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Abstract
 

Wireless sensor networks are gaining popularity due to their ease of deployment, low 

cost, portability, and scalability. However, the sensor nodes, which are the components 

of wireless sensor networks, are limited in communication, processing, and storage capa­

bilities. They collect data from their surrounding environments and relay it using wireless 

communication to a central controller, which is more capable of processing and storing 

data. The wireless communication exposes the wireless sensor networks to different types 

of routing attacks. 

The goals of this dissertation are: study the two types of link quality routing protocols, 

identify the vulnerabilities of each type, and develop intrusion detection mechanisms to 

detect any malicious node that uses the identified vulnerabilities. Analysis and simulation 

are adopted as the research methodology. 

The first type of protocols requires the sensor nodes to cooperate to compute link 

qualities. An intrusion detection mechanism is proposed that introduces a gap in the 

sequence number of packets to detect a malicious node that advertises false link quality 

values. Hence, sensor nodes can expect the values of the link qualities of their neighbours 

to detect violators. 

The second type of protocols does not require the sensor nodes to cooperate. However, 

a malicious node may use false values for the parameters of the routing protocol, such as 

advertising false routing cost or sending frequent beacons. An intrusion detection system 

with two modules is proposed to detect this malicious node. The first module applies 

the watchdog concept to detect false routing costs and the second module applies a state 

machine to test the frequency of broadcasting beacons. 

The two intrusion detection systems and a routing protocol from each type are simu­

lated in ns-2. The simulation results of the first intrusion detection system show that a 

ii
 



small gap in the sequence numbers helps the sensor nodes to detect the malicious node 

effectively. The simulation results of the second intrusion detection system show that 

the success of the watchdog mechanism is dependent on the density of the sensor nodes 

in the network. However, the state machine mechanism helps the sensor nodes to detect 

the malicious node regardless of their density. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

A Wireless Sensor Network (WSN) is a special type of wireless networks composed of 

small nodes that collect data from their surrounding environments. These nodes send 

the collected data to a central collector for further processing, decision making, and 

storage. This central controller is called a Base Station (BS) or a sink. The base station 

connects the WSN to an existing infrastructure where the user can access the collected 

data [1]. Recent technological advances in electro-mechanical systems, digital electronics, 

and wireless communication have enabled the design and development of these nodes. 

These nodes contain sensors to sense the environment, storage and processing units to 

handle the data, and a wireless module for communication. These nodes are called 

wireless sensor nodes or sensor nodes, for short. Advances in electro-mechanical systems 

enable the components of a wireless sensor node to fit into a small chip. Advances in 

digital electronics empower the small chips to process received data. Advances in wireless 

communications enable the use of Radio Frequency (RF) antennas to relay the collected 

data among the sensor nodes. These sensor nodes are small in size, low-cost, low-power, 

and multifunctional [2, 3]. Figure 1.1 compares a sensor node to a quarter dollar 1 . 

Although these advances in technology have helped in the wide use of WSNs, they 

have their shortfalls on the development of the wireless sensor nodes as well. The sensor 

nodes are highly constrained devices: they operate on batteries; and they have limited 

computational and storage capabilities. As a result, applications of WSNs should con­

1Image is courtesy of http://www.russnelson.com/wisan/ 

http://www.russnelson.com/wisan
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Figure 1.1: A sensor board compared to a quarter dollar 

serve as much storage space and battery power as possible to prolong the lifetime of the 

network. Despite their limited capabilities, WSNs are gaining more attention in sev­

eral application fields. WSNs can be used in: military applications, such as battlefield 

surveillance; in environmental applications, such as fire detection; health application, 

such as patient tracking; home applications, such as home automation; and other appli­

cations, such as interactive museums, managing inventory control, and vehicle tracking 

and detection [4]. 

Sensor nodes play the dual role of collecting data and relaying data from other sensor 

nodes until it reaches the base station. A WSN may be deployed in a vast area such that 

not all the sensor nodes can communicate directly with the base station. To overcome 

this limitation, the sensor nodes cooperate to deliver the data to the base station using a 

routing protocol. Since the sensor nodes use wireless communication to relay the collected 

data, they are susceptible to different types of attacks that target the routing protocol. 

These attacks are different from the attacks against wired networks because they exploit 

the wireless nature of communication in WSNs. 

Attacks on WSNs take advantage of the wireless communication and the vulnerability 

of sensors to being captured. It can be difficult to guarantee physical security for the vast 

areas where WSNs are deployed; this enables attackers to capture and examine, modify, 
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or remove the sensors, and to insert devices such as malicious nodes or repeaters into the 

environment. Modified or malicious nodes can be used by the attacker to launch different 

types of attack against WSNs. 

Because of the scarcity of the resources of sensor nodes, WSN routing protocols rarely 

incorporate trust or security mechanisms. An non-trusted protocol is itself a security 

threat to the WSN. Traditional security mechanisms that are developed for wired net­

works are not applicable for wireless sensor networks. First, some attacks are more 

prominent in wireless networks, such as the wormhole attack and the RF signal dis­

tortion. Second, some security mechanisms, such as asymmetric key encryption, are 

expensive to implement in the limited resources of the sensor nodes. 

Even the security systems that are developed for wireless ad hoc networks may not be 

directly applicable to WSNs because of the limited capabilities of the sensor nodes and 

the different operations of both types of networks. Although WSNs share the property 

of no infrastructure with wireless ad hoc networks, adopting ad hoc routing protocols in 

WSNs may not be a feasible solution due to the inherent characteristics of WSNs. 

Thus, new security systems are needed to protect WSNs from targeted attacks. Sev­

eral research studies have focused on the security challenges of WSNs. Many of these 

studies have considered the attacks against the routing protocols in terms of the effect on 

the availability of data in the network. However, research efforts on these attacks tend 

to take a general approach and do not focus on specific WSN routing protocols. LIDeA 

[5] and LAID [6] are two general architectures for Intrusion Detection Systems (IDSs) in 

WSNs. Both architectures focus on the outcome of the attack and not on the frailties 

of the routing protocols. There are several WSN routing protocols that differ in their 

functions according to the network structure or the network operation. These differences 

allow the attackers to launch specific attacks against the WSN routing protocols. 
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1.2 Problem Statement 

One common categorization of routing protocols in WSNs distinguishes shortest path 

routing protocols from link quality routing protocols. Shortest path or minimum hop 

routing protocols construct a routing tree with the shortest paths between the sensor 

nodes and the base station. These routes are not usually the best because the shortest 

path routing protocols do not consider other factors along the paths, such as route 

congestion or signal strength. 

In link quality routing protocols, sensor nodes compute a quality metric for their links 

and use it as the routing metric for relaying data. Link qualities can be end-to-end delay, 

signal strength, available bandwidth, etc. This category of routing protocols may require 

cooperation between the sensor nodes to compute the best routes to the base station. 

Sensor nodes share information without any guarantee of the validity of this information. 

For example, in MintRoute [7, 8], each node exchanges its expected packet reception ratio 

with its neighbours. Then each node computes an estimate for the packet reception ratio 

to the base station through each neighbour individually. Each node chooses the route to 

the base station with the highest expected packet reception ratio. A malicious node can 

exploit this feature and manipulate the link qualities to lure good sensor nodes. 

The aim of a malicious node is to attract as much traffic as possible from its sur­

rounding neighbours. It may then launch another attack, such as a blackhole or selective 

forwarding attack [9], a sinkhole attack [10], or a wormhole attack [11, 12]. The strength 

of exploiting the link quality routing protocols stems from its transparency. The malicious 

node neither performs extra communication nor requires additional hardware. Neither 

encryption nor authentication can prevent this attack because the malicious node may 

be an existing node that has been compromised. In this case, the malicious node has 

legitimate keys to communicate with the other sensor nodes. Accordingly, other defence 
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mechanisms are needed to protect the WSN from such attacks. 

1.3 Objective 

The objective of this dissertation is to detect a malicious node that exploits the link 

quality routing protocols of WSNs. This dissertation focuses on: 

•	 analyzing the different types of link quality routing protocols; 

•	 investigating the possible vulnerabilities of each type of link quality routing proto­

cols; and 

•	 proposing and evaluating appropriate defence mechanisms. 

This dissertation addresses the following questions: 

•	 Can a security mechanism be implemented in WSNs without the help of cryptog­

raphy? 

It is known that cryptography requires complex mathematical operation and pow­

erful resources. Both are hard to achieve in the resource-limited sensor nodes. 

Securing WSNs without cryptography will be an advantage. 

•	 Can the sensor nodes work independently to detect malicious nodes? 

Independent detection neither requires exchanging information among the sensor 

nodes nor sending it to the base station. Thus, it helps to eliminate extra traffic in 

the network. Therefore, less power consumption is required. 

1.4 Contributions 

The major contributions of this dissertation are: 
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•	 A comprehensive study of the two types of link quality routing protocols is pre­

sented. 

•	 Existing vulnerabilities in the two types of protocols are identified. 

•	 Two IDSs are proposed to detect malicious nodes that exploit the discovered vul­

nerabilities. 

•	 A simulator for a protocol of each type is built to evaluate the proposed IDSs. 

This dissertation adopts analysis and simulation as the research methodologies. Two 

simulators are built to simulate a malicious node that exploits the identified vulnerabil­

ities of each type of link quality routing protocols. In addition, two IDSs are proposed 

and simulated to detect the malicious node. The success of the IDSs is measured by 

the percentage of data delivery at the base station before and after detection. A second 

metric is the number of true detections versus the number of false detections. 

1.5 Thesis Organization 

This thesis is organized as follows. 

Chapter 2 provides a thorough background survey on WSNs. It gives an emphasis on 

the routing protocols in WSNs, their classification, and metrics. Security threats to WSNs 

are explained and then a survey of previous works that propose defence mechanisms 

against routing attacks ends the Chapter. 

Chapter 3 focuses on the link quality routing protocols and their importance in WSNs. 

The Chapter gives an in depth analysis of the common link quality estimators that are 

used in link quality routing protocols. The adopted research methodologies used in 

this dissertation are explained next. The Chapter ends by explaining the simulation 

framework. 
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Chapter 4 explains the details of MintRoute. An explanation of the components 

of MintRoute and how they integrate together is provided. An explanation of how a 

malicious sensor node can violate the operations of MintRoute to attract network traffic 

to its favour is provided next. The proposed IDS and how it works transparently in a 

WSN using MintRoute is explained. Finally, the Chapter explains possible scenarios of 

a malicious node behaviour and how the proposed IDS is adapted to detect it. 

Chapter 5 presents the simulation results of detecting MintRoute vulnerability. The 

Chapter begins with explaining the simulation setup and the configurations of the WSNs. 

The measurement metrics used to evaluate the proposed IDS are explained and finally, 

the outputs of the simulation are presented and discussed. 

Chapter 6 focuses on the details of Collection Tree Protocol (CTP) and its vulnera­

bilities. An explanation of the components of CTP and how they integrate begins the 

Chapter. The vulnerabilities that a malicious node can exploit are highlighted. The 

Chapter ends with a proposed IDS to detect the vulnerabilities of CTP. 

Chapter 7 presents the results of simulating CTP and its proposed IDS in Network 

Simulator-2 (ns-2). The configuration of the simulation environment is provided. The 

simulation results show that the proposed IDS detects the malicious nodes effectively. 

Finally, Chapter 8 concludes the thesis and suggests future work. 
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Chapter 2 

BACKGROUND AND RELATED WORK 

2.1 Introduction 

This Chapter gives an overview of the world of WSNs. It begins by giving a thor­

ough background on WSN structures, advantages, and applications. Then the Chapter 

emphasizes the role of routing protocols in WSNs, their classifications, and their perfor­

mance and cost metrics. The security threats that target WSNs are explained next. The 

Chapter ends with explaining how to secure WSNs using three main security areas: key 

distribution, cryptography, and intrusion detection. 

2.2 Wireless Sensor Networks 

A WSN contains dozens of wireless sensor nodes deployed randomly in an unattended 

environment to collect data. They can be deployed on the ground, in the air, in vehicles, 

or inside buildings. These sensor nodes are limited in resources, which mean that they 

cannot process the collected data or store it for long periods of time. Therefore, the 

wireless sensor nodes forward their collected data to a base station that is capable of 

processing and storing the collected data. The base station is usually far from the source 

of the data. 

The base station collects the sensed data from the sensor nodes, and then it processes, 

analyzes, and stores the data. The data is made available to the end-user through 

connecting the base station to an enterprise network or the Internet. A WSN can have a 

single or multiple base stations with mobile or fixed scenarios [3]. In a mobile scenario, 

the sensor nodes sense and save data from their surroundings, while a base station roams 
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the vicinity of the WSN to collect the saved data. Fixed scenarios are more common in 

WSNs where the sensor nodes sense and forward their sensed data to the base station 

using a wireless multihop infrastructureless architecture [2]. To relay their data, the 

sensor nodes form a spanning tree rooted at the base station that connects all sensor 

nodes. For example, Figure 2.1 shows a hypothetical WSN installed in different buildings 

at the University of Calgary campus to monitor, for example, temperature levels. 

Figure 2.1: A routing tree rooted at the base station 

A sensor node typically contains: a sensing chip to sense environmental or physical 

parameters, a microcontroller to process data and perform networking operations, a radio 

transceiver to send and receive data, and a power source to feed all other components. 

Figure 2.2 shows the typical components of a sensor node. The sensing chip has one 

or more sensors to sense the environmental parameters, such as temperature, pressure, 

or light intensity, or to sense physical parameters, such as blood pressure. The micro-

controller provides the computational capabilities to the sensor node and it has access 

to a memory component. The radio transceiver provides the wireless communication 

capability and it has access to a small or an embedded antenna. The power source could 

be a number of AA batteries or solar panels. There could be other components in the 

sensor nodes, such as a Global Positioning System (GPS) circuit for localization purposes 
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[13, 14]. A number of sensor nodes has been developed in recent years including Imote2 

[15], Iris [15], Mica2 [15], MicaZ [15], Telos [15], Cricket [16], and SunSPOT [17]. Al­

though the sensor nodes communicate together using wireless communication, they may 

interface with wired networks with Ethernet, WiFi, USB, or serial ports. This interfacing 

enables programming the sensor nodes or gathering information from them [2]. 

Figure 2.2: Main components of a sensor node 

To build a practical WSN on a large scale in an unattended environment, the recent 

technological advances enable to have wireless sensor nodes that have the following fea­

tures: small in size to achieve portability; low in cost to achieve feasibility; and low in 

consuming battery power to achieve prolonged lifetime [13]. However, the design of the 

sensor nodes put multiple challenges for developing software applications for WSNs [18]: 

•	 Limited resources : The sensor nodes have limited processing, storage, and commu­

nication resources. In addition, the power supply is limited and the communication 

bandwidth is scarce. 

•	 Limited support for networking : A WSN is like a peer-to-peer network, where each 

sensor node is both a router and an application host. Thus, the routing protocols 

are not generic and they are application centric. 

•	 Limited support for software development : Given the limited capabilities of the 

sensor nodes, the developed software for the WSNs has to be simple, efficient, and 
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lightweight. Moreover, only software related to the application of the WSN should 

be installed on the sensor nodes. 

2.2.1 WSNs and Ad hoc Networks
 

Ad hoc networks are a special type of wireless networks that have no infrastructure. Thus,
 

the nodes of an ad hoc network must provide for services such as addressing, routing,
 

and more [19]. Although one may think of a WSN as a type of ad hoc networks, they 

have some differences: 

•	 The number of sensor nodes in a WSN can be orders of magnitude larger than the 

number of nodes in an ad hoc network [13]. 

•	 The sensor nodes are prone to failure because of their limited capabilities and low 

cost. However, the nodes in an ad hoc network, such as laptops, have more resources 

and stronger capabilities [13]. 

•	 Many of the applications of WSNs do not require mobility. Whereas, ad hoc net­

works will form a Mobile Ad hoc Network (MANET) if the nodes are mobile. The 

mobility of MANETs requires the routing protocols to be adaptable to mobility 

[13]. 

•	 WSNs can be data centric, which means that data is requested based on specific 

criteria. For example, the base station can query the sensor nodes to send their 

temperature reading if it is greater than 25◦C [20]. 

•	 Sensor nodes in a WSN may aggregate data from adjacent sensor nodes since the 

data may have similar values [20]. 

•	 WSNs are application-specific, which affects the requirements of each WSN. Some 

applications may require mobility, others may require data aggregation, and others 
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may require random deployment [20]. 

Although both ad hoc networks and WSNs allow multihop communication, there are 

several distinctions between their communication patterns. Ad hoc networks allow the 

communication of any pair of nodes, whereas the communications in WSNs fall into three 

categories [11, 21]: 

•	 Many-to-one: sensor nodes send their data to the base station communication for 

further processing and analysis. Also, they can send the data to cluster heads, 

where the cluster heads aggregate the data. 

•	 One-to-many : base station sends queries or reprogramming tasks to all sensor 

nodes. 

•	 One-to-one: base station sends specific requests to a sensor node. Also, a sensor 

node relays data to another sensor node. 

Thus, the routing protocols of ad hoc networks are not directly applicable in WSNs 

and more specialized routing protocols are needed. 

2.2.2 Operating Systems for WSNs 

An operating system is software that resides between the hardware and the software 

applications. It provides basic programming abstractions to enable the applications to 

interact with hardware resources, schedule tasks, and resolve conflicts between contending 

applications that try to seize resources. Other duties of an operating system include 

memory management, file management, power management, and networking [22]. 

Like other computational devices, the sensor nodes need an operating system to func­

tion. However, the limited resources of the sensor nodes and the requirements of the 

applications for the WSNs put constraints on the capabilities of the operating systems 
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for WSNs. Researchers at UC Berkeley have led the development of operating systems 

for WSNs by developing Tiny Operating System (TinyOS) [23]. 

TinyOS is an event-driven operating system developed for sensor nodes that have 

limited resources. It has a small memory footprint and excellent power management. 

TinyOS is open-source software written in Network Embedded Systems C (nesC) [24, 25]. 

nesC is a dialect of the C programming language that supports event-driven program­

ming. TinyOS meets the limited resource capabilities of the sensor nodes by excluding 

some of the common features of large operating systems, such as multithreading. These 

exclusions have led to the development of other operating systems to meet these capa­

bilities, such as MANTIS [26], Contiki [27], SOS [28], and LA-TinyOS [29]. However, 

TinyOS has become the de facto industry standard operating system for WSNs [14]. 

The primary goal of MultimodAl system for NeTworks of In-situ wireless Sensors 

(MANTIS) is ease of use, while adhering to the limited resources of the sensor nodes. 

To achieve its goal, MANTIS is written entirely in standard C, which gives the pro­

grammers the features of large operating systems, such as multithreading, pre-emptive 

scheduling, and a standard network stack. Contiki is another event-driven operating 

system for WSNs that supports dynamic loading and replacement of programs and ser­

vices. Unlike TinyOS, Contiki supports multithreaded applications. SOS takes a more 

dynamic approach to the design than TinyOS. In TinyOS, the sensor nodes run a sin­

gle statically-linked image of the operating system. This makes it hard to run multiple 

applications or update them. SOS consists of dynamic modules that can be loaded or 

unloaded during run-time. LA-TinyOS extends TinyOS to support temporal and spatial 

locality for better event detection and lower energy consumption. It provides kernel-level 

support for the development of locality-aware tasks. 

MagentOS [30] is another operating system for WSNs that employs a distributed 

model approach. MagentOS treats the whole WSN as a single computational device. 
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It partitions the application into small components and dynamically places them on 

the sensor nodes within a WSN. This partitioning reduces energy consumption, avoids 

hotspots, and increases the lifetime of the sensor nodes. 

Resilient, Expandable, and Threaded Operating System (RETOS) [31] is another 

multithreaded operating system for WSNs. RETOS provides system resiliency, kernel 

extensibility, and dynamic configuration. 

2.2.3 Protocols for WSNs 

Like other types of networks, WSNs need layers of protocols to organize the functionalities 

of the sensor nodes. The protocol stack of the sensor nodes is based on the Open Systems 

Interconnection (OSI) reference model [32]. It comprises five layers out of the seven layers 

of the OSI reference model. Figure 2.3 shows the five layers of the WSN protocol stack. 

The physical layer is responsible for the modulation, transmission, and reception 

mechanisms. These mechanisms help the physical layer to convert meaningful data into 

wireless signals and vice versa [2, 13]. 

The data link layer ensures reliable communication and provides error detection mech­

anisms. It also manages channel access to minimize packet collisions. These issues are 

resolved for the immediate neighbouring sensor nodes [2, 13]. 

The routing layer is responsible for establishing routes to the base station that sat­

isfy the criteria of choosing a route. These criteria can be low energy consumption, or 

low delay, or a combination of desirable features. Once routes are established to the 

base station, sensed data is relayed on a multihop communication basis. The routing 

layer is responsible for maintaining alternative routes in case the primary route becomes 

unavailable [13]. 

The main goals of the transport layer are to achieve end-to-end reliable data trans­

mission and to reduce network congestion. Since the goals of the transport layer are 
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fulfilled by the two end points of communication, the transport layer exists in the base 

station and it functions on the sender sensor node only [13]. 

Finally, the application layer contains the software application of the WSN. It defines 

the display format for the gathered data from the sensor nodes. The application layer 

exists in the base station only. The sensor nodes relay data only, and do not display or 

process it for the end-user [13]. 

Figure 2.3: WSN protocol stack 

2.2.4 Advantages of WSNs 

Despite the limited resources and the challenges of deploying WSNs, their deployment 

comes with several advantages over wired networks: 

•	 Coverage of a large area: Deploying a large number of sensor nodes can be helpful 

to cover a large area that will be costly to cover using traditional networks [20]. 

•	 Ease of deployment : WSNs can be deployed without any prior organization. As 

soon as the sensor nodes are deployed, they self-organize to form a WSN. This 

gives flexibility to deployment and reduces the cost and time of deployment [20]. 

•	 Ease of scalability : It is easy to deploy new sensor nodes in a WSN to increase the 

coverage area or to replace sensor nodes [33]. 
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•	 Fault tolerance: Because of the dense deployment of sensor nodes, WSNs can op­

erate reliably, even with the failure of some sensor nodes because multiple sensor 

nodes monitor the same area [20, 33]. 

•	 Higher level of confidence: Because an event may be detected and collected by 

more than one sensor node, the base station will have more confidence in the data 

received from the sensor nodes [33]. 

•	 Improved sensing quality : Local sensor nodes can collaborate to send a summary 

to the base station rather than sending all the data [33]. 

•	 Less human interference: Since human access to some environments may be diffi­

cult or undesirable, the sensor nodes can be scattered from an airplane in hostile 

environments. Also, due to their small size, sensor nodes have a small footprint on 

the environment [33]. 

•	 Less total energy consumption: A multihop WSN saves more power than a single-

hop WSN. However, there is a tradeoff between the number of sensor nodes and 

total energy consumption. An excess number of sensor nodes may lead to more 

total energy consumption than a single-hop WSN [18]. 

2.2.5 Applications of WSNs 

WSNs applications collect data from the sensor nodes in three reporting modes: event-

driven, periodic, and on-demand reporting. In the event-driven reporting mode, the sensor 

nodes will sense and report data if an event occurs in their surrounding environment. For 

example, if a WSN is deployed in a forest to monitor forest fires, then the sensor nodes 

will report back to the base station if a fire occurs in the forest. Event-driven reporting 

is characterized by its real-time nature. Thus, the data should reach the base station as 

quickly as possible [3]. 
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Unlike event-driven reporting, periodic reporting is used when the data is not urgent. 

The sensor nodes report sensed data to the base station at predefined periods of time. 

Further, in periodic reporting all the sensor nodes send their data to the base station, 

whereas in event-driven reporting, only the sensor nodes in the vicinity of the event report 

it to the base station. An example of periodic reporting application is habitat monitoring. 

A sensor node attached to a bear reports back to the base station at predefined periods 

of time to locate the bear [3]. 

On-demand reporting applications send requests to the sensor nodes to send their 

sensed data. For example, an application that monitors chemical pollutants in water 

may send a request to the sensor nodes to sense the pollutants and report the values to 

the base station when required [3]. 

Besides the three reporting modes, the sensor nodes apply one of two operations on 

data: data gathering, and data aggregation. Data gathering means that all sensor nodes 

send their data to the base station without any changes along the route. This data can 

be redundant, correlated, or inconsistent. Data aggregation combines data from different 

sensor nodes to eliminate redundancy and to minimize the number of transmissions [3]. 

In data aggregation, some sensors are designated as cluster heads. A cluster head sensor 

node gathers the data from its cluster, aggregates it, and sends a single value to the base 

station. 

WSNs have been deployed in several fields. They can be used to monitor traffic, 

habitat, or chemical pollutants. They can be used in protecting the infrastructure, such 

as oil facilities, power grids, and water distribution facilities. Other fields such as health 

care systems, military, smart homes, and warehouse management also benefit from the 

deployment of WSNs [3, 13]. The following are some real-life implementations of WSNs. 
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WSNs in Health Care 

Sensor nodes are attached to patients to monitor and analyze data, such as pulse and 

blood pressure. In emergency cases, the sensor nodes send alarm messages to a nearby 

base station. To minimize the probability of lost alarms and to speed the reporting 

time, multiple base stations could be installed in the premises so the sensor nodes can 

communicate with the nearest base station in a single hop [3]. 

The CodeBlue project [34] attaches sensor nodes to patients to monitor pulse rate, 

blood oxygen saturation, patient movements, and muscular activities. The miTag plat­

form [35] includes pulse oximetry, blood pressure, and temperature sensors to monitor 

and assess vital signs of casualties. 

WSNs in Habitat Monitoring 

Human presence in the habitats of animals, birds, or plants can have undesired impacts. 

WSNs can help researchers in life sciences to monitor such habitats with minimum pres­

ence of humans. A WSN has been used to monitor the behaviour of petrels in the 

breeding season in Great Duck Island. The researchers have installed the WSN before 

the petrels migrated to the island for breeding. The WSN has been used to describe the 

usage pattern of the nesting burrows and the changes in the burrows and the surrounding 

environment during the breeding season [36]. 

