage set forth in the insurance policy is called the premium. If

the insured experiences a loss which is potentially covered by the insurance policy, the insured submits a

claim to the insurer for processing by a claims adjuster. For example, a health insurance provides for the

payments of benefits as a result of sickness or injury. It includes insurance for losses from accident, medical

expense, disability, or accidental death and dismemberment. Sometimes a mandatory out-of-pocket expense

required by an insurance policy before an insurer will pay a claim is called a deductible which is required by

a health insurance policy. The insurer may hedge its own risk by taking out reinsurance, whereby another

insurance company agrees to carry some of the risks, especially if the primary insurer assumes the risk is too

large for it to carry. Since insurance companies are for-profit enterprise it must have a business model that

earn more than it pays out as the form of claims. For this reason insurance companies want to earn revenues

from the money collected on policy premiums, minus the money paid as claim payment. Besides this, like

other financial institutions, insurance companies also make money by investing into financial markets.

In this research, We aim to study the Merton portfolio optimization problem in insurance for HP based

model. In this setup, an insurance company wants to find an optimal investment strategy for their capital

R(t) at time t, where capital R(t) and the amount of claims are described by the risk model based on the

general compound Hawkes process.
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1.2 Literature Review

The point process gained a significant amount of attention during the 1950s and 1960s. Cox introduced

the notion of a doubly stochastic Poisson process (called the Cox process now) in [8] and in [3] Bartlett

investigated statistical methods for point processes based on their power spectral densities. Lewis in [21]

formulated a point process model which was a step in the direction of the Hawkes processes (HP). A nice

introduction to the theory of point processes can be found in [5] and [11]. The HP was first introduced

in [16]. Laub, Taimre and Pollett provide background, introduce historical development and discuss all

major aspects (i.e, parameter estimation, simulation methods) of HP in [19]. The general compound Hawkes

process (GCHP) was introduced by Swishchuk in [1] to model the risk process in insurance. For the first

time, the general compound Hawkes processes were considered in [33] which explained FCLTs and LLNs

for general compound Hawkes processes with dependent orders and regime-switching compound Hawkes

process. Application of the risk model based on GCHP to empirical data and optimal investment problems

were considered in [36]. In 2017, semi-Markov modeling of limit order books was first considered in [35] to

model the mid-price change with two ticks by Swishchuk and Vadori. During the same year, the general

semi-Markovian modeling of limit order books with n ticks was considered in [32]. We note that compound

Hawkes processes were first applied to limit order books in [34]. [17] considered different types of GCHP

and their diffusive limits to model the mid-price of six different stocks. We want to mention some sources

which contain many useful results about Hawkes processes in finance. In 2007, Bowsher applied the HP to

financial data modeling in [4]. A detailed description of the mathematical theory of Hawkes processes is

given by Liniger in 2009 in his Ph.D. thesis [22]. In [7] Álvaro Cartea, Sebastian Jaimungal and Jason Ricci

applied HP to model market order arrivals.

The problem where an agent wants to invest the wealth in order to maximize some utility function was first

studied by Merton in [24]. The first applications of optimal control in insurance were found in [18], [23], [6].

The paper [31] about Merton investment problems by Swishchuk consists of new Hawkes-based models and

the new optimal investment results in finance and insurance for those models.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows. The Hawkes process and related definitions, its properties, and

simulation methods are introduced in Chapter 2. Next in Chapter 3, stochastic optimal control problem,

dynamic programming and Merton’s investment problem in finance are presented. Then the implementation

of the dynamic programming method to Merton investment problem for empirical data set containing claim

3



occurrences is discussed in Chapter 4. Finally, in Chapter 5 we conclude our thesis.
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Chapter 2

Hawkes Process

The Hawkes process is a point process that models the self-exciting process and has a clustering effect and

long memory. One can think of this as a non-markovian extension of the Poisson process. In this chapter,

we will discuss in detail about Hawkes process, its various components and properties, and the simulation

methods.

2.1 Basics of Hawkes Process

In this section, before introducing the formal definition of the Hawkes process, we will introduce some related

definitions first.

Definition 2.1. Counting Process: A stochastic process {N(t), t ≥ 0} is said to be a counting process if

N(t) is the number of events occurred from time 0 up to and including time t. For a counting process N(t):

• N(0) = 0.

• N(t) take values in N0.

• If 0 ≤ s < t, then N(t)−N(s) is the number of events occurred during the time interval (s, t].

A counting process is almost surely finite and a right continuous step function which gets an increment of

size +1 with each occurrence of events (arrival). The history of the arrival up to time t is denoted by H(t),

which is a filtration. Another way to characterize such a process is to consider the sequence of random arrival

times T = {T1, T2, · · · } at which the counting process N(·) has jumped.

Definition 2.2. Point Process: If a sequence of random variables T = {T1, T2, · · · } taking values in

[0,∞), has P(0 ≤ T1 ≤ T2 ≤ · · · ) = 1, and the number of points in a bounded region is almost surely finite,
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then T is a point process.

The counting and point process are interchangeable. One way to characterize a particular point process

is to specify the distribution function of the next arrival time conditional on the past. But it is difficult to

work with the conditional arrival distribution. In this case, another characterisation of the point process is

used which is called conditional intensity function λ∗(t), and can be defined as

λ∗(t) =
f∗(t)

1− F ∗(t)
, (2.1)

where, F ∗(t) is the distribution function and f∗(t) is the conditional c.d.f (or p.d.f). Generally, an intuitive

representation as the expected rate of arrivals conditioned on H(t) is preferred over the above definition.

Definition 2.3. Conditional Intensity Function: Consider a counting process N(t) with associated

histories H(t), t > 0. If a non-negative function λ∗(t) exists such that

λ∗(t) = limh↓0
E[N(t+ h)−N(t)|H(t)]

h
, (2.2)

which only relies on the information of N(t) in the past. Originally, this function was called the hazard

function.

By [11], if the conditional intensity function exists, it uniquely determines the finite-dimensional distri-

butions of the point process and can thus be used as a characterization. More generally, it can be used to

classify certain classes of point processes. For instance:

• If λ∗(t) is independent of H(t), the associated process is a renewal process.

• If an arrival causes λ∗(t) to increase, the associated process is called self-exciting. This causes temporal

clustering of T and thus λ∗(t) must be chosen carefully to avoid the event of an explosion, meaning

the occurrence of an infinite number of events in a finite time interval.

• On the contrary, if an arrival causes λ∗(t) to drop, the process is called self-regulating and thus the

arrival times of new events appear quite regular.

Definition 2.4. Compensator: For a counting process N(t), the unique non-decreasing and H(t) pre-

dictable function

Λ(t) =

∫ t

0

λ∗(s)ds, (2.3)
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is called a compensator. Here, Λ(0) = 0 and N(t) = M(t) + Λ(t) almost surely for t > 0. Also M(t) is an

H(t) local martingale whose existence is guaranteed by the Doob-Meyer decomposition theorem.

In the 1950s and 1960s, when point process get some attention in the field of statistics by Cox and Lewis

[9] and Lewis [21], during the same period Bartlett introduced statistical methods for point processes based

on their power spectral densities. Then in [16] Hawkes discussed the theoretical properties of a class of

processes with particular reference to the point spectrum. The self-exciting point process is a particular

result that came from Bartlett’s spectral analysis approach by Hawkes. Now we will define the Hawkes

process and its choice of different kinds of conditional intensity functions.

Definition 2.5. One-dimensional Hawkes process: Consider a counting process {N(t) : t ≥ 0}, with

associated history {H(t) : t ≥ 0} which follows

P(N(t+ h)−N(t) = m|H(t)) =


λ∗(t)h+ o(h), m = 1

o(h), m > 1

1− λ∗(t)h+ o(h), m = 0

, (2.4)

where N(t) is characterized by the conditional intensity function with respect to its natural filtration is of

the form

λ∗(t) = λ+

∫ t

0

µ(t− s)dN(s), (2.5)

for λ > 0 and µ : (0,∞)→ [0,∞) which are called background intensity and excitation function respectively.

To avoid the trivial case of being a homogeneous Poisson process assume µ(·) ̸= 0. Then the process N(t) is

called a Hawkes process.

Notice that the background intensity is constant. Arrivals occur according to λ before any arrivals even

happened. If λ = 0 then the background intensity will no longer carry the process forward. The above form

of Hawkes conditional intensity function is just a general form.

2.2 Hawkes Conditional Intensity Function

Let us consider a sequence {t1, t2, · · · , tk} which denotes the sequence of past arrival times of the point

process up to time t. Then the most intuitive form of Hawkes conditional intensity can be written as

λ∗(t) = λ+
∑
ti<t

µ(t− ti).

7



The self-exciting property of the Hawkes process must be specified through the excitation function µ(·) of

the conditional intensity function, that means, if an arrival happens then the conditional intensity function

must increase. Thus each new arrival increases the probability of having another new arrival and might leads

to an explosion in the process. This behavior causes temporal clustering in T i.e, a lot of increments in a

short period of time. For this reason, µ(·) should be chosen in a way that avoids the explosion of the number

of arrivals which is called stationary processes. An one-dimensional Hawkes process can be interpreted as

stationary if the excitation function µ(·) satisfies
∫∞
0

µ(s)ds < 1 stated in [19].

Here we will introduce two types of excitation functions.

2.2.1 Exponential Decay Excitation Function

The exponential decay intensity function is one of the most common choices for the excitation function and

has the form µ(t) = αe−βt first recommended by Hawkes in [16]. It has two constant parameters α, β > 0.

Then equation (2.5) can be expressed as

λ∗(t) = λ+

∫ t

−∞
αe−β(t−s)dN(s) = λ+

∑
ti<t

αe−β(t−ti), (2.6)

where the constant α represents the instantaneous increase of the arrival and β interprets the rate of arrival’s

influence decay over time. Differentiating the above equation gives us

dλ∗(t) = β(λ− λ∗(t))dt+ αdN(t), t ≥ 0.

Here the initial condition λ∗(0) = λ0 = λ. To solve this SDE we have to apply Itô’s Lemma for f(t, λ∗(t)) =

eβtλ∗(t) which will lead us

df(t, λ∗(t)) = ftdt+ fλ∗dλ∗(t) +
1

2
fλ∗λ∗d < λ∗(t), λ∗(t) >

= βeβtλ∗(t)dt+ eβt(αdN(t) + β(λ− λ∗(t))dt) + 0

= βeβt(λ∗(t) + (λ− λ∗(t)))dt+ eβtαdN(t)

= λβeβtdt+ eβtαdN(t).

Integrating both side of the above equation from 0 to t gives us

f(t, λ∗(t)) = f(0, λ∗(0)) +

∫ t

0

λβeβudu+

∫ t

0

αeβudN(u)

= λ0 + λ(eβt − 1) +

∫ t

0

αeβudN(u).

8



Finally, multiplying both sides with e−βt will lead us

λ∗(t) = e−βt(λ0 − λ) + λ+

∫ t

0

αe−β(t−s)dN(s),

which is nothing but equation (2.6).

The stationary condition for exponential decay gives us,

∫ ∞

0

µ(s)ds =

∫ ∞

0

αe−βsds =
α

β
< 1,

⇒ α < β.

2.2.2 Power-law Excitation Function

Another choice for the excitation function µ(·) is the power-law function which has the form

µ(t) =
m

(d+ (t))q
, (2.7)

where, the parameters m, d and q are positive. Then conditional intensity function in (2.5) becomes

λ∗(t) = λ+

∫ t

−∞

m

(d+ (t− s))q
dN(s) = λ+

∑
ti<t

m

(d+ (t− ti))q
. (2.8)

This definition of conditional intensity from power law excitation function λ∗(t) was applied in the geological

model called Omori’s law and used to predict the rate of aftershocks caused by an earthquake.

For the power-law function stationary conditions yields that

∫ ∞

0

µ(s)ds =

∫ ∞

0

m

(d+ s)q
ds =

md1−q

q − 1
< 1.

2.3 Some Properties of Hawkes Process

In this section, we will derive the mean and variance, the law of large numbers, and the central limit theorem

for the Hawkes process with exponential excitation function. The main idea comes from [19] and [10].

• Mean and Variance:

Assume, g(t) = E[λ∗(t)]. By taking definition of λ∗(t) from equation (2.6) we can get,

g(t) = λ+

∫ t

0

αe−β(t−u)E[dN(u)]. (2.9)
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Now take expectation on the both side of equation (2.2) to get,

E[dN(t)] = E[λ∗(t)]dt. (2.10)

Then by using (2.10) in (2.9) we get,

E[λ∗(t)] = λ+

∫ t

0

αe−β(t−u)E[λ∗(u)]du.

Taking Laplace transformation on both sides of the above equation yields

Φ(s) = L[E(λ∗(t))] =

∫ ∞

0

[E(λ∗(t))]e−stdt =
λ

s
+

α

s+ β
Φ(s)

⇒Φ(s) =
λ

β − α
(
β

s
− α

s+ β − α
).

