
UNIVERSITY OF CALGARY

Defending against Link Quality Routing Attacks in Wireless Sensor Networks

by

Islam Hegazy

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2011

©c Islam Hegazy 2011

The author of this thesis has granted the University of Calgary a non-exclusive
license to reproduce and distribute copies of this thesis to users of the University
of Calgary Archives.

Copyright remains with the author.

Theses and dissertations available in the University of Calgary Institutional
Repository are solely for the purpose of private study and research. They may
not be copied or reproduced, except as permitted by copyright laws, without
written authority of the copyright owner. Any commercial use or re-publication is
strictly prohibited.

The original Partial Copyright License attesting to these terms and signed by the
author of this thesis may be found in the original print version of the thesis, held
by the University of Calgary Archives.

Please contact the University of Calgary Archives for further information:
E-mail: uarc@ucalgary.ca
Telephone: (403) 220-7271
Website: http://archives.ucalgary.ca

http://archives.ucalgary.ca/
mailto:uarc@ucalgary.ca

Abstract

Wireless sensor networks are gaining popularity due to their ease of deployment, low

cost, portability, and scalability. However, the sensor nodes, which are the components

of wireless sensor networks, are limited in communication, processing, and storage capa­

bilities. They collect data from their surrounding environments and relay it using wireless

communication to a central controller, which is more capable of processing and storing

data. The wireless communication exposes the wireless sensor networks to different types

of routing attacks.

The goals of this dissertation are: study the two types of link quality routing protocols,

identify the vulnerabilities of each type, and develop intrusion detection mechanisms to

detect any malicious node that uses the identified vulnerabilities. Analysis and simulation

are adopted as the research methodology.

The first type of protocols requires the sensor nodes to cooperate to compute link

qualities. An intrusion detection mechanism is proposed that introduces a gap in the

sequence number of packets to detect a malicious node that advertises false link quality

values. Hence, sensor nodes can expect the values of the link qualities of their neighbours

to detect violators.

The second type of protocols does not require the sensor nodes to cooperate. However,

a malicious node may use false values for the parameters of the routing protocol, such as

advertising false routing cost or sending frequent beacons. An intrusion detection system

with two modules is proposed to detect this malicious node. The first module applies

the watchdog concept to detect false routing costs and the second module applies a state

machine to test the frequency of broadcasting beacons.

The two intrusion detection systems and a routing protocol from each type are simu­

lated in ns-2. The simulation results of the first intrusion detection system show that a

ii

small gap in the sequence numbers helps the sensor nodes to detect the malicious node

effectively. The simulation results of the second intrusion detection system show that

the success of the watchdog mechanism is dependent on the density of the sensor nodes

in the network. However, the state machine mechanism helps the sensor nodes to detect

the malicious node regardless of their density.

iii

Acknowledgements

First and foremost, I thank Allah (God) for giving me patience and knowledge to complete

this work. Without his guidance and support, I would not have been who I am now.

I would like to thank my supervisors, Professor Reihaneh Safavi-Naini and Professor

Carey Williamson, their insights and helpful comments helped this dissertation to come

to light. Their invaluable directions enriched my academic thinking and writing. Their

guidance and regular meetings enlightened me throughout this work. It is a privilege to

be in their research groups.

I am grateful for the friends and colleagues in the iCORE Information Security lab

(iCIS), Experimental Laboratory for Internet Systems and Applications (ELISA) lab,

and the Department of Computer Science in general. My learning experience in those

environments was exceptional.

My family has been a continuous support throughout my life. I would like to thank

them, especially my parents, for raising me up as an independent person. I know that it

is hard for them to have me living away but I am sure that they are proud of me. My

words cannot express my gratitude towards you.

iv

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures x

List of Algorithms xii

List of Acronyms xiii

List of Publications xvi

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Objective . 5

1.4 Contributions . 5

1.5 Thesis Organization . 6

2 BACKGROUND AND RELATED WORK 8

2.1 Introduction . 8

2.2 Wireless Sensor Networks . 8

2.2.1 WSNs and Ad hoc Networks . 11

2.2.2 Operating Systems for WSNs . 12

2.2.3 Protocols for WSNs . 14

2.2.4 Advantages of WSNs . 15

2.2.5 Applications of WSNs . 16

2.2.6 Definitions of WSNs . 20

2.3 Routing Protocols for WSNs . 22

2.3.1 Classification of WSN Routing Protocols 25

2.3.2 Performance Metrics for WSN Routing Protocols 31

2.3.3 Cost Metrics for WSN Routing Protocols 32

2.3.4 TinyOS Routing Protocols . 34

2.4 Security Threats to WSNs . 36

2.5 Securing WSNs . 41

2.5.1 Key Management . 43

2.5.2 Cryptography . 45

2.5.3 Intrusion Detection . 47

v

2.6 Summary . 49

3 PROBLEM FORMULATION AND METHODOLOGY 51

3.1 Introduction . 51

3.2 Link Quality Routing Protocols . 51

3.3 Link Quality Estimators . 53

3.3.1 Classification of Link Quality Estimators 53

3.3.2 Related Work . 54

3.3.3 Packet Reception Ratio Estimator 55

3.3.4 Window Mean EWMA Estimator 56

3.3.5 Required Number of Packets Estimator 56

3.3.6 Expected Transmission Count Estimator 56

3.3.7 Four-bit Estimator . 57

3.4 Research Methodology . 58

3.5 Simulation Framework . 59

3.5.1 Implementing TinyOS MAC protocol 59

3.5.2 Implementing a TinyOS Application 60

3.5.3 Linking It All together . 60

3.5.4 Performance and Detection Metrics 61

3.6 Summary . 61

4 MINTROUTE AND ITS VULNERABILITIES 63

4.1 Introduction . 63

4.2 Components of MintRoute . 63

4.2.1 Routing Table . 64

4.2.2 Routing Table Manager . 64

4.2.3 Link Quality Estimator . 65

4.2.4 Parent Selector . 66

4.2.5 Cycle Detector . 69

4.2.6 Transmission Timer . 69

4.3 Example of the Operations in MintRoute 70

4.4 Vulnerabilities of MintRoute to Link Quality Attacks 72

4.5 Detection Mechanisms for MintRoute Vulnerabilities 73

4.5.1 Traditional Detection Mechanisms 73

4.5.2 A New MintRoute Detection Mechanism 75

4.6 Attacker’s Strategies to Defeat Detection 79

4.6.1 MintRoute Scenario 1 . 79

4.6.2 MintRoute Scenario 2 . 79

4.6.3 MintRoute Scenario 3 . 82

4.6.4 MintRoute Scenario 4 . 83

4.7 Summary . 84

vi

5 MINTROUTE: SIMULATION MODEL AND RESULTS 86

5.1 Introduction . 86

5.2 Extending ns-2 to Support MintRoute 86

5.2.1 Implementation of MintRoute . 86

5.2.2 Implementation of MintRoute IDS 87

5.3 Setup of MintRoute Simulation Environment 92

5.3.1 Setup of Malicious node . 93

5.3.2 Setup of Performance Metrics . 94

5.4 Results of MintRoute Simulation . 95

5.4.1 Simulation of MintRoute Scenario 0 96

5.4.2 Simulation of MintRoute Scenario 1 97

5.4.3 Simulation of MintRoute Scenario 2 100

5.4.4 Simulation of MintRoute Scenario 3 104

5.5 Summary . 107

6 COLLECTION TREE PROTOCOL AND ITS VULNERABILITIES 111

6.1 Introduction . 111

6.2 Modules of CTP . 111

6.2.1 Link Quality Estimator . 113

6.2.2 Routing Engine . 118

6.2.3 Forwarding Engine . 124

6.3 Example of the Operations in CTP . 126

6.4 Vulnerabilities of CTP to Link Quality Attacks 130

6.4.1 CTP Scenario 1 . 131

6.4.2 CTP Scenario 2 . 132

6.4.3 CTP Scenario 3 . 133

6.4.4 CTP Combined Scenarios . 134

6.5 Detection Engine of CTP Vulnerabilities 135

6.5.1 Detection Module 1 . 135

6.5.2 Detection Module 2 . 136

6.5.3 Detection Module 3 . 137

6.6 Summary . 138

7 CTP: SIMULATION MODEL AND RESULTS 139

7.1 Introduction . 139

7.2 Extending ns-2 to Support CTP . 139

7.2.1 Implementation of CTP . 139

7.2.2 Implementation of TinyOS Random Number Generator 140

7.2.3 Implementation of CTP Data Structures 140

7.2.4 Implementation of CTP IDS . 141

7.3 Setup of CTP Simulation Environment 147

7.3.1 Setup of the WSNs . 149

7.3.2 Setup of Malicious Node . 149

7.3.3 Setup of CTP IDS . 151

vii

7.3.4 Setup of Performance Metrics . 151

7.4 Results of CTP Simulation . 153

7.4.1 Simulation of CTP Scenario 0 . 153

7.4.2 Simulation of CTP Scenario 1 . 154

7.4.3 Simulation of CTP Scenario 2 . 154

7.4.4 Simulation of CTP Scenario 3 . 162

7.4.5 Simulation of CTP Scenario 4 . 167

7.5 Summary . 173

8 CONCLUSIONS AND FUTURE WORK 176

8.1 Summary . 176

8.1.1 Cooperative Link Quality Routing Protocols 177

8.1.2 Non-cooperative Link Quality Routing Protocols 179

8.2 Discussion . 181

8.3 Future Work . 182

Bibliography 185

A 203

A.1 Algorithm of RandomMLCG . 203

A.2 Algorithm of the Queue . 203

A.3 Algorithm of the Message Pool . 204

A.4 Algorithm of the Message Cache . 205

viii

List of Tables

2.1 Processor architectures for sensor nodes 42

3.1 Notions of detection measurements . 61

4.1 Common fields in MintRoute packets . 64

4.2 The fields in the routing table of MintRoute 64

5.1 New fields in MintRoute routing table 87

5.2 Neighbourhood sizes of malicious node in MintRoute simulations 93

6.1 The fields in the neighbour table of CTP link estimator 115

6.2 The fields in the routing table of CTP routing engine 120

6.3 Example of CTP neighbour table . 128

6.4 Example of CTP routing table . 129

7.1 Fields of the beaconInfo table . 142

7.2 Wireless ranges of sensor nodes in CTP simulations 149

7.3 Physical locations of the malicious node vs. its wireless range 150

7.4 Size of beaconInfo table for the different sizes of WSNs 151

7.5 Percentage of drop in data delivery for CTP Scenario 1 156

7.6 Percentage of drop in data delivery for CTP Scenario 2 156

7.7 Percentage of drop in data delivery for CTP Scenario 3 163

7.8 Percentage of drop in data delivery for CTP Scenario 4 167

ix

List of Figures

1.1 A sensor board compared to a quarter dollar 2

2.1 A routing tree rooted at the base station 9

2.2 Main components of a sensor node . 10

2.3 WSN protocol stack . 15

2.4 Classification 1 of WSNs routing protocols 26

2.5 Classification 2 of WSNs routing protocols 28

2.6 Classification 3 of WSNs routing protocols 29

2.7 Attacks on WSNs . 36

3.1 Directions of a wireless link . 52

4.1 Fields of MintRoute route update packet 67

4.2 Sensor node A computes its inbound link quality to sensor node B 71

4.3 Sensor node B updates its outbound link quality to sensor node A 71

4.4 Sensor node B updates its outbound link quality with a false value . . . 72

4.5 The over-testing problem . 77

4.6 Behaviour of malicious node in MintRoute Scenario 1 80

4.7 Behaviour of malicious node in MintRoute Scenario 2 81

4.8 Behaviour of malicious node in MintRoute Scenario 3 83

4.9 Behaviour of malicious node in MintRoute Scenario 4 84

5.1 MintRoute Network 2 . 96

5.2 MintRoute Scenario 0: data delivery . 97

5.3 MintRoute Scenario 1: data delivery . 98

5.4 MintRoute Scenario 1: average detection in network 2, gap size = 1 . . . 99

5.5 MintRoute Scenario 1: average detection in network 2, gap size = 5 . . . 100

5.6 MintRoute Scenario 2: data delivery, τ = E[X] + σ 101

σ
5.7 MintRoute Scenario 2: data delivery, τ = E[X] + 102

2

5.8 MintRoute Scenario 2: data delivery, τ = missed = 0 103

5.9 MintRoute Scenario 2: average detection in network 2, τ = E[X] + σ . . 104

σ
5.10 MintRoute Scenario 2: average detection in network 2, τ = E[X] + . . 105

2

5.11 MintRoute Scenario 2: average detection in network 2, τ = missed = 0 . 106

5.12 MintRoute Scenario 3: data delivery, τ = E[X] + σ 107

σ
5.13 MintRoute Scenario 3: data delivery, τ = E[X] + 108

2

5.14 MintRoute Scenario 3: data delivery, τ = missed = 0 109

5.15 MintRoute Scenario 3: average detection in network 2, τ = E[X] + σ . . 109

σ
5.16 MintRoute Scenario 3: average detection in network 2, τ = E[X] + . . 110

2

5.17 MintRoute Scenario 3: average detection in network 2, τ = missed = 0 . 110

6.1 Modules of CTP . 113

x

6.2 Components of link quality estimator . 114

6.3 Format of CTP beacon . 117

6.4 etx values with the DLQ component only 118

6.5 etx values with the BLQ component only 119

6.6 Format of CTP routing engine packet . 121

6.7 Beacon transmission intervals of CTP . 123

6.8 Types of link qualities in CTP . 131

6.9 Behaviour of malicious node in CTP Scenario 1 132

6.10 Behaviour of malicious node in CTP Scenario 2 132

6.11 Behaviour of malicious node in CTP Scenario 3 134

6.12 Detection Module 3 of CTP Scenario . 138

7.1 Locations of the malicious node relative to the base station 150

7.2 Effectiveness of malicious node in CTP Scenario 1 without IDS running . 155

7.3 Effectiveness of malicious node in CTP Scenario 2 without IDS running . 157

7.4 Effectiveness of malicious node in CTP Scenario 2 with IDS running . . . 160

7.5 Success of detecting malicious node in CTP Scenario 2 161

7.6 Effectiveness of malicious node in CTP Scenario 3 without IDS running . 164

7.7 Effectiveness of malicious node in CTP Scenario 3 with IDS running . . . 166

7.8 Success of detecting malicious node in CTP Scenario 3 168

7.9 Effectiveness of malicious node in CTP Scenario 4 in high-traffic WSNs . 169

7.10 Effectiveness of malicious node in CTP Scenario 4 in low-traffic WSNs . . 170

7.11 Effectiveness of malicious node in CTP Scenario 4 with IDS running . . . 172

7.12 Success of detecting malicious node in CTP Scenario 4 174

xi

List of Algorithms

3.1 MAC protocol of TinyOS . 60

4.1 Update(seqNo) . 65

4.2 Evict(nghbrID) . 65

4.3 WMEWMA(α, t) . 67

4.4 Cost(cost, sendEst, recvEst) . 68

4.5 Blacklist(recvEst, expected recvEst) . 78

5.1 ReceiveUpdatePkt(node, nghbr, pkt) . 90

5.2 UpdateSubtree(nghbr, dP kt) . 90

5.3 GuessTrick(nghbr) . 91

5.4 Expectations(nghbr) . 91

6.1 DLQ() . 116

6.2 BLQ() . 117

7.1 TestBeacon(nghbr, beacon) . 144

7.2 Test2(nghbr, beacon) . 144

7.3 Test3(nghbr, beacon) . 146

7.4 IncAlert(nghbr, status) . 146

7.5 DecAlert(nghbr, status) . 147

7.6 AdaptInterval(nghbr, status) . 148

7.7 DecayInterval() . 148

A.1 Routines of the RandomMLCG algorithm 203

A.2 Routines of the queue algorithm . 204

A.3 Routines of the message pool algorithm 205

A.4 Routines of the LRU cache algorithm . 206

xii

List of Acronyms

4-bitle Four-Bit Link quality Estimator

ACK Acknowledgement

AODV Ad hoc On-demand Distance-Vector

BLQ Beacon Link Quality

BS Base Station

CPU Central Processing Unit

CTP Collection Tree Protocol

DLQ Data Link Quality

DoS Denial-of-Service

DSDV Destination-Sequenced Distance-Vector Routing

EBS Exclusion-Based System

ECC Elliptic Curve Cryptography

ETX Expected Transmission count

FIFO First In First Out

FP False Positive

GEAR Geographical and Energy Aware Routing

GPS Global Positioning System

ID Identifier

IDS Intrusion Detection System

xiii

LEACH Low Energy Adaptive Clustering Hierarchy

LEEP Link Estimation Exchange Protocol

LQI Link Quality Indicator

LRU Least Recently Used

MAC Medium Access Control

MANTIS MultimodAl system for NeTworks of In-situ wireless Sensors

MANET Mobile Ad hoc Network

MCFA Minimal Cost Forwarding Algorithm

MWE Multiple Winner algorithm

NAWMS Nonintrusive Autonomous Water Monitoring System

nesC Network Embedded Systems C

ns-2 Network Simulator-2

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PRR Packet Reception Ratio

QoS Quality of Service

RandomLFSR Linear Feedback Shift Register pseudo random number generator

RandomMLCG Multiplicative Linear Congruential Generator

RETOS Resilient, Expandable, and Threaded Operating System

RF Radio Frequency

RIP Routing Information Protocol

RNP Required Number of Packets

xiv

RSSI Received Signal Strength Indicator

SNR Signal-to-Noise Ratio

SPIN Sensor Protocols for Information via Negotiation

Tcl Tool Command Language

TEP TinyOS Enhancement Proposal

THL Time Has Lived

TinyOS Tiny Operating System

TP True Positive

WMEWMA Window Mean Exponentially Weighted Moving Average

WSN Wireless Sensor Network

xv

List of Publications

Islam Hegazy, Reihaneh Safavi-Naini, and Carey Williamson, “Exploiting Routing Tree
Construction in CTP,” in Proceedings of the 12th International Workshop on Information
Security Applications (WISA), 2011.

Islam Hegazy, Reihaneh Safavi-Naini, and Carey Williamson, “Towards Securing MintRoute
in Wireless Sensor Networks,” in Proceedings of the 1st International Workshop on Data
Security and PrivAcy in wireless Networks (D-SPAN) / the 2010 IEEE International Sym­
posium on a World of Wireless Mobile and Multimedia Networks (WoWMoM), IEEE,
June 2010.

Rennie deGraaf, Islam Hegazy, Jeffrey Horton, and Reihaneh Safavi-Naini, “Distributed
Detection of Wormhole Attacks in Wireless Sensor Networks,” in Proceedings of the 1st

International Conference on Ad Hoc Networks (ADHOCNETS), vol. 28 of LNICST, pp.
208-223, Springer Berlin / Heidelberg, September 2009.

xvi

1

Chapter 1

INTRODUCTION

1.1 Motivation

A Wireless Sensor Network (WSN) is a special type of wireless networks composed of

small nodes that collect data from their surrounding environments. These nodes send

the collected data to a central collector for further processing, decision making, and

storage. This central controller is called a Base Station (BS) or a sink. The base station

connects the WSN to an existing infrastructure where the user can access the collected

data [1]. Recent technological advances in electro-mechanical systems, digital electronics,

and wireless communication have enabled the design and development of these nodes.

These nodes contain sensors to sense the environment, storage and processing units to

handle the data, and a wireless module for communication. These nodes are called

wireless sensor nodes or sensor nodes, for short. Advances in electro-mechanical systems

enable the components of a wireless sensor node to fit into a small chip. Advances in

digital electronics empower the small chips to process received data. Advances in wireless

communications enable the use of Radio Frequency (RF) antennas to relay the collected

data among the sensor nodes. These sensor nodes are small in size, low-cost, low-power,

and multifunctional [2, 3]. Figure 1.1 compares a sensor node to a quarter dollar 1 .

Although these advances in technology have helped in the wide use of WSNs, they

have their shortfalls on the development of the wireless sensor nodes as well. The sensor

nodes are highly constrained devices: they operate on batteries; and they have limited

computational and storage capabilities. As a result, applications of WSNs should con­

1Image is courtesy of http://www.russnelson.com/wisan/

http://www.russnelson.com/wisan

2

Figure 1.1: A sensor board compared to a quarter dollar

serve as much storage space and battery power as possible to prolong the lifetime of the

network. Despite their limited capabilities, WSNs are gaining more attention in sev­

eral application fields. WSNs can be used in: military applications, such as battlefield

surveillance; in environmental applications, such as fire detection; health application,

such as patient tracking; home applications, such as home automation; and other appli­

cations, such as interactive museums, managing inventory control, and vehicle tracking

and detection [4].

Sensor nodes play the dual role of collecting data and relaying data from other sensor

nodes until it reaches the base station. A WSN may be deployed in a vast area such that

not all the sensor nodes can communicate directly with the base station. To overcome

this limitation, the sensor nodes cooperate to deliver the data to the base station using a

routing protocol. Since the sensor nodes use wireless communication to relay the collected

data, they are susceptible to different types of attacks that target the routing protocol.

These attacks are different from the attacks against wired networks because they exploit

the wireless nature of communication in WSNs.

Attacks on WSNs take advantage of the wireless communication and the vulnerability

of sensors to being captured. It can be difficult to guarantee physical security for the vast

areas where WSNs are deployed; this enables attackers to capture and examine, modify,

3

or remove the sensors, and to insert devices such as malicious nodes or repeaters into the

environment. Modified or malicious nodes can be used by the attacker to launch different

types of attack against WSNs.

Because of the scarcity of the resources of sensor nodes, WSN routing protocols rarely

incorporate trust or security mechanisms. An non-trusted protocol is itself a security

threat to the WSN. Traditional security mechanisms that are developed for wired net­

works are not applicable for wireless sensor networks. First, some attacks are more

prominent in wireless networks, such as the wormhole attack and the RF signal dis­

tortion. Second, some security mechanisms, such as asymmetric key encryption, are

expensive to implement in the limited resources of the sensor nodes.

Even the security systems that are developed for wireless ad hoc networks may not be

directly applicable to WSNs because of the limited capabilities of the sensor nodes and

the different operations of both types of networks. Although WSNs share the property

of no infrastructure with wireless ad hoc networks, adopting ad hoc routing protocols in

WSNs may not be a feasible solution due to the inherent characteristics of WSNs.

Thus, new security systems are needed to protect WSNs from targeted attacks. Sev­

eral research studies have focused on the security challenges of WSNs. Many of these

studies have considered the attacks against the routing protocols in terms of the effect on

the availability of data in the network. However, research efforts on these attacks tend

to take a general approach and do not focus on specific WSN routing protocols. LIDeA

[5] and LAID [6] are two general architectures for Intrusion Detection Systems (IDSs) in

WSNs. Both architectures focus on the outcome of the attack and not on the frailties

of the routing protocols. There are several WSN routing protocols that differ in their

functions according to the network structure or the network operation. These differences

allow the attackers to launch specific attacks against the WSN routing protocols.

4

1.2 Problem Statement

One common categorization of routing protocols in WSNs distinguishes shortest path

routing protocols from link quality routing protocols. Shortest path or minimum hop

routing protocols construct a routing tree with the shortest paths between the sensor

nodes and the base station. These routes are not usually the best because the shortest

path routing protocols do not consider other factors along the paths, such as route

congestion or signal strength.

In link quality routing protocols, sensor nodes compute a quality metric for their links

and use it as the routing metric for relaying data. Link qualities can be end-to-end delay,

signal strength, available bandwidth, etc. This category of routing protocols may require

cooperation between the sensor nodes to compute the best routes to the base station.

Sensor nodes share information without any guarantee of the validity of this information.

For example, in MintRoute [7, 8], each node exchanges its expected packet reception ratio

with its neighbours. Then each node computes an estimate for the packet reception ratio

to the base station through each neighbour individually. Each node chooses the route to

the base station with the highest expected packet reception ratio. A malicious node can

exploit this feature and manipulate the link qualities to lure good sensor nodes.

The aim of a malicious node is to attract as much traffic as possible from its sur­

rounding neighbours. It may then launch another attack, such as a blackhole or selective

forwarding attack [9], a sinkhole attack [10], or a wormhole attack [11, 12]. The strength

of exploiting the link quality routing protocols stems from its transparency. The malicious

node neither performs extra communication nor requires additional hardware. Neither

encryption nor authentication can prevent this attack because the malicious node may

be an existing node that has been compromised. In this case, the malicious node has

legitimate keys to communicate with the other sensor nodes. Accordingly, other defence

5

mechanisms are needed to protect the WSN from such attacks.

1.3 Objective

The objective of this dissertation is to detect a malicious node that exploits the link

quality routing protocols of WSNs. This dissertation focuses on:

•	 analyzing the different types of link quality routing protocols;

•	 investigating the possible vulnerabilities of each type of link quality routing proto­

cols; and

•	 proposing and evaluating appropriate defence mechanisms.

This dissertation addresses the following questions:

•	 Can a security mechanism be implemented in WSNs without the help of cryptog­

raphy?

It is known that cryptography requires complex mathematical operation and pow­

erful resources. Both are hard to achieve in the resource-limited sensor nodes.

Securing WSNs without cryptography will be an advantage.

•	 Can the sensor nodes work independently to detect malicious nodes?

Independent detection neither requires exchanging information among the sensor

nodes nor sending it to the base station. Thus, it helps to eliminate extra traffic in

the network. Therefore, less power consumption is required.

1.4 Contributions

The major contributions of this dissertation are:

6

•	 A comprehensive study of the two types of link quality routing protocols is pre­

sented.

•	 Existing vulnerabilities in the two types of protocols are identified.

•	 Two IDSs are proposed to detect malicious nodes that exploit the discovered vul­

nerabilities.

•	 A simulator for a protocol of each type is built to evaluate the proposed IDSs.

This dissertation adopts analysis and simulation as the research methodologies. Two

simulators are built to simulate a malicious node that exploits the identified vulnerabil­

ities of each type of link quality routing protocols. In addition, two IDSs are proposed

and simulated to detect the malicious node. The success of the IDSs is measured by

the percentage of data delivery at the base station before and after detection. A second

metric is the number of true detections versus the number of false detections.

1.5 Thesis Organization

This thesis is organized as follows.

Chapter 2 provides a thorough background survey on WSNs. It gives an emphasis on

the routing protocols in WSNs, their classification, and metrics. Security threats to WSNs

are explained and then a survey of previous works that propose defence mechanisms

against routing attacks ends the Chapter.

Chapter 3 focuses on the link quality routing protocols and their importance in WSNs.

The Chapter gives an in depth analysis of the common link quality estimators that are

used in link quality routing protocols. The adopted research methodologies used in

this dissertation are explained next. The Chapter ends by explaining the simulation

framework.

7

Chapter 4 explains the details of MintRoute. An explanation of the components

of MintRoute and how they integrate together is provided. An explanation of how a

malicious sensor node can violate the operations of MintRoute to attract network traffic

to its favour is provided next. The proposed IDS and how it works transparently in a

WSN using MintRoute is explained. Finally, the Chapter explains possible scenarios of

a malicious node behaviour and how the proposed IDS is adapted to detect it.

Chapter 5 presents the simulation results of detecting MintRoute vulnerability. The

Chapter begins with explaining the simulation setup and the configurations of the WSNs.

The measurement metrics used to evaluate the proposed IDS are explained and finally,

the outputs of the simulation are presented and discussed.

Chapter 6 focuses on the details of Collection Tree Protocol (CTP) and its vulnera­

bilities. An explanation of the components of CTP and how they integrate begins the

Chapter. The vulnerabilities that a malicious node can exploit are highlighted. The

Chapter ends with a proposed IDS to detect the vulnerabilities of CTP.

Chapter 7 presents the results of simulating CTP and its proposed IDS in Network

Simulator-2 (ns-2). The configuration of the simulation environment is provided. The

simulation results show that the proposed IDS detects the malicious nodes effectively.

Finally, Chapter 8 concludes the thesis and suggests future work.

8

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Introduction

This Chapter gives an overview of the world of WSNs. It begins by giving a thor­

ough background on WSN structures, advantages, and applications. Then the Chapter

emphasizes the role of routing protocols in WSNs, their classifications, and their perfor­

mance and cost metrics. The security threats that target WSNs are explained next. The

Chapter ends with explaining how to secure WSNs using three main security areas: key

distribution, cryptography, and intrusion detection.

2.2 Wireless Sensor Networks

A WSN contains dozens of wireless sensor nodes deployed randomly in an unattended

environment to collect data. They can be deployed on the ground, in the air, in vehicles,

or inside buildings. These sensor nodes are limited in resources, which mean that they

cannot process the collected data or store it for long periods of time. Therefore, the

wireless sensor nodes forward their collected data to a base station that is capable of

processing and storing the collected data. The base station is usually far from the source

of the data.

The base station collects the sensed data from the sensor nodes, and then it processes,

analyzes, and stores the data. The data is made available to the end-user through

connecting the base station to an enterprise network or the Internet. A WSN can have a

single or multiple base stations with mobile or fixed scenarios [3]. In a mobile scenario,

the sensor nodes sense and save data from their surroundings, while a base station roams

9

the vicinity of the WSN to collect the saved data. Fixed scenarios are more common in

WSNs where the sensor nodes sense and forward their sensed data to the base station

using a wireless multihop infrastructureless architecture [2]. To relay their data, the

sensor nodes form a spanning tree rooted at the base station that connects all sensor

nodes. For example, Figure 2.1 shows a hypothetical WSN installed in different buildings

at the University of Calgary campus to monitor, for example, temperature levels.

Figure 2.1: A routing tree rooted at the base station

A sensor node typically contains: a sensing chip to sense environmental or physical

parameters, a microcontroller to process data and perform networking operations, a radio

transceiver to send and receive data, and a power source to feed all other components.

Figure 2.2 shows the typical components of a sensor node. The sensing chip has one

or more sensors to sense the environmental parameters, such as temperature, pressure,

or light intensity, or to sense physical parameters, such as blood pressure. The micro-

controller provides the computational capabilities to the sensor node and it has access

to a memory component. The radio transceiver provides the wireless communication

capability and it has access to a small or an embedded antenna. The power source could

be a number of AA batteries or solar panels. There could be other components in the

sensor nodes, such as a Global Positioning System (GPS) circuit for localization purposes

10

[13, 14]. A number of sensor nodes has been developed in recent years including Imote2

[15], Iris [15], Mica2 [15], MicaZ [15], Telos [15], Cricket [16], and SunSPOT [17]. Al­

though the sensor nodes communicate together using wireless communication, they may

interface with wired networks with Ethernet, WiFi, USB, or serial ports. This interfacing

enables programming the sensor nodes or gathering information from them [2].

Figure 2.2: Main components of a sensor node

To build a practical WSN on a large scale in an unattended environment, the recent

technological advances enable to have wireless sensor nodes that have the following fea­

tures: small in size to achieve portability; low in cost to achieve feasibility; and low in

consuming battery power to achieve prolonged lifetime [13]. However, the design of the

sensor nodes put multiple challenges for developing software applications for WSNs [18]:

•	 Limited resources : The sensor nodes have limited processing, storage, and commu­

nication resources. In addition, the power supply is limited and the communication

bandwidth is scarce.

•	 Limited support for networking : A WSN is like a peer-to-peer network, where each

sensor node is both a router and an application host. Thus, the routing protocols

are not generic and they are application centric.

•	 Limited support for software development : Given the limited capabilities of the

sensor nodes, the developed software for the WSNs has to be simple, efficient, and

11

lightweight. Moreover, only software related to the application of the WSN should

be installed on the sensor nodes.

2.2.1 WSNs and Ad hoc Networks

Ad hoc networks are a special type of wireless networks that have no infrastructure. Thus,

the nodes of an ad hoc network must provide for services such as addressing, routing,

and more [19]. Although one may think of a WSN as a type of ad hoc networks, they

have some differences:

•	 The number of sensor nodes in a WSN can be orders of magnitude larger than the

number of nodes in an ad hoc network [13].

•	 The sensor nodes are prone to failure because of their limited capabilities and low

cost. However, the nodes in an ad hoc network, such as laptops, have more resources

and stronger capabilities [13].

•	 Many of the applications of WSNs do not require mobility. Whereas, ad hoc net­

works will form a Mobile Ad hoc Network (MANET) if the nodes are mobile. The

mobility of MANETs requires the routing protocols to be adaptable to mobility

[13].

•	 WSNs can be data centric, which means that data is requested based on specific

criteria. For example, the base station can query the sensor nodes to send their

temperature reading if it is greater than 25◦C [20].

•	 Sensor nodes in a WSN may aggregate data from adjacent sensor nodes since the

data may have similar values [20].

•	 WSNs are application-specific, which affects the requirements of each WSN. Some

applications may require mobility, others may require data aggregation, and others

12

may require random deployment [20].

Although both ad hoc networks and WSNs allow multihop communication, there are

several distinctions between their communication patterns. Ad hoc networks allow the

communication of any pair of nodes, whereas the communications in WSNs fall into three

categories [11, 21]:

•	 Many-to-one: sensor nodes send their data to the base station communication for

further processing and analysis. Also, they can send the data to cluster heads,

where the cluster heads aggregate the data.

•	 One-to-many : base station sends queries or reprogramming tasks to all sensor

nodes.

•	 One-to-one: base station sends specific requests to a sensor node. Also, a sensor

node relays data to another sensor node.

Thus, the routing protocols of ad hoc networks are not directly applicable in WSNs

and more specialized routing protocols are needed.

2.2.2 Operating Systems for WSNs

An operating system is software that resides between the hardware and the software

applications. It provides basic programming abstractions to enable the applications to

interact with hardware resources, schedule tasks, and resolve conflicts between contending

applications that try to seize resources. Other duties of an operating system include

memory management, file management, power management, and networking [22].

Like other computational devices, the sensor nodes need an operating system to func­

tion. However, the limited resources of the sensor nodes and the requirements of the

applications for the WSNs put constraints on the capabilities of the operating systems

13

for WSNs. Researchers at UC Berkeley have led the development of operating systems

for WSNs by developing Tiny Operating System (TinyOS) [23].

TinyOS is an event-driven operating system developed for sensor nodes that have

limited resources. It has a small memory footprint and excellent power management.

TinyOS is open-source software written in Network Embedded Systems C (nesC) [24, 25].

nesC is a dialect of the C programming language that supports event-driven program­

ming. TinyOS meets the limited resource capabilities of the sensor nodes by excluding

some of the common features of large operating systems, such as multithreading. These

exclusions have led to the development of other operating systems to meet these capa­

bilities, such as MANTIS [26], Contiki [27], SOS [28], and LA-TinyOS [29]. However,

TinyOS has become the de facto industry standard operating system for WSNs [14].

The primary goal of MultimodAl system for NeTworks of In-situ wireless Sensors

(MANTIS) is ease of use, while adhering to the limited resources of the sensor nodes.

To achieve its goal, MANTIS is written entirely in standard C, which gives the pro­

grammers the features of large operating systems, such as multithreading, pre-emptive

scheduling, and a standard network stack. Contiki is another event-driven operating

system for WSNs that supports dynamic loading and replacement of programs and ser­

vices. Unlike TinyOS, Contiki supports multithreaded applications. SOS takes a more

dynamic approach to the design than TinyOS. In TinyOS, the sensor nodes run a sin­

gle statically-linked image of the operating system. This makes it hard to run multiple

applications or update them. SOS consists of dynamic modules that can be loaded or

unloaded during run-time. LA-TinyOS extends TinyOS to support temporal and spatial

locality for better event detection and lower energy consumption. It provides kernel-level

support for the development of locality-aware tasks.

MagentOS [30] is another operating system for WSNs that employs a distributed

model approach. MagentOS treats the whole WSN as a single computational device.

14

It partitions the application into small components and dynamically places them on

the sensor nodes within a WSN. This partitioning reduces energy consumption, avoids

hotspots, and increases the lifetime of the sensor nodes.

Resilient, Expandable, and Threaded Operating System (RETOS) [31] is another

multithreaded operating system for WSNs. RETOS provides system resiliency, kernel

extensibility, and dynamic configuration.

