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Abstract 

This dissertation discusses the regular continued fraction expansion of /D (X) where D(X) is a 

quadratic polynomial whose coefficients satisfy a certain divisibility condition. 

There are two main results in this dissertation. We show that certain families of non-square 

D may be represented by some quadratic D(X) satisfying the divisibility condition and give a 

surprising period length property of the product of some members of a family. The second result 

generalizes the work of van der Poorten and Williams [206] concerning the continued fraction 

expansion of /D(X) for sufficiently large X, where D(X) obeys the divisibility condition. Also, 

we establish an upper bound for the period length of the continued fraction expansion of /D(X) 

using the Lucas-Lehnier theory, and construct the fundamental unit of the real quadratic order 

[1, \/D(X)]. 
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Chapter 1 

Introduction 

Continued fractions have been studied by mathematicians for over 2000 years. They have found 

application in a wide variety of areas in mathematics, particularly when accurate approximations of 

certain objects are required. One important place where continued fractions have found application 

is in number theory. For instance, we can use the properties of periodic continued fractions to 

determine the fundamental unit of a real quadratic order and subsequently to determine the class 

number and class group structure of that order. These invariants of the order are of enormous 

importance in understanding how to solve number theoretic and Diophantine problems within the 

order. Thus, any progress in understanding the structure of a continued fraction expansion of 

real quadratic irrational is of great value in any subsequent work to be done in the associated 

order. One of the objectives of this thesis is to produce the complete continued fraction period for 

irrationals in a particular class first studied by Schinzel in 1961. 

Finding the fundamental unit of a real quadratic order, as we will show in Section 1.3, is 

essentially equivalent to finding the fundamental solution of the quadratic Diophantine equation 

1x2 - D Y21 = 1, (1.1) 

where x, y E Z and D is a non-square natural number. The well-known method for solving such 

an equation is the continued fraction method, in which we convert v'75 into a continued fraction 

and subsequently obtain the fundamental solution. 

Although the continued fraction method provides the fundamental solution of (1.1), getting 

the fundamental solution is by no means trivial in general. In many instances, the computation 

is extremely time-consuming when D is large. However, it is sometimes possible to write D as 

1 
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an integer-valued polynomial evaluated at some X, i.e., D = A2X2 + 2BX + C, and express the 

regular continued fraction expansion of \/7 in terms of the coefficients of that polynomial. 

In his 1961 paper [213], Schinzel showed that if D(X) is an integer-valued polynomial of 

odd degree, or of even degree with non-square leading coefficient, then the regular continued 

fraction expansion of /D(X) has unbounded period length as X varies. However, when D(X) is 

a quadratic polynomial, 

D(X) = A2X2 + 2BX + C, (1.2) 

with integer coefficients, where we may take A> 0, Schinzel showed that the period length of the 

continued fraction expansion of /D (X) is bounded for all integers X if and only if it satisfies 

what is called the Schinzel condition 

4gcd(A2,.B)2, (1.3) 

where the discriminant, A = B2 - A2C, is non-zero. 

van der Poorten and Williams [206] gave the regular continued fraction expansion of \/D(X) for 

sufficiently large X when D(X) is a quadratic polynomial satisfying the Schinzel condition together 

with the additional condition that gcd(A2, 2B, C) is squarefree. For example, they showed that 

/D(X) has regular continued fraction expansion 

(AX + ao, a,, a2.... ) an) 2(AX+ao)) 

where B, C> 0, JLj = lB2 - A2CJ = 1 and B/A = (ao, a1, a2,. . . , a,) for all non-negative integers 

X. It is clear that the above expansion of /D(X) has fixed period length for all non-negative 

integers X. We will give a more detailed account of van der Poorten's and Williams's work. 

There are two main results in this thesis. We show that certain families of non-square D may 

be represented by some quadratic D(X) satisfying the Schinzel condition. By this result, we find 

a surprising period length property associated with the product of some members of a family. 
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The second result concerns the Schinzel condition. Schinzel's result regarding the period length 

of /D(X) has two parts. Louboutin [113] studied the necessity part and essentially reproved this 

part by establishing a lower bound for the period length of /D(X), where D(X) does not satisfy 

the Schinzel condition. In Chapter 4, we reprove the sufficiency part of Schinzel's result, i.e, if D(X) 

satisfies the Schinzel condition, then the continued fraction expansion of /D(X) has a bounded 

period as X varies. We use a constructive approach to investigate the continued fraction expansion 

of /D(X). Assuming the Schinzel condition, we show that as X varies, the continued fraction 

expansions of /D(X) can be separated into a finite number of classes of constant period length. 

More importantly, we obtain the continued fraction expansion of /D (X). By this result, we obtain 

an upper bound for the period length of y"D(X) and establish a formula for the fundamental unit 

of the real quadratic order [1, \/D(X)] for fixed X in Chapter 5. Our result generalizes the work 

of van der Poorten and Williams [206] by dropping the condition that gcd(A2, 2B, C) is squarefree. 

This thesis comprises six chapters of material along with a bibliography and an appendix. 

The first chapter is an introduction to continued fractions and real quadratic orders. The second 

chapter is a discussion of known results on the continued fraction expansion of /D (X). The third 

chapter contains our first original result regarding some families of D. The fourth chapter contains 

the major result of the thesis, namely the continued fraction expansion of \/D(X) for sufficiently 

large X, where D(X) satisfies the Schinzel condition. Based upon the work in Chapter 4, in 

Chapter 5 we present the upper bound for the period length of the expansion of VD(X) as well as 

the fundamental unit of the real quadratic order [1, /D(X)}. Chapter 6 contains the concluding 

remarks and future research topics. The bibliography is intended to be as complete as possible, 

with the referenced that are explicitly referred to in this thesis being marked with an asterisk. The 

appendix consists of examples and relevant information pertaining to our work here. 
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1.1 Basic Definitions 

The material in this section is available in the literature, such as Perron [190] and Rosen [211]. 

Definition 1.1.1 By a formal continued fraction we mean an expression of the form: 

1 
a0 + - 

1 
1 

a,+ - 

where ai is a real number. We call ai the i-th partial quotient for i = 0, 1,2..... 

(1.4) 

Remark 1.1.1 The above partial quotients aj can be complex numbers or even polynomials. 

We rewrite (1.4) in the typographically simpler form 

(ao,ai,a2, ... ,). 

Let 

(1.5) 

= (a, a+i,.. .,) for i= 0,1,2,.. .,  (1.6) 

then it is apparent that for any fixed i ≥ 0, 

Oi = a + 
0j+1 

1 
O1=a1+ 02 -, Oo=ao+..-, 

and 00 is the continued fraction in (1.5). We refer to Oi as the i-th complete quotient. 

Put 

= 0, B 2 = 1, A. 1 = 1, and B_1 = 0, 

and for i ≥ 0, define recurrence relations 

A l. i4i-1+.'4i-2 and B=ajB 1+B 2. 

(1.7) 

(1.8) 
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Then a truncation, (ao) a1, a2,. .. , aj) for some non-negative integer i, of the continued fraction in 

(1.5) may be written as ratio AlBi. We call such a ratio the i-th convergent of the continued 

fraction. The equations in (1.8) were first introduced by John Wallis in his 1655 publication, 

Arithmetica Infimitorum. 

It is well-known that the equations in (1.8) can be written as a matrix equation, 

/ -1 A 2 a 1 = aj 

Bi B_1 ,j k\ B_1 B_2j 1 o) j=O 1 0 / 

This implies that 

I/i / 
- A,_jBi = det fl (  

\i01 o)) 
and gcd(A, B) = gcd(4 A..1) = gcd(Aj_1, B_1) = gcd(B, B_1) = 1. 

If we write 

then 

(Ai A1_1 

Bi B_1j 

) 
( 

(1.9) 

(1.10) 

This implies that Ai = a0u + v, Bi = u, + w and 2j-1 = z. When the rightmost matrix 

of the above equation is symmetric, that is v = z, we get 

Aj=aou+v, B='u, A_1=aov+w, and B_1=v.  

By (1.6) and (1.7), we may write 

00 = (ao,ai). .. ,aj.i3O). 

If  =1, then 

= (ao,01) = 
01 B0 01+ B_1 

a0 0 + 1 A0 01 + A_1  

(1.12) 
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Similarly, if i = 2, then 

O = (ao, a1, 02)   
- A102+A0 
- B102+B0 

Repeating this process inductively on i, we get 

9 + '4 i-2  
00 = (ao)ai,a2, .. . ,ai_i3O) = B_10+B_2 

Rearranging terms to express Oi in terms of 9o, we get a useful formula, 

0i 
- B...200—A_2 

- B_1 Oo - 

(1.13) 

(1.14) 

It follows that Oi is uniquely determined by Oo and (ao, a1,.. . , a_1) - 

When the initial partial quotient, a0, is an integer and the other partial quotients, a, are 

natural numbers for i ≥ 1, we call the continued fraction in (1.4) regular and write it as 

(ao,ai)a2, ... ). 

Here, the use of ( ) is to distinguish the regular continued fraction expansion from the formal 

continued fraction expansion denoted by ( ). 

We use the Euclidean algorithm to compute the regular continued fraction expansion of a real 

number 0. Set 00 = 0 and a0 = LOoi. If oo is an integer, then the continued fraction expansion of 0 

is (ao). If 90 is not an integer, then it can be written as L0oi + 1/0, for some positive real number 

01 > 1. Let a1 = L°d. If 01 is an integer, then we get 0 = (ao, ai). Otherwise, 01 is not an integer 

and it can be written as a1 + 1/02 for some positive real number 02 > 1. Continuing with this 

process, it either terminates, or it doesn't, in which case we get 

90 = (ao) a1, a2,. . . , aj+l, ... ), (1.15) 

where a1 = 0 +'j and Oi = 1/(G - a) for i ≥ 0. It is clear that 0j+j > 1 for all i ≥ 0. Thus, 

a+i = LO+i ≥ 1. Hence, we may write 

0o = (ao, a1, a27. . 
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The expansion in (1.15) terminates exactly when Oi = [8jj for some i. By the Euclidean 

algorithm, this happens if and only if 00 is rational. Hence, we have a finite regular continued 

fraction expansion if and only if 00 is rational. In other words, as a contrapositive statement, we 

get an infinite regular continued fraction expansion if and only if 80 is irrational. Moreover, when 

00 is irrational, the infinite regular continued fraction expansion of 8 is unique by (1.15). 

Lemma 1.1.1 Let 0 be an irrational number, so, s,. ... , s,,,—1 E N and 0* defined by 

0= (so)si,..., sm_i3O*). 

If L0J, then 9* < 1. 

Proof: Let 01 = 1/(0 - so). Then. 01 = (Si,S2,. .. ,Sm _1,0*). If so 54 Lvi, then 0 < 01 < 1 if 

s0< LJ and 91<0ifs0> LJ - Write 02=1/(01—s1). Since siEN,we get 82=1/(01—s1)<o. 

Similarly, 83 = 11(02 - 82) <0. Continuing with the process, we get 0* = 1/(0,._i - Sm_i) <0. 

Hence, 9* < 1. 0 

Theorem 1.1.1 Let 0 be an irrational number, a0 = [9j, 8 o, Si,. . . , Sm—i E N, 01 = 1/(0 - ao), 

= 1/(0 - Si—i) for 1 ≤ i ≤ m, and 0* be a real number defined by the formal continued fraction 

O=(ao) so, si, .... sm _i3O*). (1.16) 

If0*> 1, then s_1 = L°J for 1 ≤ i ≤ m. 

Proof: Suppose on the contrary that there exists some i such that 1 ≤ i ≤ m and 8j1 [°i-

Then by Lemma 1.1.1, we have 0* <1. El 

Remark 1.1.2 From Theorem 1.1.1, we see that 0* is the (m + 1)-th complete quotient 8m+i 

of the regular continued fraction expansion of 9. Thus, if (Sm, Sm+i,...) is the regular continued 

fraction expansion of 0*, then the regular continued fraction expansion of 0 is given by 

(ao, so, si,...,sm_i)sm,sm+i ,. .. 
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Hence, when conditions of the theorem are met, it is justified to write the continued fraction in 

(1.16) as (ao, so, s1,. . . ) 8*) and refer to it as the regular continued fraction expansion of 9 

Unlike the infinite expansions, it is possible to express a finite regular continued fraction expan-

sion in two ways. Suppose that we have a regular continued fraction expansion (ao, a1) a2,. .. , a). 

If ai ≥ 2, then we may also write the expansion as (ao, a1, a2,. . . , a - 1, 1). Similarly, if ai = 1, 

then we may write (ao, a1, a2,. .. , a) as (ao, a1, a2, ... , a_1 + 1). 

In the theorem below, we give a classical result on finite continued fractions and linear Dio-

phantine equations. 

Theorem 1.1.2 Let a, b, and c be non-zero integers and x and y integer unknowns. If d = 

gcd(a, b) and d J c, then the solutions to the linear Diophantine equation 

ax - by = c 

are given by 

x = B_1(c/d) + m(b/d) and y = A_i(c/d) + m(a/d), 

where A_1/B_1 is (n. - 1)-th convergent of a/b = (ao, a1, . . . ) a,,), m is odd and m is any integer. 

Proof: See Rosen [211, Theorem 2.14, p. 113]. 

1.2 Periodicity and Quadratic Irrationals 

Among the infinite regular continued fractions, the periodic ones are the most studied. Over the 

past few centuries, many interesting and important results have been established. References and 

proofs can be found in Davenport [31], Hurwitz [74] and [75], Perron [190] and Williams [251], for 

instance. We will distill this wealth of information into a few sections of results that are needed 

for the work in the sequel. Since we are primarily interested in regular continued fractions, we will 

omit the word regular from now on, unless ambiguity arises. 
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Definition 1.2.1 An infinite continued fraction, (ao, a1, a2........), is called periodic if there 

exists a natural number £ and an non-negative k such that for all non-negative integers n, 

ak = ak+,+ 

for  < i <é— 1. 

We write such a periodic continued fraction as 

(ao,ai,... ,ak_1,ak,ak+2, . . . (1.17) 

and if £ is minimal, it is called the period length. When k is minimal, the integer sequence 

a0, a1,.. . , aJ is referred to as the pre-period and the integer sequence ak, ak+1, . . . , ak_1 under 

the overline notation as the period. Also, when the pre-period is empty, in this case k = 0, we 

call such a continued fraction expansion purely periodic. 

The study of periodic continued fraction expansions focuses on a mathematical object called a 

quadratic irrational. 

Definition 1.2.2 A quadratic irrational is a real number of the form 

Q 

where D is a non-square natural number, P is an integer, Q is a natural number, and 

p2 D mod Q. (1.18) 

Note that since 

P + /i5 PQ + V/DQ2 and (PQ)2 DQ2 mod Q2, 
Q - Q2 

we may always assume (1.18). For instance, the golden ratio, (1 + v')/2, satisfies (1.18), i.e., 

12 5 mod 2, 
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and the other conditions required by Definition 1.2.2. Hence, it is a quadratic irrational. 

In the eighteenth century, Euler and Lagrange proved that a real number 0 has a periodic 

continued fraction expansion if and only if it is a quadratic irrational. Euler established the 

sufficiency condition and Lagrange proved the necessity condition. In light of this theorem, we 

understand the reason why the study of periodic continued fraction expansions is closely related 

to the topic of quadratic irrationals. 

In the remark following Definition 1.2.1, we mentioned purely periodic continued fraction ex-

pansions. Certainly, any irrational number with a purely periodic continued fraction expansion 

must be a quadratic irrational by the theorem of Euler and Lagrange. But there is more: any 

quadratic irrational Oo must have a complete quotient Oi that exhibits pure periodicity by (1.17) 

of Definition 1,2.1. 

Definition 1.2.3 A quadratic irrational 0 = (P + /)/Q is said to be reduced if 0> 1 and its 

conjugate = (P - /)/Q lies strictly between —1 and 0. 

For example, since (1 - \/g)/2 lies strictly between —1 and 0, the golden ratio, (1 + v')/2 is 

reduced. From the above definition, we can deduce that P and Q must be positive. 

In 1828, Galois showed that a real number has a purely periodic regular continued fraction 

expansion if and only if it is a reduced quadratic irrational. By Definition 1.2.1 and Galois' theo-

rem, it is evident that a quadratic irrational 0 will eventually have a reduced complete quotient. 

Moreover, once such a reduced complete quotient is determined, all ensuing complete quotients 

are reduced. 

The results of Euler, Lagrange and Galois are central to the study of periodic continued frac-

tions. Besides these three famous mathematicians, there are many more who contributed to the 

study of periodic continued fraction expansions. According to Dickson [36], Termer [237] gave 

a convenient algorithm to calculate the continued fraction expansion of VIDU for any non-square 
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natural number D. Set a0 = Po = 0, Q_i = D, Qo = 1 and R0 = 0. For i ≥ 0, compute 

[v'j - R, = - a(P+i - 

aj+l=I  ,., I, 
L 4i+1 J 

R 1 = (P +1 + Lv'i) - aj 1Q j. 

This algorithm is called Tenner's algorithm. We note that the computation for aj and R 

can be done in one operation in a modern computer. 

Now, to convert an arbitrary quadratic irrational, 0 = (P + /)/Q, into a continued fraction 

expansion, we set Po = P, Qo = 9, a0 = Lvi, and for i ≥ 0, define 

Pj+i =aQ— P, Q+1= Qi and a+i = • V -  
Qi+' 

-j 

Then (P 1 + /)/Q + is the (i + 1)-th complete quotient of 9. Moreover, if we put Q. 

(D - P)/Q0, then in (1.19) can be written as 

- D - Pj - D - (aQ - P)2 D - p2 aQ + 2aP. 

Qi_ Qi - Qi 

Hence, 

- a(aQ - 2P) = Qi-i - aj(Pj+i - P). (1.20) 

When P0 = 0 and Qo = 1, we have 0 = and when Po = 1 and Qo = 2, we get 0 = 

(1 + v')/2. These two cases play a significant role in the study of Pell equations and real 

quadratic fields, which are the topics of the next few sections. 
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Moreover, if the period length of the continued fraction expansion of /2 is £, then the denominator 

Qi of the i-th complete quotient is 1 if and only if i = n for some non-negative integer n. 

Furthermore, if Oa is the n-th complete quotient of then Oa = a0 + \/. 

Proof: See Perron [190, Satz 3.9, p. 79]. 

Theorem 1.2.2 If D is a non-square natural number and O, = (P + /)/Q is the i-th complete 

quotient of \/i, where the period length of /75 is £, then 

0<P<\/75, 0 < Qj < 2-V_D and aQ1≤2'/. 

for all positive integers i ≤ 

Proof: See Perron [190, p. 84]. 

Theorem 1.2.3 Let D be a non-square natural number and £ the period length of the continued 

fraction expansion of v'. If (P + v/'D—)/Qi is the i-th complete quotient of for some non-

negative integer i, and Qj I 2P, then £ is even and i £/2 mod £. 

Proof: See Perron [190, Satz 3.13, p. 85]. 

Theorem 12.4 If D is a non-square natural number that is congruent to 1 modulo 4, then 

2 - (ao,ai)a2,. .. ,a,a,2ao —1). 

In addition, if the period length of (1 + /)/2 is £, then the denominator of the i-th complete 

quotient, Q, is 2 if and only if i = n.e for some non-negative integer n. Moreover, if is the 

n-th complete quotient of (1 + v'Tb/2 for some natural number n, then One a0 —1+ (1 + /)/2. 

Proof: See Perron [190, Satz 3.31, p. 105]. 

Recall from (1.13) that 

00= A 1O + A 2  
B_10 + B_2 
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Substituting (P0 + v')/Qo for Oo and (P + vrD-)/Qi for 0, we get 

Po+\_  1((P+)/Q)+2 

Qo B 1 ((Pi + + Bi2 

On cross-multiplying the equation and comparing rational and irrational parts, we get 

- B 1P0 = B 1P + B 2Q 

and 

(1.21) 

B_1D = (A-1P + A. 2Q)Q0 - (B-1P + B_2Q)P0. (1.22) 

If we multiply (1.21) by Aj.Qo - B_1P0 and (1.22) by B_1 and take the difference of the two 

equations, then we get 

(A_1Q0 - B_1Po)2 -  DBiLl  = (A_1B...2 - A_2B_1)Q0Q. 

By (1.10), we have 

(Aj..iQo - B_1P0)2 - DB_1 = (_1)iQ0Q. (1.23) 

For any natural number i, if we put 

then 

G_1 = hi-i Qo - B_1P0, (1.24) 

G_1 - B_1D = (l)iQ0Q. (1.25) 

1.3 Pell Equations 

A quadratic Diophantine equation of the form 

- y2D = 1 (1.26) 
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with a non-square natural number D and integer unknowns x and y is known as the Pell equation. 

This simple equation was misattributed to John Fell by Euler in [48] for a method of solving it. 

This particular technique of solving the Pell equation was most likely due to Lord Brouncker as 

credited by Wallis. Fell equations have been studied by mathematicians all over the world, such 

as the Greeks, the Indians and the Europeans, for over 2000 years. 

Although there is no definite evidence that the ancient Greeks had a solution to (1.26), they 

knew of such equations according to Fowler [53]. A strong case for such knowledge can be made by 

considering the Cattle Problem of Archimedes. There are two parts in this problem and we present 

them in contemporary notation: the first asks for the determination of 8 unknowns, numbers of 

bulls and cows in each of four herds of cattle, with seven linear relations among these numbers. 

The second part essentially asks for positive integer solutions of 

- 41028642327842 V2 =  1. 

The original wording of the cattle problem is poetic in nature. There were disputes on the math-

ematical formulation from the exact wording of the second part of the problem. However, most of 

the experts today agree that the second part stands as the above Fell equation. 

In the twelfth century A.D., the Indian mathematician Bhaskara II gave a technique, which 

came to be known as the cyclic method, that solves Fell equations in general. However, neither 

he nor his countrymen were able to prove the method rigorously. Nevertheless, they were content 

that the technique always seemed to work empirically and they used it to solve (1.26) for D = 61, 

67, 97 and 103. 

According to Weil [245], Lagrange, completing earlier work of Euler, established in 1768 that 

a Fell equation always has a non-trivial solution, a solution with non-zero y. Moreover, there are 

infinitely many such solutions (x, y) given by 

x+yv, = ±(xo+yo/b)Th, (1.27) 
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where n is any integer, xo +yov'> 1, (xe, yo) is the minimal positive solution, of the Fell equation 

(1.26), and no other solutions exist except those given in (1.27). The minimal positive solution 

is referred to as the fundamental solution. Thus, it is evident that solving (1.26) amounts to 

determining the values of the integers x0 and yo. In modern mathematical language, the key to 

solving (1.26) is the use of the convergents of the continued fraction expansion of /5 as we will 

see in the following theorem. 

Theorem 1.3.1 Suppose that .D is a non-square natural number and n is an integer with Inj < 

If x and y are co-prime positive integers and (x, y) is a solution of x2 - Dy2 = n, then x/y 

is a convergent in the continued fraction expansion of 

Proof: See Mollin [134, Theorem 5.2.5, p. 232]. 

Recall from (1.25) that 

G 1 - B1D = (—I)'QoQi. 

Since we are looking at the continued fraction expansion of we have P0 = 0, QO = 1, 

G_1 = and A%_1 - B_1D = (_1)'Q for natural numbers i. If £ is the period length of 

then £ is the first positive index that Q = 1 by Theorem 1.2.1 and 

- .B_1D = (1)t 

Now, if £ is even, then the fundamental solution to (1.26) is (x0, yo) = (A, 1, B_1). Yet, when £ 

isodd, the fundamental solution to (1.26) is (xo,yo) = (A2_1, B2€_1) since A_1 - B_1D = —1 

when £ is odd. 

Theoretically, we have completely solved the Fell equation by means of finding the period 

length and the appropriate convergent of v'T. However, in practice, we are fax from a useful 

solution still. It is a relatively easy task to find the fundamental solution if D in the Fell equation 

at hand is small. Yet, it is another story when D is large; it could be a tremendous computational 
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effort to find the period length and the appropriate convergent of -/i. For this reason, research 

on Fell equations is still very active today. 

1.4 A Brief Description of Real Quadratic Fields 

In this section, we review the basics of the theory of real quadratic fields. Notions such as orders, 

discriminants, units and conductors will be covered here. We will also establish the link between 

Fell equations and quadratic fields. 

Definition 1.4.1 A real quadratic field is formed by joining -\ID- 0 to the rational field Q for 

some scjuarefree natural number D0, the radicand. By convention, we denote such a field by 

Q(\/) ={p+q\/p,qeQ}. 

In Definition 1,4.1, we assume that D0 is squarefree. We justify such an assumption by the 

fact that if the radicand D is s2D0 for some integer s > 0, then 

= {p+qv'5 Ip,q E Q} = {p+q's2D Jp,q E Q} = fp + sqVID-0 I p,q E Q} = 

The basic invariant of Q(\/D) is its fundamental discriminant , which is defined by 

D0 ifD0 1 mod 4, 
= (1.28) 

4D0 otherwise. 

So z0 is congruent to 0 or 1 modulo 4, and Q( %/D) may also be written as Q(\/). This implies 

that a quadratic field is determined by its fundamental discriminant. 

Similar to the rational field Q, which contains the ring of rational integers, 74 the quadratic 

field Q(\/D) contains a ring of algebraic integers that behaves in much the same manner as Z 

in Q. Define 

I and 00 2 if D0 1 mod 4, 
= < 

00 I 1 otherwise. 
(1.29) 
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Thus, w0 = (1 + /D) /2 if D0 1 mod 4 and w0 = -v"D—o otherwise. 

The ring of algebraic integers of Q(\/D) consists of integer linear combinations of 1 and w0 

and is denoted by 00, namely, 

00={a+bw0la,bEZ}, (1.30) 

the Z-module generated by { 1, w0 }. We often use [a, ,8] to denote the Z-module generated by 

{a,8}, thus we can write 00 = [1,w0]. Moreover, it is clear that {1,w0} is a Q-basis for Q(/D'). 

Definition 1.4.2 An order of a quadratic field Q(V) is a rfrtg, 0, in. Q(V) that satisfies the 

following conditions. 

(1) 0 is a subrirtg of Q(v'b) containing 1. 

(2) 0 contains a Q-basis of Q(/b). 

(3) The additive group of 0 is finitely generated. 

Let L = f2 o for some natural number f and set 

f 2 4D 
g=gcd(f) o), =-, D= (_) Do, =--, and WA =  

0 9 
(1.31) 

Then w = fw0 + h for some integer h. It can be checked that the Z-module generated by 1 and 

w, denoted by 

{a+bw j a,b E Z}, 

is an order of Q(\/). In fact, every order of Q(\/D) can be written as {1,w] = [1,fw0], where 

w is given as above. So we write [1, wj = 0. It is not difficult to see that O'n' is a subring of 

0. In fact, the index of OA in 00 is finite and is equal to 

=1. 
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We call f the conductor of 0. Moreover, 

/  - 2 f2'/\ 2 4D A 

) = -- =  

and call A the discriminant of O. Similar to the fundamental discriminant of Q(\/D), A is 

an invariant of 0, i.e., it is independent of the Z-basis used. If f = 1, then D = D0. It can be 

shown that any order of Q(\/D) is a suborder of 00, thus, we refer to 00 as the maximal order 

of Q(\/D). 

Example 1.4.1 Let D0 =5, then Cr0 = 2, A0 = 5, 

and oo = 1  ] 
Consider A = 45, then A = 32 .5  with conductor f = 3. Hence, 

g = gcd(f, Cro) = 1, = = 2, D = (f)2 D0 = 45, 

2  and 0=1,  2 

However, if we take A' = 180, then A' = 62 . 5 with conductor f = 6. Hence, 

Observe that 

and 

o 
g'=gcd(f',cro)=2, Cr'= °.-7 =1, D'= (f ) 2 Do = 45) 

w, =vL, and 0' = 11,,/4-5]. 

[1,J C I1 1 + /4-5-  I 
2 jc[1  2 j 

OLd = 3, 0J = 6, and f0 : 0,j = 2. 
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The norm of an element, 0 = x + y w, in O is the product of 0 and its algebraic conjugate, 

= x+y, and is denoted by 

(0)= (x+yw) (x+y) = (ax+(a-1)y)2—y2D 
0• 

(1.32) 

Since o is either 1 or 2, it is easy to verify that .N(0) is always a rational integer. Also, the norm 

operation is completely multiplicative, i.e., .Af(0q) = Af(0)AI(q5). 

An element, y, of an integral domain is called a unit if it has a multiplicative inverse in the 

integral domain. For instance, the identity of the ring is a unit since its multiplicative inverse is 

itself. Since 0& is an integral domain, it has units. If is a unit in O, then there exists ii in O, 

such that w = 1. It follows that is a unit in if and only if IAI(a)j = 1. Hence, to find all 

the units in O, we look at the equation, 

= (x+yw)(x+y) = ±1. 

By (1.32), we have 

(ax + (a -  1)y)2 -  y2D  
=±1. 

a2 

This is equivalent to 

(ax + (a - 1)y)2 - y2D = ±a2. (1.33) 

Since a is either 1 or 2, we are solving a quadratic Diophantine equation. All the solutions to the 

above two equations are implicitly given by Theorem 1.3.1. For instance, when the right hand 

side of (1.33) is 1, we get the Fell equation, x2 - y2  = 1, and we have presented its fundamental 

solution on page 15. Moreover, if (axo + (a - l)yo + yoV')/a> 1 is the smallest positive unit of 

O, then all other units can be found by 

± (axo +(a-1)yo +Yo\/)Th 
for some integer n, 

and such a unit is called the fundamental unit of O and denoted by . 
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Theorem 1.4.1 If D > 0 is a non-square integer and OA = [1, (a-1+i/)/a] is a real quadratic 

order, then the fundamental unit of OA is 

G 1 + B,,-,-,I-D-

o' 

where £ is the period length of the continued fraction of (CT-i + /b)/o-, Ae_i/B_1 is the (é -1) -th 

convergent of (u - 1 + -/b)/u and G_1 = crA_1 - (o - 1)B_1. 

Proof: This result follows from (1.25). 

For example, the fundamental unit of the maximal order [1, (1 +,\/-6)/2] is (1 + /)/2 since 

((1 + /)/2) = (1 - 5)/4 = -1. It can be checked that the fundamental unit of the order 

[1, (1 + /Z)/2] is (7 + /)/2 and the fundamental unit of [1, \/g] is 161 + 24/Z. 

Since CA E O, we can always write 

- a+b/  
2 

for some integers a and b. For instance, if A = D and CT = 1 in Theorem 1.4.1, then 

=A1+B1v'= a+b/  
2 

where a 2A_1 and b = 2B_1. Similarly, we can establish (1.34) for other cases. 

1.5 Ideals of an Order 

(1.34) 

We introduce in this section an ideal of a quadratic order. Terminology such as proper ideal, 

fractional ideal, principal ideal, reduced ideal, and class group and class number of a quadratic 

order will be defined and discussed. We will pay special attention to the relation between quadratic 

irrationals and ideals of an order in a real quadratic field using continued fractions. The proofs 

for the results in this section can be found in the literature, such as Cohn [28], Marcus [126] and 

Williams and Wunderlich [260]. 
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Definition 1.5.1 An ideal of a commutative ring R. is a non-empty subset a of R satisfying: 

(1) Jfa,13€a, then a—f3Ea. 

(2) IfrE7 and exEa, then arEa. 

We only consider non-zero ideals, thus, the term ideal will always refer to a non-zero ideal in the 

sequel. 

Since OA is an integral domain, it is a commutative ring and has ideals. Also, since Qn, is a 

Z-module, ideals of 0A are Z-submodules of On,. However, not all Z-submodules of 0A are ideals. 

To determine when a 7L-submodule of OA is an ideal, we use the following theorem. 

Theorem 1.5.1 Let a = [a, b+ cw], where a is a natural number, b, c E 7L with c non-zero. Them 

a is an ideal of 0& if and only ifcj a, c I b and acIM(b+cw). 

The set {a, b + cw} in the above theorem is referred to as a Z-basis of a. Since the ideal 

[a, b + cw] is a Z-module, we can write it as [a, an + b + cw] for any integer n. The quantity a is 

the least positive rational integer in a and hence it is unique in a. If m is any rational integer in a, 

then a I m. The quantity c is also unique in a. If c = 1, then a is called a primitive ideal; that 

is, a does not have any non-trivial rational integer divisors. If c ≥ 2, a = cm and b = cm for some 

integers m and n, then we may write the ideal [a, b + a] = c[m, n + w], where [m, n + w] is a 

primitive ideal. 

Example 1.5.1 From Example 1.4.1, we see that Q = [i, -v/45J is an order in Q(s/). OA has 

discriminant L = 180 and conductor f = 6. Consider the 7Z-submodule, [9,6 + \/], of O. It is 

easy to see that the difference of any two elements in [9, 6 + /] resides in [9, 6 + v']. For any 

aE[9,6+V],we may write a=9m+n(6+J), where m,nEZ. For any 'yE OA, wewrite 

= m' + m'v', where m', n' E Z. Then 'ya = (m' + V45) (9m + m(6 + v')). It can be checked 
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that 

= 9(mm' - 6mm' - nm') + (9mm' + 6mm' +m'n)(6 + V) E [9,6 + 

Thus, [9,6 + '] is an ideal in 06 by Definition 1.5.1. 

On the other hand, if we apply Theorem 1.5.1, we have a = 9, b = 6 and c = 1. Clearly, c I a 

and c J b. Also, since A((6 + v') = —9, ac I A((6 + Therefore, [9,6 + \/] is an ideal of 

Q. In fact, [9, 6 + \/] is primitive since c = 1. 

Consider the order Q' = [1, VT in Q(\/). Qy has discriminant A' = 20 and conductor 

f = 2. We see that [9,6 + = [9,6 + 3/] is an ideal of O. However, [9,6 + 3/] is not 

primitive in Qi since every element in [9, 6 + 3v'] is a multiple of 3 in OA,. Hence, when an 

ideal is primitive in a given order, it is not necessarily primitive in other orders in the same real 

quadratic field. 

Let 01,02,.. . , Ok E 0& and define 

(O1,O2,...,Ok)={'y1O1+'y2O2+"+'ykOkI71,'y2, ... ,'ykEO}. 

0 

It can be shown that (0, 02,... ,Ok) is an ideal of O& and we call it the ideal generated by 

01, 02,.. . , 0j. Note that the notation (01, 02,.. . , Ok) should not be confused with that of the 

regular continued fraction expansion. 

If we have two ideals, a = (01, 02,. . . , 0) and b (01, 02,- .. , q'z), of O, then the ideal 

product, ab, is the ideal generated by the products Oicbj for i = 1,2,. . . , k and j = 1,2, . .. , 1; that 

is, 

ab = { 'yj,0 çb 
1≤i≤k,1≤j≤l 

If an ideal a has a single generator, then we write a = (0) for some 0 E O, and call it a 

principal ideal. For instance, if we take 0 = 1 + which is in On,  = [1, v'45j, and let 
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= a + bV4_5 E Q, where a, b E Z, then 'ye = (a + 45b) + (a + b)'../. Hence, the principal ideal 

generated by 9 is {(a + 45b) + (a + b)v' a, b 

It can be shown that an ideal generated by two elements, 01 and 92, in O, is the same as the 

Z-module generated by the two elements, i.e., (01, 02) = [01, 92]. Thus, any ideal of Qn, need have 

at most two generators. 

Theorem 1.5.2 Suppose that we have two primitive ideals, a1 = [a1, b1+w] and a2 = [a2, b2+wj, 

of Qz with gcd(a1, a2) = 1. If we put a3 = a1a2 and solve for the least positive integer b3 in the 

congruences, 

b3 b1 mod a and b3 b2 mod a2, 

then the product, a1a2 is given by a3 = [a3, b3 + wa]. 

There is a more general result than Theorem 1.5.2 for the case where a1 and a2 are not relatively 

prime, for example see [106] and [218]. However, Theorem 1.5.2 is adequate for our work here. 

When we have ideals a, b and c of 0& and ati = c, we say a divides c and write ale. This is 

equivalent to a D c. We call a 0 Qn, a prime ideal O, whenever a I be implies that a I B or a I C. 

We may reformulate the definition of prime ideals as follows. A ideal a of OA is a prime ideal if 

and only if whenever there is an ideal B such that B I a, then B = (1) =OA or b = a. 

Example 1. 5.2 Consider the ideal [2, 1 + \/] of OA = [i, If there is an ideal a = 

[a, b + \/] that divides [2, 1 + then a must divide 2. This means that a = 1 or 2. If a = 1, 

we have a = O. If a = 2, then a = [2,b+v'] and b must be odd. Hence, a = [2,2n+1+\/] 

[2,1 + \/Z], by the comment following Theorem 1.5.1. Therefore, [2, 1 + /] is a prime ideal of 

Q=[1,v'45]. 0 

Note that a prime ideal is always a primitive ideal but the converse is not necessarily true by 

Theorem 1.5.2. 
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A fractional ideal f of OA is a generalization of an ideal of Q. Instead of residing in O, f 

resides in the number field Q(/Do), but has the property that there is an element o E Q(1/D) 

such that a = af is an ideal in Q. It follows that a subset of Q(\/D) is a fractional ideal of O 

if and only if it is of the form 'ya for some non-zero element 7 E Q(\/D) and an ideal a of O. 

For example, consider 'y = i// and the ideal a = [9,6 + v'] of the order O, = [i, \/45j. 