After taking inverse Laplace transformation we get,

E[λ∗(t))] =
λ

β − α
(β − αe−(β−α)t). (2.11)

Finally from equation (2.10) we can write,

E[N(t)] =

∫ t

0

E[λ∗(u)]du

=

∫ t

0

[
λ

β − α
(β − αe−(β−α)u)]du

=
λβt

β − α
+

αλ

(β − α)2
[e−(β−α)t − 1], (2.12)

which is the mean or first moment of the Hawkes process.

The idea of covariance came from Hawkes process power spectral density theorem stated in [19]. So

the covariance density R(τ) can be written as,

R(τ) =λ∗µ(τ) +

∫ τ

−∞
µ(τ − v)R(v)dv

=λ∗µ(τ) +

∫ τ

0

µ(τ − v)R(v)dv +

∫ ∞

0

µ(τ + v)R(v)dv, (2.13)

where, λ∗ = E[λ∗(t)] = E[dN(t)]
dt = λβ

β−α . The relation between variance and covariance of the Hawkes
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process can be expressed as

V ar[N(t)] = λ∗t+ 2

∫ t

0

∫ t1

0

R(t2 − t1)dt1dt2. (2.14)

From equation (2.13) we can calculate covariance, where the equation can be written as

R(t) =
λαβe−βt

β − α
+ αe−βt

[ ∫ t

0

eβvR(v)dv +

∫ ∞

0

e−βvR(v)dv

]
.

Now by using Laplace and inverse Laplace transformation we can get the covariance,

R(τ) =
λαβ

2(β − α)2
(2β − α)e−(β−α)τ . (2.15)

After that, by putting the value of covariance R(t) in equation (2.14) and completing proper integration

we can get the variance of the one-dimensional Hawkes process which is,

V ar[N(t)] =
λβ3t

(β − α)3
− λαβ

(β − α)4
(2β − α)(1− e−(β−α)t). (2.16)

Now we are going to state the LLN and CLT for HP which is described in [2]. The convergences are

in the weak sense for the Skorokhod topology.

• Law of Large Numbers for Hawkes Process:

Let N(t) be the one-dimensional Hawkes process which is defined above in (2.5). If the excitation

function satisfies 0 <
∫∞
0

µ(s)ds < 1 which is the stationary condition then

lim
t→∞

N(t)

t
→ λβ

β − α
.

Or, can be written as

lim
t→∞

N(t)

t
→ λ

1− α/β
. (2.17)

By LLN, N(t) ≈ λ
1−α/β t for large t.

• Functional Central Limit Theorem for Hawkes Process:

If 0 <
∫∞
0

µ(s)ds < 1 and
∫∞
0

sµ(s)ds < ∞ then the number of Hawkes process arrivals in (0, t] is

asymptotically normally distributed. So for t→∞

P (
N(t)− λβt

β−α√
λβ3t/(β − α)3

< y)→ Φ(y).
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Or, can be written as

P (
N(t)− λt

1−α/β√
λt/(1− α/β)3

< y)→ Φ(y). (2.18)

where Φ(y) is the c.d.f of the standard normal distribution.

By FCLT, N(t) ≈ λ
1−α/β t+

√
λt/(1− α/β)3W (t) for large t. Here, W (t) is a standard Wiener process.

Definition 2.6. Non-linear Hawkes process: Consider a counting processN(t) with conditional intensity

function of the form

λ∗(t) = h
(
λ+

∫ t

0

µ(t− s)dN(s)
)
, (2.19)

where, h : R→ [0,∞) is a nonlinear function. Some frequent choices for h are h(x) = 1x∈R+ and h(x) = ex.

Linear HPs are much better studied than non-linear HPs. We will not touch on the non-linear case in this

research and focus exclusively on the linear form. However, we would refer to [37] for further reading about

non-linear HPs.

2.4 Parameter Estimation

For a process realization, the important tool while working with data set is the estimation of the parameter.

If the points of the data set are supposed to follow a pattern, then the aim is to find the set of parameters

that is able to describe the data at hand properly. Then the goodness of fit method gives a sign of whether

the model is suitable or not after checking the obtained parameters with the proposed model. The method

we will consider here is maximum likelihood estimation (MLE). This is achieved by maximizing the like-

lihood function or minimizing the negative likelihood function. If the likelihood function is differentiable,

the derivative test for determining maxima can be applied. In some cases, the first-order conditions of the

likelihood function can be solved explicitly. Under most circumstances, numerical methods will be necessary

to find the maximum likelihood function. The log-likelihood function is used in the same way. Because it

replaces multiplication with summation which is convenient for mathematical computation.

In this section, we will discuss how to estimate the parameters of the conditional intensity function of

the Hawkes process. Say we want to estimate the parameter θ of conditional intensity function as θ̂ given

some finite set of arrival times t = {t1, t2, · · · , tk}, where ˆ (hat) symbol denotes an estimated value. In

the subsequent part of this section we will omit the arguments θ̂ and t to avoid redundancy which will lead

to the following functions: L = L(θ̂; t), l = l(θ̂; t), λ∗(t) = λ∗(t; t, θ̂), and Λ(t) = Λ(t; t, θ̂). The following

derivation of likelihood function estimation for the Hawkes process is due to [11, Proposition 7.2.III] .
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Let N(t) be a regular point process on the interval [0, T ] for some finite positive T and let (t1, t2, · · · , tk)

denote a realization of N(t) during the period. Now, since the likelihood function L of the function f(t) can

be described from joint density and it is assumed that the process is observed up to the k-th arrival time,

the likelihood function can be written as

L = f(t1, t2, · · · , tk) =
k∏

i=1

f∗(ti). (2.20)

Therefore, we will isolate f∗(t) and write the above function in terms of conditional intensity function stated

in equation(2.1). Also, we know that f∗(t) = d
dtF

∗(t). Then rearranging (2.1) will give us

λ∗(t) =
f∗(t)

1− F ∗(t)
=

d
dtF

∗(t)

1− F ∗(t)
= − d

dt
log(1− F ∗(t)). (2.21)

As we will consider the last known event time before t as tk, integrating both sides over the interval (tk, t)

gives ∫ t

tk

λ∗(u)du =

∫ t

tk

− d

dt
log(1− F ∗(t))dt = − log(1− F ∗(t)) + log(1− F ∗(tk)). (2.22)

For a simple point process like the Hawkes process, multiple arrivals can not occur at the same time. Hence,

F ∗(tk) = 0, as Tk+1 > tk. Therefore

∫ t

tk

λ∗(u)du = − log(1− F ∗(t)). (2.23)

After taking exponential on both sides and isolating F ∗(t) gives us

F ∗(t) = 1− exp

(
−

∫ t

tk

λ∗(u)du

)
, (2.24)

and then after differentiating both sides we get

d

dt
F ∗(t) = f∗(t) = 0−

((
− λ∗(t) exp(−

∫ t

tk

λ∗(u)du
))

= λ∗(t) exp

(
−
∫ t

tk

λ∗(u)du

)
. (2.25)
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Thus by using equation (2.20) and equation (2.25), the likelihood becomes

L =

k∏
i=1

f∗(ti) =

k∏
i=1

λ∗(ti) exp

(
−

∫ ti

ti−1

λ∗(u)du

)
= λ∗(t1) exp

(
−
∫ t1

t0

λ∗(u)du

)
λ∗(t2) exp

(
−
∫ t2

t1

λ∗(u)du

)
· · ·

=

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ t1

t0

λ∗(u)du−
∫ t2

t1

λ∗(u)du−
∫ t3

t2

λ∗(u)du · · ·
)

=

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ tk

0

λ∗(u)du

)
, (2.26)

as the integral limits are a telescoping series where the lower limit is t0 and the upper limit is tk thus we can

take the limit starting from 0 and ending at tk.

Consider the process is observed over some time period [0, T ] ⊃ [0, tk] which implies that the likelihood will

include the possibility of noticing no arrivals in the time interval (tk, T ]. So we have

L =

[ k∏
i=1

f∗(ti)

]
(1− F ∗(T )). (2.27)

Using the formula from equation (2.24) to equation (2.27) gives us

L =

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ T

0

λ∗(u)du

)
, (2.28)

which is the expression for the likelihood function of N(t).

The log-likelihood function l of the function f(t) can be written as

l = log

( k∏
i=1

f∗(ti)

)
=

k∑
i=1

log
(
f∗(ti)

)
=

k∑
i=1

log(λ∗(ti))−
∫ T

0

λ∗(u)du

=

k∑
i=1

log(λ∗(ti))− Λ(T ), (2.29)

where Λ(·) is the compensator function defined in (2.3). Now we will derive the log-likelihood function for

the exponential decay and power law intensity functions explicitly.
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2.4.1 Log-likelihood for Exponential Decay Intensity

For exponential decay the conditional intensity function is λ∗(t) = λ+α
∑

ti<t e
−β(t−ti). So the compensator

for interval [0, T ] can be separated into segments [0, t1], (t1, t2], · · · , (tk−1, tk], (tk, T ] and therefore can be

evaluated as

Λ(T ) =

∫ t1

0

λ∗(u)du+

k−1∑
i=1

∫ ti+1

ti

λ∗(u)du+

∫ T

tk

λ∗(u)du

=

∫ t1

0

λdu+

k−1∑
i=1

∫ ti+1

ti

λdu+

∫ T

tk

λdu+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du+ α

∫ T

tk

k∑
j=1

e−β(u−tj)du

=

∫ T

0

λdu+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du+ α

∫ T

tk

k∑
j=1

e−β(u−tj)du

=

∫ T

0

λdu+ α
k−1∑
i=1

i∑
j=1

∫ ti+1

ti

e−β(u−tj)du+ α
k∑

j=1

∫ T

tk

e−β(u−tj)du.

After exchanging summation with integration and working through the integral we are left with

Λ(T ) = λT − α

β

k−1∑
i=1

i∑
j=1

[e−β(ti+1−tj) − e−β(ti−tj)]− α

β

k∑
j=1

[e−β(T−tj) − e−β(tk−tj)].

Now if we swap the order of the summation, we can keep j fixed and vary i to k. This way many of the

terms will cancel and we will get

Λ(T ) =λT − α

β

k∑
i=1

[e−β(tk−ti) − e−β(ti−ti)]− α

β

k∑
i=1

[e−β(T−ti) − e−β(tk−ti)]

=λT − α

β

k∑
i=1

[e−β(T−ti) − 1], (2.30)

which is our final expression for Λ(T ). Now substituting λ∗(t) and Λ(t) from equation (2.30) into equation

(2.29) yields

l =

k∑
i=1

log[λ+ α

i−1∑
j=1

e−β(ti−tj)]− λT +
α

β

k∑
i=1

[e−β(T−ti) − 1]. (2.31)
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A summation within a summation entails O(k) complexity. So computing this term of the log-likelihood

function is not feasible. For i = 1, 2, · · · , k, A(i) can be defined as

A(i) =

i−1∑
j=1

e−β(ti−tj) = e−βti+βti−1

i−1∑
j=1

e−βti−1+βtj

=e−βti+βti−1(1 +

i−2∑
j=1

e−β(ti−1−tj))

=e−β(ti−βti−1)(1 +A(i− 1)), (2.32)

with A(1) = 0. Finally, the log-likelihood function can be rewritten as

l =
k∑

i=1

log[λ+ αA(i)]− λT +
α

β

k∑
i=1

[e−β(T−ti) − 1]. (2.33)

By using equation(2.32) and (2.33) we can determine estimation for background intensity λ, arrival intensity

α and arrival influence decay β. Also, the recursion implies that the joint process (N(t), λ∗(t)) is Markovian.

2.4.2 Log-likelihood of Power Law Intensity

In this case the intensity function is λ∗(t) = λ+
∑

ti<t
m

(d+(t−ti))q
. So we can compute the compensator for

the interval [0, T ] as

Λ(T ) =

∫ t1

0

λ∗(u)du+

k−1∑
i=1

∫ ti+1

ti

λ∗(u)du+

∫ T

tk

λ∗(u)du

=

∫ T

0

λdu+

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

m

(d+ (t− tj))q
du+

∫ T

tk

k∑
j=1

m

(d+ (t− tj))q
du.
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Rearranging and working through the integral will give us

Λ(t) =λT +

k−1∑
i=1

i∑
j=1

∫ ti+1

ti

m

(d+ (u− tj))q
du+

k∑
j=1

∫ T

tk

m

(d+ (u− tj))q
du

= λT +
m

1− q

k−1∑
i=1

i∑
j=1

(d+ (u− tj))
−q+1

∣∣∣∣∣
u=ti+1

u=ti

+
m

1− q

k∑
j=1

(d+ (u− tj))
−q+1

∣∣∣∣∣
u=T

u=tk

= λT +
m

1− q

k−1∑
i=1

i∑
j=1

[(d+ (ti+1 − tj))
−q+1 − (d+ (ti − tj))

−q+1]

+
m

1− q

k∑
j=1

[(d+ (T − tj))
−q+1 − (d+ (tk − tj))

−q+1]

= λT +
m

1− q

k∑
i=1

[(d+ (tk − ti))
−q+1 − (d+ (ti − ti))

−q+1]

+
m

1− q

k∑
i=1

[(d+ (T − ti))
−q+1 − (d+ (tk − ti))

−q+1]

= λT +
m

1− q

k∑
i=1

[(d+ (T − ti))
−q+1 − d−q+1].