2.2.3 Protocols for WSNs

Like other types of networks, WSNs need layers of protocols to organize the functionalities

of the sensor nodes. The protocol stack of the sensor nodes is based on the Open Systems

Interconnection (OSI) reference model [32]. It comprises five layers out of the seven layers

of the OSI reference model. Figure 2.3 shows the five layers of the WSN protocol stack.

The physical layer is responsible for the modulation, transmission, and reception

mechanisms. These mechanisms help the physical layer to convert meaningful data into

wireless signals and vice versa [2, 13].

The data link layer ensures reliable communication and provides error detection mech­

anisms. It also manages channel access to minimize packet collisions. These issues are

resolved for the immediate neighbouring sensor nodes [2, 13].

The routing layer is responsible for establishing routes to the base station that sat­

isfy the criteria of choosing a route. These criteria can be low energy consumption, or

low delay, or a combination of desirable features. Once routes are established to the

base station, sensed data is relayed on a multihop communication basis. The routing

layer is responsible for maintaining alternative routes in case the primary route becomes

unavailable [13].

The main goals of the transport layer are to achieve end-to-end reliable data trans­

mission and to reduce network congestion. Since the goals of the transport layer are

15

fulfilled by the two end points of communication, the transport layer exists in the base

station and it functions on the sender sensor node only [13].

Finally, the application layer contains the software application of the WSN. It defines

the display format for the gathered data from the sensor nodes. The application layer

exists in the base station only. The sensor nodes relay data only, and do not display or

process it for the end-user [13].

Figure 2.3: WSN protocol stack

2.2.4 Advantages of WSNs

Despite the limited resources and the challenges of deploying WSNs, their deployment

comes with several advantages over wired networks:

•	 Coverage of a large area: Deploying a large number of sensor nodes can be helpful

to cover a large area that will be costly to cover using traditional networks [20].

•	 Ease of deployment : WSNs can be deployed without any prior organization. As

soon as the sensor nodes are deployed, they self-organize to form a WSN. This

gives flexibility to deployment and reduces the cost and time of deployment [20].

•	 Ease of scalability : It is easy to deploy new sensor nodes in a WSN to increase the

coverage area or to replace sensor nodes [33].

16

•	 Fault tolerance: Because of the dense deployment of sensor nodes, WSNs can op­

erate reliably, even with the failure of some sensor nodes because multiple sensor

nodes monitor the same area [20, 33].

•	 Higher level of confidence: Because an event may be detected and collected by

more than one sensor node, the base station will have more confidence in the data

received from the sensor nodes [33].

•	 Improved sensing quality : Local sensor nodes can collaborate to send a summary

to the base station rather than sending all the data [33].

•	 Less human interference: Since human access to some environments may be diffi­

cult or undesirable, the sensor nodes can be scattered from an airplane in hostile

environments. Also, due to their small size, sensor nodes have a small footprint on

the environment [33].

•	 Less total energy consumption: A multihop WSN saves more power than a single-

hop WSN. However, there is a tradeoff between the number of sensor nodes and

total energy consumption. An excess number of sensor nodes may lead to more

total energy consumption than a single-hop WSN [18].

2.2.5 Applications of WSNs

WSNs applications collect data from the sensor nodes in three reporting modes: event-

driven, periodic, and on-demand reporting. In the event-driven reporting mode, the sensor

nodes will sense and report data if an event occurs in their surrounding environment. For

example, if a WSN is deployed in a forest to monitor forest fires, then the sensor nodes

will report back to the base station if a fire occurs in the forest. Event-driven reporting

is characterized by its real-time nature. Thus, the data should reach the base station as

quickly as possible [3].

17

Unlike event-driven reporting, periodic reporting is used when the data is not urgent.

The sensor nodes report sensed data to the base station at predefined periods of time.

Further, in periodic reporting all the sensor nodes send their data to the base station,

whereas in event-driven reporting, only the sensor nodes in the vicinity of the event report

it to the base station. An example of periodic reporting application is habitat monitoring.

A sensor node attached to a bear reports back to the base station at predefined periods

of time to locate the bear [3].

On-demand reporting applications send requests to the sensor nodes to send their

sensed data. For example, an application that monitors chemical pollutants in water

may send a request to the sensor nodes to sense the pollutants and report the values to

the base station when required [3].

Besides the three reporting modes, the sensor nodes apply one of two operations on

data: data gathering, and data aggregation. Data gathering means that all sensor nodes

send their data to the base station without any changes along the route. This data can

be redundant, correlated, or inconsistent. Data aggregation combines data from different

sensor nodes to eliminate redundancy and to minimize the number of transmissions [3].

In data aggregation, some sensors are designated as cluster heads. A cluster head sensor

node gathers the data from its cluster, aggregates it, and sends a single value to the base

station.

WSNs have been deployed in several fields. They can be used to monitor traffic,

habitat, or chemical pollutants. They can be used in protecting the infrastructure, such

as oil facilities, power grids, and water distribution facilities. Other fields such as health

care systems, military, smart homes, and warehouse management also benefit from the

deployment of WSNs [3, 13]. The following are some real-life implementations of WSNs.

18

WSNs in Health Care

Sensor nodes are attached to patients to monitor and analyze data, such as pulse and

blood pressure. In emergency cases, the sensor nodes send alarm messages to a nearby

base station. To minimize the probability of lost alarms and to speed the reporting

time, multiple base stations could be installed in the premises so the sensor nodes can

communicate with the nearest base station in a single hop [3].

The CodeBlue project [34] attaches sensor nodes to patients to monitor pulse rate,

blood oxygen saturation, patient movements, and muscular activities. The miTag plat­

form [35] includes pulse oximetry, blood pressure, and temperature sensors to monitor

and assess vital signs of casualties.

WSNs in Habitat Monitoring

Human presence in the habitats of animals, birds, or plants can have undesired impacts.

WSNs can help researchers in life sciences to monitor such habitats with minimum pres­

ence of humans. A WSN has been used to monitor the behaviour of petrels in the

breeding season in Great Duck Island. The researchers have installed the WSN before

the petrels migrated to the island for breeding. The WSN has been used to describe the

usage pattern of the nesting burrows and the changes in the burrows and the surrounding

environment during the breeding season [36].

ZebraNet [37] is a WSN that is used to track the pattern of Zebra movement, their

interaction, and the impact of human development. Another WSN is provided in [38] to

monitor and control the farms of swift birds.

WSNs in Environmental Monitoring

In the field of geology, WSNs can be used in dangerous environments. WSNs can be used

to monitor the interior structure of a volcano or to differentiate true volcanic eruptions

from other sources of noise. For example, a WSN has been used to monitor the eruptions

19

of volcanos in central Ecuador [39, 40].

The Columbia River Ecosystem (CORIE) [41] is a WSN deployed at the estuary of

the Columbia River to measure water velocity, temperature, salinity, and depth. WSNs

can also be used to warn against floods as explained in [42].

WSNs in Military

One of the tasks in military applications is to detect attacks by chemical or biological

weapons before proceeding to a conflict zone. Such detection will help military personnel

to plan for evacuation procedures or to avoid contaminated areas. An airplane can spread

chemical sensor nodes in the suspected areas via the air. Once the sensor nodes reach

the ground they form a WSN and start sensing the required parameters and send the

readings to the base station [43].

Other military applications include the Boomerang sniper detection system [44] and

VigilNet [45]. Boomerang uses acoustic sensor nodes to detect the sound of firing of

snipers. VigilNet is a surveillance WSN for target tracking in harsh environments.

WSNs in Commercial Applications

The complex physical systems in airplanes can benefit from the usage of WSNs. A WSN

can be installed in an airplane to monitor, for example, the status of the engines. The

sensor nodes can sense various physical parameters, such as oil level and temperature.

The values of these parameters can be transmitted to a base station in the cockpit or on

the ground for further analysis. This will provide the maintenance crew with immediate

diagnosis of the airplane [46].

WSNs have been used in civil engineering to monitor the health of structures by

tracking the spatio-temporal patterns of vibrations [47]. The Nonintrusive Autonomous

Water Monitoring System (NAWMS) [48] is developed using WSNs to detect water usage

in houses.

20

2.2.6 Definitions of WSNs

WSNs are an interdisciplinary research area that draws contributions from several fields,

such as networking and signal processing. In the following, the definitions of the key

terms that are used throughout the dissertation are given.

•	 Sensor : It is a transducer that converts a physical phenomenon, such as tempera­

ture, sound, or motion into a digital form that can be further processed by software

applications. There are different types of sensors that measure different phenomena.

For example, thermal sensors measure temperature values, electrochemical sensors

sense chemical components, and acoustic sensors sense sound waves [18, 49, 22].

•	 Sensor node: It is the main component of WSNs. It encompasses one or more

sensors, a processor, a memory chip, a power supply, and a wireless modem. These

components are called resources and they are mounted on one board [18].

•	 Base station: It is the central controller of a WSN. It receives the sensed data

from the sensor nodes for analysis and processing. It may send queries to the

sensor nodes to request data. The base station provides an interface for the end-

user to deal with the WSN. It has more resources and more powerful processing

capabilities than the sensor nodes. The base station is also called a sink [19].

•	 Route: It is the sequence of links that a packet traverses to reach the base station

from a sensor node. The terms route and path are used interchangeably throughout

the dissertation [19].

•	 Routing : It is the process by which the sensor nodes construct routes to the base

station. The main goal of the routing process is to establish low-cost routes to the

base station. The cost of a route is the sum of the costs of all links along that

route. The routing process is performed by a routing protocol [32].

21

•	 Cost metric: It is the metric by which the routing protocol chooses the low-cost

route to the base station. There is a number of route costs that the routing protocol

needs to satisfy, such as shortest path, least packet loss, or available power.

•	 Routing tree: The routing tree represents the routes from the sensor nodes to the

base station with one route only for each sensor node. In WSNs, the base station

is always the root of the routing tree, i.e., the final destination of any route in the

network.

•	 Subtree: It is a portion of the routing tree where all sensor nodes have their routes

passing through a common sensor node. The subtree is identified by that common

sensor node.

•	 Beacon: It is a packet sent by a sensor node to announce its presence and update

neighbouring sensor nodes with its routing information. It is also called a route

update.

•	 Neighbour : It is a sensor node that is within the communication range of another

sensor node. Both sensor nodes communicate directly using a wireless link.

•	 Next-hop: It is the neighbouring sensor node chosen with respect to a routing

protocol to relay the data to the base station. The next-hop is also called the

parent sensor node. The sender of the data is called the child sensor node.

•	 Forwarding : It is the process of sending data from the child sensor node to the

parent sensor node.

•	 In-network : It is a type of processing that occurs in the sensor nodes. It means

that the sensor nodes do some processing on the data before sending it to the base

station [18]. For example, a sensor node may collect some data and send the average

only to the base station.

22

•	 Unicast : It is a type of transmission where packets are sent to one destination [22].

•	 Broadcast : It is a type of transmission where packets sent by a sensor node are

received by all its neighbours [22].

•	 Multihop: It is a type of transmission where packets traverse multiple links to reach

the final destination, which is the base station in case of WSNs.

•	 Good sensor node: It is a sensor node that follows the routing protocol and does

not perform any malicious behaviour.

•	 Malicious node: It is an attacker node that compromises the routing protocol to

its favour.

2.3 Routing Protocols for WSNs

The sensor nodes play a dual role of collecting data from their surrounding environments

and sending it to the base station. Therefore, the sensor nodes need routing protocols to

determine how the collected data will reach the base station. As mentioned before, the

sensor nodes are limited in resources and computational capabilities. Since WSNs are

mostly deployed in unattended environments, increasing their lifetimes becomes essential.

As a result, the resource intensive routing protocols of traditional wired and wireless

networks do not suit the WSNs for the following reasons [20]:

•	 WSNs suffer from high bit error rates, whereas traditional routing protocols assume

highly reliable connections [13].

•	 WSNs are designed to be deployed randomly with no infrastructure. Thus, the sen­

sor nodes should be self-organizing and cope with the resultant nodal distribution.

23

•	 WSNs are application specific, which means that their designs differ for each ap­

plication. A WSN to monitor vehicular traffic has a different design from another

WSN for weather monitoring.

•	 WSNs are stationary in most scenarios. Thus, there are no frequent topological

changes. Even if mobility is permitted in a WSN, it is very limited.

•	 WSNs may apply data aggregation and in-network processing to minimize data

transmission.

•	 WSNs are data-centric, which means data may be requested based on specific

attributes. In attribute-based addressing, the sensor nodes are addressed by an

attribute-value pair rather than by their unique Identifiers (IDs). For example, if

the base station initiates a query for temperature > 25◦C, then only sensor nodes

with temperature readings above 25◦C will report back their readings.

•	 WSN applications may be more interested in knowing the location of the sensor

nodes rather than their IDs to determine the location of reported phenomena. A

GPS may not be feasible for the resource-constrained devices, thus the sensor nodes

use other methods to approximate their locations, such as triangulation [50].

The routing protocols for WSNs typically begin constructing routes to the base station

by neighbour discovery. Sensor nodes send out beacons to announce their presence. Upon

receiving beacons from their neighbours, the sensor nodes build local neighbour tables.

These tables often include: each neighbour’s ID, delay via that neighbour, location of

that neighbour, and an estimate of link quality to that neighbour [13, 51]. Routing

protocols specify a cost metric for the purpose of choosing a next hop. For example, next

hop may be the neighbour with the lowest delay to deliver data to the base station or

the closest neighbour to the base station. Although the routing protocols for WSNs look

24

simple, some challenges face their design [20, 52]:

•	 Communication range: Routing protocols should support multihop communication

to overcome the limitation of short wireless ranges. Therefore, the path from a

sensor node to the base station will likely contain multiple wireless hops.

•	 Connectivity : Routing protocols should handle the high connectivity resulting from

the dense deployment of sensor nodes efficiently.

•	 Control overhead : Routing protocols may use control packets to maintain the routes

between the sensor nodes and the base station. As the node density increases, the

transmission of control packets increases in the wireless medium, leading to more

latency and energy consumption. As a result, tradeoffs between conserving energy,

latency, and maintaining routes may exist.

•	 Energy consumption: Routing protocols should be energy-efficient to conserve the

battery power of the sensor nodes. For example, beacons or route updates should

be small and infrequent to minimize the number and duration of transmissions.

•	 Fault tolerance: Routing protocols should be adaptive to failures that occur due to

power depletion, physical damage, or environmental interference. They should be

able to find new routes to the base station or adjust transmission powers to reduce

energy consumption.

•	 Limited resources : Routing protocols should be lightweight and simple to meet the

limited resources and capabilities of the sensor nodes.

•	 Quality of Service (QoS): Routing protocols should be aware of QoS requirements.

For example, in some health applications, it is critical to deliver the information

about the patients as quickly as possible to the base station.

25

•	 Random deployment : Routing protocols should be able to deal with the randomness

and nodal distribution of random deployment.

•	 Scalability : Routing protocols should be scalable to embrace new sensor nodes that

replace failed sensor nodes or to embrace new ones to expand the WSN.

•	 Security : Routing protocols should balance between the security level and the

energy consumption. Security is important in wireless communication to ensure

data availability, confidentiality, and integrity.

•	 Transmission media: Routing protocols should consider wireless channel problems,

such as fading and interference, and the scarce bandwidth. The available bandwidth

for WSNs is low in the order of 1-100 kb/s.

2.3.1 Classification of WSN Routing Protocols

Many classifications have been proposed for the routing protocols of WSNs. Al-Karaki

and Kamal [1] have proposed a general classification that is widely recognized. Other

classifications tend to classify the routing protocols according to a specific attribute. For

example, Acs and Buttyan [53] classify the routing protocols for WSNs according to how

the next hop is chosen. Lotf and Ghazani [54] classify the routing protocols according to

the knowledge of the sensor nodes about the network topology. We explain the details

of the three classifications next.

According to the classification of Al-Karaki and Kamal [1], the routing protocols are

classified according to the network structure, the protocol operation, or how the

source finds the destination. Each of these classes are further divided into subclasses.

Figure 2.4 shows the three classes and their subclasses.

The network structure routing protocols are further classified into flat routing pro­

tocols, hierarchical routing protocols, and location-based routing protocols. In flat routing

http:protocols.In

26

Figure 2.4: Classification 1 of WSNs routing protocols

protocols, all the sensor nodes play the same role in the network, such as data collection.

Sensor Protocols for Information via Negotiation (SPIN) [55], Directed Diffusion [56],

Energy Aware Routing [57], and Minimal Cost Forwarding Algorithm (MCFA) [58] are

examples of flat routing protocols. In hierarchical routing protocols, the sensor nodes play

different roles in the network, such as data collection and data aggregation. The sensor

nodes form clusters with some nodes acting as cluster heads. Each cluster head aggre­

gates the collected data from the sensor nodes in its cluster and sends a single report to

the base station. Cluster heads can be more capable nodes or regular sensor nodes where

they rotate roles periodically. Low Energy Adaptive Clustering Hierarchy (LEACH) [59]

is one of the early hierarchical routing protocols for WSNs. Finally, in location-based rout­

ing protocols, the positions of the sensor nodes are considered when choosing the routes to

the base station. Sensor nodes can estimate distances between them using, for example,

signal strength. For example, Geographical and Energy Aware Routing (GEAR) [60] is

a location-based routing protocol for WSNs.

The protocol operation class is divided into multi-path routing protocols, QoS­

based routing protocols, coherent-based routing protocols, query-based routing protocols,

and negotiation-based routing protocols. For fault tolerance purposes, multi-path routing

protocols construct multiple paths between each sensor node and the base station. If the

primary path becomes unavailable, then the sensor nodes can switch quickly to another

27

path. Directed Diffusion is a multi-path routing protocol for WSNs. The QoS-based

routing protocols have to satisfy certain metrics when forwarding data, such as delay,

or energy consumption. SPEED [61] ensures a certain speed to deliver collected data

to the base station. In coherent-based routing protocols, the sensor nodes cooperate to

process the forwarded data in the network. For example, since multiple sensor nodes

sense the same phenomenon, many will have the same or similar readings. As a result,

the sensor nodes can reduce the amount of traffic in the WSN by testing the ambient

traffic to drop duplicate readings. Multiple Winner algorithm (MWE) [62] is an example

of coherent-based routing protocols for WSNs. In a network that uses query-based routing

protocols, such as Directed Diffusion, the sensor nodes do not send the collected data to

the base station but they rather wait for the base station to request the data. The base

station may request data from a special region of interest or it may request data with

specific attributes, using attribute-based addressing. Instead of flooding the WSN with

redundant traffic, sensor nodes using negotiation-based routing protocols exchange a series

of negotiation messages to suppress the duplicate copies of data from being forwarded.

SPIN provides a family of protocols that are negotiation-based.

Finally, the source-destination class is divided into proactive routing protocols and

reactive routing protocols according to how the source finds a route to the destination.

The reactive routing protocols are on-demand, which means that routes are constructed

only if they are needed. TinyAODV [63] is an example of reactive routing protocols. On

the other hand, proactive routing protocols, such as CTP [64], establish routes between

the sensor nodes and the base station before the routes are needed, even if they are never

used. A routing protocol may adopt a hybrid approach of both subclasses.

According to this classification, routing protocols for WSNs fall in a subclass in each of

the three classes. For example, a routing protocol may be flat, multi-path, and proactive.

The classification of Acs and Buttyan [53] is based on the way the next hop is selected

28

to relay the data packets to the base station. This classification divides the routing

protocols into five classes as shown in Figure 2.5.

Figure 2.5: Classification 2 of WSNs routing protocols

Content-based routing protocols, such as Directed Diffusion, select routes to the

base station based on the content of the queries sent by the base station to gather data.

For example, only the sensor nodes in a region of interest establish routes to the base

station.

Location-based routing protocols choose next hops based on their locations rel­

ative to the base station. If the sensor nodes do not know their locations, then they can

use computational methods, such as triangulation, to estimate their physical locations.

These methods add computation overhead on the routing protocol. GEAR is an example

of these protocols.

Hierarchical-based routing protocols aim to reduce the communication overhead

and to conserve power. Sensor nodes send their sensed data to other nodes in a higher

level. These higher level nodes, cluster heads, aggregate the sensed data and send the

result to the base station. Hierarchical-based routing protocols are mainly based on

LEACH.

The sensor nodes implementing a broadcast-based routing protocol decide indi­

vidually whether or not to forward a packet. If a sensor node decides to forward a packet,

then it will simply broadcast it. Otherwise, it will drop the packet. For example to drop

a packet, a sensor node compares its cost with the cost of the sender that is embedded

29

in the packet. MCFA is a representative routing protocol of this class.

Probabilistic routing protocols aim to load-balance the selection of next hops

and to increase the robustness of the routes. For example, they can choose routes that

have power levels above a certain threshold to prevent power depletion of heavily used

sensor nodes. These protocols assume homogenous and randomly deployed sensor nodes.

Energy Aware Routing is an example of probabilistic routing protocols.

A recent classification by Lotf and Ghazani [54] classifies WSNs routing protocols

based on the knowledge of the sensor nodes about the network topology into topology

aware routing protocols and topology unaware routing protocols. In topology

aware protocols, the sensor nodes have a global view of the routing tree after the

protocol is run. This means that each sensor node has a copy of the complete routing tree.

On the other hand, in WSNs implementing topology unaware protocols, the sensor

nodes have a local view of the routing tree. A local view means knowing neighbouring

sensor nodes only. Figure 2.6 shows this classification and its subclasses.

Figure 2.6: Classification 3 of WSNs routing protocols

Topology aware routing protocols are inherited from the routing protocols of

wired and traditional wireless networks. These protocols were designed without the

constraints of WSNs in mind. As a result, they are not popular in WSNs implementations

http:protocols.In

30

and their applicability is limited to small WSNs. This class contains four subclasses:

link state routing protocols, such as Open Shortest Path First (OSPF) [65], distance

vector routing protocols, such as Routing Information Protocol (RIP) [66], table-driven

routing protocols, such as Destination-Sequenced Distance-Vector Routing (DSDV) [67],

and on-demand routing protocols, such as Ad hoc On-demand Distance-Vector (AODV)

[68]. Link state routing protocols broadcast local routing information to all nodes in

the network, whereas distance vector protocols share network wide information with

neighbouring nodes only. Both subclasses use the hop count metric to construct the

shortest routes to the root node. Table-driven routing protocols and on-demand routing

protocols are designed for traditional wireless networks. They address the problem of

frequent unavailability of links due to the wireless medium or mobility of nodes. Table-

driven or proactive routing protocols exchange routing tables periodically among the

neighbouring nodes. On-demand or reactive routing protocols construct routes only when

required by the source node. Neither subclass is suitable for WSNs since they are energy

inefficient and computationally expensive, and they introduce a large amount of overhead

in large networks.

Topology unaware routing protocols are designed mainly for the resource-limited

WSNs. This class contains five subclasses: flooding routing protocols, data-centric routing

protocols, location-based routing protocols, energy-aware routing protocols, and cluster-

based routing protocols. In flooding routing protocols, nodes that receive route update

packets or beacons rebroadcast them until a maximum number of hops is reached. Data-

centric routing protocols, such as SPIN, depend on the base station to request data from

the sensor nodes. When the base station initiates a request to collect data, only sensor

nodes that have this data reply back to the base station. Location-based routing protocols,

such as GEAR, are important in two cases. The first case is when the base station is

interested in gathering data from a certain location. Then it sends a data query with

http:protocols.In

31

the location of interest and sensor nodes in that location reply back. The second case

is where the sensor nodes themselves need location information to compute a routing

metric, such as energy consumption. The objective of energy-aware routing protocols,

such as energy aware routing, is to increase the lifetime of the network. Routes are

chosen by means of certain probabilities to achieve low-energy consumption along the

route. These probabilities use different metrics, such as energy consumed per packet

or node’s power level. Finally, cluster-based routing protocols, such as LEACH, aim to

reduce the redundancy in sensed data and minimize the transmissions in the network to

conserve the power. The sensor nodes are divided in two levels. Low-level sensor nodes

sense data and send it to the high-level sensor nodes. High-level sensor nodes, cluster

heads, aggregate the sensed data and send one report to the base station.

2.3.2 Performance Metrics for WSN Routing Protocols

To evaluate the performance of the different routing protocols for WSNs, there are several

metrics to that can be used:

•	 Data delivery : This metric measures the total amount of data delivered to the base

station compared to the total amount of data sent from the sensor nodes. This

metric is also called end-to-end success rate [7].

•	 Energy efficiency : This metric indicates how much the routing protocol consumes

energy [69].

•	 Fault-tolerance: This metric indicates how robust the routing protocol is against the

failures of sensor nodes. For example, it can be achieved through data replication

or having multiple paths to the base station [69].

•	 Latency : This metric computes the delay from the moment data is collected until

it reaches the base station [69].

32

•	 Path length: This metric computes the number of hops from the source sensor node

to the base station [70].

•	 Path reliability : This metric is the product of link qualities along the path from

each sensor node to the base station. It measures the end-to-end reliability [7].

•	 Routing overhead : This metric estimates the consumed energy to establish a route

from a sensor node to the base station [70].

•	 Scalability : This metric measures how scalable a routing protocol is to accommo­

date new sensor nodes in the WSN [69].

•	 Stability : This metric measures the total number of route changes in the WSN over

a period of time [7].

2.3.3 Cost Metrics for WSN Routing Protocols

There are numerous cost metrics that routing protocols use to evaluate routes to the base

station. This evaluation is done on a link-by-link basis where a neighbouring sensor node

with the best link cost is chosen as the next hop. The cost of a route is the sum of all

costs of all the links along that route. A single routing protocol can use one metric or a

combination of metrics to evaluate the possible routes to the base station.

Hop count is a basic cost metric to evaluate the routes in a WSN. It is defined as

the number of hops or links between one sensor node and another. Two adjacent sensor

nodes have a hop count value of one. Hop count is not the best cost metric for evaluating

the routes in WSNs because it does not consider the limited resources of the sensor

nodes. For example, two adjacent nodes that are distant will have a hop count value of

one if they communicate directly. These distant sensor nodes may perform worse than

two closer sensor nodes because many retransmissions may be required due to the low

33

probability of receiving packets. In this case, a multihop route is better than the single

hop route [3].

Power-aware Metrics

Using the hop count metric may lead to congestion in the WSN because a sensor node

close to the base station will be included in many routes. This congestion leads to the

rapid depletion of the battery power of a sensor node because it will transmit more

forwarded traffic than other sensor nodes. Power-aware metrics solve this problem by

distributing the routes on multiple sensor nodes depending on remaining power of bat­

teries or energy required to transmit data. Power-aware metrics deplete the power of the

batteries at the same time. This is more advantageous because a set of new nodes can

be deployed at the same time instead of node-by-node deployment.

Reluctance is a power consumption metric that avoids sensor nodes with low remain­

ing battery power. It is measured as the inverse of the remaining battery power at a

sensor node. A sensor node with a low battery power level will have a high reluctance

value. The best route to the base station is a route with sensor nodes that have a

minimum threshold of remaining battery power [3, 71].

Maximum power available is another power metric. Only sensor nodes that have the

highest battery power levels, i.e., battery power level, are considered when choosing the

routes [72].

Maximum minimum power available prevents the depletion of low battery power

sensor nodes if they are on the routes of very high battery power sensor nodes. This

metric picks the route with minimum battery power that is larger than the minimum

battery power of other routes [72].

Minimum energy is a metric that considers the energy required to transmit packets

along the route. This metric chooses routes that require low energy to deliver data to

34

the base station [72].

Link Quality Metrics

Link quality cost metrics are used to choose the routes that achieve high probability of

data delivery to the base station. For example, a route with a high collision rate will

have a low probability of delivering data to the base station.

Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), and Signal-

to-Noise Ratio (SNR) are cost metrics that choose the routes according to signal strength

or noise level in the environment [73].

Packet Reception Ratio (PRR) metric [73] estimates link qualities as the ratio of

the number of successfully received packets to the number of transmitted packets. PRR

chooses routes with high values.

Expected Transmission count (ETX) metric [74] chooses routes that minimize the

expected number of transmissions and retransmissions required to deliver data to the

base station. Best routes have low ETX values.

Required Number of Packets (RNP) metric [75] estimates link qualities as the ratio

between transmitted and retransmitted packets to the number of successfully transmitted

packets. Best routes have RNP with low values.

2.3.4 TinyOS Routing Protocols

Many of the proposed routing protocols for WSNs are not implemented. However, the op­

erating systems for WSNs offer some new protocols or adaptations of traditional routing

protocols. Four software WSN routing protocols are officially implemented in TinyOS:

AM ROUTE, MintRoute, Multihop, and CTP. The four protocols are flat and proactive,

which means that all the sensor nodes play the same role in the network. The following

is a brief overview of the four protocols.

35

1.	 AM ROUTE is the basic protocol that was implemented in TinyOS version 1. The

base station periodically starts the routing tree construction process by broadcast­

ing a route update packet with hop count equal to zero. As the sensor nodes receive

the route update packet, they rebroadcast it after increasing the hop count by one.

Sensor nodes choose their parents as the first neighbour from which a route update

packet is heard. Thus, sensor nodes almost always choose the shortest route to the

base station. This process is repeated with every route update cycle. The shortest

route is not always a reliable route because it may lead to congestion in the WSN

[76, 77].

2.	 MintRoute solves the unreliability of AM ROUTE by introducing link qualities in

the route choice. Sensor nodes determine their link qualities with each neighbour

according to the number of received and missed packets for the corresponding

neighbour. The route to the base station is chosen as the route with the best

send and receive qualities. Sensor nodes do not change their routes unless the

qualities of the current parent go below certain thresholds [7]. The reliable route

may be a long route to the base station. Thus, MintRoute may delay data delivery.

3.	 Multihop is a version of MintRoute that depends on hop counts rather than link

quality. Multihop follows the same steps of MintRoute to build the routing tree,

but the path to the base station is chosen as the path with the least hop count

value. Send and receive qualities are only used as a tiebreaker when there are two

paths with the same length [78].

4.	 CTP is a new routing protocol implemented in TinyOS version 2. It combines the

properties of MintRoute and Multihop, choosing the shortest reliable path. The

sensor nodes build their routes using a routing gradient, which is the expected

number of transmissions to reach the base stations. CTP tries to confirm data

36

delivery by sending acknowledgements as replies to unicast packets [23].

2.4 Security Threats to WSNs

The sensor nodes of a WSN often rely on multihop wireless communication to deliver

sensed data to a base station. WSNs are designed to be deployed randomly in unattended

and uncontrollable environments. The limited resources, wireless communication, ran­

dom deployment, and unattended and uncontrollable environments are all vulnerabilities

to the security of WSNs. These vulnerabilities can be classified according to the OSI

reference model as proposed in [79]. Figure 2.7 depicts this classification.

Figure 2.7: Attacks on WSNs

Physical Layer Threats

Due to the broadcasting nature of wireless communication and the non-tamper resistant

sensor nodes, the physical layer of WSNs suffer more threats than wired networks.

•	 Jamming : It is a type of attack that interferes with the communication frequency

to disrupt the communications in WSNs [12].

37

•	 Subversion: It is a type of attack in which an attacker tries to get physical access

to a sensor node. Once gaining physical access, the attacker can damage it, steal its

cryptographic information, or replicate it with an attacker-controlled sensor node

[80].

Link Layer Threats

Threats to the link layer of WSNs target the mechanisms that take place in this layer,

such as medium access, error control, and frame detection.

•	 Collisions : It is a type of attack in which the attacker causes collisions to control

packets, such as Acknowledgement (ACK) packets. This attack may lead to the

back-off of certain Medium Access Control (MAC) protocols [79].

•	 Eavesdropping : It is a type of attack in which the attacker monitors the communi­

cation between two sensor nodes to gain access to sensitive information [12].

•	 Packet tracing : It is a type of attack in which the attacker determines the location

of the source sensor node of an overheard sensor node [81].

•	 Resource exhaustion: It is a type of attack in which the attacker performs Denial­

of-Service (DoS) attacks by purposely introducing bogus information to deplete or

exhaust the limited resources of the sensor nodes [79].

•	 Traffic analysis : It is a type of attack in which the attacker tries to determine the

location of the base station by analyzing the volume of traffic at some sensor nodes.

Sensor nodes close to the base station will have more traffic passing through [82].

Network Layer Threats

Threats in the network layer mainly aim to disrupt the routing protocol, for example

by modifying the routing tree. Attacks in this category mainly affect the availability of

data. This category of attacks is also called routing attacks.

38

•	 ACK spoofing : It is a type of attack that targets the routing protocols that ac­

knowledge reception of data packets. If an attacker sends an ACK for an overheard

data packet, it can convince the sender sensor node that a weak link is strong or a

dead link is alive [79].

•	 Blackhole and Selective forwarding : It is a type of attack where the attacker drops

all the traffic that passes through it. To hide its existence, the malicious node may

launch a selective forwarding attack in which it only drops a portion of the traffic

[9, 83, 84].

•	 Flooding : It is a type of attack that targets stateful routing protocols. Stateful

routing protocols maintain the state of connections at communicating sensor nodes.

An attacker may flood a sensor node with requests to open connections until its

memory is exhausted and no more connections from good sensor nodes can be

accepted [79].

•	 HELLO flood : It is a type of attack in which a malicious node uses a powerful

signal to send or replay neighbour discovery packets. Sensor nodes that receive

these packets assume that the malicious node is a neighbour. If the sensor nodes

choose the path of the malicious node to forward packets, then their packets will

go nowhere [11, 83].

•	 Impersonation: It is a type of attack in which a malicious node tries to convince

the sensor nodes in its vicinity that a far sensor node is their neighbour and it has

a good route to the base station. If the affected sensor nodes try to send their data

to the impersonated node, their data will be lost and will not reach the base station

[85].

•	 Sinkhole: It is a type of attack in which a malicious node tries to attract as much

39

network traffic as possible. The malicious node may then modify the traffic or

perform traffic analysis. It may even perform a selective forwarding attack [10, 11,

86].

•	 Sybil : It is a type of attack in which a malicious node claims multiple identities

for the same physical sensor node. Thus, the malicious node can induce the sensor

nodes to route through the same physical sensor node or it can use the multiple

identities to report false data to the base station. The Sybil attack affects fault-

tolerance techniques, such as multi-path routing [11, 12, 87].

•	 Wormhole: It is a type of attack in which two colluding nodes create an out-of-band

channel between themselves with the aim of transferring the network traffic from

one part of the network to another distant part. The wormhole attack is a severe

attack because it is not easily detected. The colluding nodes use a communication

channel that is different from the one used by the sensor nodes. Moreover, the

wormhole attack can be combined with other attacks, such as selective forwarding

and sinkholes [11, 88].

•	 Altering, replaying, spoofing : These attacks target the routing information to dis­

rupt the creation of the routing tree. For example, they can create loops, shorten

or extend routes, attract or repel network traffic, generate fake error packets, or

partition the network [13, 79].

Application Layer Threats

Many of the services that are provided by the application layer are targeted by the attacks

in this category.

•	 Clock unsynchronization: It is a type of attack that aims at disrupting the time

synchronization of the sensor nodes. This may affect the sleeping schedules of the

40

sensor nodes [79].

•	 False data filtering : It is a type of attack that targets the clustering applications.

In this attack, the attacker resides in an aggregation point. Thus, the attacker

can manipulate the aggregation result of the downstream data and also affect the

overall computations at the base station [79].

•	 False data injections : It is a type of attack in which the attacker injects false data

in the network. Eventually, this false data will reach the base station and it may

skew the decisions or the analysis of the base station [79].

The attacks against WSNs can be launched by attackers that fall into three classes

according to [11, 13]. An attacker can be identified by one subclass in each of the three

classes. These classes are:

•	 Mote-class/laptop-class attacker : A mote-class attacker has access to sensor nodes

with the same capabilities as the good sensor nodes. A laptop-class attacker has

access to more powerful resources, such as laptops.