We compute 

1 1 9 
'ya = [9,6+ \/} j = [' 1+ 74  = 1— 

Since 3 = 9/v'Z+3(1-3/v'), we write the fractional ideal ya = [3, 1-3/V'] = [3, 1 —VZ/15]. 

A fractional ideal of OA is not necessarily an ideal of O. It is clear that the above fractional 

ideal is not an ideal of OA since 1 - v'/15 = {i, -V4-5 However, in some cases, we may 

have a fractional ideal of OA being an ideal of O. If we have an ideal a of Q, then a is a 

fractional ideal since a = 1 a. Further, consider (v1/5)[45, 15 - Clearly, //5 E Q(/) 

and it can be checked that [45, 15 - v'] is an ideal in [1, We find 

[45,15—V]= [9,6+v'], 

which is an ideal in [1, v14-51 even though (v'W/5)[45, 15 - appears not to be an ideal. 

If a is an ideal of O, then it is not difficult to see that 

o,c {Iy E Q (V'-Do) I 'yaca}; 

and we call a a proper ideal of O. whenever equality holds, i.e. 

OA E Q (VIDO) I 'yac -al . 

For example, principal ideals of Q,. and ideals of the maximal order Oo are proper. 
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A fractional ideal f of °A is invertible if there is another fractional ideal of OA such that 

fg = O. In fact, in a quadratic field, f is invertible if and only if f is proper. Since ideals of the 

maximal order are proper, they are invertible. 

If a is an ideal of O, it can be shown that the quotient ring Os/a is finite. We define the 

norm of a to be 

A((a) = IO/aI. 

It is not difficult to see that an ideal a = [a, b+cw] with Z-basis {a, b+cw} has norm M(a) = ac. 

In particular, if a is primitive, then .N'(a) = a. For example, the norm of the ideal [2, 1 + v'] in 

= [1, v] is 2. It is known that if M(a) = p, where p is a rational prime, then a is a prime 

ideal. Thus, the ideal [2, 1 + /] is a prime ideal. However, the converse is not necessarily true. 

If a is a prime ideal, then A((a) is a prime or the square of a prime. 

One of the important properties of the norm of an ideal is its multiplicativity for proper ideals, 

i.e., when a and b are proper ideals of O, 

.N(a) = A((a).Af(b). 

If a = (0) is principal, then a is proper and X(a) = VI(0) I. 

Let a = [a,13] be an ideal of O. The conjugate ideal of a is defined as U = [a,]. For 

example, the ideal [2, 1 - v'] is the conjugate ideal of [2, 1 + \/]. The ideal product a is the 

principal ideal generated by .Af(a), that is a = (.A((a)). 

If a and b are ideals of O. and there exist non-zero a, /3E O such that 

(a)a = (/3)b, 

then a and b are said to be equivalent and this relation is denoted by a "-' b. 

Example 1.5.3 Consider the ideals [2,5 + \/] and [10,5 + \/] of O = [1, '/]. Note that 

(10)[2, 5 + \/] = [20,50 + 10v'] 
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and 

(5+V')[1o,5+V] = [5O+1O',7O+1Ov'] = {2O,5O-1--1O'}. 

Hence, 

(5+v')[1o, 5+v' ] = (1O)[2,5 -Fv'] 

and [2,5+V]r-'[1O, 5+\/]. El 

It can be shown that if a = [ai, b1 + c1w1j and a2 = [a2, b2 + c2w] are equivalent ideals in O, 

then there exists some y E a1 such that 

(-y)a2 = (a2)al (1.35) 

and 0 <7 < a1. In fact, y can be found by the continued fraction algorithm, which is the main 

topic later in this section. 

The relation is an equivalence relation and it therefore partitions all the proper ideals of 0 

into disjoint equivalence classes. It can be shown that the number of these classes is finite, denoted 

by h, and we call h the class number of the order 0. In case 0,& = 00 is maximal, we call 

h, the class number of the quadratic field Q(y'D) and may sometimes write it as h0. If we write 

[a] as the class of all ideals of O. equivalent to a, then we can define a multiplicative operation 

of these classes by [a] [b] = [as]. It is easy to see that this operation is well-defined. Under this 

operation, the set of all ideal classes forms a finite abelian group, C, with identity [(1)] = [0] 

and order h. We note that [(1)] is the class of all principal ideals. This group is referred to as 

the ideal class group of On,. If all ideals of OA are principal, then the group CA consists of only 

one element, the class of all principal ideals of 0, and OA has class number 1. 

Example 1.5.4 Consider OA = [1, \/]. We find that OA has class number 4, i.e, it has 4 

equivalence classes. The first class contains all the principal ideals and is denoted by [(1)]. Put 



27 

a = [6,3 + \/], b = [3, \/] and c = [2,1 + \/]. The ideal class group, C, is {[(1)], [a], [b], [c]} 

and we expect to have the product of two any classes reside in C. 

If we put a1 = 3, b1 = 0, a2 = 2, b2 = 1, then by Theorem 1.5.2, we get a3 = 6 and b3 = 3 and 

the product be = [a3, b3 + \/] = [6,3 + \/], which is a. Since CA is a group, we have [b] (c] = [a]. 

0 

A primitive ideal a of OA is reduced if there does not exist any non-zero a E a such that 

a! <.Af(a) and <f(a). 

We may write OA = [1, wj with normal -basis {1, a } and treat it as an ideal of itself. Then 

its norm is 1 and certainly, there is no non-zero element a € 06 statisfying the above reduction 

conditions. Thus, 0& is a reduced ideal. 

Example 1.5.5 Consider the ideal a = [2, 1+v'Z] of O. = [1, v']. Let a = 2n+m+mV45 E a 

for integers m and n. If!aj <Af(a) = 2 and [] <A((a) = 2, then —2< 2n+m+mV <2 

and —2 < 2n + m — < 2. On adding the two inequalities, we get —4 < 4n + 2m < 4. 

Thus, 2n + m = —1, 0, or 1. If 2n + m = —1, then a = —1 + mv'. Notice that m cannot be 0; 

otherwise, 2n = —1, an absurdity. Since I - 1 + m'/I 2 and I - 1 - mV 2 for m 0 0, we 

have 2n + m —1. Similarly, it can be shown that 2n + m =A 0, 1. So, there does not exist any 

non-zero a E a such tht 

a! <'f(a) and J 

Hence, a is reduced. o 

Using the definition of reduction, it is possible to prove 

Theorem 1.5.3 a is a reduced ideal of OA if and only if there exists some 8 E a such that 

a = [.Af(a), /9] with /9 > AI(a) and —Af(a) << 0. 
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The validity of Theorem 1.5.3 may seem suspect if we consider a = [2, 1 + \/] with 16 = 

1 + V. When /3 = 1 + we have < —2 = —A1(a), which violates the second condition 

in Theorem 1.5.3. However, by the remark following Theorem 1.5.1, we may rewrite the ideal 

a = [2, 1 + \/]. as [2, 5 + v']. In this case, ,@ = 5 +V4-5 > 2 and —2 <j < 0. Hence, a is 

reduced by Theorem 1.5.3. 

As a consequence of Theorem 1.5.3, if a is reduced, then .M(a) < This implies that there 

can only be a finite number of reduced ideals in O. 

In what follows, we examine the relation between ideals of 06 and quadratic irrationals in O. 

Suppose that {a, b + w} is a Z-basis of a primitive ideal a. If we set 0 = (b + w)/a and put 

bcro+f(o — 1)+hcro E Z and Q = EZ, (1.36) 
9 9 

then 0 = (P + \/)/Q, where O0 was defined in (1.29) while f, g and h were defined in (1.31). 

If we have P, Q E Z such that P 1 mod o., o• I Q and crQ I D — F2, where o was defined in 

(1.31), then the 7L-module [Q/o, (P + //cr] is an ideal of O. For, if we put 

a='.tEZ and b—'1 f_h+f+ 9 E Z, (1.37) 

then a = [a, b + w1j is an ideal of Q. 

We are now in a position to bring continued fractions to the discussion. Let {a, b + w } be a 

7L-basis of a primitive ideal a. Put P0 = P, Qo = Q and 0 (P0 + \/T)/Q0, where P and Q were 

defined in (1.36). By the fact that a I J'/(b + w), it can be shown that oQo I D — P, where o-

was defined in (1.31). Hence, 0o is a quadratic irrational. Moreover, we may write 

a=[a,b+wj Qo Po+V= , . (1.38) 
0• 0. 

We put a1 = a and convert 00 into a continued fraction and produce a sequence of sets, a1, a2, a3,..., 

such that 

a= Qi1z+1i±V1z (1.39) 
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where P_1 and Qj.1 were defined in (1.19). It can be shown by induction that .P_1 1 mod o-, 

o- I Qi-1 and uQ D - F. Hence, if we put 

Pi —1 f+g 
and b=  f—h+ 

U UO 

then ai = [as, lii +wj are ideals for all i ≥ 0. In addition, they are primitive. It can also be checked 

that 

(Qoçô)a = (Q-1)a, 

where çoj = (-1)'(A_2 - 00B_2) and A..2/B_2 is the (i - 2)-th convergent of 00. Hence, for all 

natural numbers i, aj 'S-' a. 

By the remark following Galois's theorem on page 10, since Oo is a quadratic irrational, even-

tually some k-th complete quotient of 00 must be a reduced quadratic irrational. In other words, 

the k-th complete quotient, (Pk + ./)/Qk, satisfies 

which is equivalent to 

Thus, the ideal 

Pk+ ID— l and —i<  ID— <O, 
Qk Qk 

Pk+VQk and 

= 

is reduced by Theorem 1.5.3. Therefore, the above continued fraction algorithm gives us a 

method of computing a reduced ideal ak+1 equivalent to a. Moreover, we see that ak+1 corresponds 

to the quadratic irrational (Pk + /)/Qk in such a way that (Ph + \/)/Qk is a reduced quadratic 

irrational just in case ak+1 is a reduced ideal. So, if k is the first index such that ak+1 is a reduced 

ideal, then ak+i is reduced because (Pk+_1 + \/)/Qk+_.1 is a reduced quadratic irrational for all 

natural numbers i. 
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If we apply the continued fraction algorithm to w, then we expect to obtain a sequence of 

primitive ideals, a1, a2, a3, The quadratic irrational w = ((o - 1) + -VD— ) /a corresponds to the 

ideal 

0• 
  =O=(1), 

the principal ideal generated by 1, which we call a1. By Theorems 1.2.1 and 1.2.4, the i-th complete 

quotient (P + -,ID— )IQi of the continued fraction expansion of w is reduced for all i ≥ 1; thus, its 

corresponding ideal, aj, is reduced. Moreover, since a1 is principal, ai is principal for all j ≥ 1. 

In fact, ai can be written as ai = where 

= G 2 +  

0• 
(1.40) 

and G_2 was defined in (1.24). Furthermore, since the number of reduced ideals is finite, we have 

= a1 for some minimal k. If we put P = {a1, a2,. . . , ak}, then? is the set of all reduced 

principal ideals of 

Example 1.5.6 Recall from Example 1.5.4 that in the ideal class group CA of 0& = [1, \/] 

consists of four equivalence classes with representatives: (1), a = [6, 3 + \/], b = [3, \/] and 

c= [2,1+'v']. 

In [(1)], we write 0 = v' and apply the continued fraction algorithm to get 

(1) = V/4-5 .' V4-5  's-' [4,3+v'] " [5,5+v'] /4-5 

[9,3+v'] [1,6+\/] - [9,6+v']. 

By (1.40), we compute [9,6 + v'J = (6 + '/), [4,3 + /] = (7+ [5,5 + = 

(20 + 3/), [4,5 + v] = (47+ 7v'), [9,3 + /] = (114 + 17v') and [1,6 + /] = 

(161 + 24\/) are all distinct reduced principal ideals. 
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In [a], we use the representative [6,3 + \/] and convert it to the quadratic irrational, (3 + 

-./)/6. We compute the continued fraction expansion of (3 + /)/6 and find that there is one 

reduced ideal, namely, 

[6,3+\/] -' [6,3+v']. 

Similarly, in [b], we have 

[3,\/] • [3,6+v'] [3,6+V] 

and [3, 6 + \/g] is the only reduced ideal in [b]. 

In [c], we have 

[2,1+\/] r-i [10,5+V] r.J [2,5+v'] '-' [10,5+v']. 

So, there are two reduced ideals in [c]. 0 

1.6 The Class Number Formula 

Recall from the previous section that the class number h, of O,, is the number of elements of the 

class group C. The class number formula provides us with a tool for computing the class number 

of a quadratic order. The results here can be found in the literature, such as Davenport [30] and 

Hecke [68] 

According to Davenport [30], the class number formula, in its simplest and most striking form, 

was originally conjectured by Jacobi ['78] in 1832 and later proved in complete detail by Dirichlet 

[39] in 1840. Since we are only interested in real quadratic fields, we will present the real quadratic 

field version of Dirichiet's class number formula. Also, other results concerning class numbers will 

be discussed within the framework of real quadratic fields. 

When the study of class numbers was initiated by Gauss, the term class number referred to 

the number of classes of equivalent binary quadratic forms of a given discriminant. All the results 
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on class numbers at that time were discussed in terms of quadratic forms. In the mid-nineteenth 

century when the theory of ideals was developed, it became clear that the theory of binary quadratic 

forms was essentially identical to the theory of class groups of quadratic fields, and the term class 

number was then used to stand for the number of elements of the class group. 

According to Dickson [37], Gauss was interested in the relation between the number, h, of 

properly primitive classes of quadratic forms of negative discriminant, , and the number of 

proper representations of V1 as the sum of three squares. One of the conjectures that Gauss 

[56] made regarding class numbers is the so-called class number one problem. In the language of 

real quadratic fields, it conjectures that there are infinitely many real quadratic fields with class 

number one. Advances concerning the class number one problem have been made, for example, in 

Byeon and Kim [15], Louboutin [112] and Lu [121]. In particular, Lu [121] gave a nice criterion 

to determine whether a real quadratic field has class number one. Lu's result can be written as 

follows. If L0 > 0 is a fundamental discriminant, then the class number h0 is 1 if and only if 

ai = n1( 0) +n2(Lo) - 
i=i. 

where £ is the period length of w0 with w0 = (ao, ai,.  

ni(Lo) 'is the number of solutions of x2 + 4yz = L0 for non-negative x, y, z E Z, 

n2(L o) is the number of solutions of x2 +4y2 = L0 for non-negative x, y E Z, 

and 

0 if £ is even, a42 odd if 1 mod 4, 

1 otherwise if A0 1 mod 4, 

1 if £ is even, at/2 odd if A0 0 mod 4, 

2 otherwise if A0 0 mod 4. 

Dirichiet's original result was in the language of quadratic forms. We will present it in the 

context of quadratic fields and quadratic orders. Moreover, we will first present the formula for 



33 

the class number h0 of the maximal order 00 and then give another formula of Dirichlet to find 

the class number h of any order 06 using h0. The class number formula relates the class number 

h0 to the regulator R0 = ]n(e0), to the fundamental discriminant o, and to a particular value 

of a function called the Dirichlet 1,-function. 

The Dirichlet L-function is an example of a Dirichlet series, 

00 

where a1, a2,... is a given sequence of complex numbers and s is a complex variable. 

A character of a group G is a complex valued function f defined on G such that for all 

m1, m2 E G, f(m1m2) = f(mi)f(m2) and f(m) 0 0 for some non-identity element m of G. It is 

well-known that if f is a character of a finite group G with identity element e, then f(e) = 1 and 

e is the only element of G such that f(e) = 1 for all characters of G. Moreover, each functional 

value f(m) is a root of unity. Indeed, if m" = e, then f(m) = 1. 

Example 1.6.1 Consider the multiplicative group modulo 7, Z, and the Legendre symbol 

() M(P)/ mod p, where m E Z and p is an odd prime. Define f: Z — f C by f(m) = (v). 
Then, if ml, m2 E Z, then () = (7 7MI-) (MI-), and hence, f(m1m2) f(mi)f(m2), 0 

Let m be a natural number and Zm the group of reduced residue classes modulo m. For each 

character f of Z, we define a corresponding arithmetic function x = Xf by 

(1) x(n) = f([n.]) if gcd(m, n) = 1, 

(2) (n)= 0 if gcd(m,n) >1. 

This function x is called a Dirichlet character modulo m. It can be checked that if x is a 

Dirichlet character modulo m, then for r, s E Z, 

(rs) = x(r)x(s) and (r + m) = (1.41) 
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On the other hand, if a character x satisfies (1.41) and x(n) = 0 for gcd(n, m) > 1, then x is a 

]jirichlet character modulo m. 

Example 1.6.2 Consider the character on 2 defined in in Example 1.6.1, and define x: Z - C 

by 

X(n) = (n) if 7 { n and x(m) = 0 if 7 

Then X is a Dirichiet Character modulo 7. 0 

The principal Dirichiet character modulo m, Xm; is the Dirichiet character modulo m 

that satisfies 

(1) Xm(Th) = 1 if gcd(m,n) = 1, 

(2) xm(m) = 0 if gcd(m, n) > 1. 

Also, we call a Dirichlet character modulo m that does not satisfy the above condition non-

principal. An example of such a character is the Kroneeker symbol (?) where m 0 or 1 mod 4, 

defined as follows. 

Suppose that m is congruent to 0 or 1 modulo 4. If n is odd, then the Kronecker symbol is the 

Jacobi symbol, which extends the Legendre symbol to odd composite rational integers. That is, if 

m be an odd integer with prime factorization n = fl p, then 

(M)(my' (m 2 (m  ka 

n = 27i) P2) Pa) 

where () is the Legendre symbol defined by m''2 mod pi for odd prime pi. Pf 

If n = 2, then 

G2 
0 if2lm, 

1 ifm1 mod 8, 

—1 ifm5 mod 8. 
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If n = 2'n0 for some a ≥ 1 and odd no, then 

(M ) - (M ) (M).2 flO 

It follows that for all m, n,k E Z, 

( T'k ) - (m\ m 

The Kronecker symbol extends the Jacobi symbol to even n but restricts m to be congruent to 0 

or 1 modulo 4. 

Assuming that x is a Dirichiet character modulo m and s is a complex variable, the Dirichiet 

L-function is 
cxj / ' 

L(,, X) = 
fls 

n=1 

(1.42) 

When the real part of s is strictly greater than 1, L(s, x) is absolutely convergent and we may 

write it as a product, 

L(s,) = j] (_ P PS 
where the product is taken over all rational prime numbers p. This product is known as the Euler 

product. In fact, if the character x is non-principal, then L(s, x) converges even for Re(s) > 0. 

Let Ao be the fundamental discriminant of a real quadratic field. By (1.28), Ao is congruent 

to 0 or 1 modulo 4. So, if we write x 0 (m) (), the Kronecker symbol, then we get a special 

instance of (1.42), 
00 

= (°) 8 (1.43) 

If X, is the principal Dirichiet character modulo 1, then x1 (n) = 1 for all natural numbers n. The 

L-function with character x1, 

L(s, 1) = 
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is the celebrated Riemann zeta function C(s). It converges absolutely and is analytic on the 

half-plane Re(s) > 1. It has a simple pole with residue 1 at s = 1, i.e. 

lim(s - 1)C(s) = 1. (1.44) 
8-41 

When Re(s) > 1, the Riemann zeta function can be written as an infinite product, 

C(s) = JJ (1 - p _8)_l . 

p rational prime 

The zeros of C(s) come in two different types. The so-called trivial zeros occur at s = —2, —4, —6,..., 

and the non-trivial ones occur at certain $ E C. The Riemann Hypothesis asserts that if s is 

any non-trivial zero of C(s), then the real part of s must be 1/2. 

It is well-known that there is an interesting relationship between the Riemann zeta function 

and the Prime Number theorem which speaks of the density of primes. Dirichlet discovered that 

the density of ideals in a fixed ideal class of a quadratic field K = Q(/D) with fundamental 

discriminant A0 is the same for all classes of ideals of K. More precisely, for the case of real 

quadratic fields K = Q(\/D) with discriminant Ao, if A is any class of ideals of K and we denote 

the number of ideals in the class A whose norm is less than or equal to t by Z(t, A), then the limit 

Z(t,  Ko urn = 
t-400 t 

exists and is given by the formula 

2R 

where R0 = ln(E0) is the regulator of Oo. The number no is called the Dirichlet structure 

constant. Note that no is independent of A and is determined by the field only. On putting Z(t) 

to be the number of ideals of the field whose norm is less than or equal to t, we get 

llrn ZW =jc0h0. (1.45) 
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If we let F(n) be the number of ideals of the field K whose norm is n, then 

Z(t) = 
n=1 

Recall that a Dirichiet series is of the form 

F(n). 

where a, are complex numbers for n E N and s is a complex variable. At this juncture, we restrict 

our attention to the case where the an are rational integers. Let S(n) = a1 + a2 + + a,. If the 

limit 

lim 

exists and is equal to c, it can shown that 

00 

lim(s - L) .L an 
- = 

8-1 
n=1 ns 

The function 

(1.46) 

(1.47) 

CK(s) = E  (1.48) 

where the sum ranges over all non-zero ideals of the maximal order of K = Q(\/D) was first 

introduced by Dirichiet for quadratic fields and extended to arbitrary number fields by R. Dedekind 

and is known as the Dedekind zeta function. If Re(s) > 1, then CK(s) converges. 

We may rewrite (1.48) in 

00 CK(.S) F(n)  

In view of (1.45), (1.46), (1.47) and (1.49), it follows that 

(1.49) 

lim(s - 1)(K (s) = ic0h0. (1.50) 

When Re(s) > 1, it is well-known that 
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and at s = 1, 

This means that 

In other words, 

(1.51) 

and this is the Dirichiet class number formula for the real quadratic field with fundamental 

discriminant L0. 

In 1935, Siegel [226] showed that in a real quadratic field with discriminant Lc,, 

R0 h0 r'J as Ao -4 CX). 

This is a remarkable asymptotic result relating h0 to R. and but it has little practical value 

if we want to compute h0. By (1.51), it is clear that to find h0, we need to know the values of 

R0 and L(1, 0). To find R0, it suffices to find co. Since 6 can be found by using the continued 

fraction expansion of w0, we can determine R0. In fact, for certain values of Ao, finding e is easy; 

for example, if D0 is of R-D type which will be introduced in Section 2.1. However, when Lo is 

large, finding L(1,) could be difficult and remains a deep and open problem. 

There are known lower and upper bounds for L(1, x0)- The best known lower bound on 

L(1, x) at present was given by Hofistein [73], which is an improvement of Tatuzawa's lower 

bound in [238]. Let Ao > 0 be a fundamental discriminant and 0 <i < 1/(61n 10). If Ao > 

then with at most one exceptional value of Aç, 

and 

1 Iq  > mm  1 7735l' 0.349 

1  '17  

L(1, x0) > mm { 7.735 In A0' 0.596(1 + n In AO)2A O.13817 



39 

The current best upper bound was given by S. Louboutin in [117], namely 

IL(1,x0)I ≤ (lno+ko), 

where k0 = 2 + - ln(4ir) = 0.046... and y = 0.577... is Euler's constant. 

The above lower and upper bounds can be greatly improved if we assume the truth of the 

extended Riemann Hypothesis. The extended Riemann Hypothesis (ERH) asserts that 

Ii(s, x0) 0 0 for any value of .s such that the real part of s is strictly greater than 1/2. 

Assuming the truth of ERH, Littlewood [111] proved that 

  <L(1, 0) -1 (1  
12e7lnlnL 0 

where 'y is the Euler constant and the error term o(1) tends to zero as '0 approaches infinity. 

Although the error term o(1) makes Littlewood's bounds impractical, explict practical bounds can 

be achieved by applying Bach's averaging method in [6], which also assumes the ERH. 

We conclude this section by presenting Dirichiet's result [40) on the relation between the class 

number, h, of an order OA and the class number h0 of the maximal order Oo (or of Q(\/)). 

Note that since 0. is a subring of 0, any unit in 0,6 must be a unit in 0. In particular, the 

fundamental unit, e, of OA must be a unit in 00. Therefore, e = ej for some natural number 

m. The minimal such m is called the unit index of and denoted by u. There will be a 

discussion in the next section on the determination of u. 

If f> 1 is the conductor of an order 0, with unit index u and fundamental discriminant 

then 

hA = (1.52) 

where ''(f) = f ]j (i - (p)) and the product ranges over all the distinct primes p dividing f 
and () denotes the Kronecker symbol. 
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1.7 Lucas Functions 

Consider a monic quadratic polynomial equation 

x2—Px+Q=0 (1.53) 

with integers P and Q and roots a and 3. The Lucas functions are given by 

  and V=aTh+/3Th. (1.54) 

Lucas functions play a significant role in the theory of continued fractions. In this section, we will 

present a number of identities and results concerning the Lucas functions and use the results to 

determine the unit index introduced in the previous section. Also, some of the results here are 

crucial to our work in Chapter 5. 

Material presented here is available in the literature. For a thorough discussion on the Lucas 

functions, see Lehmer's articles [100], [101] and [102] as well as Lehmer's selected works [129, V. I, 

pp. 1-49] and the books of Ribenboim [208] and Williams [246]. 

Although the functions U and V are called the Lucas functions, Lucas was not the first person 

to study them. They were attributed to him because of the great variety of results he discovered 

pertaining to them. Another major contributor to the study of the Lucas functions is Lehmer. 

Some of Lucas's results were not proved rigorously; it was Lehmer who refined the details and 

put the study on a solid mathematical foundation. Also, in his Ph.D dissertation [101], Lehmer 

generalized (1.53) to the case in which P is replaced by \/7 where R is any integer prime to Q. 

Because of Lehmer's work in the area, the study of the functions U and V is referred to as the 

Lucas-Lehmer theory. 

Since a and /9 are roots of (1.53), their sum a + ,6 = P and their product a/3 = Q. If a = /3, 

then P2 - 4Q = 0 and the Lucas function U, is said to be degenerate. In this case, U is defined 
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by 

Un = lilTi an /3  =  na  n-1 

fl-a a—/3 

Henceforth, we assume that a 4/3. Note that 

- = (a +,6) (& - 13fl) - a/3(a' - ,flfl_l) 

and 

a 1 +,e  (a +,8)(e + I3fl) - afi(a'' + on-1). 

Thus, 

= PU, - QU 1 and V j = PV, - QV 1. 

Since tjo = 0, U1 = 1, VO = 2 and V = P, U and V are integers for m ≥ 0. Also, 

QnU-n = (4)' Ce-n —,8-n on —,n ( = =_ Ur 

and 

= (a/3)'(a + fi) = /3fl + & = V,. 

If we set 5=a—'3, then 

This implies that 

It follows that 

and 

2aTh=V+öU and 2f3Th=V-5U. 

Vmn±5Umn - (Vn±oUn)rn 
2 - 

Lm/2J 

m_2i_l 2m_lUmm = ' ) +1 v n 
i=O 

Lm/2J 

i=o () 

(1.55) 

(1.56) 

(1.57) 

(1.58) 
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where Li=62=P2-4QLO. 

Note that p divides the binomial coefficient () if j is positive and strictly less than p. Hence, 
by (1.57) with n = 1 and m = p, we get 

2'U - (p-1)/2 mod p. 

If p is an odd prime, then by Fermat's Little Theorem, we have 

A( -')I mod p. (1.59) 

Thus, ifpj L, then pl UP. 

If a prime p divides Q, it can be shown by induction that U P 1 mod p for all n ≥ 0. This 

implies that ifp{ P, then p t U except for Uo. If  JF, then p I U form = 0 and n ≥ 2. 

Henceforth, we assume that p J' Q. Define (p) = () where () is the Kronecker symbol. We 

will write e = 6(p) when the context is clear. Also, when p is an odd prime, the notation 6(p) 

simply stands for the Legendre symbol. It can be shown by induction that if 2 1 P, then 2 1 tJ if 

and only if 2 I; and if 2'f'P, then 2 1 U, if and only if 3 1 n. Hence, 

e(2) = 

implies that 

f 0 
—1 if 2P, 

2 U2_6(2). 

Also, it can be shown that for any odd prime p, 

P I UP-4). 

(1.60) 

(1.61) 

(1.62) 

Theorem 1.7.1 If p is an odd prime, e = c(p) and p f QA, then p I V,_ )/2 when the Legendre 

symbol () = —1 andp U(p_6)/2 when () = 1. 
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Theorem 1. 7.2 If p f Q and p/c U, then k+1 Upn when p/c 2. If p/c = 2, i.e. p = 2, then 

4JU2 . 

By (1.62), if p is a prime and does not divide Q, then there exists a natural number k such 

that p J Uk. By Theorem 1.7.2, we see that for any integer a, there exists some n > 0 such that 

pa U. If r J U and r' I Un, where gcd(r, r') = 1, then U J U,,w and implies that 

rr' JUnn,. Thus, if m is any integer such that gcd(m, Q) = 1, then there is a natural number n 

such that m I U. The least such positive n, denoted by c'(m), is called the rank of apparition 

ofmin U. 

Theorem 1.7.3 Let gcd(m, Q) = 1. If m I (J, for some natural number n, then w(m) I n. 

Theorem 1.7.4 (Law of Repetition for a prime p) 

If p is a prime and a. is a natural number such that pa 2 and pa Urn for some m, then 

a+b Up&mn when p f m and b > 0. If pa = 2, then a+b = 2b+1 and 2+1J U2bmn and Urnn/2 is odd 

when n is odd. 

Definition 1.7.1 Suppose that gcd(m, Q) = 1 and the prime factorization of m is fl p where 

pi are distinct primes. We define the functions (m) and A(m) as follows: 

(m) = ftp '(p - 6(p,)) 
i=1 

and 

A(m) = the least common multiple of p'(pj - 6(pj)) for i = 1, 2,. .. , k. 

We note that A(m) J (m). The function A(m) is a generalization of the Carmichael ).-function 

[21] and the function (m) is a generalization of the Euler 95-function to U,-. To see the latter, let 

m = be an odd natural number and b E N such that gcd(m, b(b— 1)) = 1. Take P = b+ 1 



44 

and Q = b. Then gcd(P,Q) = land U = (b7z_ l)/(b— 1). Since A = (a—)2 = (b— 1)2 is a 

square, we have e(p) = () = 1 for all prime divisor p of m. Thus, 

k 

(m) = p i-1(p  

Theorem 1.7.5 (Law of Apparition of m) 

If gcd(m, Q) = 1, then w(m) exists and w(m) I A(m). 

We now confine our attention to the relation between the fundamental unit of a quadratic order 

and the fundamental unit of the maximal order. By Theorem 1.4.1, the fundamental unit of the 

maximal order 0 can always be found by using the continued fraction of w0. We may write the 

fundamental unit as 

60 - a+b/  
2 

for some integers a and b. 

Recall that all units in 00 are of the form ±' or ± for non-negative integers n. We may 

consider only the ones of the form e' and write them as (a + b\/)/2 with a1 = a and b1 = b. 

Suppose that 0. is an order of Q(\/) with conductor f. Then the fundamental unit E. of 0 

is a unit in 0. Thus, e = (a + b\/)/2 for some n. Since e can be written as 

a' + b'\/f2L.o - a'+ b'f/ 

2 - 2 

for some integers a' and b', it is clear that 

a! + Yf -\IYO -  a+bV' 
2 - 2 

and hence, 

f I b. 

The minimal such n is the unit index u of 0. 
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To facilitate the calculations of the sequences {a} and {b}, we consider the monic polynomial 

equation x2 - .Px + Q = 0 with roots a = (ai + brs/Ao)/2 = and 6 = (ai - = 

Then P=a+,8=a1 and Q=cç8=.iV(a), which is eit her 1 or —1. Ifweput 

U. = a' - 

pn 

a—f3 

then U1 = 1, V1 = P = a1, and since 6= 

By (1.56), we see that 

and V=a'+,8, 

V1+Jul - al+bl\/ 

2 - 2 

a+b \/  (al+bl\/ (V1+8U1" V--8U V+Ub1./  
2 2 ) 2 ,) - 2 - 2 

Therefore, an = V and bn = b1U. 

We want to find the-least positive n such that f I b1U,. It is easy to see that if f I b1, then 

n = 1 and u = 1. For the case where f { b1, let gcd(f, b1) = d for some natural number d. Then 

f I b1U, is equivalent to (f/d) J (b1/d) U. Since gcd(f/d, b1/d) = 1, we have (f/d) I (b1/d) U,, 
if and only if (f/d) I U,,. This means that the least positive such n is the rank of apparition of 

f/d, i.e., w(f/d). The existence of w(f/d) is guaranteed by the law of apparition since Q in this 

case is ±1 and gcd(f/d, Q) = 1. Therefore, u. = w(f/d). Since w(f/d) I A(f/d) by the law of 
apparition, we have u ≤ A(f/d). 



Chapter 2 

Known Results on the Continued Fraction Expansion of 

\/D(X) 

The purpose of this chapter is to motivate the new results in Chapters 3 and 4. As we indicated 

at the end of Section 1.3, finding solutions to a Pell equation could be a difficult computational 

problem when D is large. We will solve this problem in cases where D is given by an integer-

valued quadratic polynomial and express solutions of the corresponding Pell equation in terms of 

the coefficients of the polynomial. 

The first section is a review of relevant results pertaining to the continued fraction expansion 

of ./D(X) produced from the time of Stern (1834) to the present. The second section discusses 

Kraitchilc's work in the area. The third section focuses on Schinzel's work on the period length of 

the continued fraction expansion of \,/D(X). The last section presents the joint work of van der 

Poorten and Williams on the subject. 

2.1 A Short History of Certain Parametric Families of D 

Let D(X) = AX2 + BX + C, where A, B, C and X are integers. We want to express solutions 

(x, y) of the Pell equation 

x2—D(X)y2=1 (2.1) 

in terms A, B, C and X. This problem has been studied since the time 'of Stern [236] in 1834. 

He looked at 42 different quadratic polynomials. Numerous subsequent results were achieved for 

specific quadratics by other researchers. However, there is no definite indication of a systematic 

46 
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approach to solving the problem in general since Stern's time. To solve (2.1) for general D(X), we 

need to know the continued fraction expansion of ./D(X) for all X. It is possible that /D(X) 

could have unbounded period length as X varies. So, to solve the general problem, we first need to 

have a criterion to determine if the continued fraction expansion of /D(X) has bounded period 

length. Next, we proceed to find the continued fraction expansion of /D(X) where D(X) obeys 

the criterion and obtain solutions of (2.1) therein. 

The 42 different quadratic polynomials that Stern examined can be found in [236, p. 332], for 

instance, D(X) = (mX)2 +m, (MX)2 + 2m and (6X ± 1)2 + (8X ± 2)2. He computed the continued 

fraction expansions of these \/D(X) in terms of m and X. Then he used the continued fraction 

expansions to calculate the solutions of the corresponding Pell equations. 

Richaud [209] studied quadratics of the form D(X) = X2 ± r, where r I 2X, and gave 

fundamental solutions to the corresponding Pell equations. He also supplied examples such as 

D(X) = (9X + 3)2 ± 9, (9X + 6)2 ± 9 and (25X + 5)2 - 25. We note here that the case X2 ± r 

with r J 2X is similar to the case D(X) = (mX)2 + m of Stern. One may argue that Richaud's 

result is the first indication of a systematic approach to solving (2.1). However, this approach 

never appeared in the literature again until a generalization of it appeared in Degert's 1958 article 

[32]. 

In Dickson's History of the Theory of Numbers [36, Chapter XII], there is a list of 

contributions pertaining to solving (2.1). Most of the articles cited in [36] share a common un-

derlying theme. They investigate a quadratic polynomial with fixed coefficients and find solutions 

of the corresponding Pell equation in terms of the coefficients and the variable X.. For example, 

Speckmann showed that the fundamental solution of x2 - D(X)y2 = 1 is x = X + 2, y = 1 if 

D(X) = X2 + 4X + 3, and x = 2X +3, y = 2 if D(X) = X2 + 3X +2. Didon and Moreau 

considered D(X) = (4X + 2)2+1 for natural numbers X and proved that x2 - D(X)y2 = 4 has no 
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solution in odd integers and the fundamental solution is x = 16(2X + 1)2 +2 and y = 8(2X + 1). 

Ricalde considered D of the form n(k2n ± 2) and gave the fundamental solution x = k2m ± 1 and 

y = k to the corresponding Pell equation. 

In 1926, Kraitchik [92, V. II, pp. 30-71] considered non-square natural numbers D that are 

less than 1000 and classified them according to the period length of \/. He gave parametriza-

tions of D for the cases where the continued fraction expansions of v'71 have period length less 

than 7. For instance, he gave the continued fraction expansions of /(9X + 6)2 + (lOX + 7) and 

J(9X2 + 2)2 + (8X + 2). There will be a more detailed account of his work in the next section. 

In 1957, Degert investigated squarefree D0 = X2 + r with the condition that 

—'X<r≤X and rI 4X, 

and found the fundamental units of the real quadratic fields Q(\/D). Since Richaud's result was 

not mentioned in Degert's paper, it is likely that Degert was not aware of Richaud's work. Hasse 

[67] pointed out the similarities of Richaud's and Degert's results and coined the term Richaud-

Degert type (R-D type) for the families of D0 that Degert studied. Hasse was interested in the 

class numbers of R-D type quadratic fields Q(\/) and was able to get a lower bound for these 

class numbers. Numerous results concerning the R-D types can be found in the literature, such 

as [15], [83], [140] and [177]. Although Degert did not use continued fractions in his work, it is 

well-known today that for any non-square natural number D that satisfies Degert's condition, the 

continued fraction expansion of \/5 has a period length at most 12. 