Finally using the values of λ∗(t) and Λ(t) in equation (2.29) gives us the likelihood function

l =

k∑
i=1

log[λ+

i−1∑
j=1

m

(d+ (t− ti))q
]− λT − m

1− q

k∑
i=1

[(d+ (T − ti))
−q+1 − d−q+1]. (2.34)

For the above log-likelihood function the summation within summation cannot be avoided. So the compu-

tation of estimation will be very slow.

2.5 Simulation Methods

The simulation of the point process is useful in many ways. Simulating a few sample paths of a process

shows how the process evolves under different conditions over time. It may also help to estimate values

that are impossible to generate analytically. In this section, we will describe two fundamental approaches to

producing the realizations of HPs in detail. The first one is a modified thinning algorithm and the second

one is called the transformation method. Also, we will present a brief overview of a third approach.

2.5.1 Thinning algorithm

The thinning algorithm is first introduced by Lewis and Shedler in 1979 [20] for the inhomogeneous Poisson

process. The standard way of generating an inhomogeneous Poisson process is governed by intensity function
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λ(·) via thinning. For this algorithm first we need to choose the upper bound where the first process’ rate

M is always bigger than the intensity λ(·) over the interval [0, T ]. As this method is very fast and generates

too many events so some points should be removed probabilistically which can be done by taking a random

variable Ui ∼ U(0,M) for each candidate point ti and keeping if the point satisfies Ui ≤ λ(ti). These two

steps are merging simultaneously which implies each generated point is checked immediately and removed if

necessary. Finally, the remaining points satisfy the time-varying intensity λ(·).

Hawkes process generation is very similar to inhomogeneous Poisson process generation. In 1981 Ogata

[27] adapted it for Hawkes process simulation. The only difference is the conditional intensity λ∗(·) does not

have an a.s. asymptotic upper bound. The upper bound M∗ is adjusted λ∗(t + ϵ), where ϵ > 0 is a very

small number which explains that the upper bound will be updated during each simulation and the intensity

is always higher just after a new arrival. The rest of the procedure is the same as the former one. This

simulation process is called Ogata’s modified thinning algorithm and was used by Ogata in 1981 for Hawkes

process simulation. Both algorithms are stated below:

Algorithm 1 Generating an inhomogeneous Poisson process by thinning

Input T, λ(·),M .
Require: λ(·) ≤M on [0, T ].

P ← [],
t← 0.
while t < T do

E ← Exp(M).
t← t+ E. (Generating next candidate point)
U ← Unif(0,M). (keeping it with some probability)
if t < T then and U ≤ λ(t)

P ← [P, t].
end if

end while
return P

In the first figure, an inhomogeneous Poisson process is generated by thinning with intensity function

λ(t) = 1 + sint and bounded above by M = 2.2. In the second figure, with (λ, α, β) = (1, 1, 1.1), a Hawkes

process is generated via thinning. In both figures, *, +, and o signs indicate accepted points, rejected points,

and the resulting point processes. Also, each (t, U) point describes a suggested arrival at time t whose U

value is in Algorithm 1 and Algorithm 2.
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Algorithm 2 Generating a Hawkes process by modified thinning

Input T, λ∗(·), ϵ.
Require: λ∗(·) non-increasing in period of no arrivals.
P ← [],
t← 0.
ϵ← 10−100 (very small positive value)
while t < T do

M∗ ← λ∗(t+ ϵ). (Finding new upper bound)
E ← Exp(M∗).
t← t+ E. (Generating next candidate point)
U ← Unif(0,M∗). (Keeping it with some probability)
if t < T then and U ≤ λ∗(t)

P ← [P, t].
end if

end while
return P

Figure 2.1: Inhomogeneous Poisson process generated by thinning
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Figure 2.2: Hawkes process generated by thinning

2.5.2 Transformation method

Theorem 2.7. (Random time change theorem) Say {t1, t2, · · · , tk} is a realisation over time [0, T ] from

a point process with conditional intensity function λ∗(·). If λ∗(·) is positive over [0, T ] and Λ(T ) < ∞ a.s.

then the transformed point {Λ(t1),Λ(t2), · · · ,Λ(tk)} form a Poisson process with unit rate.

For any general point process, a simulation algorithm relies on the converse of the random change theorem

stated above. By using the inverse compensator method, the arrival times for the unit rate Poisson process

{t∗1, t∗2, · · · } are transformed by the inverse compensator Λ(·)−1 into any general point process defined by the

compensator. The method iteratively solves the equations

t∗1 =

∫ t1

0

λ∗(s)ds, t∗k+1 − t∗k =

∫ tk+1

tk

λ∗(s)ds,

for realisation of the desired point process {t1, t2, · · · }. This is described in [15] and Algorithm 7.4.III of [11].

Ozaki in [28] suggested the algorithm for HPs where he did not state explicitly any relation to time changes.

Also being a simple point process, multiple arrivals can not occur at the same time for the HP. Hence over

the interval (tk, t) we can write

−
∫ t

tk

λ∗(u)du = log(1− F ∗(t)),

where F ∗(t) is the distribution function of the next arrival time. The above equation relates the conditional
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c.d.f of the next arrival to the previous history of arrivals {t1, t2, · · · , tk} and the specified conditional

intensity function λ∗(t). From this relation, we can state that by using the inverse transform method we can

easily figure out the next arrival time tk+1. In this process we will take U ∼ Unif [0, 1] then tk+1 can found

by solving ∫ tk+1

tk

λ∗(u)du = −log(U). (2.35)

Case I: Exponential Decay Excitation Function

For an exponentially decaying intensity, the equation (2.35) can be written as

∫ tk+1

tk

(λ+

k∑
i=1

αe−β(u−ti))du = −log(U)

⇒ log(U) + λ

∫ tk+1

tk

du+ α

k∑
i=1

∫ tk+1

tk

e−β(u−ti)du = 0

⇒ log(U) + λ(tk+1 − tk) + α

k∑
i=1

∫ tk+1

tk

e−β(u−ti)du = 0

By approximation we get

log(U) + λ(tk+1 − tk) +
α

β
[e−β(tk+1−tk) − 1]

k∑
i=1

e−β(tk−ti) = 0 (2.36)

If we put k = 0 equation (2.36) will give us: t1 = t0 − 1
λ log(U).

After applying Taylor expansion for each e−x, for k = 1, 2, 3, 4, · · · we will get,

t2 =
(λ+ α)t1 − log(U)

λ+ α
,

t3 =
[λ+ α

∑2
i=1 e

−β(t2−ti)]t2 − log(U)

λ+ α
∑2

i=1 e
−β(t2−ti)

,

t4 =
[λ+ α

∑3
i=1 e

−β(t3−ti)]t3 − log(U)

λ+ α
∑3

i=1 e
−β(t3−ti)

,

t5 =
[λ+ α

∑4
i=1 e

−β(t4−ti)]t4 − log(U)

λ+ α
∑4

i=1 e
−β(t4−ti)

, · · ·

In this way the (k + 1)-th term can be written as

tk+1 =
[λ+ α

∑k
i=1 e

−β(tk−ti)]tk − log(U)

λ+ α
∑k

i=1 e
−β(tk−ti)

.
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Figure 2.3: HP generated by transformation method (exponential decay intensity)

Case II: Power Law Excitation Function

For power utility function equation (2.35) can be written as

∫ tk+1

tk

(λ+

k∑
i=1

m

(d+ (u− ti))q
)du = −log(U)

⇒ log(U) + λ

∫ tk+1

tk

du+m

k∑
i=1

∫ tk+1

tk

(d+ (u− ti))
−qdu = 0

⇒ log(U) + λ(tk+1 − tk) +m

k∑
i=1

∫ tk+1

tk

(d+ (u− ti))
−qdu = 0

By approximation we get

log(U) + λ(tk+1 − tk) +m

k∑
i=1

[d+ (tk − ti)]
−q(tk+1 − tk) = 0 (2.37)
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Figure 2.4: HP generated by transformation method (power law intensity)

If we put k = 0 equation (2.37) will give us: t1 = t0 − 1
λ log(U).

After applying Taylor expansion for each (a+ x)−m, for k = 1, 2, 3, 4, · · · we will get,

t2 =
t1(λ+md−q)− log(U)

λ+md−q

t3 =
t2[λ+m

∑2
i=1(d+ t2 − ti)

−q]− log(U)

λ+m
∑2

i=1(d+ t2 − ti)−q
,

t4 =
t3[λ+m

∑3
i=1(d+ t3 − ti)

−q]− log(U)

λ+m
∑3

i=1(d+ t3 − ti)−q
,

t5 =
t4[λ+m

∑4
i=1(d+ t4 − ti)

−q]− log(U)

λ+m
∑4

i=1(d+ t4 − ti)−q
, · · ·

In this way the (k + 1)-th term can be written as

tk+1 =
tk[λ+m

∑k
i=1(d+ tk − ti)

−q]− log(U)

λ+m
∑k

i=1(d+ tk − ti)−q
.

Another simulation method is based on the clustering representation of HP. Over the interval [0, T ], immi-

grants form a homogeneous Poisson process of rate λ. Their arrival times C1, C2, · · · , Ck are uniform i.i.d.

random variables, while the number of immigrants is distributed Poi(λT ). On the other hand, descendants

of each immigrant form an inhomogeneous Poisson process and are distributed Poi(α/β). At time Ci the
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arrival intensity of descendants is µ(t− Ci) for t > Ci. Then at times (Ci +E1, Ci +E2, · · · , Ci +EDi) the

descendants of the i-th immigrant arrived. The algorithm for the superposition of Poisson processes will be

stated below.

There are several methods that are stated in Laub, Taimre, and Pollett. Dassion and Zhao in [12] and

Algorithm 3 Generating a Hawkes process by clusters

P ← {},
k ← Poi(λT ). (number of immigrants)
for i = 1, 2, · · · , k,Ci ← Unif(0, T ) which is i.i.d. (arrival times of immigrants)
for i = 1, 2, · · · , k,Di ← Poi(α/β) which is i.i.d. (number of descendants)
for i← 1 to k do

if Di > 0 then
Ei ← Exp(β) which is i.i.d. for i = 1, 2, · · · , k.
P ← P ∪ {Ci + E1, · · · , Ci + EDi

}
end if

end for
P ← {Pi : Pi ∈ P, Pi ≤ T} (removing descendants outside [0, T ]).
P ← Sort(P ∪ {C1, C2, · · · , Ck}). (adding and sorting immigrants)
return P

Moller and Rasmussen in [25] gave an alternative to the methods which are not stated above.

The data sets gathered from the simulation of point processes are applied to check the functionality of

methods to be used on empirical sets of data which is important for the rest thesis work.

2.6 General Compound Hawkes Process

In this section, we will define the general compound Hawkes process with different state-dependent order [1].

Definition 2.8. General Compound Hawkes Process with N-state Dependent Orders:

Suppose that Xk is an ergodic continuous-time Markov chain, independent of N(t), with state space X :=

{1, 2, 3, · · · , n}, N(t) is a one-dimensional Hawkes process and a(x) is any bounded and continuous function

on X. The General Compound Hawkes Process with N -state Dependent Orders can be expressed as:

St = S0 +

N(t)∑
k=1

a(Xk). (2.38)

Definition 2.9. General Compound Hawkes Process with Two-state Dependent Orders:

Suppose that Xk is an ergodic continuous-time Markov chain, independent of N(t) with two states {1, 2}.

Then, equation (2.38) becomes

St = S0 +

N(t)∑
k=1

a(Xk), (2.39)
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where, a(Xk) takes only the values a(1) and a(2).

Definition 2.10. General Compound Hawkes Process with Dependent Orders:

Suppose that, Xk ∈ {−δ, δ} and that a(x) = x, then equation (2.39) becomes

St = S0 +

N(t)∑
k=1

Xk. (2.40)

This type of process can be modeled for the mid-price which is defined as the average of best ask and best

bid prices. Here, δ is a fixed tick size and N(t) is the number of arrivals up to time t. We can call this

process General Compound Hawkes Process with Dependent Orders. This is generalization of the previous

process obtained by letting a(1) = −δ and a(2) = δ.