ZebraNet [37] is a WSN that is used to track the pattern of Zebra movement, their 

interaction, and the impact of human development. Another WSN is provided in [38] to 

monitor and control the farms of swift birds. 

WSNs in Environmental Monitoring 

In the field of geology, WSNs can be used in dangerous environments. WSNs can be used 

to monitor the interior structure of a volcano or to differentiate true volcanic eruptions 

from other sources of noise. For example, a WSN has been used to monitor the eruptions 
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of volcanos in central Ecuador [39, 40]. 

The Columbia River Ecosystem (CORIE) [41] is a WSN deployed at the estuary of 

the Columbia River to measure water velocity, temperature, salinity, and depth. WSNs 

can also be used to warn against floods as explained in [42]. 

WSNs in Military 

One of the tasks in military applications is to detect attacks by chemical or biological 

weapons before proceeding to a conflict zone. Such detection will help military personnel 

to plan for evacuation procedures or to avoid contaminated areas. An airplane can spread 

chemical sensor nodes in the suspected areas via the air. Once the sensor nodes reach 

the ground they form a WSN and start sensing the required parameters and send the 

readings to the base station [43]. 

Other military applications include the Boomerang sniper detection system [44] and 

VigilNet [45]. Boomerang uses acoustic sensor nodes to detect the sound of firing of 

snipers. VigilNet is a surveillance WSN for target tracking in harsh environments. 

WSNs in Commercial Applications 

The complex physical systems in airplanes can benefit from the usage of WSNs. A WSN 

can be installed in an airplane to monitor, for example, the status of the engines. The 

sensor nodes can sense various physical parameters, such as oil level and temperature. 

The values of these parameters can be transmitted to a base station in the cockpit or on 

the ground for further analysis. This will provide the maintenance crew with immediate 

diagnosis of the airplane [46]. 

WSNs have been used in civil engineering to monitor the health of structures by 

tracking the spatio-temporal patterns of vibrations [47]. The Nonintrusive Autonomous 

Water Monitoring System (NAWMS) [48] is developed using WSNs to detect water usage 

in houses. 
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2.2.6 Definitions of WSNs
 

WSNs are an interdisciplinary research area that draws contributions from several fields,
 

such as networking and signal processing. In the following, the definitions of the key 

terms that are used throughout the dissertation are given. 

•	 Sensor : It is a transducer that converts a physical phenomenon, such as tempera­

ture, sound, or motion into a digital form that can be further processed by software 

applications. There are different types of sensors that measure different phenomena. 

For example, thermal sensors measure temperature values, electrochemical sensors 

sense chemical components, and acoustic sensors sense sound waves [18, 49, 22]. 

•	 Sensor node: It is the main component of WSNs. It encompasses one or more 

sensors, a processor, a memory chip, a power supply, and a wireless modem. These 

components are called resources and they are mounted on one board [18]. 

•	 Base station: It is the central controller of a WSN. It receives the sensed data 

from the sensor nodes for analysis and processing. It may send queries to the 

sensor nodes to request data. The base station provides an interface for the end-

user to deal with the WSN. It has more resources and more powerful processing 

capabilities than the sensor nodes. The base station is also called a sink [19]. 

•	 Route: It is the sequence of links that a packet traverses to reach the base station 

from a sensor node. The terms route and path are used interchangeably throughout 

the dissertation [19]. 

•	 Routing : It is the process by which the sensor nodes construct routes to the base 

station. The main goal of the routing process is to establish low-cost routes to the 

base station. The cost of a route is the sum of the costs of all links along that 

route. The routing process is performed by a routing protocol [32]. 
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•	 Cost metric: It is the metric by which the routing protocol chooses the low-cost 

route to the base station. There is a number of route costs that the routing protocol 

needs to satisfy, such as shortest path, least packet loss, or available power. 

•	 Routing tree: The routing tree represents the routes from the sensor nodes to the 

base station with one route only for each sensor node. In WSNs, the base station 

is always the root of the routing tree, i.e., the final destination of any route in the 

network. 

•	 Subtree: It is a portion of the routing tree where all sensor nodes have their routes 

passing through a common sensor node. The subtree is identified by that common 

sensor node. 

•	 Beacon: It is a packet sent by a sensor node to announce its presence and update 

neighbouring sensor nodes with its routing information. It is also called a route 

update. 

•	 Neighbour : It is a sensor node that is within the communication range of another 

sensor node. Both sensor nodes communicate directly using a wireless link. 

•	 Next-hop: It is the neighbouring sensor node chosen with respect to a routing 

protocol to relay the data to the base station. The next-hop is also called the 

parent sensor node. The sender of the data is called the child sensor node. 

•	 Forwarding : It is the process of sending data from the child sensor node to the 

parent sensor node. 

•	 In-network : It is a type of processing that occurs in the sensor nodes. It means 

that the sensor nodes do some processing on the data before sending it to the base 

station [18]. For example, a sensor node may collect some data and send the average 

only to the base station. 
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•	 Unicast : It is a type of transmission where packets are sent to one destination [22]. 

•	 Broadcast : It is a type of transmission where packets sent by a sensor node are 

received by all its neighbours [22]. 

•	 Multihop: It is a type of transmission where packets traverse multiple links to reach 

the final destination, which is the base station in case of WSNs. 

•	 Good sensor node: It is a sensor node that follows the routing protocol and does 

not perform any malicious behaviour. 

•	 Malicious node: It is an attacker node that compromises the routing protocol to 

its favour. 

2.3 Routing Protocols for WSNs 

The sensor nodes play a dual role of collecting data from their surrounding environments 

and sending it to the base station. Therefore, the sensor nodes need routing protocols to 

determine how the collected data will reach the base station. As mentioned before, the 

sensor nodes are limited in resources and computational capabilities. Since WSNs are 

mostly deployed in unattended environments, increasing their lifetimes becomes essential. 

As a result, the resource intensive routing protocols of traditional wired and wireless 

networks do not suit the WSNs for the following reasons [20]: 

•	 WSNs suffer from high bit error rates, whereas traditional routing protocols assume 

highly reliable connections [13]. 

•	 WSNs are designed to be deployed randomly with no infrastructure. Thus, the sen­

sor nodes should be self-organizing and cope with the resultant nodal distribution. 
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•	 WSNs are application specific, which means that their designs differ for each ap­

plication. A WSN to monitor vehicular traffic has a different design from another 

WSN for weather monitoring. 

•	 WSNs are stationary in most scenarios. Thus, there are no frequent topological 

changes. Even if mobility is permitted in a WSN, it is very limited. 

•	 WSNs may apply data aggregation and in-network processing to minimize data 

transmission. 

•	 WSNs are data-centric, which means data may be requested based on specific 

attributes. In attribute-based addressing, the sensor nodes are addressed by an 

attribute-value pair rather than by their unique Identifiers (IDs). For example, if 

the base station initiates a query for temperature > 25◦C, then only sensor nodes 

with temperature readings above 25◦C will report back their readings. 

•	 WSN applications may be more interested in knowing the location of the sensor 

nodes rather than their IDs to determine the location of reported phenomena. A 

GPS may not be feasible for the resource-constrained devices, thus the sensor nodes 

use other methods to approximate their locations, such as triangulation [50]. 

The routing protocols for WSNs typically begin constructing routes to the base station 

by neighbour discovery. Sensor nodes send out beacons to announce their presence. Upon 

receiving beacons from their neighbours, the sensor nodes build local neighbour tables. 

These tables often include: each neighbour’s ID, delay via that neighbour, location of 

that neighbour, and an estimate of link quality to that neighbour [13, 51]. Routing 

protocols specify a cost metric for the purpose of choosing a next hop. For example, next 

hop may be the neighbour with the lowest delay to deliver data to the base station or 

the closest neighbour to the base station. Although the routing protocols for WSNs look 
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simple, some challenges face their design [20, 52]: 

•	 Communication range: Routing protocols should support multihop communication 

to overcome the limitation of short wireless ranges. Therefore, the path from a 

sensor node to the base station will likely contain multiple wireless hops. 

•	 Connectivity : Routing protocols should handle the high connectivity resulting from 

the dense deployment of sensor nodes efficiently. 

•	 Control overhead : Routing protocols may use control packets to maintain the routes 

between the sensor nodes and the base station. As the node density increases, the 

transmission of control packets increases in the wireless medium, leading to more 

latency and energy consumption. As a result, tradeoffs between conserving energy, 

latency, and maintaining routes may exist. 

•	 Energy consumption: Routing protocols should be energy-efficient to conserve the 

battery power of the sensor nodes. For example, beacons or route updates should 

be small and infrequent to minimize the number and duration of transmissions. 

•	 Fault tolerance: Routing protocols should be adaptive to failures that occur due to 

power depletion, physical damage, or environmental interference. They should be 

able to find new routes to the base station or adjust transmission powers to reduce 

energy consumption. 

•	 Limited resources : Routing protocols should be lightweight and simple to meet the 

limited resources and capabilities of the sensor nodes. 

•	 Quality of Service (QoS): Routing protocols should be aware of QoS requirements. 

For example, in some health applications, it is critical to deliver the information 

about the patients as quickly as possible to the base station. 
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•	 Random deployment : Routing protocols should be able to deal with the randomness 

and nodal distribution of random deployment. 

•	 Scalability : Routing protocols should be scalable to embrace new sensor nodes that 

replace failed sensor nodes or to embrace new ones to expand the WSN. 

•	 Security : Routing protocols should balance between the security level and the 

energy consumption. Security is important in wireless communication to ensure 

data availability, confidentiality, and integrity. 

•	 Transmission media: Routing protocols should consider wireless channel problems, 

such as fading and interference, and the scarce bandwidth. The available bandwidth 

for WSNs is low in the order of 1-100 kb/s. 

2.3.1 Classification of WSN Routing Protocols 

Many classifications have been proposed for the routing protocols of WSNs. Al-Karaki 

and Kamal [1] have proposed a general classification that is widely recognized. Other 

classifications tend to classify the routing protocols according to a specific attribute. For 

example, Acs and Buttyan [53] classify the routing protocols for WSNs according to how 

the next hop is chosen. Lotf and Ghazani [54] classify the routing protocols according to 

the knowledge of the sensor nodes about the network topology. We explain the details 

of the three classifications next. 

According to the classification of Al-Karaki and Kamal [1], the routing protocols are 

classified according to the network structure, the protocol operation, or  how the 

source finds the destination. Each of these classes are further divided into subclasses. 

Figure 2.4 shows the three classes and their subclasses. 

The network structure routing protocols are further classified into flat routing pro­

tocols, hierarchical routing protocols, and location-based routing protocols. In  flat routing 

http:protocols.In
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Figure 2.4: Classification 1 of WSNs routing protocols 

protocols, all the sensor nodes play the same role in the network, such as data collection. 

Sensor Protocols for Information via Negotiation (SPIN) [55], Directed Diffusion [56], 

Energy Aware Routing [57], and Minimal Cost Forwarding Algorithm (MCFA) [58] are 

examples of flat routing protocols. In hierarchical routing protocols, the sensor nodes play 

different roles in the network, such as data collection and data aggregation. The sensor 

nodes form clusters with some nodes acting as cluster heads. Each cluster head aggre­

gates the collected data from the sensor nodes in its cluster and sends a single report to 

the base station. Cluster heads can be more capable nodes or regular sensor nodes where 

they rotate roles periodically. Low Energy Adaptive Clustering Hierarchy (LEACH) [59] 

is one of the early hierarchical routing protocols for WSNs. Finally, in location-based rout­

ing protocols, the positions of the sensor nodes are considered when choosing the routes to 

the base station. Sensor nodes can estimate distances between them using, for example, 

signal strength. For example, Geographical and Energy Aware Routing (GEAR) [60] is 

a location-based routing protocol for WSNs. 

The protocol operation class is divided into multi-path routing protocols, QoS­

based routing protocols, coherent-based routing protocols, query-based routing protocols, 

and negotiation-based routing protocols. For fault tolerance purposes, multi-path routing 

protocols construct multiple paths between each sensor node and the base station. If the 

primary path becomes unavailable, then the sensor nodes can switch quickly to another 
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path. Directed Diffusion is a multi-path routing protocol for WSNs. The QoS-based 

routing protocols have to satisfy certain metrics when forwarding data, such as delay, 

or energy consumption. SPEED [61] ensures a certain speed to deliver collected data 

to the base station. In coherent-based routing protocols, the sensor nodes cooperate to 

process the forwarded data in the network. For example, since multiple sensor nodes 

sense the same phenomenon, many will have the same or similar readings. As a result, 

the sensor nodes can reduce the amount of traffic in the WSN by testing the ambient 

traffic to drop duplicate readings. Multiple Winner algorithm (MWE) [62] is an example 

of coherent-based routing protocols for WSNs. In a network that uses query-based routing 

protocols, such as Directed Diffusion, the sensor nodes do not send the collected data to 

the base station but they rather wait for the base station to request the data. The base 

station may request data from a special region of interest or it may request data with 

specific attributes, using attribute-based addressing. Instead of flooding the WSN with 

redundant traffic, sensor nodes using negotiation-based routing protocols exchange a series 

of negotiation messages to suppress the duplicate copies of data from being forwarded. 

SPIN provides a family of protocols that are negotiation-based. 

Finally, the source-destination class is divided into proactive routing protocols and 

reactive routing protocols according to how the source finds a route to the destination. 

The reactive routing protocols are on-demand, which means that routes are constructed 

only if they are needed. TinyAODV [63] is an example of reactive routing protocols. On 

the other hand, proactive routing protocols, such as CTP [64], establish routes between 

the sensor nodes and the base station before the routes are needed, even if they are never 

used. A routing protocol may adopt a hybrid approach of both subclasses. 

According to this classification, routing protocols for WSNs fall in a subclass in each of 

the three classes. For example, a routing protocol may be flat, multi-path, and proactive. 

The classification of Acs and Buttyan [53] is based on the way the next hop is selected 
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to relay the data packets to the base station. This classification divides the routing 

protocols into five classes as shown in Figure 2.5. 

Figure 2.5: Classification 2 of WSNs routing protocols 

Content-based routing protocols, such as Directed Diffusion, select routes to the 

base station based on the content of the queries sent by the base station to gather data. 

For example, only the sensor nodes in a region of interest establish routes to the base 

station. 

Location-based routing protocols choose next hops based on their locations rel­

ative to the base station. If the sensor nodes do not know their locations, then they can 

use computational methods, such as triangulation, to estimate their physical locations. 

These methods add computation overhead on the routing protocol. GEAR is an example 

of these protocols. 

Hierarchical-based routing protocols aim to reduce the communication overhead 

and to conserve power. Sensor nodes send their sensed data to other nodes in a higher 

level. These higher level nodes, cluster heads, aggregate the sensed data and send the 

result to the base station. Hierarchical-based routing protocols are mainly based on 

LEACH. 

The sensor nodes implementing a broadcast-based routing protocol decide indi­

vidually whether or not to forward a packet. If a sensor node decides to forward a packet, 

then it will simply broadcast it. Otherwise, it will drop the packet. For example to drop 

a packet, a sensor node compares its cost with the cost of the sender that is embedded 
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in the packet. MCFA is a representative routing protocol of this class. 

Probabilistic routing protocols aim to load-balance the selection of next hops 

and to increase the robustness of the routes. For example, they can choose routes that 

have power levels above a certain threshold to prevent power depletion of heavily used 

sensor nodes. These protocols assume homogenous and randomly deployed sensor nodes. 

Energy Aware Routing is an example of probabilistic routing protocols. 

A recent classification by Lotf and Ghazani [54] classifies WSNs routing protocols 

based on the knowledge of the sensor nodes about the network topology into topology 

aware routing protocols and topology unaware routing protocols. In  topology 

aware protocols, the sensor nodes have a global view of the routing tree after the 

protocol is run. This means that each sensor node has a copy of the complete routing tree. 

On the other hand, in WSNs implementing topology unaware protocols, the sensor 

nodes have a local view of the routing tree. A local view means knowing neighbouring 

sensor nodes only. Figure 2.6 shows this classification and its subclasses. 

Figure 2.6: Classification 3 of WSNs routing protocols 

Topology aware routing protocols are inherited from the routing protocols of 

wired and traditional wireless networks. These protocols were designed without the 

constraints of WSNs in mind. As a result, they are not popular in WSNs implementations 

http:protocols.In
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and their applicability is limited to small WSNs. This class contains four subclasses: 

link state routing protocols, such as Open Shortest Path First (OSPF) [65], distance 

vector routing protocols, such as Routing Information Protocol (RIP) [66], table-driven 

routing protocols, such as Destination-Sequenced Distance-Vector Routing (DSDV) [67], 

and on-demand routing protocols, such as Ad hoc On-demand Distance-Vector (AODV) 

[68]. Link state routing protocols broadcast local routing information to all nodes in 

the network, whereas distance vector protocols share network wide information with 

neighbouring nodes only. Both subclasses use the hop count metric to construct the 

shortest routes to the root node. Table-driven routing protocols and on-demand routing 

protocols are designed for traditional wireless networks. They address the problem of 

frequent unavailability of links due to the wireless medium or mobility of nodes. Table-

driven or proactive routing protocols exchange routing tables periodically among the 

neighbouring nodes. On-demand or reactive routing protocols construct routes only when 

required by the source node. Neither subclass is suitable for WSNs since they are energy 

inefficient and computationally expensive, and they introduce a large amount of overhead 

in large networks. 

Topology unaware routing protocols are designed mainly for the resource-limited 

WSNs. This class contains five subclasses: flooding routing protocols, data-centric routing 

protocols, location-based routing protocols, energy-aware routing protocols, and cluster-

based routing protocols. In  flooding routing protocols, nodes that receive route update 

packets or beacons rebroadcast them until a maximum number of hops is reached. Data-

centric routing protocols, such as SPIN, depend on the base station to request data from 

the sensor nodes. When the base station initiates a request to collect data, only sensor 

nodes that have this data reply back to the base station. Location-based routing protocols, 

such as GEAR, are important in two cases. The first case is when the base station is 

interested in gathering data from a certain location. Then it sends a data query with 

http:protocols.In
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the location of interest and sensor nodes in that location reply back. The second case 

is where the sensor nodes themselves need location information to compute a routing 

metric, such as energy consumption. The objective of energy-aware routing protocols, 

such as energy aware routing, is to increase the lifetime of the network. Routes are 

chosen by means of certain probabilities to achieve low-energy consumption along the 

route. These probabilities use different metrics, such as energy consumed per packet 

or node’s power level. Finally, cluster-based routing protocols, such as LEACH, aim to 

reduce the redundancy in sensed data and minimize the transmissions in the network to 

conserve the power. The sensor nodes are divided in two levels. Low-level sensor nodes 

sense data and send it to the high-level sensor nodes. High-level sensor nodes, cluster 

heads, aggregate the sensed data and send one report to the base station. 

2.3.2 Performance Metrics for WSN Routing Protocols 

To evaluate the performance of the different routing protocols for WSNs, there are several 

metrics to that can be used: 

•	 Data delivery : This metric measures the total amount of data delivered to the base 

station compared to the total amount of data sent from the sensor nodes. This 

metric is also called end-to-end success rate [7]. 

•	 Energy efficiency : This metric indicates how much the routing protocol consumes 

energy [69]. 

•	 Fault-tolerance: This metric indicates how robust the routing protocol is against the 

failures of sensor nodes. For example, it can be achieved through data replication 

or having multiple paths to the base station [69]. 

•	 Latency : This metric computes the delay from the moment data is collected until 

it reaches the base station [69]. 
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•	 Path length: This metric computes the number of hops from the source sensor node 

to the base station [70]. 

•	 Path reliability : This metric is the product of link qualities along the path from 

each sensor node to the base station. It measures the end-to-end reliability [7]. 

•	 Routing overhead : This metric estimates the consumed energy to establish a route 

from a sensor node to the base station [70]. 

•	 Scalability : This metric measures how scalable a routing protocol is to accommo­

date new sensor nodes in the WSN [69]. 

•	 Stability : This metric measures the total number of route changes in the WSN over 

a period of time [7]. 

2.3.3 Cost Metrics for WSN Routing Protocols 

There are numerous cost metrics that routing protocols use to evaluate routes to the base 

station. This evaluation is done on a link-by-link basis where a neighbouring sensor node 

with the best link cost is chosen as the next hop. The cost of a route is the sum of all 

costs of all the links along that route. A single routing protocol can use one metric or a 

combination of metrics to evaluate the possible routes to the base station. 

Hop count is a basic cost metric to evaluate the routes in a WSN. It is defined as 

the number of hops or links between one sensor node and another. Two adjacent sensor 

nodes have a hop count value of one. Hop count is not the best cost metric for evaluating 

the routes in WSNs because it does not consider the limited resources of the sensor 

nodes. For example, two adjacent nodes that are distant will have a hop count value of 

one if they communicate directly. These distant sensor nodes may perform worse than 

two closer sensor nodes because many retransmissions may be required due to the low 
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probability of receiving packets. In this case, a multihop route is better than the single 

hop route [3]. 

Power-aware Metrics 

Using the hop count metric may lead to congestion in the WSN because a sensor node 

close to the base station will be included in many routes. This congestion leads to the 

rapid depletion of the battery power of a sensor node because it will transmit more 

forwarded traffic than other sensor nodes. Power-aware metrics solve this problem by 

distributing the routes on multiple sensor nodes depending on remaining power of bat­

teries or energy required to transmit data. Power-aware metrics deplete the power of the 

batteries at the same time. This is more advantageous because a set of new nodes can 

be deployed at the same time instead of node-by-node deployment. 

Reluctance is a power consumption metric that avoids sensor nodes with low remain­

ing battery power. It is measured as the inverse of the remaining battery power at a 

sensor node. A sensor node with a low battery power level will have a high reluctance 

value. The best route to the base station is a route with sensor nodes that have a 

minimum threshold of remaining battery power [3, 71]. 

Maximum power available is another power metric. Only sensor nodes that have the 

highest battery power levels, i.e., battery power level, are considered when choosing the 

routes [72]. 

Maximum minimum power available prevents the depletion of low battery power 

sensor nodes if they are on the routes of very high battery power sensor nodes. This 

metric picks the route with minimum battery power that is larger than the minimum 

battery power of other routes [72]. 

Minimum energy is a metric that considers the energy required to transmit packets 

along the route. This metric chooses routes that require low energy to deliver data to 
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the base station [72]. 

Link Quality Metrics 

Link quality cost metrics are used to choose the routes that achieve high probability of 

data delivery to the base station. For example, a route with a high collision rate will 

have a low probability of delivering data to the base station. 

Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), and Signal-

to-Noise Ratio (SNR) are cost metrics that choose the routes according to signal strength 

or noise level in the environment [73]. 

Packet Reception Ratio (PRR) metric [73] estimates link qualities as the ratio of 

the number of successfully received packets to the number of transmitted packets. PRR 

chooses routes with high values. 

Expected Transmission count (ETX) metric [74] chooses routes that minimize the 

expected number of transmissions and retransmissions required to deliver data to the 

base station. Best routes have low ETX values. 

Required Number of Packets (RNP) metric [75] estimates link qualities as the ratio 

between transmitted and retransmitted packets to the number of successfully transmitted 

packets. Best routes have RNP with low values. 

2.3.4 TinyOS Routing Protocols 

Many of the proposed routing protocols for WSNs are not implemented. However, the op­

erating systems for WSNs offer some new protocols or adaptations of traditional routing 

protocols. Four software WSN routing protocols are officially implemented in TinyOS: 

AM ROUTE, MintRoute, Multihop, and CTP. The four protocols are flat and proactive, 

which means that all the sensor nodes play the same role in the network. The following 

is a brief overview of the four protocols. 
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1.	 AM ROUTE is the basic protocol that was implemented in TinyOS version 1. The 

base station periodically starts the routing tree construction process by broadcast­

ing a route update packet with hop count equal to zero. As the sensor nodes receive 

the route update packet, they rebroadcast it after increasing the hop count by one. 

Sensor nodes choose their parents as the first neighbour from which a route update 

packet is heard. Thus, sensor nodes almost always choose the shortest route to the 

base station. This process is repeated with every route update cycle. The shortest 

route is not always a reliable route because it may lead to congestion in the WSN 

[76, 77]. 

2.	 MintRoute solves the unreliability of AM ROUTE by introducing link qualities in 

the route choice. Sensor nodes determine their link qualities with each neighbour 

according to the number of received and missed packets for the corresponding 

neighbour. The route to the base station is chosen as the route with the best 

send and receive qualities. Sensor nodes do not change their routes unless the 

qualities of the current parent go below certain thresholds [7]. The reliable route 

may be a long route to the base station. Thus, MintRoute may delay data delivery. 

3.	 Multihop is a version of MintRoute that depends on hop counts rather than link 

quality. Multihop follows the same steps of MintRoute to build the routing tree, 

but the path to the base station is chosen as the path with the least hop count 

value. Send and receive qualities are only used as a tiebreaker when there are two 

paths with the same length [78]. 

4.	 CTP is a new routing protocol implemented in TinyOS version 2. It combines the 

properties of MintRoute and Multihop, choosing the shortest reliable path. The 

sensor nodes build their routes using a routing gradient, which is the expected 

number of transmissions to reach the base stations. CTP tries to confirm data 
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delivery by sending acknowledgements as replies to unicast packets [23]. 

2.4 Security Threats to WSNs 

The sensor nodes of a WSN often rely on multihop wireless communication to deliver 

sensed data to a base station. WSNs are designed to be deployed randomly in unattended 

and uncontrollable environments. The limited resources, wireless communication, ran­

dom deployment, and unattended and uncontrollable environments are all vulnerabilities 

to the security of WSNs. These vulnerabilities can be classified according to the OSI 

reference model as proposed in [79]. Figure 2.7 depicts this classification. 

Figure 2.7: Attacks on WSNs 

Physical Layer Threats 

Due to the broadcasting nature of wireless communication and the non-tamper resistant 

sensor nodes, the physical layer of WSNs suffer more threats than wired networks. 

•	 Jamming : It is a type of attack that interferes with the communication frequency 

to disrupt the communications in WSNs [12]. 
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•	 Subversion: It is a type of attack in which an attacker tries to get physical access 

to a sensor node. Once gaining physical access, the attacker can damage it, steal its 

cryptographic information, or replicate it with an attacker-controlled sensor node 

[80]. 