Theorem 2.1.1 ([133, Theorem 3.2.1, p. 78]) Let D = X2 + r be a non-square natural number 

such that r f 4X and —2X+1 <r ≤ 2X. Then \/5 has period length at most 12. More specifically: 

(1) If X = Lv'J and r I 2X, then VDT  = (X, 2X/r, 2X), unless r = 1 when /i = 
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(2) IfX= [\/j, Xis odd, r2X, then 

- (x ' 4X -r X-1. 8X X-1 4X-r ) 
- 2r 2 'r' 2 '"i'  2r ,2X 

unless r = 4 when = (X, (X - 1)/2, 1, 1, (X - 1)/2,2X)). 

(3) If X = [\/bj, X is even, r f 2X, then 

vzi 4X _ r X (X) 2r 2r ,2X). 

(4) If X = Lv'J + 1, r I 2X, then /25 = (x -1, 1, (-2X/r) -2, 1, 2X - 2), unless r = -1 

when v'=(X-1,1,2X-2) orunless'r= -X when /i= (X-1,2,2X-2). 

(5) IfX= Lv'j+1, r'f2X, Xis even and X≥r, then 

/4X+3r , 2, 1,2, (4X+3r)\ 
(X  22r ) -- 2r 12X_2). 

(6) IfX=[VJ+1, r{2X,Xis odd, then 

( ) ( ) 
(X  2r 2 2 ,1,---2,1, 2 ,2,-  2r 12X_2 

4X+3r\ X-3 8X X-3 4X+3r'\ ) 
unless r = -4 when V/ (X - 1, 1, (X - 3)/2,2, (X - 3)/2,1,2X - 2). 

(7) IfX=[v'j+ 1,r= - X, then v'=(X-1,2,2X-2). 

(8) IfX = Lv'j+1, X is a multiple 0f6 and  = -4X/3, then = (X-1, 3, X/2 - 1, 3, 2X - 2). 

(9) If X = Lv'i + 1, X is an odd multiple of 3 and r = -4X/3, then 

= (x - 1) 3 (X_ 3) 1, 4 1, (x_ 3), 3, 2X 2). 

A systematic approach to the study of (2.1) was realized in 1961 when A. Schinzel [213], 

[214] studied whether the continued fraction expansion of /D(X) has bounded period length as 

X varies. He was inspired by a theorem of H. Schmidt [217, Satz 10] which can be written as 
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follows. If D(X) = X2 + r with X E Z and r 0 0, ±1, ±2, ±4, then the period length of the 

continued fraction expansion of /D(X) is unbounded as X varies. Schinzel's results in [213] 

and [214] generalize Schmidt's theorem to arbitrary integer-valued polynomials f(X) of degree n 

and provide simple criteria to determine whether the continued fraction expansion of /f (X) has 

bounded period length as X varies. 

There are three remarkable results in [213] and [214]. The first result in [213] states that if n 

is odd or m is even with a non-square leading coefficient of f(X), then the period length of the 

continued fraction expansion of /f (X) is unbounded as X gets large. 

The second result in [213] deals with the quadratic case, D(X) = A2X2 + BX + C. We will 

see later in (2.5) and (2.6) that by considering even X and odd X separately, we may without loss 

of generality restrict ourselves to 

D(X) =A2X2+2BX-i-C. 

Schinzel's second result asserts that if D(X) = A2X2 + 2BX + C, with A, B, C integers, A> 0 

and A = B2 - A2C 0 0, then the period length of the continued fraction expansion of ./i5?3 

is bounded if and only if L I 4gcd(A2, B)2. Recall from the beginning of Chapter 1 that the 

condition 

I 4gcd(A2,B)2 

is called the Schinzel condition. This condition plays a significant role in our work later in 

Chapter 4 and will be discussed in detail in Section 2.3. 

The third result appeared a year later in [214]. This result completely solved the initial problem 

of deciding whether /f (X) has bounded period length for a general integer-valued polynomial 

f(X) of degree n. Since we will not require the results in [214] for our work, we will not discuss 

the details here. Several analytic results concerning the period length of the continued fraction 

expansion of /D(X) were established following Schinzel's work. Louboutin [113] studied quadratic 



51 

polynomials, D(X) = A2X2 + 2BX + C, that violate the Schinzel condition, i.e. A ' 4 gcd(A2, B)2, 

and gave the lower bound, 

1 + 2ln,/D(X) where =  

lnlöl gcd(A, B)2' 

on the period length of the continued fraction expansion of /D (X). Louboutin's result was later 

improved by Farhane [52]. 

In [206], A. J. van der Poorten and H. C. Williams used Schinzel's result on quadratic polyno-

mials to investigate the exact expansion of .,/D(X) where D(X) = A2X2 + 2BX + C obeys the 

Schinzel condition. They considered the case where gcd(A2, 2B, C) is squarefree. Among other 

results., they demonstrated that the period length of the continued fraction expansion of -/D(X) 

is not only bounded according to Schinzel, but is in fact constant for a fixed triple (A, B, C) with 

sufficiently large X. A comprehensive discussion of the results in [206] will be given in Section 2.3. 

R. A. Mollin [148] studied the continued fraction expansion of certain ,/D(X) where D(X) = 

A2X2 + 2BX + C. He let (x0, yo) be a solution to the Pell equation x2 - Cy2 = 1 with non-square 

integer C. Then he set A = (x0 - i)yo, B = (x0 - 1)2 and found the continued fraction expansion 

expansion of /D(X) in terms of A, B and X. 

In Chapter 4, we will generalize the work in [206] by dropping the condition that gcd(A2, 2B, C) 

is squarefree and give the continued fraction expansion of ,/D(X) for all quadratics D(X) that 

satisfy the Schinzel condition. In this fashion, we completely solve 

x2—D(X)y2=1 

for a general quadratic D(X) that fulfills the Schinzel condition. Moreover, we will show the 

relationship between the continued fraction expansion of ./D(X) and the Lucas function, U, 

introduced in Section 1.7. 
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2.2 Kraitchik's Work 

In his 1926 book [92], Théorie des Nombres, Kraitchik introduced a different perspective to 

the study of parametric families of D. Instead of looking for particular quadratics D(X) where 

\'D(X) has a predictable continued fraction expansion, Kraitchik studied collections of non-square 

natural numbers D in which the continued fraction expansions of have the same period length. 

For the case where the period length is less than or equal to 7, he gave explicit parametrizations 

of D using the partial quotients of the continued fraction expansion of \/. Also, he numerically 

classified all non-square natural numbers D that are less than 1000 into collections of numbers 

according to the period length of the continued fraction expansion of We will now describe 

some of Kraitchik's work. 

For any non-square natural number D, it is convenient to write D = a2+b where I< b ≤ 2a. If 

the continued fraction expansion of has period length 1, then it is well-known that D = a2 +1 

and ID--= (a, ) where a E N. Hence, we obtain a parametrization for .D in which the continued 

fraction expansion of \/ has period length 1. For example, we have D = 2,5, 10, 17,... etc. 

In the cases where the period length is greater than one, recall from Theorem 1.2.1 that if the 

continued fraction expansion of v'2 has period length £ E N, then 

(a, a1, a2,. .. , a 1, a + VT) where ai=a•-j for 1<i  - 1. 

We may write 

If we put 
P R 

= (0, a1, a2,. . . , a_1), and = (0, a1, a2,. . . , 

where P, Q, R ≥ 0 and gcd(P, Q) = 1 = gcd(P, R), then by (1.13), we get 

\/T15—a=  
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We multiply the above equation by Q(V + a) + P to get Q(D - a2) = 2aP + R, which can be 

written as 

D 2 2aP+R =a+ (2.2) 

This means that D is an integer if and only if 

Q 12aP + R. (2.3) 

If the period length is 2, i.e. \/ = (a,a1,2a), then P = 1, Q = a1, and R = 0. So, 

D = a2 + 2a/al. Hence, D is an integer if and only if ai j 2a. Let aim = 2a for some integer m. 

Then D = (aim/2)' + m is a parametrization of D. For instance, if we take m = 3, a1 = 4, then 

D =38 and /=(6,i). 

When the period length is 3, i.e. v'i7 = (a, a1, a1, 2a), we compute P = a1, Q = a + 1, and 

R = 1. By (2.3), we have (a + 1) I 2aa1 + 1. This implies that a1 must be even. By (2.2), we get 

(D—a2)(a+1)-2aai =1. 

If we treat the above equation as a linear Diophantine equation with unknowns D - a2 and 2a, 

then by Theorem 1.1.2, we find that 

2a=a1+2(a+1)m and D=a2+1+2a1m 

for some integer m. If we take ai = 4 and m = 3, then a = 53, D = 2834, and = 

(53,4,4, 106). 

If the period length 1s4, then the continued fraction expansion of \/5 is of the form (a, a1, a2, a1, 2a). 

We compute P = a1a2 + 1, Q = aa2 + 2a1, R = a2. By (2.2), we get 

(D - a2)(aa2 + 2a1) = 2a(a1a2 + 1) + a2. 



54 

Note that if a2 is odd, then a1 cannot be even. The above equation can be thought of as a linear 

Diophantine equation with unknowns (D - a2) and 2a, namely, 

(D - a2)(aa2 + 2a1) - 2a(a1a2 + 1) = a2. 

By Theorem 1.1.2, we get 

2a = —(a1a2 + 1)a2 + (aa2 +2a1)m and D = a2 - a + (a1a2 + 1)m, 

where the integer rn is chosen to ensure that 2a is positive. Consider a1 = 1, a2 = 4, and m = 6. 

Then a=8, D=78, and V7-8  

Kraitchik used the above method to parametrize D for period length from 1 to 7. A discussion 

of these seven parametrizaions is available in Appendix A. Besides the parametrizations of D 

for short periods, Kraitchik computed the continued fraction expansion of v'J5 where D < 1000 

and categorized D into 45 collections of numbers according to the period length of the continued 

fraction expansion of /. Also, he gave a number of specific quadratics D(X) where the period 

length of the continued fraction expansion of /D(X) remains constant as X varies, for example, 

/(569X + 9)2 + (966X + 16) = (569X + 9,1,5,1,1,1,1,1,1,5,1, 2(569X + 9)). 

The above equation is of particular interest to us. In Chapter 3, we study quadratics D(X) where 

the continued fraction expansion of -./D(X) has a fixed symmetric part as X varies. 

2.3 Schinzel Sleepers 

In his 1961 article [213] entitled On some problems of the arithmetical theory of continued fractions, 

Schinzel studied the period length of the continued fraction expansion of /f (X) where f(X) is an 

integer-valued polynomial of degree n. His aim was to determine whether the continued fraction 

expansion of v/f(X) has bounded period length as X varies. As we mentioned in Section 2.1, 
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he obtained two remarkable results. It is the result on the quadratic case, AX' + 2BX + C, 

that we are interested in at this time. This result states that the continued fraction expansion 

of v'A2X2 + 2BX + C has bounded period length if and only if B2 - A2C I 4gcd(A2, B)2, the 

Schinzel condition. 

For the remainder of this section, we assume 0 to be a quadratic irrational. Also, we follow 

Schinzel's notation in denoting the period length of the continued fraction expansion of 0 by ip (9) 

and the pre-period length of the continued fraction expansion of 0 by lap (0). 

We will outline the proof of Schinzel's result with the aid of five preliminary results. These 

preliminary results establish the relationship between the upper bounds of lap ((r0 + t)/(u0 + s)) 

and lap (0) as well as the upper bounds of ip (0) and ip ((rO + t)/ (u0 + s)) for some r, s, t, U 

Lemma 2.3.1 [213, Lemma 1] Let the continued fraction expansion of 9 be given by 

(ao)a1. .... ak_1,ak,ak+1, ... ,ak+e_1). (2.4) 

For any non-negative integer i, we denote the i-th convergent of 9 by Xj/yj . If N ≥ 2 and N ≥ a 

for i = I,— , . , k-1, then i ≤ y ≤ N. Moreover, for integers r, s 0 0 and t, lap( (rO+t)/s) <2sN''. 

Theorem 2.3.1 [213, Theorem 1] Let r and t be integers and m and s be natural numbers. If 

lap (9) ≤ m, then there exists a natural number M depending on m and the product rs such that 

lap (r0 +t) M. 

Corollary 2.3.1 [213, Corollary, p. 399] Let r, s, t, u be integers and write d = rs - tu. Let m be 

a natural number. If lap (0) ≤ m, then there exists a natural number M depending on m, d and u 

such that 

(ro + t'\ lap i≤M, 
u0+s) 

where u0+s0. 
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Since U is a quadratic irrational, we may write U = (ao) a1,. . . ,ak_1, ak, ak+1,. . . , a_J.). So, 

the k-th complete quotient, 9k, has a purely periodic expansion with period length £, i.e., 

9k = (ak, ak+1,.. . , ak+_1). 

We may rewrite the above expression as 

Ok = (ak,ak+1,. .,,ak+_1, ak, ak+1, .... ak+_1). 

That is, the period of 0 can be viewed as the pre-period of the above continued fraction expansion. 

This leads to 1p (0) = lap (Ok). By Corollary 2.3.1, it follows that 

Theorem 2.3.2 [213, Theorem 2] Let r,s,t,u be integers and write d = rs - tu. Let m be a 

natural number. If ip (0) ≤ m, then there exists a natural number M depending on m and d such 

that 

1(rG+t <M, 
'uU+sJ - 

where uO+sO. 

Theorem 2.3.3 [213, Theorem 4] Let g be a non-zero integer. Denote the set of all integers X 

such that g4X2 bye. Then 

lim ip (\/x2 + g) = oo 
xs 

and 

lim sup 1p(V1X2+g) <oo. 
XE 

Schinzel proved Theorem 2.3.3 by establishing a lower bound on the period length of /X2 + g for 

the case X 0 S and an upper bound for the case X E S. For the latter case, he showed that there 

exists a natural number M such that 

1p(/X2+g) ≤M. 
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We present Schinzel's approach in the following. Since X e 9, we have g I 4X2. Let a be a 

non-zero squarefree integer and b and x be natural numbers such that g = ab2 and 2X = abz. 

Then 

/X2+ g = (b)2 + ab2 = /(a)2+ 4a. 

Since 4a I 4(ax), we see that (ax)2+4a is of R-D type, which was introduced in Section 2.1. Thus, 

by Theorem 2.1.1, ip (/(ax)2 + 4a) ≤ 12 for all integers x. Now, by Theorem 2.3.2 with r = 

t = 0 = u and s = 2, there exists a natural number M such that ip (../X2 + g) ≤ M. 

For an arbitrary quadratic polynomial, D(X) = AX2 + BX + C, if the first coefficient, A, is 

not a square, then by Schinzel's first main result [213, Theorem 5], 1p(/D(X)) is unbounded as X 

varies. Hence, we assume the first coefficient to be a square and write D(X) = A2X2 + BX + C. 

Although Schinzel's result on the quadratic case [213, Theorem 5] does not restrict the second 

coefficient B to be even, we will show in the argument below that the second coefficient may be 

assumed to be even without any loss of generality. The benefit of such an assumption is that we 

get a simpler expression to work with in the sequel. 

If B is odd, then we divide the possible values of X into even integers X = 2x or odd integers 

X=2x+1. Thus, 

where 

when X = 2x and 

D(X)=A2X2+BX+C=a2x2+bx+c, 

a=2A, b-2B and c=C 

a=2A, b=2(2A2+B) and c=A2+B+C 

(2.5) 

(2.6) 

when X = 2x + 1. Therefore, we may assume that the second coefficient is even. Note that we may 

further assume the coefficient A to be even. But as there is no advantage of such an assumption 

in this section, we will not make this assumption. 



58 

Henceforth, we write 

D(X) = A2X2 + 2BX + C (2.7) 

with discriminant A = B2 - A 2C. 

We may rewrite (2.7) as 

(A 2X+ B)2 -    (B2 - A 2C) A2C) - (A 2X+ B)2 - 

A2 - A2 

Since %1D (X) = (,I(A2X + B)2 - )/A, by Theorem 2.3.2 with 8 = /(A2X + B)2 - 

'r= 1, s=A,t=O and u=O, we get 

if and only if for some X0, 

The condition 

urn sup ip (,ID(X)) <00 
X—+oo 

14(A 2X  + B)2 for all X ≥ Xo. 

I4(A2X + 2)2 

can sometimes be difficult to apply because of its dependence on X. Note that 

4(A 2X + B)2 =4 gcd(A2, B)2 (gcd(A2, B )X + gcd(A2, B)) 2 

The expression 

(2.8) 

A2  X B  
gcd(A2, B) + gcd(A2, B) (2.9) 

is an arithmetic progression in non-negative integers X whose first term B/ gcd(A2, B) and differ-

ence A2/ gcd(A2, B) are relatively prime. Dirichlet's theorem on primes in arithmetic progression 

[38, p. 108] states that if a and b are relatively prime natural numbers, then the arithmetic progres-

sion an.+ b in natural numbers n contains infinitely many primes. Thus, the arithmetic progression 
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(2.9) contains infinitely many primes; hence, it contains infinitely many numbers relatively prime 

to L. This means that the divisibility condition (2.8) for all sufficiently large X is equivalent to 

I4gcd(A2,B)2, 1 (2.10) 

the Schinzel condition. 

Theorem 2.3.4 [213, Theorem 5] Let D(X) = A2X2 + 2BX + C where A > 0, B and C are 

integers such that Li = B2 - A2C 54 0. Then 

liin sup 1p (,ID(X)) <oo if and only if L 4gcd(A2, B)2. 
X—oo 

Recall from Section 2.1 that the study of D(X) is motivated by the difficulty of solving a Fell 

equation with large non-square D. As we noted in the beginning of Section 2.1, in order to study 

we need a criterion to determine when /D(X) has a bounded periodic continued fraction 

expansion as X gets large. As soon as such a criterion is found, we may proceed to find the 

solutions of the Fell equation, 

x2—D(X)y2= 1, 

where D(X) satisfies the criterion. In light of Theorem 2.3.4, the criterion is (2.10). So we may 

now seek solutions to the above Fell equation. 

Since the fundamental solution of a Fell equation is the fundamental unit of a real quadratic 

order by the discussion in Section 1.4, we may look for fundamental units instead. Stender [233] 

made use of Theorem 2.3.4 and studied the fundamental units of the maximal order of the real 

quadratic field Q(/D(X)) where D(X) is positive and squarefree. In addition to the assumption 

that the coefficients of D(X) satisfy (2.10), Stender assumed that gcd(A2, 2B, C) is squarefree. He 
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showed that for sufficiently large X, the fundamental unit of Q(./D(X)) is given by 

( A2X + B + A/D(X) if 1i I isasquare, 

(2.11) 

(A 2X+ B + A/D(X)) 

II 
otherwise. 

We note that the above two quantities are in OD(x) because of the Schinzel condition. 

As in Degert's approach in [32], Stender computed the fundamental units algebraically without 

using continued fractions. 

Irving Kaplansky in a letter written in 1998 to Richard Mollin, Hugh Williams and Kenneth 

Williams, see Appendix B, suggested the term sleepers for families of continued fractions with 

bounded period length. We use Kaplansky's terminology and make the following definition. 

Definition 2.3.1 Let D(X) = A2X2 + 2BX + C where A is a natural number, B, C and X are 

integers, the discriminant is A = B2 - A 2 0 0, and A j 4gcd(A2, B)2. Then D(X) is called a 

Schinzel sleeper. 

2.4 Work of van der Poorten and Williams 

In their article [206] on Schinzel sleepers, D(X) = A2X2 + 2BX + C, where, B2 - A 2 C divides 

4 gcd(A2, B)2, van der Poorten and Williams sought the exact continued fraction expansion for 

/D(X) with the assumption that gcd(A2, 2B, C) is squarefree. As we have seen in the remark 

following (2.5) and (2.6), they could assume that the coefficient A is even. 

Lemma 2.4.1 [206, Lemma 2.1] Put S = gcd(A, B) and 

(B/S)2 - (A/S)2C = C2H, (2.12) 
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where H is squarefree. Let B2 - A2C 14 gcd (A2 , B)2. Then GH divides 2A, 2B/S and 25. Also, 

G 2 H I 4gcd(A2, 2B, C). Therefore, if gcd(A2, 2B, C) is squarefree, then C = 1 or 2. 

For the remainder of this section, when we speak of C, H and S, we mean the quantities defined 

in Lemma 2.4.1. 

Theorem 2.4.1 [206, Theorem 2.2] Suppose that B2 - A 2  14 gcd(A2, B)2 and gcd(A2, 2B, C) is 

squarefree. Then D(X) = A 2X2  + 2BX + C is of R-D type when C ≤ 0 or C is a perfect square. 

In other words, .D(X) is of the form m2 + r where r I 4n and —2n+ 1 <r ≤ 2n. 

Since we want to exclude R-D types from our discussion, we henceforth assume that C is positive 

and not a perfect square. Note that when X <0, D(X) may be written as A2X2 - 2BIXI + C. 

Since B may be of either sign, we may assume that X is positive. If X = x + x0 for some natural 

number x0, then 

D(X) = A2(x + x0)2 + 2B(x + xo) + C = a2x2 + 2bx + c, 

where a=A, b=A2xo+B and c=A2cc+2Bxo+C. Thus, 5=b2—a2c= B2—A2C=11s., 

gcd(a2, b) = gcd(A2, B) and gcd(a2, 2b, c) = gcd(A2, 2B, C). If xo > —B/A2, then b is positive. 

Also, since 

C _ C4H2 = A2(x - 04H2/A2) + Bx0 + C, 

c> G4H2 if x0 > max{G2H/A, —C/B).. Henceforth, X is assumed to be sufficiently large so that 

B is positive and C> G4H2. 

The proofs of the main theorems in [206] made use of a technique involving 2 x 2 matrices 

described in [159] and [161]. Since our approach does not make use of the matrix method here, we 

will only provide the results, but not the proofs. 

To avoid confusion of notation, for the remainder of this section, we denote the n-th convergent 

of a continued fraction by X,2/y. 
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Theorem 2.4.2 [206, Theorem 4.1] Suppose that G = 1. If IHI ≥ 2, then /D(X) has the 

expansion (AX + co, 2(P+AX) I'll 2(AX+co)) 

where B/A is the convergent Xn/Yn = (co, c1, . . . , c,), = c1,.. . , c,2, is the reverse OfW, the 

subscript n is odd if H < 0 and is even if H > 0, and P = (-1)'(x_1x - If 

IHI = 1, then ./D(X) has the expansion 

(AX + co, w, 2(AX+co)). 

Theorem 2.4.3 [206, Theorem 4.2] If C = 2, then D(X) 5 mod 8. If IHI ≥ 2, then the 

expansion of (1 + \/D(X))/2 is given by 

(AX+co+1 . 2(P+AX) . 

2 Hf WAX+co) 

where c0 is an odd integer, (B/A + 1)/2 = (X/y + 1)/2 has the expansion ((co + 1)/2, ) and 

P = (_1)Th+l(xm_iXn - y.-iy,C). If IHI = 1, then (1 + \/D(X))/2 has the expansion 

(AX+co+1. AX+ co) . 

We show that Theorem 2.4.2 may be written in simpler form in the following. Since we take 

sufficiently large X to guarantee that G4H2 < C, we have G2fHf < v'd. By Theorem 1.3.1, 

(B/S)/(A/S) is a convergent of NV. Let P be the rational part of the numerator and Qj the 

denominator of the i-th complete quotient of for any non-negative integer i. Since (2/8)2 - 

(A/S)2C = G2H, we have G2JHj = Qj+j for some non-negative integer i. Thus, we may use the 

continued fraction expansion of \/d to get the continued fraction expansion of /D (X). 

From Theorem 2.4.2, in the case where IHI > 1, the middle term of the continued fraction 

expansion of \,/D(X) is given by 

2(P+AX)  
Hf 
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If C = 1, then IHJ = Moreover, P = P+1. By Lemma 2.4.1, we have H I 2A. Hence, 

I 2A and therefore, Qi I 2P +1. In fact, c 1Q, 1 = 2P +1. By Theorem 1.2.3, if 

£ = ip (Jd), then £ is even and n + 1 £/2 mod £. Now, Theorem 2.4.2 can be rewritten as 

Theorem 2.4.4 [206, Theorem 4.3] Suppose that C = 1 and let \/d = (CO, c1,. .. , c,2,...). Then 

B/A = (CO, c1,... , c,). Put w= c1,.. . , c,- and = c,,. .. ,c. Then for IHI = Q+i ≥ 2, the 

expansion of ./D(X) is given by 

(AX + CO 2AX C+1, , 2(AX+co)). 

If JHJ = 1, then the expansion of /D(X) is given by 

(AX-CO) , 2(AX+co)). 

The period length of \/D(X) is given by 

1p (/D(X)) = { (2k + 1) if JHJ = Qn+1 > 1, 
ke if IHI=1, 

for some non-negative integer Ic. The value of k depends exclusively on A, B and C and is 

independent of X. In other words, ip (/T) remains constant as X varies as long as A, B and 

C are fixed. 

In the example below, we illustrate the case where G = 1 = H. 

Example 2.4.1 Consider C = 14. Then = (3, 1,2, 1,6). It can be checked that A = 4 

and B = 15 is a solution of B2 - A2C = 1 and B/A = (3, 1,2, 1). Note that although B/A can 

be written as (3, 1, 3), we write B/A = (3, 1, 2, 1) to match a portion of the continued fraction 

expansion of vV = (3, 1,2, 1, 6). Write D(X) = 42X2 + 2(15)X + 14. Then 

\/D(1) = V6-0  (7, 1, 2, 1, 14), \/D(2) = V13- 8  (11, 1,2, 1, 22), 
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\/D(3) = v'= (15,1,2,1,30). 

In general, we get 

/D(X)=(4X+3,l,2,l,8x-i-6) and 1p('D(X)) =4. 

Similarly, it can be checked that A = 120 and B = 449 is also a solution of B2 - A 2 = 1. 

If we write 'd= (3,1,2,1,6) = (3,1,2,1,6,1,2,1,6), then .B/A= (3,1,2,1,6,1,2, 1) matches a 

portion of the continued fraction expansion of .,/d. Write D(X) = 1202X2 + 2(449)X + 14. Then 

\/i5= V'15312= (123, 1, 2, 1, 6, 1,2, 1, 246), 

/•= V'59410= (243, 1, 2, 1, 6, 1,2, 1,486), 

\/D(3) = v'132308 = (363, 1,2, 1, 6, 1, 2, 1,726). 

In general, we. get 

,/D(X) = (120X + 3,1,2,1,6,1,2,1, 240X + 6) and ip (VD(X)) = 8. 

When C = 2, we can establish a similar result relating the continued fraction expansion of 

(1 + VV)/2 to that of (1 + ./D(X))/2 using Theorem 2.4.3. 

Theorem 2.4.5 [206, Theorem 4.4] Suppose that C = 2 and let (1 + v')/2 = (CO, 0-1... . ) 

and IHI = QTh+j be the denominator of the (n + 1)-th complete quotient of (1 + /)/2. Then 

(B/A+1)/2 = (co,ci,...,c,). Puttw— c1,...,c and w= c,,...,c1. Then for JHJ ≥ 2, the 

expansion of (1 + \/D(X))/2 is given by 

(AX -+AX  
(---+co,w,, +c +1,w,AX+2c0-1. 

If IHI = 1, then (1 + /D(X))/2 has the expansion 

(+0, w, AX+2c0_1). 
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In the following example, we &llustrate the above theorem for the case where G = 2 and H = 1. 

Example 2.4.2 Consider C = 109 5 mod 8. We compute (1 + /-1-09) /2 = (5, 1,2,1,1, 2, 1) 9). 

Since (x, y) = (261, 25) is a solution of X2 - y2C = —4, we put A = 2 25 = 50, B = 2 . 261 = 522. 

It can be checked that (B/A + 1)/2 can be written as (5, 1,2, 1) 1) 2j 1), which matches a portion 

of the continued fraction expansion of (1+ v'd)/2. Write 9(X) = 502X2 + 2(522)X + 109. Then 

1+-./D(1) - 

 =  2 2 (30,1,2,1,1,2,1,59), 

1 + VDi5 = 1+-,/12197 
=  2 2 (55, 1,2, 1, 1,2, 1, 109), 

1 + /5 - 1 + V'25741  
2 - 2 =(80,1,2,1,1,2,1,159). 

In general, we get 

1+D(X) = (25X+5,1,2,1,1,2,1,5oX+9). 
2 

Similarly, it can be checked that (x, y) = (68123, 6525) is a solution of x2 - y20 = 4. Put 

A=26525 and B=2•68123. Then (B/A+1)/2=(5,1,2,1,1,2,1,9,1,2,1,1,2,1). We write 

D(X) = (2-6525)2X2 + 2(2 . 68123)X + 109. Then 

1+ D(1) = 1+ V17o5751o1 = (6530,1,2,1,1,2,1,9,1,2,1,1,2,1,13059), 
2 2 

1+\/D(2) - 1+\/681755093  
=  2 2 (13055,1,2,1,1,2,1,9,1,2,1,1,2,1,26109), 

-  

1+ - 1+ 1533540085 =  2 2 (19580,1,2,1,1,2,1,9,1,2,1,1,2,1,39159). 
-  

In general, we get 

1+/D(x)  
2 = (6525X+ 5,1,2,1,1,2,1,13050X + 9). 

0 
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There is a more general result [206, Theorem 5.6] concerning the continued fraction expansions 

of 'd and /.D(X) when G = 2. Since the statement of the theorem is rather involved, we will 

not provide the details here. We will, however, give an important consequence of the theorem, 

namely the period length of \/D(X). If we put £ = ip (v'd), then for some k ≥ 0, 

1p(D(X))= { (6k + 1)E or (6k + 5) if JHJ >1, 

(3k + I)E or (3k + 2)E if JHJ=l. 

Once again, the values of k here depend only on the values of A, B and C, but not on X. 



Chapter 3 

Symmetric Sequence Perspective of Continued Fractions 

The aim of this chapter is to study certain parametric families of non-square natural numbers D 

in which every family is uniquely defined by a symmetric sequence of natural numbers. We will 

present a theorem of Perron in the first section; then use the theorem to define families of D in the 

ensuing section. Various properties of the families will be discussed therein. We will show that each 

family can be described by a quadratic polynomial of the form described in Theorems 2.4.4 or 2.4.5. 

Finally, we will establish a somewhat surprising result concerning the product of two numbers of 

a given family. When certain conditions are met, independent of the symmetric sequence that 

defines the family, the product is of RD-type and, thus, its square root has has a very short and 

predictable periodic continued fraction expansion. 

3.1 A Theorem of Perron 

If D is a non-square natural number, then from Theorems 1.2,1 and 1.2.4, we know that 

= (ao) a1, a2,. .. , a2, a1, 2a0) 

and 

2  = (ao) a1, a2,.. . , a, a1, 2a0 - i) when D 1 mod 4. 

Each of the above two continued fractions has a palindromic string, a1, a2,. .. , a2, a1, of natural 

numbers in its period. We call this palindromic string the symmetric part of the period. 

Recall from Section 2.2 that Kraitchik made a study of the period length of \/5 and found 

explicit parametrizations of D for various cases of fixed period lengths. Perron [190, Satz 3.17] 

67 
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evidently used Kraitchik's method to obtain a parametrization of D for arbitrary period length. 

Perron also showed that when given a palindromic string of natural numbers, under certain con-

ditions, it is possible to find a non-square natural number D such that the continued fraction 

expansion of ID— has this palindromic string as its symmetric part of the period. Similarly, he 

gave a result [190, Satz 3.34] concerning the case (1+Vb)/2. Friesen [54] gave a new proof of [190, 

Satz 3.1'T] and deduced that there is either no integer D or there are infinitely many squarefree 

D such that the continued fraction expansion of /7 has the given palindromic string as its sym-

metric part. Halter-Koch [66] improved Friesen's result by providing the probability of obtaining 

such D. He also gave a similar probability result regarding the case (1 + /b)/2. 

Although Perron did not state explicitly that when given a palindromic string of natural num-

bers, there is a non-square natural number D such that either the continued fraction expansion 

of or that of (1 + v')/2 has the palindromic string as the symmetric part of its period, it is 

likely that he was aware of such a fact. This statement follows almost immediately by combining 

the proofs of [190, Satz 3.17] and [190, Satz 3.34] as we will show in the theorem below. 

In the sequel, we write /25 and (1 + v')/2 collectively by (r - 1 + \/)/r where T = 1 or 2. 

When r = 2, we require that D 1 mod 4. 

Theorem 3.1.1 (Perron) Given a palindromic string, a1, a2... . , a2, a1, of £ - 1 ≥ 0 natural 

numbers, there are infinitely many non-square natural numbers D such that 

(ao)al,a2, ... ,a2,al,2a0—r+1)=  (3.1) 

where a0= L(r-1+v'b)/ri. 

Proof: Let a1, a2,. . . , a2, a1 be a palindromic string of £ - 1 natural numbers. Then there exists a 
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uniquely defined matrix M such that 

V M=fl3 11u 

i=1 \ 1 Oj \V WI 
and det(M) = UW - = (-1)'. (3.2) 

If we have an empty string, the matrix M is simply the identity matrix. To establish the required 

result, it suffices to demonstrate that D and a0 in (3.1) can be expressed in terms of u, v and w 

along with an appropriate choice of 7. = 1 or 2. Let 

  7.- 
(ao) ai,a2, ... ,a2,ai,2a0—T+1)= 1+  

T 

Let A,/B be the i-th convergent and 9j the i-th complete quotient of the above continued fraction 

expansion, Then,'by (1.13), 

= At-10e + A_2  

+ B_2• 

Since £ is the period length of 0, by Theorems 1.2.1 and 1.2.4, we have 04 = a0 - ,r + 1 +9. Thus, 

At_i(ao —r+1+0)+A_2  
= Bi(ao—r+1+9)+Be_2' 

We may rewrite the above equation as 

BE_192 + (BL1(ao r + 1) + .B_2 - A_) 9 - (A_i(ao - r + 1) + A_2) = 0. 

By (1.11), we have 

Hence, 

B_2 -  (0, aei,.. . , ai) - (ao, a1,..., as_i) = —a0. 
Be—, B_1 

B..1 I (B_i(ao—r+1)+Bt_2—A,....i). 

By (1.11), = a0B_1 + B 2. So, 

B_i(ao—r+1)+Bt_2—A_1  
-T+1. 

Bt-1 

(3.3) 



70 

Dividing (3.3) by B_1 yields 

02—(-r-1)O At —T+1)+A_2  =0. 
Bt-1 

This is a quadratic equation and its positive solution is given by 

0 = ((-r —1) + (r— 1)2+4 
( Ati(ao - T+ 1)+A_2)) 

B 1 

Since T = 1 or 2, we may rewrite the above equation as 

O=_1 ((T - J)+ (r - 1)2 + T2 (_i(ao -  r +1) + A_2)) 
T B 1 

Note that (A€_i(ao - r + 1) + A€_2)/Be_l is an integer since 0 = ('i- - 1 + /)/r and 

Let H = (Ae_i(ao - ,r + 1) + Ae_2)/B€_j. Then 

B_1H = Ae_i(ao - ,r + 1) + A 2. 

By (1.11), Ae....i = a0u + v, Bg..1 u and A€_2 = a0v + w, so (3.7) becomes 

uH—(aov+v)(ao—r+1)+aov+w. 

This equation can be rewritten as 

u(H—a+ao(r-1))—v(2ao—r+1) =w. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

We can think of (3.8) as a linear Diophantine equation with unknowns (H - a + ao(+— 1)) and 

(2a0 - 'r + 1). Since uw - v2 = (_1)_1, we have 

'a ((-1)' 1w) - v ((-1)'I-I-V) = 1. 
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If we apply Theorem 1.1.2 to (3.8), then for some integer m, 

H - a + ao(r - 1) = ((_1)t_1w)w + my = (-1)'w2 + my 

and 

2a0 -'7 +1 = (-1)'vw + mu. 

Hence, 

By (3.6), 

T - 1+ mu - (_1)tvw 
  and H=a —ao('i--1)+mv—(-1)w2. 

2 

D = (T - 1)2 + 'r2H = (T - 1)2 + r2 (a - ao(T - 1) + mv - (-1)w2). 

If r = 1, we get 

If'r=2, we get 

Hence, we can write 

(3.9) 

D = a + my - (-1)w2. 

D = (2a0 - 1)2 + 4mv - (-1)4w2. 

D = (rao - r + 1)2 + r2mv - r2(_1)tw 2. (3.10) 

The integers m and r must be chosen to ensure that a0 in (3.9) is a natural number. If u and 

vw are even, then to make a0 a natural number, we need T = 1 along with an appropriate integer 

m. If u is even and vw is odd, then to make a0 a natural number, we must have r = 2 and an 

appropriate integer m. 