•	 Insider/outsider attacker : An insider attacker is a compromised sensor node in the

WSN, and it has access to any security mechanisms used in the WSN. An outsider

attacker is an implanted sensor node that does not have access to any of the security

mechanisms used in the WSN.

•	 Active/passive attacker : An active attacker damages the WSN by actively attacking

it. A passive attacker steals the WSN data by passively listening to the communi­

cations in the WSN.

41

2.5 Securing WSNs

Securing WSNs is challenging because they are subject to a wide range of attacks as

discussed in Section 2.4. These attacks exploit their wireless communication, their inse­

cure environments, and their limited resources. The resource-constrained sensor nodes

preclude the use of resource-intensive security mechanisms. The security goals of WSNs

are similar to the goals of other communication networks:

•	 Access control : It means restricting access to resources to good sensor nodes [89].

•	 Authentication: It means ensuring that a sensor node is who it claims to be and

that the source of data is a good sensor node [11, 89].

•	 Availability : It means that access to resources and services are available whenever

required [11, 79, 89].

•	 Confidentiality : It means protecting communication from unauthorized sensor nodes

[79, 89].

•	 Integrity : It means that data packets are delivered without modification [11, 79, 89].

•	 Non-repudiation: It means ensuring that a sensor node does not refute its activities

[79].

Countermeasures to security threats to any communication network should have the

following requirements and WSNs are no different:

•	 Backward secrecy : It means that a newly added sensor node to a WSN cannot

decrypt any previously transmitted secret data packet [89].

•	 Efficiency : It means considering the limited resources of the sensor nodes [89].

42

•	 Forward secrecy : It means that a removed sensor from a WSN cannot decrypt

future secret data packets [89].

•	 Freshness : It means making sure that data is recent and not replayed [79, 89].

•	 Scalability : It means supporting a large number of sensor nodes [89].

•	 Self-security : It means that any additional hardware or software to secure the WSN

must be secure itself [79].

•	 Survivability : It means providing a certain level of service in the presence of attacks

or node failures [79, 89].

Traditional cryptography achieves many of the aforementioned goals but it is ex­

pensive to implement in WSNs. For example, traditional cryptographic algorithms add

about 16-32 bytes of overhead to the 30-byte packets of WSNs [90]. In addition, sensor

nodes provide 8-16 bits word size, which is insufficient for the arithmetic operations in

the cryptographic algorithms [91]. Table 2.1 [91] provides an overview of the popular pro­

cessor architectures for sensor nodes. It shows how limited these processors are. These

challenges limit the choice of traditional cryptographic algorithms to implement. Special

cryptographic algorithms that are not resource intensive must be developed for WSN.

Table 2.1: Processor architectures for sensor nodes
Platform Word size Clock frequency Cache inst./data

Atmega103
Atmega128
M16C/10
SA-1110
PXA250

UltraSparc2

8 bits
8 bits
16 bits
32 bits
32 bits
32 bits

4 MHz
16 MHz
16 MHz
206 MHz

200-400 MHz
440 MHz

None
None
None

16/8 KB
32/32 KB
16/16 KB

Moreover, protection mechanisms based on cryptographic techniques are not sufficient

because the vulnerability of nodes to capture allows the adversary to access cryptographic

43

keys; this enables the adversary to duplicate the sensor nodes or insert new ones. In

addition, some attacks, such as the wormhole attack, can be launched even in the presence

of encryption and/or authentication without the need to know the cryptographic keys.

IDSs provide a complementary means of providing protection. An IDS monitors the

system and attempts to detect malicious behaviour by searching for attack signatures

(misuse detection) or abnormal behaviour (anomaly detection) patterns [84]. The misuse

detection is deemed inappropriate for WSN due to the large memory requirement to store

the signatures of the attacks.

Many IDSs for WSNs have been developed to detect different types of attacks. How­

ever, to the best of our knowledge, most of these IDSs focus on detecting the activities

of malicious nodes, rather than the frailties of the routing protocols themselves. Routing

attacks against WSNs have gained attention in the literature due to the severity of these

attacks.

The countermeasures against the security threats to WSNs can be broadly classified

into those that use cryptography and those that do not. For cryptographic systems, key

management is an important component.

2.5.1 Key Management

Establishing cryptographic keys is essential for later secure communication in WSNs.

The established keys should be resilient to attacks and flexible to update. Due to the

limited resources of the sensor nodes, it is not feasible to use traditional key establishment

schemes, such as Diffie - Hellman key exchange protocol [92] and key distribution centre

[93]. Numerous key management schemes have been proposed for WSNs.

Key management schemes are classified into static/predistribution schemes and dy­

namic schemes. In either class, the schemes generate administrative keys that are as­

signed to the sensor nodes. The sensor nodes use the administrative keys to generate

44

pair-wise communication keys that are assigned to the communication links. In static

key schemes, the administrative keys are generated and assigned to sensor nodes prior

to their deployment. Static schemes assume that the administrative keys will not be

changed once assigned to the sensor nodes. In dynamic key schemes, the administrative

keys are assigned on demand or on detection of key capture. The advantages of dynamic

key schemes over static key schemes are network survivability and scalability. Captured

keys are replaced in a timely manner to revoke any communications with the attacker.

WSNs can be expanded by adding new sensor nodes and assigning new keys without the

risk of increasing the probability of key capture [94].

Two basic schemes of static key management are to assign a global key to all sensor

nodes or to assign each sensor node a unique key with each other sensor node in the

WSN, pair-wise scheme. The first scheme is vulnerable to the compromise of a single

sensor node, and the second suffers from a huge storage requirement.

Eschenauer and Gligor [95] have proposed the first probabilistic key predistribution

scheme. Their scheme depends on randomly loading each sensor node with a set of keys

from a key pool before deployment. The goal of the scheme is to have each pair of sensor

nodes share at least one key. This scheme has become the basis for many other key

predistribution schemes. The q-composite scheme by Chan et al. [96] is an extension

to the scheme of Eschenauer and Gligor. The q-composite scheme requires each pair of

sensor nodes to share at least q keys. The virtual key ring by Vu et al. [97] is also based

on the scheme of Eschenauer and Gligor. The virtual key ring allows sensor nodes that

do not share any keys to establish pair-wise keys with the help of other sensor nodes.

Most key predistribution schemes assume secure assignment of administrative keys to

the sensor nodes. Message-In-a-Bottle by Kuo et al. [98] provides a secure mechanism

to the initial assignment of administrative keys. It works with any key predistribution

scheme as the initial step, but it requires the use of special hardware for the deployment

45

of keying information.

Many of the dynamic key schemes are based on the Exclusion-Based Systems (EBSs)

[99]. EBSs provide secure and efficient rekeying mechanism. Rekeying, which is the

process of generating replacement keys, occurs periodically or in the event of node cap­

turing. Replacement keys are encrypted with all the keys unknown to the captured sensor

nodes, and distributed to other sensor nodes that know the encryption keys. A drawback

of EBSs is that a small number of captured nodes can collude to reveal all the keys in

the WSN.

Eltoweissy et al. [100] have proposed the first use of EBS for key management in

WSNs. Their system assigns the sensor nodes to cells in a virtual coordinate system.

The sensor nodes in the same cell are assigned the same EBS key combination where

rekeying occurs at the cell level. This system suffers from the collusion problem of EBSs.

Younis et al. [101] have proposed another EBS system, called SHELL, for clustered

WSNs that solves the collusion problem of EBSs. SHELL divides the key generation,

assignment, and distribution between the base station and the cluster heads. Eltoweissy

et al. [94] have presented LOCK as an improvement for SHELL. LOCK uses two layer

EBS to perform rekeying to minimize communication overhead. In addition, it uses key

polynomials instead of location-based assignment as in SHELL.

Other research efforts have addressed dynamic key schemes that are not based on

EBSs, such as the scheme based on identity-based symmetric keying by Jolly et al. [102],

and SAKE by Seshadri et al. [103].

2.5.2 Cryptography

After generating and assigning keys to the sensor nodes, cryptographic mechanisms are

used to provide authentication, confidentially, integrity, and non-repudiation of commu­

nications in WSNs. Cryptographic mechanisms are divided into public/asymmetric key

46

cryptography and symmetric key cryptography.

In public key cryptography, each sensor node is assigned a public/private key pair.

Public keys are made available to communicate with the owning sensor nodes, whereas

the private keys are private to the owners. Anything that is encrypted or authenticated by

one key is reversed or checked by its associated key. Public key cryptography mechanisms,

such as RSA and Elliptic Curve Cryptography (ECC) [104], are believed to be infeasible in

WSNs due to their large code size, intensive computations, and processing time [105, 106].

However, Gura et al. [107] have compared the performance of RSA and ECC on sensor

nodes of 8-bit Central Processing Unit (CPU). They have concluded that ECC is more

suitable for WSNs due to its efficiency with small key sizes, thus reducing processing and

communication overhead. For example, ECC with key size of 160 bits provides the same

security level as RSA with key size of 1024 bits [105].

Most of the research studies on public key cryptography for WSNs focus on the

public key operations and assume that the private key operations are handled by the

base station. The private key operations are still expensive to perform on the sensor

nodes. Hence, symmetric key cryptography is more popular in WSNs [105].

In symmetric key cryptography, any two communicating sensor nodes use a single

shared key. The major challenge for symmetric key cryptography is the distribution

of shared keys as explained in Section 2.5.1. Ganesan et al. [91] have compared five

popular symmetric key mechanisms, IDEA [108], RC4 [108], RC5 [109], SHA-1 [110],

and MD5 [108, 111], on sensor nodes of CPU sizes 8, 16, and 32 bits. The results of

their experiments show uniform cost for execution time and memory size for all sizes of

CPUs. However, the hashing mechanisms SHA-1 and MD5 show higher overhead than

the encryption mechanisms IDEA, RC4, and RC5.

Early research work on symmetric key cryptography for WSNs include μTESLA by

Perrig at al. [112]. μTESLA provides asymmetry through delaying the disclosure of

47

symmetric keys. A sensor node generates a key chain and signs every packet with a key

that is secret at the time of transmission. The sensor node broadcasts the secret key at

a later time for other sensor nodes to authenticate all packets that are signed with that

key. Karlof et al. [90] have proposed TinySec, the first fully-implemented symmetric key

cryptography for WSNs. TinySec either provides authentication only or authentication

and encryption. TinySec is incorporated in the official release of TinyOS. Luk at al. [113]

have proposed MiniSec to solve the vulnerabilities of impersonation and replay attacks

in TinySec.

2.5.3 Intrusion Detection

IDSs provide a second line of defence for WSNs. They complement the security of

authentication and cryptography because these two are not enough to secure a WSN.

Authentication and cryptography cannot prevent all possible attacks, such as insider at­

tackers [79]. Authentication and cryptography are mainly concerned with the integrity

and confidentiality of data and authenticity of sensor nodes, while IDSs are mainly con­

cerned with availability of data and secure routing.

IDSs are classified according to the detection technique: misuse-based detection,

anomaly-based detection, or specification-based detection [114]. Misuse-based or signature-

based detection depends on the knowledge of attack signatures to detect known attacks.

It cannot detect new attacks or attacks with unknown signatures. Misuse-based detec­

tion is deemed inappropriate for WSNs due to the huge storage requirement to store the

signatures. Anomaly-based detection establishes profiles of normal behaviour usually by

automated training. An anomalous behaviour will be detected if the sensor node devi­

ates from the normal profiles. Although anomaly-based detection succeeds in detecting

unknown attacks, it suffers from a high rate of false alarms. Specification-based detection

is similar to anomaly-based detection but instead of the automated learning, an expert

48

sets the rules of the operation. If a sensor node violates the predefined rules, it will be

declared malicious. Specification-based detection has a low rate of false alarms but it

cannot detect malicious nodes that do not violate the rules.

IDSs are also classified according to the location of the system into network-based

IDS and host-based IDS. A network-based or centralized IDS is located on the base

station where the sensor nodes send network flow information for analysis and detection

of malicious activities, such as the IDSs introduced by Ngai et al. in [10], Wang et al.

[115], and Buttyan et al. [116]. Ngai et al. detect sinkhole attacks by identifying the

sensor nodes that send inconsistent network flow information (next hops and costs) to

the base station. Wang et al. detect wormhole attacks by searching for anomalies in

distance estimates resulting from wormhole connections. Buttyan et al. assume that the

base station knows the distribution of the sensor nodes a priori. The base station builds

an estimated distribution graph and compares it to a hypothetical graph it builds from

the neighbour lists received from the sensor nodes to detect wormhole attacks. Network-

based IDSs have a global view of the WSNs and can detect colluding malicious nodes

but it suffers from the extra traffic to send network flow information to the base station.

On the other hand, host-based IDSs generate less traffic but their decisions are local

to the sensor nodes. A host-based or decentralized IDS is installed on the sensor nodes.

Each sensor node analyzes its local traffic to detect any malicious or abnormal behaviour.

Sensor nodes may share their local decisions to reach a consensus about a malicious node.

Host-based IDSs are more common in WSNs, such as the systems introduced by Ioannis

et al. [84], Krontiris et al. [86], Demirbas and Song [117], and deGraf et al. [118]. Ioannis

et al. detect blackholes and selective forwarding attacks by a voting scheme. If a sensor

node suspects a neighbouring sensor node, it will broadcast an alert. If the number of

alerts from different sensor nodes exceeds a certain threshold, the sensor nodes will flag

the neighouring sensor node as malicious. Krontiris et al. have extended the previous

49

IDS to detect sinkhole attacks. The sensor nodes broadcast the lists of neighbours in

response to a suspicious activity. Nodes then compute the intersection of their neighbour

lists, and if a single node remains, they flag it as a sinkhole. Demirbas and Song detect

Sybil attacks by testing RSSI values periodically. A Sybil attacker claiming multiple IDs

reveals the same RSSI value for more than one ID. deGraf et al. introduce a second layer

of powerful nodes to detect wormhole attacks. This second layer of nodes is collocated

with the sensor nodes according to a certain placement criterion. The placement criterion

enables the intrusion detection nodes to detect wormholes in the WSN by eavesdropping

on the communication between the sensor nodes.

2.6 Summary

This Chapter gave a detailed survey about WSNs. It highlighted the differences between

ad hoc networks and WSNs. It also went through the famous operating systems for WSNs

and explained the protocol stack of WSNs from the OSI reference model perspective.

The survey on WSNs ended with the advantages and applications of WSNs. Then the

Chapter put an emphasis on the routing protocols for WSNs. It surveyed some of the

proposed classifications for WSN routing protocols. It explained different performance

and cost metrics that affect the choice of the routing protocol. It emphasized the routing

protocols of TinyOS since it is the defacto operating system for WSNs and the choice for

this work. The Chapter went through the security threats that can be launched against

WSN and explained a classification that divided them according to the protocol stack.

The Chapter ended by explaining security measures that can be used to defend against

the security threats to WSNs. Some of the proposed implementations of these measures

were discussed.

This dissertation focuses on the threats that exploit link quality routing protocols.

50

The next Chapter explains link quality cost metrics in detail and states the problem that

this dissertation solves. Then it explains the research methodology used in the solution.

51

Chapter 3

PROBLEM FORMULATION AND METHODOLOGY

3.1 Introduction

This Chapter provides a thorough survey of link quality routing protocols for WSNs. It

begins by explaining what the link quality routing protocols are. The Chapter details

the classifications of link quality estimators and goes over some of their comparisons.

Then it gives a detailed description of the estimators of importance to this dissertation.

The Chapter follows this survey by explaining the research methodology used in this

dissertation. Finally, the Chapter ends with describing the simulation framework of the

experiments in this dissertation.

3.2 Link Quality Routing Protocols

The sensor nodes in a WSN relay data to the base station using wireless communication.

The wireless communication, especially low-powered, is known for its unreliability and

fluctuations due to interference, collisions, multi-path effects, and obstacles. These factors

affect the performance of the WSNs, namely topology control and routing. Consequently,

traditional cost metrics, such as hop count, latency, and round trip time, fail to provide

highly reliable routes in WSNs. Estimation of link qualities emerges as an important

factor in the selection of stable routes. The more accurate the link quality estimation is,

the more stable the routes will be [73, 119, 120]. Accurate estimation:

• improves data delivery to the base station;

• avoids excessive transmissions over low quality links; and

52

• minimizes route selection triggered by link failures.

Each sensor node estimates link qualities for a set of its neighbouring sensor nodes

based on observing their transmitted packets. This observation can either be through

packets addressed to the sensor nodes or packets observed on the wireless medium. Es­

timates are not necessarily symmetric nor static. They are not symmetric because the

conditions influencing the computations of each sensor node, such as number of neigh­

bours or proximity to obstacles, are different. Also, the estimates are not static because

signal strength and interference change over time. In some cases, the sensor nodes may

share their estimates with neighbouring sensor nodes to compute a link quality for both

directions of a link. Figure 3.1 illustrates this concept. Two sensor nodes, S and R, are

neighbours and thus, they share a wireless link. Estimates can be computed for inbound

communication and outbound communication. From the perspective of sensor node S,

inbound communication is the packets it overhears from sensor node R, while outbound

communication is the packets that sensor node R overhears from sensor node S. Sensor

node S can compute an estimate for the inbound communication but it cannot for the

outbound communication because it does not know what sensor node R overhears. To

compute a link quality for the wireless link, sensor node S may either use the inbound

estimate only or the inbound and outbound estimates. The former case is called a uni­

directional link quality. The latter case requires sensor node R to share its estimate with

sensor node S, which is the outbound value from the perspective of sensor node S. Sensor

node S uses both estimates to compute a bidirectional link quality.

Figure 3.1: Directions of a wireless link

53

Link quality routing protocols construct more stable routing trees than shortest path

routing protocols because simply hearing packets only is not enough to choose a next hop.

Choosing routes depending on hearing packets will result in a few long hops but with

low link reliability. Thus, it is better to have more shorter hops with high link reliability

[119]. Link quality routing protocols will achieve the latter case by computing estimates

for link qualities and choosing a neighbouring sensor node as a next hop if its link quality

exceeds some threshold, say 75%. The component of link quality routing protocols that

does these computations is called link quality estimator or simply estimator.

3.3 Link Quality Estimators

Several link quality estimators have been proposed for the routing protocols of WSNs.

Some of these estimators compute unidirectional link qualitie and some compute bidi­

rectional link qualities. Some of these estimators require the cooperation of sensor nodes

to share their estimates and some do not. The success of the estimator to construct a

stable and reliable routing tree faces some challenges [119]:

•	 Speed : The estimator should be fast so that it can adapt quickly to the changes in

the links.

•	 Stability : The estimator should not be too sensitive to transient variations in the

underlying connectivity so that the routing tree does not change chaotically.

•	 Storage: The estimator should use small memory space, and be simple and effective.

3.3.1 Classification of Link Quality Estimators

Link quality estimators are classified according to their mode of operation, the way they

collect statistics about the wireless links, or the type of computed link quality.

54

Link quality estimators are classified into two modes of operation: hardware-based es­

timators, and software-based estimators. Hardware-based estimators choose routes faster

and require no computation overhead because they compute link qualities directly from

the radio module. This class includes the estimators LQI, RSSI, and SNR. Although

hardware-based estimators are faster than software-based estimators, they are inaccurate

because they are measured only for successfully received packets. Software-based estima­

tors are preferred. They count or approximate the reception ratio or the average number

of packet transmissions before any successful reception [73].

Link quality estimators collect statistics about the wireless links either through active

monitoring or passive monitoring. Active monitoring means that the sensor nodes in­

tentionally send probe packets to collect statistics about the wireless links. For example,

sensor nodes broadcast beacons or route update packets periodically. Passive monitor­

ing means that the sensor nodes infer the statistics about the links from the packets

sent/received over them. For example, sensor nodes snoop data packets or ACK packets

off the wireless links [70, 73].

Link quality estimators either compute unidirectional qualities or bidirectional qual­

ities. Unidirectional link qualities are mostly computed independently without any co­

operation among the sensor nodes. Bidirectional link qualities may require the sensor

nodes to cooperate to share their estimates. However, some bidirectional link quality

estimators work independently as well.

3.3.2 Related Work

There has been some research work exploring the characteristics of the wireless links in

WSNs. Many of these works have proposed ways to improve the reliability of these wire­

less links. Other research work has been dedicated to comparing link quality estimators.

Baccour et al. [73] have compared the estimators PRR, ETX, RNP, Window Mean

55

Exponentially Weighted Moving Average (WMEWMA) [119], and Four-Bit Link quality

Estimator (4-bitle) [121], in a simulated WSN using the CTP routing protocol. They have

concluded that bidirectional estimators, ETX and 4-bitle, have shown better data delivery

than the unidirectional ones. WMEWMA has shown the highest stability but the worst

data delivery to the base station because of its high over-estimation. Over-estimation

can be costly in terms of link reliability; 4-bitle has shown the lowest over-estimation and

ETX comes next. Although PRR and RNP are the simplest estimators, they have the

lowest performance among the five estimators.

Liu et al. [120] have evaluated the performance of ETX, 4-bitle, and RNP estimators

in a WSN using CTP. They have concluded that RNP establishes shorter path length

than ETX and 4-bitle. RNP has near 100% data delivery to the base station but RNP

shows a slight degradation in high-density WSNs. Finally, they have found that ETX

adds more routing overhead than the other two estimators.

In conclusion, there is no perfect estimator that works in all conditions. Each one

has its advantages and drawbacks that must be considered per application or WSN.

The following gives the details of the software-based estimators that are relevant to this

dissertation.

3.3.3 Packet Reception Ratio Estimator

The PRR is the probability that a receiving sensor nodes receives a packet successfully.

The PRR estimator is a passive unidirectional link quality estimator. PRR is computed

at the receiving sensor node as the average of the number of successfully received packets

to the total number of transmitted packets, for a window of w received packets, as shown

in Equation 3.1. The numbers of missed and transmitted packets are inferred from the

sequence numbers of successfully received packets. Large PRR values are better than

small values.

56

number of successfully received packets
PRR(w) = (3.1)

number of total transmitted packets

3.3.4 Window Mean EWMA Estimator

WMEWMA approximates PRR and considers the effect of the previously estimated value

on the new value. It is a unidirectional passive estimator at the receiving sensor node.

WMEWMA updates the estimated link quality for a window of w successfully received

packets with history factor α ∈ [0, 1], as shown in Equation 3.2. Large WMEWMA

values are better than small values.

WMEW MA(α, w) = α × WMEW MA + (1 − α) × PRR (3.2)

3.3.5 Required Number of Packets Estimator

The RNP estimator is a unidirectional passive estimator at the sending sensor node

for every w transmitted and retransmitted packets. RNP estimates the link quality

as the ratio of the number of transmitted and retransmitted packets to the number of

successfully received packets, as shown in Equation 3.3. RNP works in routing protocols

that implement an acknowledgement scheme. It uses the received ACKs to determine

the number of successfully transmitted packets. Small RNP values are better than large

values.

number of transmitted/retransmitted packets
RNP (w) = (3.3)

number of successfully received packets

3.3.6 Expected Transmission Count Estimator

The ETX is a bidirectional active estimator. The choice of routing paths minimizes the

expected number of transmissions/retransmissions required to deliver data to the base

57

station. The ETX estimator considers the effect of link loss ratios, asymmetry of the loss

ratios, and interference along the path.

The ETX estimator considers the asymmetry of the links by computing forward and

reverse packet reception, PRRf and PRRr, for each link respectively. The combination

of both estimates gives an ETX value for the bidirectional link quality, as shown in

Equation 3.4. The receiving sensor node computes the PRRf , and the sending sensor

node computes the PRRr, for each w probe packets. Then the two sensor nodes exchange

their PRR values to compute the bidirectional link quality. Small ETX values are better

than large values.
1

ET X(w) = (3.4)
PRRf × PRRr

3.3.7 Four-bit Estimator

The 4-bitle quality estimator is a bidirectional hybrid estimator that uses active and

passive monitoring at the sending sensor node. Active monitoring depends on the sensor

nodes broadcast beacons or route updates periodically. The sending sensor node uses

Equation 3.5 to compute the inverse of WMEWMA for wa received beacons from the

receiving sensor node. The computed value is an estimation of the unidirectional link

quality from the receiving sensor node to the sending sensor node.

1
EET Xa(wa, α) = (3.5)

WMEW MA(wa, α)

The sending sensor node estimates another unidirectional link quality from the send­

ing sensor node to the receiving sensor node by passively monitoring the ACKs arriving

from the receiving sensor node. Equation 3.6 shows the computation of this value.

number of transmitted/retransmitted packets
EET Xp(wp) = (3.6)

number of successfully received packets

58

Finally, 4-bitle combines the two values by using an WMEWMA as shown in Equation

3.7, where EETX is replaced by either EETXa or EETXp.

four bit(wa, wp, α) = α × four bit + (1 − α) × EET X (3.7)

If the network traffic is heavy, then the passive monitoring will dominate. Otherwise,

the active monitoring will dominate. Since data packets are acknowledged from the next

hop (receiving sensor node) only, the 4-bitle value represents a bidirectional link quality

for next hops only. For other neighbouring sensor nodes, the 4-bitle value represents a

unidirectional link quality. Small four-bit values are better than large values.

3.4 Research Methodology

As explained in the previous sections, link quality estimators collect statistics about the

wireless link either independently or by cooperation among the sensor nodes. Moreover,

link quality routing protocols for WSNs may modify an estimator to fit their needs. For

example, MintRoute modifies WMEWMA to a bidirectional version where the sensor

nodes exchange their estimate values to compute bidirectional link qualities.

Link quality estimators are not immune against malicious attacks that can exploit

them. A malicious node may share false information with its neighbouring sensor nodes

to affect the computations of their estimates. Likewise, a malicious node may behave

maliciously such that its neighbours infer incorrect statistics about their wireless links.

In this dissertation, we aim to detect a malicious node that manipulates the link quality

estimator of the routing protocol.

To achieve this detection, we have chosen MintRoute and CTP routing protocols

to study. MintRoute represents routing protocols that require cooperation among the

sensor nodes to compute bidirectional link qualities. On the other hand, CTP computes

59

bidirectional link qualities without the requirement of sensor nodes cooperation.

Firstly, we have studied the two protocols thoroughly and revealed vulnerabilities in

their estimators. Secondly, we have investigated the scenarios that a malicious node can

follow to exploit these vulnerabilities. Thirdly, we have designed detection mechanisms to

detect the malicious node. To test the effectiveness of the proposed detection mechanisms,

we have implemented and developed both protocols and the detection mechanisms in ns-2

[122], respectively. ns-2 was chosen to add on a project that was built with it. Actual

implementation of the two IDSs is deferred to future work due to the lack of time and

resources.

3.5 Simulation Framework

The ns-2 is an open source simulator for networking protocols written in the C program­

ming language. We have chosen it to simulate MintRoute and CTP due to its functional­

ity, large community, and flexibility to add new protocols. Unfortunately, ns-2 does not

have the implementation of MintRoute and CTP in any of its official distributions. As a

result, we have extended ns-2 version 2.31 to include them. The implementation of each

protocol and its IDS are discussed in the respective chapters.

3.5.1 Implementing TinyOS MAC protocol

TinyOS implements a simple Carrier Sense Multiple Access with Collision Avoidance

(CSMA-CA) [19] MAC protocol as shown in Algorithm 3.1. To avoid collisions that may

occur due to simultaneous transmissions, every sensor node sleeps for a random time

between 1 and 32 transmission times. Then the sensor node senses the channel before

transmission to make sure that it is not in use. Otherwise, the sensor node sleeps again

for a random time between 1 and 16 transmission times. We have extended ns-2 to

include this MAC protocol as well.

60

Algorithm 3.1 MAC protocol of TinyOS

SLEEP between 1 and 32 transmission times
while channel is busy do

SLEEP between 1 and 16 transmission times
BEGIN transmission

3.5.2 Implementing a TinyOS Application

To test MintRoute and CTP in ns-2, a traffic generator is required. We have written a

simple application to reside in the application layer of the sensor nodes. This application

sends a counter value at random during a specified send interval.

3.5.3 Linking It All together

We have written simulation scripts in Tool Command Language (Tcl) [123] to simulate

different WSNs with and without the presence of a malicious node according to the

following configurations:

•	 The sensor nodes have the same wireless range following the unit-disk graph model

[3].

•	 The sensor nodes run the same routing protocol.

•	 The sensor nodes are deployed in an obstacle-free 2D simulation environment of

size 100 × 100 units.

•	 The sensor nodes are distributed uniformly at random.

•	 The sensor nodes are stationary.

•	 The sensor nodes send data packets at random during a specific send interval, S,

without any encryption or authentication mechanisms.

•	 The base station is stationary at the northwest corner of the simulation environ­

ment.

61

•	 The malicious node is single and stationary.

•	 The malicious node exists when the WSN is first deployed.

•	 The malicious node may be an implanted node or a compromised sensor node.

•	 The malicious node has the same capabilities and wireless range of the sensor nodes

(mote-class attacker).

•	 The malicious node implements the same routing protocol as the sensor node.

•	 The malicious node may drop, modify, or divert the traffic that traverses it.

3.5.4 Performance and Detection Metrics

The performance of the malicious node is measured by the percent of data delivered to

the base station. The simulator is instrumented to record every data packet sent from

the sensor nodes and every data packet received at the base station. Forwarded data

packets are not counted. In addition, the base station records all the data packets it

receives, while disregarding duplicate data packets. The percentage of the data delivered

to the base station is computed as the former value divided by the latter value.

The success of the detection mechanisms is measured by computing the True Positives

(TPs) and False Positives (FPs). Table 3.1 shows the definition of each measurement.

Table 3.1: Notions of detection measurements
Attack=True Attack=False

Detection=True TP FP

3.6 Summary

In this Chapter, we explained the importance of link quality routing protocols for WSNs

over shortest path routing protocols. Three classifications of the link quality estima­

62

tors were discussed after stating the challenges that faces the design of a link quality

estimator. Namely, a link quality estimator should meet the three requirements: speed,

stability, and storage. Two recent comparisons of the software-based link quality esti­

mators were discussed. Relevant link quality estimators to this work were explained in

details, specifically PRR, WMEWMA, RNP, ETX, and 4-bitle. After going through the

link quality estimators, we discussed the research methodology followed in this disser­

tation. The Chapter ended with describing the framework for the experiments of this

dissertation.

The next Chapter starts the analysis and simulation of vulnerabilities in MintRoute,

starting with explaining the components of MintRoute.

63

Chapter 4

MINTROUTE AND ITS VULNERABILITIES

4.1 Introduction

This Chapter explains the components of MintRoute and how they operate together.

Then a flaw in MintRoute, which makes it vulnerable to a special type of attack, is

explained. A malicious node may use this flaw to influence the choice of routes. Then

we propose an IDS to detect and isolate any malicious nodes that exploit this flaw. The

Chapter ends with possible scenarios that may occur and how we enhance the proposed

IDS to handle these scenarios.

4.2 Components of MintRoute

MintRoute is a flat proactive link quality routing protocol for WSNs that is implemented

in TinyOS version 1. Sensor nodes broadcast route update packets periodically to an­

nounce their presence, their link qualities, and their routing information. Using this

information, the sensor nodes cooperate to construct a routing tree rooted at the base

station. MintRoute has six components to perform these tasks: routing table; routing

table manager ; link quality estimator ; parent selector ; cycle detector ; and transmission

timer. Each sensor node runs a local copy of these components. We explain the operation

of each component and how they are integrated together in the following.

MintRoute uses a common packet format for all its outgoing packets. This format is

shown in Table 4.1. TinyOS version 1 has a maximum packet size of 29 bytes. So any

data included in an outgoing packet cannot exceed 22 bytes. This data can be either a

route update packet or data collected by the sensor nodes.

64

Table 4.1: Common fields in MintRoute packets
Field Description Size

sourceAddr
originAddr
seqNo
hopCount
data

ID of forwarding sensor node
ID of originating sensor node
sequence number of packet
number of hops from base station
data included in packet

2 bytes
2 bytes
2 bytes
1 byte
22 bytes

4.2.1 Routing Table

The routing table is the core component of MintRoute. It contains the link qualities

and the routing information of up to 16 neighbours. Table 4.2 shows the fields of one

record in the routing table for a neighbouring sensor node. Most of the components of

MintRoute access the values in the routing table to perform their operations.

Table 4.2: The fields in the routing table of MintRoute
Field Description Size

id
parent
cost
received
missed
last SeqNo
sendEst
recvEst
child Liveliness
liveliness

ID of neighbour
ID of parent of neighbour
cost of routing through neighbour
number of packets received from neighbour
number of packets missed from neighbour
last sequence number received from neighbour
outbound link quality to neighbour
inbound link quality from neighbour
flag to indicate neighbour is a child
frequency of receiving/overhearing packets from neighbour

2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte
1 byte
1 byte
1 byte

4.2.2 Routing Table Manager

The routing table manager is responsible for inserting neighbours into the routing table

and evicting neighbours from the routing table. When a packet is heard from a neighbour

that has an entry in the routing table, the corresponding entry is updated accordingly.

Otherwise, a new entry is created for the newly heard neighbour. In case the routing table

is full, the table manager decides whether to drop the packet or evict a weak neighbour

65

from the routing table. The operations of the table manager can be summarized as:

•	 Insertion: This operation will insert a new neighbour into the routing table if space

exists.

•	 Reinforcement : This operation updates the link qualities of an existing neighbour

in the routing table. Algorithm 4.1 shows how the table manager updates the

inbound link quality of an existing neighbour in the routing table.

Algorithm 4.1 Update(seqNo)

SET Δ TO seqNo - lastSeqNo - 1
SET missed TO missed + Δ
SET lastSeqNo TO seqNo
SET received TO received + 1

•	 Eviction: This operation uses a frequency algorithm [124] to reinforce existing

neighbours as shown in Algorithm 4.2. If the routing table is full, the routing table

manager will replace a neighbour whose liveliness = 0.

Algorithm 4.2 Evict(nghbrID)

if a packet received from existing neighbour with ID nghbrID then
SET its liveliness TO MAX COUNT

if timer expires then
DECREMENT liveliness for all neighbours

4.2.3 Link Quality Estimator

MintRoute uses the WMEWMA link quality estimator to compute unidirectional in­

bound link qualities at the receiving sensor nodes. Sensor nodes then exchange their

unidirectional link qualities to compute bidirectional link qualities. The sensor nodes

collect link statistics by snooping on the communications on the links. They basically in­

fer the number of transmitted and missed packets from the sequence numbers of snooped

66

packets. Thus, MintRoute requires each packet to hold a sender ID and a sequence

number.

WMEWMA first computes a PRR value over a period of time t, as shown in Equation

4.1, for distinct neighbouring sensor nodes. MintRoute expects a minimum number of

packets from each neighbouring sensor node per interval t. Faulty or congested sensor

nodes may not be able to meet this minimum number. To minimize the probability that

these sensor nodes are chosen as next hops, the number of received packets is divided

by the maximum of the expected number and the actual number of transmitted packets.

Then the PRR value is smoothed with an WMEWMA as explained in Section 3.3.4.

MintRoute uses a history factor α with value 0.75, which means that the old WMEWMA

value constitutes 75% of the new value. Finally, neighbouring sensor nodes exchange their

unidirectional estimates to compute bidirectional link qualities in the parent selector

component.

number of successfully received packets
PRR(t) = (4.1)

MAX(expected packets, transmitted packets)

Algorithm 4.3 shows the computations of the unidirectional estimates, where total

= the number of transmitted packets, EXPECTED = the number of packets MintRoute

expects in t, newAvg = PRR value, and recvEst = WMEWMA value. Since floating

point operations require more resources for the sensor nodes, MintRoute overcomes this

limitation by converting floating point operations to integer operations. This is achieved

by multiplying newAvg by 255. Thus, the lowest link quality value is 0 and the highest

link quality value is 255.