Link Layer Threats 

Threats to the link layer of WSNs target the mechanisms that take place in this layer, 

such as medium access, error control, and frame detection. 

•	 Collisions : It is a type of attack in which the attacker causes collisions to control 

packets, such as Acknowledgement (ACK) packets. This attack may lead to the 

back-off of certain Medium Access Control (MAC) protocols [79]. 

•	 Eavesdropping : It is a type of attack in which the attacker monitors the communi­

cation between two sensor nodes to gain access to sensitive information [12]. 

•	 Packet tracing : It is a type of attack in which the attacker determines the location 

of the source sensor node of an overheard sensor node [81]. 

•	 Resource exhaustion: It is a type of attack in which the attacker performs Denial­

of-Service (DoS) attacks by purposely introducing bogus information to deplete or 

exhaust the limited resources of the sensor nodes [79]. 

•	 Traffic analysis : It is a type of attack in which the attacker tries to determine the 

location of the base station by analyzing the volume of traffic at some sensor nodes. 

Sensor nodes close to the base station will have more traffic passing through [82]. 

Network Layer Threats 

Threats in the network layer mainly aim to disrupt the routing protocol, for example 

by modifying the routing tree. Attacks in this category mainly affect the availability of 

data. This category of attacks is also called routing attacks. 



38 

•	 ACK spoofing : It is a type of attack that targets the routing protocols that ac­

knowledge reception of data packets. If an attacker sends an ACK for an overheard 

data packet, it can convince the sender sensor node that a weak link is strong or a 

dead link is alive [79]. 

•	 Blackhole and Selective forwarding : It is a type of attack where the attacker drops 

all the traffic that passes through it. To hide its existence, the malicious node may 

launch a selective forwarding attack in which it only drops a portion of the traffic 

[9, 83, 84]. 

•	 Flooding : It is a type of attack that targets stateful routing protocols. Stateful 

routing protocols maintain the state of connections at communicating sensor nodes. 

An attacker may flood a sensor node with requests to open connections until its 

memory is exhausted and no more connections from good sensor nodes can be 

accepted [79]. 

•	 HELLO flood : It is a type of attack in which a malicious node uses a powerful 

signal to send or replay neighbour discovery packets. Sensor nodes that receive 

these packets assume that the malicious node is a neighbour. If the sensor nodes 

choose the path of the malicious node to forward packets, then their packets will 

go nowhere [11, 83]. 

•	 Impersonation: It is a type of attack in which a malicious node tries to convince 

the sensor nodes in its vicinity that a far sensor node is their neighbour and it has 

a good route to the base station. If the affected sensor nodes try to send their data 

to the impersonated node, their data will be lost and will not reach the base station 

[85]. 

•	 Sinkhole: It is a type of attack in which a malicious node tries to attract as much 
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network traffic as possible. The malicious node may then modify the traffic or 

perform traffic analysis. It may even perform a selective forwarding attack [10, 11, 

86]. 

•	 Sybil : It is a type of attack in which a malicious node claims multiple identities 

for the same physical sensor node. Thus, the malicious node can induce the sensor 

nodes to route through the same physical sensor node or it can use the multiple 

identities to report false data to the base station. The Sybil attack affects fault-

tolerance techniques, such as multi-path routing [11, 12, 87]. 

•	 Wormhole: It is a type of attack in which two colluding nodes create an out-of-band 

channel between themselves with the aim of transferring the network traffic from 

one part of the network to another distant part. The wormhole attack is a severe 

attack because it is not easily detected. The colluding nodes use a communication 

channel that is different from the one used by the sensor nodes. Moreover, the 

wormhole attack can be combined with other attacks, such as selective forwarding 

and sinkholes [11, 88]. 

•	 Altering, replaying, spoofing : These attacks target the routing information to dis­

rupt the creation of the routing tree. For example, they can create loops, shorten 

or extend routes, attract or repel network traffic, generate fake error packets, or 

partition the network [13, 79]. 

Application Layer Threats 

Many of the services that are provided by the application layer are targeted by the attacks 

in this category. 

•	 Clock unsynchronization: It is a type of attack that aims at disrupting the time 

synchronization of the sensor nodes. This may affect the sleeping schedules of the 
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sensor nodes [79]. 

•	 False data filtering : It is a type of attack that targets the clustering applications. 

In this attack, the attacker resides in an aggregation point. Thus, the attacker 

can manipulate the aggregation result of the downstream data and also affect the 

overall computations at the base station [79]. 

•	 False data injections : It is a type of attack in which the attacker injects false data 

in the network. Eventually, this false data will reach the base station and it may 

skew the decisions or the analysis of the base station [79]. 

The attacks against WSNs can be launched by attackers that fall into three classes 

according to [11, 13]. An attacker can be identified by one subclass in each of the three 

classes. These classes are: 

•	 Mote-class/laptop-class attacker : A mote-class attacker has access to sensor nodes 

with the same capabilities as the good sensor nodes. A laptop-class attacker has 

access to more powerful resources, such as laptops. 

•	 Insider/outsider attacker : An insider attacker is a compromised sensor node in the 

WSN, and it has access to any security mechanisms used in the WSN. An outsider 

attacker is an implanted sensor node that does not have access to any of the security 

mechanisms used in the WSN. 

•	 Active/passive attacker : An active attacker damages the WSN by actively attacking 

it. A passive attacker steals the WSN data by passively listening to the communi­

cations in the WSN. 
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2.5 Securing WSNs 

Securing WSNs is challenging because they are subject to a wide range of attacks as 

discussed in Section 2.4. These attacks exploit their wireless communication, their inse­

cure environments, and their limited resources. The resource-constrained sensor nodes 

preclude the use of resource-intensive security mechanisms. The security goals of WSNs 

are similar to the goals of other communication networks: 

•	 Access control : It means restricting access to resources to good sensor nodes [89]. 

•	 Authentication: It means ensuring that a sensor node is who it claims to be and 

that the source of data is a good sensor node [11, 89]. 

•	 Availability : It means that access to resources and services are available whenever 

required [11, 79, 89]. 

•	 Confidentiality : It means protecting communication from unauthorized sensor nodes 

[79, 89]. 

•	 Integrity : It means that data packets are delivered without modification [11, 79, 89]. 

•	 Non-repudiation: It means ensuring that a sensor node does not refute its activities 

[79]. 

Countermeasures to security threats to any communication network should have the 

following requirements and WSNs are no different: 

•	 Backward secrecy : It means that a newly added sensor node to a WSN cannot 

decrypt any previously transmitted secret data packet [89]. 

•	 Efficiency : It means considering the limited resources of the sensor nodes [89]. 
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•	 Forward secrecy : It means that a removed sensor from a WSN cannot decrypt 

future secret data packets [89]. 

•	 Freshness : It means making sure that data is recent and not replayed [79, 89]. 

•	 Scalability : It means supporting a large number of sensor nodes [89]. 

•	 Self-security : It means that any additional hardware or software to secure the WSN 

must be secure itself [79]. 

•	 Survivability : It means providing a certain level of service in the presence of attacks 

or node failures [79, 89]. 

Traditional cryptography achieves many of the aforementioned goals but it is ex­

pensive to implement in WSNs. For example, traditional cryptographic algorithms add 

about 16-32 bytes of overhead to the 30-byte packets of WSNs [90]. In addition, sensor 

nodes provide 8-16 bits word size, which is insufficient for the arithmetic operations in 

the cryptographic algorithms [91]. Table 2.1 [91] provides an overview of the popular pro­

cessor architectures for sensor nodes. It shows how limited these processors are. These 

challenges limit the choice of traditional cryptographic algorithms to implement. Special 

cryptographic algorithms that are not resource intensive must be developed for WSN. 

Table 2.1: Processor architectures for sensor nodes 
Platform Word size Clock frequency Cache inst./data 

Atmega103 
Atmega128 
M16C/10 
SA-1110 
PXA250 

UltraSparc2 

8 bits 
8 bits 
16 bits 
32 bits 
32 bits 
32 bits 

4 MHz 
16 MHz 
16 MHz 
206 MHz 

200-400 MHz 
440 MHz 

None 
None 
None 

16/8 KB 
32/32 KB 
16/16 KB 

Moreover, protection mechanisms based on cryptographic techniques are not sufficient 

because the vulnerability of nodes to capture allows the adversary to access cryptographic 
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keys; this enables the adversary to duplicate the sensor nodes or insert new ones. In 

addition, some attacks, such as the wormhole attack, can be launched even in the presence 

of encryption and/or authentication without the need to know the cryptographic keys. 

IDSs provide a complementary means of providing protection. An IDS monitors the 

system and attempts to detect malicious behaviour by searching for attack signatures 

(misuse detection) or abnormal behaviour (anomaly detection) patterns [84]. The misuse 

detection is deemed inappropriate for WSN due to the large memory requirement to store 

the signatures of the attacks. 

Many IDSs for WSNs have been developed to detect different types of attacks. How­

ever, to the best of our knowledge, most of these IDSs focus on detecting the activities 

of malicious nodes, rather than the frailties of the routing protocols themselves. Routing 

attacks against WSNs have gained attention in the literature due to the severity of these 

attacks. 

The countermeasures against the security threats to WSNs can be broadly classified 

into those that use cryptography and those that do not. For cryptographic systems, key 

management is an important component. 

2.5.1 Key Management 

Establishing cryptographic keys is essential for later secure communication in WSNs. 

The established keys should be resilient to attacks and flexible to update. Due to the 

limited resources of the sensor nodes, it is not feasible to use traditional key establishment 

schemes, such as Diffie - Hellman key exchange protocol [92] and key distribution centre 

[93]. Numerous key management schemes have been proposed for WSNs. 

Key management schemes are classified into static/predistribution schemes and dy­

namic schemes. In either class, the schemes generate administrative keys that are as­

signed to the sensor nodes. The sensor nodes use the administrative keys to generate 
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pair-wise communication keys that are assigned to the communication links. In static 

key schemes, the administrative keys are generated and assigned to sensor nodes prior 

to their deployment. Static schemes assume that the administrative keys will not be 

changed once assigned to the sensor nodes. In dynamic key schemes, the administrative 

keys are assigned on demand or on detection of key capture. The advantages of dynamic 

key schemes over static key schemes are network survivability and scalability. Captured 

keys are replaced in a timely manner to revoke any communications with the attacker. 

WSNs can be expanded by adding new sensor nodes and assigning new keys without the 

risk of increasing the probability of key capture [94]. 

Two basic schemes of static key management are to assign a global key to all sensor 

nodes or to assign each sensor node a unique key with each other sensor node in the 

WSN, pair-wise scheme. The first scheme is vulnerable to the compromise of a single 

sensor node, and the second suffers from a huge storage requirement. 

Eschenauer and Gligor [95] have proposed the first probabilistic key predistribution 

scheme. Their scheme depends on randomly loading each sensor node with a set of keys 

from a key pool before deployment. The goal of the scheme is to have each pair of sensor 

nodes share at least one key. This scheme has become the basis for many other key 

predistribution schemes. The q-composite scheme by Chan et al. [96] is an extension 

to the scheme of Eschenauer and Gligor. The q-composite scheme requires each pair of 

sensor nodes to share at least q keys. The virtual key ring by Vu et al. [97] is also based 

on the scheme of Eschenauer and Gligor. The virtual key ring allows sensor nodes that 

do not share any keys to establish pair-wise keys with the help of other sensor nodes. 

Most key predistribution schemes assume secure assignment of administrative keys to 

the sensor nodes. Message-In-a-Bottle by Kuo et al. [98] provides a secure mechanism 

to the initial assignment of administrative keys. It works with any key predistribution 

scheme as the initial step, but it requires the use of special hardware for the deployment 
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of keying information. 

Many of the dynamic key schemes are based on the Exclusion-Based Systems (EBSs) 

[99]. EBSs provide secure and efficient rekeying mechanism. Rekeying, which is the 

process of generating replacement keys, occurs periodically or in the event of node cap­

turing. Replacement keys are encrypted with all the keys unknown to the captured sensor 

nodes, and distributed to other sensor nodes that know the encryption keys. A drawback 

of EBSs is that a small number of captured nodes can collude to reveal all the keys in 

the WSN. 

Eltoweissy et al. [100] have proposed the first use of EBS for key management in 

WSNs. Their system assigns the sensor nodes to cells in a virtual coordinate system. 

The sensor nodes in the same cell are assigned the same EBS key combination where 

rekeying occurs at the cell level. This system suffers from the collusion problem of EBSs. 

Younis et al. [101] have proposed another EBS system, called SHELL, for clustered 

WSNs that solves the collusion problem of EBSs. SHELL divides the key generation, 

assignment, and distribution between the base station and the cluster heads. Eltoweissy 

et al. [94] have presented LOCK as an improvement for SHELL. LOCK uses two layer 

EBS to perform rekeying to minimize communication overhead. In addition, it uses key 

polynomials instead of location-based assignment as in SHELL. 

Other research efforts have addressed dynamic key schemes that are not based on 

EBSs, such as the scheme based on identity-based symmetric keying by Jolly et al. [102], 

and SAKE by Seshadri et al. [103]. 

2.5.2 Cryptography 

After generating and assigning keys to the sensor nodes, cryptographic mechanisms are 

used to provide authentication, confidentially, integrity, and non-repudiation of commu­

nications in WSNs. Cryptographic mechanisms are divided into public/asymmetric key 
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cryptography and symmetric key cryptography. 

In public key cryptography, each sensor node is assigned a public/private key pair. 

Public keys are made available to communicate with the owning sensor nodes, whereas 

the private keys are private to the owners. Anything that is encrypted or authenticated by 

one key is reversed or checked by its associated key. Public key cryptography mechanisms, 

such as RSA and Elliptic Curve Cryptography (ECC) [104], are believed to be infeasible in 

WSNs due to their large code size, intensive computations, and processing time [105, 106]. 

However, Gura et al. [107] have compared the performance of RSA and ECC on sensor 

nodes of 8-bit Central Processing Unit (CPU). They have concluded that ECC is more 

suitable for WSNs due to its efficiency with small key sizes, thus reducing processing and 

communication overhead. For example, ECC with key size of 160 bits provides the same 

security level as RSA with key size of 1024 bits [105]. 

Most of the research studies on public key cryptography for WSNs focus on the 

public key operations and assume that the private key operations are handled by the 

base station. The private key operations are still expensive to perform on the sensor 

nodes. Hence, symmetric key cryptography is more popular in WSNs [105]. 

In symmetric key cryptography, any two communicating sensor nodes use a single 

shared key. The major challenge for symmetric key cryptography is the distribution 

of shared keys as explained in Section 2.5.1. Ganesan et al. [91] have compared five 

popular symmetric key mechanisms, IDEA [108], RC4 [108], RC5 [109], SHA-1 [110], 

and MD5 [108, 111], on sensor nodes of CPU sizes 8, 16, and 32 bits. The results of 

their experiments show uniform cost for execution time and memory size for all sizes of 

CPUs. However, the hashing mechanisms SHA-1 and MD5 show higher overhead than 

the encryption mechanisms IDEA, RC4, and RC5. 

Early research work on symmetric key cryptography for WSNs include μTESLA by 

Perrig at al. [112]. μTESLA provides asymmetry through delaying the disclosure of 
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symmetric keys. A sensor node generates a key chain and signs every packet with a key 

that is secret at the time of transmission. The sensor node broadcasts the secret key at 

a later time for other sensor nodes to authenticate all packets that are signed with that 

key. Karlof et al. [90] have proposed TinySec, the first fully-implemented symmetric key 

cryptography for WSNs. TinySec either provides authentication only or authentication 

and encryption. TinySec is incorporated in the official release of TinyOS. Luk at al. [113] 

have proposed MiniSec to solve the vulnerabilities of impersonation and replay attacks 

in TinySec. 

2.5.3 Intrusion Detection 

IDSs provide a second line of defence for WSNs. They complement the security of 

authentication and cryptography because these two are not enough to secure a WSN. 

Authentication and cryptography cannot prevent all possible attacks, such as insider at­

tackers [79]. Authentication and cryptography are mainly concerned with the integrity 

and confidentiality of data and authenticity of sensor nodes, while IDSs are mainly con­

cerned with availability of data and secure routing. 

IDSs are classified according to the detection technique: misuse-based detection, 

anomaly-based detection, or  specification-based detection [114]. Misuse-based or signature-

based detection depends on the knowledge of attack signatures to detect known attacks. 

It cannot detect new attacks or attacks with unknown signatures. Misuse-based detec­

tion is deemed inappropriate for WSNs due to the huge storage requirement to store the 

signatures. Anomaly-based detection establishes profiles of normal behaviour usually by 

automated training. An anomalous behaviour will be detected if the sensor node devi­

ates from the normal profiles. Although anomaly-based detection succeeds in detecting 

unknown attacks, it suffers from a high rate of false alarms. Specification-based detection 

is similar to anomaly-based detection but instead of the automated learning, an expert 
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sets the rules of the operation. If a sensor node violates the predefined rules, it will be 

declared malicious. Specification-based detection has a low rate of false alarms but it 

cannot detect malicious nodes that do not violate the rules. 

IDSs are also classified according to the location of the system into network-based 

IDS and host-based IDS. A  network-based or centralized IDS is located on the base 

station where the sensor nodes send network flow information for analysis and detection 

of malicious activities, such as the IDSs introduced by Ngai et al. in [10], Wang et al. 

[115], and Buttyan et al. [116]. Ngai et al. detect sinkhole attacks by identifying the 

sensor nodes that send inconsistent network flow information (next hops and costs) to 

the base station. Wang et al. detect wormhole attacks by searching for anomalies in 

distance estimates resulting from wormhole connections. Buttyan et al. assume that the 

base station knows the distribution of the sensor nodes a priori. The base station builds 

an estimated distribution graph and compares it to a hypothetical graph it builds from 

the neighbour lists received from the sensor nodes to detect wormhole attacks. Network-

based IDSs have a global view of the WSNs and can detect colluding malicious nodes 

but it suffers from the extra traffic to send network flow information to the base station. 

On the other hand, host-based IDSs generate less traffic but their decisions are local 

to the sensor nodes. A host-based or decentralized IDS is installed on the sensor nodes. 

Each sensor node analyzes its local traffic to detect any malicious or abnormal behaviour. 

Sensor nodes may share their local decisions to reach a consensus about a malicious node. 

Host-based IDSs are more common in WSNs, such as the systems introduced by Ioannis 

et al. [84], Krontiris et al. [86], Demirbas and Song [117], and deGraf et al. [118]. Ioannis 

et al. detect blackholes and selective forwarding attacks by a voting scheme. If a sensor 

node suspects a neighbouring sensor node, it will broadcast an alert. If the number of 

alerts from different sensor nodes exceeds a certain threshold, the sensor nodes will flag 

the neighouring sensor node as malicious. Krontiris et al. have extended the previous 
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IDS to detect sinkhole attacks. The sensor nodes broadcast the lists of neighbours in 

response to a suspicious activity. Nodes then compute the intersection of their neighbour 

lists, and if a single node remains, they flag it as a sinkhole. Demirbas and Song detect 

Sybil attacks by testing RSSI values periodically. A Sybil attacker claiming multiple IDs 

reveals the same RSSI value for more than one ID. deGraf et al. introduce a second layer 

of powerful nodes to detect wormhole attacks. This second layer of nodes is collocated 

with the sensor nodes according to a certain placement criterion. The placement criterion 

enables the intrusion detection nodes to detect wormholes in the WSN by eavesdropping 

on the communication between the sensor nodes. 

2.6 Summary 

This Chapter gave a detailed survey about WSNs. It highlighted the differences between 

ad hoc networks and WSNs. It also went through the famous operating systems for WSNs 

and explained the protocol stack of WSNs from the OSI reference model perspective. 

The survey on WSNs ended with the advantages and applications of WSNs. Then the 

Chapter put an emphasis on the routing protocols for WSNs. It surveyed some of the 

proposed classifications for WSN routing protocols. It explained different performance 

and cost metrics that affect the choice of the routing protocol. It emphasized the routing 

protocols of TinyOS since it is the defacto operating system for WSNs and the choice for 

this work. The Chapter went through the security threats that can be launched against 

WSN and explained a classification that divided them according to the protocol stack. 

The Chapter ended by explaining security measures that can be used to defend against 

the security threats to WSNs. Some of the proposed implementations of these measures 

were discussed. 

This dissertation focuses on the threats that exploit link quality routing protocols. 
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The next Chapter explains link quality cost metrics in detail and states the problem that
 

this dissertation solves. Then it explains the research methodology used in the solution.
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Chapter 3 

PROBLEM FORMULATION AND METHODOLOGY 

3.1 Introduction 

This Chapter provides a thorough survey of link quality routing protocols for WSNs. It 

begins by explaining what the link quality routing protocols are. The Chapter details 

the classifications of link quality estimators and goes over some of their comparisons. 

Then it gives a detailed description of the estimators of importance to this dissertation. 

The Chapter follows this survey by explaining the research methodology used in this 

dissertation. Finally, the Chapter ends with describing the simulation framework of the 

experiments in this dissertation. 

3.2 Link Quality Routing Protocols 

The sensor nodes in a WSN relay data to the base station using wireless communication. 

The wireless communication, especially low-powered, is known for its unreliability and 

fluctuations due to interference, collisions, multi-path effects, and obstacles. These factors 

affect the performance of the WSNs, namely topology control and routing. Consequently, 

traditional cost metrics, such as hop count, latency, and round trip time, fail to provide 

highly reliable routes in WSNs. Estimation of link qualities emerges as an important 

factor in the selection of stable routes. The more accurate the link quality estimation is, 

the more stable the routes will be [73, 119, 120]. Accurate estimation: 

• improves data delivery to the base station; 

• avoids excessive transmissions over low quality links; and 
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• minimizes route selection triggered by link failures. 

Each sensor node estimates link qualities for a set of its neighbouring sensor nodes 

based on observing their transmitted packets. This observation can either be through 

packets addressed to the sensor nodes or packets observed on the wireless medium. Es­

timates are not necessarily symmetric nor static. They are not symmetric because the 

conditions influencing the computations of each sensor node, such as number of neigh­

bours or proximity to obstacles, are different. Also, the estimates are not static because 

signal strength and interference change over time. In some cases, the sensor nodes may 

share their estimates with neighbouring sensor nodes to compute a link quality for both 

directions of a link. Figure 3.1 illustrates this concept. Two sensor nodes, S and R, are 

neighbours and thus, they share a wireless link. Estimates can be computed for inbound 

communication and outbound communication. From the perspective of sensor node S, 

inbound communication is the packets it overhears from sensor node R, while outbound 

communication is the packets that sensor node R overhears from sensor node S. Sensor 

node S can compute an estimate for the inbound communication but it cannot for the 

outbound communication because it does not know what sensor node R overhears. To 

compute a link quality for the wireless link, sensor node S may either use the inbound 

estimate only or the inbound and outbound estimates. The former case is called a uni­

directional link quality. The latter case requires sensor node R to share its estimate with 

sensor node S, which is the outbound value from the perspective of sensor node S. Sensor 

node S uses both estimates to compute a bidirectional link quality. 

Figure 3.1: Directions of a wireless link
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Link quality routing protocols construct more stable routing trees than shortest path 

routing protocols because simply hearing packets only is not enough to choose a next hop. 

Choosing routes depending on hearing packets will result in a few long hops but with 

low link reliability. Thus, it is better to have more shorter hops with high link reliability 

[119]. Link quality routing protocols will achieve the latter case by computing estimates 

for link qualities and choosing a neighbouring sensor node as a next hop if its link quality 

exceeds some threshold, say 75%. The component of link quality routing protocols that 

does these computations is called link quality estimator or simply estimator. 

3.3 Link Quality Estimators 

Several link quality estimators have been proposed for the routing protocols of WSNs. 

Some of these estimators compute unidirectional link qualitie and some compute bidi­

rectional link qualities. Some of these estimators require the cooperation of sensor nodes 

to share their estimates and some do not. The success of the estimator to construct a 

stable and reliable routing tree faces some challenges [119]: 

•	 Speed : The estimator should be fast so that it can adapt quickly to the changes in 

the links. 

•	 Stability : The estimator should not be too sensitive to transient variations in the 

underlying connectivity so that the routing tree does not change chaotically. 

•	 Storage: The estimator should use small memory space, and be simple and effective. 

3.3.1 Classification of Link Quality Estimators 

Link quality estimators are classified according to their mode of operation, the way they 

collect statistics about the wireless links, or the type of computed link quality. 
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Link quality estimators are classified into two modes of operation: hardware-based es­

timators, and software-based estimators. Hardware-based estimators choose routes faster 

and require no computation overhead because they compute link qualities directly from 

the radio module. This class includes the estimators LQI, RSSI, and SNR. Although 

hardware-based estimators are faster than software-based estimators, they are inaccurate 

because they are measured only for successfully received packets. Software-based estima­

tors are preferred. They count or approximate the reception ratio or the average number 

of packet transmissions before any successful reception [73]. 

Link quality estimators collect statistics about the wireless links either through active 

monitoring or passive monitoring. Active monitoring means that the sensor nodes in­

tentionally send probe packets to collect statistics about the wireless links. For example, 

sensor nodes broadcast beacons or route update packets periodically. Passive monitor­

ing means that the sensor nodes infer the statistics about the links from the packets 

sent/received over them. For example, sensor nodes snoop data packets or ACK packets 

off the wireless links [70, 73]. 

Link quality estimators either compute unidirectional qualities or bidirectional qual­

ities. Unidirectional link qualities are mostly computed independently without any co­

operation among the sensor nodes. Bidirectional link qualities may require the sensor 

nodes to cooperate to share their estimates. However, some bidirectional link quality 

estimators work independently as well. 

3.3.2 Related Work 

There has been some research work exploring the characteristics of the wireless links in 

WSNs. Many of these works have proposed ways to improve the reliability of these wire­

less links. Other research work has been dedicated to comparing link quality estimators. 