When u is odd, r can be either 1 or 2. Note that in this case u and vw cannot be both odd 

by (3.2). Thus, vw is even. If we choose r = 1, then since u is odd, we need to pick an even m to 

make a0 an integer. On the other hand, if r = 2, then we need to pick an odd m to ensure that 

a0 is an integer. The appropriate values of in are given in the following table. 
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even vw even r = 1 m = m0 + X for X ≥ 0 where m0 = f(-1)vw/u] 

orm0=1ifvw=0 

ueven vwodd r=2 m=mo-i-XforX≥o where mo=f(-1)t(vw-1)/ul 

v,odd vweven r=1 m=mo+2XforX≥0 

where m0 = 1(-1)vw/u1 or m0 = 1(_1)tvw/u1 + 1 

whichever is even or m0 = 2 if vw = 0 

r=2 m=mo+2X for X≥0 

where mo = f(_1)e(vw - 1)/ui or m0 = f(_1)t(vw - 1)/ui + 1 

whichever is odd 

Table 3.1: Possible values of m. 

By (3.9) and (3.10), the parameterizations of D and a0 in terms of i- and m, we obtain all D 

that lead to the required continued fraction expansions. 

3.2 Families J 

By Table 3.1, there are two main collections of palindromic strings, one with even u and the other 

with odd u. Within each of these two collections, there are two further sub-collections determined 

by the values of r. We consider the four sub-collections separately and define them as individual 

families in the following. 

Definition 3.2.1 (Families .p) 

Let '1' = a1, a2,. .. , a2, a1 be a palindromic string of - 1 natural numbers and 

ia ii iu V 

M=fll 1=1 
=i1 0) V W I 

Let m0 be as defined in Table 3.1. We define families . as follows. 
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Type F1: When  is even and'r= 1, we let X≥ 0 and m=mo+X and write 

ao(X) = (mu - (-1)2vw)/2 = ((mo + X)u - (1)tvw)/2 

D(X) = (ao(X))2 + (mo +X)v - (-1)2w2 

= {D(0),D(1),D(2),D(3) .... }. 

Type E2: When  is even and r=2, we let X≥0 and m=mo+X and write 

ao(X) = (1 + mu - (-1)vw)/2 = (1 + (mo + X)'u - (-1)vw)/2 

D(X) = (2a0 (X) - 1)2 + 4(mo + X)v - 4(_l)eW 2 

= {D(0),D(1),D(2),D(3) .... }. 

Type 0: When  is odd and r-1, we let X≥0 and m=mo+2X and write 

ao(X) = (mu - (-1)vw)/2 = ((mo + 2X)u - (-1)vw)/2 

.D(X) = (ao(X))2 + (mo + 2X)v - (-1)w2 

= {D(0),D(1),D(2),D(3) .. .. }. 

Type 02: When u is odd and 'r = 2, we let X ≥ 0 and m = m0 + 2X and write 

ao(X) = (1 + mu - (_1)tvw)/2 = (1 + (mo + 2X)u - (-1)vw)/2 

D(X) = (2a0(X) - 1)2 + 4(mo + 2X)v - 4(_1)eW 2 

= {D(o),D(1),D(2),D(3),. ..}. 

We will sometimes call the F1 and E2 types collectively the F-types and the 01 and 02 types the 

0-types. 

From the above definition, it follows that the sequence {ao (X) } is an arithmetic progression in 

X. For instance, when is of type F1, 

- mu— (-1)vw - (MO +X)'u— (-1)vw - uX 
ao(X) - 2 - 2 - ao(0) + 
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Example 3.2.1 Consider the palindromic string 0 = {1, 2,2,2, 1}. Then 

/11Y 2 1 2 1 2 1 1 / 24 17 

1 0) t  1  1 0 i 1 Oj \ 1 0j 17 12  

Since u = 24 is even and vw = 17. 12 is even, r = 1 and we are in type E1. Since the palindromic 

string has five terms, i.e. £— 1 = 5, we compute that m0 = r(-1)vw/u] = f(_1)6(17. 12)/24 = 9. 

Then ao(0) = (mou — (-1)vw)/2 = (9 24 - (_1)617. 12)/2 = 6 and D(0) = (ao(0))2 + m0v — 

(-1)w2 = 62+9.  17 - (-1)112 2 = 45. In general, for X ≥ 0, we get ao(X) = ((mo + X)u — 

(-1)vw)/2 = 12X + 6, D(X) = (ao(X))2 + (MO + X)v — (-1)w2 = 144X2 + 161X + 45 and 

\/D(X) = (12X+6,1,2,2,2,1,24x+12). 

X m = 7n0 ± .X ao(X) D(X) C. F. expansion of /D(X) 

0 m0=9 6 45 (6,1,2,2,2,1,12) 

1 mo+1=10 18 350 (18,1,2,2,2,1,36) 

2 mo+2=11 30 943 (30,1,2,2,2,1,60) 

3 rno+3=12 42 1824 (42,1,2,2,2,1,84) 

4 mo+4=13 54 2993 (54,1,2,2,2,1,108) 

5 mo+5=14 66 4450 (66,1,2,2,2,1,132) 

6 mo+6=15 78 6195 (78,1,2,2,2,1,156) 

7 m + 7 = 16 90 8228 (90, 1,2,2,2, 1, 180) 

8 m0 + 8 = 17 102 10549 (102,1,2,2)2,1,204) 

9 m + 9 = 18 114 13158 (114, 1,2,2,2, 1,228) 

Table 3.2: ' ={1,2,2,2,1}. 
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Example 3.2.2 Consider the symmetric sequence of positive integers {1, 2, 2, 1}. Then 

/1 1 2 1 (2 1 1 1 (10 7 
\ 1 o) \ 1 o)i o) \ 1 0j 7 

Since u = 10 is even and vw = 7. 5 = 35 is odd, we have r = 2 and we are in type E2. Since the 

palindromic string has 4 terms, i.e. £ - 1 = 4, we compute that 

mo = 1(-1)(vw - 1)/ui = f(_1)5(7 5 - 1)/b] = —3. 

For X ≥ 0, we compute ao(X) and D(X) using formulas ao(X) = (1+ (mo +X)u—(-1)vw)/2 = 

5X + 3 and .D(X) = (2a0 (X) - 1)2 + 4(mo + X)v - 4(— 1)'w2 = bOX2 + 128X +41 and 

1±D(X) =(5X+3,1,2,2,1,bOx+5). 

X m = m0 + X ao(X) D(X) C. F. expansion of (1+ /D(X))/2 

0 

1 

2 

mo=-3 

mo+1=-2 

ma +2 = —1 

3 

8 

13 

41 

269 

697 

. (3,1,2,2,1,5) 

(8,1,2,2,1,15) 

(13,1) 2)2,1,25) 

3 m0 + 3 = 0 18 1325 (18, 1,2,2, 1,35) 

4 ma + 4 = 1 23 2153 (23, 1,2, 2, 1,45) 

5 mo + 5 = 2 28 3181 (28, 1,2,2, 1,55) 

6 m0 + 6 = 3 33 4409 (33, 1,2,2, 1,65) 

7 mo +7 = 4 38 5837 (38, 1,2,2, 1,75) 

8 m0 + 8 = 5 43 7465 (43, 1, 2,2, 1,85) 

9 mo+9=6 48 9293 (48,1,2,2,1,95) 

Table 3.3: b = {1,2,2,1} 

0 
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Example 3.2.3 Consider the empty string, 0 = 0. Then 

Since u = 1 is odd, we are in type 0 and may take r = 1 or 2. We first look at the case 

= 1. By Table 3.1, we have m0 = 2. Since m = m0 + 2X = 2(X + 1) for non-negative 

integer X, u = 1, v = 0 and w = 1, we have ao(X) = ((mo + X)u - (-1)vw)/2 = X + 1, 

D(X) = (ao(X))2 + (mo + X)v - (_l)eW2 = (X + 1)2 + 1 = X2 + 2X + 2 and 

/D(X) = (X+1,2X+2). 

In particular, /D(0) = = (1, -1), /D(1) = = (2,) and /D(2) = = (3,). 

Now, take r = 2. By Table 3.1, we have m0 = 1. Since m = m0 + 2X = 2X + 1 for non-

negative integers X, u = 1, v = 0 and w = 1, ao(X) = (1 + (mo + 2X)u - (-1)vw)/2 = X + 1, 

D(X) = (2a0(X) - 1)2 + 4(mo + 2X)v - 4(_l)e2 = (2X + 1)2 + 4 = 4X2 + 4X + 5 and 

In particular, 

1+/D(X)  
= (X+1,2X+1). 

2 

and 1+.JD(1) 1+\/i  
2 2 '' ' ' ' 2 - 2 - ' 

0 
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Example 3.2.4 Consider the symmetric sequence, b = {2, 1, 1, 2}, of 4 natural numbers. Then 

/ \/ \ / 
1 1 1 2 1 13 

\1 0j \ 1 I  1 1  t1 I  5 2, 

We have u = 13, v = 5 and w = 2. Since u is odd, we are in type 0 and may have r = 1 or 2. First, 

we consider 'r = I. By Table 3.1, m0 is given by F(-1)vw/ul or f(-1)vw/ui+1, whichever is even. 

It is clear that m0 = [(-1)1o/131 = 0. For X ≥ 0, ao(X) = ((mo+2X)u— (-1)vw)/2 = 13X+5, 

D(X) = (ao(X))2 + (mo + 2X)v - (-1)w2 = 169X2 + 140X + 29 and 

\/D(X) = (13X + 5,2,1,1,2,26X + 10). 

In particular, 

\/D(0) = v/2-9  (5,2,1,1,2, 10) and \/D(1) = V33- 8  (18,2, 1, 1,2,36). 

Now, take r = 2. From Table 3.1, m0 is given by 1(-1)2(vw - 1)/ui or f(-1)(vw - 1)/ui + 1, 

whichever is odd. We find that m0 = 1. For X ≥ 0, then ao(X) = (1+(mo+2X)u— (-1)vw)/2 = 

13X + 12, D(X) = (2a0(X) - 1)2 + 4(mo + 2X)v - 4(_1)tw 2 = 676X2 + 12S6X + 565 and 

2 = (13X+12)2,1,1,2,26x+23). 

For instance, 

1+v'o_ 1+V'.(12211223) and 
2 - 2 

1+/D(1) 1+'2477 
2 2 —(25,2,1,1,2,49). 

0 
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Theorem 3.2.1 (Quadratic Structure of J) 

Let D(X) E .p. If.F,p is an E-type family, then 

2 

D(X) = (rB_i)2 () + 2TGE_l M + D(0), X ≥ 0; 
whereas when Jp is an 0-type family, 

D(X) =(rB i)2X2 + 2TG2_1X + D(0), X ≥ 0, 

(3.11) 

(3.12) 

where r = 1 or 2 depends on the types of Jp, Gi = rA-.(r--- 1)Bi and AdBi is the i-th convergent 

of(T-1+/D(0))/r for i≥ 0. 

Proof: Suppose that Jp is an E2-type. By Definition 3.2.1, when 'r = 2, we have 

D(X) = (2a0(X) - 1)2 + 4(mo + X)v - 4(_1)tw 2 

for X ≥ 0. By the discussion after Definition 3.2.1, ao(X) = ao(0) + and the right side of the 

above equation becomes 

D(X) = (2 (ao(0) + - 1) + 4(mo + X)v - 4(-1)w2 

(2a0(0) - 1 + uX)2 + 4vX + 4m0v - 4(-1)w2 

= (2a0(0) - 1)2 + 2 (2a0(0) - 1) (uX) + (uX)2 + 4vX + 4m0v - 4(_l)tw2 

= (uX)2 + 2 (2a0(0) - 1) (uX) + 4vX + (2a0(0) - 1)2 + 4m0v - 4(-1)w2 

= (2u)2 (X ) + 4 (2 (ao(0)u + v) -u) (X) +D(o). 

Note that the continued fraction expansion of ,/D(0) has period length £ and the numerator and 

the denominator of its ( - 1)-th convergent are = ao(0)u + v and B_1 = u, respectively. If 

we write G_1 = 2A2_1 - Be-,, then 

(X\ 2 
D(X) = (2Be_i)2 y-) + 4G_ (—X) + D(o). 

Similarly, we can prove the remaining three cases. 0 
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Theorem 3.2.2 Let D(m) E Jp for some m, Gi = rA - ('i- 1)B and A,.IBi be the i-th 

convergent of (r - 1 + /D(m))/r, where T = 1 or 2 depending on the types of ,. Also, let 

X ≥ 0. If.'Fp is of E-type, then 

D(X + m) = (TB_i)2 (X )2 + 2rGt_1 (X) + D(m); 

whereas when JFp is 0-type, 

D(X + m) = (rBe_j)2X2 + 2rG,_1X + D(m). 

Proof: A similar proof to that of Theorem 3.2.1 will secure the result. 

(3.13) 

(3.14) 

0 

When we multiply two consecutive members of an E1 type family, .p, regardless of the length 

of 0, the product is of R-D type and the continued fraction expansion of the square root of the 

product has period length 2. Also, if we take any D(X) E Fp and multiply it with D(X + 2) E 1Zp 

or D(X + 4) E 0, then the product is also of R-D type. 

Lemma 3.2.1 Let 0 = a1, a2, .. . , a, a1 be a palindromic string oft - 1 natural numbers with the 

corresponding matrix product 

ai 1)(u v 

3=1 \ 1 0) v w 

Then if u and w are even and v is odd, then £ - 1 is odd. 

Proof: Suppose that £ - 1 is even. Then we may write 

/ \ / (uv ac1 1ab 

WI b d) c d 

for some natural numbers a, b, c and d. It follows that u = a2 + c2, v = ab + cd and w = b2 + d2. 

By the assumption that u is even, we have a2 + c2 0 mod 2. This implies that a c mod 2. 

Since v is odd, we have ab+cd lmod 2, which can be written as a(b+d) 1mod 2. This forces 
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a and b + d to be odd. Since b + d is odd, (b+d)2isodd. This means that w=b2+d2 isodd, a 

contradiction to the assumption that w is even. Therefore, £ - 1 is odd. 0 

Theorem 3.2.3 Suppose that.Fo is of type E1 and D(X), D(X + m) e 1p where m = 1, 2 or 4. 

Let Ae_i/Bti be the (t - 1)-th convergent of -/D(X). Then the product D(X)D(X + m) is of 

R-D type. More explicitly, we have 

D(X)D(X+1) = (2 +A21 1 2,2D(X)+A 1— i) 
2 

and 

/D(x)D(X + 2) = (D(X) + A_1 —1, 1,2 (D(X) + A_1 —1)). 

Moreover, when D(X) is even, 

v'D(X)D(X+4)= (D(x)+2A_1_ 1,1, D(X)+2A 1-4 ) 2 ,1,2(D(X)+2At_i-1) 

and when D(X) is odd, 

/D(x)D(x+4) = (D(x) +2At_i-1,1, D(X) +2A_1  D(X) +2A_1 3,1,2(D(X) +2A_1 _i)) 

Proof: By Theorem 3.2.2, 

D(X + m) = B12 (rn)2 + 2A 1 (M) + D(X) 
where A._1/B_1 is the ( - 1)-th convergent of /D(X), which has period length £. Thus, 

D(X)D(X+m) = D(X) (Bei2 (M)2 + 2A 1 (M) + D(X)) 
= (D(X))2+2A iD(X)() +B i2D(X)(). 

Since At_i2 - Bt_12D(X) = (_i)t, Bt_i2D(X) = A_12 - (_i)t. Since Fp is of type E1, by 

Lemma 3.2.1, we have £ - 1 odd. Thus, Bt_12D(X) = A_12 - 1 and 

D(X)D(X+m) = (D(X))2+2A1D(X) (M) + (A l2 (M )2 (3.15) 

(M))2 (M) .2 
= (D(X)+Ati - (3.16) 
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Clearly, when m = 2 or 4, we have (m/2) 14 (D(X) + A_1 (m/2)). Hence, D(X)D( 3C+ m) is of 

R-D type. Ifm= 1, then 

(\ 

D(X)D(X+1) = (D(x) +AE ( , ))2_ l 2= (2D,X)  + 2 2 At_1 -  i (2D(X) + At_1 + 1) 

This product can be written as 

(2D(X) + 1ej - 2 (2D(X) + Ae_i -  

2 ) 2 )' 

Since A_1 ± 1 = ao(X)u + v ± 1 is even, for u is even by assumption and v is odd since it is 

co-prime to u, (2D(X) + A_1 ± 1)/2 is an integer. Hence, the product D(X)D(X + 1) is of R-D 

type and by Theorem 2,1.1, 

VD(X)D(X + 1) = (2D(X)+A_i —1, 2, 2D(X)+A_1— 

If m. = 2, then (3.16) becomes D(X)D(X + 2) = (D(X) + A_1)2 - 1 and by Theorem 2.1.1, 

\/D(X)D(X +2) = (D(X) + A_1 —1, 1, 2 (D(X) + At_i —1)). 

If m = 4, then (3.16) becomes D(X)D(X + 4) = (D(X) + 2A_)2 - 4. When D(X) is even, 

by part (4) of Theorem 2.1.1, we get 

D(X)D(X+4) = (D(x)+2A_1_1 1, D(X)+2At_i-42 , 1, 2(D(X)+2A_1-1) 

When D(X) is odd, by part (6) of Theorem 2.1.1, we get 

/D(x)D(X + 4) = (D(X) + 2A_1 - 1, 1, D(X) + 2A_1 - 3 D(X) + 2A_1 -3  2, 2 2 1, 2(D(X) +2A2_i - 1)) 
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Example 3.2.5 Recall from Example 3.2.1 that when b = 1,2, 2,2, 1, Jcp contains D(0) = 45, 

D(1) = 350, D(2) = 943, D(3) = 1824, D(4) = 2993, D(5) = 4450, D(6) = 6195, D(7) = 8228. 

We present the continued fraction expansion of /D (X)D (X + m), where m = 1 or 2 in the 

following table. 

M D(X)D(X+m) C. F. of /D(X)D(X+m) 

1 D(0)D(1) 

D(1)D(2) 

D(X)D(X +1) 

(125,2,250) 

(574, 2, 1128) 

(144X2 + 305X + 125, 2, 288X2 + 610X + 250) 

2 D(0)D(2) 

D(1)D(3) 

D(X)D(X +2) 

(205,7,-41-- 0) 

(798, 1, 1596) 

(144X2 + 449X + 205) 2, 288X2 + 898X + 410) 

Table 3.4: C. F. of .y'D(X)D(X+m) when '=1,2,2,2,1 and m=1 or  

When m = 4, we note that D(X) is even if and only if X is odd. For the case where D(X) is 

even, i.e, X is odd, we have 

M D(X) D(X)D(X + m) C. F. of ./D(X)D(X+m) 

4 even D(1)D(5) 

D(3)D(7) 

D(X)D(X +4) 

(1247, 1, 622, 1, 2494) 

(3873, 1, 1935, 1, 7746) 

(144X2 + 737X + 366, 1, (144X2 + 737X + 363)/2, 

1) 288X2 + 1474X + 732) 

Table 3.5: C. F. of ,/D(X)D(X + m) when 0 = 1,2,2,2,1, m =4 and D(X) is even. 
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For the case where D(X) is odd, i.e., X is even, we have 

m D(X) D(X)D(X+m) C.F.of \/D(X)D(X+m) 

4 odd D(0)D(4) 

D(2)D(6) 

D(X)D(X + 4) 

(366, 1, 182, 2, 182, 1,732) 

(2416, 1, 1207, 2, 1207, 1, 4832) 

(144X2 + 737X + 366, 1, (144X2 + 737X + 364)/2, 2, 

(144X2 + 737X + 364)/2, 1, 288X + 1474X + 732) 

Table 3.6: C. F. of /D(X)D(X + m) when 0 = 1,2,2,2,1, m = 4 and D(X) is odd. 

0 

It is clear that when m = 1, 2 or 4, the 1p(/D(X)D(X + m)) is independent of the length 

of the palindromic string & and is bounded as X varies. In what follows, we show that if m is 

different from 1, 2 or 4, then 1p(/D(X)D(X + m)) is unbounded as X varies. 

Theorem 3.2.4 If Fp is of type E1 and D(X), D(X + m) E Fp, then the continued fraction 

expansion of /D(X)D(X + in) has bounded period length for all non-negative integers X if and 

only ifm=1, 2 or 4. 

Proof: Recall from (3.15) that 

D(X)D(X + in) = (D(X))2 + 2At_1D(X) (M) + (A_12 —1) ()2, (3.17) 

where At_1/B_1 is the ( - 1)-th convergent of /D(X). This is a quadratic function of D(X). 

By Theorem 2.3.4, we have 

lim sup 1p(\/D(X)D(X+m)) <00 
X--4c0 

if and only if L 4gcd (1, A_1 (m/2))2, where 

= (A_1 (M ))2 - (A_12 - i) (in) 2 = (in)2 and 4gcd 
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It follows that m = 1, 2 or 4. 

If (m/2)2 t 4, then by (2.8), (m/2)2 does not divide 4 (D(X) + Ae_i (M ))2 = (2D(X) + 

If follows that m2 t 4 (2D(X) + At_im)2 and, hence, m2 f (2D(X) + A,,-, M)2. Write 

V _2 
+ 2Ae_1 (m) D(X) + (At_12 —1) (M)2 = (2D(X) + A_im)2 - 

We are interested in knowing whether ip (VD(X)D(X + m)) is bounded. Theorem 2.3.2 says 

that if ip (VD(X)D(X + m)) is bounded, then the continued fraction expansion of any lin-

ear fractional transformation of /D(X)D(X + m) with non-zero integer determinant also has 

bounded period length. Thus, it suffices to consider ip (V(2D(X) + A_im)2 - m 2). Since 

M 2 4 (2D(X) + A_jm)2, Theorem 2.3.3 implies that 

urn ip (V (2D(X) + A,-,m)2 - m 2 = 00. 
X—+co J 

Hence, by the contrapositive of Theorem 2.3.2, 

urn ip (,ID(X)D(X + m)) =00. 
X—+oo 

Using the same approach as above, we formulate a similar theorem for the Oi type families as 

follows. 

Theorem 3.2.5 If .7p is type Oi and D(X), D(X + m) E Fp, then ip (,,ID (X) D (X + m)) is 

bounded for all non-negative integers X if and only if m = 1 or 2. 

Proof: The proof for this theorem is similar to that of Theorem 3.2.4. We replace m/2 by m and 

obtain 

D(X)D(X + m) = (D (X))2 + 2At_imD(X) + (At_12 - M 2 (3.18) 

= (D(X) + Ae_im)2 - (-1)m2. (3.19) 
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The discriminant of (3.18) is (At_im)2— (At_12 - (_i)e) m2 = (_1)tm 2 and 4gcd (1,AE_lm)2 = 4. 

Thus, (-1)m2 14 if and only if m = 1 or 2. If m2 does not divide 4, then we can use a similar 

argument to the proof of Theorem 3.2.4 and establish that ip (,ID(X)D(X + m)) is bounded 

for all non-negative integers X just in case m is 1 or 2. 0 

Theorem 3.2.6 Suppose that Jp is type 01 and D(X), D(X + m) E .7p where X is any non-

negative integer and m = 1 or 2. Then D(X)D(X + m) is of R-D type. Let Ae_1/Bt_1 be the 

(e - 1)-th convergent of /D(X). If m = 1, then 

VD(X)D(X +1)= 
f (D(X) + At—,, 2(D(X)+A_1)) 

(D(X) + A_1 —1, 1, 2(D(X) + A_1 - 1)) if - 1 is odd. 

Ifrn=2, £-1 is even and D(X) is even, then 

/D(X)D(X + 2) = (D(X) + 2A, D(X) + 2A_1, 2(D(X) + 2A...l)). 

If m = 2, £ - 1 is even and D(X) is odd, then 

if £ - 1 is even, 

-,ID(X)D(X  1, 2 D(X)D(X + 2) = (D(X) + 2A_1, D(X) + 2At_j - 1 1, D(X) + 2A_1 - 1 2(D(X) + 2At_i)). 

If m = 2, £ - 1 is odd and D(X) is even, then 

VD(X)D(X +2)= (D(X) + 2At—I —1, 1 D(X)+2A_1-4 1, 2(D(X)+2A_1 — 1) 
2 

If m = 2, £ - 1 is odd and D(X) is odd, then 

D(X)D(X + 2) = (D(X) + 2Ae_i 1 1 D(X) + 2A_1  2, D(X) + 2A1  1, 2 (D(X) + 2A_1 - 1)). 
2 2 

Proof: The proof is similar to that of Therorem 3.2.3. 0 

By Theorems 3.2.3 and 3.2.6, we see that when given two quadratics, it is possible to have a 

very short expansion for the square root of the product. We looked at some specific quadratics 

constructed earlier in this chapter. In the theorem below, we generalize Theorems 3.2.3 and 3.2.6. 
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Theorem 3.2.7 Let a, b, c, d, m E Z and D(X) = (aX + c)(bX + d) with an integer variable 

X. Then 1p(,/D(X)D(X + m)) is bounded if and only if m(ad - bc) 14. Moreover, on writing 

Y = abX2 + (abm + ad + bc)X + bcm + cd, we get .D(X)D(X + m) = Y(Y + m(ad - bc)). Also, 

\/Y(Y+1)=(Y,2,2Y), 

Y(Y +4) = (Y +1, 1, (Y - 2)/2, 1,2(Y + 1)) if Y is even, 

(Y+1, 1, (Y-1)/2, 2,(Y+1)/2, 1, 2(Y+1)) if Yis odd. 

Proof: If D(X) = (aX + c)(bX + d), then D(X + m) = (aX + am + c)(bX + bm+ d) and 

D(X)D(X + m) = (aX + c)(bX + d)(aX + arm + c)(bX + bm + d) 

= (aX + c)(bX + bm + d)(bX + d)(aX + am + c) 

= (abX2 + (abm + ad + bc)X + bcm + cd) (abX2 + (abm + ad + bc)X + adm + cd). 

Write Y = abX2 + (abm + ad + bc)X + bcrn + cd. Then 

D(X)D(X + m) = Y(Y + m(ad - be)) = Y2 + m(ad - bc)Y 

Now, 1p(/Y2 + m(ad - bc)Y) is bounded above as Y varies if and only if Y2 + m(ad - bc)Y 

satisfies the Schinzel condition, i.e. m2(ad - bc)2/4 divides 4gcd(1, m(ad - be))2 = 4. This implies 

that m(ad - bc) 14. 

Moreover, when m(ad - be) = 1 or 2, the continued fraction expansion of VD(X)D(X + m) is 

given by part (1) of Theorem 2.1,1. When m(ad - bc) = 4, we have D(X)D(X + 4) = Y2 + 4Y = 

(Y + 2)2 - 4. If Y is even, by part (4) of Theorem 2.1.1, we have 

(Y+2)2-4= (+i Y-2 12(Y+1)). 

If Y is odd, then by part (6) of Theorem 2.1.1, we have 

Y — l Y+1 
(Y+2)2-4= (Y+1 1,  2 , 2,  2 , 1, 2(Y+1)). 
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0 

Since m(ad - be) 14, it is not difficult to see that there are six possible cases in the above 

theorem. We illustrate them in the following. 

Example 3.2.6 

Case (1): m = 1 and ad—bc = 1. Let a = 3, c =2 and b = 1 = d. Then D(X) = (3X+2)(X+1), 

Y=3X2+8X+4 and D(X)D(X+1) = Y(Y +1). Thus, D(1)D(2)=10.24=15.17=and 

./D(1)D(2) = (15,T). Similarly, D(2)D(3) = 24.44 = 32•33 and /D(2)D(3) = (32,). 

Case (2): m = 1 and ad - bc = 2. Choose a = 4, c = 2 and b = 1 = d. Then D(X) = (4X+ 

2)(X+1), y = 4X2+10X+4 and D(X)D(X+1) = Y(Y+2). Thus, D(1)D(2) = 12.30 = 1820 

and /D(1)D(2) = (18,r;U. Similarly, D(2)D(3) = 30 - 56 = 40 - 42, ./D(2)D(3) = (40,T;U). 

Case (3): m = land ad—bc= 4. Choosea= 6, c= 2andb= 1= d. ThenD(X) = 

(6X + 2)(X + 1), Y = 6X2 + 14X + 4 and D(X)D(X + 1) = Y(Y + 4). Since Y is even, we have 

D(1)D(2) = 16-42 = 24-28 and \/D(1)D(2) = (25, 1, 11, 1, 50) and D(2)D(3) = 42-80 = 56-60 

and /D(2)D(3) = (57, 1, 27, 1, 114). 

Case (4): m = 2 and ad—bc = 1. Let a = 3, c = 2 and b = 1 = d. Then D(X) = (3X+2)(X+1), 

Y = 3X2 + 11X + 6 and D(X)D(X + 2) = Y(Y + 2). Thus, D(1)D(3) = 10 '44 = 20-22 and 

.,/D(1)D(3) = (20,1,-4-0). Similarly, D(2)D(4) = 24-70 = 40-42 and ../D(2)D(4) = (40,I7). 

Case (5): m = 2 and ad—bc = 2. Let a = 4, c = 2 and b = 1 = d. Then D(X) = (4X+2)(X+1), 

y = 4X2 + 14X + 6 and D(X)D(X + 2) = Y(Y + 4). Note that Y is even. So, D(1)D(3) = 

12-56 = 24-28 and ../D(1)D(3) = (25, 1, 11, 1,50). Similarly, D(2)D(4) = 30 - 90 = 50 - 54 and 

/D(2)D(4) = (51, 1)24, 1, 102). 

Case (6): m = 4 and ad—be = 1. Let a = 2, c = 1 and b = 1 = d. Then D(X) = (2X+l)(X+1), 

Y=2X2+11X+5 and D(X)D(X+4)= Y(Y +4). 

When Y is even, we have D(1)D(5) = 6•66 = 18.22 and /D(1)D(5) = (19, 1,8, 1,38). 
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Similarly, D(3)D(7) = 28. 120 = 56-60 and ,/D(3)D(7) = (57, 1, 27, 1, 114). 

When Y is odd, we have D(2)D(6) = 15-91 = 35.39 and \/D(2)D(6) = (36, 1, 17,1, 17, 1,72). 

Similarly, D(4)D(8) = 45-153 = 81 - 85 and VD(4)D(8) = (82,1) 40, 1,40, 1, 164). 0 



Chapter 4 

The Continued Fraction Expansion of /D(X) 

In this chapter, we present the major result of the thesis: the continued fraction expansion of 

/D(X) fqr sufficiently large X, where 

D(X) = A2X2 + 2BX + C (4.1) 

is a Schinzel sleeper, i.e., its discriminant B2 - A 2 C divides 4 gcd(A2, .8)2. This result contributes 

to two mathematical disciplines. First, in the theory of continued fractions, we determine the 

actual continued fraction period of \/D(X). Indeed, knowing the continued fraction period of 

/555 allows us to establish an upper bound for its length in the next chapter. Second, in the 

theory of real quadratic orders, we can easily compute the fundamental unit of the real quadratic 

order [1, /)j via the continued fraction expansion of \/D (X); we provide a simple formula 

for the fundamental unit of [1, /D(X)] in the next chapter. 

Our work here generalizes the results of van der Poorten and Williams [206] discussed in 

Section 2.3. They gave the continued fraction expansion of \/D(X) for sufficiently large X with 

the additional assumption that gcd(A2, 2B, C) is squarefree. Here, we drop the restriction of 

squarefree gcd(A2, 2B, C). Also, we will provide a lower bound for the sufficient size of X. 

There are three sections in this chapter. In Section 4.1, we demonstrate the motivation for our 

approach and establish a crucial lemma for the work in the ensuing section. We will prove our 

main result by induction. There are several key components in our proof and they are presented 

as lemmas in Section 4.2. In Section 4.3, we combine all the lemmas in Section 4.2 and inductively 

construct the continued fraction expansion of \/D (X) in Theorem 4.3.1. 

89 
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4.1 Embedding an Integer Sequence in a Continued Fraction 

We start off this section with an observation. Consider D(X) = 9X (X + 2) = 32X2 +2(9)X. The 

discriminant L. of D(X) is 92 = 81, which divides 4gcd(32, 9)2 = 4. 92 .  Hence, D(X) is a Schinzel 

sleeper. We compute 

\/D(1) = v/2 7  (5,T), \/D(2)= -,/72  (8,2,16), 

VD(3)= -\1135 =(11,1,1,1,1,1,1,1,22), -,/D(4) = -\/21- 6=(14,1,2,3,2,1,28),     

./D(5) = -\/-3-15 =  (17,1,2,1,34), /4-32  

\/D(8)=V'ö=(26,1,4,1,52), 

v/ = \/äi= (29,1,5,1,1,1,5,1,58), \/D(10) = viOO= (32, 1, 6,3, 6, 1, 64), 

and 

\/D(11) = vi-287 = (35, 1, 6, 1,70). 

Notice that the continued fraction expansions 

/D(6)=(2O,1,3,1,l,1,3,1,4o) 

and 

/7= (29, 1, 5, 1, 1, 1, 5, 1, 58) 

have the same period length. Also, the partial quotients in their periods exhibit a surprising 

pattern. It can be checked that if X 0 mod 3 and X > 2, then 

/D(X)=(3X+2, 1, (2X-3)/3, 1, 1, 1, (2X-3)/3, 1, 6X+4). 

A similar phenomenon can be seen with the continued fraction expansions 

\/D(4) = (14,1,2,3,2,1,28), \/D(7) = (23,1,4,3,4,1,46), \/D(10) = (32,1,6,3,6,1,64). 
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More generally, when X 1 mod 3 and X > 2, we get 

/D(X) = (3X + 2, 1, 2(X - 1)73, 3, 2(X - 1)/3, 1, 6X + 4). 

For the case where X 2 mod 3 and X > 2, we have 

VD(5) = (17, 1, 2, 1,34), \/D(8) = (26, 1,4, 1, 52), %/D(11) = (35, 1, 6, 1,70), 

and, in general, 

\/D(X)=(3X+2, 1, 2(X-2)/3, 1, 6X+4). 

Consider the quadratic D(X) = 1192X2 + 2(2205)X + 343. The discriminant of this quadratic 

is = 22052 - (119)2(343) = 4802 = 2 1• Since 4gcd(1192, 2205)2 = 2274, we see that D(X) is 

a Schinzel sleeper. 

We find that 

/i5i5= (137,1,1,8,2,1,2,4,1,1,1,2,5,4,3,1,136,1,3,4,5,2,1,1,1,4,2,1,2,8,1,1,2'r4), 

\/i5= (970,1,1,8,19,1,2,4,1,1,1,2,39,4,3,1,969,1,3,4,39,2,1,1,1,4,2,1,19,8,1,1,1940), 

/D(15) = (1803,1,1,8,36,1,2,4,1,1,1,2, 7'3, 4,3,1,1802,1,3,4,73,2,1,1,1,4,2,1,36,8,1,1,3606). 

In general, when X E N and X 1 mod 7, the continued fraction expansion of /2575 is given 
by 

(qo(X),1,1,8,qi(X),1,2,4,1,1,1,2,q2(X),4,3,1,q3(X),1,3,4,q4(X),2,1,1,1,4,2,1,q5(x),8,1,1,2q0(x)) 

for some integer-valued functions q(X), where 0 ≤ i ≤ 5. Hence, for all X 1 mod 7, the 

continued fraction expansions of /D(X) are alike with exceptions at several fixed positions. In 

fact, if we compute the continued fraction expansion of ,/D(X) for X lying in other residue classes 

modulo 7, we will see a similar phenomenon. 
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The above illustrations offer clues to the investigation of the continued fraction expansion of 

,/D(X). On restricting X to be sufficiently large and to belong to some appropriate residue class, 

we expect the continued fraction expansion of /D(X) to have the form 

(qo(JC), S, q, (X), Si, q(X), . . . , Sj..., q(X) .. .. ), 

where i E N, q(X) is a linear function and Si = {SO, Si,... Sm_i} is an ordered set of natural 

numbers. 

We will discuss the determination of the sufficient size of X and of the appropriate residue 

classes in the next section. In what follows, we establish a lemma concerning the sequence 

So, Si, 

Suppose that we have a quadratic irrational 0 = (P + /)/Q as defined in Definition 1.2.2, 

a finite sequence of integers, so, Si,. . . , 8m—i, and A/B = (Se, sj, . . . , s) for 0 ≤ i ≤ m - 1. The 

( ) notation denotes a formal continued fraction expansion. 

If 9" = (P* + \/)/Q* is defined by 

0 

then by (1.14), we have 

0* Bm ...2 0-  Am-2 

Thus, 

Bm_i0Am_1 

P* +  - Bm2 ((P + - )/Q) - (B,.-2P Am2Q) + Bm2  

- - Bmi ((P + v)/Q) - AM-1 - (BmiP - Am iQ) + Bmi/ 

Put Q' = (D - P2)/Q E Z. If we rationalize the denominator and simplify the resulting expression 

using (1.10), then we get 

P* + \/25 - (1)m (Bm_iBm_2Q' - Am_iAm_2Q + (Am_iBm_2 + Am.2Bm_i)P) + v'75 

- (_1)m (A2 _1Q 
- B_1Q' - 2Am_iBmiP) 
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On cross-multiplying and comparing the coefficients of 1 and \/, we see that 

= (_1)m (BmiBm_2Q' - A,.-,A.-2Q + (Am_1B,n_2 + An_2Bm_i)-P) (4.2) 

and 

= (_1)m (44_lQ - B_1Q' - 2Am.iBm_1P). (4.3) 

If for any d € N, we put F = dAm_i and E = dBm_i, then since gcd(Am_i, Bm_i) = 1, we get 

d = gcd(E, F) and (4.3) becomes 

and (4.2) becomes 

= (_1)m - E2Q' - 2EFP) 
d2 

= (i) (B 2EQ' - Am2FQ + (Bm-2F + Am2E)P). 