4.2.4 Parent Selector

The parent selector component runs periodically to compute bidirectional link quali­

ties, select a parent, and send route update packets. Route update packets inform the

67

Algorithm 4.3 WMEWMA(α, t)

SET total TO missed + received
if total < EXPECTED then

SET total TO EXPECTED

received
SET newAvg TO 255 ×

total

if 1st packet to receive or overhear from neighbour then
SET recvEst TO newAvg

else
SET recvEst TO (1 − α) × recvEst + α × newAvg

neighbouring sensor nodes of the current parent’s ID, the current routing cost, and the

latest unidirectional link qualities of the sensor node. Figure 4.1 shows the fields of a

MintRoute route update packet. The parent field holds the ID of the current parent,

the cost field holds the current routing cost to the base station, the entriesCount field

holds the number of unidirectional link qualities sent in the current route update packet,

and the entries is a list of link qualities where each link quality, recvEst, is associated

with the corresponding neighbouring sensor node neighbour. Route update packets are

limited in size so only good link qualities should be shared with neighbouring sensor

nodes. The parent selector embeds link qualities that are greater than 100 in the route

update packets. The higher the link quality is, the more reliable the link will be. By

this condition, the parent selector shares its link qualities with the good link quality

neighbours. If the number of good link quality neighbours exceeds the size of the route

update packet, then the parent selector will use a round robin technique [19] to embed

the qualities in the route update packets.

Figure 4.1: Fields of MintRoute route update packet

68

Upon receiving a route update packet, each neighbouring sensor node searches it for its

ID. If it is found, then the sensor node will update the sendEst field in its routing table in

the entry of the sending sensor node. Simply, the outbound link quality of a sensor node

equals the inbound link quality of the neighbouring sensor node at the other end of the

link. So, by sharing the inbound link qualities, the sensor nodes will have link qualities

for their outbound links. Once a sensor node has values for its sendEst and recvEst for

a neighbour, its parent selector runs Algorithm 4.4 to compute a bidirectional link quality

and convert it into a routing cost for that neighbour, where transEst = bidirectional link

quality, linkCost = inverse of the bidirectional link quality, totalCost = total routing

cost through the corresponding neighbour.

Algorithm 4.4 Cost(cost, sendEst, recvEst)

if sendEst > 0 and recvEst > 0 then
SET transEst TO sendEst × recvEst

16777216
SET linkCost TO

transEst

SET totalCost TO linkCost + cost << 6
SET totalCost TO totalCost >> 6

else
SET transEst TO ∞
SET linkCost TO ∞
SET totalCost TO ∞

RETURN totalCost

Again, to prevent floating point operations, the parent selector component multiplies

transEst by 16777216, which is 224 . Since the size of sendEst and recvEst can hold up

to 256 values each, the size of their multiplication can hold up to 65536 values. However,

the inverse of the bidirectional link quality results in the range [0, 1]. If the inverse

is multiplied by some number, then it can be converted to a value greater than one.

This magic number is 224, which moves the inverse values to the range [256, 16777216].

The shift operations in computing totalCost puts the values in the range [0, 255].

69

Parent selector calls Algorithm 4.4 with cost = 0 to compute local routing costs to

neighbouring sensor nodes. To compute total routing costs to the base station through

a neighbouring sensor node, the parent selector calls Algorithm 4.4 with cost = routing

cost of neighbouring sensor node. Doing the computations for the highest sendEst and

recvEst values, 255 each, linkCost will have a value of 4. This means that the cost of

the best route increases by 4 with each link along it. The best parent to relay data to the

base station is the one with the lowest total routing cost. The parent selector triggers a

parent change operation in the following cases:

• New parent has a routing cost better than 75% of the current cost.

• Current parent’s link quality drops below 25 (inbound or outbound).

• Base station is unreachable through the current parent (liveliness = 0).

• A cycle is detected.

4.2.5 Cycle Detector

The cycle detector checks each received packet to detect possible cycles. A cycle will be

detected if a sensor node originates a data packet and receives it later from a child sensor

node. Once a cycle is detected, the cycle detector triggers the parent selector to choose

a new route to the base station. Thus, the cycle detector requires the IDs of the sensor

nodes to be included in data packets.

4.2.6 Transmission Timer

The operations in MintRoute are timer-based. A timer is fired every update interval, U ,

to send a route update packet. This means that the parent selector is called every U to

broadcast route update packets. However, the parent selection is not affected until after

the link estimator is called. The link estimator is called every estimate interval E. By

70

default MintRoute sets E = 10 × U . This relation between U and E means that 10 route

update packets will hold the same parent, cost, and recvEst values until the next link

estimator call.

4.3 Example of the Operations in MintRoute

MintRoute computes bidirectional link qualities based on how many packets are sent

and received over the wireless links. The computed link qualities are estimations of

packet reception ratios. In this section, we give a detailed example of the operations in

MintRoute.

Suppose that two sensor nodes, A and B, are neighbours and they need to compute

the estimates for their link qualities. Figure 4.2 shows the operations of the routing

table manager and link estimator of sensor node A with respect to the relevant fields

of neighbouring sensor node B. The lines on the right of the figure show the packets

transmitted by B with their sequence numbers. A line with an arrow means that the

packet is received or overheard by A. Otherwise, the lines indicate packets missed by A.

From the figure, we see that A received/overheard five packets from B and missed three

packets. When A receives a packet, its routing table manager executes Algorithm 4.1

to update the received and missed values corresponding to B, as shown in the figure.

When the timer expires at the end of interval E, the link estimator executes Algorithm

4.3 to compute the recvEst values for all neighbours in the routing table and it resets the

received and missed values. Sensor node B performs the same steps regarding sensor

node A.

Subsequent route update packets from sensor node A will hold recvEst = 159 for

sensor node B. Assume that A announces a routing cost of value 24 through a parent,

which is not B. Upon receiving a route update packet from A, the routing table manager

71

Figure 4.2: Sensor node A computes its inbound link quality to sensor node B

in B searches for the recvEst of B in the packet. If it is found, then the routing table

manager of B will update the corresponding routing table entry of A as shown in Figure

4.3. In other words, B uses recvEst as its sendEst to A. The same procedure is followed

at A. Assuming that B has received or overheard five and missed five packets from A,

B will compute a recvEst value of 127 to sensor node A using Algorithm 4.3.

When the parent selector is called, it executes Algorithm 4.4 to compute the routing

costs for the neighbours in the routing table. Using the information in the entry of sensor

node A, the parent selector of sensor node B will compute a routing cost through A of

value 36. If A is offering the lowest routing cost, then the parent selector of B will select

A as the parent. The next route update packets from B will announce that A is its

parent and the routing cost is 36.

Figure 4.3: Sensor node B updates its outbound link quality to sensor node A

72

4.4 Vulnerabilities of MintRoute to Link Quality Attacks

As explained in Section 4.3, sensor nodes that use MintRoute as the routing protocol

in a WSN cooperate to compute link qualities for routes to the base station. Basically,

a sensor node computes the qualities of its inbound links and shares the values with

its neighbours. Each neighbouring sensor node will use its corresponding value as the

estimate for its outbound link quality to the sending sensor node. The sensor nodes

assume that all are trustworthy and they don’t apply any trust mechanism.

A malicious node can make use of this trustworthiness and lie (i.e., exaggerate) about

its inbound link qualities. Following the example in Section 4.3, suppose that sensor node

A is a malicious node and it sends the highest possible value, i.e. 255, for its link quality

with B. Sensor node B cannot refute or check the validity of this value. Basically, B

knows how many packets it has sent out but it does not know how many packets the

malicious node has overheard. A high link quality means that A has overheard a high

percentage of the packets sent out by B. The highest link quality means that A has

overheard all the packets from B and did not miss any of them. Having received this

false information from A, B updates the entry of A in its routing table as shown in Figure

4.4.

Figure 4.4: Sensor node B updates its outbound link quality with a false value

Now, when the parent selector is called at sensor node B, it will use the false in­

formation provided by sensor node A to compute a routing cost through A of value 32.

However, this new value may not be sufficiently tempting to B to choose or change its

parent to A. Sensor node A can act more maliciously by lying about its cost as well. In

73

MintRoute, each link in the path increases the routing cost by at least 4. So, if a link

between a parent and a child sensor node has the best quality, the routing cost of the

child sensor node will be greater than the routing cost of its parent by 4. Otherwise,

the difference between the routing costs will be greater than 4. A malicious node can

benefit from this property by decreasing its cost to the minimum, which is its parent cost

plus 4. Thus, if A has room to decrease its cost to less than 24, then it will succeed in

decreasing the routing cost through it as opposed to lying about link qualities only. A

more vicious attacker announces a fake parent, i.e., fake route to the base station. In this

case, the malicious node can decrease its routing cost as low as it desires. Assume that

A has announced a routing cost of 12 through a fake parent X, which does not exist in

the WSN. Using this false cost and the values of sendEst and recvEst in Figure 4.4, B

will compute a routing cost of value 20. Now, A has a higher chance to be the parent of

B because it is offering a lower routing cost than its true value, 36.

4.5 Detection Mechanisms for MintRoute Vulnerabilities

Wireless communication consumes more power than the other resources of the sensor

nodes [11, 77]. Therefore, the objective of any WSN application is to avoid any extra

or unnecessary communication. In this section, we will explain our proposed detection

mechanism. Our detection mechanism does not require any extra communication among

the sensor nodes. However, it requires extra storage space and extra computations.

First, we explain how traditional mechanisms cannot defend against such malicious node.

Second, we explain the proposed detection mechanism.

4.5.1 Traditional Detection Mechanisms

As explained earlier in the previous Section, a malicious node that exaggerates its inbound

link qualities only may not be convincing to its neighbours. There are other factors that

74

influence the choice of the next hop:

•	 Inbound link qualities : The neighbours of the malicious node compute their inbound

link qualities from the malicious node depending on how many packets they receive

and miss from it. The malicious node cannot control the computations of these

values. On the contrary, missing packets from the malicious node decreases its

chances to be chosen as a parent for its neighbouring sensor nodes.

•	 Routing cost : A high routing cost through the malicious node may not be in favour

of the efforts of the malicious node to attract traffic. Thus, the malicious node, to

achieve its goal, has to decrease its routing cost. This may require the malicious

node to announce a fake parent to decrease its routing cost without being detected.

Clearly, encryption or authentication cannot defeat this malicious node. If the ma­

licious node is a compromised sensor node, then it will have authentic keys and will

participate legitimately in any encryption or authentication protocol. Furthermore, the

malicious node is not breaching the operation of the WSN, it is only announcing incorrect

values for its computations.

Another approach is to send network flow information, such as the IDs of next hops

and the numbers of packets sent, to the base station. The base station may infer from

this data the malicious activity of a node that is not forwarding data or is attracting more

traffic than expected. This approach requires a lot of communication overhead. This will

deplete the power resources quickly, especially for sensor nodes close to the base station,

which makes the WSN non-functional.

It is clear that a novel detection mechanism is needed to handle this type of malicious

node.

75

4.5.2 A New MintRoute Detection Mechanism

The proposed detection scheme adds the ability to the sensor nodes to use their sequence

numbers to detect neighbours that misrepresent their inbound link qualities. This detec­

tion mechanism works for the link quality routing protocols that require the cooperation

between the sensor nodes to compute link qualities. We explain the proposed detection

mechanism in terms of MintRoute.

A sensor node can play a “trick” by introducing an artificial gap in its sequence

number space. This gap implies a lower bound on the number of missed packets that

the neighbouring sensor nodes perceive. Now, the tricking sensor node has a minimum

number of missed packets perceived by its neighbours, the number of packets it has

sent, and the previous advertised recvEst value from each neighbour. The tricking

sensor node uses Algorithm 4.3 to compute an estimate for the upper bound for the next

recvEst advertisement from each neighbour. When the tricking sensor node receives a

new link quality, it compares the received link quality with the estimated link quality

of the corresponding neighbour. If the received link quality is larger than the estimated

link quality, then the tricking sensor node will suspect the corresponding neighbour as

malicious. The neighbours of a tricking sensor node cannot tell if packets have actually

been missed or a sequence number gap trick is being played. If a malicious node is lying

about its link quality, then it will ignore the indicated miss and announce a high link

quality to the tricking sensor node. Once the malicious node is detected, the tricking

sensor node can blacklist it so as not to consider it as a future next hop. If the tricking

sensor node is a child of the malicious node, then it may change its route to avoid the

malicious node. For example, let sensor nodes A and B be two neighbours and sensor

node A wants to test if sensor node B is sending its true link quality. Assume the

following:

76

•	 A has the sequence number value 25 to use in its next outgoing packet.

•	 A received recvEst = 255 in the last route update packet from B.

•	 A knows that B has reset its received and missed values after broadcasting its

last route update packet.

•	 A sends 15 packets before receiving the next route update packet from B.

Sensor node A can play the sequence number gap trick by incrementing its current

sequence number by two, for example. The next outgoing packet from A will hold the

sequence number 27 instead of 25. When sensor node B overhears or receives the next

packet from A, it will assume that it has missed two packets from A, following Algorithm

4.1. Thus, B will increment its missed value by two. Sensor node A can compute an

upper bound for the next recvEst from B using Algorithm 4.3 with the following values

missed = 2, recevied = 15, and recvEst = 255. Then the new recvEst from B should

be less than or equal to 232. Thus, A succeeds in estimating an upper bound for the

next recvEst from B without the help of B. Sensor node A can test all its neighbours

in the same way.

The sensor nodes should perform the sequence number gap trick at most once per

estimate interval at random. This ensures that only one sequence number gap is present

in the computations of the neighbours so it does not severely affect the link qualities.

Time Synchronization Problem

Tight time-synchronization is not required in many WSN routing protocols. Accordingly,

the tricking sensor node cannot determine the appropriate route update packets to test.

An efficient scheme to overcome the synchronization problem is to record the sequence

number at which the tricking sensor node has begun the sequence number gap trick. Also,

the sensor nodes must announce the last sequence number they have used to compute the

77

recvEst value of each neighbouring sensor node. A tricking sensor node will only test

the route update packets with last sequence number greater than the recorded sequence

number.

Over-testing Problem

Testing unnecessary or extra route update packets may lead to an over-testing problem.

The over-testing problem simply means blacklisting a neighbour because the received

recvEst does not conform with the computed expected recvEst although a previous

recvEst was correct. Figure 4.5 depicts this problem. The figure shows the timeline of a

tricking sensor node with the times of performing two tricks Tr1 and Tr2 and the times

of receiving the new recvEst values from a neighbouring sensor node, Ei. After the trick

at Tr1, the tricking sensor node uses the recvEst received at E2 to test the truthfulness

of the neighbouring sensor node, which passes the test. However, the tricking sensor node

may receive a new recvEst at E3 before performing a new trick. Using this new recvEst

may lead to incorrect conclusion about the neighbouring sensor node. To solve the over-

testing problem, the tricking sensor node should have a flag per neighbour to indicate

when to test the received recvEst. So, when the tricking sensor node performs the trick

at Tr1 it sets the flags of all its neighbours. When the tricking sensor node receives a route

update packet with a new recvEst, it resets the flag of the corresponding neighbour. Any

subsequent route update packets from this neighbour will not be tested until a new trick

is played.

Figure 4.5: The over-testing problem

78

Isolation Problem

An isolation problem may occur if the network has high traffic volume or is dense. The

tricking sensor node may lose, due to collisions, the appropriat route update packets to

test. This will lead to blacklisting the corresponding neighbour. Losing the appropri­

ate route update packets from all the neighbours will lead to the tricking sensor node

blacklisting all its neighbours. This ends up with the tricking sensor node with no route

to the base station. To overcome the isolation problem, we propose a simple algorithm

for removing the neighbours from the blacklist. Upon receiving the appropriate route

update packets from neighbours, the tricking sensor node implements Algorithm 4.5. If

a neighbouring sensor node fails the test, then the testing sensor node will set the cor­

responding flag blackListed = 255. Subsequent passes from the test decrease the value

of blackListed by half. Once the value comes under a certain threshold, the tricking

sensor node removes the corresponding sensor node from the blacklist.

Algorithm 4.5 Blacklist(recvEst, expected recvEst)

if recvEst > expected recvEst then
SET blackListed TO 255

else
blacklisted

SET blackListed TO
2

if blackListed < blackList threshold then
SET blackListed TO 0 [remove neighbour from blackList

An alternative way to blacklist a node is to set an alert threshold for consecutive ex­

aggerated recvEst values. Once a neighbour exceeds the threshold it will be blacklisted.

However, this technique takes longer to blacklist a suspicious node than Algorithm 4.5.

79

4.6 Attacker’s Strategies to Defeat Detection

We assume that the malicious node is an intelligent node that knows that a detection

mechanism is running in the WSN. In this section, we show how the malicious node can

try to escape detection. We first explain how to detect a naive malicious node that is not

aware of the detection mechanism. Then we proceed with a more intelligent malicious

node that knows the detection mechanism and how we adapt the proposed detection

mechanism. Finally, the malicious node reaches the state of conformity.

4.6.1 MintRoute Scenario 1

In this scenario, the malicious node uses a very simple attack strategy, in which it always

announces the highest possible link quality (255). It ignores any missed packets and

advertises the highest possible link qualities, which makes it easily detectable. Figure

4.6 shows a hypothetical example of the behaviour of the malicious node and how a

neighbour detects the anomalous behaviour. A tricking sensor node decides to perform

the sequence number gap trick at the third estimate interval using the previous received

link quality, 255, to expect the next link quality, 237. However, the tricking sensor node

receives a higher link quality, 255, so it decides that its neighbouring sensor node is

behaving maliciously.

4.6.2 MintRoute Scenario 2

While the malicious node in Scenario 1 is easily detected, it is reasonable to consider a

more sophisticated behaviour. In particular, the malicious node in Scenario 2 is adaptive.

It tries to guess which neighbour is performing the sequence number gap trick and when.

It then advertises the correct link quality to the corresponding neighbour. As a result,

the malicious node succeeds in avoiding being detected some of the time. Figure 4.7 [125]

illustrates the behaviour of the malicious node against a single neighbouring sensor node

80

Scenario 1

260

255

 250

 245

 240

 235

 230

 225

 220

Estimate interval

Figure 4.6: Behaviour of malicious node in MintRoute Scenario 1

that is performing the sequence number gap trick. We can see that at the third estimate

interval, the malicious node has guessed that a neighbouring sensor node is performing

the sequence number gap trick, so it advertises the correct link quality to this neighbour.

Thus, the malicious node has succeeded in escaping detection. However, at the ninth

estimate interval, the malicious node is not successful in guessing that the corresponding

neighbour is performing the sequence number gap trick and it fails to avoid the detection.

To elaborate, the malicious node computes a threshold, τ , for the number of packets

it overhears from each neighbouring sensor node. Then it decides whether to lie or not

depending on the observed packet traffic relative to the threshold. In essence, if unusually

many packets are “missing” and the number of observed packets exceeds the threshold,

the malicious node suspects that the sequence number gap trick is being played, and

tells the truth to avoid being detected. Mathematically, the malicious node may use a

threshold such as E[X] + σ, where E[X] is the expected number of packets, and σ is the

standard deviation.

L
in

k
qu

al
ity

Announced by malicious node
Expected by neighbour

1 2 3 4 5 6 7 8 9 10

81

Scenario 2

260

255

 250

 245

 240

 235

 230

 225

 220

Estimate interval

Figure 4.7: Behaviour of malicious node in MintRoute Scenario 2

To compute the expected number of packets to overhear from a neighbouring sensor

node, the malicious node needs to know how many packets this neighbour should send

during one estimate interval, E. The number of data packets can be computed from

the sizes of E and the send interval, S. Equation 4.2 shows how many data packets the

malicious node expects to receive from a single neighbouring sensor node in one estimate

interval. Basically, it is the ratio of the size of estimate interval to the size of the send

interval.

E
E[X] = (4.2)

S

Moreover, the sensor nodes forward the data of all the sensor nodes in their subtrees.

Thus, there will be many data packets coming during the same send interval if each sensor

node in the subtree sends one data packet. Assuming that the malicious node knows the

subtree size, n, of each of its neighbouring sensor nodes, it computes the expected number

of data packets from each neighbour as:

L
in

k
qu

al
ity

Announced by malicious node
Expected by neighbour

1 2 3 4 5 6 7 8 9 10

82

E
E[X] = n × (4.3)

S

Next, the malicious node computes the variance, V ar(X), for each of its neighbouring

sensor nodes depending on the corresponding E[X].

However, this is not enough to determine the threshold. There are route update pack­

ets from each neighbouring sensor node. As per the default configuration of MintRoute,

a sensor node sends ten route update packets during a single E. The malicious node

computes the expected total number of packets as shown in Equation 4.4.

E
E[X] = 10 + n × (4.4)

S

The final problem that faces the malicious node is how to know n, the subtree size,

of each neighbouring sensor node. The malicious node uses the following features of

MintRoute: data packets include the identifier of the originating sensor node; and no

encryption mechanism is implemented. For any neighbouring sensor node that forwards

a data packet, the malicious node can read the originator of the data packet. Then the

malicious node assigns this originator to the subtree of the corresponding neighbour. At

the end of the estimate interval and before computing the link qualities, the malicious

node counts the number of sensor nodes in each subtree. Now, before advertising its link

qualities, the malicious node can compute the thresholds to decide which link qualities

should be exaggerated and which should be true. Since the subtrees may change, the

malicious node resets n after advertising its link qualities and begins counting again in

the new estimate interval.

4.6.3 MintRoute Scenario 3

One weakness of the sequence number gap trick used in Scenario 2 is that the sensor

nodes only monitor the link quality advertisements immediately following a sequence

83

number gap trick, rather than continuously.

The obvious solution is to make the sensor nodes more vigilant. In particular, because

link quality computations in MintRoute use an exponentially weighted moving average, it

is impossible for a link quality estimate to jump dramatically from one estimate interval

to the next. An enhanced detection mechanism can monitor link qualities more closely

to detect malicious nodes at all times, as illustrated in Figure 4.8 [125]. In other words,

when a tricking sensor node is not playing the sequence number gap trick, it assumes

that all neighbouring sensor nodes have received all its outgoing packets and missed = 0.

It computes the expected link qualities for all neighbouring sensor nodes and uses them

to test the next advertisements of the neighbours.

Scenario 3

260

255

 250

 245

 240

 235

 230

 225

 220

Estimate interval

Figure 4.8: Behaviour of malicious node in MintRoute Scenario 3

4.6.4 MintRoute Scenario 4

The enhancement to the detection mechanism in Scenario 3 can also be applied to the

malicious node itself. That is, following a (detected) sequence number gap trick, the

L
in

k
qu

al
ity

Announced by malicious node
Expected by neighbour

1 2 3 4 5 6 7 8 9 10

84

malicious node can cautiously increase its link quality back to the maximum so as to

avoid suspicion, as shown in Figure 4.9 [125]. This strategy effectively converts the

malicious node into a conformant node.

Scenario 4

260

255

 250

 245

 240

 235

 230

 225

 220

Estimate interval

Figure 4.9: Behaviour of malicious node in MintRoute Scenario 4

4.7 Summary

In this Chapter, we explained the six components of MintRoute and showed how they

cooperate to construct a routing tree using bidirectional link qualities. Then the Chapter

proceeded with an example of the operations in MintRoute. The Chapter followed the

example with vulnerabilities in MintRoute that a malicious node can use to influence the

computation of link qualities to its favour. Simply, the malicious node can exaggerate its

link qualities and the sensor nodes cannot validate or refute them. MintRoute assumes

that all nodes are trustworthy. We explained why traditional security mechanisms cannot

detect this malicious behaviour and the need to find a novel detection mechanism. Then

L
in

k
qu

al
ity

Announced by malicious node
Expected by neighbour

1 2 3 4 5 6 7 8 9 10

85

the proposed detection system was explained and discussed. The Chapter ended with

possible scenarios that a malicious node can follow and how the proposed detection

system can be adapted to bring malicious nodes to conformity.

The next Chapter explains how ns-2 is extended to support MintRoute and how the

proposed IDS is implemented. It also discusses the simulation of MintRoute and the

detection of the malicious node.

86

Chapter 5

MINTROUTE: SIMULATION MODEL AND RESULTS

5.1 Introduction

This Chapter describes the implementation of MintRoute and its IDS in ns-2. It begins

by explaining the extensions made to ns-2. Then it describes the configuration of the

simulation environment. The Chapter follows with the simulation of MintRoute WSNs

where a malicious node exploits the routing protocol. Different scenarios that the ma­

licious node can follow are simulated. In each scenario, the malicious node adapts its

attack strategy to escape detection. In parallel, we explain how the IDS is modified to

detect the adaptive malicious node. The simulation results show that the proposed IDS

detects the malicious node effectively.

5.2 Extending ns-2 to Support MintRoute

In this section, the extensions made to ns-2 to support MintRoute and the proposed

MintRoute IDS are explained.

5.2.1 Implementation of MintRoute

We have used the source code of MintRoute in TinyOS [126] and its implementation in

the Castalia simulator [127] as a reference for our implementation. TinyOS implements

MintRoute as one component with different functions to implement its six components.

Therefore, we have implemented MintRoute as a single class in ns-2.

87

5.2.2 Implementation of MintRoute IDS

After having MintRoute running in ns-2, we have extended MintRoute itself to support

the proposed detection mechanism. In addition to extending the code, which will be

explained later, some new fields are required in the routing table. We have added the

fewest possible extra bytes to the routing table of MintRoute as shown in Table 5.1.

Table 5.1: New fields in MintRoute routing table
Field Description Size

estSeqNo
usedSeqNo
flags2
blackList

lastSeqno used to calculate neighbour recvEst
sequence number neighbour used to calculate recvEst
0, TRICK, 0, 0, 0, 0, 0, 0
trust value

2 bytes
2 bytes
1 byte
1 byte

Storage Space Overhead

To solve the time synchronization problem as explained in Section 4.5.2, two fields are

required: estSeqNo and usedSeqNo. The estSeqNo field is used to hold the lastSeqNo

value used to compute the recvEst value of a neighbouring sensor node. Then the value

of estSeqNo is sent with the recvEst value in the same route update packet. The sensor

nodes cannot simply send the value of lastSeqNo because they may overhear a new

route update packet between the computation and the transmission of recvEst. Thus,

estSeqNo is used to resolve this conflict. The second field usedSeqNo is populated when

the sensor nodes overhear the route update packets. This field is populated with the

value of estSeqNo received in the route update packets. Finally, to complete the solution

of the time synchronization problem, a global variable trickSeqNo is required to hold

the sequence number at which a tricking sensor node starts the sequence gap trick. Only

neighbouring sensor nodes that have usedSeqNo greater than trickSeqNo are tested.

To solve the over-testing problem, the TRICK bit in the flag2 field is used to determine

the neighbours that are already tested in the current trick. When a tricking sensor node

88

starts a sequence number gap trick, it sets this bit for all the neighbouring sensor nodes in

its routing table. When a neighbour is tested, the tricking sensor node resets the TRICK

bit in the corresponding routing table entry. Other bits in the flag2 field are reserved

for future purposes.

Finally, the blackList field is used to determine blacklisted neighbours. In addition,

its value solves the isolation problem by removing good sensor nodes from the blacklist.

In total, 98 extra bytes of memory are required per sensor node. The additional fields

in the routing table take 96 bytes for the 16 entries plus two bytes for the global variable,

trickSeqNo.

The malicious node does not play the sequence gap trick so it does not blacklist any of

its neighbouring sensor nodes. Thus, the malicious node requires the estSeqNo field only

to send the values of lastSeqNo used in the computations of recvEst values. However,

the malicious node needs to keep track of the size of the subtrees of its neighbouring

sensor nodes. Every sensor node that is sending a data packet in a subtree should be

counted once during a single estimate interval. To achieve this, the malicious node has

an array of bytes for each neighbouring sensor node. The array size equals the size of the

WSN. The indices of the array represent the IDs of the sensor nodes in the WSN. When

a sensor node sends a data packet, its corresponding index in the array is set to 1. With

every new estimate interval the malicious node resets all the indices of the arrays of its

neighbouring sensor nodes to begin a new count. This reset is important to accommodate

the changes that may occur in the routing tree. Hence, the storage requirement for the

malicious node is dependent on the size of the WSN.

Packet Overhead

The other modification to MintRoute comes in its packet format. As explained in Sec­

tion 4.2, a MintRoute packet has a data field that can hold up to 22 bytes. In the case

89

of route update packets, the data portion holds the routing packet shown previously in

Figure 4.1. The routing packet has a fixed part of size five bytes and a variable part that

can hold up to 17 bytes. Each neighbour/recvEst pair requires three bytes and thus,

the routing packet can hold up to five neighbour/recvEst pairs. If a sensor node has

more than five neighbours, the routing update packets will hold the neighbour/recvEst

pairs in a round robin fashion. The modified route update packets have the triplet

neighbour/recvEst/estSeqNo. This modification occupies five bytes and thus, the mod­

ified route update packets hold three neighbour/recvEst/estSeqNo triplets only.

Code Overhead

Algorithm 5.1 shows the pseudo-code of the proposed IDS. When a sensor node, node,

receives a route update packet, pkt, from its neighour, nghbr, it goes through Algorithm

5.1 to test the recvEst value. The expEst variable is computed using Algorithm 4.3.

Currently, the blacklist threshold is set to 1. This threshold can be used if we do not

want to blacklist a neighbouring sensor node after a single test failure. When the parent

selector selects a next hop, it considers only the neighbouring sensor nodes that are not

blacklisted.

Algorithm 5.2 shows how the malicious node builds the subtrees of its neighbouring

sensor nodes. When the malicious node receives a data packet, pkt, from its neighbouring

sensor node, nghbr, it will check if the origin sensor node has sent a data packet before. If

it is the first data packet, then the malicious node will set the array index at the position

of the origin ID. To know the subtree size of any of its neighbours, the malicious node

counts the number of cells that are set in the corresponding array. Then the malicious

node can compute the expected number of packets to overhear from each neighbouring

sensor node.

When the estimate interval of the malicious node expires, it updates the estimates

90

Algorithm 5.1 ReceiveUpdatePkt(node, nghbr, pkt)

if node ID included in pkt then
if node playing trick then

if pkt holds a new recvEst for node & usedSeqNo in pkt > trickSeqNo then
COMPUTE expEst [Call Algorithm 4.3
if recvEst > expEst then

INCREMENT alert
if alert ≥ blacklist threshold then

SET nghbr blackList TO 255

else
nghbr blackList

SET nghbr blackList TO
2

RESET alert

RESET TRICK bit for nghbr

else if node not playing trick & pkt holds a new recvEst for node then
COMPUTE expEst [Call Algorithm 4.3
if recvEst > expEst then

INCREMENT alert

if alert ≥ blacklist threshold then

SET nghbr blackList TO 255

else
RESET alert

else
DROP pkt

Algorithm 5.2 UpdateSubtree(nghbr, dP kt)

READ origin FROM dP kt
if index origin in array of nghbr is not set then

SET index origin in array of nghbr TO 1

of the link qualities of its neighbouring sensor nodes. However, the malicious node

calls Algorithm 5.3 to guess which neighbours are playing the sequence number gap

trick. First, it calls Algorithm 5.4 to compute the expected number of packets, ex, to

receive from neighbouring sensor node nghbr and the associated variance, varX. Next it

computes the standard deviation, stdDev. To determine if nghbr is playing the sequence

number gap trick or not, the malicious node compares the number of received packets

from nghbr to the threshold (ex + stdDev). If the number of received packets from nghbr

91

exceeds the threshold, then the malicious node will send the true link quality to nghbr.

Otherwise, the malicious node will send an exaggerated link quality. Algorithm 5.3 can

be modified to reflect the different thresholds that the malicious node may use.

Algorithm 5.3 GuessTrick(nghbr)

COMPUTE ex and varX of nghbr [Call Algorithm 5.4
RESET subTree of nghbr [Set cells in subtree of nghbr to 0
SET stdDev TO square root of varX [Compute the standard deviation
if EX + stdDev < number of packets from nghbr then

SEND true link quality to nghbr
else

SEND false link quality to nghbr

Algorithm 5.4 implements Equation 4.4 to compute the expected number of packets

and variance for each neighbouring sensor node nghbr of the malicious node. The al­

gorithm begins by counting the number of sensor nodes in the subtree of nghbr. This

number is counted as the number of cells that are set to 1 in the subtree of nghbr. Then

the algorithm computes the expected number of data packets to receive from nghbr.

The algorithm follows with the computation of the variance and finally, it updates the

expected number of packets to include the default number of route update packets,

EXPECTED UPDATES, to receive from nghbr during a single estimate interval. EX­

PECTED UPDATES is set to 10 by default in MintRoute.

Algorithm 5.4 Expectations(nghbr)

COMPUTE subTreeSize of nghbr
if subTreeSize > 0 then

estimate interval
SET ex TO × subTreeSize

send interval

SET varX TO variance of ex
SET ex TO ex + EXPECTED UPDATES

else
SET ex TO 0

SET varX TO 0

92

5.3 Setup of MintRoute Simulation Environment

Following the simulation framework presented in Section 3.5, we have written Tcl sim­

ulation files to simulate 10 different topologies (same physical locations) with 20 sensor

nodes each. MintRoute seeds the random number generator with the current time, so

we have seeded the random number generator of ns-2 with the current time as well. Ac­

cordingly, for the same physical locations of the sensor nodes a different routing tree is

constructed with every new run of the simulation file. We have simulated each topology

25 times. As a result, the malicious node has had the same number of neighbouring

sensor nodes, as shown in Table 5.2, but its subtree is different in each run for the same

topology depending on the current time. In each simulation run, the following parameters

are fixed:

• Wireless communication range = 40 units

• Route update interval, U = 5 time units

• Estimate interval, E = 50 time units

• Data send interval, S = 20 time units

• Simulation time = 5000 time units

• Blacklist removal threshold = 16

• Sequence number gap = 1, 2, 3, 4, 5

Given the previous values, the sensor nodes compute the link qualities 100 times

during a single simulation run. The simulation time is sufficient to have a stable and

complete routing tree. The blacklist threshold requires a blacklisted sensor node to have

five consecutive true link qualities to be removed from the blacklist. The results of the

93

Table 5.2: Neighbourhood sizes of malicious node in MintRoute simulations
Network ID Size of neighbourhood

1
2
3
4
5
6
7
8
9
10

8
7
8
8
11
11
11
12
9
13

simulations represent the average values calculated from the 25 independent runs for each

topology.

The base station initiates the construction of the routing tree by broadcasting a route

update packet. Once its neighbouring sensor nodes receive this broadcast, they broadcast

their own route update packets. Then their neighbouring sensor nodes will do the same

until all the sensor nodes in the WSN broadcast their route update packets. This means

that sensor nodes closer to the base station construct routes to the base station before

far sensor nodes.

5.3.1 Setup of Malicious node

The malicious node has been placed in the centre of the network with the same configu­

ration as the good sensor nodes. To be more efficient, we have configured the malicious

node to announce a routing cost that is lower than the lowest routing cost in its com­

munication range. To achieve this, the malicious node waits for the first neighbour to

announce its routing cost to the base station. Most probably, this will be the closest

neighbour to the base station with the lowest routing cost. The malicious node imme­

diately announces a lower cost to a fake parent to lure the other neighbouring sensor

nodes. Forwarding traffic to a fake parent makes the malicious node look legitimate. On

�

�

94

the other hand, it helps to compute the percentage of data delivery at the base station

with and without the presence of the malicious node to measure its effect.

The malicious node does not perform the sequence number gap trick, so as not to

affect the computations of its neighbours. This reinforces the probability of choosing the

malicious node when they compute routing costs to the base stations.

Finally, the sensor nodes are configured to test route update packets, with or without

the sequence gap trick, after 100 time units. This delay ensures that the routing tree is

built without interruption.

5.3.2 Setup of Performance Metrics

The performance of the malicious node is measured as the percentage of data delivered

to the base station as described in Section 3.5.4.

The success of MintRoute IDS is measured by computing the number of detections

that occurred in the WSN and how many of these detections are true. Equation 5.1

shows the computation of the TP and FP ratios.

r−1

TP

i=0true detection =

r
(5.1)

r−1

FP

i=0false detection =

r
where r = number of runs, i.e., 25.