Baccour et al. [73] have compared the estimators PRR, ETX, RNP, Window Mean 
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Exponentially Weighted Moving Average (WMEWMA) [119], and Four-Bit Link quality 

Estimator (4-bitle) [121], in a simulated WSN using the CTP routing protocol. They have 

concluded that bidirectional estimators, ETX and 4-bitle, have shown better data delivery 

than the unidirectional ones. WMEWMA has shown the highest stability but the worst 

data delivery to the base station because of its high over-estimation. Over-estimation 

can be costly in terms of link reliability; 4-bitle has shown the lowest over-estimation and 

ETX comes next. Although PRR and RNP are the simplest estimators, they have the 

lowest performance among the five estimators. 

Liu et al. [120] have evaluated the performance of ETX, 4-bitle, and RNP estimators 

in a WSN using CTP. They have concluded that RNP establishes shorter path length 

than ETX and 4-bitle. RNP has near 100% data delivery to the base station but RNP 

shows a slight degradation in high-density WSNs. Finally, they have found that ETX 

adds more routing overhead than the other two estimators. 

In conclusion, there is no perfect estimator that works in all conditions. Each one 

has its advantages and drawbacks that must be considered per application or WSN. 

The following gives the details of the software-based estimators that are relevant to this 

dissertation. 

3.3.3 Packet Reception Ratio Estimator 

The PRR is the probability that a receiving sensor nodes receives a packet successfully. 

The PRR estimator is a passive unidirectional link quality estimator. PRR is computed 

at the receiving sensor node as the average of the number of successfully received packets 

to the total number of transmitted packets, for a window of w received packets, as shown 

in Equation 3.1. The numbers of missed and transmitted packets are inferred from the 

sequence numbers of successfully received packets. Large PRR values are better than 

small values. 
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number of successfully received packets 
PRR(w) =  (3.1)

number of total transmitted packets 

3.3.4 Window Mean EWMA Estimator 

WMEWMA approximates PRR and considers the effect of the previously estimated value 

on the new value. It is a unidirectional passive estimator at the receiving sensor node. 

WMEWMA updates the estimated link quality for a window of w successfully received 

packets with history factor α ∈ [0, 1], as shown in Equation 3.2. Large WMEWMA 

values are better than small values. 

WMEW  MA(α, w) =  α × WMEW  MA  + (1  − α) × PRR  (3.2) 

3.3.5 Required Number of Packets Estimator 

The RNP estimator is a unidirectional passive estimator at the sending sensor node 

for every w transmitted and retransmitted packets. RNP estimates the link quality 

as the ratio of the number of transmitted and retransmitted packets to the number of 

successfully received packets, as shown in Equation 3.3. RNP works in routing protocols 

that implement an acknowledgement scheme. It uses the received ACKs to determine 

the number of successfully transmitted packets. Small RNP values are better than large 

values. 

number of transmitted/retransmitted packets 
RNP (w) =  (3.3)

number of successfully received packets 

3.3.6 Expected Transmission Count Estimator 

The ETX is a bidirectional active estimator. The choice of routing paths minimizes the 

expected number of transmissions/retransmissions required to deliver data to the base 
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station. The ETX estimator considers the effect of link loss ratios, asymmetry of the loss 

ratios, and interference along the path. 

The ETX estimator considers the asymmetry of the links by computing forward and 

reverse packet reception, PRRf and PRRr, for each link respectively. The combination 

of both estimates gives an ETX value for the bidirectional link quality, as shown in 

Equation 3.4. The receiving sensor node computes the PRRf , and the sending sensor 

node computes the PRRr, for each w probe packets. Then the two sensor nodes exchange 

their PRR  values to compute the bidirectional link quality. Small ETX values are better 

than large values. 
1 

ET X(w) =  (3.4)
PRRf × PRRr 

3.3.7 Four-bit Estimator 

The 4-bitle quality estimator is a bidirectional hybrid estimator that uses active and 

passive monitoring at the sending sensor node. Active monitoring depends on the sensor 

nodes broadcast beacons or route updates periodically. The sending sensor node uses 

Equation 3.5 to compute the inverse of WMEWMA for wa received beacons from the 

receiving sensor node. The computed value is an estimation of the unidirectional link 

quality from the receiving sensor node to the sending sensor node. 

1 
EET Xa(wa, α) =  (3.5)

WMEW  MA(wa, α) 

The sending sensor node estimates another unidirectional link quality from the send­

ing sensor node to the receiving sensor node by passively monitoring the ACKs arriving 

from the receiving sensor node. Equation 3.6 shows the computation of this value. 

number of transmitted/retransmitted packets 
EET Xp(wp) =  (3.6)

number of successfully received packets 
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Finally, 4-bitle combines the two values by using an WMEWMA as shown in Equation 

3.7, where EETX is replaced by either EETXa or EETXp. 

four bit(wa, wp, α) =  α × four bit + (1  − α) × EET X (3.7) 

If the network traffic is heavy, then the passive monitoring will dominate. Otherwise, 

the active monitoring will dominate. Since data packets are acknowledged from the next 

hop (receiving sensor node) only, the 4-bitle value represents a bidirectional link quality 

for next hops only. For other neighbouring sensor nodes, the 4-bitle value represents a 

unidirectional link quality. Small four-bit values are better than large values. 

3.4 Research Methodology 

As explained in the previous sections, link quality estimators collect statistics about the 

wireless link either independently or by cooperation among the sensor nodes. Moreover, 

link quality routing protocols for WSNs may modify an estimator to fit their needs. For 

example, MintRoute modifies WMEWMA to a bidirectional version where the sensor 

nodes exchange their estimate values to compute bidirectional link qualities. 

Link quality estimators are not immune against malicious attacks that can exploit 

them. A malicious node may share false information with its neighbouring sensor nodes 

to affect the computations of their estimates. Likewise, a malicious node may behave 

maliciously such that its neighbours infer incorrect statistics about their wireless links. 

In this dissertation, we aim to detect a malicious node that manipulates the link quality 

estimator of the routing protocol. 

To achieve this detection, we have chosen MintRoute and CTP routing protocols 

to study. MintRoute represents routing protocols that require cooperation among the 

sensor nodes to compute bidirectional link qualities. On the other hand, CTP computes 
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bidirectional link qualities without the requirement of sensor nodes cooperation. 

Firstly, we have studied the two protocols thoroughly and revealed vulnerabilities in 

their estimators. Secondly, we have investigated the scenarios that a malicious node can 

follow to exploit these vulnerabilities. Thirdly, we have designed detection mechanisms to 

detect the malicious node. To test the effectiveness of the proposed detection mechanisms, 

we have implemented and developed both protocols and the detection mechanisms in ns-2 

[122], respectively. ns-2 was chosen to add on a project that was built with it. Actual 

implementation of the two IDSs is deferred to future work due to the lack of time and 

resources. 

3.5 Simulation Framework 

The ns-2 is an open source simulator for networking protocols written in the C program­

ming language. We have chosen it to simulate MintRoute and CTP due to its functional­

ity, large community, and flexibility to add new protocols. Unfortunately, ns-2 does not 

have the implementation of MintRoute and CTP in any of its official distributions. As a 

result, we have extended ns-2 version 2.31 to include them. The implementation of each 

protocol and its IDS are discussed in the respective chapters. 

3.5.1 Implementing TinyOS MAC protocol 

TinyOS implements a simple Carrier Sense Multiple Access with Collision Avoidance 

(CSMA-CA) [19] MAC protocol as shown in Algorithm 3.1. To avoid collisions that may 

occur due to simultaneous transmissions, every sensor node sleeps for a random time 

between 1 and 32 transmission times. Then the sensor node senses the channel before 

transmission to make sure that it is not in use. Otherwise, the sensor node sleeps again 

for a random time between 1 and 16 transmission times. We have extended ns-2 to 

include this MAC protocol as well. 
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Algorithm 3.1 MAC protocol of TinyOS
 

SLEEP between 1 and 32 transmission times 
while channel is busy do 

SLEEP between 1 and 16 transmission times 
BEGIN transmission 

3.5.2 Implementing a TinyOS Application 

To test MintRoute and CTP in ns-2, a traffic generator is required. We have written a 

simple application to reside in the application layer of the sensor nodes. This application 

sends a counter value at random during a specified send interval. 

3.5.3 Linking It All together 

We have written simulation scripts in Tool Command Language (Tcl) [123] to simulate 

different WSNs with and without the presence of a malicious node according to the 

following configurations: 

•	 The sensor nodes have the same wireless range following the unit-disk graph model 

[3]. 

•	 The sensor nodes run the same routing protocol. 

•	 The sensor nodes are deployed in an obstacle-free 2D simulation environment of 

size 100 × 100 units. 

•	 The sensor nodes are distributed uniformly at random. 

•	 The sensor nodes are stationary. 

•	 The sensor nodes send data packets at random during a specific send interval, S, 

without any encryption or authentication mechanisms. 

•	 The base station is stationary at the northwest corner of the simulation environ­

ment. 
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•	 The malicious node is single and stationary. 

•	 The malicious node exists when the WSN is first deployed. 

•	 The malicious node may be an implanted node or a compromised sensor node. 

•	 The malicious node has the same capabilities and wireless range of the sensor nodes 

(mote-class attacker). 

•	 The malicious node implements the same routing protocol as the sensor node. 

•	 The malicious node may drop, modify, or divert the traffic that traverses it. 

3.5.4 Performance and Detection Metrics 

The performance of the malicious node is measured by the percent of data delivered to 

the base station. The simulator is instrumented to record every data packet sent from 

the sensor nodes and every data packet received at the base station. Forwarded data 

packets are not counted. In addition, the base station records all the data packets it 

receives, while disregarding duplicate data packets. The percentage of the data delivered 

to the base station is computed as the former value divided by the latter value. 

The success of the detection mechanisms is measured by computing the True Positives 

(TPs) and False Positives (FPs). Table 3.1 shows the definition of each measurement. 

Table 3.1: Notions of detection measurements 
Attack=True Attack=False 

Detection=True TP FP 

3.6 Summary 

In this Chapter, we explained the importance of link quality routing protocols for WSNs 

over shortest path routing protocols. Three classifications of the link quality estima­
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tors were discussed after stating the challenges that faces the design of a link quality 

estimator. Namely, a link quality estimator should meet the three requirements: speed, 

stability, and storage. Two recent comparisons of the software-based link quality esti­

mators were discussed. Relevant link quality estimators to this work were explained in 

details, specifically PRR, WMEWMA, RNP, ETX, and 4-bitle. After going through the 

link quality estimators, we discussed the research methodology followed in this disser­

tation. The Chapter ended with describing the framework for the experiments of this 

dissertation. 

The next Chapter starts the analysis and simulation of vulnerabilities in MintRoute, 

starting with explaining the components of MintRoute. 
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Chapter 4 

MINTROUTE AND ITS VULNERABILITIES 

4.1 Introduction 

This Chapter explains the components of MintRoute and how they operate together. 

Then a flaw in MintRoute, which makes it vulnerable to a special type of attack, is 

explained. A malicious node may use this flaw to influence the choice of routes. Then 

we propose an IDS to detect and isolate any malicious nodes that exploit this flaw. The 

Chapter ends with possible scenarios that may occur and how we enhance the proposed 

IDS to handle these scenarios. 

4.2 Components of MintRoute 

MintRoute is a flat proactive link quality routing protocol for WSNs that is implemented 

in TinyOS version 1. Sensor nodes broadcast route update packets periodically to an­

nounce their presence, their link qualities, and their routing information. Using this 

information, the sensor nodes cooperate to construct a routing tree rooted at the base 

station. MintRoute has six components to perform these tasks: routing table; routing 

table manager ; link quality estimator ; parent selector ; cycle detector ; and transmission 

timer. Each sensor node runs a local copy of these components. We explain the operation 

of each component and how they are integrated together in the following. 

MintRoute uses a common packet format for all its outgoing packets. This format is 

shown in Table 4.1. TinyOS version 1 has a maximum packet size of 29 bytes. So any 

data included in an outgoing packet cannot exceed 22 bytes. This data can be either a 

route update packet or data collected by the sensor nodes. 
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Table 4.1: Common fields in MintRoute packets 
Field Description Size 

sourceAddr 
originAddr 
seqNo 
hopCount 
data 

ID of forwarding sensor node 
ID of originating sensor node 
sequence number of packet 
number of hops from base station 
data included in packet 

2 bytes 
2 bytes 
2 bytes 
1 byte 
22 bytes 

4.2.1 Routing Table 

The routing table is the core component of MintRoute. It contains the link qualities 

and the routing information of up to 16 neighbours. Table 4.2 shows the fields of one 

record in the routing table for a neighbouring sensor node. Most of the components of 

MintRoute access the values in the routing table to perform their operations. 

Table 4.2: The fields in the routing table of MintRoute 
Field Description Size 

id 
parent 
cost 
received 
missed 
last SeqNo 
sendEst 
recvEst 
child Liveliness 
liveliness 

ID of neighbour 
ID of parent of neighbour 
cost of routing through neighbour 
number of packets received from neighbour 
number of packets missed from neighbour 
last sequence number received from neighbour 
outbound link quality to neighbour 
inbound link quality from neighbour 
flag to indicate neighbour is a child 
frequency of receiving/overhearing packets from neighbour 

2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
1 byte 
1 byte 
1 byte 
1 byte 

4.2.2 Routing Table Manager 

The routing table manager is responsible for inserting neighbours into the routing table 

and evicting neighbours from the routing table. When a packet is heard from a neighbour 

that has an entry in the routing table, the corresponding entry is updated accordingly. 

Otherwise, a new entry is created for the newly heard neighbour. In case the routing table 

is full, the table manager decides whether to drop the packet or evict a weak neighbour 
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from the routing table. The operations of the table manager can be summarized as: 

•	 Insertion: This operation will insert a new neighbour into the routing table if space 

exists. 

•	 Reinforcement : This operation updates the link qualities of an existing neighbour 

in the routing table. Algorithm 4.1 shows how the table manager updates the 

inbound link quality of an existing neighbour in the routing table. 

Algorithm 4.1 Update(seqNo)
 

SET Δ TO seqNo - lastSeqNo - 1  
SET missed TO missed + Δ  
SET lastSeqNo TO seqNo 
SET received TO received + 1  

•	 Eviction: This operation uses a frequency algorithm [124] to reinforce existing 

neighbours as shown in Algorithm 4.2. If the routing table is full, the routing table 

manager will replace a neighbour whose liveliness = 0.  

Algorithm 4.2 Evict(nghbrID)
 

if a packet received from existing neighbour with ID nghbrID then 
SET its liveliness TO MAX COUNT 

if timer expires then 
DECREMENT liveliness for all neighbours 

4.2.3 Link Quality Estimator 

MintRoute uses the WMEWMA link quality estimator to compute unidirectional in­

bound link qualities at the receiving sensor nodes. Sensor nodes then exchange their 

unidirectional link qualities to compute bidirectional link qualities. The sensor nodes 

collect link statistics by snooping on the communications on the links. They basically in­

fer the number of transmitted and missed packets from the sequence numbers of snooped 
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packets. Thus, MintRoute requires each packet to hold a sender ID and a sequence 

number. 

WMEWMA first computes a PRR value over a period of time t, as shown in Equation 

4.1, for distinct neighbouring sensor nodes. MintRoute expects a minimum number of 

packets from each neighbouring sensor node per interval t. Faulty or congested sensor 

nodes may not be able to meet this minimum number. To minimize the probability that 

these sensor nodes are chosen as next hops, the number of received packets is divided 

by the maximum of the expected number and the actual number of transmitted packets. 

Then the PRR value is smoothed with an WMEWMA as explained in Section 3.3.4. 

MintRoute uses a history factor α with value 0.75, which means that the old WMEWMA 

value constitutes 75% of the new value. Finally, neighbouring sensor nodes exchange their 

unidirectional estimates to compute bidirectional link qualities in the parent selector 

component. 

number of successfully received packets 
PRR(t) =  (4.1)

MAX(expected packets, transmitted packets) 

Algorithm 4.3 shows the computations of the unidirectional estimates, where total 

= the number of transmitted packets, EXPECTED = the number of packets MintRoute 

expects in t, newAvg = PRR value, and recvEst = WMEWMA value. Since floating 

point operations require more resources for the sensor nodes, MintRoute overcomes this 

limitation by converting floating point operations to integer operations. This is achieved 

by multiplying newAvg by 255. Thus, the lowest link quality value is 0 and the highest 

link quality value is 255. 

4.2.4 Parent Selector 

The parent selector component runs periodically to compute bidirectional link quali­

ties, select a parent, and send route update packets. Route update packets inform the 
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Algorithm 4.3 WMEWMA(α, t)
 

SET total TO missed + received 
if total < EXPECTED then 

SET total TO EXPECTED 

received 
SET newAvg TO 255 × 

total 

if 1st packet to receive or overhear from neighbour then 
SET recvEst TO newAvg 

else 
SET recvEst TO (1 − α) × recvEst + α × newAvg 

neighbouring sensor nodes of the current parent’s ID, the current routing cost, and the 

latest unidirectional link qualities of the sensor node. Figure 4.1 shows the fields of a 

MintRoute route update packet. The parent field holds the ID of the current parent, 

the cost field holds the current routing cost to the base station, the entriesCount field 

holds the number of unidirectional link qualities sent in the current route update packet, 

and the entries is a list of link qualities where each link quality, recvEst, is associated 

with the corresponding neighbouring sensor node neighbour. Route update packets are 

limited in size so only good link qualities should be shared with neighbouring sensor 

nodes. The parent selector embeds link qualities that are greater than 100 in the route 

update packets. The higher the link quality is, the more reliable the link will be. By 

this condition, the parent selector shares its link qualities with the good link quality 

neighbours. If the number of good link quality neighbours exceeds the size of the route 

update packet, then the parent selector will use a round robin technique [19] to embed 

the qualities in the route update packets. 

Figure 4.1: Fields of MintRoute route update packet
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Upon receiving a route update packet, each neighbouring sensor node searches it for its 

ID. If it is found, then the sensor node will update the sendEst field in its routing table in 

the entry of the sending sensor node. Simply, the outbound link quality of a sensor node 

equals the inbound link quality of the neighbouring sensor node at the other end of the 

link. So, by sharing the inbound link qualities, the sensor nodes will have link qualities 

for their outbound links. Once a sensor node has values for its sendEst and recvEst for 

a neighbour, its parent selector runs Algorithm 4.4 to compute a bidirectional link quality 

and convert it into a routing cost for that neighbour, where transEst = bidirectional link 

quality, linkCost = inverse of the bidirectional link quality, totalCost = total routing 

cost through the corresponding neighbour. 

Algorithm 4.4 Cost(cost, sendEst, recvEst)
 

if sendEst > 0 and recvEst > 0 then 
SET transEst TO sendEst × recvEst 

16777216 
SET linkCost TO 

transEst 

SET totalCost TO linkCost + cost << 6 
SET totalCost TO totalCost >> 6 

else 
SET transEst TO ∞ 
SET linkCost TO ∞ 
SET totalCost TO ∞ 

RETURN totalCost 

Again, to prevent floating point operations, the parent selector component multiplies 

transEst by 16777216, which is 224 . Since the size of sendEst and recvEst can hold up 

to 256 values each, the size of their multiplication can hold up to 65536 values. However, 

the inverse of the bidirectional link quality results in the range [0, 1]. If the inverse 

is multiplied by some number, then it can be converted to a value greater than one. 

This magic number is 224, which moves the inverse values to the range [256, 16777216]. 

The shift operations in computing totalCost puts the values in the range [0, 255]. 
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Parent selector calls Algorithm 4.4 with cost = 0 to compute local routing costs to 

neighbouring sensor nodes. To compute total routing costs to the base station through 

a neighbouring sensor node, the parent selector calls Algorithm 4.4 with cost = routing 

cost of neighbouring sensor node. Doing the computations for the highest sendEst and 

recvEst values, 255 each, linkCost will have a value of 4. This means that the cost of 

the best route increases by 4 with each link along it. The best parent to relay data to the 

base station is the one with the lowest total routing cost. The parent selector triggers a 

parent change operation in the following cases: 

• New parent has a routing cost better than 75% of the current cost. 

• Current parent’s link quality drops below 25 (inbound or outbound). 

• Base station is unreachable through the current parent (liveliness = 0). 

• A cycle is detected. 

4.2.5 Cycle Detector 

The cycle detector checks each received packet to detect possible cycles. A cycle will be 

detected if a sensor node originates a data packet and receives it later from a child sensor 

node. Once a cycle is detected, the cycle detector triggers the parent selector to choose 

a new route to the base station. Thus, the cycle detector requires the IDs of the sensor 

nodes to be included in data packets. 

4.2.6 Transmission Timer 

The operations in MintRoute are timer-based. A timer is fired every update interval, U , 

to send a route update packet. This means that the parent selector is called every U to 

broadcast route update packets. However, the parent selection is not affected until after 

the link estimator is called. The link estimator is called every estimate interval E. By  
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default MintRoute sets E = 10  × U . This relation between U and E means that 10 route 

update packets will hold the same parent, cost, and recvEst values until the next link 

estimator call. 

4.3 Example of the Operations in MintRoute 

MintRoute computes bidirectional link qualities based on how many packets are sent 

and received over the wireless links. The computed link qualities are estimations of 

packet reception ratios. In this section, we give a detailed example of the operations in 

MintRoute. 

Suppose that two sensor nodes, A and B, are neighbours and they need to compute 

the estimates for their link qualities. Figure 4.2 shows the operations of the routing 

table manager and link estimator of sensor node A with respect to the relevant fields 

of neighbouring sensor node B. The lines on the right of the figure show the packets 

transmitted by B with their sequence numbers. A line with an arrow means that the 

packet is received or overheard by A. Otherwise, the lines indicate packets missed by A. 

From the figure, we see that A received/overheard five packets from B and missed three 

packets. When A receives a packet, its routing table manager executes Algorithm 4.1 

to update the received and missed values corresponding to B, as shown in the figure. 

When the timer expires at the end of interval E, the link estimator executes Algorithm 

4.3 to compute the recvEst values for all neighbours in the routing table and it resets the 

received and missed values. Sensor node B performs the same steps regarding sensor 

node A. 

Subsequent route update packets from sensor node A will hold recvEst = 159 for 

sensor node B. Assume that A announces a routing cost of value 24 through a parent, 

which is not B. Upon receiving a route update packet from A, the routing table manager 
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Figure 4.2: Sensor node A computes its inbound link quality to sensor node B 

in B searches for the recvEst of B in the packet. If it is found, then the routing table 

manager of B will update the corresponding routing table entry of A as shown in Figure 

4.3. In other words, B uses recvEst as its sendEst to A. The same procedure is followed 

at A. Assuming that B has received or overheard five and missed five packets from A, 

B will compute a recvEst value of 127 to sensor node A using Algorithm 4.3. 

When the parent selector is called, it executes Algorithm 4.4 to compute the routing 

costs for the neighbours in the routing table. Using the information in the entry of sensor 

node A, the parent selector of sensor node B will compute a routing cost through A of 

value 36. If A is offering the lowest routing cost, then the parent selector of B will select 

A as the parent. The next route update packets from B will announce that A is its 

parent and the routing cost is 36. 

Figure 4.3: Sensor node B updates its outbound link quality to sensor node A
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4.4 Vulnerabilities of MintRoute to Link Quality Attacks 

As explained in Section 4.3, sensor nodes that use MintRoute as the routing protocol 

in a WSN cooperate to compute link qualities for routes to the base station. Basically, 

a sensor node computes the qualities of its inbound links and shares the values with 

its neighbours. Each neighbouring sensor node will use its corresponding value as the 

estimate for its outbound link quality to the sending sensor node. The sensor nodes 

assume that all are trustworthy and they don’t apply any trust mechanism. 

A malicious node can make use of this trustworthiness and lie (i.e., exaggerate) about 

its inbound link qualities. Following the example in Section 4.3, suppose that sensor node 

A is a malicious node and it sends the highest possible value, i.e. 255, for its link quality 

with B. Sensor node B cannot refute or check the validity of this value. Basically, B 

knows how many packets it has sent out but it does not know how many packets the 

malicious node has overheard. A high link quality means that A has overheard a high 

percentage of the packets sent out by B. The highest link quality means that A has 

overheard all the packets from B and did not miss any of them. Having received this 

false information from A, B updates the entry of A in its routing table as shown in Figure 

4.4. 

Figure 4.4: Sensor node B updates its outbound link quality with a false value 

Now, when the parent selector is called at sensor node B, it will use the false in­

formation provided by sensor node A to compute a routing cost through A of value 32. 

However, this new value may not be sufficiently tempting to B to choose or change its 

parent to A. Sensor node A can act more maliciously by lying about its cost as well. In 
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MintRoute, each link in the path increases the routing cost by at least 4. So, if a link 

between a parent and a child sensor node has the best quality, the routing cost of the 

child sensor node will be greater than the routing cost of its parent by 4. Otherwise, 

the difference between the routing costs will be greater than 4. A malicious node can 

benefit from this property by decreasing its cost to the minimum, which is its parent cost 

plus 4. Thus, if A has room to decrease its cost to less than 24, then it will succeed in 

decreasing the routing cost through it as opposed to lying about link qualities only. A 

more vicious attacker announces a fake parent, i.e., fake route to the base station. In this 

case, the malicious node can decrease its routing cost as low as it desires. Assume that 

A has announced a routing cost of 12 through a fake parent X, which does not exist in 

the WSN. Using this false cost and the values of sendEst and recvEst in Figure 4.4, B 

will compute a routing cost of value 20. Now, A has a higher chance to be the parent of 

B because it is offering a lower routing cost than its true value, 36. 

4.5 Detection Mechanisms for MintRoute Vulnerabilities 

Wireless communication consumes more power than the other resources of the sensor 

nodes [11, 77]. Therefore, the objective of any WSN application is to avoid any extra 

or unnecessary communication. In this section, we will explain our proposed detection 

mechanism. Our detection mechanism does not require any extra communication among 

the sensor nodes. However, it requires extra storage space and extra computations. 

First, we explain how traditional mechanisms cannot defend against such malicious node. 

Second, we explain the proposed detection mechanism. 