Lemma 4.1.1 Let e = (P0 + v')/Qo be  quadratic irrational and put 

(4.4) 

(4.5) 

I p0 + 
ao=  Qo j P1=aoQo-FO, Q1=(D-P?)/Qo. 

Let L 2 D = M2 - N, where L, M E N and N E Z and put F = LQ0, E= M - LP3 and 

d = gcd(E, F). Let 
F 
= (so,si,.. .)Smi), 

where rn is chosen to be odd if N> 0 and even if N < 0. If (P* + \/)/Q* is defined by 

0 = (ao, SO, S1, S2 .... I SM-1, Q* ) I 

then 

HjNJ and Q*.J1'iQ0  
dL  d2 

where H(E/d) (_1)m_1 mod (F/d) and 0 ≤ H < F/d. Note that * and Q* are integers by 

(4.2) and (4.3). 
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Proof: Let (P1 + be the first complete quotient of the regular continued fraction expansion 

of (P0 + /)/Qo. Then the values of * and Q* are defined by 

P1+ /Q1 = / p*+Vr 
\ 80 81 82. . . Q* 

If we substitute Q for Q, P1 for P, Qo = (D - Pfl/Q for Q', M - LP1 for E and EQ0 for F in 

(4.4), then we get 

Q* 
(_1)m 

=  d2 ((LQ0)2Q1 - (M - LP1)2Q0 - 2(M - LP1)(EQ0)P1) 

(_1)m 
=  Qo (L2(D—P)_ (M—L'P1)2 - 2(LP1)(M—LP1)) 

= c12 Q (E2D - (E2P + 2(LP1)(M - LP1) + (M - LP, )2)) 
(_1)m 

=  d2 Qo(L2D—(LP1+M—LP1)2) 
(_1)m 

=  d2 Q0(—N) 

- INJQo 
d2 

Similarly, by (4.5) 

LP* =   (Bm_2(M - LP1)Q0 - Am2(LQ0)Qi + (Bm_2(LQ0) + A.-2(M - LP1))P1) 

 d (Bm2EMQ0 - A,_2L(LQ0)Q1 + An-2(M - 

=  (B,_2LMQ0 + Am_2LMP1 Am_2L2(QoQi + P?)) 

2  (Bm_2LMQ0 + Am_2EMP1 - Am_2M 2 + Am-2N) 

(_1)m - Am-2(M - 1P1))M + Am_2N). 

Since EQ0 = A.-Id and M LI'1 = Bm_id, we have 

Bm_2LQ0 - Am-2(M - LP1) = (Am_iBm_2 Am_2Bm_i)d = (1)md. 

Thus, 

LP* = (_1)rn( 1)md'v-r (_1)mAm_2N = M Am_21N!  
d + d d 
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Hence, 

Am2JNI  
£ dE 

If we put H = Am_2, then by (1.10), H(E/d) (-1)' mod (F/d) and 0 ≤ H < F and 

HINI  
£ dL 

D 

Remark 4.1.1 Note that if F > E, i.e. 8o E N in the above lemma, and (P* + /)/Q* > J, 

then by Remark 1.1.2, the regular continued fraction expansion of 0 is given by 

(ao, so, Si,. . . , Sm, (* + VD--)IQ* ) - 

4.2 Preliminary Lemmas 

From the examples early on in this chapter, it appears that if D(X) = A2X2 + 2BX + C is a 

Schinzel sleeper and X is sufficiently large, then the continued fraction expansion of ,/D(X) is of 

the form 

(qo(X), So, q1(X), Si, q2(X), . . . , q,(X)) 

for some integer-valued polynomials q(X), some natural number sequences S, and some minimal 

subscript ic. The minimal subscript n is the least number of insertions of Siin the expansion of 

/D(X). We will prove this result by induction. The inductive argument is separated into several 

key components and presented as lemmas here. 

Note that for any quadratic D(X) = A2X2 + 2BX + C, not necessarily a Schinzel sleeper, we 

may write 

A ) A2 
Hence, if we write q = LB/A], then for sufficiently large X, k/D(X)i will be of the shape AX + q 

or AX + q - 1, where q is independent of X. 
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Lemma 4.2.1 WriteB=Aq+r with O≤r<A. Then 
/ 

AX + q - 1 if 0, r = 0 and X> A 2B—A2A3 2A2 

AX + q if LI> 0, r> 0 and X> A 2B—A2A3 2A2 

[-,I-D(X)] = < 

—LI 2B+A (4.6) 
AX + q if LI <0, r = 0 and x> 2A3 2A2 

AX + q if LI < 0, r > 0 and X>  —LI  2B+(A—r)  
2A2 (A - r) 2A2 

Proof: Case (1): If LI> 0 and r = 0, then C < B2/A2 = q2. To have k/D(X)i = AX + q - 1, 

we need 

(AX +cj-1)2<A2X2+2BX+C< (AX +q)2. 

The latter inequality holds since C < B2/A2 = q2. The term A2X2 + 2BX + C is strictly greater 

than (AX + q - 1)2 provided 

2AX  

that is, 2AX> (B - A)2/A2 - C. This means that 

X B2-2AB+A2—A2C LI 2B—A 
> 2A3 2A3 2A2 

Case (2): If LI > 0 and r > 0, then B2/A2 > C and AX + q = AX + B/A - r/A is an integer. 

Since 0 ≤ r/A < 1, AX + q lies strictly between AX + (B - A)/A and AX + B/A, which are not 

integers, but differ by 1. To obtain k/D(X)J = AX + q, it suffices to have 

A2X2+2(B—A)X+ (B_A)2A2X2+2BX+CA2X2+2BXBZ 
A T2 

The right inequality holds since B2/A2 > C. The left inequality holds provided 

2AX> 
(B_A)2 a LI-2AB+A2  

A2 
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that is, 

x —2AB+A2 A 2B—A 
> 2A3 2A3 2A2 

For the remaining cases, we note that k/D(X)i is of the form AX + q if 

A2X2+2AqX+q2<A2X2+2BX+C<A2X2+2A(q-l-1)X4-(q+1)2. (4.7) 

Case (3): If L <0 and r = 0, then q2 = B2/A2 < C and the left inequality of (4.7) holds. Also 

the right inequality of (4.7) holds if 

2AX>C—(q+1)2=C (B+A )2. 

that is, 

—L-2A.B—A2 —L 2B+A 

2A8 = 2A3 = 2A3 2A2 

Case (4): If A <0 and r > 0, then q2 <B2/A2 <C and the left inequality of (4.7) holds. The 

right inequality of (4.7) holds provided 

that is, 

In other words, 

A2X2+2BX+C < A2X2+2(A + B_ r)X + (A _ 
A 

(A-i-B--r" 2 —L-2(A—r)B—(A—'r)2  
2(A—r)X>C A ) = A2 

  2B+(A—r)  
2A2 (A - r) 2A2 (A - r) 2A2 

0 

In Definition 2.3.1 where we define a Schinzel sleeper to be a quadratic D(X) = A2X2+2BX+C 

with discriminant Li = B2 - A 2 0 0 and Li 14 gcd(A2, B)2, we never impose any conditions on 

the integer coefficients A, B and C other than A > 0 and B2 - A 2 0 0. In other words, 
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we do not restrict the signs of B and C. If X = -lxi is a negative integer, then D(X) = 

A2(-IXJ)2 + 2B(—JXl) + C = A2X2 - 2BIXI + C. The discriminant of A2X2 - 2B1X1 + C is 

(—B)2 - A 2 = B2 - A 2 = A . Since there is no restriction on the sign of B, we may assume X 

to be non-negative. Henceforth, we consider only X ≥ 0. 

In what follows, we set up the notation that will be used in the sequel. Put 

r=L/Lj=sgn(Ls) and 

where L and A 2 are squarefree. 

Since i. = L1IL4 divides 4gcd(A2,B)2, we have 1/2L 2gcd(A2,B). Thus, 

I 2112 and AIA2 A2 I 2B. (4.8) 

It follows that A4 I A and AIA2A4 J 2A. This implies that A2A4 I 2A. If A2A 4 I A, then put 

= 1; otherwise, put r = 2. Thus, (/r) I A. 

If 2 , then ( 1/2)z 2 I A2. This implies that A2A 4 I A and, consequently, i- = 1. Thus, 

as a contrapositive, if r 54 1, i.e., r = 2, then 2 f 1. Hence, 

gcd(L 1,r) = 1. (4.9) 

If = 2, then since L24 T A, we get A2 ' (A/ 4). Also, since A2A4 I 2A, we get L2 I 2(A/ 4). 

Hence, 2 1 L2. Moreover, since r is either 1 or 2, we have 

(4.10) 

Moreover, since A1A 2A4 I 2A, it follows that 

I 2A. (4.11) 

Since 1z\ = JAI  = iB - 11201, (Li2L4/r)2 I A2 and (I2L4/T)2 I it follows 

that (Li24/r)2 I B2, i.e., (L12L14/r) I B. Put A* = A/(L 2L4/r) and B* = B/(t.2I4/r). Then 

= I(z2L4B*)2 - (L 2Z4A*)2Cl implies that i(rL 4)2 = IB*2 - A*2CI. 
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Put F = gcd(A*, rL\4 and G = gcd(A*, B*). Then G2 I T2I.1 implies that G j th4 and 

G I F. On the other hand, F2 I B implies that F J B*, which implies that F I C. Therefore, 

C = F. It follows that gcd(A*/F, B*/F) = 1. Hence, 

gcd(A, B) = gcd (A* A 2A 4' B*  24 1 21 4 ) = gcd (r çr) = F 4• (4.12) Ir 

Note that -r = 2 and r J A* imply that 2 1 2A/(L 2L4. This means that L.2L4 I A, a 

contradiction. Hence, gcd(A*, -r) = 1 and F = gcd(A*, T/4) = gcd(A*, L). Put 

Then, 

If AIB, then 

Define 

A'=- and 

gcd(A', Li') = 1. 

4 
A=gcd(A,B)= r 2  and A!= 1. 

T . 

1 if AJB and a=1, 

0 otherwise. 

For integers a > r ≥ 0, define an ordered set 

0 if r=0 and cr=-1, 

S(a,r)= {1} if r=0 and a=1, 

{so, .s, . . . , Sm_i} otherwise. 

In the last case, aft = (Se, Si,. . . , Sm_i) and the subscript m - 1 is chosen such that (_1)m_i 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

or. 

As we mentioned earlier, our result on the continued fraction expansion of ,/D(X) requires X 

to be sufficiently large. Since we have -established some lower bounds for X in Lemma 4.2.1, it may 

seem plausible that if X is greater those lowers bounds, then X is sufficiently large. However, we 
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find that a larger lower bound is needed for the main result. Henceforth, we say X is sufficiently 

large if X is a non-negative integer such that 

A 

2B—A 

2A2 

In the sequel, we assume (4.18). We now present the initial step of our inductive proof. 

(4.18) 

Lemma 4.2.2 Put TO Br/(F 24) mod A', where 0 ≤ r0 < A', and S0 = S(A', r0). When 

ro >0, let HE N such that Hr0 a mod A' and 1 ≤ H< A'. Then di=gcd(A',ro) = 1 and 

where q = LB/A], q as defined in (4.16), 

91 =  

and 

P1 =AX+ and Q =z.i() 2 . (4.20) 
TI 

Proof: Note that Li/A2 = Li1Li'2/A'2 and Li/(A(A - r)) = Li1Li'2/(A'(A' - TO)). Hence, it follows 

from X > Li1Li'2/A - (2B - A)/(2A2) that X is greater than all four lower bounds in (4.6). Hence, 

on writing B = Aq + r with 0 ≤ r <A and by Lemma 4.2.1, we get Lv'D(X)i = AX + q -  77, 

where 77 is defined in (4.16). 

We put 

Pi +   

Q ), 

0 if r0=0 and o=-1, 

Li' ifro=0 and o=1, 

ELi' if r0>0, 

(4.19) 

Then 

P0 0, Qol and ao=[\/D(X)j—AX+q—fl. (4.21) 

P1=aoQo—Po=ao=AX+q— and Qi= P12 
Qo 

(4.22) 
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Case (1): Suppose that r = 0 and o = —1. Then r0 = 0, 

—Li 
P1 = AX + and Qi = = A,2 (rA2A4/,r)2  

Since A J B, by (4.15), we have A' = 1. On putting d1 = gcd(A', r0) = A' = 1, we write 

P1=AX+ and Qi=LiiLi'2. 

Case (2): Suppose that r = 0 and o = 1. Then TO = 0, 

Now, 

a1 = 

P1=AX+q-1 and Q1=2AX Li 2ABA—2A2 

IPi+v'7I_J 1'i+Lv'D(X)JI_I  2AX+2B/A-2  
i - L ] - L2AX - Li/A2 + (2A.B - A2)/A2 

We claim that a1 = 1 if X is sufficiently large, i.e. (4.18) holds. To see this, we only need to show 

that 

(4.23) 

(4.24) 

1< 2AX+2B/A-2  <2 
2AX - Li/A2 + (2AB - A2)/A2 

Since (P1 + /D(X))/Q1 is a complete quotient, it is greater than 1. So we need only establish 

the right inequality, which holds provided 

This is equivalent to 

B Li 2AB—A2 
AX+-1<2AX A2 

1 (Li B\ LiLi'2 B 
X >_)__ AA,2 

By (4.18), the above inequality holds and hence, a1 = 1. We compute 

B Li B  Li1LiL42 4 2 
=AX+—Li1() P1=P2=a1Q1_P1=AX+_=AX+_A,2(flLi 
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and 

D—P2 (/\2 

Qi= 
Q1 

By (4.15), we have A' = 1. On putting d1 = gcd(A', ro) = A' = 1 and g' = /', we write 

P1=AX+ - 9ii ' and 

Case (3): When r> 0, we appeal to Lemma 4.1.1 with 

Qi = 

L=A, M=A 2X+B and N=. 

so that by (4.22), 

E=M_LP1=A2X+B_A(AX+_)= r 

Let d = gcd(A, r) and the continued fraction expansion of Air be given by (Se, . . , Sm_i), where 

(_1)m_1 = o. By Lemma 4.1.1, we get 

A2X+B HIiI JAI 
- A Ad an Q - 7 2 , (4.27) 

where H(r/d) o mod A/d and 0 ≤ H <A/d. 

By (4.12), d = gcd(A, r) = gcd(A, B) = F 24/r. Put ro = r/(F.2z4/r). Note that 

this definition of r0 is equivalent to r0 Br/(rL 2z4) mod A', where 0 ≤ r0 < A'. Since 

A' = A/(Fi 24/r), we have d1 gd(A', r0) = 1. Now, 

HIL.I -  HL 1z   HA  - 

Ad - A'(FL2L4/r)(FL24/r) - 1 A' 

(4.25) 

(4.26) 

Also, 
JAI (F\2 

= L1 = 

di  

On setting 9i = HL', we get 

and F=LQ0=A. 

= A2X+ B L.1 L' and Q* = AIA,2. (4.28) 
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Also, the expressions H(r/d) a mod A/d and 0 ≤ H < A/d can be written as 

Hr0 o- mod A' and O<H<A'. 

Thus, H is as stated in the lemma, and 0 ≤ g <A'Lx'. 

We now show that (P* + /D(X))/Q* > I. It suffices to prove P + Lv'D(X)i Q*, i.e., 

2AX + - - > 

By (4.18), we have 

2B 
2AX > 2L1z!2 - +1. 

Since 0:5 9i <A'i2', it follows that ii'(gi/A') <L1z'2, Hence, 

2B 
2AX + - > > AIA + 

that is, 2AX + 2B/A - nA - 1(g1/A')zV> ZiL!2. Thus, (P* + \/D(X))/Q*> 1. 

Now, if we write 

(4.29) 

0 if r=0 and a=-1, 

d1=1 and 91 Al ifr=0 and a=1, 

HLV ifr>0, 

where A' and LV are defined in (4.13), Hr0 a mod A' and 0 ≤ H < A', then the continued 

fraction expansion of /D (X) is given by 

where 5o = S(A', no) as defined in (4.17), 

P1=AX+—z 1 

Pl+ \/D(X)) 

2 

and Q1=L 1(_) 

0 
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Note that in the above lemma, if we put d0 = Li', then So = S(A',ro) = S(A'L'/do,ro). We 

will show inductively on i that 

VD (X) = (AX +q+, So, q, (X), Si, q2 (X), . . . , S, qi(X), ...), 

where Si= S(A'L.'/d, r) and q+1 (X) = L(P +i + -/D(X))Q +1j for some integers di ≥ 1, ri ≥ 0, 

P+1 > 0 and Qj+j > 0. 

For i E N, define 

1 if i is odd, 
Ei = 

0 if i is even. 
(4.30) 

It is easy to see that 6j+i = 1 - . We will provide a method for calculating r, d+1 and 9i+i 

inductively from r0, d1 and g in which 

P +i = AX + . - 

A Ad +1 

2 

and Q+i = (dj+j i (4.31) 

The purpose of the following four lemmas are as follows: the first one is to determine r, the 

second one is to find q(X), which is needed in the third lemma for the computation of d 1 and 

gi+i when ri = 0. The last lemma computes d+i and gj.f4 when ri > 0. 

For the remainder of this chapter, we let 

X K mod L' and 0 < K < A. (4.32) 

Lemma 4.2.3 If integers di > 0 and gi ≥ 0 are given such that Pi and Qj are as defined in (4.31), 

then, in the language of Lemma i/.1.1, 

F' - AQj - 

E'A2X+B—API r 

where P' = q(X)Q - P, q(X) = [(Pi + ,/D(X))/Qj and ri is defined by 

d1(2A2K + 2B) A'L.' 
g mod - and 0 ≤ r <   (4.33) 6iA A2 

-a- di 

Note that we use F' and E' instead of  and E to avoid confusion with the notation in Lemma 4.2.. 
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Proof: Let 

and Rj = + k/D(X)i) - pi 
where 0 < R < Q. Then R1 k/D(X)J + P mod Q,. It follows that 

A[i/D(X)j + AP mod AQ. (4.34) 

Put P' = q(X)Q - P. Then 

F' = q(X)Q - = + L-,/D(X)J) - - = Lv'D(X)i - R. 

Write B = Aq+r, where 0 ≤ r <A. Then by Lemma 4.2.1, LV'D(X)i = AX+q— = AX+ 

B/A—r/A- 77, where is defined in (4.16). Since 0 ≤ r/A+i ≤ 1, we have 0 ≤ R+r/A+ ≤ Q, 

i.e.,  77 0::5  AR + r + Acr ≤ AQ. (4.35) 

Note that if r = 0 and o = 1, then i = 1 and the above inequalities become 0 < AR, +A ≤ AQ. If 

r = 0 and o= —1, then = O and we get o ≤ AP <AQ. Also, if  > 0, then 0 <AR+r <AQ. 

Write F' = AQ and E' = A2X + B - AP' as in Lemma 4.2.2. Note that AYi 

A2X+B—AP' = A2X+B—A(L/D(X)J—Rj) 

= A2X+B—A2X—B+r+Ai+AR, 

= AR, +r+A. 

Hence, by (4.35), we have 0 ≤ A 2 + B - AP' ≤ AQ, i.e. 0 ≤ E' ≤ F'. By (4.34), we get 

AR, +r+AiAL/D(X)j+APj+r+Ac7 mod AQ. 

Since AL/D(X)j = A 2 + B - r - Ai7, AP = A 2 + B - (g/A') (A'/di) and AQ2 = 

AL (LV/d)2, we have 

(L') 2 
AP + r + Ar,i 2A2X + 2B - A-- mod 
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By assumption, we have X K mod Li', where 0 ≤ K </'. Since 14r I 2A by (4.11), we 

have 1L\' I 2A. Thus, 
2A  2 2A 2K mod A . 

It follows that di 
2A 2X  2A 2K mod AA', (A') 2 (4.36) 

Hence,  

APL,  + r +A 2A2K+ 2B - mod A1 ()2 . (4.37) 

Notice that the modulus in (4.37) is 

the right-most term in (4.37) is 

A (2 A'L' 

Ti) = di di 'i A2 

Au' --
,1. 

and 2 /d) divides both 2A2 and 2B. So we may choose an integer r such that 

- d(2A2K + 2B) A'i' 
= ei 2 mod -a-- and 0 ≤ r, < 

124 i 

and 
F'  AQ  

EA2X+BAPI Tj WAI 
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Lemma 4.2.4 Write X = WL' + K for some non-negative integer W. If 

PAX +Bj x 
then q(X) = [(P + /D(X))/Qj is given by 

2AWd2  
+ ti +   A (I/d.)2j' 

where 2AWd/(LLV) E Z because L\.LV I 2A, and tj as defined in (4.38). 

Proof: Note that 

Pi + k/D(X)] I = [ 2A2X + 2B -  A (g/A') ('/d) -  - rj 

q(X) = Q j A/ ('/d)2 

(4.39) 

Since X K mod L.', where 0 ≤ K <Lx', we write X = Wi' + K for some integer W. Then 

q(X) = 
2A2(W/' + K) +22 -  A/.7 (gd/A') (/!/d) -  -  r  

L A ('/d)2 

- 2AWd K + 2B - AL (gd/A') (A'/d,)-- r 
Z•liw + [2A A/$ (z'/d)2 

Note that L4z' I 2A by (4.11). Thus, (2AWd)/(Lz') is an integer. From (4.38), we compute 

I d(2A2K + 2B)/(z2L) - g  I I 2A 2K + 2B -  AL$ (g/A') (A//d,)t [ A'LV/d I = [ AL$ i (LV/d)2 

Hence, 

2AWd r  A97 I 
q(X) = Al iAl  + [ti + (A/A'/di) AAli (&/d )2j 

2Ad Ac7+r 
w + t + [('&/) (A/di) 

= 

0 
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Lemma 4.2.5 If r, = 0, then the continued fraction expansion of (P + VD(X))IQi is given by 

( qi(X), Si, P 1 +  

where q(X) is defined by Lemma 4.2., Si =  0 or {1} and 9i+i = 0 or di according as 0. = —1 or 

1, d+1 = A'/!/d = 

P +i =AX+ B 6+1gi+i ' (i \2 
--dj+j  and Q• = Lt+  1 

Proof: Suppose that ri = 0. Then from (4.33), we see that 

A'A' 

di 

The above expression can be written as 

d(2A2K + 2B)  
gi 

2A2K + 2B - 

By (4.36), 2A2K 2A2X mod A/ (i.'/d)2, so we get 

This implies that 

A 

From (4.31), we have 

Thus, 

2A 2X + 2B - 
d 

2(A 2X + B) — A•'gi A 2A42 

(4.40) 

(4.41) 

AP = A2X +B - A'   

and, consequently, A2X + B (L 2L/d) gi mod A. Hence, by (4.41), we have A I A2X + B. 

It follows that A I B and r = 0. 
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Case (1): If o = —1, then by (4.39), we get 

q(X) = 2AWd  

Put P +1 = q(X)Q - Pi and = (D(X) - p,2)/Q,. We compute 

( di) = AX + and Q+i = i2+3  

Put Si= S(A'/.!/d, r) = 0, 41 = A'A'/di and gj1 = 0. We may write 

= AX + - 

Case (2): If o = 1, then by (4.39), we get 

Also, 

and 

= D(X) - = 2AX + 2B - Ti('•\ 2 (A,/) 
2 

Q -  ei+i 

Upon further computation, we get L(P' + \/D(X))/Q'J = 1. Set P +1 = 1 - F' and 

(D - p ,2) IQ'. We find that 

Al 

(di) 2 

and 
/ 2 

Q+i = +1 (\) 

q1(X) - 2AWd  
+t AciAl —1. 

and 

Put Si = S (A'LV/d, r) = {1}, d+1 = AW/dj and g+i = d. Then 

= AX + B - i+1 9i+i Al  
1 A' d+1 

/ 2 

and Q+i = (\d+l) 

Therefore, the continued fraction expansion of (P + VD(X))IQi is given by 

(ix P+' + /D(X) \ 
Q+ )• 

(4.42) 

(4.43) 

0 
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Remark 4.2.1 By the reasoning on page 108, we see that if " > 0, then ri > 0 for all non-negative 

integers i. By the definition of d+1, it follows that when ri = 0, we have d+j. I LV since A' = 1. 

Lemma 4.2.6 If ri > 0, then the continued fraction expansion of (P + VD(X))IQi is given by 

(qj (X), si, 
P +1 +  

Q+i )' 
where Si= S (A'L.'/d, ri), = gcd (A'A'/d, ri), 9i+i is an integer such that 

9i+lTi = ° mod A'L' and 0 ≤ .9i+i < AW -, (4.44) 
dj dd d•1 •1 d+1 

q(X) = L(P + /j)/Qj, 

= 14X + - 

2 

and Q+i = (di+,) (4.45) 

Proof: Suppose that ri > 0. By Lemma 4.2.3, we let the continued fraction expansion of F'/E' = 

(A'A'/di)/ri be given by (Se, S1,. . . , Sm/-i), where the natural number m' is chosen such that 

o•. Note that since F' ≥ E', we have so E N. Let d' = gcd(E', F') and d+1 = 

gcd(A'!/d, ri). Then d = 

By Lemma 4.1.1, we get 

P+1=AX+ H'Il  and Q•i  IAIQi 
A Ad' - (d')2 ' 

where H'(E'/d) o mod F'/d and 0 < H' <F'/d. Notice that 

kI - 

and 

Hence, 

d'A A'd 1 

I'iQ  - A IA2A4 A/ /\2 / , \2 

(d')2 - (z4z2 A 42 /dj)2-'2i+1 1 = LI1 (\ii) 
u,  

Pj+i=AX+_L1'" Al and Q+ =7i+1 ( di+/ )2 
1 

(4.46) 
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Since E'/d = r/d+1 and F'/d = (A'L.')/(dd +1 ), the expressions 

H
Ef F1 F1 
'umod dI and 

can be written as 

Put 

Then 

Also, we get 

mod and O<H'<   
did+1 - 

9i+1 = dH'. (4.47) 

 = a- mod   and 0 ≤ g•i < A'V  
dd +1 dd +i d+1 

L' 
.g•i (di+, - and Q+ =' At )2 

= AX + - 1 

We now show that (P 1+ /D(X))/Q +1 > 1. By (4.18), we have 2AX > 2ti!2 - 2B/A+ 1. 

By the fact that 0 ≤ r < A and the definition of 77, we have 1 ≥ nA + 77 and hence 2AX > 

2AjA  - 2B/A + n/A + 77 . Thus, 

/ 2 

2AX + - n/A - 77  > 2LS4!2 ≥ 2L1 dj+j ) 

Since 0 ≤ Yi+1 <A'z'/d +i, we have 

that is 

(Li' 2 + Yi+i  LV  
2AX+_ r/A_ ?] >17i+1 ' 

/ Li' 2 
2AX+ A/ > 

Therefore, (P +1 + \/D(X))/Q +l > 1 and if we put 

I p + \/D(X)! (A'A/  
q(X) =  j and S = S  dini) 
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then by Remark 4.1.1, the continued fraction expansion of (P + VD(X))IQi is given by 

( + \/D(X)  
q(X), S, 

0 

Remark 4.2.2 By Lemma 4.1.1, Qj E N for all i ≥ 0. Thus, d for all i ≥ 0. Since 

gcd(A', z') = 1 by (4.14), we have d11 = gcd(A'i'/d, r) = gcd(z\!/dj, r) for all i ≥ 0. 

4.3 The Continued Fraction Expansion of /D(X) 

Theorem 4.3.1 Let D(X) = A2X2+2BX+C be a Schinzel sleeper. Assume that X is sufficiently 

large, i.e., (4.18) holds. Let X Kniod 1.'; i.e., X = WL' + K, where 0 ≤ K < Li', and W ≥ 0. 

Put d0 = 1.', ro Br/ (r 24) mod A', where 0 ≤ ro <A'. For i ≥ 0, define 

(Tr (A'L' = gcd ' i) and Si = S 

where the parity of J8jJ is even if o = —1 and odd if o = 1. 

When ri > 0, choose fli+1 E 7L according to (4.44). When ri = 0, set 9i+1 = d if o = 1 and 

= 0 if o = —1. Let q+1 (X) and r 1 be as defined in (4.39) and (4.33), respectively. 

Then the regular continued fraction expansion of VD — (X) is given by 

(AX + q - , 5o, q1(X), Sj, q2(X), 82, q3(X), ..., S.—,(X), q,(X)), 

where q = LB/Aj, q is defined by (4.16) and ic is the least natural number such that 

d,ç L' and '=1. 

Proof: We prove the theorem by induction on i. If i = 0, then by Lemma 4.2.2, we get d1, g and 

\/D(X) = (AX + q - ,q, So, (P1 + 
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By Lemma 4.2.3, we get r1. By Lemma 4.2.4, we get q, (X). By Lemma 4.2.5 or Lemma 4.2.6 

depending on whether r1 = 0 or r1 > 0, we get Si = S (A'L'/d1, ri), a non-negative integer 92, 

and natural numbers d2, P2 and Q2 such that 

VD (X) = (Ax + q - m P2 + So, qi(X), Si,  Q2 ) 
By Remark 4.2.2, d2 = gcd (A'A'/d1, r1) = gcd ('/d1, Ti) 

Suppose that the theorem holds for some i > 0. Let di and gi be as in the statement of the 

theorem. We use Lemma 4.2.3 to compute r, By Lemma 4.2.4, we obtain q(X). By Lemma 4.2.5 

or Lemma 4.2.6 depending on whether Tj = 0 or ri > 0, we get Si = S (AA'/d,, ri), a non-negative 

integer 9i+,, and natural numbers d+1, P+1 and Qj+j such that 

VD (X) = (Ax+_m So, q, (X), S, ..., q(X), S, p+1 +  

Hence, by induction, the continued fraction expansion of /D(X) is given by 

(AX +q— 97, so, q, (X), Si, q2 (X), 52, ..., q+i(X), . 

Since /D(X) is a quadratic irrational, its continued fraction expansion is periodic. The end 

of the period is signaled by Q = 1 for some minimal £ E N and the corresponding partial quotient 

takes the form 2AX + 2q - 2, twice the initial partial quotient. Since the partial quotients in the 

sequences Siare all less than A'A', the only partial quotient that can be as large as 2AX + 2q - 277 
must be q,ç(X) for some i. Hence, if £ is the period length, then 

Qt=1 and PeAx+q—. 

Suppose that 

( A / \ 2 = AIX -) and d,j 
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Then, we must have L\ = 1 and d,ç = Li'. In other words, our computation for the continued 

fraction expansion of /D(X) is complete when we get the minimal 'c> 0 such that Lic = 1 and 

d,=Li'. D 

Remark 4.3.1 We note that if Li1 > 1, then ic is even. Also, it is easy to see that when D(X) 

is given and X1 and X2 are two sufficiently integers that belong to the same residue class modulo 

Li', then the expansions of /D(X1) and /D(X2) will have the same sequence So, Si,.. . , 

Example 4.3.1 Consider D(X) = 1192X2 + 2(2205)X + 343. Then A = 119 = 7•17, B= 2205 = 

32.5.72 and C = 343 = 73• The discriminant A = B2—A2C = 4802 = Thus, Al= 2, Li2 = 1, 

Li4 = 7, Li2Li4 = 7, which divides 747 A, so that r = 1. Then A* = A/(Li2Li4/r) = (7. 17)/7 = 

17 and F = gcd(A*, Li 1) = gcd(17, 7) = 1. Hence, A' = A*/F = 17 and Li' = (rLi4)/F = 7. 

Moreover, d0 = A' = 7, r0 = r/(Li2Li4) = 9 and d1 = 1. 

Since X is sufficiently large when X > Li1Li'2/A - B/A2 + 1/(2A) 0.67, we first consider 

X = 1. We compute r = B - ALB/A] = 63 and Lv'D(l)J = qo(1) = 119.1 + 18 = 137. 

The fraction A'/ro = 17/9 may be represented by (1, 1, 8). Although we may write A'/ro = 

(1,1,7, 1), we insist on writing A'/ro = (1,1,8) since a- = 1, which means that we need an odd 

number of terms. Therefore, 5o = S(A'Li'/do,ro) = {1, 1, 8}. 

We find that qi(1) = 2, gi = 14 and r1 = 82. It can be checked that A'Li'/diri = 119/82 = 

(1, 2,4,1,1,1,2). Again, we pick (1, 2,4,1,1,1,2) instead of (1, 2,4, 1, 1, 1, 1, 1) because we need 

an odd number of terms. Put S= {1, 2,4, 1, 1, 1) 21. 
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We list qj (X), S, g, d and ri in the following. 

qo(1)= 137, So={i-,1,8}, d0 =L'=7, r0=9, 

q, (1) = 2, S,= {1,2,4,1,1,1,2}, d1= 1, g, = 14, r1= 82, 

q2(1)=5, S2={4,3,1}, d2=1, 92 =45, r2=28, 

q3(1)=136, S3={1,3,4}, d3=7, 93=13, ?3=13, 

q4(1)=5, 54 ={2,1,1,1,4,2,1}, d4=1, 94=28, r4=45, 

q5(1)=2, S5={8,1,1,}, d5 =1, 95=82, r5=14, 

q6(1)=274, So{1,1,8}, r6=9. 

Since 6 = 0 by the definition of Ej, we have L46 = 1. Also, since d6 = L.', the computation of S 

of the continued fraction expansion of \/15ii) is complete and ic = 6. In other words, 

\/T=(137,1,1,8,2,1,2,4,1,1,1,2,5,4,3,1,136,1,3,4,5,2,1,1,1,4,2,1,2,8,1,1,274). 

When X = 7W +1 for W E N, we find that 

+ 1) = (833W + 137,1,1,8, q,(W), 1,2,4,1,1)1,2, q2(W), 4,3, 1, q3(W), 

1,3,4, q4(W), 2,1,1,1,4,2, 1, q5(W), 8,1,1,2(833W + 137)), 

where q,(W) = q5(W) = 17W + 2, .q2(W) = q4(W) = 34W + 5 and q3(W) = 833W + 136. For 

instance, when X = 8 = 7. 1 + 1, we have 

\,/D(8) = (970,1,1,8,19,1,2,4,1,1,1,2,39,4,3,1,969,1,a,4,39,2,1,1,1,4,2,1,19,s,1,1,1940). 

We compute the continued fraction expansion of (2). We find that 

qo(2) = 256, So = {1, 1, 8}, d0 = = 7, 

qi(2)=5, S={8,1,1}, d,=1, 

q2(2)=512, 52={1,1,8}, d=7. 

= 9, 

gi=14, r,=14, 
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Since 2 = 1 and d2 = 7 = /.', the computation is done and we have 

/D(2) = (256, 1, 1, 8, 5, 8, 1, 1, 512). 

Again, we notice that if X 2 mod 7, i.e., X = 7W +2 for some non-negative integer W, then 

/D(7W + 2) = (833W + 256,1, 1,8, 17W + 5,8, 1, 1,2(833W + 256)). 

For instance, we have ./D(9) = (1089, 1, 1,8, 22,8, 1, 1, 2178). 0 

From the above example, we suspect d = d,,-i and gj+i = r,__1 for 0 < i ≤ ic when r> 0. 

Indeed, this is always the case as we prove below. 

Theorem 4.3.2 if r > 0, then di = for 0 ≤ i ≤ Ic. 

Proof: Since r > 0, ri > 0 for all i ≥ 0 by Remark 4.2.1. By symmetry of the continued 

fraction expansion of we have A'L!/(dr) = (so, Si,. . . ,sm_i) and = 

(3m-i) m_2, . . . ,.$) for some natural number m and 0:5 i ≤ Ic. Let A/B and be the j-th 

convergents of A'/'/(djr) and A'!/(cl,_j_1r,ç_j_1), respectively. Then 

AM-2 

Bm_2 1 

/  A's' / 

A A rn-2 

r,__i L_z ' 
A m_2 
Li_j I 

(4.48) 

where d+i = gcd(A'L!/d, r) and = gcd(A'LV/d,__1, r,__1). It follows that dd +1 

dK_j_id,_j for all i ≥ 0. Since d0 = = d,ç, we have d1 = d,_1. By induction, we get d = 

for i≥0. 0 

Theorem 4.3.3 If r > 0, then 

ri rK__1 A'L'  
= o mod  and 9i-i-i = rK__1 (4.49) 

dd +1 

for i ≥ 0. 
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Proof: Since r> 0, we have = di by Theorem 4.3.2. We may rewrite (4.48) as 

AW Am-2 
U,j i 
iCIi+1 

Ti 
- 

\ d+1 J 

/ A'L\' 

dK__1 

Al m-2 

(4.50) 

It follows that Am 2 = r,.__1/d. Hence, A'.'/dd+i Bm_2 - r/dj+i  

'ri T1.j4 = ( 1) a mod  A'/2x'  
d 1 d dd 1 

By (4.47), we have g+1 = dII' for some H' such that 

Ti H' - cr mod  A'z' A'LV 
- and 1<H'<  

- - 

This implies that H' = r,__i/ci, Hence, = d T,c_j_i/dj = 0 



Chapter 5 

Results Pertaining to the Continued Fraction Expansion of 

,,/D (X) 

In this chapter, we use the continued fraction expansion of ./D(X) given in Theorem 4.3.1 to 

establish three results: the number of different patterns of the continued fraction period of ./D(X) 

as X varies, an explicit upper bound for the continued fraction period length of VD(X) and the 

fundamental unit of the real quadratic order [1, /D(X)]. 