There are factors other than the sequence number gap trick that may affect these

measurements. These factors can cause a mismatch between an advertised link quality

and an expected link quality:

•	 A sensor node starts a second sequence number gap trick shortly after a first one.

The second trick cancels the first trick.

95

•	 Sensor nodes do not advertise link qualities that are below 100 (as stated by

MintRoute). Accordingly, the neighbouring sensor nodes will not receive any link

qualities to test. The first link quality to test may arrive later than the trick.

•	 The number of neighbours is greater than what the route update packets can accom­

modate in one estimate interval. This means that neighbouring sensor nodes may

not be updated in one estimate interval and new link qualities may be computed

without advertising the old values.

5.4 Results of MintRoute Simulation

We incrementally present the scenarios in which a malicious node exploits the MintRoute

routing protocol. In each scenario, we discuss the performance of the malicious node by

measuring data delivery at the base station and the success of detection by measuring

TP and FP values.

When the sensor nodes detect the malicious node, they change their parents to good

sensor nodes. A high percentage of data delivery means that the sensor nodes detect the

malicious node quickly. Accordingly, a large proportion of data reaches the base station

intact. A low percentage of data delivery means that the malicious node is successful in

escaping detection.

We discuss the simulation results for the percentage of data delivery for the ten simu­

lated topologies. However, for the success of detection, we discuss the simulation results

of network 2 because the neighbourhood of the malicious node is the smallest. Accord­

ingly, the graphs of the simulation results are less dense. However, all the observations

stated in this Section can be stated for the other nine networks as well. In network 2, the

malicious node has seven neighbouring sensor nodes with the IDs: 1, 4, 11, 14, 15, 16,

and 18. Figure 5.1 [125] shows the topology of network 2 with and without the malicious

96

node.

(a) Before attack (b) After attack

Figure 5.1: MintRoute Network 2

5.4.1 Simulation of MintRoute Scenario 0

As a baseline, we compare the data delivery at the base station in the different topologies

with and without the presence of the malicious node. In both cases, the sensor nodes do

not run the proposed IDS.

First, the sensor nodes build a routing tree rooted at the base station without the

presence of the malicious node in the network. The best route in MintRoute is computed

as the route with the highest packet reception ratio, interpreted as the lowest total

routing cost. MintRoute offers a stable and robust routing tree that changes only when

the quality of a link deteriorates. The simulation results show over 99% data delivery to

the base station in WSNs using MintRoute. See the green bars in Figure 5.2.

Second, a malicious node is introduced to the network with the aim of diverting as

much traffic as possible. To achieve this goal, the malicious node lies about its cost

and the estimates of its inbound link qualities. The malicious node uses a very simple

attack strategy, in which it always announces the highest possible link quality (255). The

97

simulation results show that the percentage of data delivery drops to 20% - 60% of the

WSN traffic, depending on the size of the neighbourhood of the malicious node. See the

blue bars in Figure 5.2 [125].

Percentage of data delivery without and with malicious node

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Network ID

No malicious node
Malicious node

Figure 5.2: MintRoute Scenario 0: data delivery

5.4.2 Simulation of MintRoute Scenario 1

In this scenario, the malicious node behaves as in Scenario 0. However, the sensor nodes

use the sequence number gap trick to try to detect it. The sensor nodes are configured

to play the sequence number gap trick once (at a random time) during each interval E.

This ensures that only one sequence number gap trick is used in the (per-neighbour)

computations of the malicious node and, at the same time, it does not severely affect

the link qualities. Since the malicious node is passive, it ignores any missed packets and

announces the highest possible link quality, which makes it easily detectable.

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

1 2 3 4 5 6 7 8 9 10

98

Effectiveness of Malicious Node

Figure 5.3 [125] shows that the percentage of data delivery is restored to 98% or better

in each of the 10 WSN topologies tested. In other words, the sequence number gap trick

is a simple and effective means to detect the malicious node. We can also see that the

sequence number gap size has no effect on the percentage of data delivery. Since the

malicious node is passive, it is detected regardless of the gap size. The slight decrease

in the percentage of data delivery can be attributed to the difference in time between

when the malicious node announces its route cost and the time the neighbours start the

sequence gap trick. The later the sequence number gap trick is played, the higher the

possibility that the malicious node disrupts more traffic.

Percentage of data delivery with naive malicious node

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

Figure 5.3: MintRoute Scenario 1: data delivery

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

1 2 3 4 5 6 7 8 9 10

99

Success of Detecting Malicious Node

Figure 5.4 depicts the average detection results when the sensor nodes used sequence

number gap of size 1. We can see that all the neighbours of the malicious node had suc­

cessfully detected it with TP between 60% and 80% on average. Although the malicious

node exaggerates its link qualities all the time, it is not detected all the time due to the

aforementioned factors in Section 5.3.2. Specifically, the malicious node is not detected

when a sensor node performs two sequence number gap tricks within a short period of

time. The computations of the first trick will be canceled by the second trick and will

not detect the malicious node. FP counts for a negligible amount of the detections due

to mistakenly suspecting a good sensor node as malicious. For example, sensor node 8

suspected a good neighbour as malicious 6 times in 6 runs only.

Percentage of true and false detections in network 2

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Node ID

Avg TP

Avg FP

Figure 5.4: MintRoute Scenario 1: average detection in network 2, gap size = 1

The same behaviour is observed with larger sequence number gaps. However, there

is an increase in the number of the sensor nodes that have FP. Since a larger sequence

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

1 4 8 11 14 15 16 18

100

number gap can affect the link qualities, link qualities that go under 100 are not adver­

tised. Accordingly, a mismatch may occur between a sequence number gap trick and the

appropriate received link quality to test. See Figure 5.5.

Percentage of true and false detections in network 2

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0
1 3 4 7 9 11 13 14 15 16 18 19

Node ID

Avg TP

Avg FP

Figure 5.5: MintRoute Scenario 1: average detection in network 2, gap size = 5

5.4.3 Simulation of MintRoute Scenario 2

We present the results of the adaptive malicious node here. The malicious node tries to

guess when the sequence number gap trick is being played, and tell the truth about its

link quality in this case. It is then able to avoid detection by the sequence number gap

trick some of the time.

Effectiveness of Malicious Node

The malicious node computes a threshold, τ , to represent the number of packets it

expects to hear from each neighbour. Then it decides whether to lie or not to the

101

corresponding neighbour depending on the observed traffic relative to the threshold. In

essence, if unusually many packets are “missing”, the malicious node suspects that a

trick is being played, and tells the truth in order to avoid detection. Figure 5.6 [125]

shows the percentage of data delivery at the base station when the malicious node uses

τ = E[X] + σ, where E[X] is the expected number of packets, and σ is the standard

deviation.

With a sequence number gap of size 1, the simulation results show that the percentage

of data delivery is at least 97% across the 10 WSN topologies. However, the percentage

of data delivery drops sharply as the sequence number gap size increases. The malicious

node can detect large sequence number gaps and thus, it lies less often. In other words,

the sequence number gap trick is most effective with a small sequence number gap of size

1.

Percentage of data delivery with malicious node threshold: E[X] + StdDev

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

Figure 5.6: MintRoute Scenario 2: data delivery, τ = E[X] + σ

Figures 5.7 and 5.8 show the simulation results with the malicious node using different

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

1 2 3 4 5 6 7 8 9 10

102

σ
thresholds. It uses τ = E[X] + in the former graph. In the latter graph, it uses a

2
threshold of missed = 0. The latter graph means that if a single packet is perceived

missed, then the malicious node announces the true link quality for the corresponding

neighbour. We can see that the tighter the threshold, the more successful the malicious

node is in escaping the detection. However, the tighter threshold is not in favour of

the malicious node because it will announce its real link quality values, which may not

be attractive to its neighbours. In WSNs, losses are frequent and link qualities are

weaker. Thus, if the malicious node does not exaggerate its link qualities, it may not

look appealing to the neighbouring sensor nodes.

Percentage of data delivery with malicious node threshold: E[X] + 0.5 * StdDev

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

1 2 3 4 5 6 7 8 9 10

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

σ
Figure 5.7: MintRoute Scenario 2: data delivery, τ = E[X] +

2

Success of Detecting Malicious Node

The malicious node in Scenario 2 is more malignant and tries to guess when a neighbour

is performing the sequence number gap trick hoping to escape detection. We show the

103

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

Percentage of data delivery with malicious node threshold: missed = 0

100
90

 80
 70
 60
 50
 40
 30
 20
 10

 0
1 2 3 4 5 6 7 8 9 10

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

Figure 5.8: MintRoute Scenario 2: data delivery, τ = missed = 0

performance of the sensor nodes against the different thresholds that the malicious node

may use.

Figure 5.9 illustrates the behaviour of the sensor nodes when the malicious node uses

the threshold τ = E[X] + σ. We can see a decrease in the average number of TP, which

means that the malicious node is successful in escaping the detection. On the other hand,

the average number of FP stays almost the same since this is due to a miss from a good

sensor node.

The malicious node is more successful in escaping detection when it uses a tighter

threshold as shown in Figure 5.10. It can even escape detection completely with the tight­

est threshold as shown in Figure 5.11. However, as we said before, this tightest threshold

may deprive the malicious node from luring its neighbours if its real link qualities are

not good.

104

Percentage of true and false detections in network 2

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0
1 4 8 11 14 15 16 18

Node ID

Avg TP

Avg FP

Figure 5.9: MintRoute Scenario 2: average detection in network 2, τ = E[X] + σ

5.4.4 Simulation of MintRoute Scenario 3

Link quality computations in MintRoute use an exponentially weighted moving average.

As a result, it is impossible for a link quality estimate to jump dramatically from one

interval to the next. Knowing that the malicious node is not naive, the sensor nodes

should consider this feature of MintRoute and be more vigilant.

In the previous scenarios, the sensor nodes test the malicious node’s link qualities

advertisement immediately following a sequence number gap trick, rather than contin­

uously. An enhanced detection mechanism can monitor link qualities continuously to

detect adaptive malicious nodes.

Effectiveness of Malicious Node

The simulation results for this scenario show that the enhanced detection mechanism

works well. For a sequence number gap of size 1, Figure 5.12 [125] shows that the

105

Percentage of true and false detections in network 2

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0
1 4 8 11 14 15 16 18

Node ID

Avg TP

Avg FP

σ
Figure 5.10: MintRoute Scenario 2: average detection in network 2, τ = E[X] +

2

percentage of data delivery is about 98% across the 10 WSN topologies with malicious

node’s threshold τ = E[X]+σ. Furthermore, the approach works even for larger sequence

number gap sizes, though there is still a slight decline in effectiveness as the gap size

increases.

Moreover, the vigilant sensor nodes are more successful in detecting the malicious node

that uses tighter thresholds as illustrated in Figures 5.13 and 5.14. Since the malicious

node goes back to exaggerating its link qualities after guessing the sequence number gap

trick being performed, a sensor node that is always testing link qualities will detect this

malicious behaviour.

The enhancement to the IDS mechanism in Scenario 3 can also be applied to the

malicious node itself. That is, following a (detected) sequence number gap trick, the

malicious node can cautiously increase its link quality back to the maximum so as to avoid

106

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

Percentage of true and false detections in network 2

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0
1 4 14 15 18

Node ID

Avg TP

Avg FP

Figure 5.11: MintRoute Scenario 2: average detection in network 2, τ = missed = 0

suspicion. This strategy has effectively converted the malicious node into a conformant

node.

Success of Detecting Malicious Node

Figures 5.15, 5.16, and 5.17 show the improvements in detecting the malicious node

when the sensor nodes test all the received link qualities. The latter figure shows that

the malicious node is also detected when the sensor nodes do not play the sequence

number gap trick. We can also see an increase in the number of false detections. This is

due to testing at all times so a missed packet may cause a tricking sensor node to suspect

its good neighbouring sensor node.

Although the low number of true detections do not confirm the high percentage of

data delivery in Scenario 3, it is because of the blacklisting mechanism of our IDS and

the high threshold of MintRoute to change to a new parent. It was computationally

107

Percentage of data delivery with malicious node threshold: E[X] + StdDev

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

Figure 5.12: MintRoute Scenario 3: data delivery, τ = E[X] + σ

found that a malicious node reaches the actual link qualities after advertising five true

link qualities. Hence, we set the blacklist removal threshold to 16, which means once the

malicious node is blacklisted it needs five true advertised link qualities to be removed.

After the removal of the node from the blacklist, it needs to offer a route cost that is 75%

(MintRoute default) better than the current cost to be considered as a next hop. Thus,

once the malicious node is blacklisted, it is hard to choose it again as a next hop unless

all other route costs are low.

5.5 Summary

In this Chapter, we explained the extensions to ns-2 to support MintRoute routing pro­

tocol and the proposed IDS for the vulnerability of cooperative link quality routing pro­

tocols for WSNs. Then the Chapter went through several scenarios where the malicious

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

1 2 3 4 5 6 7 8 9 10

108

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

Percentage of data delivery with malicious node threshold: E[X] + 0.5 * StdDev

100
90

 80
 70
 60
 50
 40
 30
 20
 10

 0
1 2 3 4 5 6 7 8 9 10

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

σ
Figure 5.13: MintRoute Scenario 3: data delivery, τ = E[X] +

2

node adapted its attack to be more vicious. The malicious node built different thresholds

in different scenarios for the expected number of packets from each neighbouring sensor

node to escape the detection. If the number of overheard packets exceeded the threshold,

the malicious node would advertise the true link quality to the corresponding neighbour­

ing sensor node. In each scenario, the IDS was adapted to detect the new behaviour

of the malicious node. The IDS tested different sizes of the sequence number gap. The

simulation results showed that the tighter the threshold of the malicious node, the lower

the success of the IDS. However, smaller size of the sequence number gap were more

helpful in detecting the malicious node.

109

Percentage of data delivery with malicious node threshold: missed = 0

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

100
90

 80
 70
 60
 50
 40
 30
 20
 10

 0
1 2 3 4 5 6 7 8 9 10

Network ID

No malicious node
Malicious node

Gap = 1
Gap = 2
Gap = 3
Gap = 4
Gap = 5

Figure 5.14: MintRoute Scenario 3: data delivery, τ = missed = 0

Percentage of true and false detections in network 2

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0
0 1 4 6 7 8 10 11 13 14 15 16 18

Node ID

Avg TP with tricks
Avg TP without tricks

Avg FP

Figure 5.15: MintRoute Scenario 3: average detection in network 2, τ = E[X] + σ

110

Percentage of true and false detections in network 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

0 1 4 6 7 8 11 13 14 15 16 17 18

Node ID

Avg TP with tricks
Avg TP without tricks

Avg FP

σ
Figure 5.16: MintRoute Scenario 3: average detection in network 2, τ = E[X] +

2

Percentage of true and false detections in network 2

100

90

 80

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

70

 60

 50

 40

 30

 20

 10

 0

Node ID

Avg TP with tricks
Avg TP without tricks

Avg FP

0 1 4 6 7 8 9 10 11 13 14 15 16 17 18

Figure 5.17: MintRoute Scenario 3: average detection in network 2, τ = missed = 0

111

Chapter 6

COLLECTION TREE PROTOCOL AND ITS

VULNERABILITIES

6.1 Introduction

This Chapter provides the details of CTP and the possible vulnerabilities related to

link qualities that a malicious node can exploit. The Chapter begins by explaining the

components of CTP and how they integrate together followed by a detailed example.

Then we point out the vulnerabilities that exploit the computations of link qualities in

CTP. With each vulnerability, the behaviour of the malicious node is explained. Finally,

the Chapter ends with a proposed IDS to detect these attacks.

6.2 Modules of CTP

CTP is a link quality routing protocol that computes routes to a single or a small number

of base stations in a WSN. It is a best-effort protocol that implements several mechanisms

to improve data delivery but it does not guarantee 100% delivery [64]. The specification

of CTP is provided in TinyOS Enhancement Proposal (TEP) 123 [128] and its imple­

mentation is available in the TinyOS 2.1 distribution. CTP is a data collection protocol

that fulfills the primitives of data collection that are set in TEP 119 [129]:

• Estimate link quality of 1-hop links.

• Detect and repair routing loops.

• Detect and suppress duplicate packets.

112

Although it may look easy to fulfill the data collection primitives, not all collection

protocols offer high data delivery ratios. The performance of the link quality protocols is

affected by the instability of wireless links because link qualities may vary significantly

and quickly over time. In addition, link estimation is often based on correctly received

packets, which may introduce bias in the estimation. CTP addresses these problems and

provides a high data delivery ratio to the base station [64, 130, 131].

CTP is a flat proactive routing protocol for WSNs. It is a hybrid link quality pro­

tocol, which means that it computes bidirectional link qualities for some sensor nodes

and unidirectional link qualities for others. CTP computes bidirectional link qualities

differently from MintRoute. In CTP, bidirectional link qualities are computed indepen­

dently without any cooperation among the sensor nodes. The computations of CTP are

performed in three modules: the link quality estimator module, the forwarding engine

module, and the routing engine module. The three modules reside in the network layer

of the protocol stack. The three modules interact together and with other layers through

well-defined interfaces.

Figure 6.1 shows a conceptual view of the interaction between the three modules.

The link quality estimator computes link quality estimates between neighbouring sensor

nodes. The forwarding engine is responsible for sending and forwarding data packets

and receiving ACKs in the WSN. Sent/Forwarded data packets and received ACKs are

passed to the link estimator to update the outbound link qualities. The routing engine

manages transmission and reception of beacons (route update packets). The routing

engine passes the received beacons to the link estimator module to update the inbound

link qualities. It also accepts link quality estimates from the link quality estimator.

Sensor nodes implementing CTP exchange beacons to construct routing trees. They

also relay data packets to report collected data to the base station. In addition, CTP

relies on receiving ACKs to indicate the successful reception of data packets.

113

Figure 6.1: Modules of CTP

6.2.1 Link Quality Estimator

CTP uses the 4-bitle as its default link quality estimator. 4-bitle is a hybrid estimator

that uses active and passive monitoring at the sending sensor node. Active monitoring

requires the sensor nodes to broadcast periodic beacons. As a result of this broadcast,

sensor nodes receive routing information from all their neighbouring sensor nodes. Thus,

4-bitle computes inbound link qualities for all the neighbouring sensor nodes using the

received beacons. Unlike active monitoring, passive monitoring infers statistics about the

links from the packets being sent on these links. Since CTP requires the transmission of

ACKs to acknowledge the successful reception of data packets, 4-bitle computes outbound

link qualities using the received ACKs. Since the sensor nodes transmit data packets

to a chosen next hop, the outbound link quality is computed only for the next hop.

Accordingly, 4-bitle combines the inbound and outbound link qualities for next hop into

a bidirectional link quality. All other neighbouring sensor nodes have a unidirectional

114

link quality, the inbound link quality.

4-bitle separates the computations of inbound and outbound link qualities in two

modules, Beacon Link Quality (BLQ) and Data Link Quality (DLQ), respectively, as

shown in Figure 6.2. The BLQ converts the number of received and missed beacons into

inbound link qualities for the sending sensor node using the inverse of WMEWMA. To

determine the number of missed packets, CTP requires the use of sequence numbers in

the beacons. The DLQ uses the number of transmitted packets to compute outbound

link qualities for the sending sensor node using RNP. The outputs of BLQ and DLQ are

combined together into one value using WMEWMA. If the WSN has high traffic volume,

then DLQ will dominate the estimates. Otherwise, BLQ will dominate [121].

Figure 6.2: Components of link quality estimator

4-bitle has a neighbour table that holds information of 10 neighbouring sensor nodes.

Each entry in the table occupies 11 bytes, requiring 110 bytes to save the whole table.

The fields of each entry are described in Table 6.1. Beacons delivered to the link esti­

mator from the routing engine update the lastSeq, rcvCnt, and failCnt fields. The

lastSeq is updated with the sequence number of the last received beacon after all other

115

fields are updated. The rcvCnt field is incremented with every received beacon from the

corresponding neighbour. The failCnt field is incremented if the difference between the

new sequence number and the lastSeq is greater than one. The BLQ component uses the

fields lastSeq, rcvCnt, failCnt, and inQuality to compute the inbound link qualities.

Meanwhile, dataTotal and dataSuccess fields are updated when the forwarding engine

passes the data packets and ACKs to the link estimator, respectively. The dataTotal

field is incremented whenever a data packet is transmitted and the dataSuccess field

is incremented whenever an ACK is received. The DLQ accesses the dataSuccess and

dataTotal fields to compute the outbound link qualities. The etx field holds the combi­

nation of both the inbound and outbound link qualities of the corresponding neighbour.

Table 6.1: The fields in the neighbour table of CTP link estimator
Field Description Size

ll addr
lastSeq
rcvCnt
failCnt
flags
inQuality
etx
dataSuccess
dataTotal

identifier of neighbour
sequence number of last received beacon
number of beacons received after last BLQ update
number of beacons missed after last BLQ update
state of this entry
inbound quality in the range [1, 255]. 1 bad, 255 good
quality of the link
number of successful data packets sent after last DLQ update
number of transmission attempts after last DLQ update

2 bytes
1 byte
1 byte
1 byte
1 byte
1 byte
2 bytes
1 byte
1 byte

The DLQ component computes the outbound link quality for every five data packets

sent or forwarded to the corresponding neighbour. The BLQ component computes the

inbound link quality for every three beacons sent from the corresponding neighbour.

Sensor nodes may miss packets from their neighbours due to collision or environmental

factors. Algorithms 6.1 and 6.2 show the steps for computing DLQ and BLQ, respectively.

For the outbound link quality computations in DLQ, if s out of t data packets are
t

acknowledged, then the outbound link quality will be . If s = 0, then the outbound link
s

quality will be the number of failed transmissions since the last successful transmission.

116

Algorithm 6.1 DLQ()

if dataTotal ≥ 5 then
if dataSuccess = 0 then

SET q TO 10 × dataTotal
else

SET q TO
10 × dataTotal
dataSuccess

[number of failed transmissions

[RNP value

SET dataSuccess TO 0
SET dataTotal TO 0

SET etx TO
9 × etx + q

10

The computation of inbound link qualities is analogous but it is smoothed with the

inverse of a WMEWMA with α = 0.9 [121]. We can see that both computations, DLQ

and BLQ, are scaled to avoid floating point operations, which are expensive in resource-

limited devices.

4-bitle follows the Link Estimation Exchange Protocol (LEEP) [132] packet format.

LEEP provides a standard format for beacons or route update packets that link quality

protocols should use. Thus, the routing engine sends the generated routing engine packet

to the link estimator to encapsulate it in a LEEP packet to form the beacon packet.

Figure 6.3 shows the fields of a CTP beacon along with the size of each field in bytes.

Following is the description of each field [132]:

•	 header : The header of the packet contains the num and seq fields. The num holds

the number of link information entries in the trailer of the packet. The seq is

the sequence number of the packet. This number is incremented with every new

beacon.

•	 payload : This is usually the routing information received from the routing engine.

•	 trailer : The trailer contains multiple entries from the neighbour table. Each entry

in the trailer holds the inQuality value, lq, of a neighbouring sensor node, node id

117

Algorithm 6.2 BLQ()

SET total TO rcvCnt + failCnt
if total ≥ 3 then

250 × rcvCnt
SET newEst TO

total
9 × inQuality + newEst

SET inQuality TO
10

2500

SET q TO

inQuality

if q > 250 then
SET q TO 65535 [largest possible value

SET rcvCnt TO 0

SET failCnt TO 0

9 × etx + q
SET etx TO

10

field. A single CTP beacon may hold up to n entries that bring the total size of the

beacon to the maximum size allowed by TinyOS. TinyOS version 2 allows packets

of at most 28 bytes. Since the header occupies two bytes, the payload occupies

five bytes, and one entry occupies three bytes, a single CTP beacon can hold up

to seven link information entries. Although CTP does not include the exchanged

inQuality values in the computation of link qualities, 4-bitle still adds them to

the beacons to conform with LEEP.

Figure 6.3: Format of CTP beacon

Since CTP computes outbound and inbound link qualities differently, it is important

to study the behaviour of both link qualities. Figures 6.4 and 6.5 show the values for

118

etx computed manually for a WSN of two sensor nodes. In a stable WSN, the DLQ

component produces a constant etx value of one, as shown in Figure 6.4. A stable WSN

means a network with no collisions or packet losses where the routing tree is not changed

frequently. Each step of DLQ requires at least five data packets to be transmitted. On

the other hand, Figure 6.5 shows an example of etx value if the link estimator uses BLQ

only. In a stable WSN, it will take BLQ 25 computations to converge to the minimum

value of etx which is 10. Each computational step of the BLQ component requires at

least three beacons to be perceived (missed or received) with a total of 75 beacons to

reach the minimum etx. Combining BLQ and DLQ helps etx to converge more quickly

to the minimum value.

Behaviour of DLQ in a stable network

20

 18

 16

 14

 12

 10

E
T

X
 v

al
ue

 8

 6

 4

 2

 0
 0 1 2 3 4 5

DLQ computation

Figure 6.4: etx values with the DLQ component only

6.2.2 Routing Engine

The routing engine establishes the routing tree by choosing the best routes to the base

station. The best route is the one with the lowest path cost. Path cost is interpreted as

119

Behaviour of BLQ in a stable network

20

 18

 16

 14

 12

 10

 8

 6

 4

 2

 0

BLQ computation

Figure 6.5: etx values with the BLQ component only

the sum of the etx values of all the links along the path to the base station. To compute

the path cost of a sensor node, the routing engine adds the etx value of the link to a

neighbouring sensor node computed by the link estimator to the path cost announced by

this neighbour. Sensor nodes choose the path of the neighbouring sensor node offering

the lowest path cost. The routing engine broadcasts the path cost and the next hop

adaptively in beacons. The routing engine holds routing information of 10 neighbouring

sensor nodes in a routing table.

Routing table

The routing engine maintains a routing table that holds the path cost values of some

of the neighbouring sensor nodes. Table 6.2 shows the fields of the routing table. It is

important for the routing engine to know the parents of the neighbouring sensor nodes

so that the routing engine does not choose a child sensor node as the next hop. The

cost value saved in the routing table is the path cost announced by the corresponding

E
T

X
 v

al
ue

0 5 10 15 20 25 30

120

neighbour in its beacons. The routing engine adds this value to the etx value in the

neighbour table of the link estimator to determine the best route to the base station.

The haveHeard flag is updated whenever a beacon is heard from the corresponding

neighbour. This field is important to keep the routing table updated with potential next

hop sensor nodes. If a sensor node does not receive beacons from a neighbouring sensor

node, it shall remove this neighbour from the table so as not to consider it for a next hop

choice. The congested field is set if a received data packet or a received beacon has the

C bit set. This means that the route through the corresponding neighbour is congested

and the neighbour cannot handle any more traffic. Thus, the routing engine will not

consider the corresponding neighbour in the route choice process.

Table 6.2: The fields in the routing table of CTP routing engine
Field Description Size

neighbour
parent
cost
haveHeard
congested

identifier of neighbour
identifier of parent of neighbour
path cost of this neighbour
flag to indicate that beacons are received from neighbour
flag to indicate that route through neighbour is congested

2 bytes
2 bytes
2 byte
1 byte
1 byte

It is important to synchronize the routing table of the routing engine with the neigh­

bour table of the link estimator. Otherwise, the routing table may hold entries for

neighbouring sensor nodes that the link estimator has decided to evict due to poor link

qualities. Thus, the link estimator shall update the routing engine if it evicts any neigh­

bour from its neighbour table. In addition, the routing engine informs the link estimator

of the current next hop to pin it in the neighbour table.

The routing engine generates packets in the format shown in Figure 6.6. The following

is an explanation of each field in the packet:

•	 P : Pull bit. When the P bit is set, it means that the routing engine is requesting

the routing information of the neighbouring sensor nodes as soon as possible.

121

•	 C : Congestion bit. If the forwarding engine has no more space in the send queue,

it will inform the routing engine to set the C bit in the next beacon. Since the

beacons are broadcast, it is more convenient to set the C bit in the beacons. This

informs all the neighbours of the status of the send queue to change their routes to

an uncongested one.

•	 parent : This field holds the ID of the next hop of this sensor node.

•	 cost : This field holds the value of the path cost of this sensor node.

Figure 6.6: Format of CTP routing engine packet

Adaptive Beacons

Routing protocols of WSNs typically broadcast beacons or route update packets at fixed

interval [7]. Having a small interval updates the routing information frequently and

eliminates routing loops quickly but it uses more bandwidth and energy. Large update

intervals can let topological inconsistencies persist for long periods of time [64]. The

routing engine of CTP applies an adaptive beaconing strategy to achieve both fast re­

covery and low bandwidth and energy usage. The routing engine implements the Trickle

algorithm [133] to broadcast beacons.

Trickle’s purpose is to propagate code in a wireless network reliably and efficiently. It

uses a randomized timer to broadcast a code summary to the local neighbourhood during

an adaptive transmission interval. On top of this randomized timer, Trickle adopts two

122

other mechanisms: suppression of transmission, and adaptation of transmission interval.

If a sensor node hears a code summary that is identical to its own code summary, it will

suppress its own transmission to eliminate the propagation of redundant code. When

the transmission interval expires, the sensor node doubles its interval up to a maximum

value τmax. On the other hand, when the sensor node hears a code summary that is older

than its own code summary, it shrinks its transmission interval to a minimum value τmin

so that its newer code propagates quickly in the WSN.

Unlike Trickle, there is no global code or routing metric to share among the sensor

nodes in a CTP WSN. Thus, the routing engine of CTP eliminates the suppression

mechanism of Trickle but it implements the adaptive transmission interval for sending

beacons. The routing engine sets τmin to 128 time units and τmax to 512,000 time units.

The routing engine resets the transmission interval to τmin in three cases [64, 131, 134]:

•	 When the forwarding engine receives a data packet to forward with a lower path

cost, it assumes the existence of topology inconsistency or a possible routing loop.

The forwarding engine sends a request to the routing engine to broadcast a beacon

as soon as possible.

•	 When the routing engine finds a new route that has a significantly lower path

cost than the current value, it shrinks its beacon transmission interval. Thus, a

beacon is sent as soon as possible to update the neighbouring sensor nodes of the

new value. A significant drop in the path cost may mean that this sensor node

has a better route to the base station. Resetting the beacon transmission interval

propagates this information to the neighbouring sensor nodes quickly. Significant

means having a path cost value that is 20 points lower than the current value.

•	 When a packet is received with the P bit set, it means that the sending sensor node

has joined the network recently and it requests topology information to populate

123

its routing and neighbour tables. The routing engine cancels the current beacon

transmission interval and schedules a new minimum interval to update the new

sensor node as soon as possible.

The operations of the routing engine are controlled by a timer. This timer is fired

twice: at the beginning of a beacon transmission interval, and at random during the

interval. Figure 6.7 shows how this timer works. At the beginning of the beacon trans­

mission interval, τb, the timer is fired and it calls the functions decayInterval() and

chooseAdvertiseTime(), D and C respectively. The decayInterval() function com­

putes the new beacon transmission interval by doubling the old interval. When the beacon

transmission interval reaches the maximum interval, the new intervals use the maximum

value without doubling. The chooseAdvertiseTime() function computes a random time

during the beacon transmission interval to broadcast the beacon. The random time is

always computed in the second half of the beacon transmission interval. Having a silent

period in the first half of the beacon transmission interval eliminates the short-listen

effect [133]. Eliminating the short-listen effect helps in suppressing the propagation of

redundant code. Although this suppression is not implemented in the current version of

CTP, its developers intend to implement it in future versions. They believe that after

a few number of neighbouring sensor nodes advertise their costs no better routes can be

found to the base station.

Figure 6.7: Beacon transmission intervals of CTP

124

When the timer fires during the beacon transmission interval, τr, at random, it calls

the functions updateRouteTask(), U , sendBeaconTask(), B, and remainingInterval(),

R. If it is the first call to the function updateRouteTask(), the routing engine will choose,

as the next hop, the neighbouring sensor node that offers the lowest path cost to the base

station. Otherwise, if a next hop is chosen before, then the routing engine will determine

whether to change it or not. This decision depends on the difference between the new

path cost and the old path cost. The sendBeaconTask() function prepares a beacon for

broadcast. However, this preparation takes place only if the sensor node has a path to

the base station. The function prepares the beacon by filling some of the fields of the

beacon from the routing table. Then it passes the beacon to the link estimator to add

the header and footer of the link estimator as explained in Section 6.2.1. Finally, the

remainingInterval() is called to compute the remaining time until the next beacon

transmission interval. At the end of the remaining interval, the timer is fired again at τb

and the sequence of operations begins again for the new interval.

6.2.3 Forwarding Engine

The forwarding engine is the top level interface of CTP to the upper layers of the proto­

col stack of WSNs. It is responsible for the transmission of data packets, suppression of

duplicate packets, detection of loops, and timing of transmissions [129]. The forwarding

engine accepts data packets from the application layer and enqueues them for transmis­

sion. It also accepts data packets from neighbouring sensor nodes for forwarding. The

forwarding engine maintains a send queue to buffer data packets ready for transmission

and a transmit cache to buffer successfully transmitted data packets.

Transmission of Data Packets

Before transmission, the forwarding engine asks the routing engine about the next hop

and the path cost to embed in the data packets. If there is no route to the base station,

125

the forwarding engine will suppress the transmission. Once a path is found to the base

station, the routing engine informs the forwarding engine to resume transmission of data

packets.

Suppression of Duplicate Data Packets

The forwarding engine removes a sent/forwarded data packet from the send queue and

adds it to the transmit cache when an ACK is received. The transmit cache is important

in case duplicate data packets arrive slower than the draining rate of the send queue. A

duplicate data packet may be received again if the sending sensor node misses the ACK

from the forwarding sensor node. When the forwarding engine receives a data packet

to forward, it checks if this data packet has been received before. There are two places

to search for duplicate data packets: the send queue, and the transmit cache. The data

packet would be in the send queue if the forwarding engine did not send it yet or an ACK

is not received from the receiving node. The transmit cache holds data packets that are

sent and acknowledged. It was found empirically that a transmit cache of size four is

sufficient to suppress most of the duplicates [64].

Detection of Routing Loops

Routing loops are possible in WSN. A routing loop occurs when the new route includes

a descendant sensor node [128]. There are two cases where routing loops can occur.

First, routing loops occur when a sensor node chooses a route that has a significantly

higher path cost than its older route. A sensor node may choose this route in response

to losing connectivity with its previous parent. Second, the forwarding engine receives

a data packet with a path cost that is smaller than its own. It will assume the sending

sensor node has stale routing topology information and a routing loop may exist [64]. The

forwarding engine detects routing loops by comparing the ID of the originating sensor

node and the sequence number of a newly received data packet with the data packets in

126

the send queue and the transmit cache.

Transmission Timer

Finally, a timer controls the transmission of data packets from the send queue. When the

forwarding engine transmits a data packet, it waits for a short period of time to receive an

ACK. If an ACK is not received within the allotted time, then the forwarding engine will

retransmit the data packet. The forwarding engine will retransmit an unacknowledged

data packet at most 32 times before it finally decides to discard it.

6.3 Example of the Operations in CTP

As mentioned in the previous section, CTP computes an inbound link quality using active

monitoring of beacons and computes an outbound link quality using passive monitoring

of data packets and ACKs. The two link qualities are combined into a bidirectional link

quality. Next, we give the details of how the CTP modules cooperate to compute the

link qualities.

Suppose that two sensor nodes, A and B, are neighbours. Assume that A is the

parent sensor node and B is the child sensor node. We show how the link estimator and

the routing engine of sensor node B build the neighbour and routing tables, respectively.

Table 6.3 shows an excerpt of the evolution of the entry of A in the neighbour table of B.

The table shows the relevant fields in the computations of the etx value, namely, lastSeq,

rcvCnt, failCnt, dataSuccess as dataS, dataTotal as dataT , etx, and inQuality.