Filimonov and Sornette [13] had worked with a data set with timestamps accurate to a second and

sometimes this led to multiple arrivals nominally at the same time as order arrivals and cancellations are

very frequent. With many applications occurring at the millisecond time scale, Lorenzen formed a measure

of high-frequency trading activity leading to an interesting correlation between this activity and n over the

observed period where n can be 1000, 10000 making nt large with respect to t and then we can consider the

scale nt instead of t.
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Chapter 3

Merton Investment Problems in

Insurance under a Hawkes

Process-based Setting

Merton’s portfolio problem is a well-known problem in continuous-time finance and insurance. The problem

was formulated and solved by Robert C. Merton in 1969 both for a finite lifetime and for the infinite

case. Research has continued to extend and generalize the model to include factors like transaction costs

and bankruptcy. In this chapter, first we will discuss stochastic optimal control problem and the dynamic

programming method, and the Merton investment problem in finance and insurance. Finally we use the

dynamic programming method to obtain the optimal investment portfolio in a Hawkes process setting.

3.1 Stochastic Optimal Control Problem

Let us consider a controlled stochastic differential equation of the form:


dR(t) = b (t, R(t), π(t)) dt+ f (t, R(t), π(t)) dW (t), 0 ≤ t ≤ T,

R(0) = x0,

(3.1)
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with the initial value x0 ∈ Rn, and the functions

b : R+ × Rn × Rk → Rn,

f : R+ × Rn × Rk → Rn×d.

Here the n-dimensional process R is called the state process which is controlled by the k-dimensional control

process π. W is a d-dimensional Brownian motion. Also consider the value function

J(π(·)) = E

[ ∫ T

0

F (t, R(t), π(t))dt+ U(R(T ))

]
, (3.2)

where F is the instantaneous utility function and U is the utility function for terminal time. Now we can

formally state the stochastic optimal control problem as:

max
π

E

[ ∫ T

0

F (t, Rπ(t), π(t))dt+ U(Rπ(T ))

]
, (3.3)

where Rπ is the unique solution of the following SDE:


dRπ(t) = b (t, Rπ(t), π(t)) dt+ f (t, Rπ(t), π(t)) dW (t), 0 ≤ t ≤ T,

Rπ(0) = x0.

(3.4)

Here the notation Rπ refers to the dependence of the state process R on the control process π. Another

notation, Rπ;t,x for the state process R will indicate further that the initial time for the state process is

t; 0 ≤ t ≤ T with the initial state x. With this notation, Rπ = Rπ;0,x0 .

For any given adapted π, if the SDE (3.4) admits a unique solution, the process π is called an admissible

control. If

J(π∗(·)) = max
π

J(π(·)),

then π∗ is the optimal control and Rπ∗
is the optimal state.

3.1.1 Dynamic Programming (DP) Method and HJB Equation

For a stochastic optimal control problem, two questions arise naturally. The first one is whether there exists

an optimal control law or not and the second one is if the optimal control exists then what is the way to find

it. To deal with the second concern, the dynamic programming method is used very frequently. The main
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idea is to break down the main problem into sub-problems in a recursive manner. This is helpful in the sense

that the original complex problems may result in simpler sub-problems. Then tie all these sub-problems with

the so-called Hamilton-Jacobi-Bellman (HJB) equation which is a nonlinear second-order partial differential

equation of the optimal value function of the main optimal control problem. The stochastic optimal control

problem is then equivalent to finding the solution of the HJB equation which we may solve for the optimal

value function and the optimal feedback control that is indexed by the initial time t ∈ [0, T ] and the initial

state x ∈ Rn.

For example, let us consider the optimal control problem (3.4) − (3.3). Now if we denote the value

function by V which is indexed by the initial time t ∈ [0, T ] and the initial state x ∈ Rn, then

V (t, x) = E

[ ∫ T

t

F (s,Rπ;t,x(s), π(s))ds+ U(Rπ;t,x(T ))

]
, (3.5)

where Rπ;t,x is the unique solution of the following stochastic differential equation:


dRπ;t,x(t) = b (t, Rπ;t,x(t), π(t)) dt+ f (t, Rπ;t,x(t), π(t)) dW (t), 0 ≤ t ≤ T,

Rπ;t,x(t) = x.

(3.6)

Then under the Markovian setting, the value function V (t, x) satisfies the partial differential equation


−∂V

∂t = supπ LV (t, x),

V (T, x) = U(x),

(3.7)

know as the Hamilton-Jacobi-Bellman (HJB) equation, where the operator L is defined as:

LV (t, x) :=

( n∑
i=1

bi(t, x, π)
∂

∂xi
+

1

2

n∑
i,j=1

fij(t, x, π)
∂2

∂xi∂xj

)
V (t, x), (3.8)

and known as the infinitesimal generator for the Markov state process Rπ,t,x defined in (3.6).

3.2 Merton Investment Problem

3.2.1 Merton Investment under Black-Scholes model

Consider an economic agent over a fixed time interval [0, T ] where the agent has the limited choice of investing

his/her wealth in only two different assets: a risky asset and a risk-free asset. At the time t = 0 the agent

is endowed with initial wealth x0 and Merton’s goal is to determine how the agent should allocate and
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reallocate the wealth at each time point in order to maximize the expected utility of the terminal wealth

R(T ) at horizon T . Suppose the price process S(t) for the risky asset follows geometric Brownian motion

and the risk-free asset B(t) has interest rate r, then they have the dynamics:

dS(t) = µS(t)dt+ σS(t)dW (t),

dB(t) = rB(t)dt,

where (W (t))t≥0 is a standard Brownian motion, µ is the expected rate of return and σ is the volatility of the

stock. Assume the amount of wealth invested in risky and risk-free assets are nS(t) and nB(t) respectively

at time t. Then, after restricting the agent’s investment strategies to be self-financing the dynamics of the

total wealth R of the agent may be given by

dR(t) = nB(t)
dB(t)

B(t)
+ nS(t)

dS(t)

S(t)

= nB(t)rdt+ nS(t)(µdt+ σdW (t)). (3.9)

Let π(t) = ns(t)/R(t) be relative portfolio weights of wealth invested in the risky asset at time t. Then

equation (3.9) can be rewritten as

dR(t) =
nB(t)

R(t)
R(t)rdt+

nS(t)

R(t)
R(t)(µdt+ σdW (t))

= (1− π(t))R(t)rdt+ π(t)R(t)(µdt+ σdW (t))

=R(t)[(1− π(t))rdt+ π(t)µdt+ π(t)σdW (t)]. (3.10)

Finally, the associated stochastic optimal control problem for the Merton investment problem becomes:

max
π

E[U(Rπ(T ))], (3.11)

subject to, 
dRπ(t) = Rπ(t) [(1− π(t))rdt+ π(t)µdt+ π(t)σdW (t)] ,

Rπ(0) = x0,

(3.12)

where U(·) is the utility function and x0 is the initial wealth.

Now we can explain Merton’s investment problem in finance for the Hawkes process-based model. Here,
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the risk-free asset follows the same dynamics as before, but the risky asset follows the dynamics, dS(t) =

S(t)dG(t). In this case, the model for the stock price (risky asset) S(t) is based on the general compound

Hawkes process instead of geometric Brownian motion. If n(t) = (nB(t), nS(t)) is the investor portfolio

and π(t) = ns(t)/R(t) is same as before and the portfolio is admissible, i.e., R(t) ≥ 0 almost surely, and

self-financing, i.e., there is no exogenous infusion or withdrawal of money, then the associated stochastic

control problem becomes

max
π

E[U(Rπ(T ))], (3.13)

subject to, 
dRπ(t) = Rπ(t)

[
(1− π(t))rdt+ π(t)dG(t)

]
,

Rπ(0) = x0.

(3.14)

Note that the problem (3.13)-(3.14) will not be addressed in this thesis.

3.2.2 Merton Investment problem in Insurance under a Hawkes Process-based

Setting

When an insurance company makes a business arrangement with an individual or company or organization,

they promise to pay a certain amount of money (claim) to the insured for a specific asset loss. In exchange,

the insured makes regular payments (premium) to the insurance company.

Suppose, u is the initial capital for an insurance company and c > 0 is constant premium intensity, then

the capital R(t) at any time t > 0 for the insurance company is modeled in [31] based on GCHP as

R(t) = u+ ct−
N(t)∑
i=1

a(Xi), (3.15)

where Xi is a finite state Markov chain, a(x) is a continuous and bounded function on X = {1, 2, ...., N}-

space state for Xi, a(Xi) are claim sizes and N(t) is a one-dimensional Hawkes process. The process R(t) is

also called the risk process.

To increase their revenues, insurance companies also invest their capital into financial markets. Let A(t)

be the amount invested in a risky asset and suppose that the price process S(t) for the risky asset follows

geometric Brownian motion, then

dS(t) = S(t)(µdt+ σdW (t)). (3.16)

Now, if the rest positive amount R(t)−A(t) is invested in the risk-free asset (bank account, bonds, etc.) at
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the deterministic short interest rate r > 0, then we have

d(R(t)−A(t)) = r(R(t)−A(t))dt. (3.17)

Set

G(t) =

N(t)∑
i=1

a(Xi), t ≥ 0,

and then the position R(t) of the insurer at any time t > 0 has the dynamics

dR(t) = A(t)(µdt+ σdW (t)) + r(R(t)−A(t))dt+ cdt− dG(t)

= rR(t)dt+A(t)(µdt+ σdW (t))− rA(t)dt+ cdt− dG(t). (3.18)

Next, we let π(t) = A(t)/R(t) be the fraction of the total wealth R(t) invested in the risky assets.

At this stage let (Ω,F , (Ft)t∈[0,T ],P) be a complete filtered probability space with the filtration (Ft)t∈[0,T ]

being the augmented filtration generated by the 1-dimensional Wiener process W and the process G. Denote

by (FG
t )t∈[0,T ] the augmented filtration generated by the process G. Throughout this thesis, the control/pol-

icy process (π(t))t∈[0,T ] is said to be admissible if it is an (Ft)t∈[0,T ]-adapted real-valued process such that the

stochastic differential equation (SDE) (3.21) admits a unique (strong) solution (Rπ(t))t∈[0,T ] in L2(Ω× [0, T ])

and we denote by A the set of all the admissible controls/policies.

With the notation π(t) = A(t)/R(t), we can rewrite the equation for R(t), the position of the insurer at

time t > 0, as

dRπ(t) = rRπ(t)dt+A(t)(µdt+ σdW (t))− rA(t)dt+ cdt− dG(t)

= rRπ(t)dt+A(t)[(µ− r)dt+ σdW (t)] + cdt− dG(t)

= Rπ(t) [r + (µ− r)π(t)] dt+Rπ(t)π(t)σdW (t) + cdt− dG(t). (3.19)

Thus the utility maximization of Merton’s investment problem for the insurance company becomes

max
π∈A

E [U(Rπ(T ))] , (3.20)
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subject to, 
dRπ(t) = Rπ(t) [r + (µ− r)π(t)] dt+Rπ(t)π(t)σdW (t) + cdt− dG(t),

Rπ(0) = u.

(3.21)

Further using the basic properties of derivatives we can have

d
(
e−rtRπ(t)

)
= e−rtdRπ(t)− re−rtRπ(t)dt

= e−rt

{
Rπ(t) [r + (µ− r)π(t)] dt+Rπ(t)π(t)σdW (t) + cdt− dG(t)

}
− re−rtRπ(t)dt

= e−rtRπ(t)(µ− r)π(t)dt+ e−rtRπ(t)π(t)σdW (t) + ce−rtdt− e−rtdG(t).

Then if we set

H(t) =
c

r

(
1− e−rt

)
−

∫ t

0

e−rsdG(s),

R̃π(t) = e−rtRπ(t)−H(t),

the utility maximization of Merton’s investment problem for the insurance company can also be written as

max
π∈A

E
[
U
(
erT (R̃π(T ) +H(T ))

)]
, (3.22)

subject to,


dR̃π(t) = (R̃π(t) +H(t))(µ− r)π(t)dt+ (R̃π(t) +H(t))π(t)σdW (t), t ∈ [0, T ];

R̃π(0) = u.

(3.23)

The stochastic optimal control problem (3.22)− (3.23) is just the transformed version of (3.20)− (3.21),

and it will be addressed in this thesis.