By Theorem 4.3.1, the continued fraction expansion of ,/D(X) not only depends on the coeffi-

cients A, B and C, but also on the residue class of X modulo ', which is a function of A, B, C. By 

a pattern of the continued fraction expansion of /D(X) we mean the sequence 8o, 8, . . . , 

where r. is as defined in Theorem 4.3.1. By Remark 4.3.1, we know that if positive integers X1 

and X2 are sufficiently large and belong to the same residue class modulo ', the expansions of 

/D(X1) and /D(X2) have the same pattern. However, if X1 and X2 belong to different residue 

classes, the expansions of /D(X1) and /D(X2) may have different patterns. In Section 5.1, we 

study the number of different patterns and show that this number is a divisor of '. 

In Section 5.2, we establish an upper bound for the period length of the expansion of /D (X). 

More explicitly, we follow Schinzel's notation in denoting the period length of /D(X) by 1p(./D(X)) 

and show that 

1p(D(X)) < 
3L'. [log(\/. A'LV)j if LY is even, 

2/s'. [log,(\/. A'A')] if Li' is odd, 

where ço = (1 + ')/2 is the golden ratio and log,(x) is the logarithm of x with base çü. 

118 
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In Section 5.3, we show that the fundamental unit of the quadratic order [1, /D (X)] is given 

by 

it'2 (A 2x + B + A/D(X)) 
JAI 

and the norm of it is o, where ic is defined in Theorem 4.3.1. 

5.1 Number of Patterns 

In Example 4.3.1, we see that ./1192X2 + 2(2205)X + 343 with X E N has two different patterns 

of expansion depending on whether X 1 or X 2 mod 7. As we run through the other five 

residue classes of 7, we find that the continued fraction expansion of /D (X) exhibits another five 

different patterns depending on which residue class X belongs to. They are represented by 

\/D(3) = (375, 1, 1,8,7, 1, 1,4, 1, 10, 15,4,3, 1,374, 1,3,4, 15, 10, 1,4, 1, 1,7,8, 1, 1, 750), 

\/.D(4) = (494,1,1,8,9,1,38,1,1,1,19,1,1,11,2,2,9,1,2,4,1,1,1,2,19, 

1,4,5,1,3,9,1,4,1,18,1,19,4,3,1,493,1,3,4,19,1,18,1,4,1,9,3,1,5,4,1, 

19,2)1,1,1,4,2,1,9,2,2,11,1,1,19,1,1,1,38,1,9,8,1,1,988), 

./D(5) = (613,1, 1,8, 12,2,2, 11, 1, 1,24, 1, 1, 11,2,2, 12,8, 1, 1,1226), 

\/D(6) = (732,1,1,8,14,1)4,1,18,1,28,1,18,1,4,1,14,8,1,1,1464), 

'D(7) = (851,1,1,8,17,3,1,5,4,1,33,1,18,1,4,1,16,1,1,4,1,10,34,1,1,1,38,1,16, 

2)2,11,1,1,34,4,3,1,850,1,3,4,34,1,1,11,2,2, 

16,1,38,1,1,1,34,10,1,4,1,1,16,1,4,1,18,1,33,1,4,5,1,3,17,8,1,1,1702). 

This observation may suggest that the number of different patterns exhibited by the continued 

fraction expansion of /D(X) is Lx'. This is not always true as we shall see below. 

By Lemma 4.2.2, when the coefficients A, B and C are fixed, the terms r0, d1 and 9i are 



120 

independent of X. By Lemma 4.2.3, the first quantity that depends on X, or K, is r1. By our 

inductive approach in Theorem 4.3.1, we see that for i ≥ 1, the terms d, gi and r i depend on 

r, which depends on K by Lemma 4.2.3. By (4.33) and since d1 = 1, we write 

p1(K) 2A2K +22 91 mod A't', where 0 ≤ ri(K) <A'L'. 

Lemma 5.1.1 If ri(0) = ri(K) for some K ≥ 0, then ri(i) = ri(K + i) for all i ≥ 0. 

Proof: Suppose that for some K, we have ri(0) = ri(K). Then 

= 2A2(0) + 2B 2B  
ri(0) - 9i mod A'L' A A2 91 AIA2 A2 

and 

2A2K+2B 2B  
ri(K) flu r1(0) 91 mod A'A'. 

It follows that 

2A2K  
=0 mod A's'. 

Now, for any integer i, we have 

= 2A2(K + i + 2B (2A 2K) (2A2i + 2B  
ru(K+i) - 

ri(i) mod A'A'. 

flu 1u12L + 91 mod A'A' 

Since ri(K + i) and ri(i) are residues of modulo A'ó.', we have ru(K + i) = ri(i). 0 

By (4.8), we have A4 I A and L1L.24 J 2A. Thus, 2A2 '/( 12L) 0 mod A'A'. It 

follows that 

2A2Ls!+2B 2B  
Ti (Li') ri(0) mod A'L'. 

This implies that ri(0) = ri(Li'). Hence, by Lemma 5.1.1, we see that ri(i) = ri(L1' + i) for all 

i ≥ 0, i.e., the pattern repeats modulo Lx'. 
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We define the number of patterns p to be the minimal number of distinct values among 

ri(0), r(1),... ,r, -  1). In other words, we have ri(0) = r1 (p) with p ≥ 0 minimal. By 

Lemma 5.1.1, it follows that r1(i) = ri(p+i) for all i ≥ 0. Also, we have 

Theorem 5.1.1 p I 

Proof: Write LY = p L'/pi + 'y, where 0 ≤ < p. Then, 

= (2A2LY + 2.8) (2A2y + 2B)  
r1 ('y) mod A'A'. 91 

Since ri(LV) = ri(0) = ri(p), we have ri('y) = ri(p). Since p is minimal, y = 0. D 

Note that in Example 4.3.1, we have zV = 7, which is a prime. So, the possible divisors are 1 

and 7. In that particular example, we have 7 different patterns. 

Example 5.1.1 Consider D(X) = 8332X2 + 2- 114562X + 18914. We have A = 833 = 72. 17, 

B = 114562 = 2 - 73 167, C = 18914 = 2 - 72. 193 and A = 235298 = 2 . 76 = 2 . 72 . 74, so 

that L = 2, A2 = 7 and L = 7. Also, we find that L' = 7. By Theorem 5.1.1, we expect the 

continued fraction expansion of \/D(X) to have either 1 or 7 different patterns. Moreover, by 

(4.18), the sufficient size of X is X > L.1LY2/A - B/A2 + 1/(2A) —0.047. Here, we consider 

X=1. 

We find that 

/D(1) = (970,1,1,8,19,1,2,4,1,1,1,2,39,4,3,1,969,1,3,4,39,2,1,1,1,4,2,1,19,8,1,1,1940), 

./D(2) = (1803,1,1,8,36,1,2,4,1,1,1,2,73,4,3,1,1802,1,3,4,73,2,1,1,1,4,2,1,36,8,1,1,3606), 

and for all X E N, we get 

/D(X) = (833X+137,1,1,8,q1(X),1,2,4,1,1,1,2,q2(X),4,3,1,qs(X), 

1,3,4, q4(X), 2,1,1,1,4,2,1, q5(X), 8,1,1, 1666X + 274), 
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where q1(X) = q5(X) = 17X+2, q2(X) = q4(X) = 34X+5 and q3(X) = 833X+136. Therefore, 

there is only one pattern. Note that 1 divides 7 = Lx.'. El 

Since the continued fraction expansion of a quadratic irrational is unique and the expansions in 

the above example are the same as those in Example 4.3.1 with X 1 mod 7, we are led to think 

that D(X) = 8332X2 + 2 114562X + 18914 is a special case of D(X) = 1192X 2 + 2(2205)X + 343 

for some X E N. Indeed, if we substitute X = 7Y + 1 into D(X) = 1192X2 + 2(2205)X + 343, 

then D(7Y + 1) = 1192(7Y + 1)2 + 2(2205)(7Y + 1) + 343 = 8332Y2 + 2 114562Y + 18914. 

5.2 Upper Bound for 1p(/D(X)) 

In the previous chapter, we established the continued fraction expansion of ,/D(X) for any 

quadratic D(X) that satisfies the Schinzel condition. In this section, we focus on the period 

length of \/D(X), 1p(/D(X)). When Schinzel established the result concerning the boundedness 

of 1p( /D(X)), he did not provide an explicit upper bound for 1p(/D(X)). Here, we give an 

explicit upper bound on 1p(/D(X)). 

By Theorem 4.3.1, we know that the calculation of the continued fraction expansion of /D(X) 

ends when dk = Li' and L4' 1 for some minimal ic. Hence, if we write 

IS4 = 

as the cardinality of the set S, then 

1p(/D(X)) = 

L' I 
S  = IS(A'L,dir)I 

('+AD. (5.1) 
i=o 

We are interested in obtaining an upper bound for 154. Recall that JS4 is the length of the 

continued fraction expansion of A!A'ldri when ri > 0, and jS4 = 0 or 1 when Tj = 0. We 

henceforth consider ri > 0. 
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It is easy to see that the length of the continued fraction expansion of a rational number aft 

is determined by the number of division steps required when applying the Euclidean algorithm 

to aft. Note that the length is not necessarily the same as the number of division steps since 

the finite continued fraction expansion of a/P has two representations, depending on whether the 

last partial quotient is 1 or greater than 1. For our purpose, we need to consider the maximum 

length, i.e, the last partial quotient is 1. In 1845, G. Lamé gave an interesting result concerning 

the number of division steps of the Euclidean algorithm applied to a rational number. We restate 

it as follows: for fixed n ≥ 1, let a, r be integers with 0 <r < a and a minimal such that the 

continued fraction expansion of aft has length exactly n. Then a = F+i and r = F, where Fj is 

the i-th Fibonacci number. 

If 0 ≤ r < a < N for some N E N, then by Lamé's theorem, the maximum length occurs when 

a = F+1 and r = F, where m is as large as possible with F+1 <N. Denote the golden ratio by 

= (1 + \/)/2. It is well-known that F = (ço - p')/,/5- for all i E Z. Since 0 gets very small 

in absolute value as i increases, it is not difficult to see that F +1 <N implies ço''// < N. It 

follows that n+ 1 <log,(/. N). Hence, the maximum length for the continued fraction expansion 

of a/r is at most [logy N)] - 1. Interested readers in this area are referred to Knuth [91, 

p. 343] and Shallit [220]. 

On applying the above reasoning, we get Isil ≤ log(v'. A'')j - 1 and 

1p(D(X)) ≤ E(1 + log(. A'')j —1) = ic. log(. A'')j. (5.2) 

Now it remains to determine an upper bound on the value of ic. We will show that if i' 2, 

then ic = 1, 2, 3, 4 or 6. Also, we will establish two general results regarding upper bounds for : 

n  2w(L') and 

LV if J' is odd, 

(3/2)' if LY is even, 
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where w(L') is the rank of apparition of L' in a certain Lucas function U,,. 

Lemma 5.2.1 If D(X) satisfies the Schinzel condition, then Z, 12D(X). 

Proof: Let d=gcd(A,B). Then 

(B) 2 (A) 2 A2 4  (2)2 

Since L = B2 - A20 divides 4 gcd (A2 , B)2, it follows that 

('•,2'•g2  d ) 
(2A2 2B\ 2 

gcd —   —,-   -) 

(5.3) 

Since A, is squarefree, it follows that A, divides both 2A2/d and 2B/d. In view of (5.3), we get 

I (2A/d)20. Again, since A, is squarefree, we have A, I (2A/d)C. Since Aid and B/d are 

relatively prime, A, divides 20. Therefore, A, divides 2(A 2X2 + 2BX +0), which is 2D (X). 0 

Lemma 5.2.2 If 4 = /' and Z$k 96 1 for some k E N minimal, then ic = 2k. 

Proof: Suppose that dk = ' but Lk 54 1 for some k E N. Then ek = 1, A, > 1 and Qk = 

= i. Since A, = Qk I D(X) - k2 and z J 2D(X) by Lemma 5.2.1, we have 

2Pk2. Since A, is squarefree by assumption, we have A, I 2Pk. Hence, Q2k = 1 by 

Theorem 1.2.3. Now, if k is minimal, then Ic = 2k. 0 

In the sequel, we put 

2A2K + 2B  
T = . (5.4) 

A2 4 

The following theorem recaptures the result of van der Poorten and Williams discussed in 

Section 2.4. Assuming gcd(A2, 2B, C) is squarefree, the two authors showed that, in our notation, 

ic is 1, 2, 3 or 6. It is not difficult to see that when gcd(A2, 2B, C) is squarefree, A4 = 1, and 

consequently zV 12. Indeed, we have 

Theorem 5.2.1 If LV 12, then ic = 1, 2, 3, 4 or 6. More explicitly, 
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1 1 2 2 2 2 

1 >1 any 1 >1 any 

T/L 1 any any even odd odd odd 

T any any any odd odd even 

1 2 2 3 6 4 

Table 5.1: Valves of ic when LV 12. 

Proof: By Lemma 4.2.2, we have d = 1. If LY 2, then i' = 1 or 2. 

Case (1): If L' = 1, then Qi = 1(LY/d1)2 = i. If A, = 1, then ic = 1. If A, > 1, then by 

Lemma 5.2.2, we are half-way through the period of the continued fraction of /D(X) and ic = 2. 

Case (2): Suppose that LY = 2. Then 

2A2K+22 T 
- g. mod 2A'. 

Since LY = 2, by (4.19), we see that 91 is even. Hence, r1 T/L 1 mod 2. 

If T/ 1 is even, then Ti is even. Hence, d2 = gcd(A'LY/d1, r1) = gcd(2A', r1) is even. Since 

d2 I LY, it follows that d2 = 2. Hence, Q2 = (.'/d2)2 = 1 and ic = 2. 

If T/ 1 is odd, then r1 is odd. This implies that d2, being a divisor of r1, must also be odd. 

Since d2 I d2 = 1. Hence, the congruence g2r1/(d1d2) a mod A'L'/(d1d2) can be written as 

92r1 a mod 2A'. Thus, g2 is odd. Since d1 = 1, d = 1, e2 = 0 and 92 is odd, the congruence 

dT/L2 - 92 T - 92 mod 2A' implies that r2 T - 1 mod 2. 

If T is odd, i.e., r2 is even, then d3 = gcd(2A', r2) is even. Thus, d3 = 2 and Q3 = L4 3 (LY/d3)2 = 

. If I = 1, then ic = 3. If t > 1, then by Lemma 5.2.2, ic = 6. 

If T is even, i.e., r2 is odd, then d3 = 1 and 93r2 a mod 2A' implies that 93 is odd. Hence, 

T/1 - 0 mod 2. This implies that d4 = 2 and Q4 = (LY/d4)2 = 1. Hence, ,c = 4. El 

Remark 5.2.1 van der Poorten and Williams obtain their results by making use of the continued 
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fraction expansion of \/d. In terms of our notation, they show that when X is sufficiently large, S 

of -./D(X) are segments of the continued fraction expansion of V-C-. Although we do not pay any 

particular attention to 'd, it is clear that we arrive at the same conclusion when gcd(A2, 2B, C). 

We illustrate the six cases in Table 5.1 of Theorem 5.2.1 in the following. 

Example 5.2.1 Case (1): When A' = 1 and i = 1, take D(X) = 42X2 + 2(15)X + 14 as in 

Example 2.4.1. Then L.=B2—A2C=152-1614=1. So) 1=z 2=L 4=1 and L.'=1. 

For sufficiently large X, we have /D(X) = (4X + 3, 1,2, 1) 8X + 6). It is not difficult to see that 

ic = 1 in this case. 

Case (2): When L' = 1 and A, > 1, take D(X) = 362X2 + 2(168)X + 22. Then A = 3• 12, 

B = 12 14, C = 22 and JAI = I - 2881 = = 2 32 2. So, L > 1. Also, T = 1 and 

A/( 24/r) = 6, I= gcd(A*,4) = 2, and A' = TL4/r = 1. Thus, by Theorem 5.1.1, we 

have p = 1. Further, we compute 

\/(36X+4,1,2,36X+4,2,1,72X+8) and i=2. 

Case (3): When A' = 2 and T/ 1 is even, consider D(X) = 1192X2 + 2(2037)X + 293. Then, 

A=119, B=2037, C=293 and i=22 72, Also, L=1, '2 =14, A4 = 1, r =2,A*=17, 

F=1, and t!=th4/T=2. 

When X 1 mod 2, i.e., K = 1 and X = 2W + 1, where W ≥ 0, we have T = 2314 = T/ 1, 

which is even. Now, 

/D(2W + 1) = (238W + 136,8,1,1, 119W + 67, 1, 1,8, 476W + 272) and ic = 2. 

Case (4): When L' = 2, L1 = 1, T is odd and T/z 1 is odd, consider D(X) = 1192X 2 + 

2(2037)X + 293 with X 0 mod 2, i.e., K = 0 and X = 2W, where W ≥ 1. We find that 

T=4337=T/z 1, 

\/D(2W) = (238W + 17,8, 1,1, 119W + 8, 34) 119W + 8, 1, 1,8,476W + 34) and ic = 3. 
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Case (5): When L' = 2, Li . > 1, T is odd and T/L 1 is odd, consider D(X) = 302X2 +2(50)X+5, 

then A = 30, B = 50, C = 5 and Li = -2000 = -2 5. Also, Li = 5, A2 = 5, Li4 = 2, i- = 1, 

A* = 3, r = 1, and A' =  TA 41r = 2. 

When X is an odd natural number, Le, X = 2W + 1 for some W ≥ 0, we have T = 95, 

T/Li1 = 19, 

/D(2W+l) = (60W+31) 1) 2) 6W+2, 1,5, 30W+15, 1) 2) 24W+12, 

2, 1, 30W + 15, 5, 1, 6W + 2, 2, 1, 120W + 62) 

and ic = 6. 

When X is an even natural number, i.e, X = 2W for some W ≥ 1, we find T = 185 and 

T/Li1 = 37. Further, we compute 

\/D(2W) = (60W+1, 1, 2, 6W - 1, 1, 5, 30W, 1, 2, 24W, 2, 1, 30W, 5, 1, 6W - 1, 2, 1, 120W + 2) 

and ,c = 6. 

It is easy to see that the above two expansions have the same pattern. In fact, for any natural 

number X, we have 

./D(X) = (30X+1, 1, 2, 3X-1, 1, 5, 15X, 1, 2, 12X, 2,1, 15X, 5,1, 3X-1, 2,1, 60X+2). 

Case (6): If D(X) = 242X2 + 2(80)X + 12, then A = 24, B = 80, C = 12 and Li = -512 = -2g. 

Also, Li1=2,Li2=1, Li4=4,r=1,A*=6,F=2, and Li = rLi4/F=2. 

When X is an odd natural number, i.e, we have X = 2W + 1, where W ≥ 0, we find that 

T =82 is even and T/Li1 = 41 is odd. Now, 

\/D(2W+1) = (48W+27,2,1, 12W+6, 5,1) 24W+12, 1,5, 12W+6, 1,2,96W+54) 

and ic =4. 



128 

When X is an even natural number, i.e, we have X = 2W, where W ≥ 1, we find that T = 154 

is even, T/ 1 = 77 is odd, 

/D(2W) = (48W + 3, 2, 1, 12W, 5, 1, 24W, 1, 5, 12W, 1, 2,96W + 6) 

and ic = 4. In fact, for X E N, we have 

\/D(X) = (24X+3, 2, 1, 6X, 5,1, 12X, 1, 5, 6X, 1,2,48X+6). 

0 

In what follows, we use the Lucas function U to establish an upper bound for ic. Put 

T2 
P=--2cr. (5.5) 

Let a and /3 be roots of x2 - Px +1 = 0. Then 

and a/3=1. (5.6) 

Let U = (aTh/312)/(a/3) as in Section 1.7. Then (J0 = 0, U1 = 1, U2 = F, and Uj+j = 

for i E N. We will show that if w is the rank of apparition of L' in the Lucas function U, then 

'i 2w. 

Before we proceed to the theorem, we need several results. 

Lemma 5.2.3 For all i E N, we have 

(5.7) 

T  
irdd +1 mod A'I'. (5.8) 

Proof: If ri = 0, then by Theorem 4.3.1, = gcd(A'LV/d, ri). So we get dj.H = A'1'/d. Hence, 

dd +1 0 mod A'A' and (5.8) holds trivially. 
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Suppose that rj 0. By (4.33), we have 

Thus, 

Since d+1 I ri, we have 

By (4.44), we get 

T  
r+i dj+1 

1 

T  
d•1r Ai+' 

1 

T 
riri+i d1r,  AI+1 

1 

9i+1 mod  
d+1 

9i+lTi mod  2  

gi1ri mod A'LX'. 

T 
TT odd +1 mod 

D 

Lemma 5.2.4 gcd(d, d 1) = 1 for all i ≥ 1. 

Proof: We prove this lemma by induction on i E N. By Lemma 4.2.2, we have d1 = 1. Hence, the 

result holds for i = 1. Suppose that gcd(dj, d+1) = 1 for some i ≥ 1. Let p be a prime dividing 

then p j' d. By Theorem 4.3.1, we have d 1 = gcd(A'LV/d, re). It follows that p I rj and 

p I A'A'/d. Let n E N be such that p' A'L./d. 

Case (1): If p'I r,, then p' d+1. Since gcd(A', z') = 1 by (4.14), we have p {A'L!/d +1. Hence, 

P ' d+2 and gcd(cl 1, d+2) = 1. 

Case (2): Suppose that pfl r.. Then Tj 0 0 and there exists some m E N such that m <m and 

pm  I I r. Hence, ptm 11 d+1. By (5.8), we may write 

ri ri T mod pTh_m 
PM 

If p I Tj+l, then since p I di+1 and p I pm_rn, we get p I Odd +1/pm, a contradiction. Hence, p 

and it follows that p t gcd(A'L!/d +1, r+1 ), which is d+2. Therefore, gcd(d +1, d+2) = 1. 11 
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Put 

= 0, Z0 = 1 and Z+i = T crZ_1 for i ≥ 0. 

It follows that for i E N, 

Z2i = TZ_ . - 

We compute further to get from (5.5) 

z2i = Pz2_2 - z2i_4 

T 
and Z2i+l = --Z2 - crZ2_1. 

L1 

and Z2+1 = - 

where the first equation holds for i ≥ 2 and the second one holds for i ≥ 1. 

If we use the Lucas function U. in (5.6), then we get 

T2 _(T2 \ 7T2 )u1_u0, 
= r—o•_ --cr1 .1-0= 

1 1 I 
T T ) U 

Z3 = 

'T2 ) /T2 
Z4 = PZ2—Zo=P(--u _1=r_cr)U2_Ui, 

= PZ3_Z1=P(—"IU2 T _r=(T)u3. 

By induction on i E N, we get 

1T2 \ 
Z2 = (--cr)U—U_j=U,j-i-crU and 

\11 I 

Lemma 5.2.5 gcd(Z, Z+1) = 1 for all i ≥ 0. 

T 
z2i_l_1 = —U +l. 

(5.9) 

(5.10) 

Proof: Let p be a prime that divides gcd(Z1, Z+1). It follows from (5.9) that p I Z_1. By ihduction, 

we find p divides gcd(Zo, Z1) = 1, hence, gcd(Z, Z+1) = 1. 
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Lemma 5.2.6 dZ rZ_1 mod L.' for all i ≥ 0. 

Proof: We prove by induction on i. The statement holds trivially if A' = 1, so we assume Li'> 1. 

Since Z_1 = 0 and d0 = Lx', it is clear that d0Z0 0 r0Z._1 mod '. Further, since Z0 = 1 and 

= T/L 1 and by Lemma 4.2.2, d1 = 1 and L.' I gi, it follows that 

d1Z1 = -- T T -- 9i r1 r1Z0 mod. 
L_1 L_1 

Let p be a prime such that ptm Li', where n E N. Suppose that for some i ≥ 1 and all j such 

that 0 ≤ i ≤ i, 

Note that 

So, by Lemma 5.2.3, we have 

Case (1): Ifpfr, then 

dZ rjZ_i mod ptm. 

d+1r z cTZi_i) 

T 
cZ+ir A i+1 Z ud +irZ_i 

i- 1 

d+irj•1Z odd +1Z mod dj+ipm 

(di+iri•i crdidi+i) Z mod 

d+irZ+i rrZ, mod ptm• 

u
_7 '7 - '7 1 7) 71 
j+lLij+1 = r+i mod  

(5.11) 

(5.12) 

(5.13) 

(5.14) 

For the remaining cases, we assume p I r. 

Case (2): If p J d, then pfl . d_1 and p t d 1 by Lemma 5.2.4. Since d 1 = gcd(Li'/d,r), it 

follows that ptm d. Since d I r_1, we have pfl r_1. By (5.11) with j = i - 1, we have ptm j 
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Hence, by (5.9), 

= Z Z_1  Zi mod pfl• 

Since pfl Li', by (4.33), 

—.7 ____ - n 
= A6i+1 9i+1 mo d  p 

If r, = 0, then gj 0 mod di by Lemma 4.2.5. If r, > 0, then gj 0 mod di by (4.4'7). Since 

d,, we have 

T Tj+l = d+i Aej+1 mod pfl• 

Thus, 

T  
d+1Z+1 d 1 A+1 Z = rj+iZ1modpTh. 

For Oases (3) and (4), we assume p t d. 

Case (3): If p' r, then by (5.11) with j = i, we have ptm I Z. Since p t d, it follows that p7i 

divides d 1 = gcd(i!/d, 9-i). Hence, trivially, 

.7 '7 —r—. '7 .7 p n 
= u = Tj.j mod  

Case (4): If p'rj, then ri rh 0 and there exists some m E N such that ri> m and pm • Since 

p f d, we have pm I I d+1. Now, pm I I Zi by (5.11) with j = i. Now, by (5.8), we may write 

/ T  
iTiiZi (\di+lTiei+l cTdidi+l) Z mod p'+ '. 

Thus, by (5.13), we have d+1rZ+1 (rr+1)Z mod ptm+72. Since pm 11  , it follows that 

d+1Z+1 rZj mod ptm. 

Therefore, the statement holds for all i ≥ 0 by induction. 0 
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Theorem 5.2.2 Let w be the rank of apparition of Li' in U. Then Ic I 2w, which implies that 

ic <2w. 

Proof: By Lemmas 5.2.5 and 5.2.6, it follows that Li' I Zi implies Li' I d 1 for i ≥ 0. If w is the 

rank of apparition of Li' in the Lucas function U,, then Li' I U. By (5.10), we have Li' I Z2,_1 and 

hence, Li' I d. Since d2,, I Li' by Remark 4.2.2, it follows that d2 = Li'. Since Qt = Li (Li'/d)2 

by (4.40) or (4.45), we have 

Q2. = Lie2w = 1. 

1 (W2:) Since ic by definition is the least natural number such that Q, = 1, we have ic < 2w. Also, since 

the continued fraction expansion of /D(X) is periodic, we have /c I 2w. 0 

Example 5.2.2 Consider D(X) = 1192X2 + 2(833)X + 245. Then A = 119, B = 833, C = 245, 

Li=-22•74 •172 anda=-1. Also, Li1=1,Li2 =34,Li4 =7andLi'=14. ForX≥2,asK 

varies from 0 to 13, we compute ic and w(Li') and arrive at Table 5.2: 

K 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Ic 24 8 6 8 24 6 6 8 24 2 24 8 6 6 

w(Li') 12 4 21 4 12 6 3 4 12 14 12 4 3 6 

Table 5.2: Values of ic and w(A) of .,/1192X2 + 2(833)X + 245. 

Observe that aside from the exceptional cases at K = 2 and 9, in which A' = 7 divides w(Li'), 

we see that ic = 2w(Li') or Ic = w(Li'). This phenomenon can be further demonstrated. 

Example 5.2.3 Let D(X) = 20022X2 + 2(44044) + 605. Then, A = 2002, B = 44044, C = 605 

and Li = _22 . 7 2  . ii• 132. Also, Li1 = 1 2 = 2 . 7. 13, Li4 = 11, T = 1, A* = 1 and Li' = 11. 

Let X ≥ 1. For 0 ≤ K <Li' = 11, we compute Ic as well as w(A) in the Lucas function U and 

arrive at Table 5.3. 
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K 0 1 2 3 4 5 6 7 8 9 10 

ic 10 12 12 10 4 12 10 2 10 12 4 

w(Li') 5 6 6 5 4 6 5 11 5 6 4 

Table 5.3: Values of ic and w(A) of /20022X2 + 2(44044) + 605. 

Again, excluding the exceptional case at K = 7, where Li' = 11 divides w(Li'), we see that Ic 15 

either w(Li') or 2w(Li'). 

Example 5.2.4 Consider D(X) = 1192X2 + 2(2023)X + 1445. We have Li = 22 - 7 2  174 and 

A' = 34. For X ≥ 9, 

K 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ic 9 34 24 18 9 8 51 18 9 6 24 4 6 4 24 6 9 

w(Li') 9 34 12 18 9 4 51 18 9 6 12 4 51 4 12 6 9 

K 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

Ic 18 51 8 9 18 24 34 9 18 3 8 12 2 12 8 3 18 

w(Al) 18 51 4 9 18 12 34 9 18 3 4 6 34 6 4 3 18 

Table 5.4: Values of Ic and w(A) of ,/1192X2 + 2(2023)X + 1445. 

We see that Ic is either w(Li') or 2w(Li') when K is not 12 or 29. 

It is not difficult to see from the above tables that K I 2w(Li') as asserted by Theorem 5.2.2. 

More importantly, Tables 5.2, 5.3 and 5.4 suggest that n is either the rank of apparition of Li' in 

the Lucas function U, or twice that in most cases. Indeed, from our other computations, we find 

that is so. 

As we have seen above, the use of w(Li') gives us a good upper bound for K. However, it may 

be time consuming to find w(Li'). It will be more practical to have an upper bound that does not 

require any additional computations. For this purpose we have 
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Theorem 5.2.3 w(LV) <Li' if L' is odd and w(L.') < (3/2)' if i' is even. 

Proof: Case (1): Let L' be odd and p be an odd prime. If p I P2 - 4, where P is as defined in 

(5.5) and P2 - 4 is the discriminant of the quadratic x2 - Px + 1 = 0, then p I U by (1.59). This 

implies that w(p) divides p by Theorem 1.7.3. Since p is an odd prime, w(p) = p. It follows by 

induction that w(p) = pfl for all n E N. 

For the case where p 4' P2 - 4, we write e = e(p) as the Legendre symbol (). Since p is an 

odd prime, p 4' P2 - 4 and () = 1, by Theorem 1.7.1, we have p I U_6)/2. By Theorem 1.7.4, the 

law of repetition, we have p" I Upn_i(p_6(p))/2 for any natural number m. 

Define 

P  if p p2 _4, 

p"(p—e)/2 if p4'P2-4. 

Let m = where p are distinct primes and ri N, and define 

A'(m)=lcm{A'(p) :i=1,2,...,k}. 

(5.15) 

If we write w (m) as the rank of apparition of m in U, then w(m) I A'(m). Also, it follows from 

our construction of A'(m) that A(m) ≤ m. Hence, w(LV) I A(i') and w(z!) ≤ zV. 

Case (2): Suppose that /' is even. By (1.61), we have 2 U2_6(2), where e(2) is defined in 

(1.60). By the law of repetition, we have 2n I U2n_1(2_(2)) for n ≥ 1. Hence, 2n I U2 if 2 P and 

2n I U3.2- if 24' P. Thus, w(2) <3 2'. Let 2tm II ' for some n E N. Then 

w(LV) <w(2Th) - <3 -2n- 1  
2 2 2 

D 

Corollary 5.2.1 ic ≤ 2A! if L' is odd and ic ≤ 31.V if LV is even. 
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Example 5.2.5 Using Example 4.3.1 and the discussion concerning the number of different pat-

terns of continued fraction expansion of ./1192X2 + 2(2205)X + 343 in Section 5.1, we have L' = 7 

and 

K 0123456 

'c 14 6 2 6 14 4 4 

Table 5.5: Values of ic for ./1192X2 + 2(2205)X + 343. 

We see that the upper bound 2L' for ic is attainable at K = 0 or 4. 0 

Note that in the above example i.' is an odd prime. When z' = 2, in view of Case (5) on 

page 127, we see that ic = 6 = 3'. So, 3' is also attainable as an upper bound for ic. 

5.3 Fundamental Unit of [1, /D(X)] 

In Section 2.3, we presented Stender's result (2.11) on the fundamental unit of the order [1, \/5], 
where the radicand D(X) is assumed to be squarefree for some sufficiently large integer X. In 

this section, we make use of Theorem 4.3.1 to get the fundamental unit of the real quadratic order 

[1, JD(X)] for integers A > 0 and X > (2Az 1z!2 - 2B + A)/(2A2). Here, we do not require 

D(X) to be squarefree. 

It is well-known that if & is the fundamental unit of [1, \/] for some non-square natural number 

D, then 

where £ = 1p(/D(X)) and Oi is the i-th complete quotient of For the proof of the above 

statement, see [133, Theorem 2.1.3]. 
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Lemma 5.3.1 Let 0(X) = (P + -./D(X))/Q be a complete quotient of /D(X), q(X) = [(P + 

/D(X))/Qj, and E and F as defined in Lemma 4.1.1 so that FIE = (so, Si).. . ,Sm i) and 

P+/D(X)  
- (q(X), so) 1,• . . ,sm_i, 0 ), 

where the parity of m is chosen according to the sign of Z. If 0(X) is the j-th complete quotient 

of (P + /D(X))/Q, then 

m-f-1 H  = d(A2X + B + A\/D(X))  
JAI 

j=1 

where d = gcd(E,F). 

Proof: Let AjlBj be the j-th convergent of 0(X). Then by (1.14), we have 

0(X) - B1_2 0(X) —A_2 
B_1 0(X) - A_1 

for j≥O. Thus, 
rn-f-i - 

1()  j=i Bm0(X)Am 

Since Am/Bm = (q(X), o) ... , 3m-1), we have 

Am =  1 E q(X)F+E  
q(X)+ =q(X)+= F 

(So, S. . . ,Sm _i) 

Recall from Lemma 4.1.1 that E = I42X + B - AP' and F = AQ, where F' = q(X)Q - P. If 

d = gcd(E, F), then d = gcd(q(X)F + E, F). Hence, 

dAmq(X)F+Eq(X)AQ+A2X+B_AP' and dBm AQ. 

So, 

Bm 0(X) - Am = (AQO(X) - q(X)AQ - A2X - B + AP'). 
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Since 

( 
AQO(X) - q(X)AQ + AP' = AQ P +  - q(X)AQ + A(q(X)Q - P) = 

we have 

A2X+B—A/1J(X) 
Bm 9(X)Am =  d 

Hence, 

m+i (_1)m+1 (_1)m+id(A2X+B+A/.D(X)) d(A2X+B+A/D(x))  
fl Oi(x)= B9(X)A _ - 

j=i 

the last equality follows by the parity of 1(i) and the sign of A. 

Theorem 5.3.1 The fundamental unit e of [1, /)] is given by 

(A2x+B+A/D(x)V (A2X+B+AID(X))V 
H 

Moreover, A() = o. Note that by Remark 4.3.1, x is even when A, > 1, so II ,/2 E N. 

Proof: By Theorem 4.3.1, 

= (qo (X), So, qi(X), S1,..., S,-.-i, q,(X)), 

(5.16) 

where Siand q(X) are defined in the previous chapter. 

For i ≥ 0, let 9(X) = (q(X), S, O+1 (X)), O(X) be the j-th complete quotient of O(X) and 

i+Isil 

= H O(X). 
j=1 

Further, let Ok(X) be the k-th complete quotient of /D(X) and £ = (1 + Sj). Then by 

the remark in the beginning of this section, the fundamental unit e of [1, /D(X)] is given by 

£ ic-i 

= fle(x) = 11 ,0i (X). 
k=1 i=O 
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By Lemma 5.3.1, we have 

5+,.(A2X + B + A\/D(X))  

ILI 

where 5, = (FL 24/'r)d,., Sj = for i ≥ 2. Thus, 

K-4 K-i K 

1Fi9 = 5•,.(A2X+B+A/D(X)) = (A2x+B+/rx) i=o 54.  j 

Now, 
K 

= I'LL 1 i1 
A62A A2 cic-,A A2 II L2d   

Tdi d2 dK_,. 

Since is either 0 or 1 according as i being even or odd, and since ic is even if z,. > 1 by 

Remark 4.3.1, we may write 

a = ,c/2 r24 (.2) K-i dK iOi . 
.7. 

i=i 

By Theorem 4.3.1, we have dK = z' and, consequently, (ri24/T)dK = (I'L 24/r)(r 4/r) = 

2• Thus, 

Now, 

K 

H5i=ViK12 and 
i=i II'' (A2x+B+ADx - ILI 

K 

/(e)= Ar(A2X+B+AThY) = 

0 

Corollary 5.3.1 If Li,. > 1, then. .AI(E) = 1. 

Example 5.3.1 Consider D(X) = 1192X2 + 2(2205)X + 343 with X = 1. As we have seen in 

Example 4.3.1, A = 119 = 717, B = 2205 = 32.5.72, C = 343 = 73, A = B2—A2C = 4802 = 2•7, 

u=1,/.,.=2,i 2=1, L4=7 and ic=6. Also, D(1) = 18914 = 2.72 .193 and 

/D(1)= (137,1,1,8)2,1,2,4,1,1,1,2,5,4,3,1,136,1,3,4,5,2,1,1,1,4,2,1,2,8,1,1,274). 
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By Theorem 1.4.1, we use the above continued fraction expansion and find the fundamental unit 

of [1, \/18914] to be 

6 = 5552992832780835 + 40377127625446/18914. 