For ease of explanation, column s represents the sequence of actions taken by the link

estimator of sensor node B. The action column represents the processing of sensor node

B.	 The following explains each action:

•	 init : This is the initial state of any entry in the neighbour table. All the fields are

initialized to 0 except lastSeq because the sequence numbers start at 0.

127

•	 bA: This is a beacon received from sensor node A. With each received beacon, the

routing engine passes the beacon to the link estimator to update the fields rcvCnt

= rcvCnt + 1, failCnt = seqNo - lastSeq - 1, and lastSeq = seqNo, where

seqNo is the sequence number of the received beacon. The first three beacons

update rcvCnt, as seen in steps 1, 2, and 3.

•	 BLQ: The BLQ component computes the etx and inbound link quality, inQuality,

values whenever rcvCnt + failCnt ≥ 3. At step 4, the BLQ computes the values

10 and 25 for etx and inQuality, respectively, using Algorithm 6.2.

•	 data: The data action means that sensor node B sent a data packet to its next

hop, sensor node A in our example. When a data packet is sent, the forwarding

engine updates the link estimator to increment the dataTotal field, as shown in

steps 5, 11, and n-2.

•	 ACK: The ACK means that sensor node A received the data packet from sensor

node B and sent back an ACK. When the forwarding engine of sensor node B

receives the ACK, it updates the link estimator to increment the dataSuccess

field, as shown in steps 6, 13, and n-1. The ACK in CTP is sent in a stop-and-wait

fashion. This means that a sensor node sends a data packet and waits for its ACK

before sending another data packet. However, this may lead to a deadlock if the

ACK is lost or the data packet itself did not reach the next hop. To solve this

deadlock, the forwarding engine tries to transmit unacknowledged data packets

up to 32 times. This transmission is transparent to the link estimator, which

means that with every transmission the link estimator updates the dataTotal field

regardless of a new transmission or a retransmission.

•	 DLQ: this action means that the link estimator calculates the outbound link quality

from the sender, sensor node B, to the receiver, sensor node A. For every five data

128

packets transmitted, Algorithm 6.1 is called to compute the outbound link quality,

as shown in step n.

Table 6.3: Example of CTP neighbour table
s action lastSeq rcvCnt failCnt dataS dataT etx inQuality

0 init -1 0 0 0 0 0 0
1 bA 0 1 0 0 0 0 0
2 bA 1 2 0 0 0 0 0
3 bA 2 3 0 0 0 0 0
4 BLQ 2 0 0 0 0 10 25
5 data 2 0 0 0 1 10 25
6 ACKA 2 0 0 1 1 10 25
7 bA 3 1 0 1 1 10 25
8 bA 5 2 1 1 1 10 25
9 BLQ 5 0 0 1 1 15 39
10 bA 6 1 0 1 1 15 39
11 data 6 1 0 1 2 15 39
12 bA 7 2 0 1 2 15 39
13 ACKA 7 2 0 2 2 15 39
14 bA 8 3 0 2 2 15 39
15 BLQ 8 0 0 2 2 17 60
.
.
.
n-2 data . . . 4 5 13 .
n-1 ACKA . . . 5 5 13 .
n DLQ . . . 0 0 12 .
.
.
.

Unlike the link estimator, the routing engine adds to the routing table only the

neighbouring sensor nodes that have paths to the base station. The routing engine infers

this information from the received beacons before passing them to the link estimator.

Suppose that sensor node A announced a path cost of 20, and its entry in the routing

table of sensor node B looks as shown in Table 6.4.

Sensor node B infers from this entry that its neighbour sensor node A has a path to

the base station through a sensor node, for example C. This path has a cost of 20 and

129

Table 6.4: Example of CTP routing table
neighbour parent cost haveHeard congested

A C 20 1 0

it is not congested. This entry is not updated as often as the entry of sensor node A in

the neighbour table. With every received beacon from sensor node A, the link estimator

updates its entry in the neighbour table. On the other hand, the routing engine updates

the entry of sensor node A in the routing table only if the parent is changed, the path

cost changes, or the path is congested. The routing engine will update the haveHeard

field if the route through sensor node A is lost, i.e., sensor node A does not send any

more beacons.

To compute the cost of its path to the base station, sensor node B adds the path

cost of sensor node A to the etx value of A computed by the link estimator. It does the

same process for all other neighbouring sensor nodes in the routing table. Sensor node

B chooses the neighbour that offers the lowest path cost to the base station. Suppose

that the beacon that arrived in step 7, in the neighbour table, holds the path cost of

A. This beacon forces the routing engine to create an entry for A in the routing table.

Later, when the updateRouteTask() function is called, the routing engine will have a

path to the base station through sensor node A with cost 30. If this is the lowest path

cost to the base station, the routing engine will mark sensor node A as the next hop to

the base station. It is worth mentioning that other neighbouring sensor nodes may offer

a lower path cost to the base station in the future. However, the routing engine will not

change the next hop unless it does not receive any more beacons from the current next

hop. Also, it will change the next hop if another neighbouring sensor node offers a path

cost that is lower than the current path cost by 15 (CTP default) or more. In its future

beacons, B will broadcast a path cost of value 30 through parent sensor node A.

130

6.4 Vulnerabilities of CTP to Link Quality Attacks

In this section, we explain three basic vulnerabilities that a malicious node may exploit

to disrupt the computations in CTP.

As explained in MintRoute, a malicious node may send fake link qualities to a neigh­

bouring sensor node. Since the computations of link qualities in MintRoute depend on

the cooperation between sensor nodes, fake link qualities may affect these computations.

This type of malicious node attack is not effective in CTP because the sensor nodes do

not exchange link quality information. Each sensor node in CTP computes its link qual­

ities independent of the other sensor nodes. Thus, the malicious node has to find other

methods to compromise CTP.

Figure 6.8 [135] depicts the types of link qualities that a CTP sensor node computes for

its neighbouring sensor nodes. The figure shows sensor node S and its three neighbouring

sensor nodes N1, N2, and N3. Sensor node S has chosen N1 as its parent. The figure shows

the types of link qualities with respect to S. Sensor node S computes the inbound link

qualities for all its neighbours since this quality depends on the beacons being broadcast

from them. Since the computation of the outbound link quality depends on receiving

ACKs from the parent, S computes the outbound link quality for sensor node N1 only.

In other words, the inbound link quality is computed for all neighbouring sensor nodes,

whereas the outbound link quality is computed for the next hop sensor node only.

Knowing that each sensor node computes its link qualities independently, a malicious

node cannot influence the computation of link qualities by sending false information to

its neighbours. In addition, since inbound and outbound link qualities are computed

differently, the malicious node can either manipulate the up-link quality or influence the

computation of the down-link quality, where the up-link quality is the link from the

malicious node to the base station, and the down-link is the link from the malicious node

131

Figure 6.8: Types of link qualities in CTP

to a neighbouring sensor node [136]. Manipulation of up-link quality can be achieved

by broadcasting false path cost, for example. Influencing the down-link quality can be

achieved by manipulating the beacon transmission interval. Moreover, the malicious

node can combine both strategies for maximum efficiency. Next, we describe three basic

scenarios followed by a combined scenario in which a malicious node may compromise

CTP.

6.4.1 CTP Scenario 1

In Scenario 1, the malicious node manipulates the up-link quality. In this scenario, the

malicious node lies about the quality of the link to its parent. Thus, when the routing

engine of the malicious node chooses a parent, it will add the lowest possible cost to the

value of the path cost of the parent. The malicious node then broadcasts the computed

value as its path cost. The malicious node aims to convince its neighbouring sensor nodes

that it has a low cost route to the base station, as shown in Figure 6.9. The true local

link quality between the malicious node and its parent, sensor node B, may not offer the

lowest path cost to sensor nodes C and D, as shown in Figure 6.9(a). However, if the

malicious node manipulates the etx value, it may offer a better route to D, as shown in

132

Figure 6.9(b).

(a) Before compromising local link (b) After compromising local link

Figure 6.9: Behaviour of malicious node in CTP Scenario 1

6.4.2 CTP Scenario 2

The second way to manipulate up-link quality is to lie about the value of the path

cost. The malicious node adopts a more vicious behaviour by faking its path cost.

The malicious node escalates its attack because scenario 1 suffers from ineffectiveness,

especially when the malicious node is located far from the base station. In that case,

the local link quality has a small contribution to the computation of the path cost of

the malicious node. Thus, if the path cost of the parent sensor node is already high, it

is doubtful that faking the local link quality will offer a low path cost for the malicious

node.

When the malicious node advertises a low path cost to the base station, its path looks

more attractive to the other sensor nodes, as shown in Figure 6.10. The fake path cost

value offers a better route for sensor nodes C and D.

Figure 6.10: Behaviour of malicious node in CTP Scenario 2

133

6.4.3 CTP Scenario 3

In Scenario 3, the malicious node influences the computations of down-link qualities.

Influencing the computations for the down-links means that the malicious node interferes

in the computations of the outbound links or the inbound link qualities of its neighbouring

sensor nodes.

Influencing the computations of the outbound link qualities is not advantageous to

the malicious node. First, it is not necessary that all the neighbouring sensor nodes have

an outbound link quality to the malicious node. Only the neighbours that choose the

malicious node as their next hop will have outbound link qualities to it. To manipulate

the computations of the outbound link qualities of its children sensor nodes, the malicious

node shall not acknowledge the reception of their data packets. However, this behaviour

will lead to a negative outcome for the malicious node because its children will have low

outbound link qualities to it. This means that the malicious node will not be a favoured

next hop in the future.

It is more advantageous for the malicious node to influence the computations of the

inbound link qualities of its neighbouring sensor nodes. Since inbound link qualities are

computed for all neighbouring sensor nodes, regardless of which one is the next hop,

the malicious node will have a larger impact than targeting outbound link qualities.

Since the computation of inbound qualities depends on beacons, the malicious node has

to manipulate its beacon broadcast to influence the computations of its neighbouring

sensor nodes. A malicious node implementing Scenario 3 takes advantage of the count-

based property of the computations and the adaptive beacon transmission intervals. In

CTP, a sensor node computes its inbound link quality for a neighbouring sensor node for

every three beacons received from this neighbour. These beacons should be received in

adaptive intervals, which means that the time difference between any two beacons should

increase over time. A malicious node may compromise the beacon transmission interval

134

by always using the minimum beacon transmission interval. Thus, the neighbouring

sensor nodes will receive more frequent beacons from the malicious node than the other

good sensor nodes.

For example, Figure 6.11 [135] compares the beacon transmission intervals of a good

sensor node versus a malicious node. We can see that if a malicious node uses the

minimum beacon transmission interval, 128 time units, it will send seven beacons for

every three beacons sent by a good sensor node. This means that the inbound link

qualities for the malicious node will be computed twice versus once for the other sensor

nodes. This helps the malicious node to reinforce the inbound link qualities of its children

sensor nodes and attract other neighbouring sensor nodes. This behaviour does not look

suspicious because, in CTP, sensor nodes use the minimum beacon transmission interval

if they do not have routes to the base station.

(a) Beacon transmission intervals of a good sensor node

(b) Beacon transmission intervals of a malicious sensor node

Figure 6.11: Behaviour of malicious node in CTP Scenario 3

6.4.4 CTP Combined Scenarios

A more vicious node would combine the basic scenarios to lure more good sensor nodes.

It can combine Scenarios 1 and 2, Scenarios 1 and 3, or Scenarios 2 and 3. However,

Scenario 2 subsumes Scenario 1, which means that exaggerating the path cost implies

lying about the local link quality as well. This means that Scenario 2 is more powerful

135

than Scenario 1. Accordingly, we only consider the latter combination in which the

malicious node combines Scenarios 2 and 3.

If a malicious node broadcasts low path cost in frequent beacons, then it will be

more convincing to its neighbouring sensor nodes to route their sensed data through it.

Moreover, these neighbouring sensor nodes will be offering low path costs as well and

thus, more sensor nodes will join the subtree of the malicious node. For the ease of

explanation, we call the combined attack, Scenario 4.

6.5 Detection Engine of CTP Vulnerabilities

Since the nature of attacks on CTP differs from one scenario to another, we have divided

the detection of the attacks on CTP into three modules. These modules correspond to

the detection of the three basic Scenarios 1, 2, and 3. The combined scenario is detected

by any of the detection modules of the constituent scenarios.

6.5.1 Detection Module 1

Detection module 1 is responsible for detecting malicious nodes that follow Scenario 1.

Although we did not implement this module, we give its details for the completion of the

detection engine.

The detection of Scenario 1 malicious node is not straightforward since the compu­

tations of the local links are internal for each sensor node. Moreover, the computations

are not shared with other sensor nodes. Therefore, it is hard to compute expectations

for the link quality values. However, the parent sensor node can discover the deception

of the malicious node by performing the sequence number gap trick as follows:

•	 introduce a sequence number gap in its beacons. Thus, the parent sensor node will

have a maximum threshold for the value of rcvCnt of the malicious node and a

136

minimum threshold for the value failCnt;

•	 use the two values to compute an expected value for the inbound link quality

computed by the malicious node; and

•	 add its own path cost to the expected value and compare the result with the

announced value from the malicious node.

Similarly, the parent node performs the same steps for all its children sensor nodes.

The drawback of this procedure is that only one sensor node can discover the malicious

node, which is its parent. Moreover, if the malicious node is faking its parent, then the

malicious node will go undetected.

6.5.2 Detection Module 2

Detection module 2 takes advantage of the common neighbouring sensor nodes between

a parent and its child to detect malicious nodes that follow Scenario 2. To detect the

malicious node, the common neighbouring sensor nodes between the malicious node and

its parent sensor node work as watchdogs for the advertised path cost values. They take

advantage of the following property: since a child sensor node adds the etx value of its

parent to the value of path cost of its parent, the path cost of the child sensor node must

be greater than the path cost of its parent. Accordingly, if the path cost of the malicious

node is less than or equal to the path cost of its parent, then the common neighbours

will flag it.

To be more vicious, the malicious node can claim a fake next hop. In such case, the

malicious node escapes detection because there are no common neighbours between it

and its parent.

137

6.5.3 Detection Module 3

Detection module 3 detects malicious nodes that implement Scenario 3 by measuring the

arrival times of beacons and checking that they exhibit an adaptive behaviour. However,

the detection is not straightforward because there are cases where a sensor node resets

or does not double its beacon transmission interval as explained in Section 6.2.2.

Figure 6.12 [135] shows a state machine that implements detection module 3, where

cost is the path cost of the received beacon, EB is an expected beacon that arrives in

an adaptive fashion, UEB is an unexpected beacon, and alert is a counter of beacon

violations. Each sensor node in a WSN should have a local copy of this state machine to

detect malicious nodes independently. This state machine considers the following factors

in CTP:

•	 At least three beacons are required to compute a link quality.

•	 Sensor nodes will use the minimum beacon transmission interval if they do not have

routes to the base station.

•	 After establishing routes to the base station, sensor nodes should adapt their beacon

transmission interval.

The state machine tests only beacons from sensor nodes that have routes to the base

station, with cost > 0. After starting to monitor the arrival of beacons, the state machine

requires three consecutive beacons from the same neighbouring sensor node to blacklist

it. This threshold is important to ensure that the malicious node is not considered

for parent choice after computing the link qualities. To punish malicious nodes and to

prevent the isolation problem, the state machine decreases the value of the alert variable

for every conformant beacon. On the other hand, it will increase the value if the beacon

is suspicious. A blacklisted sensor node that has its alert value reach 0 is removed from

the blacklist.

138

Figure 6.12: Detection Module 3 of CTP Scenario

6.6 Summary

In this Chapter, we explained the details of CTP and showed how they are integrated

to build routing trees. CTP comprises three modules that cooperate to build a robust

routing tree. However, the sensor nodes in a CTP WSN do not cooperate to build the

routing trees as they do in MintRoute. This makes it harder for a malicious node to

share fake values to influence the computations of its neighbouring sensor nodes to its

favour. However, we pointed out three basic scenarios in which a malicious node can

compromise the computations of the link qualities in CTP. In two of these scenarios,

the malicious node manipulated its path cost and in the third, it manipulated its bea­

con transmission intervals. Combined scenarios where a malicious node combined more

than one basic scenario were also discussed. Finally, the Chapter discussed a proposed

detection mechanism that isolates the malicious node from the rest of the WSN.

The next Chapter discusses the simulation model and results of the three CTP sce­

narios in ns-2.

139

Chapter 7

CTP: SIMULATION MODEL AND RESULTS

7.1 Introduction

This Chapter discusses the simulation results of CTP in ns-2. The Chapter begins by

explaining the implementation of CTP and its supporting algorithms in ns-2. Next,

the Chapter describes the setup of the simulation environment and the configuration of

the sensor nodes, the malicious node, and the proposed IDS. The simulation of attack

scenarios on CTP comes next. In that part of the Chapter, the effect of each attack on

CTP is explained followed by a discussion about the simulation results of the proposed

IDS.

7.2 Extending ns-2 to Support CTP

In this section, we explain the extensions to ns-2 to support CTP and the proposed CTP

IDS. Additional components that do not exist in ns-2 are also implemented. These

components are: a random number generator, and CTP specific data structures.

7.2.1 Implementation of CTP

We have used the source code of CTP in TinyOS and the papers [128, 129] as references

for the implementation of CTP in ns-2.

CTP implements its three modules (the link estimator, the routing engine, and the

forwarding engine) separately where they interact together through defined interfaces.

This implementation gives the flexibility to replace any of them without affecting the

others. For example, we may use the link quality estimator WMEWMA instead of 4-bitle

140

without affecting either the implementations or the operations of the routing engine and

the forwarding engine.

To accommodate this flexibility, we have implemented CTP in ns-2 as four separate

classes. Three of these classes implement the three modules and the fourth links them

together.

7.2.2 Implementation of TinyOS Random Number Generator

CTP requires a random number generator to schedule the transmission of beacons.

TinyOS offers two algorithms for generating random numbers: Linear Feedback Shift

Register pseudo random number generator (RandomLFSR), and Multiplicative Linear

Congruential Generator (RandomMLCG). RandomLFSR is faster, but the generated

numbers have less randomness [137]. CTP uses RandomMLCG seeded with the IDs of

the sensor nodes. Several random number generators are implemented in ns-2 but neither

RandomLFSR nor RandomMLCG is implemented. Accordingly, we have implemented

RandomMLCG in ns-2 to use in CTP simulations. The algorithm of RandomMLCG is

described in Section A.1 of Appendix A.

7.2.3 Implementation of CTP Data Structures

CTP uses several data structures in TinyOS that have different implementation in ns-2

or do not exist at all. These data structures are the queue, the message pool, and the

message cache. The queue is a general First In First Out (FIFO) structure that has a

limited size. Data packets are enqueued at the end of the queue and dequeued from the

front of the queue. The message pool is a dynamic memory component with a limited

size. The message pool adds new elements to any empty space in it. Finally, the message

cache is a CTP specific data structure that implements the Least Recently Used (LRU)

cache algorithm [138] to store the signatures of CTP data packets. We have implemented

141

the three data structures in ns-2. The algorithms of the three data structures are given

in Sections A.2, A.3, and A.4 of Appendix A, respectively.

7.2.4 Implementation of CTP IDS

As explained in Section 6.5, CTP IDS is divided into three modules, one for each of the

basic scenarios. As discussed, a malicious node that follows Scenario 2 implies following

Scenario 1. In addition, Scenario 2 is more powerful than Scenario 1. Accordingly, we

have neither implemented Scenario 1 nor detection module 1. Detection modules 2 and

3 are implemented in routines Test2() and Test3(), respectively.

Since both detection modules 2 and 3 test the path costs or the arrival time of beacons,

it is more convenient to implement them in the routing engine. The routing engine is

responsible for computing path costs and scheduling beacon transmissions. Thus, when

the routing engine receives a beacon, it calls Test2() and Test3() to test any anomalous

behaviour.

Storage Space Overhead

To implement the detection modules, extra information about the received beacons is

required. A logical place to save this information is the routing table of the routing

engine since the detection modules are implemented in the routing engine. However,

the routing table holds information about the best ten routes to the base station only.

The entries are inserted and evicted depending on the routes offered by the neighbouring

sensor nodes. On the contrary, the detection routines depend on permanent information

about the routes of the neighbouring sensor nodes. As a result, we have added a new

table, beaconInfo, to the routing engine to hold the extra information. This table enables

the detection routines to keep the required information about neighbouring sensor nodes

at all times. In addition, it would make it easy to separate the detection engine into a

separate entity if required. The fields of the beaconInfo table are shown in Table 7.1.

142

Table 7.1: Fields of the beaconInfo table
Field Size Description

neighbour
lastSeq
cost
prevBeaconTime
nextMinDiff
nextMaxDiff
alert2
alert3
blackList

2 bytes
1 byte
2 bytes
2 bytes
4 bytes
4 bytes
1 byte
1 byte
1 byte

ID of neighbouring sensor node
sequence number of last received beacon
value of the path cost to the base station
arrival time of previous beacon
min. difference between received beacon & next beacon
max. difference between received beacon & next beacon
alerts raised from detection module 2
alerts raised from detection module 3
flag to indicate if neighbour is blacklisted

The beaconInfo table consists of 9 fields that occupy 18 bytes per entry. For each

neighbouring sensor node, the routing engine extracts the neighbour, lastSeq, and

cost fields from the beacons to create an entry for the sending neighbouring sensor

node. Hence, the first eligible beacon from neighbour is used to initialize its entry. If

there is an entry for neighbour, the routing engine will update the latter two fields. The

routing engine updates the value of prevBeaconTime with the arrival time of the last

received beacon after the beacon has gone through all the detection routines.

Detection module 2 uses the cost field to compare the values announced by a child

sensor node and its parent sensor node under the condition that both are neighbours

of the testing sensor node. If a neighbouring sensor node is suspected, then detection

module 2 will increment the value of alert2.

Detection module 3 uses the values of the fields prevBeaconTime, nextMinDiff, and

nextMaxDiff to test the arrival time of the last received beacon against the arrival time

of the previous beacon - for neighbour. Then it updates the values of nextMinDiff and

nextMaxDiff according to the outcome of the test. If the current beacon fails the test,

detection module 3 will increment the value of alert3.

A testing sensor node will blacklist a neighbouring sensor node if the number of raised

alerts exceeds a certain threshold. The blacklist field informs the routing engine that

143

the corresponding neighbour is not an option for a next hop choice.

The size of the table depends on the size of the neighbourhood of each sensor node.

TinyOS does not have a dynamic memory allocation mechanism. To overcome this

problem, we have fixed the size of the table in our experiments depending on the size of

the WSN as explained in the next section.

Code Overhead

Algorithms 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show the pseudo-code of the algorithms added

to the routing engine of CTP. Algorithm 7.1, TestBeacon(), describes the code to be

executed by the routing engine. Algorithm 7.2, Test2(), implements detection module

2 of CTP IDS and Algorithm 7.3, Test3(), implements detection module 3. The other

three algorithms are helper routines that are called by the former three algorithms.

When a sensor node receives a beacon from a neighbouring sensor node nghbr, its

routing engine calls TestBeacon(nghbr, beacon). If nghbr has a path to the base station

- known from the cost value in beacon, then TestBeacon() will create and initialize an

entry for nghbr in beaconInfo table. Having a path means that the next beacons from

nghbr should arrive in adaptable times. If beacons are missed, then TestBeacon() will

adapt the intervals nextMinDiff and nextMaxDiff depending on the number of missed

beacons. For example, missing one beacon adapts the intervals once, and missing two

beacons adapts the intervals twice. The cost of nghbr is set to ∞ because missed beacons

may have held a new path cost value. Resetting alert2 and alert3 is important because

the IDS tests consecutive beacons. If none of the previous conditions is satisfied, then

Test2() and Test3() will be called to test the path cost value and the arrival time of

beacon, respectively. Finally, prevBeaconTime of nghbr is updated with the arrival time

of beacon.

Test2() checks the value of the path cost of nghbr. It tests the property that the

144

Algorithm 7.1 TestBeacon(nghbr, beacon)

READ path cost of nghbr FROM beacon
if path cost > 0 then

if first time to hear from nghbr then
CREATE an entry in beaconInfo table for nghbr
SET lastSeqNo of nghbr in beaconInfo TO sequence number of beacon
SET cost of nghbr in beaconInfo TO cost value in beacon
SET nextMinDiff of nghbr in beaconInfo TO 128
SET nextMaxDiff of nghbr in beaconInfo TO 320
SET alert2 of nghbr in beaconInfo TO 0
SET alert3 of nghbr in beaconInfo TO 0
SET blackList of nghbr in beaconInfo TO false

else if missed beacons from nghbr then
for the number of missed beacons do

CALL AdaptInterval(nghbr, 0) [Adapt min and max intervals

CALL DecAlert(nghbr, 0) [Reset alert2 and alert3
SET cost of nghbr in beaconInfo TO ∞

else
CALL Test2(nghbr, beacon)
CALL Test3(nghbr, beacon)

SET prevBeaconTime of nghbr in beaconInfo TO arrival time of beacon

path cost of a child sensor node must be greater than the path cost of its parent. To

proceed with the test, Test2() checks that the parent of nghbr is a neighbour to the

testing sensor node, and it has an entry in beaconInfo table. Afterwards, if nghbr does

not satisfy the aforementioned property, then Test2() will call IncAlert() to increment

alert2. Otherwise, it will call DecAlert() to decrement alert2 and check the status of

the blacklist.

Algorithm 7.2 Test2(nghbr, beacon)

Read parent of nghbr from beacon
if parent in routing table then

READ path cost of parent FROM routing table
READ path cost of nghbr FROM beacon
if cost of nghbr ≤ cost of parent then

CALL IncAlert(nghbr, 2) [Increment alert2
else

CALL DecAlert(nghbr, 2) [Decrement alert2

145

Test3() tests the arrival time of beacons relative to the nextMinDiff and nextMaxDiff

intervals. First, it computes the time difference between the arrival times of the current

beacon and the previous beacon. If this difference is within the current intervals, then

Test3() will call DecAlert() to decrement any raised alert3 and will adapt the current

intervals for the arrival of the next beacon. If the difference is within half of the current

intervals, then Test3() will increment alert3 only. This case may occur because nghbr

may not adapt its beacon transmissions if any of its neighbouring sensor nodes does not

have a route to the base station yet and it sets the P bit in its beacons. Thus, nghbr

will not adapt its beacon transmissions until this neighbour unsets the P bit. This may

take up to three unadapted beacons from nghbr because afterwards this neighbour will

have nghbr, at least, to select as a parent. Since the testing sensor node may not be able

to verify this case, it increments alert3 for nghbr. It does not adapt the intervals for

nghbr because the next beacon should be adapted to satisfy the current intervals. The

third case occurs when the arrival difference falls in an overlap of two sets of intervals.

For example, a difference of 600 falls in the sets [256, 640] and [512, 1280]. If the beacon

belongs to the second set and the IDS classifies it to the first set, then the intervals will

not be adapted correctly for the arrival of the next beacon. The next beacon should be in

the interval [1024, 2560] which is four times greater than the current interval determined

by the IDS. In such case, Test3() increments alert3 for nghbr and adapts the intervals

twice. In the final case, nghbr resets its beacon transmission interval either because it

lost its route to the base station or one of its neighbours has the P bit set in its beacons.

Test3() resets the intervals for nghbr accordingly since none of the previous conditions

is satisfied.

IncAlert() increments the value of alert2 or alert3 depending on the value of the

status parameter. If the number of raised alerts is ≥ 3 then IncAlert() will blacklist

nghbr.

146

Algorithm 7.3 Test3(nghbr, beacon)

arrival difference = arrival time of beacon - arrival time of previous beacon
if nextMinDiff < arrival difference < nextMaxDiff then

CALL DecAlert(nghbr, 3) [Decrement alert3
CALL AdaptInterval(nghbr, 0) [Adapt intervals according to current values

else if nextMinDiff / 2 < arrival difference < nextMaxDiff / 2 then
CALL IncAlert(nghbr, 3) [Increment alert3

else if nextMinDiff * 2 < arrival difference < nextMaxDiff * 2 then
CALL IncAlert(nghbr, 3) [Increment alert3
CALL AdaptInterval(nghbr, 0) [Adapt intervals according to current values
CALL AdaptInterval(nghbr, 0) [Adapt intervals according to current values

else
CALL AdaptInterval(nghbr, 1) [Reset intervals for next beacon
CALL IncAlert(nghbr, 3)

Algorithm 7.4 IncAlert(nghbr, status)

if status = 2 then
INCREMENT alert2 of nghbr in beaconInfo

else if status = 3 then
INCREMENT alert3 of nghbr in beaconInfo

if alert2 + alert3 = 3 then
BLACKLIST nghbr

DecAlert() will decrement the values of alert2 or alert3 if nghbr is blacklisted. If

the number of raised alerts reaches zero, then nghbr will be removed from the blacklist.

If nghbr is not blacklisted, then DecAlert() will reset the value of alert2 or alert3

depending on the value of the status parameter.

Finally, AdaptInterval() is responsible for adapting the nextMinDiff and nextMaxDiff

intervals to test the arrival times of beacons. CTP uses a minimum beacon transmission

interval of size 128 time units and a maximum of 512,000 time units. The routing engine

doubles the beacon transmission interval after sending every beacon until the maximum

is reached. Then it keeps the maximum interval for future beacons. Due to the adaptive

behaviour, the minimum difference between the arrival of two beacons is 128 and the

maximum difference is 768,000.

147

Algorithm 7.5 DecAlert(nghbr, status)

if status = 2 then
if nghbr is blacklisted then

DECREMENT alert2 of nghbr in beaconInfo
if alert2 + alert3 = 0 then

REMOVE nghbr from blacklist

else
SET alert2 of nghbr in beaconInfo TO 0

else if status = 3 then
if nghbr is blacklisted then

DECREMENT alert3 of nghbr in beaconInfo
if alert2 + alert3 = 0 then

REMOVE nghbr from blacklist

else
SET alert3 of nghbr in beaconInfo TO 0

else if status = 0 then
if nghbr is blacklisted then

DECREMENT alert2 of nghbr in beaconInfo
DECREMENT alert3 of nghbr in beaconInfo
if alert2 + alert3 = 0 then

Remove nghbr from blacklist

else
SET alert2 of nghbr in beaconInfo TO 0

SET alert3 of nghbr in beaconInfo TO 0

The malicious node that will send frequent beacons modifies Algorithm 7.7 to use the

minimum beacon transmission interval. Non-malicious node should double their beacon

transmission intervals then choose a random time during the new interval to broadcast

their beacons. The malicious node omits the first operation and chooses the random time

only. Hence, the malicious node never adapts its initial beacon transmission interval,

which is the minimum allowed beacon transmission interval.

7.3 Setup of CTP Simulation Environment

In this section, we explain the settings of the simulation environment used to simulate

WSNs that run CTP as the routing protocol.

148

Algorithm 7.6 AdaptInterval(nghbr, status)

if status = 0 then
if nextMinDiff = 131072 and netMaxDiff = 327680 then

SET nextMinDiff of nghbr in beaconInfo TO 256000
SET nextMaxDiff of nghbr in beaconInfo TO 643072

else if nextMinDiff < 256000 and netMaxDiff < 643072 then
SET nextMinDiff of nghbr in beaconInfo TO nextMinDiff * 2
SET nextMaxDiff of nghbr in beaconInfo TO nextMaxDiff * 2

else if netMaxDiff = 643072 then [Set maximum values for both differences
SET nextMinDiff of nghbr in beaconInfo TO 256000
SET nextMaxDiff of nghbr in beaconInfo TO 768000

else [Reset both differences
SET nextMinDiff of nghbr in beaconInfo TO 128
SET nextMaxDiff of nghbr in beaconInfo TO 320

Algorithm 7.7 DecayInterval()

if malicious node then
CHOOSE random time to send beacon

else [original code for non-malicious nodes
DOUBLE the beacon transmission interval
if beacon transmission interval > maximum transmission interval then

SET beacon transmission interval TO maximum transmission interval
CHOOSE random time to send beacon

CTP differs from MintRoute in the way it seeds the random number generator. CTP

uses the IDs of the sensor nodes to seed the random number generator. As a result,

simulating the same network topology multiple times produces the same routing tree.

Seeding the random number generator with a fixed value produces the same sequence of

random number values. Thus, the transmission times of the beacons and data packets

will always be the same for the same topology. Accordingly, we have written simulation

files to simulate 100 different WSNs.

As explained in Section 6.2.1, the etx in a stable WSN requires 75 beacons to reach the

minimum link quality of value 10. According to the adaptive behaviour of the beacon

transmission, the 75 beacons require 32,780,160 time units. Therefore, the simulation

time for each experiment has been set to 40,000,000 time units. This time is sufficient to

149

have the 75 beacons from each sensor node reach the minimum link qualities. Moreover,

the simulation time allows for the transmission of more than 75 beacons, specifically

around 89 beacons per sensor node.

We have conducted simulation experiments with different WSN densities, data trans­

mission intervals, and locations of the malicious node. Following the simulation frame­

work of Section 3.5, the next subsections describe the parameters of the framework.

7.3.1 Setup of the WSNs

We have simulated WSNs of different sizes namely, 25, 50, and 100 sensor nodes, to

evaluate the proposed IDS. The wireless range of the sensor nodes differs in each size to

have at least 95% of the sensor nodes connected. Table 7.2 shows the different wireless

ranges of the sensor nodes in the different sizes of the WSNs. We have simulated 100

different WSNs for each network size.

Table 7.2: Wireless ranges of sensor nodes in CTP simulations
Size of WSN Range of sensor nodes

25 nodes
50 nodes
100 nodes

45 units
35 units
25 units

Since CTP is designed to work in low traffic WSNs [128], we have chosen 100,000

and 1,000,000 time units as two long data transmission intervals. The data transmission

interval means that every sensor node generates one data packet at random during that

interval.

7.3.2 Setup of Malicious Node

To have different neighbourhood sizes, the malicious node has been placed at different

locations in the simulation area along the diagonal from the base station. The locations

150

of the malicious node depend on its wireless range as shown in Table 7.3. Figure 7.1 [135]

shows the locations of the malicious node relative to the base station.

Table 7.3: Physical locations of the malicious node vs. its wireless range
Range Physical locations

45 units
35 units
25 units

(45, 45), (55, 55), (65, 65)
(35, 35), (45, 45), (55, 55), (65, 65), (75, 75)
(25, 25), (35, 35), (45, 45), (55, 55), (65, 65), (75, 75), (85, 85)

Coordinates of the malicious node

0 10 20 30 40 50 60 70 80 90 100

X-coordinate

Figure 7.1: Locations of the malicious node relative to the base station

In all scenarios, the malicious node is configured to discard the data packets that it

receives from its children sensor nodes. This mechanism helps in measuring data delivery

at the base station before and after the attack. However, we assume that the malicious

node can perform any malicious behaviour. So as not to deteriorate the link qualities of

its children, the malicious node acknowledges the reception of data packets.

100

90

80

70

60

50

40

30

20

10

0

Y
-c

oo
rd

in
at

e

Base station

(25,25)

(35,35)

(45,45)

(55,55)

(65,65)

(75,75)

(85,85)

151

7.3.3 Setup of CTP IDS

To detect malicious nodes effectively, the IDS needs an adequate size of the beaconInfo

table with respect to the neighbourhood size. A fine-tuned size allows an easy detection

of malicious nodes. An underestimated size may result in failing to track the beacons of

some neighbouring sensor nodes and thus, the IDS may fail to detect the malicious node.

An overestimated size results in wasting the scarce storage space.

Since we assume the unit disk model for the wireless ranges and randomly uniform dis­

tributed sensor nodes, we can compute an expected value for the number of neighbouring

sensor nodes as shown in Equation 7.1.

expected no. ofneighbours =	 density of sensor nodes × area of wireless coverage

number of nodes
= × πr2	 (7.1)

simulation area

where number of nodes = size of the WSN plus one for the malicious node, simulation

area = 1002 , π =
22

, and r = wireless range of sensor nodes. The size of the beaconInfo
7

table is set to the expected number of neighbours ahead of running experiments. Table

7.4 shows the expected size of the beaconInfo table for each network size.