3.3 Optimal Investment Portfolio with DP Method

To find the optimal investment portfolio with dynamic programming method, in the next part of this section

we will consider the stochastic optimal control problem (3.22) − (3.23) for the Merton investment problem

in insurance with G being a GCHP.
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3.3.1 Stochastic HJB Equation of the Value Function

For our optimal control problem, define the value function

Ṽ (t, x) = esssupπ∈AE
[
U
(
erT (R̃π;t,x(T ) +H(T ))

) ∣∣FG
t

]
, (t, x) ∈ [0, T ]× R. (3.24)

Inspired by the dynamic programming principle (see [29, 30] for instance), one may expect the value function

to satisfy the following stochastic Hamilton-Jacobi-Bellman (SHJB) equation:

−dṼ (t, x) =max
π∈R

{
1

2
(x+H(t))2π2σ2DxxṼ + (x+H(t))(µ− r)πDxṼ

}
(t, x)dt− dM̃(t, x)

=max
π∈R

{
1

2
σ2(x+H(t))2DxxṼ

[
π2 + 2π

(µ− r)DxṼ

σ2(x+H(t))DxxṼ

]}
(t, x)dt− dM̃(t, x)

=max
π∈R

{
1

2
σ2(x+H(t))2DxxṼ

(
π +

(µ− r)DxṼ

σ2(x+H(t))DxxṼ

)2

− (µ− r)2|DxṼ |2

2σ2DxxṼ

}
(t, x)dt− dM̃(t, x),

=− (µ− r)2|DxṼ (t, x)|2

2σ2DxxṼ (t, x)
dt− dM̃(t, x), (3.25)

with Ṽ (T, x) = U(κT (x+H(T ))) where κT = erT and the pair (Ṽ (t, x), M̃(t, x)) is unknown with
(
M̃(t, x)

)
t∈[0,T ]

being an (FG
t )t≥0-adapted martingale parameterized by x ∈ R. Observing that the above equation does not

depend on the unknown random field M̃(t, x), it can be equivalently written as

Ṽ (s, x) = E

[
U(κT (x+H(T )))

+

∫ T

s

max
π∈R

{
1

2
(x+H(t))2π2σ2DxxṼ + (x+H(t))(µ− r)πDxṼ

}
(t, x) dt

∣∣∣FG
s

]
,

(3.26)

for s ∈ [0, T ].

Lemma 3.1. Let u(t, x), (t, x) ∈ [0, T ]× R be a random field satisfying:

(1) For each x ∈ R, u(t, x) is càdlàg (right continuous with left limits) in time t a.s. and (u(t, ·))t∈[0,T ] is a

C2
b (R;R)-valued (FG

t )t∈[0,T ]-adapted process with

E

[
sup

(t,x)∈[0,T ]×R
|u(t, x)|2

]
<∞;

(2) For each (t, x) ∈ [0, T ]× R, it holds that

u(t, x) = E

[
u(T, x) +

∫ T

t

f(s, x) ds
∣∣FG

t

]
, a.s.,
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where the process (f(s, ·))s∈[0,T ] is valued in Cb(R;R) and càdlàg (right continuous with left limits) in

time s a.s. and for each x ∈ R, (f(s, x))s∈[0,T ] is (FG
t )t∈[0,T ]-adapted process lying in L2(Ω× [0, T ];R).

Then it holds that for each t ∈ [0, T ],

u(t, R̃π(t)) = E

[
u(T, R̃π(T ))−

∫ T

t

{1

2
(R̃π(s) +H(s))2π2σ2Dxxu(s, R̃

π(s))

+ (R̃π(s) +H(t))(µ− r)πDxu(s, R̃
π(s)) −f(s, R̃π(s))

}
ds
∣∣FG

t

]
, a.s.

(3.27)

Proof. W.l.o.g., we only prove (3.27) for the case when t = 0. For each J ∈ N+ with J > 2, let ti =
iT
J for

i = 0, 1, · · · , J . Then, we get a partition of [0, T ] with 0 = t0 < t1 < · · · < tN−1 < tN = T .

For each i ∈ {0, · · · , J − 1},

E
[
u(ti+1, R̃

π(ti+1))− u(ti, R̃
π(ti))

]
= E

[
u(ti+1, R̃

π(ti))− u(ti, R̃
π(ti)) + u(ti+1, R̃

π(ti+1))− u(ti+1, R̃
π(ti))

]
:= Ii1 + Ii2,

where

Ii1 = E
[
u(ti+1, R̃

π(ti))− u(ti, R̃
π(ti))

]
= −E

[∫ ti+1

ti

f(s, R̃π(ti)) ds

]
,

and by the integration by parts formula

Ii2 = E
[
u(ti+1, R̃

π(ti+1))− u(ti+1, R̃
π(ti))

]
= E

[ ∫ ti+1

ti

{1

2
(R̃π(s) +H(s))2π2σ2Dxxu(ti+1, R̃

π(s)) + (R̃π(s) +H(t))(µ− r)πDxu(ti+1, R̃
π(s))

}
ds

]
.

Recall that

E
[
u(T, R̃π(T ))− u(0, R̃π(0))

]
=

N−1∑
i=0

Ii1 + Ii2. (3.28)

Then, the dominated convergence, the time continuity of R̃π, and the right-continuity of u(t, x) in time t

imply that the expected sum of Lebesgue integrals converges. Finally, we have

E
[
u(T, R̃π(T ))− u(0, R̃π(0))

]
= E

[ ∫ T

0

{1

2
(R̃π(s) +H(s))2π2σ2Dxxu(s, R̃

π(s)) + (R̃π(s) +H(t))(µ− r)πDxu(s, R̃
π(s))− f(s, R̃π(s))

}
ds

]
.
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Analogously, we may prove (3.27) for all t ∈ [0, T ].

3.3.2 Finding Optimal Value Function and Optimal Control

Here, we consider the exponential utility function U(x) = 1 − e−px for some p > 0. In view of such an

exponential structure, a standard argument suggests a multiplicative decomposition of the value function

which gives

Ṽ (t, x) = 1− e−pκT xY (t),

with the stochastic process Y satisfying

Y (t) = E

[
e−pκTH(T ) −

∫ T

t

(µ− r)2

2σ2
Y (s) ds

∣∣∣FG
t

]
, t ∈ [0, T ]. (3.29)

Solving the linear BSDE (3.29) gives

Y (t) = E

[
e−pκTH(T )− (µ−r)2(T−t)

2σ2
∣∣FG

t

]
, t ∈ [0, T ].

Here, we have, DxṼ = pκT e
−pκT xY (t) and DxxṼ = −p2κ2

T e
−pκT xY (t). Also from the last line of equation

(3.25) we get maximum by taking π + (µ−r)DxṼ

σ2(x+H(t))DxxṼ
= 0. Then, putting the values of DxṼ and DxxṼ in

that equation we obtain the optimal control:

π∗(t, x) = − (µ− r)DxṼ (t, x)

σ2(x+H(t))DxxṼ (t, x)

=
(µ− r)

σ2(x+H(t))pκT
. (3.30)

Theorem 3.2. When U(x) = 1− e−px for p > 0, the value function defined in (3.24) has the expression:

Ṽ (t, x) = 1− e−pκT xE

[
e−pκTH(T )− (µ−r)2(T−t)

2σ2
∣∣FG

t

]
, for (t, x) ∈ [0, T ]× R, (3.31)

and the optimal (feedback) policy is given by (3.30).

Proof. It is easy to check that the feedback policy π∗ defined by (3.30) belongs to A. Set

u(t, x) = 1− e−pκT xE

[
e−pκTH(T )− (µ−r)2(T−t)

2σ2
∣∣FG

t

]
,

which is the right hand side of (3.31). It is straightforward to verify that u satisfies the stochastic HJB
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equation (3.26). In particular, using the (feedback) policy given by (3.30) yields that for each s ∈ [0, T ],

u(s, x)

= E

[
U(κT (x+H(T )))

+

∫ T

s

{
1

2
(x+H(t))2|π∗|2σ2Dxxu+ (x+H(t))(µ− r)π∗Dxu

}
(t, x) dt

∣∣∣FG
s

]
(3.32)

= E

[
U(κT (x+H(T )))

+

∫ T

s

max
π∈R

{
1

2
(x+H(t))2|π|2σ2Dxxu+ (x+H(t))(µ− r)πDxu

}
(t, x) dt

∣∣∣FG
s

]
. (3.33)

On the one hand for each π ∈ A, applying Lemma 3.1 with τk := inf
{
t > s : R̃π;s,x(t) < −k

}
for k > 0,

we have

u(s, x)

= E

[
u(τk, R̃

π;s,x(τk))

+

∫ τk

s

max
π∈R

{
1

2
(R̃π;s,x(t) +H(t))2|π(t)|2σ2Dxxu+ (x+H(t))(µ− r)π(t)Dxu

}
(t, R̃π;s,x(t)) dt

−
∫ τk

s

{
1

2
(R̃π;s,x(t) +H(t))2|πt|2σ2Dxxu+ (x+H(t))(µ− r)π(t)Dxu

}
(t, R̃π;s,x(t)) dt

∣∣∣FG
s

]
≥ E

[
u(τk, R̃

π;s,x(τk))
∣∣∣FG

s

]
, a.s., (3.34)

which by letting k →∞ implies that u(s, x) ≥ Ṽ (s, x), a.s. for each (s, x) ∈ [0, T ]× R, where we recall the

value function Ṽ (s, x) in (3.24). On the other hand, we have the equality for π = π∗ in (3.34) particularly

and thus it holds that u(s, x) ≤ Ṽ (s, x), a.s. for all (s, x) ∈ [0, T ]×R. Therefore, we have u(s, x) = Ṽ (s, x),

a.s. for all (s, x) ∈ [0, T ]× R, and π∗ given by (3.30) is optimal.

Moreover, in Section 3.2, for Merton investment problem in insurance for Hawkes process based model we

assumed, R̃π(t) = e−rtRπ(t)−H(t). After rearranging and isolating Rπ(t) we get, R̃π(t)+H(t) = e−rtRπ(t).

Putting this in equation (3.30) we can get,

π∗(t, x̄) =
(µ− r)ert

σ2x̄κT p

=
(µ− r)e−r(T−t)

σ2x̄p
,

(3.35)

where x̄ represents Rπ(t) and κT = erT .
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3.4 Application in the case where the conditional intensity is ex-

ponential decay for HP

Here we consider the stochastic optimal control problem (3.22)−(3.23) from the Merton investment problem

in insurance. From equation (2.6) we can recall Hawkes conditional intensity function for exponential decay:

λ∗(t) = λ+

∫ t

−∞
αe−β(t−s)dN(s) = λ+

∑
ti<t

αe−β(t−ti),

Here the self-exciting function µ(t) of the intensity λ∗(t) of the Hawkes process N(t) is exponential:

µ(t) = αe−βt,

where α, β > 0 are some parameters. In this case (λ∗(t), N(t)) is Markovian.

3.4.1 Infinitesimal generator

For any Markov processes (Y (t))t≥0 infinitesimal generator L is defined as

Lf(y) = limh↓0
E[f(Y (t+ h))− f(y)|Y (t) = y]

h
,

where the function f(y) is sufficiently smooth and restricted to the domain D of L where this limit exists.

When D is linear, the operator L is linear and the infinitesimal generator does not depend on t if the Markov

process is time homogeneous.

Since the two-component process Y (t) := (λ∗(t), N(t)) is Markovian, its infinitesimal generator is

Lf(λ∗(t), N(t)) = Lf(Y (t)) = limh→0
Ey

t [f(Y (t+h)]−f(y)
h ,

where y = Y (t) = (λ∗(t), N(t)), Ey
t [·] := Ey[·|Ft], and Ft is a σ-algebra generated by N(t). If we choose

exponential decay function for our self exciting process, then from the definition of Hawkes process we get

dλ∗(t) = β(λ− λ∗(t))dt+ αdN(t).

The descretised equation of the above equation is

λ∗(t+ h) = λ∗(t) + β(λ− λ∗(t))h+ α△N(t),
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where, △N(t) = N(t + h) − N(t). And △N(t) = 1 for new arrivals and △N(t) = 0 for other cases. Now,

from the definition of infinitesimal generator we get the term Ey
t [f(Y (t+h))] which is mentioned in [14] and

can be explained as,

Ey
t [f(Y (t+ h))] =λ∗(t)hf(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1) + (1− λ∗(t)h)f(λ∗(t) + β(λ− λ∗(t))h,N(t))

=λ∗(t)h[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ f(λ∗(t) + β(λ− λ∗(t))h,N(t)).

Here, each jump occurs with probability λ∗(t)h and the probability of no jump is 1− λ∗(t)h. Now, we can

bring limit on the both sides of above equation and after dividing the equation by h and we get,

lim
h→0

Ey
t [f(Y (t+ h))− f(Y (t))]

h
= lim

h→0
λ∗(t)[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ lim
h→0

f(λ∗(t) + β(λ− λ∗(t))h,N(t))− f(λ∗(t), N(t))

h
.

So the infinitesimal generator for Hawkes process can be written as

Lf(Y (t)) = lim
h→0

λ∗(t)[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ lim
h→0

[
f(λ∗(t) + β(λ− λ∗(t))h,N(t))

h
− f(λ∗(t), N(t))

h

]
= lim

h→0
λ∗(t)[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ lim
h→0

f(λ∗(t) + β(λ− λ∗(t))h,N(t))− f(λ∗(t), N(t))

h

= λ∗(t)[f(λ∗(t) + α,N(t) + 1)− f(λ∗(t), N(t))] + β(λ− λ∗(t))
∂f(λ∗(t), N(t))

∂λ∗(t)
.