4.5.1 Traditional Detection Mechanisms 

As explained earlier in the previous Section, a malicious node that exaggerates its inbound 

link qualities only may not be convincing to its neighbours. There are other factors that 
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influence the choice of the next hop: 

•	 Inbound link qualities : The neighbours of the malicious node compute their inbound 

link qualities from the malicious node depending on how many packets they receive 

and miss from it. The malicious node cannot control the computations of these 

values. On the contrary, missing packets from the malicious node decreases its 

chances to be chosen as a parent for its neighbouring sensor nodes. 

•	 Routing cost : A high routing cost through the malicious node may not be in favour 

of the efforts of the malicious node to attract traffic. Thus, the malicious node, to 

achieve its goal, has to decrease its routing cost. This may require the malicious 

node to announce a fake parent to decrease its routing cost without being detected. 

Clearly, encryption or authentication cannot defeat this malicious node. If the ma­

licious node is a compromised sensor node, then it will have authentic keys and will 

participate legitimately in any encryption or authentication protocol. Furthermore, the 

malicious node is not breaching the operation of the WSN, it is only announcing incorrect 

values for its computations. 

Another approach is to send network flow information, such as the IDs of next hops 

and the numbers of packets sent, to the base station. The base station may infer from 

this data the malicious activity of a node that is not forwarding data or is attracting more 

traffic than expected. This approach requires a lot of communication overhead. This will 

deplete the power resources quickly, especially for sensor nodes close to the base station, 

which makes the WSN non-functional. 

It is clear that a novel detection mechanism is needed to handle this type of malicious 

node. 
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4.5.2 A New MintRoute Detection Mechanism 

The proposed detection scheme adds the ability to the sensor nodes to use their sequence 

numbers to detect neighbours that misrepresent their inbound link qualities. This detec­

tion mechanism works for the link quality routing protocols that require the cooperation 

between the sensor nodes to compute link qualities. We explain the proposed detection 

mechanism in terms of MintRoute. 

A sensor node can play a “trick” by introducing an artificial gap in its sequence 

number space. This gap implies a lower bound on the number of missed packets that 

the neighbouring sensor nodes perceive. Now, the tricking sensor node has a minimum 

number of missed packets perceived by its neighbours, the number of packets it has 

sent, and the previous advertised recvEst value from each neighbour. The tricking 

sensor node uses Algorithm 4.3 to compute an estimate for the upper bound for the next 

recvEst advertisement from each neighbour. When the tricking sensor node receives a 

new link quality, it compares the received link quality with the estimated link quality 

of the corresponding neighbour. If the received link quality is larger than the estimated 

link quality, then the tricking sensor node will suspect the corresponding neighbour as 

malicious. The neighbours of a tricking sensor node cannot tell if packets have actually 

been missed or a sequence number gap trick is being played. If a malicious node is lying 

about its link quality, then it will ignore the indicated miss and announce a high link 

quality to the tricking sensor node. Once the malicious node is detected, the tricking 

sensor node can blacklist it so as not to consider it as a future next hop. If the tricking 

sensor node is a child of the malicious node, then it may change its route to avoid the 

malicious node. For example, let sensor nodes A and B be two neighbours and sensor 

node A wants to test if sensor node B is sending its true link quality. Assume the 

following: 
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•	 A has the sequence number value 25 to use in its next outgoing packet. 

•	 A received recvEst = 255 in the last route update packet from B. 

•	 A knows that B has reset its received and missed values after broadcasting its 

last route update packet. 

•	 A sends 15 packets before receiving the next route update packet from B. 

Sensor node A can play the sequence number gap trick by incrementing its current 

sequence number by two, for example. The next outgoing packet from A will hold the 

sequence number 27 instead of 25. When sensor node B overhears or receives the next 

packet from A, it will assume that it has missed two packets from A, following Algorithm 

4.1. Thus, B will increment its missed value by two. Sensor node A can compute an 

upper bound for the next recvEst from B using Algorithm 4.3 with the following values 

missed = 2,  recevied = 15, and recvEst = 255. Then the new recvEst from B should 

be less than or equal to 232. Thus, A succeeds in estimating an upper bound for the 

next recvEst from B without the help of B. Sensor node A can test all its neighbours 

in the same way. 

The sensor nodes should perform the sequence number gap trick at most once per 

estimate interval at random. This ensures that only one sequence number gap is present 

in the computations of the neighbours so it does not severely affect the link qualities. 

Time Synchronization Problem 

Tight time-synchronization is not required in many WSN routing protocols. Accordingly, 

the tricking sensor node cannot determine the appropriate route update packets to test. 

An efficient scheme to overcome the synchronization problem is to record the sequence 

number at which the tricking sensor node has begun the sequence number gap trick. Also, 

the sensor nodes must announce the last sequence number they have used to compute the 
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recvEst value of each neighbouring sensor node. A tricking sensor node will only test 

the route update packets with last sequence number greater than the recorded sequence 

number. 

Over-testing Problem 

Testing unnecessary or extra route update packets may lead to an over-testing problem. 

The over-testing problem simply means blacklisting a neighbour because the received 

recvEst does not conform with the computed expected recvEst although a previous 

recvEst was correct. Figure 4.5 depicts this problem. The figure shows the timeline of a 

tricking sensor node with the times of performing two tricks Tr1 and Tr2 and the times 

of receiving the new recvEst values from a neighbouring sensor node, Ei. After the trick 

at Tr1, the tricking sensor node uses the recvEst received at E2 to test the truthfulness 

of the neighbouring sensor node, which passes the test. However, the tricking sensor node 

may receive a new recvEst at E3 before performing a new trick. Using this new recvEst 

may lead to incorrect conclusion about the neighbouring sensor node. To solve the over-

testing problem, the tricking sensor node should have a flag per neighbour to indicate 

when to test the received recvEst. So, when the tricking sensor node performs the trick 

at Tr1 it sets the flags of all its neighbours. When the tricking sensor node receives a route 

update packet with a new recvEst, it resets the flag of the corresponding neighbour. Any 

subsequent route update packets from this neighbour will not be tested until a new trick 

is played. 

Figure 4.5: The over-testing problem
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Isolation Problem 

An isolation problem may occur if the network has high traffic volume or is dense. The 

tricking sensor node may lose, due to collisions, the appropriat route update packets to 

test. This will lead to blacklisting the corresponding neighbour. Losing the appropri­

ate route update packets from all the neighbours will lead to the tricking sensor node 

blacklisting all its neighbours. This ends up with the tricking sensor node with no route 

to the base station. To overcome the isolation problem, we propose a simple algorithm 

for removing the neighbours from the blacklist. Upon receiving the appropriate route 

update packets from neighbours, the tricking sensor node implements Algorithm 4.5. If 

a neighbouring sensor node fails the test, then the testing sensor node will set the cor­

responding flag blackListed = 255. Subsequent passes from the test decrease the value 

of blackListed by half. Once the value comes under a certain threshold, the tricking 

sensor node removes the corresponding sensor node from the blacklist. 

Algorithm 4.5 Blacklist(recvEst, expected recvEst)
 

if recvEst > expected recvEst then 
SET blackListed TO 255 

else 
blacklisted 

SET blackListed TO 
2 

if blackListed < blackList threshold then 
SET blackListed TO 0 [ remove neighbour from blackList 

An alternative way to blacklist a node is to set an alert threshold for consecutive ex­

aggerated recvEst values. Once a neighbour exceeds the threshold it will be blacklisted. 

However, this technique takes longer to blacklist a suspicious node than Algorithm 4.5. 
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4.6 Attacker’s Strategies to Defeat Detection 

We assume that the malicious node is an intelligent node that knows that a detection 

mechanism is running in the WSN. In this section, we show how the malicious node can 

try to escape detection. We first explain how to detect a naive malicious node that is not 

aware of the detection mechanism. Then we proceed with a more intelligent malicious 

node that knows the detection mechanism and how we adapt the proposed detection 

mechanism. Finally, the malicious node reaches the state of conformity. 

4.6.1 MintRoute Scenario 1 

In this scenario, the malicious node uses a very simple attack strategy, in which it always 

announces the highest possible link quality (255). It ignores any missed packets and
 

advertises the highest possible link qualities, which makes it easily detectable. Figure
 

4.6 shows a hypothetical example of the behaviour of the malicious node and how a
 

neighbour detects the anomalous behaviour. A tricking sensor node decides to perform
 

the sequence number gap trick at the third estimate interval using the previous received
 

link quality, 255, to expect the next link quality, 237. However, the tricking sensor node
 

receives a higher link quality, 255, so it decides that its neighbouring sensor node is
 

behaving maliciously.
 

4.6.2 MintRoute Scenario 2
 

While the malicious node in Scenario 1 is easily detected, it is reasonable to consider a
 

more sophisticated behaviour. In particular, the malicious node in Scenario 2 is adaptive.
 

It tries to guess which neighbour is performing the sequence number gap trick and when.
 

It then advertises the correct link quality to the corresponding neighbour. As a result,
 

the malicious node succeeds in avoiding being detected some of the time. Figure 4.7 [125]
 

illustrates the behaviour of the malicious node against a single neighbouring sensor node
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Figure 4.6: Behaviour of malicious node in MintRoute Scenario 1 

that is performing the sequence number gap trick. We can see that at the third estimate 

interval, the malicious node has guessed that a neighbouring sensor node is performing 

the sequence number gap trick, so it advertises the correct link quality to this neighbour. 

Thus, the malicious node has succeeded in escaping detection. However, at the ninth 

estimate interval, the malicious node is not successful in guessing that the corresponding 

neighbour is performing the sequence number gap trick and it fails to avoid the detection. 

To elaborate, the malicious node computes a threshold, τ , for the number of packets 

it overhears from each neighbouring sensor node. Then it decides whether to lie or not 

depending on the observed packet traffic relative to the threshold. In essence, if unusually 

many packets are “missing” and the number of observed packets exceeds the threshold, 

the malicious node suspects that the sequence number gap trick is being played, and 

tells the truth to avoid being detected. Mathematically, the malicious node may use a 

threshold such as E[X] +  σ, where E[X] is the expected number of packets, and σ is the 

standard deviation. 
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Figure 4.7: Behaviour of malicious node in MintRoute Scenario 2 

To compute the expected number of packets to overhear from a neighbouring sensor 

node, the malicious node needs to know how many packets this neighbour should send 

during one estimate interval, E. The number of data packets can be computed from 

the sizes of E and the send interval, S. Equation 4.2 shows how many data packets the 

malicious node expects to receive from a single neighbouring sensor node in one estimate 

interval. Basically, it is the ratio of the size of estimate interval to the size of the send 

interval. 

E 
E[X] =  (4.2)

S 

Moreover, the sensor nodes forward the data of all the sensor nodes in their subtrees. 

Thus, there will be many data packets coming during the same send interval if each sensor 

node in the subtree sends one data packet. Assuming that the malicious node knows the 

subtree size, n, of each of its neighbouring sensor nodes, it computes the expected number 

of data packets from each neighbour as: 
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E 
E[X] =  n × (4.3)

S 

Next, the malicious node computes the variance, V ar(X), for each of its neighbouring 

sensor nodes depending on the corresponding E[X]. 

However, this is not enough to determine the threshold. There are route update pack­

ets from each neighbouring sensor node. As per the default configuration of MintRoute, 

a sensor node sends ten route update packets during a single E. The malicious node 

computes the expected total number of packets as shown in Equation 4.4. 

E 
E[X] = 10 + n × (4.4)

S 

The final problem that faces the malicious node is how to know n, the subtree size, 

of each neighbouring sensor node. The malicious node uses the following features of 

MintRoute: data packets include the identifier of the originating sensor node; and no 

encryption mechanism is implemented. For any neighbouring sensor node that forwards 

a data packet, the malicious node can read the originator of the data packet. Then the 

malicious node assigns this originator to the subtree of the corresponding neighbour. At 

the end of the estimate interval and before computing the link qualities, the malicious 

node counts the number of sensor nodes in each subtree. Now, before advertising its link 

qualities, the malicious node can compute the thresholds to decide which link qualities 

should be exaggerated and which should be true. Since the subtrees may change, the 

malicious node resets n after advertising its link qualities and begins counting again in 

the new estimate interval. 

4.6.3 MintRoute Scenario 3 

One weakness of the sequence number gap trick used in Scenario 2 is that the sensor 

nodes only monitor the link quality advertisements immediately following a sequence 
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number gap trick, rather than continuously. 

The obvious solution is to make the sensor nodes more vigilant. In particular, because 

link quality computations in MintRoute use an exponentially weighted moving average, it 

is impossible for a link quality estimate to jump dramatically from one estimate interval 

to the next. An enhanced detection mechanism can monitor link qualities more closely 

to detect malicious nodes at all times, as illustrated in Figure 4.8 [125]. In other words, 

when a tricking sensor node is not playing the sequence number gap trick, it assumes 

that all neighbouring sensor nodes have received all its outgoing packets and missed = 0.  

It computes the expected link qualities for all neighbouring sensor nodes and uses them 

to test the next advertisements of the neighbours.
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Figure 4.8: Behaviour of malicious node in MintRoute Scenario 3 

4.6.4 MintRoute Scenario 4 

The enhancement to the detection mechanism in Scenario 3 can also be applied to the 

malicious node itself. That is, following a (detected) sequence number gap trick, the 
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malicious node can cautiously increase its link quality back to the maximum so as to 

avoid suspicion, as shown in Figure 4.9 [125]. This strategy effectively converts the 

malicious node into a conformant node.
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Figure 4.9: Behaviour of malicious node in MintRoute Scenario 4 

4.7 Summary 

In this Chapter, we explained the six components of MintRoute and showed how they 

cooperate to construct a routing tree using bidirectional link qualities. Then the Chapter 

proceeded with an example of the operations in MintRoute. The Chapter followed the 

example with vulnerabilities in MintRoute that a malicious node can use to influence the 

computation of link qualities to its favour. Simply, the malicious node can exaggerate its 

link qualities and the sensor nodes cannot validate or refute them. MintRoute assumes 

that all nodes are trustworthy. We explained why traditional security mechanisms cannot 

detect this malicious behaviour and the need to find a novel detection mechanism. Then 
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the proposed detection system was explained and discussed. The Chapter ended with 

possible scenarios that a malicious node can follow and how the proposed detection 

system can be adapted to bring malicious nodes to conformity. 

The next Chapter explains how ns-2 is extended to support MintRoute and how the 

proposed IDS is implemented. It also discusses the simulation of MintRoute and the 

detection of the malicious node. 



86 

Chapter 5 

MINTROUTE: SIMULATION MODEL AND RESULTS 

5.1 Introduction 

This Chapter describes the implementation of MintRoute and its IDS in ns-2. It begins 

by explaining the extensions made to ns-2. Then it describes the configuration of the 

simulation environment. The Chapter follows with the simulation of MintRoute WSNs 

where a malicious node exploits the routing protocol. Different scenarios that the ma­

licious node can follow are simulated. In each scenario, the malicious node adapts its 

attack strategy to escape detection. In parallel, we explain how the IDS is modified to 

detect the adaptive malicious node. The simulation results show that the proposed IDS 

detects the malicious node effectively. 

5.2 Extending ns-2 to Support MintRoute 

In this section, the extensions made to ns-2 to support MintRoute and the proposed 

MintRoute IDS are explained. 

5.2.1 Implementation of MintRoute 

We have used the source code of MintRoute in TinyOS [126] and its implementation in 

the Castalia simulator [127] as a reference for our implementation. TinyOS implements 

MintRoute as one component with different functions to implement its six components. 

Therefore, we have implemented MintRoute as a single class in ns-2. 
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5.2.2 Implementation of MintRoute IDS 

After having MintRoute running in ns-2, we have extended MintRoute itself to support 

the proposed detection mechanism. In addition to extending the code, which will be 

explained later, some new fields are required in the routing table. We have added the 

fewest possible extra bytes to the routing table of MintRoute as shown in Table 5.1. 

Table 5.1: New fields in MintRoute routing table 
Field Description Size 

estSeqNo 
usedSeqNo 
flags2 
blackList 

lastSeqno used to calculate neighbour recvEst 
sequence number neighbour used to calculate recvEst 
0, TRICK, 0, 0, 0, 0, 0, 0 
trust value 

2 bytes 
2 bytes 
1 byte 
1 byte 

Storage Space Overhead 

To solve the time synchronization problem as explained in Section 4.5.2, two fields are 

required: estSeqNo and usedSeqNo. The estSeqNo field is used to hold the lastSeqNo 

value used to compute the recvEst value of a neighbouring sensor node. Then the value 

of estSeqNo is sent with the recvEst value in the same route update packet. The sensor 

nodes cannot simply send the value of lastSeqNo because they may overhear a new 

route update packet between the computation and the transmission of recvEst. Thus, 

estSeqNo is used to resolve this conflict. The second field usedSeqNo is populated when 

the sensor nodes overhear the route update packets. This field is populated with the 

value of estSeqNo received in the route update packets. Finally, to complete the solution 

of the time synchronization problem, a global variable trickSeqNo is required to hold 

the sequence number at which a tricking sensor node starts the sequence gap trick. Only 

neighbouring sensor nodes that have usedSeqNo greater than trickSeqNo are tested. 

To solve the over-testing problem, the TRICK bit in the flag2 field is used to determine 

the neighbours that are already tested in the current trick. When a tricking sensor node 
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starts a sequence number gap trick, it sets this bit for all the neighbouring sensor nodes in 

its routing table. When a neighbour is tested, the tricking sensor node resets the TRICK 

bit in the corresponding routing table entry. Other bits in the flag2 field are reserved 

for future purposes. 

Finally, the blackList field is used to determine blacklisted neighbours. In addition, 

its value solves the isolation problem by removing good sensor nodes from the blacklist. 

In total, 98 extra bytes of memory are required per sensor node. The additional fields 

in the routing table take 96 bytes for the 16 entries plus two bytes for the global variable, 

trickSeqNo. 

The malicious node does not play the sequence gap trick so it does not blacklist any of 

its neighbouring sensor nodes. Thus, the malicious node requires the estSeqNo field only 

to send the values of lastSeqNo used in the computations of recvEst values. However, 

the malicious node needs to keep track of the size of the subtrees of its neighbouring 

sensor nodes. Every sensor node that is sending a data packet in a subtree should be 

counted once during a single estimate interval. To achieve this, the malicious node has 

an array of bytes for each neighbouring sensor node. The array size equals the size of the 

WSN. The indices of the array represent the IDs of the sensor nodes in the WSN. When 

a sensor node sends a data packet, its corresponding index in the array is set to 1. With 

every new estimate interval the malicious node resets all the indices of the arrays of its 

neighbouring sensor nodes to begin a new count. This reset is important to accommodate 

the changes that may occur in the routing tree. Hence, the storage requirement for the 

malicious node is dependent on the size of the WSN. 

Packet Overhead 

The other modification to MintRoute comes in its packet format. As explained in Sec­

tion 4.2, a MintRoute packet has a data field that can hold up to 22 bytes. In the case 
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of route update packets, the data portion holds the routing packet shown previously in 

Figure 4.1. The routing packet has a fixed part of size five bytes and a variable part that 

can hold up to 17 bytes. Each neighbour/recvEst pair requires three bytes and thus, 

the routing packet can hold up to five neighbour/recvEst pairs. If a sensor node has 

more than five neighbours, the routing update packets will hold the neighbour/recvEst 

pairs in a round robin fashion. The modified route update packets have the triplet 

neighbour/recvEst/estSeqNo. This modification occupies five bytes and thus, the mod­

ified route update packets hold three neighbour/recvEst/estSeqNo triplets only. 

Code Overhead 

Algorithm 5.1 shows the pseudo-code of the proposed IDS. When a sensor node, node, 

receives a route update packet, pkt, from its neighour, nghbr, it goes through Algorithm 

5.1 to test the recvEst value. The expEst variable is computed using Algorithm 4.3. 

Currently, the blacklist threshold is set to 1. This threshold can be used if we do not 

want to blacklist a neighbouring sensor node after a single test failure. When the parent 

selector selects a next hop, it considers only the neighbouring sensor nodes that are not 

blacklisted. 

Algorithm 5.2 shows how the malicious node builds the subtrees of its neighbouring 

sensor nodes. When the malicious node receives a data packet, pkt, from its neighbouring 

sensor node, nghbr, it will check if the origin sensor node has sent a data packet before. If 

it is the first data packet, then the malicious node will set the array index at the position 

of the origin ID. To know the subtree size of any of its neighbours, the malicious node 

counts the number of cells that are set in the corresponding array. Then the malicious 

node can compute the expected number of packets to overhear from each neighbouring 

sensor node. 

When the estimate interval of the malicious node expires, it updates the estimates 
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Algorithm 5.1 ReceiveUpdatePkt(node, nghbr, pkt)
 

if node ID included in pkt then 
if node playing trick then 

if pkt holds a new recvEst for node & usedSeqNo in pkt > trickSeqNo then 
COMPUTE expEst [ Call Algorithm 4.3 
if recvEst > expEst then 

INCREMENT alert 
if alert ≥ blacklist threshold then 

SET nghbr blackList TO 255 

else 
nghbr blackList 

SET nghbr blackList TO 
2 

RESET alert
 
RESET TRICK bit for nghbr
 

else if node not playing trick & pkt holds a new recvEst for node then 
COMPUTE expEst [ Call Algorithm 4.3 
if recvEst > expEst then 

INCREMENT alert
 
if alert ≥ blacklist threshold then
 

SET nghbr blackList TO 255
 

else 
RESET alert 

else 
DROP pkt 

Algorithm 5.2 UpdateSubtree(nghbr, dP kt)
 

READ origin FROM dP kt 
if index origin in array of nghbr is not set then 

SET index origin in array of nghbr TO 1 

of the link qualities of its neighbouring sensor nodes. However, the malicious node 

calls Algorithm 5.3 to guess which neighbours are playing the sequence number gap 

trick. First, it calls Algorithm 5.4 to compute the expected number of packets, ex, to  

receive from neighbouring sensor node nghbr and the associated variance, varX. Next it 

computes the standard deviation, stdDev. To determine if nghbr is playing the sequence 

number gap trick or not, the malicious node compares the number of received packets 

from nghbr to the threshold (ex + stdDev). If the number of received packets from nghbr 
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exceeds the threshold, then the malicious node will send the true link quality to nghbr. 

Otherwise, the malicious node will send an exaggerated link quality. Algorithm 5.3 can 

be modified to reflect the different thresholds that the malicious node may use. 

Algorithm 5.3 GuessTrick(nghbr)
 

COMPUTE ex and varX of nghbr [ Call Algorithm 5.4 
RESET subTree of nghbr [ Set cells in subtree of nghbr to 0 
SET stdDev TO square root of varX [ Compute the standard deviation 
if EX + stdDev < number of packets from nghbr then 

SEND true link quality to nghbr 
else 

SEND false link quality to nghbr 

Algorithm 5.4 implements Equation 4.4 to compute the expected number of packets 

and variance for each neighbouring sensor node nghbr of the malicious node. The al­

gorithm begins by counting the number of sensor nodes in the subtree of nghbr. This 

number is counted as the number of cells that are set to 1 in the subtree of nghbr. Then 

the algorithm computes the expected number of data packets to receive from nghbr. 

The algorithm follows with the computation of the variance and finally, it updates the 

expected number of packets to include the default number of route update packets, 

EXPECTED UPDATES, to receive from nghbr during a single estimate interval. EX­

PECTED UPDATES is set to 10 by default in MintRoute. 

Algorithm 5.4 Expectations(nghbr)
 

COMPUTE subTreeSize of nghbr 
if subTreeSize > 0 then 

estimate interval 
SET ex TO × subTreeSize 

send interval 

SET varX TO variance of ex 
SET ex TO ex + EXPECTED UPDATES 

else 
SET ex TO 0
 
SET varX TO 0
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5.3 Setup of MintRoute Simulation Environment 

Following the simulation framework presented in Section 3.5, we have written Tcl sim­

ulation files to simulate 10 different topologies (same physical locations) with 20 sensor 

nodes each. MintRoute seeds the random number generator with the current time, so 

we have seeded the random number generator of ns-2 with the current time as well. Ac­

cordingly, for the same physical locations of the sensor nodes a different routing tree is 

constructed with every new run of the simulation file. We have simulated each topology 

25 times. As a result, the malicious node has had the same number of neighbouring 

sensor nodes, as shown in Table 5.2, but its subtree is different in each run for the same 

topology depending on the current time. In each simulation run, the following parameters 

are fixed: 

• Wireless communication range = 40 units 

• Route update interval, U = 5 time units 

• Estimate interval, E = 50 time units 

• Data send interval, S = 20 time units 

• Simulation time = 5000 time units 

• Blacklist removal threshold = 16 

• Sequence number gap = 1, 2, 3, 4, 5 

Given the previous values, the sensor nodes compute the link qualities 100 times 

during a single simulation run. The simulation time is sufficient to have a stable and 

complete routing tree. The blacklist threshold requires a blacklisted sensor node to have 

five consecutive true link qualities to be removed from the blacklist. The results of the 
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Table 5.2: Neighbourhood sizes of malicious node in MintRoute simulations 
Network ID Size of neighbourhood 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

8 
7 
8 
8 
11 
11 
11 
12 
9 
13 

simulations represent the average values calculated from the 25 independent runs for each 

topology. 

The base station initiates the construction of the routing tree by broadcasting a route 

update packet. Once its neighbouring sensor nodes receive this broadcast, they broadcast 

their own route update packets. Then their neighbouring sensor nodes will do the same 

until all the sensor nodes in the WSN broadcast their route update packets. This means 

that sensor nodes closer to the base station construct routes to the base station before 

far sensor nodes. 

5.3.1 Setup of Malicious node 

The malicious node has been placed in the centre of the network with the same configu­

ration as the good sensor nodes. To be more efficient, we have configured the malicious 

node to announce a routing cost that is lower than the lowest routing cost in its com­

munication range. To achieve this, the malicious node waits for the first neighbour to 

announce its routing cost to the base station. Most probably, this will be the closest 

neighbour to the base station with the lowest routing cost. The malicious node imme­

diately announces a lower cost to a fake parent to lure the other neighbouring sensor 

nodes. Forwarding traffic to a fake parent makes the malicious node look legitimate. On 
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the other hand, it helps to compute the percentage of data delivery at the base station 

with and without the presence of the malicious node to measure its effect. 