Table 7.4: Size of beaconInfo table for the different sizes of WSNs
Number of nodes Wireless range Size of BeaconInfo

26
51
101

45 units
35 units
25 units

16.50 ≈ 17
19.25 ≈ 20
19.83 ≈ 20

7.3.4 Setup of Performance Metrics

The performance of the malicious node is measured as the percentage of data delivered

to the base station as described in Section 3.5.4.

The success of the IDS is measured as the percentage of TP and the FP is computed

as follows. The simulator is instrumented to record the number of neighbours of each

�

152

sensor node in a separate file. In addition, each sensor node records the ID of the

neighbours that it suspects as malicious. For each WSN, TP is computed as the number

of neighbours that suspect the malicious node divided by the total number of neighbours

of the malicious node, as shown in Equation 7.2. Then a global average TP is computed

as the average of all the tpis of the 100 WSNs, as shown in Equation 7.3.

number of neighbours that suspect m
tpi = (7.2)

number of neighbours of m

where tpi is the TP for WSN i, and m is the malicious node.

NTs

tpi

TP = i=1 (7.3)
NTs

where NTs = number of WSNs, 100.

We compute FP from the perspective of good and suspected links. A link between

any two sensor nodes, A and B, is asymmetric. This means that the link quality from A

to B is different from the link quality from B to A. The link quality value depends on

the number of packets a sensor node receives from its neighbouring sensor node. Thus,

A may suspect B as malicious but B may not suspect A as malicious. For a sensor node,

the number of neighbours represents the number of outbound links from this sensor node.

Thus, to compute the number of links in a WSN, we count the number of neighbours

of each good sensor node in the WSN. We subtract the number of neighbours of the

malicious node from the number of links. The number of neighbours of the malicious

node constitutes the number of links from the neighbours to the malicious node, which

is computed in TPs. We compute a FP for each simulated WSN and a global average

FP for all simulated WSN as shown in Equations 7.4 and 7.5, respectively.

number of suspected links
fpi = (7.4)

number of links

�

153

NTs

fpi

FP = i=1 (7.5)
NTs

7.4 Results of CTP Simulation

This Section presents the simulation of the different scenarios that a malicious node can

follow to exploit CTP. In each scenario, we discuss the effectiveness of the malicious node

without running the IDS. We follow this discussion by presenting the simulation results

of running the IDS accompanied by a discussion on the effectiveness of the malicious

node and the success of the IDS in detecting it.

We have adjusted the simulator to use the detection routines, Test2() and Test3(),

separately. So when the malicious node is configured to follow Scenario 2, Test2() is

turned on. When it is following Scenario 3, Test3() is turned on. The combined scenario,

Scenario 4, can be tested either with Test2() or Test3(). Separation of the detection

routines facilitates the measurement of their effectiveness.

7.4.1 Simulation of CTP Scenario 0

Scenario 0 is used as the baseline for the comparisons of the effectiveness of the malicious

node in the other scenarios. The malicious node in Scenario 0 does not follow any of

the attack scenarios on CTP; however, it still drops data packets that it receives from

its children sensor nodes. The decrease in data delivery between Scenario 0 and any of

the other scenarios measures the success of the malicious node in diverting data from the

base station.

The difference in the percentage of data delivery in Scenario 0 between the two data

transmission intervals is negligible, less then 0.75% in all cases. Thus, the graphs in the

following depict the data transmission interval 100,000 time units of Scenario 0 for the

154

sake of readability.

7.4.2 Simulation of CTP Scenario 1

In Scenario 1, the malicious node lies about the etx value to its parent. In other words,

the path cost of the malicious node is always its parent’s path cost plus 10, the minimum

value for etx.

Effectiveness of Malicious Node without Running the IDS

The simulation results of Scenario 1 show that the effectiveness of the malicious node is

affected by its location in the WSN. A malicious node closer to the base station means

that it is included in many routes. Accordingly, the malicious node discards more traffic

in close locations than in far locations. We can see in Figure 7.2 that the percentage

of data delivery increases in locations far from the base station in the three sizes of the

WSNs, where WSN = size of WSN, SR = wireless range of the sensor nodes, and DF

= data transmission interval.

The simulation results also show that the gain of the malicious node in Scenario 1 is

small. Figure 7.2 shows that the percentage of data delivery in Scenario 1 tends to get

closer to the percentage of data delivery in Scenario 0. This means that the malicious

node fails to attract more sensor nodes to its subtree by faking its etx values. The gain

of the malicious node is measured as the drop in the percentage of data delivery. This

is measured by subtracting the percentage of the data delivery value in Scenario 1 from

the value in Scenario 0. Table 7.5 shows the maximum drops in the percentage of data

delivery for each WSN configuration.

7.4.3 Simulation of CTP Scenario 2

The malicious node in Scenario 2 lies about its path cost. In the experiments of Scenario

2, we have configured the malicious node to announce a path cost value of 20. The

155

WSN = 25, SR = 45, Scenario = 1

(45, 45) (55, 55) (65, 65)

Location of malicious node

(a) 25-node WSN

WSN = 50, SR = 35, Scenario = 1

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

(b) 50-node WSN

WSN = 100, SR = 25, Scenario = 1

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

(c) 100-node WSN

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 1, DF: 100000 time units

Scenario 1, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 1, DF: 100000 time units

Scenario 1, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 1, DF: 100000 time units

Scenario 1, DF: 1000000 time units

Figure 7.2: Effectiveness of malicious node in CTP Scenario 1 without IDS running

156

Table 7.5: Percentage of drop in data delivery for CTP Scenario 1
Size of WSN Drop Data frequency Location of malicious node

25-node
25-node
50-node
50-node
100-node
100-node

2.16%
1.92%
2.57%
2.94%
1.84%
1.88%

100,000
1,000,000
100,000

1,000,000
100,000

1,000,000

(45, 45)
(55, 55)
(35, 35)
(35, 35)
(35, 35)
(45, 45)

malicious node does not choose the lowest path cost value, 10, because this means that

the malicious node is a child of the base station. Thus, it can be easily detected if the

sensor nodes know the ID of the base station.

Effectiveness of Malicious Node without Running the IDS

Figure 7.3 shows the simulation results of Scenario 2. As seen in the figure, the percentage

of data delivered to the base station is proportional to the distance of the malicious node

from the base station. This means that the malicious node is more effective in locations

far from the base station. It succeeds to enlarge its subtree when it is far from the base

station because the path cost it offers is lower than the other path costs in the same

area. Table 7.6 shows that the maximum drops in the percentage of data delivery occur

between the centre of the WSN and the far edge from the base station.

Table 7.6: Percentage of drop in data delivery for CTP Scenario 2
Size of WSN Drop Data frequency Location of malicious node

25-node
25-node
50-node
50-node
100-node
100-node

13.04%
14.53%
20.81%
23.35%
31.00%
34.60%

100,000
1,000,000
100,000

1,000,000
100,000

1,000,000

(65, 65)
(65, 65)
(65, 65)
(75, 75)
(65, 65)
(65, 65)

In locations close to the base station, the sensor nodes find comparable path costs to

the base station. Thus, if a sensor node chooses a good neighbouring sensor node as its

next hop, then the path cost of the malicious node is not competitive enough to trigger a

157

WSN = 25, SR = 45, Scenario = 2

(45, 45) (55, 55) (65, 65)

Location of malicious node

(a) 25-node WSN

WSN = 50, SR = 35, Scenario = 2

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

(b) 50-node WSN

WSN = 100, SR = 25, Scenario = 2

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

(c) 100-node WSN

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2, DF: 100000 time units

Scenario 2, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2, DF: 100000 time units

Scenario 2, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2, DF: 100000 time units

Scenario 2, DF: 1000000 time units

Figure 7.3: Effectiveness of malicious node in CTP Scenario 2 without IDS running

158

parent switch. The efficiency of the malicious node increases away from the base station,

where it reaches the maximum beyond the centre of the simulation environment. Around

the center of the WSN, the path costs are higher so the low path cost of the malicious

node is an incentive for the neighbouring sensor nodes to join its subtree. Moreover, these

neighbouring sensor nodes will offer low path costs, which will encourage more sensor

nodes to join the subtree of the malicious node. This phenomenon is reversed near the

edge of the WSN where fewer sensor nodes can join the subtree of the malicious node.

Mainly, these sensor nodes are the neighbouring sensor nodes only. These neighbouring

sensor nodes are the ones near the edges of the WSN. Consequently, they cannot expand

the subtree of the malicious node as they do near the center of the WSN.

Also, the figure shows that the malicious node is more successful in low-traffic WSNs.

In a low-traffic WSN, 1,000,000 time units, a small number of lost packets will have an

impact on the percentage of data delivered to the base station; however, the impact is

smaller on high-traffic WSNs, 100,000 time units. In general, the drop in the percentage

of data delivery increases with the size of the WSN because more traffic is generated due

to the increased number of sensor nodes. See Table 7.6.

Effectiveness of Malicious Node with Running the IDS

Next, we discuss the effectiveness of the malicious node when Test2() is running. Since

Test2() uses the watchdog concept, the detection of the malicious node depends on the

number of common neighbouring sensor nodes with its parent. One can expect that

the larger the number of common neighbours is, the more successful Test2() will be.

However, some of the common neighbours are not children of the malicious node. As a

result, they cannot detect the malicious node and thus, they do not change their parents

to good ones.

Figure 7.4 [135] shows the effectiveness of the malicious node when Test2() is running.

159

We can see that in the sparse WSN of 25 sensor nodes the effectiveness of the malicious

node is not affected. First, the number of common neighbours between the malicious

node and its parent is small so a small number of sensor nodes can detect the malicious

node. Out of the small number of neighbours that can detect the malicious node, an even

smaller number may be its children. Accordingly, most of the children of the malicious

node cannot detect it and they do not change their malicious parent to a good one.

As the WSNs get denser, the number of common neighbouring sensor nodes between

the malicious node and its parent increases. In addition, the number of children of the

malicious node increases so a larger number of the common neighbours are children of

the malicious node. These children that detect the malicious node switch their parents

to good ones so the percentage of data delivery at the base station increases. Figure

7.4(b) shows that the percentage of data delivery will rise from 78.36% to 81.65% if the

malicious node is placed at (75, 75). Whereas, it rises from 72.95% to 86.51 % at location

(85, 85), see Figure 7.4(c).

Success of Detecting Malicious Node

As discussed previously, the larger number of the common neighbouring sensor nodes

helps to detect the malicious node. However, the path cost offered by the malicious node

and the location of the malicious node in the WSN affect detection as well. Figure 7.5

shows that the detection of the malicious node increases as the distance between the

malicious node and the base station increases.

The malicious node is configured to announce a path cost value of 20. So, if the

malicious node is in a location where this value is not suspicious, then no neighbouring

sensor node can detect it. The locations (45, 45) in Figure 7.4(a), (35, 35) in Figure 7.4(b),

and (25, 25) in Figure 7.4(c) satisfy this condition. In these locations, the malicious node

is close to the base station and its parent is 1-hop away from the base station. Hence,

160

WSN = 25, SR = 45, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(45, 45) (55, 55) (65, 65)

Location of malicious node

Before detection
After detection

(a) Data delivery in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

Before detection
After detection

(b) Data delivery in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

Before detection
After detection

(c) Data delivery in 100-node WSN

Figure 7.4: Effectiveness of malicious node in CTP Scenario 2 with IDS running

161

WSN = 25, SR = 45, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(45, 45) (55, 55) (65, 65)

Location of malicious node

TP
FP

(a) True & false detections in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

TP
FP

(b) True & false detections in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 2

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

TP
FP

(c) True & false detections in 100-node WSN

Figure 7.5: Success of detecting malicious node in CTP Scenario 2

162

the parent of the malicious node has lower path cost due to its proximity to the base

station. Accordingly, the common neighbouring sensor nodes cannot find any violations

of the path cost for the malicious node. If the malicious node is located far from the

base station, the path cost of its parent will get higher and the common neighbours can

now detect it. At the farthest location from the base station (85, 85) in Figure 7.5(c),

the malicious node is detected 87.37% of the time.

Although Figure 7.5 shows that at least 40% of the neighbours of the malicious node

are able to detect it, the simulation results of data delivery confirm that most of these

neighbours are not children of the malicious node. To rectify the poor effectiveness of

Test2(), the sensor nodes must exchange their lists of suspected neighbours. To do this

exchange in a secure fashion, the sensor nodes must:

•	 encrypt the exchanged list so that the malicious node does not discover that it is

detected;

•	 have a trust mechanism to ensure that sensor nodes do not slander good sensor

nodes; and

•	 minimize the size of the list to decrease the volume of additional traffic and to

prevent quick battery depletion.

Clearly, the three items do not meet the stated constraints of this dissertation of not

using encryption, performing in-node processing, and eliminating any additional traffic

in the WSN.

7.4.4 Simulation of CTP Scenario 3

In Scenario 3, the malicious node announces its real path cost but it does not adapt

its beacon transmission interval after sending each beacon. Thus, it tries to influence

the computation of the etx values of its neighbouring sensor nodes by sending frequent

163

beacons. The malicious node is configured to use the minimum beacon transmission

interval, 128 time units, for each beacon transmission.

Effectiveness of Malicious Node without Running the IDS

By sending frequent beacons, the malicious node influences the computations of the etx

values of its neighbouring sensor nodes. The frequent beacons help them to reach the

minimum etx value to the malicious node quickly. However, their choice of the malicious

node as the next hop depends on the value of its path cost, which depends on how far

the malicious node is from the base station. Figure 7.6 shows that the malicious node is

more successful in locations close to the base station.

Near the base station, the malicious node has a low path cost value. Consequently,

the routes through the malicious node encourage the neighbouring sensor nodes to join

the subtree of the malicious node. Far from the base station, the routing cost of the

malicious node gets higher. As a result, the low etx values of the neighbouring sensor

nodes are not incentive enough to lure them to join the subtree of the malicious node.

Table 7.7 shows that the maximum drops in the percentage of data delivery occur in

locations close to the base station.

Table 7.7: Percentage of drop in data delivery for CTP Scenario 3
Size of WSN Drop Data frequency Location of malicious node

25-node
25-node
50-node
50-node
100-node
100-node

5.61%
5.83%
3.84%
4.00%
11.00%
10.55%

100,000
1,000,000
100,000

1,000,000
100,000

1,000,000

(55, 55)
(45, 45)
(45, 45)
(45, 45)
(35, 35)
(35, 35)

Effectiveness of Malicious Node with Running the IDS

Test3() implements a state machine to test the arrival of beacons from neighbouring

sensor nodes. A sensor node that does not adapt its beacon transmission interval for

164

WSN = 25, SR = 45, Scenario = 3

(45, 45) (55, 55) (65, 65)

Location of malicious node

(a) 25-node WSN

WSN = 50, SR = 35, Scenario = 3

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

(b) 50-node WSN

WSN = 100, SR = 25, Scenario = 3

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

(c) 100-node WSN

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 3, DF: 100000 time units

Scenario 3, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 3, DF: 100000 time units

Scenario 3, DF: 1000000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 3, DF: 100000 time units

Scenario 3, DF: 1000000 time units

Figure 7.6: Effectiveness of malicious node in CTP Scenario 3 without IDS running

165

three consecutive transmissions will be blacklisted by its neighbouring sensor nodes.

Figure 7.7 shows that the percentage of data delivery is boosted to almost 100% in

the three sizes of the WSNs. Since each sensor node is running a local copy of Test3(),

all the neighbouring sensor nodes detect the malicious node. The high percentage of

data delivery means that most of the neighbouring sensor nodes are able to detect the

malicious node. It also means that all of them have blacklisted the malicious node and

the children sensor nodes have switched their malicious parent to good ones.

As explained earlier and as shown by the black bars in Figure 7.7, the malicious

node is more effective near the base station in Scenario 3, which means that it has more

children and a larger subtree. Accordingly, when the children sensor nodes detect their

parent sensor node as malicious, they change their parent to a good one and succeed in

avoiding the malicious node. At far locations from the base station, the malicious node

is not as effective, and the black bars are higher. This means that the subtree of the

malicious node is smaller, but when the small number of children sensor nodes change

their malicious parent the percentage of data delivery rises to 100%.

Success of Detecting Malicious Node

Figure 7.8 shows that Test3() detects the malicious node with a success percentage of

at least 95%. The lowest percentage occurs in dense networks, 100-node, where packet

collisions are high. The state machine of Test3() requires three consecutive violations

for the beacon transmission intervals to blacklist a sensor node. Thus, with high packet

collisions, especially when the malicious node broadcasts more beacons than usual, miss­

ing a single packet reinitiates the detection process. Although the low success does not

support the high percentage of data delivery, the neighbouring sensor nodes that fail to

detect the malicious node are not necessarily the children of the malicious node. Thus,

their failure to detect the malicious node does not affect the data delivered to the base

166

WSN = 25, SR = 45, DF = 100,000, Scenario = 3

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(45, 45) (55, 55) (65, 65)

Location of malicious node

Before detection
After detection

(a) Data delivery in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 3

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S
D

at
a

de
liv

er
y

pe
rc

en
ta

ge
 a

t B
S

100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

 100

90

 80

 70

 60

 50

 40

 30

 20

 10

 0

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

Before detection
After detection

(b) Data delivery in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 3

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

Before detection
After detection

(c) Data delivery in 100-node WSN

Figure 7.7: Effectiveness of malicious node in CTP Scenario 3 with IDS running

167

station.

7.4.5 Simulation of CTP Scenario 4

Scenario 4 is the combination of Scenarios 2 and 3. The malicious node in Scenario 4

announces a low path cost value with frequent beacons. The malicious node is configured

to announce 20 for its path cost using the minimum beacon transmission interval of 128

time units.

Effectiveness of Malicious Node without Running the IDS

One can expect that the simulation results of Scenario 4 will be similar to the simulation

results of Scenarios 2 and 3 combined. However, Figures 7.9 and 7.10 show that the drop

in the percentage of data delivery exceeds the combined drop from Scenarios 2 and 3.

Combining Scenarios 2 and 3 amplifies the drop to more than double the summation of

their drops in some cases. Figures 7.9 and 7.10 show the percentage of data delivery in

Scenario 0 as a reference. The effectiveness of Scenario 4 is compared to the summation

and double the summation of the drop in the percentage of data delivery in Scenarios 2

and 3. Table 7.8 shows the maximum drops in the percentage of data delivered to the

base station.

Table 7.8: Percentage of drop in data delivery for CTP Scenario 4
Size of WSN Drop Data frequency Location of malicious node

25-node
25-node
50-node
50-node
100-node
100-node

37.05%
40.08%
40.63%
52.04%
54.54%
67.14%

100,000
1,000,000
100,000

1,000,000
100,000

1,000,000

(65, 65)
(65, 65)
(65, 65)
(55, 55)
(55, 55)
(45, 45)

168

WSN = 25, SR = 45, DF = 100,000, Scenario = 3

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(45, 45) (55, 55) (65, 65)

Location of malicious node

TP
FP

(a) True & false detections in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 3

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

TP
FP

(b) True & false detections in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 3

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

TP
FP

(c) True & false detections in 100-node WSN

Figure 7.8: Success of detecting malicious node in CTP Scenario 3

169

WSN = 25, SR = 45, DF = 100,000, Scenario = 4

(45, 45) (55, 55) (65, 65)

Location of malicious node

(a) 25-node WSN, 100,000 time units

WSN = 50, SR = 35, DF = 100,000, Scenario = 4

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

(b) 50-node WSN, 100,000 time units

WSN = 100, SR = 25, DF = 100,000, Scenario = 4

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

Figure 7.9: Effectiveness of malicious node in CTP Scenario 4 in high-traffic WSNs

170

WSN = 25, SR = 45, DF = 1,000,000, Scenario = 4

(45, 45) (55, 55) (65, 65)

Location of malicious node

(a) 25-node WSN, 1,000,000 time units

WSN = 50, SR = 35, DF = 1,000,000, Scenario = 4

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

(b) 50-node WSN, 1,000,000 time units

WSN = 100, SR = 25, DF = 1,000,000, Scenario = 4

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

(c) 100-node WSN, 1,000,000 time units

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t b

as
e

st
at

io
n

Scenario 0
Scenario 2 + Scenario 3

2 * (Scenario 2 + Scenario 3)
Scenario 4

Figure 7.10: Effectiveness of malicious node in CTP Scenario 4 in low-traffic WSNs

171

Effectiveness of Malicious Node with Running the IDS

Since Scenario 4 combines Scenarios 2 and 3, it can be detected with Test2() or Test3().

However, Test3() is more successful in detecting the malicious node. Therefore, we

discuss the simulation results of detecting the malicious node under Test3().

The effectiveness of the malicious node when Test3() is running depends on its

location and the size of the WSN. In the 25-node and 50-node WSNs, the percent of

data delivery is almost 100%, see Figures 7.11(a) and 7.11(b). However, in the 100-node

WSN, the percentage of data delivery can be as low as 95% especially in locations far

from the base station, see location (65, 65) in Figure 7.11(c).

By broadcasting low path cost value in frequent beacons, the malicious node attracts

more sensor nodes to its subtree as explained previously and as shown by the black bars

in Figure 7.11 [135]. As a consequence of its success, more data packets are routed to

the malicious node. This leads to higher packet collisions in the vicinity of the malicious

node, which affects the computations of link qualities and path costs of its neighbours.

The high packet collisions lead to a phenomenon that occurred in dense WSNs, 100­

node. Between the centre of the WSN and its far edge from the base station, the parent

of the malicious node forms a loop by joining the subtree of the malicious node. This

happens because the parent sensor node suffers from high path costs due to packet

collisions and it finds the best path through one of the children of the malicious node.

This loop cannot be broken because the malicious node is configured to drop data packets

passing through it. Therefore, the parent sensor node will never find its data packet

returning back to it. We can see that the percentage of data delivery at the base station

is as low as 95.27% when the malicious node is at location (65, 65), Figure 7.11(c).

172

WSN = 25, SR = 45, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(45, 45) (55, 55) (65, 65)

Location of malicious node

Before detection
After detection

(a) Data delivery in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

Before detection
After detection

(b) Data delivery in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
at

a
de

liv
er

y
pe

rc
en

ta
ge

 a
t B

S

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

Before detection
After detection

(c) Data delivery in 100-node WSN

Figure 7.11: Effectiveness of malicious node in CTP Scenario 4 with IDS running

173

Success of Detecting Malicious Node

Figure 7.12 shows that Test3() achieves almost the same success percentage in Scenario

4 as it does in Scenario 3. However, some false detections do occur in Scenario 4 especially

in far locations from the base station in dense WSNs. Collisions lead to resetting the

beacon transmission intervals or missing the appropriate beacons to test.

7.5 Summary

This Chapter presented and discussed the simulation results of attack scenarios on CTP

routing protocol. It began by explaining the extensions made to ns-2 to support CTP

and the proposed IDS followed by explaining the setup of the simulation environment.

Three attack scenarios on CTP were discussed. In the first scenario, a malicious node

broadcast a low path cost value to the base station. The effectiveness of the malicious

node increased in locations far from the base station where the path costs were higher

than the value offered by the malicious node. A detection module was proposed to

detect this type of malicious node by comparing the path costs of children sensor nodes

to their parent sensor nodes. A child sensor node must have a path cost greater than its

parent’s. The success of this module depended on the location of the malicious node and

the density of the WSN. In the second attack scenario, the malicious node violated the

beacon transmission intervals by using the minimum interval to send frequent beacons.

The effectiveness of the malicious node depended on its location in the WSN. In locations

close to the base station, the malicious node had low path cost so the frequent beacons

helped in luring more sensor nodes. In far locations, the malicious node had high path

cost so it is not as effective. A detection module was proposed that tests the arrival times

of beacons. A node that did not adapt its beacon transmission interval was detected as

malicious. The third scenario combined the previous two scenarios. The malicious node

174

WSN = 25, SR = 45, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(45, 45) (55, 55) (65, 65)

Location of malicious node

TP
FP

(a) True & false detections in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75)

Location of malicious node

TP
FP

(b) True & false detections in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 4

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f
de

te
ct

io
n

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85)

Location of malicious node

TP
FP

(c) True & false detections in 100-node WSN

Figure 7.12: Success of detecting malicious node in CTP Scenario 4

175

in the last scenario was more vicious because it combined a low path cost value with

frequent beacons. Due to its success, the second detection module was tested to detect

the malicious node in the combined scenario.

The next Chapter concludes the dissertation and suggests directions for future work.

176

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Summary

WSNs are becoming an important component in our daily life. They are used in a

broad range of applications, such as military, medical, or environmental monitoring.

They are composed of resource-constrained devices called sensor nodes that communicate

wirelessly. These sensor nodes are scattered in an environment to collect data from their

surroundings. To relay the collected data to a central controller, the sensor nodes depend

on a routing protocol. Routing protocols for WSNs sacrifice the security aspects to meet

the limited resources of the sensor nodes. Hence, WSNs are susceptible to different types

of routing attacks, ranging from stealing collected data to injecting false data.

Routing protocols for WSNs aim to deliver data to a central controller reliably. To

achieve an acceptable level of reliability, routing protocols have to fulfill certain cost

metrics. Some routing protocols are concerned with conserving the power resources of

the sensor nodes. Others are concerned with choosing routes that achieve the lowest

latency to deliver data to the central controller. Others choose routes that comprise

reliable wireless links. This dissertation studies protocols of the third type.

Link quality routing protocols choose routes to the base station that have reliable

links. This reliability can be measured as the ratio of packet reception or the number of

required transmissions and retransmissions. These protocols may require the cooperation

of the sensor nodes to compute link qualities or the sensor nodes may compute the

qualities independently. This dissertation studies MintRoute as a representative of the

former group, and CTP as a representative of the latter group.

177

Analysis and simulation are adopted as the research methodology in this dissertation.

The two routing protocols are analyzed for possible vulnerabilities that may be used to

exploit the computations of link qualities. Then detection mechanisms are proposed to

detect malicious nodes that exploit these vulnerabilities. Finally, both protocols and

their proposed IDSs are simulated in ns-2 to detect the effectiveness of the IDSs. The

effectiveness of the malicious node is measured as the percentage of data delivered to the

base station when the malicious node is configured to drop data packets. The success of

the IDSs is measured as the percentage of true detections versus the percentage of false

detections.

8.1.1 Cooperative Link Quality Routing Protocols

Chapter 4 discusses a vulnerability in cooperative link quality routing protocols that

a malicious node can use to influence the computations of link qualities to its favour.

MintRoute is chosen as a case study of this type of link quality protocols for WSNs.

The sensor nodes in a WSN using MintRoute cooperate to compute bidirectional link

qualities without any trust mechanism. Thus, if a sensor node advertises an incorrect

link quality, no sensor node can refute or validate the claimed link quality. The malicious

node may exaggerate the values of its link qualities to convince its neighbouring sensor

nodes that it has a better route to the base station, thus luring them to send their traffic

through it.

Then an IDS is proposed to detect any malicious nodes that may use this vulnerability.

The proposed IDS uses the sequence numbers of MintRoute packets to validate the

advertised link qualities. Sensor nodes can compute an upper bound on the advertised

link qualities by introducing an artificial gap in their sequence numbers. This gap in the

sequence numbers gives the tricking sensor node a minimum view of what its neighbours

perceive as missed packets. If the neighbours only miss the size of the sequence number

178

gap, then their advertised link qualities will match the expected link qualities. Otherwise,

their link qualities will be different than the expected link qualities. Each sensor node

in the WSN runs a local copy of the proposed IDS and each reaches a decision about

a malicious node on its own. Therefore, the proposed IDS does not add any extra

communications in the WSN, which is a great asset. However, it requires extra storage

space for an additional 98 bytes per sensor node.

Chapter 4 ends with discussing possible scenarios that a malicious node may exhibit

and how the proposed IDS is enhanced to face them. We assume that the malicious

node is adaptive and that it guesses the neighbouring sensor nodes that perform the

sequence number gap trick. By this guess, the malicious node may avoid being detected

by advertising the correct link qualities. Accordingly, the proposed IDS is adapted to

detect the malicious node even when no sensor node is performing the sequence number

gap trick.

Chapter 5 discusses the simulation results of MintRoute IDS. If MintRoute IDS

succeeds in detecting the malicious node, then the children of the malicious node will

change their routes to good ones. Thus, the percentage of data delivery to the base station

shall increase. The simulation results show that MintRoute IDS is very successful when

the malicious node is a simple one that always advertises exaggerated link qualities.

However, the performance of the IDS degrades when the malicious node is adaptive.

The malicious node tries to escape detection by building thresholds for the expected

number of packets from its neighbours. If the number of packets exceeds the threshold,

the malicious node will advertise the true link quality to the corresponding neighbour.

The tighter the threshold is, the lower the performance of the IDS will be. However, the

tighter threshold means that sensor nodes may not choose the malicious node route if

its link qualities are not good enough. This degradation in performance is very apparent

with the large sequence number gaps because it is easier to guess that the sequence

179

number gap trick is being played. The simulation results of the enhanced IDS where the

sensor nodes test the link qualities at all times show that the enhanced IDS outperforms

the basic IDS with the different thresholds of the malicious node.

MintRoute IDS has shown far more true detections than false detections. However,

the average number of true detections decreases with the tighter threshold of the malicious

node, but the enhanced IDS boosts the number back. The simulation results show that

large sequence number gaps increase false detections because low link qualities are not

advertised, which cause mismatches between expected link qualities and advertised link

qualities. Also, the enhanced IDS has shown an increase in the average number of false

detections because all the advertisements are tested, and not only when the sequence

number gap trick is being played.

8.1.2 Non-cooperative Link Quality Routing Protocols

Chapter 6 describes three possible scenarios that a malicious node may follow to exploit

non-cooperative link quality routing protocols for WSNs. CTP is chosen as a case study of

this type of link quality routing protocols. In addition, a combined scenario is explained.

In CTP, sensor nodes do not cooperate to compute link qualities, but a malicious node

may manipulate some parameters of CTP to influence the computations of other sensor

nodes. In the first scenario, the malicious node advertises a low path cost value to the

base station by lying about the link quality to its parent. In the second scenario, the

malicious node advertises a low total path cost to the base station. In the third scenario,

the malicious node sends frequent beacons by fixing the beacon transmission intervals

and not adapting them with every beacon. The final scenario combines the second and

third scenarios. The aim of the malicious node in all scenarios is to convince more sensor

nodes that it has a low path cost to the base station.

An IDS that is composed of three detection modules is proposed to detect the attack

180

scenarios on CTP. The first detection module detects the first scenario by implementing

the sequence number gap trick. However, since the sensor nodes do not share their link

quality computations, only the parent of the sensor node can implement the trick and

test the advertised path cost of the malicious node. The second detection module detects

the second scenario by testing the following property: the path cost of a child sensor node

must be greater than the path cost of its parent. The third detection module implements

a state machine to detect the third scenario. The state machine tests the arrival times

of beacons and checks that they follow an adaptive behaviour. The combined scenario

can be detected by either the second detection module or the third detection module.

Chapter 7 presents the results of simulating CTP and its IDS. The malicious node

in Scenario 1 failed to convince its neighbouring sensor nodes of its path to the base

station. Basically, lying about the link quality to its parent is not effective because this

link constitutes one portion of the total path to the base station. However, in the second

scenario when the malicious node lies about its total path cost to the base station, it lures

more sensor nodes especially in locations far from the base station. When the malicious

node offers a low path cost in a vicinity where the path costs are high, it will be easier

to lure more sensor nodes. Sending frequent beacons only in the third scenario will not

be beneficial if the path cost of the malicious node is high. So, in locations far from the

base station the malicious node is not as successful as in close locations because its path

cost is higher. A malicious node that combines the second and third scenarios succeeds

in luring more sensor nodes.

The success of the second detection module to detect the malicious node that follows

the second scenario depends on the value of path cost offered by the malicious node and

the density of the network. If the malicious node is offering a path cost that is greater

than its parent’s, then the IDS will not be able to detect it. This case occurs close to

the base station where the sensor nodes have low path costs. In far locations, it will be

181

easy to detect the malicious node if it is offering a lower path cost than the sensor nodes

in vicinity. Also, the number of sensor nodes in the WSN affects the detection since

the second detection module depends on the number of common neighbours between

the malicious node and its parent. If this number is large, then the IDS will detect

the malicious node easily. However, the effect of this detection on the malicious node

depends on the number of common neighbours that are children of the malicious node.

If the number of children that detect the malicious node is large, then they will change

their parent to a good one.

The success of the third detection module depends on the amount of traffic in the

WSN. More traffic leads to more packet collisions, which causes the third detection

module to reset the detection process. Thus, the third detection module has its lowest

detection in dense networks where more sensor nodes generate more traffic.

8.2 Discussion

This dissertation shows that sensor nodes can detect a malicious node that violates the

link quality routing protocols independently and without sharing any information or

forwarding it to the base station. In addition, it has shown that cryptography is not

required to ensure data availability.

In the case of routing protocols that require cooperation between the sensor nodes to

compute link qualities, the sensor nodes can introduce a gap in their sequence numbers

to compute expected link quality values for their neighbours. Any neighbour that shares

a link quality that does not conform with its corresponding expected link quality value

will be detected as malicious.

In the case of routing protocols that do not require the sensor nodes to cooperate to

compute link qualities, the sensor nodes can use the watchdog concept or a state machine

182

to detect a malicious node that uses incorrect values for the parameters of the link quality

protocol.

Since the proposed detection mechanisms for both types of routing protocols do not

require the sensor nodes to share detection results, no extra communication is generated

in the WSNs. Thus, both IDSs are energy efficient. In addition, no cryptographic

mechanisms are necessary to secure transmission of detection results.

MintRoute IDS tests neighbouring sensor nodes that are in the routing table only.

Other neighbouring sensor nodes are not considered for parent choice and thus, there is

no need to test their link qualities. In total, MintRoute IDS adds 98 bytes to the memory

of the sensor nodes to operate efficiently. Thus, MintRoute IDS scales constantly with

the size of the WSN.

On the other hand, CTP IDS depends on the history of beacons broadcast of each

neighbouring sensor node. It needs to keep track of last beacon broadcast of all neigh­

bouring sensor nodes and not just the ones in the routing table. To achieve this, CTP

IDS creates an additional table to keep this information. Each entry in the new table

requires 18 bytes. Hence, CTP IDS scales linearly with the size of the WSN.

8.3 Future Work

This dissertation focuses on detecting a single stationary malicious node that exploits

the vulnerabilities of link quality routing protocols for WSN. The two types of link

quality routing protocols are investigated for the possible vulnerabilities. An IDS is

proposed to detect the vulnerabilities of each type of link quality routing protocols. Two

routing protocols and the two IDSs are implemented and simulated in ns-2 to evaluate the

performance of the IDSs. The simulation experiments show promising results. However,

there are other topics that are worth investigation.

183

Larger WSN sizes

The proposed IDSs are tested in relatively small WSNs. A WSN may contain thousands

of sensor nodes. As the number of sensor nodes gets larger, more packet collisions occur

due to the larger traffic volume, and each sensor node has a larger number of neighbouring

sensor nodes.

With more packet collisions, the IDSs may miss the appropriate packets for the de­

tection test. This may lead to suspecting good sensor nodes as malicious or may lead

to failing to detect the malicious node. Since both IDSs save extra information about

the sensor nodes, the number of neighbours that a sensor node can track is limited by

the available memory size. Accordingly, more simulation experiments are required to

evaluate the effects of packet collisions and neighbourhood sizes on the performance of

the IDSs.

Clustered WSNs

Some WSNs may use cluster-based or hierarchical routing protocols. Cluster-based rout­

ing protocols operate differently than the flat routing protocols studied in this disser­

tation. In cluster-based routing protocols, some sensor nodes, cluster heads, aggregate

data collected from the members of their clusters and send one report to the base station.