From here it follows that the generator of G(t) is:

LG,xf(y) = β(λ− λ∗(t)) ∂f(y)
∂λ∗(t) + λ∗(t)[

∫
X
(f(λ∗(t) + α,N(t) + a(u))− f(y))P (x, du)],

where X is the state space of Markov chain Xi and P (x, dy) are transition probabilities of Xi, X0 = x. Thus,

if our initial risk process R̄(t) is

R̄(t) = u+ ct−G(t), R̄(0) = u,

then the generator of (R̄(t), λ∗(t), N(t)), which is Markov process as well, is

Af(y, u) = c∂f(y,u)∂u + β(λ− λ∗(t))∂f(y,u)∂λ∗(t)

+ λ∗(t)Et[f(y, u− a(X))− f(y, u)],
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where a(X) is defined in G(t) =
∑N(t)

i=1 a(Xi), t ≥ 0.

3.4.2 HJB Equation and Optimal Control

Let (λ∗(t), N(t)) = (λ∗, n). Inspired by equation (3.26) and Markovian framework we may find function V̂

on [0, T ]× R× R+ × R+ such that

Ṽ (s, x−H(s)) = V̂ (s, x, n, λ∗).

And we can go further by taking expectations on both sides:

V̂ (s, x,N(t), λ∗(t)) =E

[
U(κTx)

+

∫ T

s

max
π∈R

{
1

2
x2π2σ2DxxV̂ + x(µ− r)πDxV̂

}
(t, x,N(t), λ∗(t)) dt

]
. (3.36)

Now by using dynamic programming principle we can have,

V̂ (s, x,N(s), λ∗(s)) =E

[
V̂ (s+ h, x,N(s+ h), λ∗(s+ h))

+

∫ s+h

s

max
π∈R

{
1

2
x2π2σ2DxxV̂ + x(µ− r)πDxV̂

}
(t, x,N(t), λ∗(t)) dt

]
. (3.37)

We apply the expectation operator E to the above equation then divide both sides by h, move h within the

expectations and let h tends to 0+. We assume enough regularity to allow us to take the limit within the

expectation. It follows that

[ ∫ s+h

s

max
π∈R

{
1

2
x2π2σ2DxxV̂ + x(µ− r)πDxV̂

}
(t, x,N(t), λ∗(t)) dt

]
= −E

[
V̂ (s+ h, x,N(s+ h), λ∗(s+ h))− V̂ (s, x,N(s), λ∗(s))

]
⇒ 1

h

[ ∫ s+h

s

max
π∈R

{
1

2
x2π2σ2DxxV̂ + x(µ− r)πDxV̂

}
(t, x,N(t), λ∗(t)) dt

]
= − 1

h
E

[
V̂ (s+ h, x,N(s+ h), λ∗(s+ h))− V̂ (s, x,N(s), λ∗(s))

]
⇒ max

π∈R

{
1

2
x2π2σ2DxxV̂ + x(µ− r)πDxV̂

}
(t, x, n, λ∗) = (−∂V̂

∂s
−AV̂ )(s, x, n, λ∗). (3.38)
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In this way we get the deterministic HJB equation for the value function V̂ (t, x, n, λ∗):



−∂V̂
∂t = AV̂ +maxπ∈R

{
1
2x

2π2σ2DxxV̂ + x(µ− r)πDxV̂
}
(t, x, n, λ∗)

= AV̂ +maxπ∈R

{
1
2σ

2x2DxxV̂

[
π2 + 2π (µ−r)DxV̂

σ2xDxxV̂

]}
(t, x, n, λ∗)

= AV̂ +maxπ∈R

{
1
2σ

2x2DxxV̂

(
π + (µ−r)DxV̂

σ2xDxxV̂

)2

− (µ−r)2|DxV̂ |2

2σ2DxxV̂

}
(t, x, n, λ∗),

= AV̂ − (µ−r)2|DxV̂ (t,x,n,λ∗)|2

2σ2DxxV̂ (t,x,n,λ∗)

V̂ (T, x, n, λ∗) = 1− e−pκT x.

(3.39)

To solve the above HJB equation we consider the form V̂ (t, x, n, λ∗) = 1− e−pκT xΦ(t, n, λ∗) which will give

us a transformed HJB: 
−∂Φ

∂t = AΦ− (µ−r)2

2σ2 Φ,

Φ(T ) = 1.

(3.40)

Let η = − (µ−r)2

2σ2 . Then Φ(t) = eη(T−t) = e−
(µ−r)2

2σ2 (T−t). So, we can get our value function V̂ (t, x, n, λ∗) = 1−

e−pκT xe−
(µ−r)2

2σ2 (T−t). Therefore, DxV̂ = pκT e
−pκT xe−

(µ−r)2

2σ2 (T−t) and DxxV̂ = −p2κ2
T e

−pκT xe−
(µ−r)2

2σ2 (T−t).

Finally, we can get π∗(t, x) as

π∗(t, x) =− µ− r

xσ2

DxV̂

DxxV̂

=
µ− r

xσ2pκT
, (3.41)

which coincides with the optimal control obtained in (3.35). This is a direct approach to deal with Hawkes

process with exponential conditional intensity.
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Chapter 4

Implement of Risk Model Results

To implement the results of the risk model for insurance which is based on GCHP, we will use empirical

data for claim occurrence. A large German insurance company supplied the data set consisting of claim

occurrences from the class of legal insurance expenses. There were 44 classes in the whole data set which

refers to insurance protection covering the cost of a legal dispute. The data set comprises claims which take

place in the years from 2007 to 2011. But they are reported after three years from 2010 to 2014 with a delay

and have corresponding payment dates from 1st January 2010 to 28th July 2016. The day of the payment

is documented for each claim payment.

In our research, we did not work with the empirical data firsthand. Rather we used the results from [36],

which processed and estimated the parameters from the empirical data. Also, we used their value for other

parameters that are not derivable from the empirical data set. Most of the calculations for simulation of

claim size in the next section are due to [36].

4.1 Simulation of Claim Size

The claim sizes for insurance companies are supposed to be i.i.d. with a distribution, say F , for which

the first two moments are finite. From the existing insurance literature, it is evident that exponential

distribution with rate parameter γ > 0 is a common choice for F . We want to simulate modeled claim sizes

to approximate an i.i.d. sequence which will follow the empirical distribution of observed claim sizes. For

this purpose, we assume that the claim sizes will follow a finite number of fixed jump sizes governed by the

Markov chain evolution, which is a theoretical result for the risk model with GCHP, where no dependence

between subsequent claim sizes is assumed.
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Let F̂ be the empirical distribution function of the claim sizes Yi, with F̂ having finite two moments:

E [Y ] =
1

γ
and E

[
Y 2

]
=

2

γ2
(4.1)

Also, let B be the maximum observed claim size and hence F̂ (B) = 1. The simulation of the sequence of

claim sizes to approximate the empirical distribution F̂ can be made arbitrarily well by increasing N̂ , the

number of states of the Markov chain.

From the empirical data set, the maximum observed claim size B = 10071. With equidistant boundaries

(b1, b2, · · · , bN̂ = B), we define π∗ = (π∗
1 , π

∗
2 , · · · , π∗

N̂
) as

π∗
1 =F̂ (b1),

π∗
2 =F̂ (b2)− π∗

1 ,

· · ·

π∗
N̂

=F̂ (bN̂ )−
N̂−1∑
i=1

π∗
i = 1−

N̂−1∑
i=1

π∗
i ,

(4.2)

where
∑N̂

i=1 π
∗
i = 1.

Let (Xi) be a Markov Chain on the state space X = {1, 2, ..., N̂} with transition matrix,

P =


π∗
1 π∗

2 · · · π∗
N̂

· · · · · · · · · · · ·

π∗
1 π∗

2 · · · π∗
N̂

 .

Being an irreducible Markov chain on a finite state space, (Xi) has a unique stationary distribution [26].

Also we can verify that π∗ is indeed the stationary distribution. Since,

π∗P =

(
π∗
1 π∗

2 · · · π∗
N̂

)
π∗
1 π∗

2 · · · π∗
N̂

· · · · · · · · · · · ·

π∗
1 π∗

2 · · · π∗
N̂


=

(
π∗
1

∑N̂
i=1 π

∗
i , π∗

2

∑N̂
i=1 π

∗
i , · · · , π∗

N̂

∑N̂
i=1 π

∗
i

)
=

(
π∗
1 , π∗

2 , · · · , π∗
N̂

)
=π∗.

(4.3)
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As the columns of P are constant, for each state k ∈ X it holds that

P(Xi+1 = k|Xi = j) = P(Xi+1 = k|Xi = l) = π∗
k, (4.4)

for all j, l ∈ X, i ∈ N. By Markov property and the law of total probability

P(Xi+1 = k) =
∑
j∈X

P(Xi+1 = k|Xi = j)P(Xi = j)

=π∗
kPj∈X(Xi = j)

=π∗
k,

(4.5)

for all k ∈ X, i ∈ N.

The probability of realizing one state is not dependent on the previous state and the Markov Chain (Xi)

represents an i.i.d. sequence. Let Y be a random variable with c.d.f. F̂ , Ai := {ω : Y (ω) ∈ (bi−1, bi]}, and

set

a(i) =E[Y |bi−1 < Y ≤ bi]

=E[Y |Ai]

=
E[Y 1Ai ]

P(Ai)

=
E[Y 1Ai

]

P(Ai)

=
E[Y 1Ai

]

π∗
i

. (4.6)

Now using the equation (4.6) we get

a∗ =

N̂∑
i=1

π∗
i a(i) =

N̂∑
i=1

π∗
i

E[Y 1Ai ]

π∗
i

=

N̂∑
i=1

E[Y 1Ai ] = E[Y ], (4.7)

and thus a∗ = 1
γ . Here a(Xi) describes an i.i.d. sequence that approximates the distribution F̂ arbitrarily

close as the number of states N̂ →∞.

For the case of 20-state Markov Chain, Table 4.1 gives us the equidistant boundaries, state values ai := a(i),

the distribution π∗
i and the value of a∗.

Through Figure 4.1, 4.2 and 4.3 we represent the distribution function of the empirical claims with

its counterpart from claims generated by the Markov chain approach with number of states N̂ = 5, 20, 50

respectively. We observe that as N̂ increases, the empirical claim sizes are replicated reasonably within the
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Parameter Value
(b1, b2, ..., b20 = B) (503.55, 1007.1, 1510.65, 2014.2, 2517.75, 3021.3, 3524.85, 4028.4, 4531.95, 5035.5,

5539.05, 6042.6, 6546.15, 7049.7, 7553.25, 8056.8, 8560.35, 9063.9, 9567.45, 10071.0)
(π∗

1 , π
∗
2 , ..., π

∗
20) (0.46821489, 0.24898971, 0.13240902, 0.07041314, 0.03744466, 0.01991251, 0.01058918,

0.00563117, 0.00299457, 0.00159247, 0.00084685, 0.00045034, 0.00023949, 0.00012735,
0.00006773, 0.00003602, 0.00001915, 0.00001018, 0.00000542, 0.00000288)

(a1, a2, ..., a20) (225.4495, 728.9995, 1232.5495, 1736.0995, 2239.6495, 2743.1995, 3246.7495,
3750.2995, 4253.8495, 4757.3995, 5260.9495 5764.4995, 6268.0495 6771.5995,

7275.1495, 7778.6995, 8282.2495, 8785.7995, 9289.3495, 9792.8995 )
a∗ 797.3672

E[X1] 797.3672

Table 4.1: Boundaries b = (b1, b2, ..., bN̂ ), stationary distribution π∗, state values a(i) and expected value a∗

under the stationary distribution for a 20-state Markov Chain and empirical claim sizes.

α = 0.0260 β = 0.0334 λ = 0.1467

Table 4.2: Parameters for the Exponential HP

framework of the risk model with GCHP.

4.2 Simulation of the Risk Process using Exponential Decay Ex-

citation for HP

To simulate the risk process Rπ(t), first, we simulate the Hawkes point process to model claim arrival time

by the inverse compensator method and then simulate the claim sizes from a Markov chain with the number

of states N̂ = 20 using the procedure described in the previous section. The parameters of the exponential

Hawkes process are given in Table 4.2. All these parameters were not inferable from the empirical data set

but they are taken from [36].

Then we will simulate the process

G(t) =

N(t)∑
i=1

a(Xi), t ≥ 0,

which is the aggregated claim size until time t > 0. At initial time when t0 = 0 then G(0) = 0. If the first

point of Hawkes process is t1, then G(t1) = a(X1). Then with the second point t2 of the Hawkes process,

G(t2) = G(t1)+a(X2). Thus for each point ti of the Hawkes process we get G(ti) = G(ti−1)+a(Xi). Recall

from Merton investment problem in insurance in chapter 3, that, H(t) = c
r (1 − e−rt) −

∫ t

0
e−rsdG(s). So,

once we have the process G(t), we can simulate H(t).