The malicious node does not perform the sequence number gap trick, so as not to 

affect the computations of its neighbours. This reinforces the probability of choosing the 

malicious node when they compute routing costs to the base stations. 

Finally, the sensor nodes are configured to test route update packets, with or without 

the sequence gap trick, after 100 time units. This delay ensures that the routing tree is 

built without interruption. 

5.3.2 Setup of Performance Metrics 

The performance of the malicious node is measured as the percentage of data delivered 

to the base station as described in Section 3.5.4. 

The success of MintRoute IDS is measured by computing the number of detections 

that occurred in the WSN and how many of these detections are true. Equation 5.1 

shows the computation of the TP and FP ratios. 

r−1 

TP 
  
i=0true detection = 

r 
(5.1) 

r−1 

FP 
  
i=0false detection = 

r 
where r = number of runs, i.e., 25. 

There are factors other than the sequence number gap trick that may affect these 

measurements. These factors can cause a mismatch between an advertised link quality 

and an expected link quality: 

•	 A sensor node starts a second sequence number gap trick shortly after a first one. 

The second trick cancels the first trick. 
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•	 Sensor nodes do not advertise link qualities that are below 100 (as stated by 

MintRoute). Accordingly, the neighbouring sensor nodes will not receive any link 

qualities to test. The first link quality to test may arrive later than the trick. 

•	 The number of neighbours is greater than what the route update packets can accom­

modate in one estimate interval. This means that neighbouring sensor nodes may 

not be updated in one estimate interval and new link qualities may be computed 

without advertising the old values. 

5.4 Results of MintRoute Simulation 

We incrementally present the scenarios in which a malicious node exploits the MintRoute 

routing protocol. In each scenario, we discuss the performance of the malicious node by 

measuring data delivery at the base station and the success of detection by measuring 

TP and FP values. 

When the sensor nodes detect the malicious node, they change their parents to good 

sensor nodes. A high percentage of data delivery means that the sensor nodes detect the 

malicious node quickly. Accordingly, a large proportion of data reaches the base station 

intact. A low percentage of data delivery means that the malicious node is successful in 

escaping detection. 

We discuss the simulation results for the percentage of data delivery for the ten simu­

lated topologies. However, for the success of detection, we discuss the simulation results 

of network 2 because the neighbourhood of the malicious node is the smallest. Accord­

ingly, the graphs of the simulation results are less dense. However, all the observations 

stated in this Section can be stated for the other nine networks as well. In network 2, the 

malicious node has seven neighbouring sensor nodes with the IDs: 1, 4, 11, 14, 15, 16, 

and 18. Figure 5.1 [125] shows the topology of network 2 with and without the malicious 
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node.
 

(a) Before attack (b) After attack 

Figure 5.1: MintRoute Network 2 

5.4.1 Simulation of MintRoute Scenario 0 

As a baseline, we compare the data delivery at the base station in the different topologies 

with and without the presence of the malicious node. In both cases, the sensor nodes do 

not run the proposed IDS. 

First, the sensor nodes build a routing tree rooted at the base station without the 

presence of the malicious node in the network. The best route in MintRoute is computed 

as the route with the highest packet reception ratio, interpreted as the lowest total 

routing cost. MintRoute offers a stable and robust routing tree that changes only when 

the quality of a link deteriorates. The simulation results show over 99% data delivery to 

the base station in WSNs using MintRoute. See the green bars in Figure 5.2. 

Second, a malicious node is introduced to the network with the aim of diverting as 

much traffic as possible. To achieve this goal, the malicious node lies about its cost 

and the estimates of its inbound link qualities. The malicious node uses a very simple 

attack strategy, in which it always announces the highest possible link quality (255). The 
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simulation results show that the percentage of data delivery drops to 20% - 60% of the 

WSN traffic, depending on the size of the neighbourhood of the malicious node. See the 

blue bars in Figure 5.2 [125].

Percentage of data delivery without and with malicious node 
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Figure 5.2: MintRoute Scenario 0: data delivery 

5.4.2 Simulation of MintRoute Scenario 1 

In this scenario, the malicious node behaves as in Scenario 0. However, the sensor nodes 

use the sequence number gap trick to try to detect it. The sensor nodes are configured 

to play the sequence number gap trick once (at a random time) during each interval E. 

This ensures that only one sequence number gap trick is used in the (per-neighbour) 

computations of the malicious node and, at the same time, it does not severely affect 

the link qualities. Since the malicious node is passive, it ignores any missed packets and 

announces the highest possible link quality, which makes it easily detectable. 
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Effectiveness of Malicious Node 

Figure 5.3 [125] shows that the percentage of data delivery is restored to 98% or better 

in each of the 10 WSN topologies tested. In other words, the sequence number gap trick 

is a simple and effective means to detect the malicious node. We can also see that the 

sequence number gap size has no effect on the percentage of data delivery. Since the 

malicious node is passive, it is detected regardless of the gap size. The slight decrease 

in the percentage of data delivery can be attributed to the difference in time between 

when the malicious node announces its route cost and the time the neighbours start the 

sequence gap trick. The later the sequence number gap trick is played, the higher the 

possibility that the malicious node disrupts more traffic.

Percentage of data delivery with naive malicious node 

100
 
90


 80

 70

 60

 50

 40

 30

 20

 10


 0

Network ID 

No malicious node 
Malicious node 

Gap = 1 
Gap = 2 
Gap = 3 
Gap = 4 
Gap = 5 

Figure 5.3: MintRoute Scenario 1: data delivery 
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Success of Detecting Malicious Node 

Figure 5.4 depicts the average detection results when the sensor nodes used sequence 

number gap of size 1. We can see that all the neighbours of the malicious node had suc­

cessfully detected it with TP between 60% and 80% on average. Although the malicious 

node exaggerates its link qualities all the time, it is not detected all the time due to the 

aforementioned factors in Section 5.3.2. Specifically, the malicious node is not detected 

when a sensor node performs two sequence number gap tricks within a short period of 

time. The computations of the first trick will be canceled by the second trick and will 

not detect the malicious node. FP counts for a negligible amount of the detections due 

to mistakenly suspecting a good sensor node as malicious. For example, sensor node 8 

suspected a good neighbour as malicious 6 times in 6 runs only.
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Figure 5.4: MintRoute Scenario 1: average detection in network 2, gap size = 1 

The same behaviour is observed with larger sequence number gaps. However, there 

is an increase in the number of the sensor nodes that have FP. Since a larger sequence 
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number gap can affect the link qualities, link qualities that go under 100 are not adver­

tised. Accordingly, a mismatch may occur between a sequence number gap trick and the 

appropriate received link quality to test. See Figure 5.5.

Percentage of true and false detections in network 2 
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Figure 5.5: MintRoute Scenario 1: average detection in network 2, gap size = 5 

5.4.3 Simulation of MintRoute Scenario 2 

We present the results of the adaptive malicious node here. The malicious node tries to 

guess when the sequence number gap trick is being played, and tell the truth about its 

link quality in this case. It is then able to avoid detection by the sequence number gap 

trick some of the time. 

Effectiveness of Malicious Node 

The malicious node computes a threshold, τ , to represent the number of packets it 

expects to hear from each neighbour. Then it decides whether to lie or not to the 
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corresponding neighbour depending on the observed traffic relative to the threshold. In 

essence, if unusually many packets are “missing”, the malicious node suspects that a 

trick is being played, and tells the truth in order to avoid detection. Figure 5.6 [125] 

shows the percentage of data delivery at the base station when the malicious node uses 

τ = E[X] +  σ, where E[X] is the expected number of packets, and σ is the standard 

deviation. 

With a sequence number gap of size 1, the simulation results show that the percentage 

of data delivery is at least 97% across the 10 WSN topologies. However, the percentage 

of data delivery drops sharply as the sequence number gap size increases. The malicious 

node can detect large sequence number gaps and thus, it lies less often. In other words, 

the sequence number gap trick is most effective with a small sequence number gap of size 

1.

Percentage of data delivery with malicious node threshold: E[X] + StdDev 
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Figure 5.6: MintRoute Scenario 2: data delivery, τ = E[X] +  σ 

Figures 5.7 and 5.8 show the simulation results with the malicious node using different 
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σ 
thresholds. It uses τ = E[X] +  in the former graph. In the latter graph, it uses a 

2 
threshold of missed = 0. The latter graph means that if a single packet is perceived 

missed, then the malicious node announces the true link quality for the corresponding 

neighbour. We can see that the tighter the threshold, the more successful the malicious 

node is in escaping the detection. However, the tighter threshold is not in favour of 

the malicious node because it will announce its real link quality values, which may not 

be attractive to its neighbours. In WSNs, losses are frequent and link qualities are 

weaker. Thus, if the malicious node does not exaggerate its link qualities, it may not 

look appealing to the neighbouring sensor nodes.

Percentage of data delivery with malicious node threshold: E[X] + 0.5 * StdDev 
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Figure 5.7: MintRoute Scenario 2: data delivery, τ = E[X] +  

2 

Success of Detecting Malicious Node 

The malicious node in Scenario 2 is more malignant and tries to guess when a neighbour
 

is performing the sequence number gap trick hoping to escape detection. We show the
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Percentage of data delivery with malicious node threshold: missed = 0 
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Figure 5.8: MintRoute Scenario 2: data delivery, τ = missed = 0  

performance of the sensor nodes against the different thresholds that the malicious node 

may use. 

Figure 5.9 illustrates the behaviour of the sensor nodes when the malicious node uses 

the threshold τ = E[X] +  σ. We can see a decrease in the average number of TP, which 

means that the malicious node is successful in escaping the detection. On the other hand, 

the average number of FP stays almost the same since this is due to a miss from a good 

sensor node. 

The malicious node is more successful in escaping detection when it uses a tighter 

threshold as shown in Figure 5.10. It can even escape detection completely with the tight­

est threshold as shown in Figure 5.11. However, as we said before, this tightest threshold 

may deprive the malicious node from luring its neighbours if its real link qualities are 

not good. 
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Percentage of true and false detections in network 2 
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Figure 5.9: MintRoute Scenario 2: average detection in network 2, τ = E[X] +  σ 

5.4.4 Simulation of MintRoute Scenario 3 

Link quality computations in MintRoute use an exponentially weighted moving average. 

As a result, it is impossible for a link quality estimate to jump dramatically from one 

interval to the next. Knowing that the malicious node is not naive, the sensor nodes 

should consider this feature of MintRoute and be more vigilant. 

In the previous scenarios, the sensor nodes test the malicious node’s link qualities 

advertisement immediately following a sequence number gap trick, rather than contin­

uously. An enhanced detection mechanism can monitor link qualities continuously to 

detect adaptive malicious nodes. 

Effectiveness of Malicious Node 

The simulation results for this scenario show that the enhanced detection mechanism 

works well. For a sequence number gap of size 1, Figure 5.12 [125] shows that the 
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Percentage of true and false detections in network 2 
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Figure 5.10: MintRoute Scenario 2: average detection in network 2, τ = E[X] +  

2 

percentage of data delivery is about 98% across the 10 WSN topologies with malicious 

node’s threshold τ = E[X]+σ. Furthermore, the approach works even for larger sequence 

number gap sizes, though there is still a slight decline in effectiveness as the gap size 

increases. 

Moreover, the vigilant sensor nodes are more successful in detecting the malicious node 

that uses tighter thresholds as illustrated in Figures 5.13 and 5.14. Since the malicious 

node goes back to exaggerating its link qualities after guessing the sequence number gap 

trick being performed, a sensor node that is always testing link qualities will detect this 

malicious behaviour. 

The enhancement to the IDS mechanism in Scenario 3 can also be applied to the 

malicious node itself. That is, following a (detected) sequence number gap trick, the 

malicious node can cautiously increase its link quality back to the maximum so as to avoid 
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Figure 5.11: MintRoute Scenario 2: average detection in network 2, τ = missed = 0  

suspicion. This strategy has effectively converted the malicious node into a conformant 

node. 

Success of Detecting Malicious Node 

Figures 5.15, 5.16, and 5.17 show the improvements in detecting the malicious node 

when the sensor nodes test all the received link qualities. The latter figure shows that 

the malicious node is also detected when the sensor nodes do not play the sequence 

number gap trick. We can also see an increase in the number of false detections. This is 

due to testing at all times so a missed packet may cause a tricking sensor node to suspect 

its good neighbouring sensor node. 

Although the low number of true detections do not confirm the high percentage of 

data delivery in Scenario 3, it is because of the blacklisting mechanism of our IDS and 

the high threshold of MintRoute to change to a new parent. It was computationally 
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Percentage of data delivery with malicious node threshold: E[X] + StdDev 
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Figure 5.12: MintRoute Scenario 3: data delivery, τ = E[X] +  σ 

found that a malicious node reaches the actual link qualities after advertising five true 

link qualities. Hence, we set the blacklist removal threshold to 16, which means once the 

malicious node is blacklisted it needs five true advertised link qualities to be removed. 

After the removal of the node from the blacklist, it needs to offer a route cost that is 75% 

(MintRoute default) better than the current cost to be considered as a next hop. Thus, 

once the malicious node is blacklisted, it is hard to choose it again as a next hop unless 

all other route costs are low. 

5.5 Summary 

In this Chapter, we explained the extensions to ns-2 to support MintRoute routing pro­

tocol and the proposed IDS for the vulnerability of cooperative link quality routing pro­

tocols for WSNs. Then the Chapter went through several scenarios where the malicious 
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Percentage of data delivery with malicious node threshold: E[X] + 0.5 * StdDev 

100 
90

 80
 70
 60
 50
 40
 30
 20
 10

 0
1 2 3 4 5 6 7 8 9 10 

Network ID 

No malicious node 
Malicious node 

Gap = 1 
Gap = 2 
Gap = 3 
Gap = 4 
Gap = 5 

σ 
Figure 5.13: MintRoute Scenario 3: data delivery, τ = E[X] +  

2 

node adapted its attack to be more vicious. The malicious node built different thresholds 

in different scenarios for the expected number of packets from each neighbouring sensor 

node to escape the detection. If the number of overheard packets exceeded the threshold, 

the malicious node would advertise the true link quality to the corresponding neighbour­

ing sensor node. In each scenario, the IDS was adapted to detect the new behaviour 

of the malicious node. The IDS tested different sizes of the sequence number gap. The 

simulation results showed that the tighter the threshold of the malicious node, the lower 

the success of the IDS. However, smaller size of the sequence number gap were more 

helpful in detecting the malicious node. 
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Percentage of data delivery with malicious node threshold: missed = 0 
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Figure 5.14: MintRoute Scenario 3: data delivery, τ = missed = 0

Percentage of true and false detections in network 2 
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Figure 5.15: MintRoute Scenario 3: average detection in network 2, τ = E[X] +  σ 
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Percentage of true and false detections in network 2 
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Figure 5.16: MintRoute Scenario 3: average detection in network 2, τ = E[X] +  

2


Percentage of true and false detections in network 2
 

100
 

90


 80


Pe
rc

en
ta

ge
 o

f 
de

te
ct

io
n

70


 60


 50


 40


 30


 20


 10


 0


Node ID 

Avg TP with tricks 
Avg TP without tricks 

Avg FP 

0 1 4 6 7 8 9 10 11 13 14 15 16 17 18
 

Figure 5.17: MintRoute Scenario 3: average detection in network 2, τ = missed = 0 
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Chapter 6
 

COLLECTION TREE PROTOCOL AND ITS
 

VULNERABILITIES
 

6.1 Introduction 

This Chapter provides the details of CTP and the possible vulnerabilities related to 

link qualities that a malicious node can exploit. The Chapter begins by explaining the 

components of CTP and how they integrate together followed by a detailed example. 

Then we point out the vulnerabilities that exploit the computations of link qualities in 

CTP. With each vulnerability, the behaviour of the malicious node is explained. Finally, 

the Chapter ends with a proposed IDS to detect these attacks. 

6.2 Modules of CTP 

CTP is a link quality routing protocol that computes routes to a single or a small number 

of base stations in a WSN. It is a best-effort protocol that implements several mechanisms 

to improve data delivery but it does not guarantee 100% delivery [64]. The specification 

of CTP is provided in TinyOS Enhancement Proposal (TEP) 123 [128] and its imple­

mentation is available in the TinyOS 2.1 distribution. CTP is a data collection protocol 

that fulfills the primitives of data collection that are set in TEP 119 [129]: 

• Estimate link quality of 1-hop links. 

• Detect and repair routing loops. 

• Detect and suppress duplicate packets. 
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Although it may look easy to fulfill the data collection primitives, not all collection 

protocols offer high data delivery ratios. The performance of the link quality protocols is 

affected by the instability of wireless links because link qualities may vary significantly 

and quickly over time. In addition, link estimation is often based on correctly received 

packets, which may introduce bias in the estimation. CTP addresses these problems and 

provides a high data delivery ratio to the base station [64, 130, 131]. 

CTP is a flat proactive routing protocol for WSNs. It is a hybrid link quality pro­

tocol, which means that it computes bidirectional link qualities for some sensor nodes 

and unidirectional link qualities for others. CTP computes bidirectional link qualities 

differently from MintRoute. In CTP, bidirectional link qualities are computed indepen­

dently without any cooperation among the sensor nodes. The computations of CTP are 

performed in three modules: the link quality estimator module, the forwarding engine 

module, and the routing engine module. The three modules reside in the network layer 

of the protocol stack. The three modules interact together and with other layers through 

well-defined interfaces. 

Figure 6.1 shows a conceptual view of the interaction between the three modules. 

The link quality estimator computes link quality estimates between neighbouring sensor 

nodes. The forwarding engine is responsible for sending and forwarding data packets 

and receiving ACKs in the WSN. Sent/Forwarded data packets and received ACKs are 

passed to the link estimator to update the outbound link qualities. The routing engine 

manages transmission and reception of beacons (route update packets). The routing 

engine passes the received beacons to the link estimator module to update the inbound 

link qualities. It also accepts link quality estimates from the link quality estimator. 

Sensor nodes implementing CTP exchange beacons to construct routing trees. They 

also relay data packets to report collected data to the base station. In addition, CTP 

relies on receiving ACKs to indicate the successful reception of data packets. 
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Figure 6.1: Modules of CTP 

6.2.1 Link Quality Estimator 

CTP uses the 4-bitle as its default link quality estimator. 4-bitle is a hybrid estimator 

that uses active and passive monitoring at the sending sensor node. Active monitoring 

requires the sensor nodes to broadcast periodic beacons. As a result of this broadcast, 

sensor nodes receive routing information from all their neighbouring sensor nodes. Thus, 

4-bitle computes inbound link qualities for all the neighbouring sensor nodes using the 

received beacons. Unlike active monitoring, passive monitoring infers statistics about the 

links from the packets being sent on these links. Since CTP requires the transmission of 

ACKs to acknowledge the successful reception of data packets, 4-bitle computes outbound 

link qualities using the received ACKs. Since the sensor nodes transmit data packets 

to a chosen next hop, the outbound link quality is computed only for the next hop. 

Accordingly, 4-bitle combines the inbound and outbound link qualities for next hop into 

a bidirectional link quality. All other neighbouring sensor nodes have a unidirectional 



114 

link quality, the inbound link quality. 

4-bitle separates the computations of inbound and outbound link qualities in two 

modules, Beacon Link Quality (BLQ) and Data Link Quality (DLQ), respectively, as 

shown in Figure 6.2. The BLQ converts the number of received and missed beacons into 

inbound link qualities for the sending sensor node using the inverse of WMEWMA. To 

determine the number of missed packets, CTP requires the use of sequence numbers in 

the beacons. The DLQ uses the number of transmitted packets to compute outbound 

link qualities for the sending sensor node using RNP. The outputs of BLQ and DLQ are 

combined together into one value using WMEWMA. If the WSN has high traffic volume, 

then DLQ will dominate the estimates. Otherwise, BLQ will dominate [121]. 

Figure 6.2: Components of link quality estimator 

4-bitle has a neighbour table that holds information of 10 neighbouring sensor nodes. 

Each entry in the table occupies 11 bytes, requiring 110 bytes to save the whole table. 

The fields of each entry are described in Table 6.1. Beacons delivered to the link esti­

mator from the routing engine update the lastSeq, rcvCnt, and failCnt fields. The 

lastSeq is updated with the sequence number of the last received beacon after all other 
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fields are updated. The rcvCnt field is incremented with every received beacon from the 

corresponding neighbour. The failCnt field is incremented if the difference between the 

new sequence number and the lastSeq is greater than one. The BLQ component uses the 

fields lastSeq, rcvCnt, failCnt, and inQuality to compute the inbound link qualities. 

Meanwhile, dataTotal and dataSuccess fields are updated when the forwarding engine 

passes the data packets and ACKs to the link estimator, respectively. The dataTotal 

field is incremented whenever a data packet is transmitted and the dataSuccess field 

is incremented whenever an ACK is received. The DLQ accesses the dataSuccess and 

dataTotal fields to compute the outbound link qualities. The etx field holds the combi­

nation of both the inbound and outbound link qualities of the corresponding neighbour. 

Table 6.1: The fields in the neighbour table of CTP link estimator 
Field Description Size 

ll addr 
lastSeq 
rcvCnt 
failCnt 
flags 
inQuality 
etx 
dataSuccess 
dataTotal 

identifier of neighbour 
sequence number of last received beacon 
number of beacons received after last BLQ update 
number of beacons missed after last BLQ update 
state of this entry 
inbound quality in the range [1, 255]. 1 bad, 255 good 
quality of the link 
number of successful data packets sent after last DLQ update 
number of transmission attempts after last DLQ update 

2 bytes 
1 byte 
1 byte 
1 byte 
1 byte 
1 byte 
2 bytes 
1 byte 
1 byte 

The DLQ component computes the outbound link quality for every five data packets 

sent or forwarded to the corresponding neighbour. The BLQ component computes the 

inbound link quality for every three beacons sent from the corresponding neighbour. 

Sensor nodes may miss packets from their neighbours due to collision or environmental 

factors. Algorithms 6.1 and 6.2 show the steps for computing DLQ and BLQ, respectively. 

For the outbound link quality computations in DLQ, if s out of t data packets are 
t 

acknowledged, then the outbound link quality will be . If  s = 0, then the outbound link 
s 

quality will be the number of failed transmissions since the last successful transmission.
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Algorithm 6.1 DLQ() 

if dataTotal ≥ 5 then 
if dataSuccess = 0  then 

SET q TO 10  × dataTotal 
else 

SET q TO  
10 × dataTotal 
dataSuccess 

[ number of failed transmissions 

[ RNP value 

SET dataSuccess TO 0 
SET dataTotal TO 0 

SET etx TO 
9 × etx + q 

10 

The computation of inbound link qualities is analogous but it is smoothed with the 

inverse of a WMEWMA with α = 0.9 [121]. We can see that both computations, DLQ 

and BLQ, are scaled to avoid floating point operations, which are expensive in resource-

limited devices. 

4-bitle follows the Link Estimation Exchange Protocol (LEEP) [132] packet format. 

LEEP provides a standard format for beacons or route update packets that link quality 

protocols should use. Thus, the routing engine sends the generated routing engine packet 

to the link estimator to encapsulate it in a LEEP packet to form the beacon packet. 

Figure 6.3 shows the fields of a CTP beacon along with the size of each field in bytes. 

Following is the description of each field [132]: 

•	 header : The header of the packet contains the num and seq fields. The num holds 

the number of link information entries in the trailer of the packet. The seq is 

the sequence number of the packet. This number is incremented with every new 

beacon. 

•	 payload : This is usually the routing information received from the routing engine. 

•	 trailer : The trailer contains multiple entries from the neighbour table. Each entry 

in the trailer holds the inQuality value, lq, of a neighbouring sensor node, node id 
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Algorithm 6.2 BLQ()
 

SET total TO rcvCnt + failCnt 
if total ≥ 3 then 

250 × rcvCnt 
SET newEst TO 

total 
9 × inQuality + newEst 

SET inQuality TO 
10
 

2500
 
SET q TO  

inQuality 

if q > 250 then 
SET q TO 65535 [ largest possible value 

SET rcvCnt TO 0
 
SET failCnt TO 0
 

9 × etx + q
SET etx TO 

10 

field. A single CTP beacon may hold up to n entries that bring the total size of the 

beacon to the maximum size allowed by TinyOS. TinyOS version 2 allows packets 

of at most 28 bytes. Since the header occupies two bytes, the payload occupies 

five bytes, and one entry occupies three bytes, a single CTP beacon can hold up 

to seven link information entries. Although CTP does not include the exchanged 

inQuality values in the computation of link qualities, 4-bitle still adds them to 

the beacons to conform with LEEP. 

Figure 6.3: Format of CTP beacon
 

Since CTP computes outbound and inbound link qualities differently, it is important 

to study the behaviour of both link qualities. Figures 6.4 and 6.5 show the values for 
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etx computed manually for a WSN of two sensor nodes. In a stable WSN, the DLQ 

component produces a constant etx value of one, as shown in Figure 6.4. A stable WSN 

means a network with no collisions or packet losses where the routing tree is not changed 

frequently. Each step of DLQ requires at least five data packets to be transmitted. On 

the other hand, Figure 6.5 shows an example of etx value if the link estimator uses BLQ 

only. In a stable WSN, it will take BLQ 25 computations to converge to the minimum 

value of etx which is 10. Each computational step of the BLQ component requires at 

least three beacons to be perceived (missed or received) with a total of 75 beacons to 

reach the minimum etx. Combining BLQ and DLQ helps etx to converge more quickly 

to the minimum value.

Behaviour of DLQ in a stable network 
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Figure 6.4: etx values with the DLQ component only 

6.2.2 Routing Engine 

The routing engine establishes the routing tree by choosing the best routes to the base 

station. The best route is the one with the lowest path cost. Path cost is interpreted as 
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Behaviour of BLQ in a stable network 
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Figure 6.5: etx values with the BLQ component only 

the sum of the etx values of all the links along the path to the base station. To compute 

the path cost of a sensor node, the routing engine adds the etx value of the link to a 

neighbouring sensor node computed by the link estimator to the path cost announced by 

this neighbour. Sensor nodes choose the path of the neighbouring sensor node offering 

the lowest path cost. The routing engine broadcasts the path cost and the next hop 

adaptively in beacons. The routing engine holds routing information of 10 neighbouring 

sensor nodes in a routing table. 