Now, since ic = 6, by Theorem 5.3.1 , we have 

6 = 4802 (1192.1+2205+119Vh18914)6 
4802 

= 5552992832780835 + 40377127625446v'18914, 

which agrees with the value given by Theorem 1.4.1. We also find .A/(E) = 1 = o6. 11 



Chapter 6 

Final Comments 

The theme of this thesis is the continued fraction expansion of the /D (X), where D (X) is a 

quadratic polynomial that satisfies the Schinzel condition. We established two main results. The 

first result in Chapter 3 showed that the continued fraction expansion of \I_D can be determined by 

a palindromic string of natural numbers by means of using a quadratic polynomial. On arriving at 

the appropriate quadratic D (X), we also obtained a family of non-square D such that all members 

of the family correspond to the given palindromic string. Also, we found that when certain 

conditions are met, independent of the symmetric sequence that defines the family, the product 

of two members of a family is of R-D type. More importantly, the quadratic D(X) satisfies the 

Schinzel condition. 

The second result, and the more significant one, gives the continued fraction expansion of 

/D(X) for any Schinzel sleeper .0()Q, i.e, a quadratic D (X) that satisfies the Schinzel condition. 

By this result, we were able to construct an upper bound for 1p(/D5) via the Fibonacci numbers 

and Lucas function U. We get 

1p(\/D(X)) < 
3i'. Llog(v' A'z')j if is even, 

2i'. [log/. A'L')j if LV is odd, 

where ço = (1 + ')/2 is the golden ratio. Also, knowing the continued fraction expansion of 

/D(X) allows us to compute the fundamental unit E of the order [1, ./D(X)]; we find 

A2X+B+A/D(X)  

when X> (2Ai iA!2 - 2B - A)/(2A2). 

141 
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There are several possible research directions that can be followed: symmetries of the continued 

fraction expansions of /D(X) as X varies, behaviour of r,, and upper bound and expected value 

for 1p(/D(X)). 

6.1 Symmetries of the Continued Fraction Expansions of ../D(X) 

Since the period of \/D(X) is symmetric when we exclude the last partial quotient, q,(X), it is 

clear that the continued fraction expansion of /D(X) has a horizontal symmetry. 

There is also a vertical symmetry. Recall that /D(X) has a number of different patterns 

depending on which residue class modulo LY that X belongs to. We write X K mod L', where 

o ≤ K < LY. For each K, we compute the corresponding values of diri and list them in a table. We 

observe a symmetry pertaining to the values of dri of different K. Take Case (5) of Appendix 0.1, 

for instance. The quadratic here is D(X) = 1192X2 + 2(1666)X +98 with A' = 1 and A' = 7. We 

list the values of diri for different values of K in the table below. 

K 4r0 djri d2r2 d3r3 d4r4 d5r5 d6r6 d7r7 d8r8 d9r9 djorjo d11r11 d12r12 d13r13 

1 7 5 7 7 3 7 

2 7 1 1 7 

3 7 4 6 5 5 1 7 7 1 3 3 6 2 7 

4 7 7 

5 7 3 1 2 2 6 7 7 6 4 4 1 5 7 

: 1 ; : : 
It is easy to see that the sum of di(1)ri(1) = 5 and di(0)ri(0) = 2 is congruent to  modulo LV = 7. 

Indeed, for O≤K,K'≤ 6, ifK+K'1 mod 7, then 

d(K)r(K) + d(K')r(K') 0 mod 7 (6.1) 
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for i ≥ 0. In this particular example, the pairs (K, K) are (0, 1), (2, 6), (3,5) and (4, 4). So, it is 

clear that there is a symmetry defined by (6.1). 

In general, we find that for some fixed mZ and 0≤K,K'≤Li'-1, ifK+K'n mod!, 

then 

d(K)r(K) + dj(K')r(K') 0 mod ' (6.2) 

for i ≥ 0. Numerical evidence for this claim is available in Appendix C; in particular, see Table C.15 

of Example C.2.6. 

There is more to learn in regard to the values of diri. For example, the values of diri when 

viewed in a certain way exhibit an implicit group structure. In the multiplicative group Z, there 

are 2 proper subgroups: H1 = {1,6} and H2 = {1,2,4}. Also, the primitive roots are 3 and 5. 

Now, we realign the above table by matching the entries of the shorter expansions to those of 

the longer expansions. For example, the first entry in the first row is 7, which is the same as the 

first entry in the third row. So, 7 remains where it is. The second entry in the first row is 5. The 

first occurrence of 5 in the third row is at the fourth entry. So, we move 5 to the fourth entry on 

the first row. Continuing in this fashion, we arrive at the following table: 

K 4r,. 

17 5 77 3 7 

27 1 1 7 

374655177133627 

47 7 

5 73122677644157 

67 6 6 7 

07 2 77 4 7 

It is easy to see that except for the columns that contain Li' = 7, all other columns on the upper or 

lower half of the table contain entries that either belong to a particular proper subgroup or have 

the same order in Z. As it turns out, when Li' is prime and there are only two long expansions, 
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we can usually arrange the values of diri so that the columns correspond to a proper subgroup or a 

particular order. However, when there are more than two long expansions, there is no clear method 

of rearranging the entries so that a similar correspondence between columns and subgroups can 

be achieved. 

When /.' is composite, the situation gets more complicated. However, in some cases, we can 

mimic the above method. Consider Table C.15 where A' = 1 and L' = 22. We have 

K d0r0 d1r, d2r2 d3r3 d4r4 d5r5 d6r6 d,r, d8r8 d9r9 d10r10 dijr,, d12r,2 d,3r,3 d,4r,4 d,5r,5 d16r,6 d17r17 d18r,8 d19r19 d20r2o d21r,, 

5 22 12 22 22 4 22 

6 22 14 18 4 22 22 12 10 16 22 

7 22 16 6 8 14 22 

8 22 18 18 8 22 22 6 10 10 22 

9 22 20 16 6 6 12 10 2 12 16 22 22 14 4 2 18 4 8 8 14 20 22 

10 22 22 

0 22 2 6 16 16 10 12 20 10 6 22 22 8 18 20 4 18 14 14 8 2 22 

1 22 4 4 14 22 22 16 12 12 22 

2 22 6 16 14 8 22 

3 22 8 4 18 22 22 10 12 6 22 

4122 10 22 22 18 22 

Since all entries in the main body of the table are even and they are denominators of the ratio 

A'iLV/(dr) = 22/(cljr), we can remove the common factor 2 from the ratio and rewrite the above 

table as 
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K 4r, djri d,r2 dgr, d4r4 d,r, d6r6 d7r, d,r8 d,r9 d10r10 d1jr1i d,,r12 d13r,, d14r,4 d15r1, d16r16 d17r17 d18rt8 d,,r19 d20 7'20 d,1r21 

5 11 6 11 11 2 11 

6 11 7 9 2 11 11 6 5 8 11 

7 11 8 3 4 7 11 

8 11 9 9 4 11 11 3 5 5 11 

9 1110 8 3 3 6 5 1 6 8 11 11 7 2 1 9 2 4 4 7 10 11 

10 11 11 

011 1 3 8 8 5 6 10 5 3 11 11 4 9 10 2 9 7 7 4 1 11 

1 11 2 2 7 11 11 8 6 6 11 

2 11 3 8 7 4 11 

3 11 4 2 9 11 11 5 6 3 11 

4 11 5 11 11 9 11 

Since each of the two long expansions has four occurrences of 11 and they are positioned in the 

middle or on the extreme ends of the table, we use them as outlines to partition the table into four 

quadrants. Now that 11 is the numerator, we work in the multiplicative group Z. the proper 

subgroups of Z1 are H2 = {1, 1O} and H5 = {1, 3,4, 5, 9}, and the primitive roots are 2,6, 7,8. 

In each of the four quadrants, we allot elements of the same order to the same column except 

the orders in the top part of the table are always half or double those in the lower part. 

K reduced diri with numerator 11 

511 6 1111 2 11 

611 7 9 2 1111 6 5 8 11 

711 8 3 4 7 11 

811 99 4 1111 3 55 11 

9 11 10 8 3 3 6 5 1 6 8 11 11 7 2 1 9 2 4 4 7 10 11 

10 11 11 

0 11 1 3 8 8 5 6 10 5 3 11 11 4 9 10 2 9 7 7 4 1 11 

111 22 7 1111 8 66 11 

211 3 8 7 4 11 

311 4 2 9 1111 5 6 3 11 

4 11 5 11 11 9 11 

It is easy to see that the third column of the top left quadrant consists of 6,7, 8, which correspond 
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to the primitive roots; the fourth column consists of 3 and 9, which correspond to {l, 3,4,5, 9}. 

Similarly, we see this correspondence in other quadrants as well. This observation leads us to 

believe that there is an implicit group structure involved in the computation of 

From the table above (6.1), we see that ro(K) remains fixed as K varies and ri(K) = 3K + 

2 mod 7 for 0 ≤ K ≤ 6. By Lemma 4.2.2, it is clear that ro(K) is constant. By (4.33), since d1 = 1 

and g are independent of K, it follows that ri(K) is a linear function in K modulo A'A'. Since 

r0 (K) is constant and ri(K) is a linear function modulo A's', it is natural to guess that r2 (K) 

is a quadratic function. This is not so. We have r2 (K) = 7, 1, 6, 7, 1, 6, 7 for K = 0, 1,. . . , 6, and 

this sequence of natural numbers is not given by a quadratic. So it remains to determine whether 

r2(K) can be represented by some function in K. In fact, we are interested in whether r(K) is 

representable by a function in K for i ≥ 2. 

When we inspect the entries in the above tables horizontally, we see a repetition of a particular 

diri in a row. For instance, in the table above (6.1), we have d3(3)r3(3) = 5 = d(3)r4(3) and 

ds(5)rs(5) = 2 = d4(5)r4(5). From our other computations, we did not find any instances in which 

a value of ri appears more than twice in a period, except when r 0 mod A''/d_1. It will be 

of interest to know if this is the case in general. 

6.2 Estimates for 1p(/D(X)) 

Although we have a formula, namely (5.1), to determine the actual value of 1p(/D(X)), this 

formula requires us to compute the continued fraction expansion of /D (X) using Theorem 4.3.1, 

which can be a significant computational effort. Hence, we would like to find a simple formula that 

gives a good estimate of 1p(/D(X)), yet does not require a substantial amount of calculation. 

Since 1p(/D(X)) is determined by jSjj and Ic, we need to improve the estimates for these two 

quantities. 
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With respect to JSil, there are relevant results available in the literature. For example, an 

empirical result of Knuth [91, pp. 316 —333] can be restated as follows: Assuming the last partial 

quotient to be strictly greater than 1, the average length of the continued fraction expansion of 

aft with gcd(a, r) = 1 as r varies from 1 to a is approximately 

12 in 2  
lna+ 0.47, (6.3) 

where In is the natural logarithm. This empirical result was proved by J. W. Porter [192] and later 

improved by D. Hensley [71]. When the condition gcd(a, r) = 1 is removed, Knuth deduced the 

average length to be approximately 

121n2 (ina_ 

dia 

+0.47, (6.4) 

where d runs through all the proper divisors of a and A(d) is von Mangoldt's function defined by 

A(d) = 
f In  

0 otherwise. 

To make use of Knuth's result for our purpose, we need to make an adjustment, since the 

parity of JSiJ is restricted by the sign of z, i.e., our last partial quotient can be 1 or greater than 

1. It is known that when assuming the last partial quotient to be strictly greater than 1, half of 

the expansions of a/v have an even number of terms and the other half have an odd number of 

terms, unless a is odd, in which case the numbers of even terms and odd terms differ by 1. So 

if we separate JSiJ into two cases, odd length and even length, we expect the averages in the two 

cases to be fairly close. Indeed, this statement seems to be supported by our data in Tables D.1 

and D.2 in the Appendix. Now, to apply Knuth's result, we only need to add 1/2 to his estimate, 

i.e., 

121n2 I ina- +0.97. j 
2 din I 

(6.5) 
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For example, when a = 15, the above formula gives an estimate of 2.67; the actual values are 2.71 

and 2.60 by row F of Tables D.1 and D.2. 

As we have seen in Chapter 5, the use of the rank of apparition w (Lx.') provides us with a very 

good upper bound for Ic. In fact, in most cases, ic, depending on K, is either w(i') or 2wA!), 

where w(L!) is the rank of apparition of La.' in the Lucas Function U defined by x2 - Px + 1 = 

and P = (2A2K + 2B)2/ILI - 2o. Using (6.5), we claim that 1p(/D(X)) is approximately 

1'121n2 (InA'A'— I [ \\ 2 +0.97) 
dJA'A' )  

(6.6) 

where d is a proper divisor of A'A'. Indeed, by the data in Table E.1 in the Appendix, when 

= w(') or 2w(L.'), this claim seems to be true. 

Note that w(LV) may be hard to calculate. So it will be advantageous to get an upper bound 

or expected value for w(.') that does not require extra computation. Indeed, we demonstrated in 

Example 5,2.5 and case (5) of Example 5.2.1 that the upper bound: 2' when L' is odd and 3' 

when /.i is even, is optimal when ' is prime. However, when L' is composite, our calculations in 

Section 5.2 suggest that there is a sharper bound. 

Ultimately, we want a good estimate for /c. We know /c I 2w(') by Theorem 5.2.2. Also, the 

calculations in Section 5.2 suggests that ic is either w(i.') or 2w (z!) in most cases. However, when 

given K, we do not know if ic = w(A) or 2w(L.') or neither. It will be of interest to determine 

the particular values of K such that ic = w(L') or 2w(Z.'). Working in this direction may help our 

search for a good estimate of ,c. 

In conclusion, we have found the continued fraction expansion of /D(X) for any Schinzel 

sleeper D(X), but there is still much to learn. The above suggested research topics are just the 

tip of the iceberg; there appear to be a great deal of interesting directions for further research. 
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Appendix A 

Supplementary Examples for Kraitchik's work 

In Section 2.2, we presented the work of Kraitchik [92] on the parametrization of continued fractions 

of fixed period length. Here, we give a more detailed account of his work for period lengths 1 

through 5. Also, we state his work for period lengths 6 and 7 with proof. 

Case (1): It is easy to see that when the period length is 1, D is of the form X2 + 1, where 

X E N. Examples of \/5 having period length 1 are easy to find, such as v'12 + 1 =  

'22 +1 = = (2,Z), 32 +1 = = (3, ), V42 +1 = = (4, ), /52 +1 = V26= 

(5,i), etc. 

Case (2): For period length 2, i.e., = (ao, a1, 2a0), we compute  = a+2ao/ai. Since D needs 

to be an integer, it follows that a1 I 2a0. So, there are two cases: \/k2X2 + 2k = (kX, X, 2kX) 

and v"k2X 2 + k = (kX, 2X, 2kX), where k is a non-zero integer and X E N. 

For the first case, when k = 1, IX-2+ 2 = (X, X, 2X). In particular, when X = 1, we get 

= (1,T). Similarly, when X = 2, we have = 

When k = 2, we get V'4X2 + 4 = (2X, X, 4X). In particular, when X' = 1, we have -'48-

(2, 7—,4). When X = 2, we have = (4, TT). 

For the second case, since we are interested in the cases where the period length is two, i.e, 

ai 0 2a0, we exclude k = 1. 

When k = 2, we get V4X2+2 = (2X,2X,4X). When X = 1, we get v'= (2,). When 

X =2, we have /I = (4, *Z—,8). 

Case (3): For period length 3, i.e., \/5 = (ao, a1, a1, 2a0), we have D = a + (2a0a1 + 1)/(a + 1). 

Since 2a0a1 + 1 is odd, a must be even. Since we are interested in period length 3, we assume 
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that a1 2a0. On writing a1 = 2k, we get 

2a0a1 + 1 = 4a0k + 1 0 mod 4k2 + 1. 

This implies that a0 k mod 4k2+1, i.e, ao = (4k2+1)X+k for some integer X. We need X =A 0 

so that a1 0 2a0. Thus) (2aoai+1)/(a-i-1) = 4kX+1 and D = (4k2+1)2X2+2k(4k2+3)X+k2+1. 

We find 

/D(X) = ((4k2 + 1)X + k, 2k, 2k, (8k2 + 2)X + 2k). 

For exam  pie, 

V'25X2+14X+2(5X+1,2, 2, 1OX+2), 

v'289X2 + 76X + 5 = (17X + 2,4,4,34X + 4), 

Vh1369X2 + 234X + 10 = (37X + 3,6,6,74X + 6). 

In particular, when X = 1, 25(1)2 + 14(1) + 2 = 41 and '%/iT = (6,2,2,12). Similarly, 

289 (1)2 + 76(1) + 5 = 370 and = (19,4,4,38). Further, 1369 (1)2 + 234(1) + 10 = 1613, 

and \/iT= (40,6,6,80). 

Case (4): For period length 4, i.e., v' DT  (ao, a1, a2, a1, 2a0), we find 

2 2a0(a1a2+1)+a2  
—a0+ ai(a1a2+2) 

Note that if a1 is even, then a2 is even. Also, when a1 is odd, there is no restriction on the parity 

of a2, and hence, there are three possible cases here, namely, a1 even and a2 even, a1 odd and a2 

even, and a1 odd and a2 odd. It suffices to examine the cases according to the parity of a2. 

Since D is a natural number, we have 2a0(a1a2 + 1) + a2 0 mod ai(a1a2 + 2). It is easy to 

see that (a1a2+1)2 = 1 mod ai(a1a2+2). Hence, 2a0 —a2(a1a2+1) mod ai(a1a2+2). If a2 is 

even, then 

a0 
—a2(a1a2 +1) mod ai(a1a2-i--2)  

2 2 



179 

When a2 is odd, by the fact that odd a2 implies odd a1, ai(ä1a2 + 2 is odd, and hence, 

a0= -a2(a1a2 + 1) mod ai(a1a2 + 2). 
2 

For instance, when a2 = 2 and a1 = 3, we have ao -7 5 mod 12. If we take a0 = 5, then D = 28 

and V2-8 = (5,3, 2,3, 10). Similarly, if we take a0 = 17, then D =299 and-'/2-99 = (17,3,2,3, 34) 

When a2 = 2 and a1 =4, we get ao -9 mod 20. Ifwe pick ao = 11, then  = 126 and 

= (11, 4,2,4,22). Similarly, if we take a0 = 31, then D = 975 and = (31,4,2,4,31). 

When a2 = 5 and a1 = 3, we get a0 -40 mod 51. If we pick a0 = 11, then D = 128 and 

/= (11, 3, 5,3,22). Similarly, if we take a0 = 62, then  = 3883 and \/3-883  (62, 3, 5, 3, 124). 

When a1 = 5, a2 = 5X + 2, we get D(X) = (40X + 19)2 + (16X + 7) and 

\/D(X) = (40X + 19,5,5X + 2,5,80X + 38). 

In particular, when X = 1, we have v'592 + 23 = (59,5,7,5, 118). Similarly, when X = 2, we have 

v'992 + 39 = (99,5, 12,5, 198). 

When a1 = 7, a2 = 7X + 2, we get D(X) = (126X + 41)2 + (36X + 11) and 

/D(X) = (126X + 41,7,7X + 2,7,252X + 82). 

In particular, when X = 1, we have V'1672 +47 = (167,7,9,7,334). Similarly, when X = 2, we 

have i/2932 + 83 = (293, 7, 16, 7, 586). 

Case (5): For period length 5, i.e., /75= (ao, a1, a2, a2, a1, 2a0), we find 

D =a2+ 2a01a2 12 2+ 1  
0  aa+2 2 2a1a2+a+1 

It is not difficult to see the case where a1 is odd and a2 is even is impossible. Otherwise, since 

(a1a+a1+a2)2 = a(aa+2a1a2+a+ 1)+(aa-i--2a1a2+a--j- 1)-i 

-1 mod aa + 2a1a2 + a + 1, 
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we have 

2a0 (aia+ai+a2)(a22 +l) mod aa+2a1a2+a+1. 

Since we cannot have a, odd and a2 even at the same time, the right term in the above congruence 

is even, and the modulus is odd. Hence, 

(aia+ai (a22  mod aa+2a1a2+a+1. a0 = 2  

When a1 = land a2 = 3, we get a0 65 14 mod 17. If we pick a0 = 14, then D = 218 and 

/T= (14,1,3,3,1,28). Ifwe pick a0=31, then D= 1009 and v'Töö= (31,1,3,3,1,62). 

When ai=2 and a2=3,we find a0 1159 mod 53. If we pick ao = 9, then D = 89 and 

v/8-9  (9,2,3,3,2,18). If we pick a0 = 62, then D = 3898 and (62,1,3,3,1,124). 

When a1 = 2 and a2 = 4, we find a0 323 68 mod 85. If we pick a0 = 68, then 

D = 4685 and = (68, 2, 4,4,2, 136). If we pick a0 = 153, then D = 23546 and y'23546 = 

(153,2,4,4,2,306). 

Case (6): For period length 6, i.e., = (ao, a1, a2, a3, a2, a1, 2a0). Kraitchik found 

2a0 = —P(a3a + 2a2) + Qm and D = do - (a3a + 2a2)2 + Pm, 

where P = a1aa3+2a1a2+a2a3+l , Q = aa+2a1a2a3+2aa2+2a1+a3 and mis some integer. 

For example, 

\/(3X+1)2+(4X+2)=(3X+1,1)2,3X+1,2,1,6X+2) 

and N12-2  Also, 

\/(3X+1)2+(2X+2) = (3X+1,2,1,3X,1)2,6x+2) 

and N/2-0  
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Case (7): For period length 7, i.e., \/5 = (ao, a1, a2, a3, a3, a2, a1, 2a0). Kraitchik found 

2a0 = PR - Qm and D = a + R2 + Pm, 

where 

R=aa+2a2a3+a+1, 

P = a1aa3 + 2a1a2a3 + a1a + a1 + a2a + a2 + a3, 

Q = aaa + aa1a2 + 2aa2a3 + aa + 2a1a2 + 2a1a3 + a + a1a2a + a + 1, 

and m is some integer. 

For example, when a1 = 1 = a2 = a3, D = (13X + 7)2 + 16X + 9 and 

\/(13X + 7)2 + 16X + 9 = (13X + 7, 1,1,1,1,1,1, 26X + 14). 

In particular, ./(13.O+7)2+16.O+9=/72+9=(7,1,1,1,1,1,1,14) and 

-\/4-25  (20,1,1,1,1,1,1,40). 



Appendix B 

Letters from Kaplansky 

In the following two letters, the first contains Kaplansky's reference to the term sleeper and the 

second one is his permission to the author for the use of the term sleeper. 

In Kaplansky's letter, "A memo on creepers", we only reproduce an excerpt containing his 

reference to sleepers. 

Letter 1 

A memo on creepers  

Irving Kaplansky 

This memo, by an ex-Canadian, is being sent to three Canadians: Richard Mollin (with whom 

I have been corresponding about continued fractions) and two Williams's, HO and KS, with whom 

(I believe) this is my first contact  

"Creepers" ? Along with "Sleepers" these are my silly nicknames. A sleeper is a family of 

continued fractions bounded in length; Schinzel pretty well wrapped these up. In a creeper the 

lengths go to infinity, but gently, forming one or more arithmetic progressions when sorted out 

into residue classes; there may be a waiting period before the arithmetic progressions begin  

Letter 2 

Dear Mr. Kell Oheng, 

Of course you may use the term "sleeper". (Also, "creeper"). 

Irving Kaplansky 

P.S. I hope this reaches you safely. I did not find an e-mail address in your message. 
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Appendix C 

Examples for the Continued Fraction Expansion of ../D(X) 

C.1 Eight Possible Cases 

At this end, we illustrate the different cases of Theorem 4.3.1. We consider different combinations 

of the parity of IS4, the values of 97 = 1 or 0, ci = 1 or -1, r = 1 or 2 and the cases r = 0 or r > 0. 

So, there are 32 possible cases. We note that the parity of ISil is decided by ci andq is determined 

by ci, in conjunction with whether r = 0. So we only need to look at the different combinations of 

ci=-lorl,r=1or2,andr=Oorr>0,i.e.,8cases. 

Besides illustrating the eight cases, we also use the examples to provide numerical evidence for 

the symmetry of the continued fraction expansion of /D (X) discussed in Chapter 6. 

Case (1): ci = -1, r = 1 and r = 0. Consider D(X) = 1192X2 + 2(833)X + 98, where A = 119, 

B =833, and 0=98. Since 833 = 7119, we have r= 0. We find that A = _74.172 and or -1. 

So, A, = 1, L2 = 17, /i = 7 and L2L4 = 119. Clearly, A 2A 4 divides A = 119, it follows that 

r = 1. Further, A* = A/( 2L4/r) = 1, r = gcd(A*, L4) = 1 and A '= i- 4/F = 7. 

For X> (iiiL 2)/A_(2B_A)/(2A2) 0.35, there are = 7 different patterns corresponding 

to the seven residue class modulo 7. Let K = 0, 1,2,. .. , 6 and write X = 7W + K, where W ≥ 0. 

Subcase (1.0): When K = 0, we get 

/D(7W) = (833W+7, 34W, 3,2, 34W - 1, 1, 6, 34W, 6, 1, 34W - 1, 2, 3, 34W, 1666W + 14). 

Subcase (1.1): When K = 1, we get 

/D(7W+1) = (833W+126, 34W+5, 6,1, 34W+4, 3,2, 34W+4, 1,2,1,1, 34W+4, 

1)1,2,1, 34W+4, 2,3, 34W+4, 1,6, 34W+5, 1666W+252). 

183 
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Subcase (1.2): When K=2,we get 

/D(7W + 2) = (833W + 245, 34W + 10, 1666W + 490). 

Subcase (1.3): When K=3,weget 

/D(7W + 3) = (833W + 364, 34W + 14, 1, 6, 34W + 14, 1,2, 1, 1, 34W + 14, 3,2, 34W + 14 

2, 3) 34W + 14, 1, 1) 2) 1, 34W + 14, 6, 1, 34W + 14, 1666W + 728). 

Subcase (1.4): When K=4,we get 

/D(7W+4) = (833W+483, 34W+19, 1,2,1,1, 34W+19, 6,1, 34W+18, 

1, 6, 34W+19, 1,1,2,1, 34W+19, 1666W+966). 

Subcase (1.5): When K=5,we get 

/D(7W + 5) = (833W + 602, 34W + 24, 1, 1,2, 1, 34W + 23, 1, 6, 34W + 24, 2,3, 34W + 24 

3,2, 34W + 24, 6, 1, 34W + 23 1,2,1,1, 34W + 24, 1666W + 1204). 

Subcase (1.6): When K = 6, we get 

/D(7W + 6) = (833W + 721, 34W + 29, 2,3, 34W + 29, 6, 1, 34W + 28, 1, 1, 2, 1, 34W + 28 

1) 2) 1, 1, 34W + 28, 1,6, 34W + 29, 3,2, 34W + 29, 1666W + 1442). 

We compute the values of the denominator diri of the fraction A'Li'/(dr) and list them in the 

following table. For K = 0, 1,2,. . . , 6, we list the corresponding dri in a row. 
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K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 d6r6 d7r7 

0 0 2 6 1 3 0 

1 0 1 2 5 4 3 6 0 

2 0 0 

3 0 6 5 2 3 4 1 0 

4 0 5 1 6 4 0 

5 0 4 6 3 2 1 5 0 

6 0 3 1 4 5 6 2 0 

Table C.1: D(X) = 1192X2 + 2(833)X + 98 

Instead of starting with K = 0, we start with K = 6 in the following 

K I d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 d6r6 d7r7 

6 0 3 1 4 5 6 2 0 

0 0 2 6 1 3 0 

1 0 1 2 5 4 3 6 0 

2 0 0 

3 0 6 5 2 3 4 1 0 

4 0 5 1 6 4 0 

5 0 4 6 3 2 1 5 0 

Table C.2: D(X) = 1192X 2 + 2(833)X + 98 

Now, the sum of r1(6) = 3 and ri(5) = 4 is congruent to 0 modulo z' = 7. In fact, it is easy 

to see that when K + K' 4 mod 7, r(K) + r(K') 0 mod 7 for i ≥ 0. In this manner, we see 

a vertical symmetry in the above table. 



186 

Case (2): a = -1, T = 1 and r > 0. Consider D(X) = 1192X2 + 2(1176)X + 98, where A = 119, 

B = 1176 and C = 98. Since 119 f 1176, we have r> 0. Now, t≥ = -2 74 tells us that a = -1. 

Also, we see that L = 2, L2 = 1 and L4 = 7. Moreover, A2A 4 = 7, which divides A = 119, 

means that r = 1. So, A* = A/(L 2L4/r) = 17, r = gcd(A*, z4) = 1 and A' = T/4/r = 7. When 

X> (iz!2)/A - (2B - A)/(2A2) 0.75, there are seven patterns. Let K = 0, 1,... , 6 and write 

X=7W+K. 

Subcase (2.0): When K=0, we get 

/D(7W) = (833W + 9, 1,7, 1, 1, 17W - 1, 1,2, 19,2, 34W - 1, 1, 10, 1, 9, 17W, 

9,1,10,1, 34W-i, 2,19,2,1, 17W-i, 1,1,7,1, 1666W+18). 

Subcase (2.1): When K = 1, we get 

\/D(7W + 1) = (833W + 128, 1,7, 1, 1, 17W + 2, 9, 1, 10, 1, 34W + 4, 2, 1,9,4, 17W + 2, 

2,1,1,2,2,1,1,1, 34W+4, 1,1,1,2,2,1,1,2, 

17W+2, 4,9,1,2, 34W+4, 1,10,1,9, 17W+2, 1,1,7,1,1666W+256). 

Subcase (2.2): When K = 2, we get 

/D(7W+2) = (833W+247, 1,7,1,1, 17W+4, 1,1,7,1, 1666W+494). 

Subcase (2.3): When K = 3, we get 

VD(7W+3) = (833W+366, 1,7,1,1, 17W+6, 1,22,1,4, 34W+14, 1,3,2,2,4, 1, 

17W+6, 1)2,19,2, 34W+14, 2,19,2,1,17W+6, 

1,4,2,2,3,1, 34W+14,4,1,22,1, 17W+6, 1,1,7,1,1666W+732). 
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Subcase (2.4): When K = 4, we get 

./D(7W-i-4) = (833W+485, 1,7,1,1, 17W+9, 2,1,1,2,2,1,1,1, 34W+19, 

4)1,22,1, 17W+8, 1,22,1,4, 

34W+19) 1, 1, 1,2,2, 1, 1, 2, 17W+9) 1, 1, 7, 1, 1666W+970). 

Subcase (2.5): When K = 5, we get 

/D(7W + 5) = (833W + 604, 1,7,1,1, 17W + 11, 1, 4,2,2,3,1, 34W + 23, 1,10,1,9, 

17W+12, 4)9,1,2, 34W+24, 2,1,9,4, 17W+12, 

9, 1, 10, 1, 34W + 23, 1,3,2,2,4, 1, 17W + 11, 1, 1,7, 1, 1666W + 1208). 

Subcase (2.6): When K=6,weget 

\/D(7W + 6) = (833W + 723, 1,7, 1,1, 17W + 14, 4,9,1,2, 34W + 29, 4, 1,22, 1, 

17W + 13, 1,4,22,3,1, 34W + 28, 1,3,22,4,1, 17W+ 13, 

1)22, 1,4, 34W + 29, 2,1,9,4, 17W + 14, 1,1,7,1, 1666W + 1446). 

The values of the product diri are given in the table below. 

K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 d6r6 d7r7 

6 105 29 24 97 92 114 41 63 

0 105 80 109 12 58 63 

1 105 12 41 46 75 29 109 63 

2 105 63 

3 105 114 92 80 58 97 24 63 

4 105 46 24 114 75 63 

5 105 97 109 29 41 12 92 63 

Table C.3: D(X) = 1192X2 + 2(1176)X + 98 

It is easy to check that when K + K' 4 mod 7, dj(K)(K) + d(K')r(K') 0 mod 7. Also, 

the sum is 126 or 133 according as.i is odd or even. 
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Case (3): u = —1, r = 2 and r = 0. Consider D(X) = 1192X2 +2(1666)X+224, where A = 119, 

B = 1666 and C = 224. Since 1666 = 14-199, r = 0. We find that L = _22 .73 . 172 which means 

that o- = —1, L = 7, A2 = 2 . 7. 17 and A4 = 1. Since L.2L4 = 2 - 7.17 = 238 does not divide 

A = 119, we have r = 2. Also, A* = A/(/ 2L4/r) = 1, r = gcd(A*, L) = 1 and L.' = TL.4/r = 2. 

When X> (L 1 !2) /A - (2B A)/(2A2) 0.12, there are two patterns. Let K = 0 or 1 and 

write  =2W+K. 

Subcase (3.0): When K=0, we get 

/D(2W) = (238W + 14, 17W + 1, 476W + 28). 

Subcase (3.1): When K=1,we get 

\/D(2W + 1) = (238W + 133, 17W + 9, 1, 1, 119W + 66, 68W + 38, 

119W + 66, 1,1, 17W + 9, 476W + 266). 

The values of diri are given in the following table. 

K d0r0 d1r1 d2r2 

0 0 0 

1 0 1 0 

Table C.4: D(X) = 1192X2 + 2(1666)X + 224 

It may seem that there is no symmetry in the above table. However, we see that 

2d(K)r(K)0 mod 2 for i = 0, 1, 2 and K = 0, 1. 
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Case (4): o• = —1, r = 2 and r > 0. Consider D(X) = 1192X2 +2(2555)X+461, where A = 119, 

B =2555 and C=461.SinceAB, we have r >0. We find that L= _22 .7 2, ci = —1, ii = 1, 

= 2 7 and L4 = 1. Since A2A 4 = 2. 7 = 14 which does not divide A = 119, we have r = 2. 

So, A* = A/(LS.2L14/r) = 17, r = gcd(A*, ) = 1 and = ri 4/T = 2. 

When X> (L 1z'2)/A - (2B - A)/(2A2) —0.14, there are two patterns. Let K = 0 or 1 and 

write X =2W+K. 

Subcase (4.0): When K =0, we get 

\/D(2W) = (238W+21, 2,8, 119W+10, 1, 1, 1, 1, 1, 1, 1, 1, 119W+10, 8,2, 476W+42). 

Subcase (4.1): When K = 1, we get 

/D(2W + 1) = (238W + 140, 2,8, 119W + 70, 8,2, 476W + 280). 

The values of diri are given in the following table. 

K d0r0 d1r1 d2r2 

0 16 21 16 

1 16 16 

Table 0.5: D(X) = 1192X2 + 2(2555)X + 461 

It is clear that 2d(K)r(K) 0 mod 2 for i = 0,1,2 and K = 0, 1. 
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Case (5): u = 1, r = 1 and r = 0. Consider D(X) = 1192X2 + 2(1666)X + 98. Then A = 119, 

B=1666 and C=98. Since 119j1666,we have r=0. Since L=2•74 •172,we get o-=1, 

= 2, L2 = 17 and L4 = 7. Also, since L2L4 = 7 - 17 = 119, which clearly divides A = 119, we 

get r = 1. Thus, A* = A/( 24/r) = 1, r = gcd(A*, ) = 1 and A' = = 7. 

When X > (LA.'2)/A - (2B - A)/(2A2) 0.71, there are seven patterns. Let K = 0, 1, . . . , 6 

and write X = 7W+ K. 

Subcase (5.0): When K = 0, we get 

/D(7W) = (833W + 13, 1, 17W - 1, 3, 1, 1, 34W - 1, 1, 833W + 12, 

1, 34W - 1, 1,1,3, 17W - 1, 1, 1666W + 26) 

Subcase (5.1): When K = 1, we get 

/D(7W + 1) = (833W + 132, 1, 17W + 1, 1, 2,2, 34W + 4, 1, 833W + 131, 

1, 34W + 4, 2,2, 1, 17W + 1, 1, 1666W + 264) 

Subcase (5.2): When K = 2, we get 

/D(7W + 2) = (833W + 251, 1, 17W + 4, 7, 34W + 10, 7, 17W + 4, 1, 1666W + 502) 

Subcase (5.3): When K = 3, we get 

/D(7W+3) = (833W+370, 1, 17W+6, 1,1,3, 34W+14, 1,5,1, 17W+6, 

1)2,2, 34W + 14, 1,2,2, 17W + 7, 7, 34W + 14, 1, 238W + 369 

1, 34W + 14, 7, 17W + 7, 2, 2, 1 34W + 14, 2,2, 1 

17W + 6, 1, 5,1, 34W + 14, 3, 1,1, 17W + 6, 1, 1666W + 740). 

Subcase (5.4): When K = 4, we get 

./D(7W + 4) = (833W + 489, 1, 17W + 8, 1, 1666W + 978). 
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Subcase (5.5): When K=5, we get 

/D(7W + 5) = (833W + 608, 1, 17W + 11, 2,2, 1, 34W + 24, 7, 17W + 12) 

3,1,1, 34W+24, 3,1,1, 17W+11, 1, 5,1, 34W+23, 1, 833W+607 

1, 34W+23, 1,5,1, 17W+11, 1,1,3, 34W+24, 1,1,3 

17W + 12, 7, 34W + 24, 1,2,2, 17W + 11, 1, 1666W + 1216). 