Finally we use the formula of feedback control π∗(t, x) from equation (3.35) and simulate Rπ(t) using
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Figure 4.1: Claim sizes from 5-States of Markov Chain

Figure 4.2: Claim sizes from 20-States of Markov Chain
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Figure 4.3: Claim sizes from 50-States of Markov Chain

Figure 4.4: Sample path of G(t)
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Figure 4.5: Simulations of π∗(t, x(t))

r = 0.06 µ = 0.20 σ = 0.05 p = 0.0001 u = 8000 c = 633.5552

Table 4.3: Parameters for the Risk process

stochastic differential equation (SDE) (3.21). For the simulation of an SDE, we used Euler-Maruyama

Method with MATLAB. In Itô calculus, the Euler–Maruyama method is used to approximate the numerical

solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary

differential equations (ODE) to stochastic differential equations (SDE). It is named after Leonhard Euler

and Gisiro Maruyama. To apply the numerical method to (3.21), first we discretize the time interval [0, T ].

Let ∆t = dt = (T − 0)/N for some positive integer N , and denote τj = j∆t; j = 0, 1, · · · , N . Here we are

simulating the risk process for the period of 1 year (260 days) and also we choose N = 260. The numerical

approximation to Rπ(τj) will be denoted by Rπ
j . Then the Euler–Maruyama (EM) method gives us the time

discretization of (3.21) as:

Rπ
j+1 = Rπ

j + rRπ
j dt+ (µ− r)2er∗tj/(σ2κT p)dt+ (µ− r)ertj/(σκT p)(Wj+1 −Wj) + cdt− (Gj+1 −Gj).

The values of the parameters for the risk process are given in Table 4.3. Figure 4.4 shows us a sample

path of G(t) for a 20-state Markov Chain and the corresponding paths of π∗(t) and Rπ(t) is shown on Figure

4.5 and 4.6 respectively.

47



Figure 4.6: Simulations of Rπ(t)

4.3 Simulation of the Risk Process using Power-law Excitation for

HP

In the previous section, we simulate the risk process using exponential decay excitaion function for the

conditional intensity of the HP. Note that, when the conditional intensity of HP is exponential type, the

joint process (λ∗(t), N(t)) is Markovian leading to a stochastic optimal control problem of Markovian type

as seen in Section 3.4. However, when the conditional intensity of HP is power type, the corresponding

stochastic optimal control problem is non-Markovian and we would stress that the theory established in

Chapter 3 is working even for non-Markovian cases. In this section, we will simulate the risk process using

Hawkes process with the power-law excitation function for the conditional intensity. From Chapter 2 we can

recall that the excitation function for power law is µ(t) = m
(d+(t))q . So, the conditional intensity function

described in equation (2.8) is:

λ∗(t) = λ+

∫ t

−∞

m

(d+ (t− s))q
dN(s) = λ+

∑
ti<t

m

(d+ (t− ti))q
.

Table 4.4 gives us the values of the parameters for the HP with Power-law excitaion function. The parameters

for the risk process in this case remains the same from the previous section. Figure 4.7 shows us a sample

path of G(t) for a 20-state Markov Chain and the corresponding paths of π∗(t) and Rπ(t) is shown on Figures
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m = 0.005 q = 2 d = 0.5

Table 4.4: Parameters for the Power-law HP

Figure 4.7: Sample path of G(t)

4.8 and 4.9 respectively.

Observing the pair of Figures 4.5 and 4.6 from HP with exponential excitation and pair of Figures 4.8 and

4.9 from HP with power-law excitation, we see that when the capital (risk process) increase, the investment

in risky assets of the insurance company decrease, that is a company does not want to take more risk when

their capital keeps increasing. On the other hand, whenever the capital decreases, the investment in the

risky assets increases.
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Figure 4.8: Simulations of π∗(t, x(t))

Figure 4.9: Simulations of Rπ(t)
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Chapter 5

Conclusion

In this thesis, we study the Merton investment problem for insurance company, where the arrival of claims

follow a Hawkes process and the amount of claims follow a finite number of fixed jump governed by a Markov

chain, that means, the risk model is based on general compound Hawkes process. Also the insurance company

wants to invest their capital into financial market to increase their revenue. Investment in the risk-free assets

give a constant amount of return over time with no risk whereas risky assets always have some risk exposure

and uncertainty but expected rate of return may be higher than risk-free assets. So the insurance company

wants to find out what is the optimal allocation of their capital between risky and risk-free assets that would

maximize their expected utility at terminal time. When the aggregated claim size increases, it translates to

an outflow of the money from the company which decreases the utility and to cover up the loss the company

may need to adjust their strategies.

In order to solve the Merton investment problem which is a stochastic optimal control problem, we use

the dynamic programming problem to derive the stochastic Hamilton-Jacobi-Bellman(SHJB) equation for

the value function. The SHJB equation provides a way of solving for the optimal feedback control (optimal

investment portfolio), which then can be used to solve the controlled stochastic differential equation (SDE)

for the risk process.

To implement the idea for solving Merton investment problem through the dynamic programming method

and the SHJB equation, we use empirical data set for claim occurrence. First we simulate the sequence of

claim sizes which follows the distribution of empirical claim sizes and Hawkes point process to model the

arrival process of claims. Then using the optimal investment portfolio obtained from dynamic programming

method and SHJB equation we simulate the controlled SDE for the risk process.

The future work will be devoted to simulation of p for the utility function U(x) = 1 − e−px by using
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particle swarm optimization (PSO) algorithm. PSO is a computational method that optimizes a problem by

iteratively trying to improve a candidate solution. This algorithm searches the space of an objective function

by adjusting the trajectories of particles. When a particle finds a location that is better than the previous

one then PSO updates that location as the new current best for the mentioned particle. The aim is to find

the global best among all the individual best solution until the objective no longer improves. As we will not

use diffusion approximation for R(t) like stated in [31] so that we can use only numerical methods.
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[7] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Buy Low, Sell High: A High Frequency Trading

Perspective. SIAM Journal on Financial Mathematics, 5(1):415–444, 2014.

[8] D. R. Cox. Some Statistical Methods Connected with Series of Events. Journal of the Royal Statistical

Society. Series B (Methodological), 17(2):129–164, 1955.

[9] David Cox and P. A. W Lewis. The Statistical Analysis of Series of Events. 1966.

[10] Lirong Cui, Alan Hawkes, and He Yi. An Elementary Derivation of Moments of Hawkes Processes.

Advances in Applied Probability, 52(1):102–137, 2019.

[11] D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I: Elementary

Theory and Methods. Springer New York, 2006.

53



[12] Angelos Dassios and Hongbiao Zhao. Exact Simulation of Hawkes Process with Exponentially Decaying

Intensity. Electronic Communications in Probability, 18:1–13, 2013.

[13] V. Filimonov and D. Sornette. Quantifying reflexivity in financial markets: Toward a prediction of flash

crashes. Phys. Rev. E, 85, 2012.

[14] Jose Da Fonseca and Riadh Zaatour. Hawkes Process: Fast Calibration, Application to Trade Cluster-

ing, and Diffusion Limit. Journal of Futures Markets, 34:1–42, 2013.

[15] Kay Giesecke and Pascal Tomecek. Dependent Events and Changes of Time. 08 2022.

[16] Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,

58:83–90, 1971.

[17] Qiyue He and Anatoliy Swishchuk. Quantitative and Comparative Analyses of Limit Order Books with

General Compound Hawkes Processes. Risks, 7(4), 2019.

[18] Christian Hipp. Optimal Control for Insurance and Finance. 2016.

[19] Patrick J. Laub, Homas Taimre, and Philip K. Pollett. Hawkes Processes. 2015.

[20] P. A. W Lewis and Gerald S Shedler. Simulation of Nonhomogeneous Poisson Processes by Thinning.

Naval research logistics quarterly, 26(3):403–413, 1979.

[21] Peter A. W. Lewis. A Branching Poisson Process Model for the Analysis of Computer Failure Patterns.

Journal of the Royal Statistical Society. Series B (Methodological), 26(3):398–456, 1964.

[22] Thomas Josef Liniger. Multivariate Hawkes Processes. PhD thesis, Swiss Fed. Inst. Tech., Zurich, 2009.

[23] Anders Martin-LöF. Lectures on the Use of Control Theory in Insurance. Scandinavian Actuarial

Journal, 1994(1):1–25, 1994.

[24] Robert C. Merton. Lifetime Portfolio Selection under Uncertainty: The Continuous-time Case. The

Review of Economics and Statistics, 51(3):247–257, 1969.

[25] Jesper Møller and Jakob G Rasmussen. Perfect Simulation of Hawkes Processes. Advances in applied

probability, 37(3):629–646, 2005.

[26] James R Norris and James Robert Norris. Markov Chains. Number 2. Cambridge university press,

1998.

54



[27] Yosihiko Ogata. On Lewis’ Simulation Method for Point Processes. IEEE transactions on information

theory, 27(1):23–31, 1981.

[28] T. Ozaki. Maximum Likelihood Estimation of Hawkes’ Self-exciting Point Processes. Annals of the

Institute of Statistical Mathematics, 31:145–155, 1979.

[29] Shige Peng. Stochastic Hamilton-Jacobi-Bellman Equations. SIAM J. Control Optim., 30:284–304,

1992.

[30] Jinniao Qiu. Viscosity Solutions of Stochastic Hamilton–Jacobi–Bellman Equations. SIAM J. Control

Optim., 56(5):3708–3730, 2018.

[31] Anatoliy Swishchuk. Merton Investment Problems in Finance and Insurance for the Hawkes-based

Models. arXiv, 2021.

[32] Anatoliy Swishchuk, Katharina Cera, Julia Schmidt, and Tyler Hofmeister. General Semi-Markov Model

for Limit Order Books: Theory, Implementation and Numerics. arXiv, 2016.

[33] Anatoliy Swishchuk and Aiden Huffman. General Compound Hawkes Processes in Limit Order Books.

arXiv, 2020.

[34] Anatoliy Swishchuk, Bruno Remillard, Robert Elliott, and Jonathan Chavez-Casillas. Compound

Hawkes Processes in Limit Order Books. arXiv, 2017.

[35] Anatoliy Swishchuk and Nelson Vadori. A Semi-Markovian Modeling of Limit Order Markets. arXiv,

2016.

[36] Anatoliy Swishchuk, Rudi Zagst, and Gabriela Zeller. Hawkes Processes in Insurance: Risk Model,

Application to Emperical Data and Optimal Investment. Insurance: Mathematics and Economics,

101(PA):107–124, 2021.

[37] Lingjiong Zhu. Nonlinear Hawkes Processes. Journal of Applied Probability 2013, 2013.

55



Appendix A

MATLAB code for simulations and

graphs

% Simulat ion o f Risk Process with Exponent ia l Decay I n t e n s i t y

”++++++++++++ Star t o f the program ++++++++++++++”

N hat=10; %10−s t a t e Markov chain

T= 260 ; % days in a year without weekends

N=260; % Time d i s c r e t i z a t i o n s t ep s

L=1; %Number o f s imu la t i on

a s t a r =797.3672; gamma=1/a s ta r ;

r =0.06/T; mu=0.2/T; sigma=0.05/ sq r t (T) ;

p=0.0001;

kappa=exp ( r ∗T) ;

c =633.5552;

Rzero=8000; %i n i t i a l c a p i t a l

dt=(T−0)/N;

t=l i n s p a c e (0 ,T,N+1);

G sim=ze ro s (1 ,N+1);

G=ze ro s (L ,N+1);

H=ze ro s (L ,N+1);

lambda=0.1467; alpha=0.0260/T; beta=0.0334∗T;

t0=0; t i (1)= t0 ;
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%% f i nd i n g equ id i s t anc e boundary f o r c la im s t a t e

b0=0; bn=10071;

d i f f =(bn−b0 )/N hat ;

b i=ze ro s (1 , N hat ) ; s=0;

b i (1)= d i f f ;

f o r i =1:N hat−1

b i ( i+1)=bi ( i )+ d i f f ;

end

vpa (sym( b i ) , 6)

%% f i nd i n g t r a n s i t i o n p r obab i l i t y ( p i )

p i=ze ro s (1 , N hat ) ;

p i (1)=1− exp(−gamma∗ bi ( 1 ) ) ;

s1=0;

f o r j =1:N hat−1

s1=s1+pi ( j ) ;

Gcap=(1−exp(−gamma∗ bi ( j +1)) ) ;

p i ( j+1)=Gcap−s1 ;

end

format long

%pi

%sum( pi )

%% f i nd i n g a ( i ) , s t a t e value f o r c la im s i z e

fun=@(y ) y .∗gamma.∗ exp(−gamma.∗ y ) ;

a i 1= ( i n t e g r a l ( fun , b0 , b i ( 1 ) ) ) / p i ( 1 ) ;

a i=ze ro s (N hat , 1 ) ;

a i (1)= a i 1 ;

f o r k=1:N hat−1

a i ( k+1)= ( i n t e g r a l ( fun , b i ( k ) , b i ( k+1)))/ p i ( k+1);

end

vpa (sym( a i ) , 8)

%% L Simulat ions o f Hawkes Process , Markov Chain , Claim S i z e s and thus G

f o r sim=1:L
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% Sing l e S imulat ion o f Hawkes Point Process HPp