Cluster-based routing protocols put a challenge for the sensor nodes after they detect a

malicious node that acts as a cluster head. In this dissertation, the sensor nodes are

configured to change routes when they detect the malicious node. This behaviour gives

us the ability to measure the effect of the malicious node before and after the detection.

However, this behaviour is not feasible in cluster-based routing protocols because the

sensor nodes have no other choice but to route their data through the malicious node.

Post detection behaviour of sensor nodes is important to investigate to make sure that

the sensor nodes can communicate with the rest of the WSN.

184

Multiple Malicious Nodes

The simulation results show that both IDSs are effective in detecting a single malicious

node that exploits link quality routing protocols for WSNs. Multiple malicious nodes

can pose a greater threat to WSNs. If they are implanted in an area that has a low

density of sensor nodes, their detection may lead to undesirable consequences. First, if

there is no other route to the base station, the good sensor nodes will have no choice

but to route through the malicious nodes. Second, if few other routes exist, they may

become congested if the good sensor nodes change their routes to them. The study of

the behaviours of the good sensor nodes after detection is important.

Traffic-expelling Malicious Node

Another type of malicious nodes is a node that tries to expel or minimize the amount of

traffic that passes through it. The malicious node tries to conserve its battery power to

live longer than the other sensor nodes. It waits until some of its neighbouring sensor

nodes consume their batteries and die. Afterwards, the malicious node can claim the IDs

of the dead neighbours (Sybil attack) or attract the traffic from the remaining neighbours

(sinkhole attack). To expel traffic, the malicious node needs only to announce low link

qualities. When the neighbouring sensor nodes compute route costs to the base station,

the route through the malicious node will have a low link quality and will not be cho­

sen. When the malicious node decides the time to start its attack, it can announce or

exaggerate its true link qualities.

Bibliography

[1] J. N. Al-Karaki and A. E. Kamal, “Routing Techniques in Wireless Sensor Net­

works: A Survey,” IEEE Wireless Communications, vol. 11, pp. 6–28, December

2004.

[2] I. F. Akyildiz and M. C. Vuran, Wireless Sensor Networks. Ian F. Akyildiz Series

in Communications and Networking, West Sussex, U.K.: John Wiley & Sons, 2010.

[3] A. Nayak and I. Stojmenovic, Wireless Sensor and Actuator Networks: Algorithms

and Protocols for Scalable Coordiantion and Data Communications. Hoboken, NJ,

USA: John Wiley & Sons, 2010.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor

Networks: A Survey,” Computer Networks, vol. 38, pp. 393–422, March 2002.

[5] I. Krontiris, T. Giannetsos, and T. Dimitriou, “LIDeA: A Distributed Lightweight

Intrusion Detection Architecture for Sensor Networks,” in Proceedings of the 4th In­

ternational Conference on Security and Privacy in Communication Networks (Se­

cureComm), (New York, NY, USA), pp. 20:1–20:10, ACM, 2008.

[6] S. Misra, K. I. Abraham, M. S. Obaidat, and P. V. Krishna, “LAID: A Learning

Automata-based Scheme for Intrusion Detection in Wireless Sensor Networks,”

Security and Communication Networks, vol. 2, pp. 105–115, March/April 2009.

[7] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges of Reliable

Multihop Routing in Sensor Networks,” in Proceedings of the 1st International Con­

ference on Embedded networked sensor systems (SenSys), (New York, NY, USA),

pp. 14–27, ACM, 2003.

185

186

[8] A. Woo, A Holistic Approach to Multihop Routing in Sensor Networks. PhD thesis,

Computer Science Division, University of California, Berkeley, CA, USA, 2004.

[9] B. Yu and B. Xiao, “Detecting Selective Forwarding Attacks in Wireless Sensor Net­

works,” in Proceedings of the 20th International Parallel and Distributed Processing

Symposium (IPDPS), (Washington, DC, USA), pp. 351–351, IEEE Computer So­

ciety, 2006.

[10] E. C. H. Ngai, J. Liu, and M. R. Lyu, “On the Intruder Detection for Sinkhole

Attack in Wireless Sensor Networks,” in Proceedings of IEEE International Con­

ference on Communications (ICC), vol. 8, pp. 3383–3389, IEEE, 2006.

[11] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks

and Countermeasures,” in Proceedings of the 1st IEEE International Workshop on

Sensor Network Protocols and Applications (SNPA), pp. 113–127, IEEE, 2003.

[12] E. Shi and A. Perrig, “Designing Secure Sensor Networks,” IEEE Wireless Com­

munications, vol. 11, pp. 38–43, December 2004.

[13] F. Hu and X. Cao,	 Wireless Sensor Networks: Principles and Practice. Boca

Raton, FL, USA: CRC Press, 2010.

[14] T. J. Dishongh and M. McGrath, Wireless Sensor Networks for Healthcare Appli­

cations. Norwood, MA, USA: Artech House, 2010.

[15] Crossbow technology, “http://www.xbow.com/.”

[16] The Cricket Indoor Location System, “http://cricket.csail.mit.edu/.”

[17] Sun SPOT World, “http://www.sunspotworld.com/.”

[18] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing

Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2004.

http:http://www.sunspotworld.com
http:http://cricket.csail.mit.edu
http:http://www.xbow.com

187

[19] J. F. Kurose and K. W. Ross,	 Computer Networking: A Top-Down Approach.

Boston, MA, USA: Pearson Education, 5th ed., 2010.

[20] C. D. M. Cordeiro and D. P.	 Agrawal, Ad Hoc & Sensor Networks: Theory and

Applications. Singapore: World Scientific Publishing, 2006.

[21] A. Hac, Wireless Sensor Networks Designs. West Sussex, UK: John Wiley & Sons,

2003.

[22] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks: Theory

and Practice. Wiley Series on Wireless Communications and Mobile Computing,

West Sussex, UK: John Wiley & Sons, 2010.

[23] TinyOS, “http://www.tinyos.net/.”

[24] nesC, “http://nescc.sourceforge.net/.”

[25] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC

Language: A Holistic Approach to Networked Embedded Systems,” in Proceedings

of the ACM SIGPLAN 2003 conference on Programming Language Design and

Implementation (PLDI), (New York, NY, USA), pp. 1–11, ACM, 2003.

[26] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng,

and R. Han, “MANTIS: System Support for MultimodAl NeTworks of In-situ Sen­

sors,” in Proceedings of the 2nd ACM international conference on Wireless sensor

networks and applications (WSNA), (New York, NY, USA), pp. 50–59, ACM, 2003.

[27] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki	 - A Lightweight and Flexible

Operating System for Tiny Networked Sensors,” in Proceedings of the 29th Annual

IEEE International Conference on Local Computer Networks (LCN), (Washington,

DC, USA), pp. 455–462, IEEE Computer Society, 2004.

http:http://nescc.sourceforge.net
http:http://www.tinyos.net

188

[28] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A Dynamic Oper­

ating System for Sensor Nodes,” in Proceedings of the 3rd International Conference

on Mobile Systems, Applications, and Services (MobiSys), (New York, NY, USA),

pp. 163–176, ACM, 2005.

[29] T.-Y. Huang, K.-Y. Hou, H.-Y. Yu,	 E. T. Chu, and C. King, “LA-TinyOS: A

Locality-Aware Operating System for Wireless Sensor Networks,” in Proceedings

of the 2007 ACM Symposium on Applied Computing (SAC), (New York, NY, USA),

pp. 1151–1158, ACM, 2007.

[30] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. D. Kim, B. Zhou, and E. G. Sirer,

“On the Need for System-Level Support for Ad hoc and Sensor Networks,” ACM

SIGOPS Operating Systems Review, vol. 36, pp. 1–5, April 2002.

[31] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, “RETOS: Resilient,

Expandable, and Threaded Operating System for Wireless Sensor Networks,” in

Proceedings of the 6th International Conference on Information Processing in Sen­

sor Networks (IPSN), (New York, NY, USA), pp. 148–157, ACM, 2007.

[32] L. L. Peterson and B. S. Davie,	 Computer Networks: A Systems Approach. San

Francisco, CA, USA: Morgan Kaufmann Publishers, 4th ed., 2011.

[33] I. Stojmenovic, Handbook of Sensor Networks: Algorithms and Architectures. Wiley

Series on Parallel and Distributed Computing, Hoboken, NJ, USA: John Wiley &

Sons, 2005.

[34] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “CodeBlue: An Ad Hoc

Sensor Network Infrastructure for Emergency Medical Care,” in Proceedings of the

Workshop on Applications of Mobile Embedded Systems (WAMES), 2004.

189

[35] T. Gao, C. Pesto, L. Selavo, Y. Chen, J. Ko, J. Lim, A. Terzis, A. Watt, J. Jeng,

B. rong Chen, K. Lorincz, and M. Welsh, “Wireless Medical Sensor Networks in

Emergency Response: Implementation and Pilot Results,” in Proceedings of the

2008 IEEE Conference on Technologies for Homeland Security (HST), pp. 187–

192, IEEE, 2008.

[36] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

Sensor Networks for Habitat Monitoring,” in Proceedings of the 1st ACM Inter­

national Workshop on Wireless Sensor Networks and Applications (WSNA), (New

York, NY, USA), pp. 88–97, ACM, 2002.

[37] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein, “Energy-

Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences

with ZebraNet,” ACM SIGPLAN Notices, vol. 37, pp. 96–107, October 2002.

[38] A. Othman, K. Lee, H. Zen, W. Zainal, and M. M. Sabri, “Wireless Sensor Networks

for Swift Bird Farms Monitoring,” in Proceedings of the International Conference on

Ultra Modern Telecommunications & Workshops (ICUMT), pp. 1–7, IEEE, 2009.

[39] J. J. Geoffrey Werner-Allen, M. Ruiz, J. Lees, and M. Welsh, “Monitoring Volcanic

Eruptions with a Wireless Sensor Network,” in Proceedings of the 2nd European

Workshop on Wireless Sensor Networks (EWSN), pp. 108–120, IEEE, 2005.

[40] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and

J. Lees, “Deploying a Wireless Sensor Network on an Active Volcano,” IEEE In­

ternet Computing, vol. 10, pp. 18–25, March 2006.

[41] Center	 for Coastal Margin Observation and Prediction,

“http://www.ccalmr.ogi.edu/CORIE/.”

http://www.ccalmr.ogi.edu/CORIE

190

[42] E. A. Basha, S. Ravela, and D. Rus, “Model-Based Monitoring for Early Warning

Flood Detection,” in Proceedings of the 6th ACM Conference on Embedded Network

Sensor Systems (SenSys), (New York, NY, USA), pp. 295–308, ACM, 2008.

[43] Y. Li, M. T. Thai, and W. Wu, Wireless Sensor Networks and Applications. Signals

and Communication Technology, New York, NY, USA: Springer, 2008.

[44] Boomerang Shooter Detection System, “http://www.bbn.com/products and services

/boomerang/.”

[45] T. He, S. Krishnamurthy,	 L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, P. V.

Qing Cao, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, “VigilNet:

An Integrated Sensor Network System for Energy-Efficient Surveillance,” ACM

Transactions on Sensor Networks, vol. 2, pp. 1–38, February 2006.

[46] H. Bai, M. Atiquzzaman, and D. Lilja, “Wireless Sensor Network for Aircraft Health

Monitoring,” in Proceedings of the 1st International Conference on Broadband Net­

works (BroadNets), pp. 748–750, IEEE, 2004.

[47] K. Chintalapudi, J. P. Tat Fu, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan,

E. Johnson, and S. Masri, “Monitoring Civil Structures with a Wireless Sensor

Network,” IEEE Internet Computing, vol. 10, pp. 26–34, March 2006.

[48] Y.	 Kim, T. Schmid, Z. M. Charbiwala, J. Friedman, and M. B. Srivastava,

“NAWMS: Nonintrusive Autonomous Water Monitoring System,” in Proceedings

of the 6th ACM Conference on Embedded Setwork Sensor Systems (SenSys), (New

York, NY, USA), pp. 309–322, ACM, 2008.

[49] J. Vetelino and A. Reghu,	 Introduction to Sensors. Boca Raton, Florida, USA:

CRC Press, 2011.

http://www.bbn.com/products

191

[50] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low-Cost Outdoor Localiza­

tion for Very Small Devices,” IEEE Personal Communications, vol. 7, pp. 28–34,

October 2000.

[51] J. A. Stankovic, “Wireless Sensor Networks,” technical report, Department of Com­

puter Science, University of Virginia, Charlottesville, VA, USA, June 2006.

[52] M. Ilyas and I. Mahgoub,	 Handbook of Sensor Networks Compact Wireless and

Wired Sensing Systems. Boca Raton, FL, USA: CRC Press, 2005.

[53] G. Acs and L. Buttyan, “A Taxonomy of Routing Protocols for Wireless Sensor

Networks,” Hiradstechnika, vol. LXII, pp. 32–40, January 2007.

[54] J. J. Lotf and S. H. H. N. Ghazani, “Overview on Routing Protocols in Wireless

Sensor Networks,” in Proceedings of the 2nd International Conference on Computer

Engineering and Technology (ICCET), vol. 3, pp. V3–610–V3–614, 2010.

[55] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for In­

formation Dissemination in Wireless Sensor Networks,” in Proceedings of the 5th

Annual ACM/IEEE International Conference on Mobile Computing and Network­

ing (MobiCom), (New York, NY, USA), pp. 174–185, ACM, 1999.

[56] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable

and Robust Communication Paradigm for Sensor Networks,” in Proceedings of

the 6th Annual International Conference on Mobile Computing and Networking

(MobiCom), (New York, NY, USA), pp. 56–67, ACM, 2000.

[57] R. C. Shah and J. M. Rabaey, “Energy Aware Routing for Low Energy Ad Hoc Sen­

sor Networks,” in Proceedings of IEEE Wireless Communications and Networking

Conference (WCNC), vol. 1, pp. 350–355, IEEE, 2002.

192

[58] F. Ye,	 A. Chen, S. Lu, and L. Zhang, “A Scalable Solution to Minimum Cost

Forwarding in Large Sensor Networks,” in Proceedings of the 10th International

Conference on Computer Communications and Networks (ICCCN), pp. 304–309,

IEEE, 2001.

[59] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient Com­

munication Protocol for Wireless Microsensor Networks,” in Proceedings of the 33rd

Hawaii International Conference on System Sciences (HICSS), vol. 2, (Washington,

DC, USA), IEEE Computer Society, 2000.

[60] Y. Yu, R.	 Govindan, and D. Estrin, “Geographical and Energy Aware Routing:

A Recursive Data Dissemination Protocol for Wreless Sensor Networks,” Techni­

cal Report UCLA/CSD-TR-01-0023, Computer Science Department, University of

California, Los Angeles, CA, USA, May 2001.

[61] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless Protocol

for Real-Time Communication in Sensor Networks,” in Proceedings of the 23rd In­

ternational Conference on Distributed Computing Systems (ICDCS), (Washington,

DC, USA), pp. 46–55, IEEE Computer Society, 2003.

[62] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for Self-Organization

of a Wireless Sensor Network,” IEEE Personal Communications, vol. 7, pp. 16–27,

October 2000.

[63] TinyAODV	 implementation, TinyOS source code repository,

“http://cvs.sourcefourge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn/.”

[64] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection Tree Pro­

tocol,” in Proceedings of the 7th ACM Conference on Embedded Networked Sensor

Systems (SenSys), (New York, NY, USA), pp. 1–14, ACM, 2009.

http://cvs.sourcefourge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn

193

[65] J. Moy, “Open Shortest Path First.” RFC 2328, IETF, April 1998.

[66] C. Hedrick, “Routing Information Protocol.” RFC 1058, IETF, June 1988.

[67] C. Perkins and P.	 Bhagwat, “Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers,” in Proceedings of the Conference

on Communications Architectures, Protocols and Applications (SIGCOMM), (New

York, NY, USA), pp. 234–244, ACM, 1994.

[68] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing.” RFC 3561, IETF, July 2003.

[69] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy	 of Wireless

Micro-Sensor Network Models,” ACM SIGMOBILE Mobile Computing and Com­

munications Review, vol. 6, pp. 28–36, April 2002.

[70] O. Gnawali, M. Yarvis, J. Heidemann, and R. Govindan, “Interaction of Retrans­

mission, Blacklisting, and Routing Metrics for Reliability in Sensor Network Rout­

ing,” in Proceedings of the 1st Annual IEEE Communications Society Conference

on Sensor and Ad Hoc Communications and Networks (SECON), pp. 34–43, IEEE,

2004.

[71] I. Stojmenovic and X. Lin, “Power-Aware Localized Routing in Wireless Networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 12, pp. 1122–1133,

November 2001.

[72] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey	 on

Sensor Networks,” IEEE Communications Magazine, vol. 40, pp. 102–114, August

2002.

194

[73] N. Baccour, A. Koubaa, M. B. Jamaa, H. Youssef, M. Zuniga, and M. Alves,

“A Comparative Simulation Study of Link Quality Estimators in Wireless Sensor

Networks,” in Proceedings of the 17th IEEE/ACM International Symposium on

Modelling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), pp. 1–10, IEEE, 2009.

[74] D. S. J. D. Couto, D. Aguayo,	 J. Bicket, and R. Morris, “A High-Throughput

Path Metric for MultiHop Wireless Routing,” in Proceedings of the 9th Annual

International Conference on Mobile Computing and Networking (MobiCom), (New

York, NY, USA), pp. 134–146, ACM, 2003.

[75] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal Properties of

Low Power Wireless Links: Modeling and Implications on Multi-Hop Routing,” in

Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking

and Computing (MobiHoc), (New York, NY, USA), pp. 414–425, ACM, 2005.

[76] J. Hill, “A Software Architecture Supporting Networked Sensors,” Master’s the­

sis, Deptartment of Electrical Engineering and Computer Science, University of

California, Berkeley, CA, USA, 2000.

[77] J. Hill, R. Szewczky, A. Woo, S. Hollar, D. Vuller, and K. Pister, “System Archi­

tecture Directions for Networked Sensors,” in Proceedings of the 9th International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-IX), pp. 93–104, 2000.

[78] S. Datema, “A Case Study of Wireless Sensor Network Attacks,” Master’s thesis,

Delft University of Technology, Delft, Netherlands, September 2005.

[79] Y. Zhang and P. Kitsos, Security in RFID and Sensor Networks. Wireless Networks

and Mobile Communications, Boca Raton, FL, USA: CRC Press, 2009.

195

[80] A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless Sensor Networks,”

Communications of the ACM, vol. 47, pp. 53–57, June 2004.

[81] P.	 Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing Source-Location

Privacy in Sensor Network Routing,” in Proceedings of the 25th IEEE International

Conference on Distributed Computing Systems (ICDCS), (Washington, DC, USA),

pp. 599–608, IEEE Computer Society, 2005.

[82] J. Deng, R. Han, and S. Mishra, “Countermeasures Against Traffic Analysis At­

tacks in Wireless Sensor Networks,” in Proceedings of the 1st International Con­

ference on Security and Privacy for Emerging Areas in Communications Networks

(SecureComm), (Washington, DC, USA), pp. 113–126, IEEE Computer Society,

2005.

[83] Y. Wang, G. Attebury, and B. Ramamurthy, “A Survey of Security Issues in Wire­

less Sensor Networks,” IEEE Communications Surveys & Tutorials, vol. 8, 2nd

Quarter 2006.

[84] I. Krontiris, T. Dimitriou, and F. C. Freiling, “Towards Intrusion Detection in

Wireless Sensor Networks,” in Proceedings of the 13th European Wireless Confer­

ence (EW), 2007.

[85] I. Onat and A. Miri, “An Intrusion Detection System for Wireless Sensor Net­

works,” in Proceedings of IEEE International Conference on Wireless and Mobile

Computing, Networking and Communication (WiMob), vol. 3, pp. 253–259, IEEE,

2005.

[86] I. Krontiris, T. Dimitriou, T. Giannetsos, and M. Mpasoukos, “Intrusion Detec­

tion of Sinkhole Attacks in Wireless Sensor Networks,” in Proceedings of the 3rd

196

International Workshop on Algorithmic Aspects of Wireless Sensor Networks (Al­

goSensors), LNCS, (Berlin / Heidelberg, Germany), Springer, 2007.

[87] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil Attack in Sensor Net­

works: Analysis & Defenses,” in Proceedings of the 3rd International Symposium

on Information Processing in Sensor Networks (IPSN), (New York, NY, USA),

pp. 259–268, ACM, 2004.

[88] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet Leashes: A Defense against Worm­

hole Attacks in Wireless Ad Hoc Networks,” in Proceedings of the 22nd Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM),

vol. 3, pp. 1976–1986, IEEE, 2003.

[89] Z. Li and G. Gong, “A Survey on Security in Wireless Sensor Networks,” Techni­

cal Report CACR 2008-20, Department of Electrical and Computer Engineering,

University of Waterloo, Waterloo, Ontario, Canada, 2008.

[90] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security Architecture

for Wireless Sensor Networks,” in Proceedings of the 2nd International Conference

on Embedded Networked Sensor Systems (SenSys), (New York, NY, USA), pp. 162–

175, ACM, 2004.

[91] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Si­

chitiu, “Analyzing and Modeling Encryption Overhead for Sensor Network Nodes,”

in Proceedings of the 2nd ACM International Conference on Wireless Sensor Net­

works and Applications (WSNA), (New York, NY, USA), pp. 151–159, ACM, 2003.

[92] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transac­

tion on Information Theory, vol. 22, pp. 644–654, November 1976.

197

[93] D. Liu and P. Ning, Security for Wireless Sensor Networks. New York, NY, USA:

Springer, 2007.

[94] M. Eltoweissy, M. Moharrum, and R. Mukkamal, “Dynamic Key Management in

Sensor Networks,” IEEE Communications Magazine, vol. 44, pp. 122–130, April

2006.

[95] L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for Distributed

Sensor Networks,” in Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS), (New York, NY, USA), pp. 41–47, ACM, 2002.

[96] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor

Networks,” in Proceedings of the 2003 IEEE Symposium on Security and Privacy

(SSP), (Washington, DC, USA), pp. 197–213, IEEE Computer Society, 2003.

[97] T. M. Vu, R. Safavi-Naini, and C. Williamson, “Securing Wireless Sensor Networks

against Large-scale Node Capture Attacks,” in Proceedings of the 5th ACM Sympo­

sium on Information, Computer and Communications Security (ASIACCS), (New

York, NY, USA), pp. 112–123, ACM, 2010.

[98] C. Kuo, M. Luk, R. Negi, and A. Perrig, “Message-In-a-Bottle: User-Friendly and

Secure Key Deployment for Sensor Nodes,” in Proceedings of the 5th International

Conference on Embedded Networked Sensor Systems (SenSys), (New York, NY,

USA), ACM, 2007.

[99] M. Eltoweissy, M.	 H. Heydari, L. Morales, and I. H. Sudborough, “Combinato­

rial Optimization of Group Key Management,” Journal of Network and Systems

Management, vol. 12, pp. 33–50, March 2004.

[100] M. Eltoweissy, A. Wadaa, S. Olariu, and L. Wilson, “Group Key Management

198

Scheme for Large-Scale Wireless Sensor Networks,” Ad Hoc Networks, vol. 3,

pp. 668–688, September 2005.

[101] M. F. Younis, K. Ghumman, and M. Eltoweissy, “Location-Aware Combinatorial

Key Management Scheme for Clustered Sensor Networks,” IEEE Transactions on

Parallel and Distributed Systems, vol. 17, pp. 865–882, August 2006.

[102] G. Jolly, M. C. Kuscu, P. Kokate, and M. Younis, “A Low-Energy Key Management

Protocol for Wireless Sensor Networks,” in Proceedings of the 8th IEEE Interna­

tional Symposium on Computers and Communication (ISCC), vol. 1, pp. 335–340,

IEEE, 2003.

[103] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software Attestation for Key Estab­

lishment in Sensor Networks,” in Proceedings of the International Conference on

Distributed Computing in Sensor Systems (DCOSS), vol. 5067 of LNCS, (Berlin /

Heidelberg, Germany), pp. 372–385, Springer, 2008.

[104] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.

Hoboken, NJ, USA: John Wiley & Sons, 2nd ed., 1996.

[105] J. Sen, “A Survey on Wireless Sensor Network Security,”	 International Journal

of Communication Networks and Information Security, vol. 1, pp. 55–78, August

2009.

[106] J. Zhang and V. Varadharajan, “Wireless Sensor Network Key Management Survey

and Taxonomy,” Journal of Network and Computer Applications, vol. 33, pp. 63–

75, March 2010.

[107] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing Elliptic

Curve Cryptography and RSA on 8-bit CPUs,” in Proceedings of the Workshop

199

on Cryptographic Hardware and Embedded Systems (CHES), vol. 3156 of LNCS,

(Berlin / Heidelberg, Germany), pp. 925–943, Springer, 2004.

[108] A. J. Menezes, P.	 C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[109] R. L. Rivest, “The RC5 Encryption Algorithm,” in Proceedings of the 2nd Interna­

tional Workshop on Fast Software Encryption (FSE), vol. 1008 of LNCS, (Berlin /

Heidelberg, Germany), pp. 86–96, Springer, 1995.

[110] D. Eastlake	 and P. Jones, “US Secure Hash Algorithm 1 (SHA1).” RFC 3174,

IETF, September 2001.

[111] R. Rivest, “The MD5 Message-Digest Algorithm.” RFC 1321, IETF, April 1992.

[112] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Security

Protocols for Sensor Networks,” in Proceedings of the 7th Annual International

Conference on Mobile Computing and Networking (MobiCom), pp. 189–199, ACM,

2001.

[113] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: A Secure Sensor Network

Communication Architecture,” in Proceedings of the 6th International Conference

on Information Processing in Sensor Networks (IPSN), (New York, NY, USA),

pp. 479–488, ACM, 2007.

[114] A. A. Ghorbani, W. Lu, and M. Tavallaee, Network Intrusion Detection and Pre­

vention: Concepts and Techniques, vol. 47 of Advances in Information Security.

New York, NY, USA: Springer, 2010.

[115] W. Wang and B. Bhargava, “Visualization of Wormholes in Sensor Networks,” in

Proceedings of the ACM Workshop on Wireless Security (WiSe), (New York, NY,

200

USA), pp. 51–60, ACM, 2004.

[116] L. Buttyn, L. Dra, and I. Vajda, “Statistical Wormhole Detection in Sensor Net­

works,” in Proceedings of the 2nd European Workshop on Security and Privacy in

Ad Hoc and Sensor Networks (ESAS), vol. 3813 of LNCS, (Berlin / Heidelberg,

Germany), pp. 128–141, Springer, 2005.

[117] M. Demirbas and Y. Song, “An RSSI-based Scheme for Sybil Attack Detection in

Wireless Sensor Networks,” in Proceedings of the 2006 International Symposium on

World of Wireless, Mobile and Multimedia Networks (WOWMOM), (Washington,

DC, USA), pp. 564–570, IEEE Computer Society, 2006.

[118] R. deGraaf, I. Hegazy, J. Horton, and R. Safavi-Naini, “Distributed Detection of

Wormhole Attacks in Wireless Sensor Networks,” in Proceedings of the 1st Interna­

tional Conference on Ad Hoc Networks, vol. 28 of LNICST, (Berlin / Heidelberg,

Germany), pp. 208–223, Springer, 2009.

[119] A. Woo	 and D. Culler, “Evaluation of Efficient Link Reliability Estimators for

Low-Power Wireless Networks,” Technical Report UCB/CSD-03-1270, Electrical

Engineering and Computer Science Department, University of California, Berkeley,

CA, USA, 2003.

[120] T. Liu, A. Kamthe, L. Jiang, and A. Cerpa, “Performance Evaluation of Link Qual­

ity Estimation Metrics for Static Multihop Wireless Sensor Networks,” in Proceed­

ings of the 6th Annual IEEE Communications Society Conference on Sensor, Mesh

and Ad Hoc Communications and Networks (SECON), pp. 1–9, IEEE Communi­

cations Society, 2009.

[121] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four-Bit Wireless Link Esti­

mation,” in Proceedings of the 6th Workshop on Hot Topics in Networks (HotNets),

201

2007.

[122] Network Simulator, ns-2, “http://www.isi.edu/nsnam/ns/.”

[123] Tool Command Language, Tcl, “http://www.tcl.tk/.”

[124] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency Estimation of Internet

Packet Streams with Limited Space,” in Proceedings of the 10th Annual European

Symposium on Algorithms (ESA), (London, UK), pp. 348–360, Springer-Verlag,

2002.

[125] I. Hegazy, R.	 Safavi-Naini, and C. Williamson, “Towards Securing MintRoute in

Wireless Sensor Networks,” in Proceedings of the 2010 IEEE International Sym­

posium on a World of Wireless Mobile and Multimedia Networks (WoWMoM),

pp. 1–6, IEEE, 2010.

[126] MintRoute Protocol, “http://www.tinyos.net/tinyos-1.x/tos/lib/MintRoute/.”

[127] Castalia A simulator for WSNs, “http://castalia.npc.nicta.com.au/.”

[128] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P.	 Levis, and A. Woo, TinyOS

Enhancement Proposal (TEP) 123: The Collection Tree Protocol (CTP), August

2006.

[129] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, TinyOS Enhancement Proposal

(TEP) 119: Collection, February 2006.

[130] U. Colesanti and S. Santini, “A Performance Evaluation of the Collection Tree

Protocol Based on its Implementation for the Castalia Wireless Sensor Networks

Simulator,” Technical Report 681, Department of Computer Science, ETH, Zurich,

Switzerland, August 31 2010.

http://castalia.npc.nicta.com.au
http://www.tinyos.net/tinyos-1.x/tos/lib/MintRoute
http:http://www.tcl.tk
http://www.isi.edu/nsnam/ns

202

[131] O. Gnawali, R. Fonseca, K. Jamieson, and P. Levis, “CTP: Robust and Efficient

Collection through Control and Data Plane Integration,” Technical Report SING­

08-02, University of Southern California, UC Berkeley, MIT Computer Science and

Artificial Intelligence Laboratory, Stanford University, USA, 2008.

[132] O. Gnawali, TinyOS Enhancement Proposal (TEP) 124: The Link Estimation Ex­

change Protocol (LEEP), February 2006.

[133] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-Regulating Algo­

rithm for Code Propagation and Maintenance in Wireless Sensor Networks,” in

Proceedings of the 1st USENIX Symposium on Networked Systems Design and Im­

plementation (NSDI), (Berkeley, CA, USA), pp. 15–28, USENIX Association, 2004.

[134] The	 Collection Tree Protocol (CTP), “http://www.tinyos.net/tinyos­

2.x/tos/lib/net/ctp/.”

[135] I. Hegazy, R. Safavi-Naini, and C. Williamson, “Exploiting Routing Tree Construc­

tion in CTP,” in Proceedings of the 12th International Workshop on Information

Security Applications (WISA), LNCS, (Berlin / Heidelberg, Germany), Springer,

August 2011.

[136] Y. Pan and Y. Xiao, Ad Hoc and Sensor Networks, vol. 2 of Wireless Networks and

Mobile Computing. New York, NY, USA: Nova Science Publishers, 2006.

[137] P. Levis, TinyOS Programming, October 2006.

[138] P. J. Denning, “The Working Set Model for Program Behavior,” Communications

of the ACM, vol. 11, pp. 323–333, May 1968.

[139] A. A. Puntambekar, Data Structures and Algorithms. Pune, India: Technical Pub­

lications Pune, 2009.

http://www.tinyos.net/tinyos

203

Appendix A

A.1 Algorithm of RandomMLCG

The algorithm of acRandomMLCG comprises three routines. The first routine, InitRan­

domMLCG(), initializes the seed of the random number generator. The second routine,

Rand16(), returns a two-byte random number and, finally, the third routine, Rand32(),

returns a four-byte random number.

Algorithm A.1 Routines of the RandomMLCG algorithm

procedure InitRandomMLCG(s):
SET seed TO (uint32 t)(s + 1)

procedure Rand16():
return (uint16 t)Ran32()

procedure Rand32():
SET tmpSeed TO (uint64 t)(33614U × (uint64 t)seed)
SET q TO (uint32 t)tmpSeed
SET q TO q >> 1
SET p TO (uint32 t)(tmpSeed >> 32)
SET mlcg TO p + q
SET value TO ((mlcg & 0x80000000) = 0)
if value is true then

SET mlcg TO mlcg & 0x7FFFFFFF
SET mlcg TO mlcg + 1

SET seed TO mlcg
RETURN mlcg

A.2 Algorithm of the Queue

The queue algorithm consists of three routines that implement a simple FIFO queue. To

utilize the space efficiently, the queue algorithms implement a circular queue [139]. The

204

first routine, Enqueue(), simply adds an element to the end of the queue. The second

routine, Dequeue(), returns the first element of the queue and empties its space. The

last routine, Element(), returns the queue element at the index position in the queue

without deleting it. In the case of CTP, the queue element is of type CTP data packet.

Algorithm A.2 Routines of the queue algorithm

procedure Enqueue(queue element):
if size of queue ≤ maximum queue size then

ADD queue element at tail of queue

INCREMENT tail of queue

if tail = maximum queue size then

SET tail TO 0

INCREMENT size of queue

RETURN SUCCESS

else
RETURN FAIL

procedure Dequeue():
SET t TO element at head of queue
if queue is not empty then

INCREMENT head of queue [it is a circular queue so move the head forward
if head of queue = maximum queue size then

SET head of queue TO 0

DECREMENT size of queue

RETURN t

procedure Element(index):
SET index TO index + head of queue
if index ≥ maximum queue size then

SET index TO index - maximum queue size

RETURN element from queue at index

A.3 Algorithm of the Message Pool

The message pool algorithm implements a general dynamic memory allocation structure

and it contains three routines. The InitP ool() routine initializes the size of the pool.

205

Elements from the pool are returned with the Get() routine and new elements are added

with the Put() routine. The pool element is of type CTP data packet.

Algorithm A.3 Routines of the message pool algorithm

procedure InitPool(S):
SET size TO s
SET free TO size
SET index TO 0

procedure Get():
if there is free space in the pool then

SET rval TO element at index in the pool
SET element at index TO null
DECREMENT free
INCREMENT index
if index = size of pool then

SET index TO 0

RETURN rval

RETURN NULL

procedure Put(newV al):
if free ≥ size then

RETURN fail
else

SET emptyIndex TO index + free
if emptyIndex ≥ size then

SET emptyIndex TO emptyIndex - size

SET pool element at emptyIndex TO newV al
INCREMENT free
RETURN SUCCESS

A.4 Algorithm of the Message Cache

The message cache stores the signatures of the CTP data packets. The signature of a

packet contains its origin, sequence number, type, and Time Has Lived (THL). The

message cache algorithm contains 4 routines. Init() initializes the size of the cache.

Lookup1() returns the index of a packet if the packet exists in the cache. Insert() inserts

206

a new packet in the cache. Inserting a new element in a full cache will replace the oldest

element. Inserting an element already in the cache will update its signature and age.

Remove() removes a packet from the cache.

Algorithm A.4 Routines of the LRU cache algorithm

procedure InitCache(S):
SET size TO s
SET first TO 0
SET count TO 0

procedure Lookup1(message):
for i = 0 to count-1 do

SET index TO (i + first) mod size;
if signature of message = signature of stored message at index then

BREAK
RETURN i

procedure Lookup2(message):
RETURN (Lookup1(m) < count)

procedure Remove(index):
if index ≥ count then

RETURN
if index = 0 then

SET first TO (first + 1) mod size [shift all by moving first
else

for j = index to j < count-1 do [shift all elements down
MOVE cache element at [(j + first + 1) mod size] TO [(j + first) mod size]

DECREMENT count

procedure Insert(message):
if count = size then

SET i TO Lookup2(message) [if message is in cache, remove it temporarily
REMOVE (i mod count) [otherwise, remove the first item in cache

STORE signature of message at location first + count in cache
INCREMENT count

	Title
	Abstract
	Body