Subcase (5.6): When K = 6, we get 

\/D(7W + 6) = (833W + 727, 1, 17W + 13, 1,5, 1, 34W + 28, 

1, 5,1, 17W+13, 1, 1666W+1454). 

The values of dri axe given in the following table. 

K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 d6r6 c17r7 d8r8 d9r9 d10r10 d11r11 d12r12 d13r13 

1 7 5 7 7 3 7 

2 7 1 1 7 

3 7 4 6 5 5 1 7 7 1 3 3 6 2 7 

4 7 7 

5 7 3 1 2 2 6 7 7 6 4 4 1 5 7 

6 1 7 6 6 7 

0 7 2 7 7 4 7 

Table 0.6: D(X) = 1192X2 + 2(1666)X + 98 

It is easy to check that when K + K' 1 mod 7, d(K)r1(K) + d(K')r(K') 0 mod 7. 
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Case (6): u = 1, 'r = 1 and r > 0. Consider D(X) = i192X2 + 2(2890)X + 578, where A = 119, 

B = 2890 and C = 578. Since 119 t 2890, we get r > 0. Since / = 2.17 4,  we get o = 1, L = 2, 

= 1 and L4 = 17. Also, since L.24 = 17, which divides A = 119, we get r = 1. Thus, 

= A/(L 2/4/r) = 7, r = gcd(A*, L4) = 1 and L' = th4/r = 17. 

When X > (L'.1L.'2)/A - (2B - A)/(2A2) 4.66, there are seventeen patterns. Let K = 

0, 1,2, . . ., 16 and write X = 17W+ K. 

Subcase (6.0): When K = 0, we get 

VD(17W) = (2023W+24, 3,1,1, 7W-i, 1,1,19,2,1, 14W-i, 

2)58,1, 7W-i, 9,1,11, 14W, 11,1,9, 7W-i, 1, 58,2, 

14W-i, 1,2,19,1,1, 7W-i, 1,1,3, 4046W+48). 

Subcase (6.1): When K = 1, we get 

,/D(17W-i--i) = (2023W+143, 3,1,1, 7W-i) 1,12,4,1,1, 14W, 2,3,2,6,1, 7W-i, 

1,1,1,2,2,i,i,i,1,14W,2,i,1,i,4,2,i,7W-i,1,4,5,1,3, 

14W, 1, 2,1,2,1,1,4, 7W, 3,1,1,1,1,5,1, 1414/, 7, 2023W+143, 

7, 14W, 1,5,1,1,1,1,3, 7T4, 4,1,1,2,1,2,1, 14W, 

3,i,5,4,i,7W-i,i,2,4,1,i,1,2,i4W,1,i,1,i,2,2,1,1,i, 

7W-i, 1,6,2,3,2, 14W, 1,1,4,12,1, 7W-i, 1,1,3, 4046W+286). 



193 

Subcase (6.2): When K = 2, the continued fraction expansion of /D(l7W + 2) is given by 

(2023W+262, 3,1,1, 7W, 2,1,39, 14W+i, 1, 3,1,3,6, 7W, 1,2,1,28,1, 

14W, 1,5,1,1,1,1,3, 7W, 1,1,1,2,2,1,1,1,1, 14W+1, 4,1,23, 7W, 

1,6,2,3,2, 14W+1, 2,1,1,1,4,2,1, 7W, 4,1,1,2,1,2,1, 14W+1, 11,1,9, 

7W, 1,4,5,1,3, 14W+1, 1,1,4,12,1, 7W-i, 1,58,2, 14W+1, 3,7,1,1,2, 

7W, 1, 1, 19,2, 1, 14W+i, 7, 2023W+262, 7, 14W+1, 1, 2,19,1,1, 7W, 

2,1,1,7,3, 14W+1, 2,58,1, 7W-i, 1, 12,4, 1,1, 14W+i, ,3,1,5,4,1, 7W,) 

9,1,11, 14W+11,2,1,2,i,1,4, 7W, 1, 2,4,1,1,1,2, 14W+i, 2,3,2,6, 1, 

7W, 23,1,4, 14W+i, 1,1,1,1,2,2,1,1,1, 7T'V, 3,1,1,1,1,5,1, 14T'V, 

1,28, 1,2, 1, 7W, 6,3,1,3,1, 14W+1, 39,1,2, 7W, 3,1,1, 4046W+524). 

Subcase (6.3): When K=3, we get 

\/D(17W + 3) = (2023W + 381, 3,1, 1, 7W, 1,2, 1,28,1, 14W + 1, 1, 2,19,1,1, 7W, 

1) 4,5,1,3, 14W+2, 2,1,1,1,4,2, 1, 7W, 1, 1, 1, 2,2, 1, 1, 1, 1, 

14W+2, 39,1,2, 7W, 1, 58,2, 14W+2, 7, 2023W+381, 

7, 14W+2, 2,587 1, 7W, 27 1,39, 14W+2, 

1,1,1,1,2,2,1,1,1,7T4T,1,2,4,1,1,1,2,14W,2,3,1,5,4,1, 

7W, 1,1,19,2,1, 14W+1, 1, 28,1,2,1, 7W, 1,1,3, 4046W+762). 

Subcase (6.4): When K = 4, we get 

\/D(17W+4) = (2023W+500, 3,1,1, 7W+1, 6,3,1,3,1, 14W+2, 1,2,19,1,1, 

7W+1)4,1,1,2,1,2,1,14W+2, 1,2,1,2,1,1,4,7W+1, 

1,1,19,2,1, 14W+2, 1,3, 1, 3,6, 7W+1, 1,1,3, 4046W+1000). 



194 

Subcase (6.5): When K = 5, we get 

./D(17W+5) = (2023W+619, 3,1,1, 7W+1) 1,1,3, 4046W+1238). 

Subcase (6.6): When K = 6, we get 

/D(l7W+6) = (2o23W+738, 3,1,1, 7W+l, 1, 58,2, 14W+4, 1,1,1,1,2,2,1,1,1, 

7W+ 1) 1, 12,4,1,1, 14W+4, 111) 4) 12,1, 7W+ 1, 

1,1,1,2,2,1,1,1,1, 14W+4, 2,58,1, 7W+l, 1,1,3, 4046W+1476). 

Subcase (6.7): When K = 7, the continued fraction expansion of /D(17W + 7) is given by 

(2023W+ 857, 3,1,1, 7W+2, 2,,1,7,3, 14W+5, 1,1,1,1,2,2,1,1,1, 7W+2, 

2) 1,39, 14W+5, 1, 9,1,4,2, 7W+2, 1,1,19,2,1, 14W+5, 3,1,5,4,1, 14W+2, 

6,3,1,3,1, 14W+5, 7, 2023W+857, 7, 14W+5, 1,3,1,3,6, 

14W+2, 1, 4, 5, 1,3, 14W+5, 1,2, 19, 1, 1, 7W+2, 2,4, 1,9, 1, 14W+5, 39,1,2, 

7W+2, 1,1,1,2,2,1,1,1,1,14W+5, 3,7,1,1,2, 7W+2, 1,1,3, 4046W+1714). 

Subcase (6.8): When K = 8, the continued fraction expansion of /D(17W + 8) is given by 

(2023W+976, 3,1,1, 7W+2, 1,4,5,1,3, 14W+6, 2,58,1, 7W+2, 2,1,1,7,3, 14W+6, 

2,3,2,6,1, 7W+2, 1,1,19,2,1, 14W+6, 11,1,9, 7W+3, 3,1,1,1,1,5,1, 14W+5, 

1, 9,1,4,2, 7W + 2, 1,12,4,1,1, 14W + 6, 4,1,23, 7W + 3, 2,1,39, 14W + 6, 

1, 2,1,2,1,1,4, 7W + 3, 6,3,1,3,1, 14W + 5, 1,28,1,2,1, 7W + 2, 1,1,1,2,2, 1, 1, 1, 1, 

14W + 6, 7, 2023W + 976, 7, 14W + 6, 

1,1,1,1,2,2,1,1,1,7W-J-21,2,1,28,1,14W+5,1,3,1,3,6,7w+3,4,1,12 121 

14W+6, 39,1,2, 7W+3, 23,1,4, 14W+6, 1,1,4,12,1, 7W+2, 2,4,1,9,1 

14W+ 5, 1, 5,1,1,1,1,3, 7W+3, 9,1,11, 14W+6, 1,2,19,1,1, 7W+2, 1,6,2,3,2 

14W+6, 3,7,1,1,2,7W+2, 1,58,2, 14W+6, 3,1,5,4,1, 7W+2, 1,1,3, 4046W+1952). 
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Subcase (6.9): When K = 9, the continued fraction expansion of /D(l7W + 9) is given by 

(2023W+1095, 3,1)1, 7W+3, 4, 1,1,2,1,2,1, 14W+6, 1,5,1,1, 1,1,3, 7W+3, 1,1,19,2,1, 

14W+6, 1,9,1,4,2, 7W+3, 2,1,39, 14W+7, 1,1,4,12,1, 7W+2, 

1,6,2,3,2, 14W+7, 7, 2023W+ 1095, 7, 14W+ 7, 2,3,2,6, 1 

7W+2, 1,12,4,1,1, 14W+7, 39,1,2, 7W+3, 2,4,1,9,1, 14W+6, 

1,2,19,1,1, 7W+3, 1,1,1,1,5,1, 14W+6, 1,2,1,2,1,1,4, 7W+3, 1,1,3, 4046W+2190). 

Subcase (6.10): When K = 10, we have 

/D(17W + 10) = (2023W + 1214, 3, 1,1, 7W + 3, 1, 1, 1,2,2, 1, 1, 1, 1, 14W + 7, 

1,3, 1,3, 6, 7W+4, 23,1,4, 14W+8, 4,1,23, 7W+3, 6,3, 1,3, 1, 

14W+7, 1,1,1,1,2,2,1,1,1, 7W+3, 1,1,3, 4046W+2428). 

Subcase (6.11): When K = 11, the continued fraction expansion of /D(17W + 11) is 

(2023W+1333, 3,1,1, 7W+4, 23,1,4, 14W+9, 39,1,2, 7W+4, 3,1,1,1,1,5, 1) 

14W+8, 2, 1, 1, 1,4,2, 1, 7W+3, 1, 12,4, 1, 1, 14W+8, 1,2, 19,1, 1, 7W+4, 9,1,11, 

14W + 9, 7, 2023W + 1333, 7, 14W + 9, 

11,1,9, 7W+4, 1,1,19,2,1, 14W+8, 1,1,4,12,1, 7W+3, 1,2,4,1,1,1,2, 14W+8, 

1,5,1,1,1,1,3, 7W+4, 2,1,39, 14W+9, 4,1,23, 7W+4, 1,1,3, 4046W+2666). 

Subcase (6.12): When K = 12, we have 

/D(17W + 12) = (2023W + 1452, 3, 1, 1, 7W + 4, 2,4, 1, 9, 1, 14W + 9, 7, 2023W + 1452) 

7 14W+9, 1,9,1,4,2, 7W+4, 1,1,3, 4046W+2904). 
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Subcase (6.13): When K = 13, we have 

/D(17W + 13) = (2023W + 1571, 3, 1, 1, 7W + 4, 1, 6,2,3,2, 14W + 10, 

2)3,2,6,1, 7W+4, 1,1,3, 4046W+3142). 

Subcase (6.14): When K = 14, we have 

V'D(17W+14) = (2023W+1690, 3,1,1, 7W+5, 3,1,1,1,1,5,1, 14W+10, 

1, 5,1,1,1,1,3, 7W+5, 1,1,3, 4046W+3380). 

Subcase (6.15): When K = 15, we have 

/D(17W + 15) = (2023W + 1809, 3, 1, 1, 7W + 5, 1,2,4, 1, 1, 1,2, 14W + 12, 7, 2023W + 1809, 

7, 14W+12, 2, 1, 1, 1,4,2, 1, 7W+5, 1,1,3, 4046W+3618). 

Subcase (6.16): When K = 16, the continued fraction expansion of \/D(17W + 16) is 

(2023W+1928, 3,1,1, 7W+6, 9,1,11, 14W+13, 3,1,5,4,1, 7W+5, 1,6,2,3,2, 

14W+12, 1,94,4,2, 7W+6, 4,1,1,2,1,2,1, 14W+12, 1,1,1,1,2,2,1,1,1, 

7W + 6, 23, 1,4, 14W + 13, 7, 2023W + 1928, 7, 14W + 13, 4, 1,23, 7W + 6, 

1)1,1,2,2,1,1,1,1,14W+12,;1,2,1,2,1,1,4,7W+6,2,4,1,9,1, 14W+12, 

2,3,2,6, 1, 7W+5, 1, 4,5,1,3, 14W+13, 11,1,9, 7W+6, 1,1,3, 4046W+3856). 

We present the values of diri in the tables below. There are 17 patterns here and we will see 

that for 0 ≤ K, K' ≤ 16, if K + K' E 10 mod 17, then d(K)r(K) + d(K')r(K') 0 mod 17. 
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K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 d6r6 d7r', d3r3 d9r0 d10r10 d11r11 d12r12 d13r13 d14r14 d15r15 d10r16 

14 34 33 

15 34 82 17 

16 34 12 31 103 108 26 73 5 17 

0 34 61 59 12 

1 34 110 52 75 45 96 87 33 17 

2 34 40 94 89 101 75 24 103 45 26 10 96 66 117 38 61 17 

3 34 89 80 96 45 75 3 117 17 

4 34 19 80 26 

5 34 

6 34 117 73 110 

7 34 47 73 40 108 61 31 19 17 

8 34 96 59 47 52 61 10 33 108 110 24 40 87 19 115 75 17 

9 34 26 101 61 108 40 66 103 17 

10 34 75 94 5 

11 34 5 3 33 45 110 80 12 17 

12 34 54 17 

13 34 103 

K d17r17 d18r18 dLr1g dor2o diri d22r2 d23r23 d24r24 dr25 46r26 d27r21 dr28 dgr29 d3Or3O d3Ir3I d33r32 d33r33 

14 101 68 

15 17 45 68 

16 17 24 75 87 54 52 96 10 68 

0 10 117 80 68 

1 17 101 26 31 82 73 103 66 68 

2 17 80 47 59 110 31 12 87 82 52 5 73 33 115 19 3 68 

3 17 59 40 73 82 31 61 115 68 

4 87 61 94 68 

5 68 

6 66 73 59 68 

7 17 94 96 80 54 3 75 38 68 

8 17 73 89 94 26 3 5 66 54 101 12 80 103 38 117 31 68 

9 17 52 110 3 54 80 33 87 68 

10 24 19 73 68 

11 17 10 61 66 82 101 40 24 68 

12 17 108 68 

13 52 68 

Table 0.7: D(X) = 1192X2 + 2(2890)X + 578 



198 

Case (7): a = 1, T = 2 and r = 0. Consider D(X) = 1192X2 + 2(1666)X + 168, where A = 119, 

B = 1666 and C = 168. Since 119 1666, r = 0. Since A = 21 . 71 - 172 , we have a = 1, A, = 7, 

= 2 . 7. 17 and & = 1. Since A2A 4 = 2• 7 - 17 = 238, which does not divide A = 119, we get 

= 2. Hence, A* = A/( 2L4/r) = 1, r = gcd(A*,z4) = 1 and A' =  TA.4/F = 2. 

When X > (1 1 '2)/A - (2B - A)/(2A2) 0.12, there are two patterns. Let K = 0, 1 and 

write X =2W + K. 

Subcase (7.0): When K = 0, 

\/D(2W) = (238W + 13, 1, 17W - 1, 1, 476W + 26). 

Subcase (7.1): When K = 1, 

/D(2W+1) = (238W+ 132, 1, 17W+8, 2, 119W+65, 1, 68W+36, 

1, 119W + 65, 2, 17W + 8, 1, 476W + 264). 

The values of diri given in the following table. 

K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 

0 0 0 

1 0 1 0 0 1 0 

Table 0.8: D(X) = 1192X2 + 2(1666)X + 168 
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Case (8): o = 1, T = 2 and r> 0. Consider D(X) = 1192X2 + 2(1700)X + 204. Then A = 119, 

B = 1700 and C = 204. If is not difficult to see that A t B, so r > 0. Now, Li = 22 . 172 means 

that a- = 1, Al= 1, Li2 = 2 7- 17 and Li4 = 1. Since Li2Li4 = 2- 17 = 34, which does not divide 

A = 119, we get r = 2. Hence, A* = A/(Li2Li4/-r) = 7, r = gcd(A', Li4) = 1 and Li' = -i-Li4/F = 2. 

When X > (Li1Li'2)/A - (2B - A)/(2A2) —0.82, there are two patterns. Let K = 0, 1 and 

write  = 2W+K. 

Subcase (8.0): When K = 0, 

/D(2W) = (238W + 14, 3, 1, 1, 119W + 6, 1, 1,3, 476W + 28) 

Subcase (8.1): When K=1, 

/D(2W+1) = (238W+133, 3,1,1, 119W+66, 14, 119W+66, 1,1,3, 476W+266). 

The values of drj given in the following table. 

K d0r0 d1r1 d2r2 

0 4 4 

1 4 1 4 

Table 0.9: D(X) = 1192X2 + 2(1700)X + 204 
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C.2 More Computations 

In this section, we provide more numerical evidence for the vertical symmetry of the continued 

fraction expansion of /D(X) discussed in Chapter 6 and in the preceding section. 

Example C.2.1 Consider 32X2 + 2(9)X. We find L. = 34, /' = 3 and A' = 1. Let X > 

(&'2)/A - (2B - A)/(2A2) 2.17. 

Case (0): When X 0 mod 3, i.e., X = 3W, we get 

/D(3W) = (9W + 2,1,2W — 1, 1, 1, 1, 2W — 1,1,18W+4). 

Case (1): When X 1 mod 3, i.e., K = 1 and X=3W+1, we get 

\/D(3W+ 1) = (9W+ 5,1)2W, 3,2W, 1,18W + 10). 

Case (2): When X 2 mod 3, i.e., K = 2,, we get 

/D(3W +2) = (9W + 8,1)2W, 1, 18W + 16). 

In the table below, we list values of 

K d0r0 d1r1 d2r2 

1 3 1 3 

2 3 3 

0 3 2 3 

Table C.10: D(X) = 32X2 + 2(9)X 

For i = 0, 1, 2, it is clear that d(0)r(0) + dj(1)r(1) 0 mod 3 and trivially, 2d(2)r(2) 

0 mod 3. 
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Example C.2.2 Consider 1802X2 + 2(4950)X + 750. We find A = 22. 34 54, A' = 5 and A' = 2. 

Let X> (L 1LY2)/A - (2B - A)/(2A2) -0.11. 

Case (0): When X = 5W, the continued fraction expansion of /D(5W) is given by 

(900W+27, 2, 72W+1, 1, 2,3, 72W+1, 1, 8,1, 72W+1, 3,2,1, 72W+1, 2, 1800W+54). 

Case (1): When X=5W+1, 

\/D(SW + 1) = (900W + 207,2, 72W + 16, 10, 72W + 16, 2, 1800W +414). 

Case (2): When X=SW+2,we get 

/D(5W + 2) = (900W + 387, 2, 72W + 30, 2, 1800W + 774). 

Case (3): When X=5W+3,we get 

/D(5W + 3) = (900W + 567, 2, 72W + 44, 1, 8, 1, 72W + 44, 2, 1800W + 1134). 

Case (4): When X = SW + 4, the continued fraction expansion of /D(5W + 4) is given by 

(900W+747, 2, 72W + 59, 3, 2, 1, 72W + 59, 10, 72W + 59, 1,2,3, 72W + 59, 2, 1800W + 1494). 

The values of drj are given in the following table. 

K d0r0 d1r1 d2r2 d3r3 d4r4 

0 5 7 9 3 5 

1 5 1 5 

2 5 5 

3 1 5 9 5 

4 5 3 1 7 5 

Table 0.11: D(X) = 1802X2 + 2(4950)X + 750 

We see that for 0 ≤ K, K' ≤ 4 such that K + K' 0 mod 4, d(K)r(K) + d(K')r(K') 

0 mod 5. 13 
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Example C.2.3 Consider 52X2 + 2(25)X. We find Li = 54, Li' = 5 and A' = 1. Let X > 

(LiLi'2)/A - (2B - A)/(2A2) 4.10. 

Case (0): When X = 5W, we get 

/D(5W) = (25W+4, 1, 2W-i, 2,1,1, 2W-i) 1, 3,1, 2W-i, 1,1,2, 2W-i, 1, 50W+8). 

Case (1): When X=5W+i,we get 

./D(5W+i) = (25W+9, 1,4W-i, 1, 3,1, 4W-i, 1, 50W+18). 

Case (2): When X 2 mod 5, we get 

\/D(5W + 2) = (25W + 14, 1, 2W, 5, 2W, 1, 50W + 28). 

Case (3): When X3 mod 5,we get 

/D(5W+3) = (25W+19, 1, 2W, 1,1,2, 2W+1, 5, 2W+1, 2,1,1, 2W, 1, 50X+38). 

Case (4): When X 4 mod 5, we get 

\/D(5W + 4) = (25W + 24) 1, 2W, 1, 50W + 48). 

The values of dri are given in the following table. 

K d0i'0 d1r1 d2r2 d3r3 d4r4 

2 5 1 5 

3 5 3 1 2 5 

4 5 5 

0 5 2 4 3 5 

1 5 4 5 

Table C.12: D(X) = 52X2 + 2(25)X 

We see that when 0 ≤ K, K' ≤ 3 such that K + K' = 3, d(K)r(K) + dj(K')r(K') 0 mod 5 

for i= 0,1,2,3,4. Also, 2d(4)r(4) 0 mod 5. 11 
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Example C.2.4 Consider 22X2 + 2(8)X. We thid A = 26, L' = 4 and A' = 1. Let X > 

(L 1Ls!2)/A - (2B - A)/(2A2) 6.25. 

Case (0): When X=4W,we get 

%1D (4W) = (8W+3, 1, W-1, 2, 4W+1, 2, W-1, 1, 16W+6). 

Case (1): When X = 4W + 1, we get 

/D(4W+1) = (8W+5, 1, W-1, 1,2,1, W-1, 1, 16W+10). 

Case (2): When X = 4W + 2, we get 

/D(4W+2) = (4W+7, 1, W-1, 1, 8W+14). 

Case (3): When X = 4W + 3, we get 

/D(4W+3) = (4W+9, 1, W, 4, W, 4W+18). 

The values of drj are given in the following table. 

K d0r0 d1r1 d2r2 d3r3 

0 4 2 2 4 

1 4 3 4 

2 4 4 

3 4 1 4 

Table C.13: D(X) = 22X2 + 2(8)X 

We see that for 0 ≤ K) K' ≤ 3 such that K + K' 0 mod 4, d(K)r(K) + d(K')r(K') 

0 mod 4. 11 
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Example C.2.5 Consider 32X2 + 2(18)X. We find A = 22 34, LY = 6 and A' = 1. Let 

X> (L,.1L\'2)/A - (2B - A)/(2A2) 10.17. 

Case (0): When X=6W, 

./D(6W) = (18W.+-5,1, W-1, 3,4W, 1, 9W+1, 1, 4W, 3, W-1, 1, 36W+10). 

Case (1): When X=6W+1, 

\/D(GW + 1) = (18W + 8) 1, W - 1, 2, 9W + 3, 1, X, 

1, 9W+31 2, W-1, 1, 36W+16). 

Case (2): When X=6W+2, 

,/D(6W-+.2) = (18W+11,1, W-1, 1,1,1, 4W+1, 1, 9W+4, 

1, 4W+1, 1,1,1, W-1, 1, 36W+22). 

Case (3): When X=6W+3, 

/D(6W+3) = (18W+14,1, W-1, 1,4,1, W-1, 1, 36W+28). 

Case (4): When X=6W+4, 

%I.D(6W + 4) = (18W + 17, 1, W - 1, 1, 36W + 34). 

Case (5): When X=6W+5, 

\/D(6W+5) = (18W+20,1, W, 6, W, 1, 36W+40). 

The values of dri are given in the following table. 
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K d0r0 d1r1 d2r2 d3r3 d4r4 d5r5 

0 6 2 6 6 2 6 

1 6 3 6 6 3 6 

2 6 4 6 6 4 6 

3 6 5 6 

4 6 6 

5 6 1 6 

Table 0.14: D(X) = 32X2 + 2(18)X 

We see that for 0 ≤ K, K' ≤ 5 such that K + K' 2 mod 6, d(K)r(K) + d(K')r(K') 

0 mod 6. 0 

Example C.2.6 Consider D(X) = 222X2 + 2(484)X. Then A = 22 = 2 11, B = 484 = 22 . 111, 

C = 0 andA = B2 - A 2 = 24. ii. So, Al =  1, L2 = 1, A4 = 2 - ii = 22, ,r = 1, r = 1, A' = 1 

and L' = 22. Let X> (.1 '2)/A - (23 - A)/(2A2) 21.02. We find that there are 11 patterns, 

i.e.,p=11. go, we write X=11W+K for K=0,1,2,...10. 

Case (0): X = 11W. The continued fraction expansion of VD(11W) is given by 

(484W+21, 1,2W-i, ii, 4W, 3,1,2, 2W-i, 1, 2,1,1,1, 4W-i, 1,2,1,1,1, 

2W-i) 2,4,1, 4W-i, 1,1,5, 2W-i, 1, 9,1, 4W-i, 2,4, 1, 

2W-i, 3,1,2, 4W-i, 1, 242W+9,i, 4W-i, 2,1,3, 2W-i, 

1) 4,2, 4W-i, i,9,1, 2W-i, 5,1,1, 4W-i, 1, 4,2, 2W-i, 

i,i,i,2,i, 4W-i, i,i,i,2,1, 2W-i, 2,1,3, 4W, ii, 2W-i, i, 968W+42). 
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Case (1): X=11W+i. We have 

/D(i1W + 1) = (484W + 21, 1, 2W - 1, 5,1,1, 4W, 5,1, 1, 2W - 1, 1, 1, 1) 2) 1, 

4W - 1, 1, 484W + 20, 1, 4W - 1, 

1) 2)1)1)1) 2W-i, 1,1,5, 4W, 1,1,5, 2W-i, 1, 968W+42). 

Case (2): X=1iW+2. 

\/D(11W+2) = (484W+65, 1, 2W-i, 3,1,2, 4W, i,2,1,i,i) 

2W - 1, 1, 1,1,2,1, 4W, 2, 1,3, 2W - 1, 1, 968W + 130). 

Case (3): X=11W+3. 

/D(i1W-i-3) = (484W+87, 1,2W-i, 2,1,3, 4W+i, 5,1,1, 2W-i, 

1, 4,2, 4W, 1, 242W+42, 1, 4W, 2,4, 1, 

2W-i, 1,1,5, 4W+i, 3,1,2, 2W-i, 1, 968W+174). 

Case (4): X=11W+4. 

/D(11W + 4) = (484W + 109, 1, 2W - 1, 2,4, 1, 4W, 1, 242W + 53, 

1, 4W, 1, 4,2, 2W - 1, 1, 968W + 218) 

Case (5): X=11W+5. 

\/D(i1W + 5) = (484W + 131, 1, 2W - 1, 1, 1, 5, 4W + 1, 1, 242W + 64, 

1) 4W+1, 5,1,1, 2W-i, 1, 968W+262). 

Case (6): X=i1W+6. 

\/D(i1W + 6) = (484W + 153, 1, 2W - 1, 1) 1, 1,2, 1, 4W + 1, 1) 4) 2, 2W, 

5,1,1, 4W+i, 1, 242W+75, 1, 4W+1, 1,1,5, 

2W, 2,4,1, 4W+1, 1, 2,1,1,1, 2W-i, 1, 968W+306). 
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Case (7): X=11W+7. 

\/D(iiW+7) = (484W+ 175, 1, 2W-i, 1, 2,1,1,1, 4W+2, 3,1,2, 2W, 

2) 1,3, 4W+2, 1, 1,1,2,1, 2W-i, 1, 968W+350). 

Case (8): X=1iW+8 

\/D(i1W+8) = (484W+ 197, 1, 2W-i, 1, 4,2, 4W+2, 1,4,2, 2W, 2,1,3, 

4W+2, 1, 242W+97, 1, 4W+2, 

3,1,2, 2W, 2,4,1, 4W+2, 2,4,1, 2W-i, 1, 968W+394). 

Case (9): X=11W+9. 

\/D(iiW+9) = (484W+219, 1, 2W-i, 1, 9,1, 4W+2, 1,2,1,1,1, 2W, 

3,1,2, 4W+3, 3,1,2, 2W, 1,1,5, 4W+3, 2,4, 1, 

2W, ii, 4W+3, i,1,5,2W, 

1, 2,1,1,1, 4W+2, 1, 242W+108,1, 4W+2, 1,1,1,2, 1, 

2W, 5,1,1, 4W+3, ii, 2W, 

i,4,, 4W+3, 5,1,1, 2W, 2,1,3, 4W+3, 2,1,3, 

2W, 1,1,1,2,1, 4W+2, 1,9,1, 2W-i, 1, 968W+438). 

Case (10): X-11W+10. 

/D(1iW + 10) = (484W + 241, 1, 2W - 1, 1, 968W + 482). 

The values of dri are given in the following table. 
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K doro din d2r2 d3r3 don4 d5r5 don6 d7r7 dan8 d9r8 d10r10 d11r11 d12n12 d>3r13 d14r14 d15n15 d16n16 d17r17 d18r18 d19r19 dwn28 d21n26 

5 22 12 22 22 4 22 

6 22 14 18 4 22 22 12 10 16 22 

7 22 16 6 8 14 22 

8 22 18 18 8 22 22 6 10 10 22 

9 22 20 16 6 6 12 10 2 12 16 22 22 14 4 2 18 4 8 8 14 20 22 

10 22 22 

0 22 2 6 16 16 10 12 20 10 6 22 22 8 18 20 4 18 14 14 8 2 22 

1 22 4 4 14 22 22 16 12 12 22 

2 22 6 16 14 8 22 

3 22 8 4 18 22 22 10 12 6 22 

4122 10 22 22 18 22 

Table C.15: D(X) = 222X2 + 2(484)X 

We see that for 0 ≤ K, K' ≤ 10 such that K + K' 9 mod 11, d(K)r(K) + d(K')r(K') 

0 mod 22. 



Appendix D 

Tables for the Average of l(a/r) 

In the following two tables, we consider even and odd lengths of l(a/r) separately. In order to 

represent every expansion of afr properly and compactly, we denote 10 by A, 11 by B and so forth, 

i.e., we write (1, 12, 1) as 1C1. The left-most column lists the values of a and the top row lists the 

values of r. Every entry of the main body of the table gives the continued fraction expansion of 

a/r. The third right-most column lists the total number of partial quotients. The second right-

most column lists the average lengths of continued fraction expansions of aft with a fixed. The 

last column gives the expected value of the average lengths using (6.5). 

a\r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Avg. E. V. 

2 11 1 1 1.55 

3 21 12 4 2 1.90 

4 31 11 13 6 2 1.70 

5 41 22 1111 14 10 2.5 2.33 

6 51 21 [1 12 15 10 2 1.88 

7 61 32 23 1121 1211 16 16 2.67 2.61 

8 71 31 2111 11 1112 13 17 18 2.57 1.98 

9 81 42 21 24 1131 12 1311 18 20 2.5 2.51 

A 91 41 33 22 11 1111 1221 14 19 22 2.44 2.35 

B Al 52 3111 2121 25 1141 1113 1212 1411 1A 26 2.6 2.99 

C BI 51 31 21 2211 11 1122 12 13 15 lB 26 2.36 2.32 

D Cl 62 43 34 2112 26 1151 111111 1231 1321 1511 10 38 3.17 3.13 

E Dl 61 4111 32 2131 23 11 1121 1114 1211 1312 16 1D 38 2.92 2.67 

F El 72 41 3121 21 22 27 1161 1111 12 1213 14 1611 1E 38 2.71 2.67 

G Fl 71 53 31 35 2111 2311 11 1132 1112 1241 13 1421 17 IF 40 2.67 2.80 

Table D.1: Even Length 
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a\r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Avg. E. V. 

11 1 1 

2 2 1 2 1 1.55 

111 i . 1.67 1.90 

4 4 2 121 1 6 1.5 1.70 

5 5 211 112 131 1 11 2.2 2.33 

6 6 3 2 111 141 1 10 1.67 1.88 

7 7 31]. 221 113 122 7 1 15 2.14 2.61 

8 8 4 212 2 11111 121 161 1 19 2.38 1.98 

9 9 411 3 231 114 111 132 171 1 21 2.33 2.51 

A A 5 321 211 2 112 123 121 181 1 22 2.20 2.35 

B B 511 312 213 241 115 11121 12111 142 191 1 33 3 2.99 

C C 6 4 3 222 2 11211 111 121 141 1A1 1 26 2.17 2.32 

D D 611 421 331 21111 251 116 11112 124 133 152 1B1 1 39 3 3.13 

B B 7 412 311 214 221 2 113 11131 122 13111 151 101 1 38 2.71 2.67 

F I F 711 5 313 3 211 261 117 112 111 12121 131 162 1D1 1 39 2.60 2.67 

Table D.2: Odd Length 



Appendix E 

Some Estimates for ].p(/D(X)) 

Consider D(X) = 49272302X2 + 2(12138809742675)X + 6069410874450. In this case, A' = 385 

and LV = 158. 

In the table below, we list the actual value of 1p(/D(158W + K)) for some values of K and 

an estimate obtained by 

(121n2 A(d) +0.97)]> 

dIA'L! ) 
where Ic is either w(L.') or 2w(ZV), d is a proper divisor of AA' and A(d) is von Mangoldt's function 

given in Chapter 6. When ic = 2w(L'), the estimates are boldfaced. 

K 1 3 4 5 6 7 10 12 13 14 15 17 

Actual 910 324 596 294 294 552 914 136 224 532 353 3766 

Est. 968 322 553 304 304 553 968 138 276 553 387 3551 

K 19 20 21 24 25 26 27 29 31 32 34 35 

Actual 118 102 500 326 92 44 1478 1952 918 164 118 532 

Est. 138 138 553 322 110 55 1522 1937 968 184 138 553 

Table E.1: Some estimates for 1p(./49272302X2 + 2(12138809742675)X + 6069410874450) 

In the above example, we did not include entries for K = 2,8,9,11,16,18... . They are omitted 

because the corresponding ic is not w(L') or 2w('). 
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Appendix F 

Constructing D(X) 

When we study the continued fraction expansion of /D(X), where D(X) = A2X2 + 2BX + C 

and A = B2 - A 2 C  divides 4 gcd(A2, B)2, it is imperative to have examples of such D(X). It is not 

difficult to find certain D(X) via a trial and error method using a computer, i.e, testing whether 

an integer triple (A2, 2B, C) satisfies the Schinzel condition. However, there is a severe drawback 

to this approach: we cannot predict the important values, such as A' and LV. In particular, if we 

want to have a large A' or Li', the trial and error method could take a good deal of time. Here, 

we provide a simple method to find D(X) that allows us to choose the values of A' and Li'. 

Recall from Section 4.2 that JAI = where L and Li2 are squarefree. By (4.12), 

gcd(A, B) = FLi2Li4/r, where r and r are defined on page 99 and r is either 1 or 2. Also, we 

defined A' = A/(FLi2Li4/r) and Li' = rLi4/F in Section 4.2. Now, we write B' = B/(Fi 2Li4/r). 

Note that B' = B*/r, where B* was defined in Section 4.2. It is clear that gcd(A', B') = 1. 

The Schinzel condition says that Li I 4gcd(A2,B)2, i.e., Lij4L4 I 4gcd(A2,B)2. Since 

= Li (rLi4/F)2(FLi2Li4/r)2, the Schinzel condition can be written as 

4gcd(A.A',B')2. 

Since gcd(A', B') = 1, we have 

4gcd(A A', B')2 = 4gcd(A, B')2 = 4gcd(A'(FLi2Li4/r), B')2 = 4gcd(FLi2Li4/r, B')2. 

Thus, the Schinzel condition becomes 

Li Li'2 14gcd(FLi2Li4/'r, B')2. (F.1) 
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This implies that L.' 2B'. For the sake of simplicity, we assume that L' I B', i.e, B' = kA' for 

non-zero integer k. 

Now, B2 - A2C = A implies that B'2 - A'2C = L1L'2. Since /' J B' and gcd(A', B') = 1, 

we have y2 I C. Thus, we may write C = mLi'2 for some non-zero integer m. Now we rewrite 

B'2 - A'2C = LL!2 as 

(1cL')2 - A'2mL'2 = 

which is equivalent to 

k2 - A'2m = Li1 

since Li' is non-zero. Hence, 

A'2= k2—Li1  

To find solutions to the above equation, we first fix Lii, say A, = 1, 2, and then vary k to compute 

k2 - A, -  We seek square factors in k2 - as k varies. When we find some square factor in k2 - Li 

that we want, we put it as A'2 and set m = (k2 - Li1)/A'2. Now that we have A'2, m and k, we 

have a solution to k2 - A 2M  = Lii. We may now choose any Li', co-prime to A', to get 

(kLi')2 - A'2mz!2 = 

For simplicity's sake, we set Li2 = 1, r = 1 and T = 1. Then A4 = Li', A = A'Li4, B = B'Li4 and 

C = mLi'2. 

We note that the above method can be modified to accommodate the cases where r = 2, 

Li2=2. 