Routing table 

The routing engine maintains a routing table that holds the path cost values of some 

of the neighbouring sensor nodes. Table 6.2 shows the fields of the routing table. It is 

important for the routing engine to know the parents of the neighbouring sensor nodes 

so that the routing engine does not choose a child sensor node as the next hop. The 

cost value saved in the routing table is the path cost announced by the corresponding 
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neighbour in its beacons. The routing engine adds this value to the etx value in the 

neighbour table of the link estimator to determine the best route to the base station. 

The haveHeard flag is updated whenever a beacon is heard from the corresponding 

neighbour. This field is important to keep the routing table updated with potential next 

hop sensor nodes. If a sensor node does not receive beacons from a neighbouring sensor 

node, it shall remove this neighbour from the table so as not to consider it for a next hop 

choice. The congested field is set if a received data packet or a received beacon has the 

C bit set. This means that the route through the corresponding neighbour is congested 

and the neighbour cannot handle any more traffic. Thus, the routing engine will not 

consider the corresponding neighbour in the route choice process. 

Table 6.2: The fields in the routing table of CTP routing engine 
Field Description Size 

neighbour 
parent 
cost 
haveHeard 
congested 

identifier of neighbour 
identifier of parent of neighbour 
path cost of this neighbour 
flag to indicate that beacons are received from neighbour 
flag to indicate that route through neighbour is congested 

2 bytes 
2 bytes 
2 byte 
1 byte 
1 byte 

It is important to synchronize the routing table of the routing engine with the neigh­

bour table of the link estimator. Otherwise, the routing table may hold entries for 

neighbouring sensor nodes that the link estimator has decided to evict due to poor link 

qualities. Thus, the link estimator shall update the routing engine if it evicts any neigh­

bour from its neighbour table. In addition, the routing engine informs the link estimator 

of the current next hop to pin it in the neighbour table. 

The routing engine generates packets in the format shown in Figure 6.6. The following 

is an explanation of each field in the packet: 

•	 P : Pull bit. When the P bit is set, it means that the routing engine is requesting 

the routing information of the neighbouring sensor nodes as soon as possible. 
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•	 C : Congestion bit. If the forwarding engine has no more space in the send queue, 

it will inform the routing engine to set the C bit in the next beacon. Since the 

beacons are broadcast, it is more convenient to set the C bit in the beacons. This 

informs all the neighbours of the status of the send queue to change their routes to 

an uncongested one. 

•	 parent : This field holds the ID of the next hop of this sensor node. 

•	 cost : This field holds the value of the path cost of this sensor node. 

Figure 6.6: Format of CTP routing engine packet 

Adaptive Beacons 

Routing protocols of WSNs typically broadcast beacons or route update packets at fixed 

interval [7]. Having a small interval updates the routing information frequently and 

eliminates routing loops quickly but it uses more bandwidth and energy. Large update 

intervals can let topological inconsistencies persist for long periods of time [64]. The 

routing engine of CTP applies an adaptive beaconing strategy to achieve both fast re­

covery and low bandwidth and energy usage. The routing engine implements the Trickle 

algorithm [133] to broadcast beacons. 

Trickle’s purpose is to propagate code in a wireless network reliably and efficiently. It 

uses a randomized timer to broadcast a code summary to the local neighbourhood during 

an adaptive transmission interval. On top of this randomized timer, Trickle adopts two 
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other mechanisms: suppression of transmission, and adaptation of transmission interval. 

If a sensor node hears a code summary that is identical to its own code summary, it will 

suppress its own transmission to eliminate the propagation of redundant code. When 

the transmission interval expires, the sensor node doubles its interval up to a maximum 

value τmax. On the other hand, when the sensor node hears a code summary that is older 

than its own code summary, it shrinks its transmission interval to a minimum value τmin 

so that its newer code propagates quickly in the WSN. 

Unlike Trickle, there is no global code or routing metric to share among the sensor 

nodes in a CTP WSN. Thus, the routing engine of CTP eliminates the suppression 

mechanism of Trickle but it implements the adaptive transmission interval for sending 

beacons. The routing engine sets τmin to 128 time units and τmax to 512,000 time units. 

The routing engine resets the transmission interval to τmin in three cases [64, 131, 134]: 

•	 When the forwarding engine receives a data packet to forward with a lower path 

cost, it assumes the existence of topology inconsistency or a possible routing loop. 

The forwarding engine sends a request to the routing engine to broadcast a beacon 

as soon as possible. 

•	 When the routing engine finds a new route that has a significantly lower path 

cost than the current value, it shrinks its beacon transmission interval. Thus, a 

beacon is sent as soon as possible to update the neighbouring sensor nodes of the 

new value. A significant drop in the path cost may mean that this sensor node 

has a better route to the base station. Resetting the beacon transmission interval 

propagates this information to the neighbouring sensor nodes quickly. Significant 

means having a path cost value that is 20 points lower than the current value. 

•	 When a packet is received with the P bit set, it means that the sending sensor node 

has joined the network recently and it requests topology information to populate 
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its routing and neighbour tables. The routing engine cancels the current beacon 

transmission interval and schedules a new minimum interval to update the new 

sensor node as soon as possible. 

The operations of the routing engine are controlled by a timer. This timer is fired 

twice: at the beginning of a beacon transmission interval, and at random during the 

interval. Figure 6.7 shows how this timer works. At the beginning of the beacon trans­

mission interval, τb, the timer is fired and it calls the functions decayInterval() and 

chooseAdvertiseTime(), D and C respectively. The decayInterval() function com­

putes the new beacon transmission interval by doubling the old interval. When the beacon 

transmission interval reaches the maximum interval, the new intervals use the maximum 

value without doubling. The chooseAdvertiseTime() function computes a random time 

during the beacon transmission interval to broadcast the beacon. The random time is 

always computed in the second half of the beacon transmission interval. Having a silent 

period in the first half of the beacon transmission interval eliminates the short-listen 

effect [133]. Eliminating the short-listen effect helps in suppressing the propagation of 

redundant code. Although this suppression is not implemented in the current version of 

CTP, its developers intend to implement it in future versions. They believe that after 

a few number of neighbouring sensor nodes advertise their costs no better routes can be 

found to the base station. 

Figure 6.7: Beacon transmission intervals of CTP
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When the timer fires during the beacon transmission interval, τr, at random, it calls 

the functions updateRouteTask(), U , sendBeaconTask(), B, and remainingInterval(), 

R. If it is the first call to the function updateRouteTask(), the routing engine will choose, 

as the next hop, the neighbouring sensor node that offers the lowest path cost to the base 

station. Otherwise, if a next hop is chosen before, then the routing engine will determine 

whether to change it or not. This decision depends on the difference between the new 

path cost and the old path cost. The sendBeaconTask() function prepares a beacon for 

broadcast. However, this preparation takes place only if the sensor node has a path to 

the base station. The function prepares the beacon by filling some of the fields of the 

beacon from the routing table. Then it passes the beacon to the link estimator to add 

the header and footer of the link estimator as explained in Section 6.2.1. Finally, the 

remainingInterval() is called to compute the remaining time until the next beacon 

transmission interval. At the end of the remaining interval, the timer is fired again at τb 

and the sequence of operations begins again for the new interval. 

6.2.3 Forwarding Engine 

The forwarding engine is the top level interface of CTP to the upper layers of the proto­

col stack of WSNs. It is responsible for the transmission of data packets, suppression of 

duplicate packets, detection of loops, and timing of transmissions [129]. The forwarding 

engine accepts data packets from the application layer and enqueues them for transmis­

sion. It also accepts data packets from neighbouring sensor nodes for forwarding. The 

forwarding engine maintains a send queue to buffer data packets ready for transmission 

and a transmit cache to buffer successfully transmitted data packets. 

Transmission of Data Packets 

Before transmission, the forwarding engine asks the routing engine about the next hop 

and the path cost to embed in the data packets. If there is no route to the base station, 
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the forwarding engine will suppress the transmission. Once a path is found to the base 

station, the routing engine informs the forwarding engine to resume transmission of data 

packets. 

Suppression of Duplicate Data Packets 

The forwarding engine removes a sent/forwarded data packet from the send queue and 

adds it to the transmit cache when an ACK is received. The transmit cache is important 

in case duplicate data packets arrive slower than the draining rate of the send queue. A 

duplicate data packet may be received again if the sending sensor node misses the ACK 

from the forwarding sensor node. When the forwarding engine receives a data packet 

to forward, it checks if this data packet has been received before. There are two places 

to search for duplicate data packets: the send queue, and the transmit cache. The data 

packet would be in the send queue if the forwarding engine did not send it yet or an ACK 

is not received from the receiving node. The transmit cache holds data packets that are 

sent and acknowledged. It was found empirically that a transmit cache of size four is 

sufficient to suppress most of the duplicates [64]. 

Detection of Routing Loops 

Routing loops are possible in WSN. A routing loop occurs when the new route includes 

a descendant sensor node [128]. There are two cases where routing loops can occur. 

First, routing loops occur when a sensor node chooses a route that has a significantly 

higher path cost than its older route. A sensor node may choose this route in response 

to losing connectivity with its previous parent. Second, the forwarding engine receives 

a data packet with a path cost that is smaller than its own. It will assume the sending 

sensor node has stale routing topology information and a routing loop may exist [64]. The 

forwarding engine detects routing loops by comparing the ID of the originating sensor 

node and the sequence number of a newly received data packet with the data packets in 
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the send queue and the transmit cache. 

Transmission Timer 

Finally, a timer controls the transmission of data packets from the send queue. When the 

forwarding engine transmits a data packet, it waits for a short period of time to receive an 

ACK. If an ACK is not received within the allotted time, then the forwarding engine will 

retransmit the data packet. The forwarding engine will retransmit an unacknowledged 

data packet at most 32 times before it finally decides to discard it. 

6.3 Example of the Operations in CTP 

As mentioned in the previous section, CTP computes an inbound link quality using active 

monitoring of beacons and computes an outbound link quality using passive monitoring 

of data packets and ACKs. The two link qualities are combined into a bidirectional link 

quality. Next, we give the details of how the CTP modules cooperate to compute the 

link qualities. 

Suppose that two sensor nodes, A and B, are neighbours. Assume that A is the 

parent sensor node and B is the child sensor node. We show how the link estimator and 

the routing engine of sensor node B build the neighbour and routing tables, respectively. 

Table 6.3 shows an excerpt of the evolution of the entry of A in the neighbour table of B. 

The table shows the relevant fields in the computations of the etx value, namely, lastSeq, 

rcvCnt, failCnt, dataSuccess as dataS, dataTotal as dataT , etx, and inQuality. 

For ease of explanation, column s represents the sequence of actions taken by the link 

estimator of sensor node B. The action column represents the processing of sensor node 

B.	 The following explains each action: 

•	 init : This is the initial state of any entry in the neighbour table. All the fields are 

initialized to 0 except lastSeq because the sequence numbers start at 0. 
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•	 bA: This is a beacon received from sensor node A. With each received beacon, the 

routing engine passes the beacon to the link estimator to update the fields rcvCnt 

= rcvCnt + 1,  failCnt = seqNo - lastSeq - 1, and lastSeq = seqNo, where 

seqNo is the sequence number of the received beacon. The first three beacons 

update rcvCnt, as seen in steps 1, 2, and 3. 

•	 BLQ: The BLQ component computes the etx and inbound link quality, inQuality, 

values whenever rcvCnt + failCnt ≥ 3. At step 4, the BLQ computes the values 

10 and 25 for etx and inQuality, respectively, using Algorithm 6.2. 

•	 data: The data action means that sensor node B sent a data packet to its next 

hop, sensor node A in our example. When a data packet is sent, the forwarding 

engine updates the link estimator to increment the dataTotal field, as shown in 

steps 5, 11, and n-2. 

•	 ACK: The ACK means that sensor node A received the data packet from sensor 

node B and sent back an ACK. When the forwarding engine of sensor node B 

receives the ACK, it updates the link estimator to increment the dataSuccess 

field, as shown in steps 6, 13, and n-1. The ACK in CTP is sent in a stop-and-wait 

fashion. This means that a sensor node sends a data packet and waits for its ACK 

before sending another data packet. However, this may lead to a deadlock if the 

ACK is lost or the data packet itself did not reach the next hop. To solve this 

deadlock, the forwarding engine tries to transmit unacknowledged data packets 

up to 32 times. This transmission is transparent to the link estimator, which 

means that with every transmission the link estimator updates the dataTotal field 

regardless of a new transmission or a retransmission. 

•	 DLQ: this action means that the link estimator calculates the outbound link quality 

from the sender, sensor node B, to the receiver, sensor node A. For every five data 
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packets transmitted, Algorithm 6.1 is called to compute the outbound link quality, 

as shown in step n. 

Table 6.3: Example of CTP neighbour table 
s action lastSeq rcvCnt failCnt dataS dataT etx inQuality 

0 init -1 0 0 0 0 0 0 
1 bA 0 1 0 0 0 0 0 
2 bA 1 2 0 0 0 0 0 
3 bA 2 3 0 0 0 0 0 
4 BLQ 2 0 0 0 0 10 25 
5 data 2 0 0 0 1 10 25 
6 ACKA 2 0 0 1 1 10 25 
7 bA 3 1 0 1 1 10 25 
8 bA 5 2 1 1 1 10 25 
9 BLQ 5 0 0 1 1 15 39 
10 bA 6 1 0 1 1 15 39 
11 data 6 1 0 1 2 15 39 
12 bA 7 2 0 1 2 15 39 
13 ACKA 7 2 0 2 2 15 39 
14 bA 8 3 0 2 2 15 39 
15 BLQ 8 0 0 2 2 17 60 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
n-2 data . . . 4 5 13 . 
n-1 ACKA . . . 5 5 13 . 
n DLQ . . . 0 0 12 . 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 

Unlike the link estimator, the routing engine adds to the routing table only the 

neighbouring sensor nodes that have paths to the base station. The routing engine infers 

this information from the received beacons before passing them to the link estimator. 

Suppose that sensor node A announced a path cost of 20, and its entry in the routing 

table of sensor node B looks as shown in Table 6.4. 

Sensor node B infers from this entry that its neighbour sensor node A has a path to 

the base station through a sensor node, for example C. This path has a cost of 20 and 
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Table 6.4: Example of CTP routing table 
neighbour parent cost haveHeard congested 

A C 20 1 0 

it is not congested. This entry is not updated as often as the entry of sensor node A in 

the neighbour table. With every received beacon from sensor node A, the link estimator 

updates its entry in the neighbour table. On the other hand, the routing engine updates 

the entry of sensor node A in the routing table only if the parent is changed, the path 

cost changes, or the path is congested. The routing engine will update the haveHeard 

field if the route through sensor node A is lost, i.e., sensor node A does not send any 

more beacons. 

To compute the cost of its path to the base station, sensor node B adds the path 

cost of sensor node A to the etx value of A computed by the link estimator. It does the 

same process for all other neighbouring sensor nodes in the routing table. Sensor node 

B chooses the neighbour that offers the lowest path cost to the base station. Suppose 

that the beacon that arrived in step 7, in the neighbour table, holds the path cost of 

A. This beacon forces the routing engine to create an entry for A in the routing table. 

Later, when the updateRouteTask() function is called, the routing engine will have a 

path to the base station through sensor node A with cost 30. If this is the lowest path 

cost to the base station, the routing engine will mark sensor node A as the next hop to 

the base station. It is worth mentioning that other neighbouring sensor nodes may offer 

a lower path cost to the base station in the future. However, the routing engine will not 

change the next hop unless it does not receive any more beacons from the current next 

hop. Also, it will change the next hop if another neighbouring sensor node offers a path 

cost that is lower than the current path cost by 15 (CTP default) or more. In its future 

beacons, B will broadcast a path cost of value 30 through parent sensor node A. 
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6.4 Vulnerabilities of CTP to Link Quality Attacks 

In this section, we explain three basic vulnerabilities that a malicious node may exploit 

to disrupt the computations in CTP. 

As explained in MintRoute, a malicious node may send fake link qualities to a neigh­

bouring sensor node. Since the computations of link qualities in MintRoute depend on 

the cooperation between sensor nodes, fake link qualities may affect these computations. 

This type of malicious node attack is not effective in CTP because the sensor nodes do 

not exchange link quality information. Each sensor node in CTP computes its link qual­

ities independent of the other sensor nodes. Thus, the malicious node has to find other 

methods to compromise CTP. 

Figure 6.8 [135] depicts the types of link qualities that a CTP sensor node computes for 

its neighbouring sensor nodes. The figure shows sensor node S and its three neighbouring 

sensor nodes N1, N2, and N3. Sensor node S has chosen N1 as its parent. The figure shows 

the types of link qualities with respect to S. Sensor node S computes the inbound link 

qualities for all its neighbours since this quality depends on the beacons being broadcast 

from them. Since the computation of the outbound link quality depends on receiving 

ACKs from the parent, S computes the outbound link quality for sensor node N1 only. 

In other words, the inbound link quality is computed for all neighbouring sensor nodes, 

whereas the outbound link quality is computed for the next hop sensor node only. 

Knowing that each sensor node computes its link qualities independently, a malicious 

node cannot influence the computation of link qualities by sending false information to 

its neighbours. In addition, since inbound and outbound link qualities are computed 

differently, the malicious node can either manipulate the up-link quality or influence the 

computation of the down-link quality, where the up-link quality is the link from the 

malicious node to the base station, and the down-link is the link from the malicious node 
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Figure 6.8: Types of link qualities in CTP 

to a neighbouring sensor node [136]. Manipulation of up-link quality can be achieved 

by broadcasting false path cost, for example. Influencing the down-link quality can be 

achieved by manipulating the beacon transmission interval. Moreover, the malicious 

node can combine both strategies for maximum efficiency. Next, we describe three basic 

scenarios followed by a combined scenario in which a malicious node may compromise 

CTP. 

6.4.1 CTP Scenario 1 

In Scenario 1, the malicious node manipulates the up-link quality. In this scenario, the 

malicious node lies about the quality of the link to its parent. Thus, when the routing 

engine of the malicious node chooses a parent, it will add the lowest possible cost to the 

value of the path cost of the parent. The malicious node then broadcasts the computed 

value as its path cost. The malicious node aims to convince its neighbouring sensor nodes 

that it has a low cost route to the base station, as shown in Figure 6.9. The true local 

link quality between the malicious node and its parent, sensor node B, may not offer the 

lowest path cost to sensor nodes C and D, as shown in Figure 6.9(a). However, if the 

malicious node manipulates the etx value, it may offer a better route to D, as shown in 
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Figure 6.9(b).
 

(a) Before compromising local link (b) After compromising local link 

Figure 6.9: Behaviour of malicious node in CTP Scenario 1 

6.4.2 CTP Scenario 2 

The second way to manipulate up-link quality is to lie about the value of the path 

cost. The malicious node adopts a more vicious behaviour by faking its path cost. 

The malicious node escalates its attack because scenario 1 suffers from ineffectiveness, 

especially when the malicious node is located far from the base station. In that case, 

the local link quality has a small contribution to the computation of the path cost of 

the malicious node. Thus, if the path cost of the parent sensor node is already high, it 

is doubtful that faking the local link quality will offer a low path cost for the malicious 

node. 

When the malicious node advertises a low path cost to the base station, its path looks 

more attractive to the other sensor nodes, as shown in Figure 6.10. The fake path cost 

value offers a better route for sensor nodes C and D. 

Figure 6.10: Behaviour of malicious node in CTP Scenario 2 
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6.4.3 CTP Scenario 3 

In Scenario 3, the malicious node influences the computations of down-link qualities. 

Influencing the computations for the down-links means that the malicious node interferes 

in the computations of the outbound links or the inbound link qualities of its neighbouring 

sensor nodes. 

Influencing the computations of the outbound link qualities is not advantageous to 

the malicious node. First, it is not necessary that all the neighbouring sensor nodes have 

an outbound link quality to the malicious node. Only the neighbours that choose the 

malicious node as their next hop will have outbound link qualities to it. To manipulate 

the computations of the outbound link qualities of its children sensor nodes, the malicious 

node shall not acknowledge the reception of their data packets. However, this behaviour 

will lead to a negative outcome for the malicious node because its children will have low 

outbound link qualities to it. This means that the malicious node will not be a favoured 

next hop in the future. 

It is more advantageous for the malicious node to influence the computations of the 

inbound link qualities of its neighbouring sensor nodes. Since inbound link qualities are 

computed for all neighbouring sensor nodes, regardless of which one is the next hop, 

the malicious node will have a larger impact than targeting outbound link qualities. 

Since the computation of inbound qualities depends on beacons, the malicious node has 

to manipulate its beacon broadcast to influence the computations of its neighbouring 

sensor nodes. A malicious node implementing Scenario 3 takes advantage of the count-

based property of the computations and the adaptive beacon transmission intervals. In 

CTP, a sensor node computes its inbound link quality for a neighbouring sensor node for 

every three beacons received from this neighbour. These beacons should be received in 

adaptive intervals, which means that the time difference between any two beacons should 

increase over time. A malicious node may compromise the beacon transmission interval 
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by always using the minimum beacon transmission interval. Thus, the neighbouring 

sensor nodes will receive more frequent beacons from the malicious node than the other 

good sensor nodes. 

For example, Figure 6.11 [135] compares the beacon transmission intervals of a good 

sensor node versus a malicious node. We can see that if a malicious node uses the 

minimum beacon transmission interval, 128 time units, it will send seven beacons for 

every three beacons sent by a good sensor node. This means that the inbound link 

qualities for the malicious node will be computed twice versus once for the other sensor 

nodes. This helps the malicious node to reinforce the inbound link qualities of its children 

sensor nodes and attract other neighbouring sensor nodes. This behaviour does not look 

suspicious because, in CTP, sensor nodes use the minimum beacon transmission interval 

if they do not have routes to the base station. 

(a) Beacon transmission intervals of a good sensor node 

(b) Beacon transmission intervals of a malicious sensor node 

Figure 6.11: Behaviour of malicious node in CTP Scenario 3 

6.4.4 CTP Combined Scenarios
 

A more vicious node would combine the basic scenarios to lure more good sensor nodes.
 

It can combine Scenarios 1 and 2, Scenarios 1 and 3, or Scenarios 2 and 3. However,
 

Scenario 2 subsumes Scenario 1, which means that exaggerating the path cost implies
 

lying about the local link quality as well. This means that Scenario 2 is more powerful
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than Scenario 1. Accordingly, we only consider the latter combination in which the 

malicious node combines Scenarios 2 and 3. 

If a malicious node broadcasts low path cost in frequent beacons, then it will be 

more convincing to its neighbouring sensor nodes to route their sensed data through it. 

Moreover, these neighbouring sensor nodes will be offering low path costs as well and 

thus, more sensor nodes will join the subtree of the malicious node. For the ease of 

explanation, we call the combined attack, Scenario 4. 

6.5 Detection Engine of CTP Vulnerabilities 

Since the nature of attacks on CTP differs from one scenario to another, we have divided 

the detection of the attacks on CTP into three modules. These modules correspond to 

the detection of the three basic Scenarios 1, 2, and 3. The combined scenario is detected 

by any of the detection modules of the constituent scenarios. 

6.5.1 Detection Module 1 

Detection module 1 is responsible for detecting malicious nodes that follow Scenario 1. 

Although we did not implement this module, we give its details for the completion of the 

detection engine. 

The detection of Scenario 1 malicious node is not straightforward since the compu­

tations of the local links are internal for each sensor node. Moreover, the computations 

are not shared with other sensor nodes. Therefore, it is hard to compute expectations 

for the link quality values. However, the parent sensor node can discover the deception 

of the malicious node by performing the sequence number gap trick as follows: 

•	 introduce a sequence number gap in its beacons. Thus, the parent sensor node will 

have a maximum threshold for the value of rcvCnt of the malicious node and a 
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minimum threshold for the value failCnt; 

•	 use the two values to compute an expected value for the inbound link quality 

computed by the malicious node; and 

•	 add its own path cost to the expected value and compare the result with the 

announced value from the malicious node. 

Similarly, the parent node performs the same steps for all its children sensor nodes. 

The drawback of this procedure is that only one sensor node can discover the malicious 

node, which is its parent. Moreover, if the malicious node is faking its parent, then the 

malicious node will go undetected. 

6.5.2 Detection Module 2 

Detection module 2 takes advantage of the common neighbouring sensor nodes between 

a parent and its child to detect malicious nodes that follow Scenario 2. To detect the 

malicious node, the common neighbouring sensor nodes between the malicious node and 

its parent sensor node work as watchdogs for the advertised path cost values. They take 

advantage of the following property: since a child sensor node adds the etx value of its 

parent to the value of path cost of its parent, the path cost of the child sensor node must 

be greater than the path cost of its parent. Accordingly, if the path cost of the malicious 

node is less than or equal to the path cost of its parent, then the common neighbours 

will flag it. 

To be more vicious, the malicious node can claim a fake next hop. In such case, the 

malicious node escapes detection because there are no common neighbours between it 

and its parent. 
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6.5.3 Detection Module 3 

Detection module 3 detects malicious nodes that implement Scenario 3 by measuring the 

arrival times of beacons and checking that they exhibit an adaptive behaviour. However, 

the detection is not straightforward because there are cases where a sensor node resets 

or does not double its beacon transmission interval as explained in Section 6.2.2. 

Figure 6.12 [135] shows a state machine that implements detection module 3, where 

cost is the path cost of the received beacon, EB is an expected beacon that arrives in 

an adaptive fashion, UEB  is an unexpected beacon, and alert is a counter of beacon 

violations. Each sensor node in a WSN should have a local copy of this state machine to 

detect malicious nodes independently. This state machine considers the following factors 

in CTP: 

•	 At least three beacons are required to compute a link quality. 

•	 Sensor nodes will use the minimum beacon transmission interval if they do not have 

routes to the base station. 

•	 After establishing routes to the base station, sensor nodes should adapt their beacon 

transmission interval. 