HPp= [ ] ; %Hawkes Point Process

U=rand ;U1=[U ] ;

t i (2)=t0−l og (U)/ lambda ;

k=2;

whi l e t i ( k)<T

HPp=[HPp, t i ( k ) ] ;

s1= lambda ;

f o r i =1:k

s1=s1+alpha ∗exp(−beta ∗( t i ( k)− t i ( i ) ) ) ;

end

U2=rand ;

t i ( k+1)=(− l og (U2)+ t i ( k )∗ ( s1 ) ) / ( s1 ) ; %f i nd i n g po in t s from HP

U1=[U1 ,U2 ] ;

k=k+1;

end

HPp

HPp 0= [ t0 ,HPp ] ; %Hawkes Point Process i n c l ud ing 0

lenH= length (HPp) ;

% Simulat ion o f c la im s i z e s

aX i=ze ro s (1 , lenH ) ;

f o r k=1: lenH

bk=exprnd ( a s t a r ) ;

f o r j =1:N hat

i f bk< b( j )

aX i ( k)=a i ( j ) ;

break ;

end

end

end

aX i
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% Sing l e S imulat ion o f p roce s s G( t )

f o r j =1:N+1

S=0;k=1;

whi l e t ( j )> HPp(k )

S=S+aX i (k ) ;

k=k+1;

i f k>lenH

break

end

end

G sim ( j )=S ;

end

G sim ;

G( sim , : )=G sim ;

end

%% Figure f o r L s imu la t i on s o f G

f i g u r e ( )

y=ze ro s (1 , lenH ) ;

Hp=ze ro s (1 , lenH ) ;

f o r i =1: lenH

y( i )=G( c e i l (HPp( i ) ) ) ;

Hp( i )= f l o o r (HPp( i ) ) ;

end

p lo t (Hp, y , ” blue ∗”)

hold on

f o r i =1:L

p lo t ( t ,G( i , : ) , ’ r − ’ , ’ LineWidth ’ , 1 )

end

legend ( ’ Hawkes Process Point ’ , ’G( t ) ’ , ’ AutoUpdate ’ , ’ o f f ’ )

hold o f f

59



x l ab e l (” t ”)

y l ab e l (”G( t )” )

%p lo t ( t ,G( 6 , : ) )

%% L Simulat ions o f the p roce s s H( t )

f o r i =1:N+1

s1=(c/ r )∗(1−exp(−r ∗ t ( i ) ) ) ;

s2=transpose ( z e ro s (1 ,L ) ) ;

f o r j =2: i

%s3=G( : , j )−G( : , j −1);

%s4=exp(−r ∗ t ( j ) )∗ s3 ;

s2=s2+exp(−r ∗ t ( j ) )∗G( : , j )−G( : , j −1);

end

H( : , i )=s1−s2 ;

end

%% Finding p i s t a r & R pi ( t ) from G( t )

dW=sqr t ( dt )∗ randn (L ,N) ;

R pi=ze ro s (L ,N+1);

p i s t a r=ze ro s (L ,N+1);

R pi ( : , 1 )= Rzero ;

p i s t a r ( : , 1 )=( (mu−r )∗ exp ( r ∗ t ( 1 ) ) ) / ( ( sigma ˆ2)∗R pi ( : , 1 ) ∗ kappa∗p ) ;

S t i=ze ro s (L ,N+1);

S t i ( : , 1 )= R pi ( : , 1 ) . ∗ p i s t a r ( : , 1 ) ;

f o r j =1:N

R pi ( : , j +1) = R pi ( : , j ) + r ∗R pi ( : , j )∗ dt +

( ( (mu−r )ˆ2)∗ exp ( r ∗ t ( j ) ) / ( ( sigma ˆ2)∗ kappa∗p ) )∗ dt +

( ( (mu−r )∗ exp ( r ∗ t ( j ) ) ) / ( sigma∗kappa∗p ) )∗dW( : , j ) + c∗dt −(G( : , j+1)−G( : , j ) ) ;

p i s t a r ( : , j +1)=((mu−r )∗ exp ( r ∗ t ( j +1)))∗ t ranspose ( ones (1 ,L) )

. / ( ( sigma ˆ2)∗R pi ( : , j +1)∗kappa∗p ) ;

end

f i g u r e ( )

y=ze ro s (1 , lenH ) ;
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Hp=ze ro s (1 , lenH ) ;

f o r i =1: lenH

y( i )=R pi ( c e i l (HPp( i ) ) ) ;

Hp( i )= f l o o r (HPp( i ) ) ;

end

p l o t (Hp, y , ” blue ∗”)

hold on

f o r i =1:L

p lo t ( t , R pi ( i , : ) , ’ r − ’ , ’ LineWidth ’ , 1 )

end

legend ( ’ Hawkes Process Point ’ , ’Rˆ\ pi ( t ) ’ , ’ AutoUpdate ’ , ’ o f f ’ )

hold o f f

x l ab e l (” t ”)

y l ab e l (”Rˆ\ pi ( t )” )

f i g u r e ( )

f o r i =1:L

p lo t ( t , p i s t a r ( i , : ) , ’ r . ’ )

hold on

end

hold o f f

x l ab e l (” t ”)

y l ab e l (”\ pi ˆ∗( t )” )

”++++++++++++ End o f the program ++++++++++++++”

% Simulat ion o f Risk Process with Power Law In t e n s i t y

”++++++++++++ Star t o f the program ++++++++++++++”

N hat=10; %10−s t a t e Markov chain

T= 260 ; % 20 days in a year

N=260; % Time d i s c r e t i z a t i o n s t ep s

L=1; %Number o f s imu la t i on
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a s t a r =797.3672; gamma=1/a s ta r ;

r =0.06/T; mu=0.2/T; sigma=0.05/ sq r t (T) ;

p=0.0001;

kappa=exp ( r ∗T) ;

c =633.5552;

Rzero=8000; %i n i t i a l c a p i t a l

dt=(T−0)/N;

t=l i n s p a c e (0 ,T,N+1);

G sim=ze ro s (1 ,N+1);

G=ze ro s (L ,N+1);

H=ze ro s (L ,N+1);

lambda=0.1467; m=0.005; d=0.5 ; q=2;

t0=0; t i (1)= t0 ;

%% f i nd i n g equ id i s t anc e boundary f o r c la im s t a t e

b0=0; bn=10071;

d i f f =(bn−b0 )/N hat ;

b i=ze ro s (1 , N hat ) ; s=0;

b i (1)= d i f f ;

f o r i =1:N hat−1

b i ( i+1)=bi ( i )+ d i f f ;

end

vpa (sym( b i ) , 6)

%% f i nd i n g t r a n s i t i o n p r obab i l i t y ( p i )

p i=ze ro s (1 , N hat ) ;

p i (1)=1− exp(−gamma∗ bi ( 1 ) ) ;

s1=0;

f o r j =1:N hat−1

s1=s1+pi ( j ) ;

Gcap=(1−exp(−gamma∗ bi ( j +1)) ) ;

p i ( j+1)=Gcap−s1 ;

end

format long
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%pi

%sum( pi )

%% f i nd i n g a ( i ) , s t a t e value f o r c la im s i z e

fun=@(y ) y .∗gamma.∗ exp(−gamma.∗ y ) ;

a i 1= ( i n t e g r a l ( fun , b0 , b i ( 1 ) ) ) / p i ( 1 ) ;

a i=ze ro s (N hat , 1 ) ;

a i (1)= a i 1 ;

f o r k=1:N hat−1

a i ( k+1)= ( i n t e g r a l ( fun , b i ( k ) , b i ( k+1)))/ p i ( k+1);

end

vpa (sym( a i ) , 8)

%% L Simulat ions o f Hawkes Process , Markov Chain , Claim S i z e s and thus G

f o r sim=1:L

% S ing l e S imulat ion o f Hawkes Point Process HPp

HPp= [ ] ; %Hawkes Point Process

U=rand ;U1=[U ] ;

t i (2)=t0−l og (U)/ lambda ;

k=2;

whi l e t i ( k)<T

HPp=[HPp, t i ( k ) ] ;

s1=0;

f o r i =1:k

s1=s1+m∗(d+t i ( k)− t i ( i ))ˆ(−q ) ;

end

U2=rand ;

t i ( k+1)=(− l og (U2)+ t i ( k )∗ ( lambda+s1 ) ) / ( lambda+s1 ) ; %f i nd i n g Hawkes ’ s p roce s s

U1=[U1 ,U2 ] ;

k=k+1

end

HPp

HPp 0= [ t0 ,HPp ] ; %Hawkes proce s s i n c l ud ing 0

lenH= length (HPp) ;
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% Simulat ion o f c la im s i z e s

aX i=ze ro s (1 , lenH ) ;

f o r k=1: lenH

bk=exprnd ( a s t a r ) ;

f o r j =1:N hat

i f bk< b( j )

aX i ( k)=a i ( j ) ;

break ;

end

end

end

aX i

% S ing l e S imulat ion o f p roce s s G( t )

f o r j =1:N+1

S=0;k=1;

whi l e t ( j )> HPp(k )

S=S+aX i (k ) ;

k=k+1;

i f k>lenH

break

end

end

G sim ( j )=S ;

end

G sim ;

G( sim , : )=G sim ;

end

%% Figure f o r L s imu la t i on s o f G

y=ze ro s (1 , lenH ) ;

Hp=ze ro s (1 , lenH ) ;

f i g u r e ( )
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f o r i =1: lenH

y( i )=G( c e i l (HPp( i ) ) ) ;

Hp( i )= f l o o r (HPp( i ) ) ;

end

p l o t (Hp, y , ” blue ∗”)

hold on

f o r i =1:L

p lo t ( t ,G( i , : ) )

end

legend ( ’ Hawkes Process Point ’ , ’G( t ) ’ , ’ AutoUpdate ’ , ’ o f f ’ )

hold o f f

x l ab e l (” t ”)

y l ab e l (”G( t )” )

%p lo t ( t ,G( 6 , : ) )

%% L Simulat ions o f the p roce s s H( t )

f o r i =1:N+1

s1=(c/ r )∗(1−exp(−r ∗ t ( i ) ) ) ;

s2=transpose ( z e ro s (1 ,L ) ) ;

f o r j =2: i

%s3=G( : , j )−G( : , j −1);

%s4=exp(−r ∗ t ( j ) )∗ s3 ;

s2=s2+exp(−r ∗ t ( j ) )∗G( : , j )−G( : , j −1);

end

H( : , i )=s1−s2 ;

end

%% Finding p i s t a r & R pi ( t ) from G( t )

dW=sqr t ( dt )∗ randn (L ,N) ;

R pi=ze ro s (L ,N+1);

p i s t a r=ze ro s (L ,N+1);

R pi ( : , 1 )= Rzero ;

p i s t a r ( : , 1 )=( (mu−r )∗ exp ( r ∗ t ( 1 ) ) ) / ( ( sigma ˆ2)∗R pi ( : , 1 ) ∗ kappa∗p ) ;

S t i=ze ro s (L ,N+1);
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S t i ( : , 1 )= R pi ( : , 1 ) . ∗ p i s t a r ( : , 1 ) ;

f o r j =1:N

R pi ( : , j +1) = R pi ( : , j ) + r ∗R pi ( : , j )∗ dt

+ ( ( (mu−r )ˆ2)∗ exp ( r ∗ t ( j ) ) / ( ( sigma ˆ2)∗ kappa∗p ) )∗ dt

+ ( ( (mu−r )∗ exp ( r ∗ t ( j ) ) ) / ( sigma∗kappa∗p ) )∗dW( : , j ) + c∗dt −(G( : , j+1)−G( : , j ) ) ;

p i s t a r ( : , j +1)=((mu−r )∗ exp ( r ∗ t ( j +1)))∗ t ranspose ( ones (1 ,L) )

. / ( ( sigma ˆ2)∗R pi ( : , j +1)∗kappa∗p ) ;

end

f i g u r e ( )

y=ze ro s (1 , lenH ) ;

Hp=ze ro s (1 , lenH ) ;

f o r i =1: lenH

y( i )=R pi ( c e i l (HPp( i ) ) ) ;

Hp( i )= f l o o r (HPp( i ) ) ;

end

p l o t (Hp, y , ” blue ∗”)

hold on

f o r i =1:L

p lo t ( t , R pi ( i , : ) , ’ r − ’ , ’ LineWidth ’ , 1 )

end

legend ( ’ Hawkes Process Point ’ , ’Rˆ\ pi ( t ) ’ , ’ AutoUpdate ’ , ’ o f f ’ )

hold o f f

x l ab e l (” t ”)

y l ab e l (”Rˆ\ pi ( t )” )

f i g u r e ( )

f o r i =1:L

p lo t ( t , p i s t a r ( i , : ) , ’ r . ’ )

hold on

end

hold o f f
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x l ab e l (” t ”)

y l ab e l (”\ pi ˆ∗( t )” )

”++++++++++++ End o f the program ++++++++++++++”
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