The state machine tests only beacons from sensor nodes that have routes to the base 

station, with cost > 0. After starting to monitor the arrival of beacons, the state machine 

requires three consecutive beacons from the same neighbouring sensor node to blacklist 

it. This threshold is important to ensure that the malicious node is not considered 

for parent choice after computing the link qualities. To punish malicious nodes and to 

prevent the isolation problem, the state machine decreases the value of the alert variable 

for every conformant beacon. On the other hand, it will increase the value if the beacon 

is suspicious. A blacklisted sensor node that has its alert value reach 0 is removed from 

the blacklist. 
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Figure 6.12: Detection Module 3 of CTP Scenario 

6.6 Summary 

In this Chapter, we explained the details of CTP and showed how they are integrated 

to build routing trees. CTP comprises three modules that cooperate to build a robust 

routing tree. However, the sensor nodes in a CTP WSN do not cooperate to build the 

routing trees as they do in MintRoute. This makes it harder for a malicious node to 

share fake values to influence the computations of its neighbouring sensor nodes to its 

favour. However, we pointed out three basic scenarios in which a malicious node can 

compromise the computations of the link qualities in CTP. In two of these scenarios, 

the malicious node manipulated its path cost and in the third, it manipulated its bea­

con transmission intervals. Combined scenarios where a malicious node combined more 

than one basic scenario were also discussed. Finally, the Chapter discussed a proposed 

detection mechanism that isolates the malicious node from the rest of the WSN. 

The next Chapter discusses the simulation model and results of the three CTP sce­

narios in ns-2. 
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Chapter 7 

CTP: SIMULATION MODEL AND RESULTS 

7.1 Introduction 

This Chapter discusses the simulation results of CTP in ns-2. The Chapter begins by 

explaining the implementation of CTP and its supporting algorithms in ns-2. Next, 

the Chapter describes the setup of the simulation environment and the configuration of 

the sensor nodes, the malicious node, and the proposed IDS. The simulation of attack 

scenarios on CTP comes next. In that part of the Chapter, the effect of each attack on 

CTP is explained followed by a discussion about the simulation results of the proposed 

IDS. 

7.2 Extending ns-2 to Support CTP 

In this section, we explain the extensions to ns-2 to support CTP and the proposed CTP 

IDS. Additional components that do not exist in ns-2 are also implemented. These 

components are: a random number generator, and CTP specific data structures. 

7.2.1 Implementation of CTP 

We have used the source code of CTP in TinyOS and the papers [128, 129] as references 

for the implementation of CTP in ns-2. 

CTP implements its three modules (the link estimator, the routing engine, and the 

forwarding engine) separately where they interact together through defined interfaces. 

This implementation gives the flexibility to replace any of them without affecting the 

others. For example, we may use the link quality estimator WMEWMA instead of 4-bitle 
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without affecting either the implementations or the operations of the routing engine and 

the forwarding engine. 

To accommodate this flexibility, we have implemented CTP in ns-2 as four separate 

classes. Three of these classes implement the three modules and the fourth links them 

together. 

7.2.2 Implementation of TinyOS Random Number Generator 

CTP requires a random number generator to schedule the transmission of beacons. 

TinyOS offers two algorithms for generating random numbers: Linear Feedback Shift 

Register pseudo random number generator (RandomLFSR), and Multiplicative Linear 

Congruential Generator (RandomMLCG). RandomLFSR is faster, but the generated 

numbers have less randomness [137]. CTP uses RandomMLCG seeded with the IDs of 

the sensor nodes. Several random number generators are implemented in ns-2 but neither 

RandomLFSR nor RandomMLCG is implemented. Accordingly, we have implemented 

RandomMLCG in ns-2 to use in CTP simulations. The algorithm of RandomMLCG is 

described in Section A.1 of Appendix A. 

7.2.3 Implementation of CTP Data Structures 

CTP uses several data structures in TinyOS that have different implementation in ns-2 

or do not exist at all. These data structures are the queue, the message pool, and the 

message cache. The queue is a general First In First Out (FIFO) structure that has a 

limited size. Data packets are enqueued at the end of the queue and dequeued from the 

front of the queue. The message pool is a dynamic memory component with a limited 

size. The message pool adds new elements to any empty space in it. Finally, the message 

cache is a CTP specific data structure that implements the Least Recently Used (LRU) 

cache algorithm [138] to store the signatures of CTP data packets. We have implemented 
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the three data structures in ns-2. The algorithms of the three data structures are given 

in Sections A.2, A.3, and A.4 of Appendix A, respectively. 

7.2.4 Implementation of CTP IDS 

As explained in Section 6.5, CTP IDS is divided into three modules, one for each of the 

basic scenarios. As discussed, a malicious node that follows Scenario 2 implies following 

Scenario 1. In addition, Scenario 2 is more powerful than Scenario 1. Accordingly, we 

have neither implemented Scenario 1 nor detection module 1. Detection modules 2 and 

3 are implemented in routines Test2() and Test3(), respectively. 

Since both detection modules 2 and 3 test the path costs or the arrival time of beacons, 

it is more convenient to implement them in the routing engine. The routing engine is 

responsible for computing path costs and scheduling beacon transmissions. Thus, when 

the routing engine receives a beacon, it calls Test2() and Test3() to test any anomalous 

behaviour. 

Storage Space Overhead 

To implement the detection modules, extra information about the received beacons is 

required. A logical place to save this information is the routing table of the routing 

engine since the detection modules are implemented in the routing engine. However, 

the routing table holds information about the best ten routes to the base station only. 

The entries are inserted and evicted depending on the routes offered by the neighbouring 

sensor nodes. On the contrary, the detection routines depend on permanent information 

about the routes of the neighbouring sensor nodes. As a result, we have added a new 

table, beaconInfo, to the routing engine to hold the extra information. This table enables 

the detection routines to keep the required information about neighbouring sensor nodes 

at all times. In addition, it would make it easy to separate the detection engine into a 

separate entity if required. The fields of the beaconInfo table are shown in Table 7.1. 
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Table 7.1: Fields of the beaconInfo table 
Field Size Description 

neighbour 
lastSeq 
cost 
prevBeaconTime 
nextMinDiff 
nextMaxDiff 
alert2 
alert3 
blackList 

2 bytes 
1 byte 
2 bytes 
2 bytes 
4 bytes 
4 bytes 
1 byte 
1 byte 
1 byte 

ID of neighbouring sensor node 
sequence number of last received beacon 
value of the path cost to the base station 
arrival time of previous beacon 
min. difference between received beacon & next beacon 
max. difference between received beacon & next beacon 
alerts raised from detection module 2 
alerts raised from detection module 3 
flag to indicate if neighbour is blacklisted 

The beaconInfo table consists of 9 fields that occupy 18 bytes per entry. For each 

neighbouring sensor node, the routing engine extracts the neighbour, lastSeq, and 

cost fields from the beacons to create an entry for the sending neighbouring sensor 

node. Hence, the first eligible beacon from neighbour is used to initialize its entry. If 

there is an entry for neighbour, the routing engine will update the latter two fields. The 

routing engine updates the value of prevBeaconTime with the arrival time of the last 

received beacon after the beacon has gone through all the detection routines. 

Detection module 2 uses the cost field to compare the values announced by a child 

sensor node and its parent sensor node under the condition that both are neighbours 

of the testing sensor node. If a neighbouring sensor node is suspected, then detection 

module 2 will increment the value of alert2. 

Detection module 3 uses the values of the fields prevBeaconTime, nextMinDiff, and 

nextMaxDiff to test the arrival time of the last received beacon against the arrival time 

of the previous beacon - for neighbour. Then it updates the values of nextMinDiff and 

nextMaxDiff according to the outcome of the test. If the current beacon fails the test, 

detection module 3 will increment the value of alert3. 

A testing sensor node will blacklist a neighbouring sensor node if the number of raised 

alerts exceeds a certain threshold. The blacklist field informs the routing engine that 
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the corresponding neighbour is not an option for a next hop choice. 

The size of the table depends on the size of the neighbourhood of each sensor node. 

TinyOS does not have a dynamic memory allocation mechanism. To overcome this 

problem, we have fixed the size of the table in our experiments depending on the size of 

the WSN as explained in the next section. 

Code Overhead 

Algorithms 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show the pseudo-code of the algorithms added 

to the routing engine of CTP. Algorithm 7.1, TestBeacon(), describes the code to be 

executed by the routing engine. Algorithm 7.2, Test2(), implements detection module 

2 of CTP IDS and Algorithm 7.3, Test3(), implements detection module 3. The other 

three algorithms are helper routines that are called by the former three algorithms. 

When a sensor node receives a beacon from a neighbouring sensor node nghbr, its 

routing engine calls TestBeacon(nghbr, beacon). If nghbr has a path to the base station 

- known from the cost value in beacon, then TestBeacon() will create and initialize an 

entry for nghbr in beaconInfo table. Having a path means that the next beacons from 

nghbr should arrive in adaptable times. If beacons are missed, then TestBeacon() will 

adapt the intervals nextMinDiff and nextMaxDiff depending on the number of missed 

beacons. For example, missing one beacon adapts the intervals once, and missing two 

beacons adapts the intervals twice. The cost of nghbr is set to ∞ because missed beacons 

may have held a new path cost value. Resetting alert2 and alert3 is important because 

the IDS tests consecutive beacons. If none of the previous conditions is satisfied, then 

Test2() and Test3() will be called to test the path cost value and the arrival time of 

beacon, respectively. Finally, prevBeaconTime of nghbr is updated with the arrival time 

of beacon. 

Test2() checks the value of the path cost of nghbr. It tests the property that the 



144 

Algorithm 7.1 TestBeacon(nghbr, beacon)
 

READ path cost of nghbr FROM beacon 
if path cost > 0 then 

if first time to hear from nghbr then 
CREATE an entry in beaconInfo table for nghbr 
SET lastSeqNo of nghbr in beaconInfo TO sequence number of beacon 
SET cost of nghbr in beaconInfo TO cost value in beacon 
SET nextMinDiff of nghbr in beaconInfo TO 128 
SET nextMaxDiff of nghbr in beaconInfo TO 320 
SET alert2 of nghbr in beaconInfo TO 0 
SET alert3 of nghbr in beaconInfo TO 0 
SET blackList of nghbr in beaconInfo TO false 

else if missed beacons from nghbr then 
for the number of missed beacons do 

CALL AdaptInterval(nghbr, 0)  [ Adapt min and max intervals 

CALL DecAlert(nghbr, 0)  [ Reset alert2 and alert3 
SET cost of nghbr in beaconInfo TO ∞ 

else 
CALL Test2(nghbr, beacon) 
CALL Test3(nghbr, beacon) 

SET prevBeaconTime of nghbr in beaconInfo TO arrival time of beacon
 

path cost of a child sensor node must be greater than the path cost of its parent. To 

proceed with the test, Test2() checks that the parent of nghbr is a neighbour to the 

testing sensor node, and it has an entry in beaconInfo table. Afterwards, if nghbr does 

not satisfy the aforementioned property, then Test2() will call IncAlert() to increment 

alert2. Otherwise, it will call DecAlert() to decrement alert2 and check the status of 

the blacklist. 

Algorithm 7.2 Test2(nghbr, beacon) 

Read parent of nghbr from beacon 
if parent in routing table then 

READ path cost of parent FROM routing table 
READ path cost of nghbr FROM beacon 
if cost of nghbr ≤ cost of parent then 

CALL IncAlert(nghbr, 2)  [ Increment alert2 
else 

CALL DecAlert(nghbr, 2)  [ Decrement alert2 
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Test3() tests the arrival time of beacons relative to the nextMinDiff and nextMaxDiff 

intervals. First, it computes the time difference between the arrival times of the current 

beacon and the previous beacon. If this difference is within the current intervals, then 

Test3() will call DecAlert() to decrement any raised alert3 and will adapt the current 

intervals for the arrival of the next beacon. If the difference is within half of the current 

intervals, then Test3() will increment alert3 only. This case may occur because nghbr 

may not adapt its beacon transmissions if any of its neighbouring sensor nodes does not 

have a route to the base station yet and it sets the P bit in its beacons. Thus, nghbr 

will not adapt its beacon transmissions until this neighbour unsets the P bit. This may 

take up to three unadapted beacons from nghbr because afterwards this neighbour will 

have nghbr, at least, to select as a parent. Since the testing sensor node may not be able 

to verify this case, it increments alert3 for nghbr. It does not adapt the intervals for 

nghbr because the next beacon should be adapted to satisfy the current intervals. The 

third case occurs when the arrival difference falls in an overlap of two sets of intervals. 

For example, a difference of 600 falls in the sets [256, 640] and [512, 1280]. If the beacon 

belongs to the second set and the IDS classifies it to the first set, then the intervals will 

not be adapted correctly for the arrival of the next beacon. The next beacon should be in 

the interval [1024, 2560] which is four times greater than the current interval determined 

by the IDS. In such case, Test3() increments alert3 for nghbr and adapts the intervals 

twice. In the final case, nghbr resets its beacon transmission interval either because it 

lost its route to the base station or one of its neighbours has the P bit set in its beacons. 

Test3() resets the intervals for nghbr accordingly since none of the previous conditions 

is satisfied. 

IncAlert() increments the value of alert2 or alert3 depending on the value of the 

status parameter. If the number of raised alerts is ≥ 3 then IncAlert() will blacklist 

nghbr. 
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Algorithm 7.3 Test3(nghbr, beacon)
 

arrival difference = arrival time of beacon - arrival time of previous beacon 
if nextMinDiff < arrival difference < nextMaxDiff then 

CALL DecAlert(nghbr, 3)  [ Decrement alert3 
CALL AdaptInterval(nghbr, 0)  [ Adapt intervals according to current values 

else if nextMinDiff / 2  < arrival difference < nextMaxDiff / 2  then 
CALL IncAlert(nghbr, 3)  [ Increment alert3 

else if nextMinDiff * 2  < arrival difference < nextMaxDiff * 2  then 
CALL IncAlert(nghbr, 3)  [ Increment alert3 
CALL AdaptInterval(nghbr, 0)  [ Adapt intervals according to current values 
CALL AdaptInterval(nghbr, 0)  [ Adapt intervals according to current values 

else 
CALL AdaptInterval(nghbr, 1)  [ Reset intervals for next beacon 
CALL IncAlert(nghbr, 3)  

Algorithm 7.4 IncAlert(nghbr, status)
 

if status = 2  then 
INCREMENT alert2 of nghbr in beaconInfo 

else if status = 3  then 
INCREMENT alert3 of nghbr in beaconInfo 

if alert2 + alert3 = 3  then 
BLACKLIST nghbr 

DecAlert() will decrement the values of alert2 or alert3 if nghbr is blacklisted. If 

the number of raised alerts reaches zero, then nghbr will be removed from the blacklist. 

If nghbr is not blacklisted, then DecAlert() will reset the value of alert2 or alert3 

depending on the value of the status parameter. 

Finally, AdaptInterval() is responsible for adapting the nextMinDiff and nextMaxDiff 

intervals to test the arrival times of beacons. CTP uses a minimum beacon transmission 

interval of size 128 time units and a maximum of 512,000 time units. The routing engine 

doubles the beacon transmission interval after sending every beacon until the maximum 

is reached. Then it keeps the maximum interval for future beacons. Due to the adaptive 

behaviour, the minimum difference between the arrival of two beacons is 128 and the 

maximum difference is 768,000. 
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Algorithm 7.5 DecAlert(nghbr, status)
 

if status = 2  then 
if nghbr is blacklisted then 

DECREMENT alert2 of nghbr in beaconInfo 
if alert2 + alert3 = 0  then 

REMOVE nghbr from blacklist 

else 
SET alert2 of nghbr in beaconInfo TO 0 

else if status = 3  then 
if nghbr is blacklisted then 

DECREMENT alert3 of nghbr in beaconInfo 
if alert2 + alert3 = 0  then 

REMOVE nghbr from blacklist 

else 
SET alert3 of nghbr in beaconInfo TO 0 

else if status = 0  then 
if nghbr is blacklisted then 

DECREMENT alert2 of nghbr in beaconInfo 
DECREMENT alert3 of nghbr in beaconInfo 
if alert2 + alert3 = 0  then 

Remove nghbr from blacklist 

else 
SET alert2 of nghbr in beaconInfo TO 0
 
SET alert3 of nghbr in beaconInfo TO 0
 

The malicious node that will send frequent beacons modifies Algorithm 7.7 to use the 

minimum beacon transmission interval. Non-malicious node should double their beacon 

transmission intervals then choose a random time during the new interval to broadcast 

their beacons. The malicious node omits the first operation and chooses the random time 

only. Hence, the malicious node never adapts its initial beacon transmission interval, 

which is the minimum allowed beacon transmission interval. 

7.3 Setup of CTP Simulation Environment 

In this section, we explain the settings of the simulation environment used to simulate 

WSNs that run CTP as the routing protocol. 
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Algorithm 7.6 AdaptInterval(nghbr, status)
 

if status = 0  then 
if nextMinDiff = 131072 and netMaxDiff = 327680 then 

SET nextMinDiff of nghbr in beaconInfo TO 256000 
SET nextMaxDiff of nghbr in beaconInfo TO 643072 

else if nextMinDiff < 256000 and netMaxDiff < 643072 then 
SET nextMinDiff of nghbr in beaconInfo TO nextMinDiff * 2 
SET nextMaxDiff of nghbr in beaconInfo TO nextMaxDiff * 2 

else if netMaxDiff = 643072 then [ Set maximum values for both differences 
SET nextMinDiff of nghbr in beaconInfo TO 256000 
SET nextMaxDiff of nghbr in beaconInfo TO 768000 

else [ Reset both differences 
SET nextMinDiff of nghbr in beaconInfo TO 128 
SET nextMaxDiff of nghbr in beaconInfo TO 320 

Algorithm 7.7 DecayInterval()
 

if malicious node then 
CHOOSE random time to send beacon 

else [ original code for non-malicious nodes 
DOUBLE the beacon transmission interval 
if beacon transmission interval > maximum transmission interval then 

SET beacon transmission interval TO maximum transmission interval 
CHOOSE random time to send beacon 

CTP differs from MintRoute in the way it seeds the random number generator. CTP 

uses the IDs of the sensor nodes to seed the random number generator. As a result, 

simulating the same network topology multiple times produces the same routing tree. 

Seeding the random number generator with a fixed value produces the same sequence of 

random number values. Thus, the transmission times of the beacons and data packets 

will always be the same for the same topology. Accordingly, we have written simulation 

files to simulate 100 different WSNs. 

As explained in Section 6.2.1, the etx in a stable WSN requires 75 beacons to reach the 

minimum link quality of value 10. According to the adaptive behaviour of the beacon 

transmission, the 75 beacons require 32,780,160 time units. Therefore, the simulation 

time for each experiment has been set to 40,000,000 time units. This time is sufficient to 
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have the 75 beacons from each sensor node reach the minimum link qualities. Moreover, 

the simulation time allows for the transmission of more than 75 beacons, specifically 

around 89 beacons per sensor node. 

We have conducted simulation experiments with different WSN densities, data trans­

mission intervals, and locations of the malicious node. Following the simulation frame­

work of Section 3.5, the next subsections describe the parameters of the framework. 

7.3.1 Setup of the WSNs 

We have simulated WSNs of different sizes namely, 25, 50, and 100 sensor nodes, to 

evaluate the proposed IDS. The wireless range of the sensor nodes differs in each size to 

have at least 95% of the sensor nodes connected. Table 7.2 shows the different wireless 

ranges of the sensor nodes in the different sizes of the WSNs. We have simulated 100 

different WSNs for each network size. 

Table 7.2: Wireless ranges of sensor nodes in CTP simulations 
Size of WSN Range of sensor nodes 

25 nodes 
50 nodes 
100 nodes 

45 units 
35 units 
25 units 

Since CTP is designed to work in low traffic WSNs [128], we have chosen 100,000 

and 1,000,000 time units as two long data transmission intervals. The data transmission 

interval means that every sensor node generates one data packet at random during that 

interval. 

7.3.2 Setup of Malicious Node 

To have different neighbourhood sizes, the malicious node has been placed at different 

locations in the simulation area along the diagonal from the base station. The locations 
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of the malicious node depend on its wireless range as shown in Table 7.3. Figure 7.1 [135] 

shows the locations of the malicious node relative to the base station. 

Table 7.3: Physical locations of the malicious node vs. its wireless range 
Range Physical locations 

45 units 
35 units 
25 units 

(45, 45), (55, 55), (65, 65) 
(35, 35), (45, 45), (55, 55), (65, 65), (75, 75) 
(25, 25), (35, 35), (45, 45), (55, 55), (65, 65), (75, 75), (85, 85) 

Coordinates of the malicious node 

0  10  20  30  40  50  60  70  80  90  100 

X-coordinate 

Figure 7.1: Locations of the malicious node relative to the base station 

In all scenarios, the malicious node is configured to discard the data packets that it 

receives from its children sensor nodes. This mechanism helps in measuring data delivery 

at the base station before and after the attack. However, we assume that the malicious 

node can perform any malicious behaviour. So as not to deteriorate the link qualities of 

its children, the malicious node acknowledges the reception of data packets. 
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7.3.3 Setup of CTP IDS 

To detect malicious nodes effectively, the IDS needs an adequate size of the beaconInfo 

table with respect to the neighbourhood size. A fine-tuned size allows an easy detection 

of malicious nodes. An underestimated size may result in failing to track the beacons of 

some neighbouring sensor nodes and thus, the IDS may fail to detect the malicious node. 

An overestimated size results in wasting the scarce storage space. 

Since we assume the unit disk model for the wireless ranges and randomly uniform dis­

tributed sensor nodes, we can compute an expected value for the number of neighbouring 

sensor nodes as shown in Equation 7.1. 

expected no. ofneighbours =	 density of sensor nodes × area of wireless coverage 

number of nodes 
= × πr2	 (7.1)

simulation area 

where number of nodes = size of the WSN plus one for the malicious node, simulation 

area = 1002 , π = 
22

, and r = wireless range of sensor nodes. The size of the beaconInfo 
7 

table is set to the expected number of neighbours ahead of running experiments. Table 

7.4 shows the expected size of the beaconInfo table for each network size. 

Table 7.4: Size of beaconInfo table for the different sizes of WSNs 
Number of nodes Wireless range Size of BeaconInfo 

26 
51 
101 

45 units 
35 units 
25 units 

16.50 ≈ 17 
19.25 ≈ 20 
19.83 ≈ 20 

7.3.4 Setup of Performance Metrics 

The performance of the malicious node is measured as the percentage of data delivered 

to the base station as described in Section 3.5.4. 

The success of the IDS is measured as the percentage of TP and the FP is computed 

as follows. The simulator is instrumented to record the number of neighbours of each 
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sensor node in a separate file. In addition, each sensor node records the ID of the 

neighbours that it suspects as malicious. For each WSN, TP is computed as the number 

of neighbours that suspect the malicious node divided by the total number of neighbours 

of the malicious node, as shown in Equation 7.2. Then a global average TP is computed 

as the average of all the tpis of the 100 WSNs, as shown in Equation 7.3. 

number of neighbours that suspect m 
tpi = (7.2)

number of neighbours of m 

where tpi is the TP for WSN i, and m is the malicious node. 

NTs  

tpi 

TP  = i=1 (7.3)
NTs  

where NTs  = number of WSNs, 100. 

We compute FP from the perspective of good and suspected links. A link between 

any two sensor nodes, A and B, is asymmetric. This means that the link quality from A 

to B is different from the link quality from B to A. The link quality value depends on 

the number of packets a sensor node receives from its neighbouring sensor node. Thus, 

A may suspect B as malicious but B may not suspect A as malicious. For a sensor node, 

the number of neighbours represents the number of outbound links from this sensor node. 

Thus, to compute the number of links in a WSN, we count the number of neighbours 

of each good sensor node in the WSN. We subtract the number of neighbours of the 

malicious node from the number of links. The number of neighbours of the malicious 

node constitutes the number of links from the neighbours to the malicious node, which 

is computed in TPs. We compute a FP for each simulated WSN and a global average 

FP for all simulated WSN as shown in Equations 7.4 and 7.5, respectively. 

number of suspected links 
fpi = (7.4)

number of links 
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NTs  

fpi 

FP  = i=1 (7.5)
NTs  

7.4 Results of CTP Simulation 

This Section presents the simulation of the different scenarios that a malicious node can 

follow to exploit CTP. In each scenario, we discuss the effectiveness of the malicious node 

without running the IDS. We follow this discussion by presenting the simulation results 

of running the IDS accompanied by a discussion on the effectiveness of the malicious 

node and the success of the IDS in detecting it. 

We have adjusted the simulator to use the detection routines, Test2() and Test3(), 

separately. So when the malicious node is configured to follow Scenario 2, Test2() is 

turned on. When it is following Scenario 3, Test3() is turned on. The combined scenario, 

Scenario 4, can be tested either with Test2() or Test3(). Separation of the detection 

routines facilitates the measurement of their effectiveness. 

7.4.1 Simulation of CTP Scenario 0 

Scenario 0 is used as the baseline for the comparisons of the effectiveness of the malicious 

node in the other scenarios. The malicious node in Scenario 0 does not follow any of 

the attack scenarios on CTP; however, it still drops data packets that it receives from 

its children sensor nodes. The decrease in data delivery between Scenario 0 and any of 

the other scenarios measures the success of the malicious node in diverting data from the 

base station. 

The difference in the percentage of data delivery in Scenario 0 between the two data 

transmission intervals is negligible, less then 0.75% in all cases. Thus, the graphs in the 

following depict the data transmission interval 100,000 time units of Scenario 0 for the 
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sake of readability. 

7.4.2 Simulation of CTP Scenario 1
 

In Scenario 1, the malicious node lies about the etx value to its parent. In other words,
 

the path cost of the malicious node is always its parent’s path cost plus 10, the minimum 

value for etx. 

Effectiveness of Malicious Node without Running the IDS 

The simulation results of Scenario 1 show that the effectiveness of the malicious node is 

affected by its location in the WSN. A malicious node closer to the base station means 

that it is included in many routes. Accordingly, the malicious node discards more traffic 

in close locations than in far locations. We can see in Figure 7.2 that the percentage 

of data delivery increases in locations far from the base station in the three sizes of the 

WSNs, where WSN  = size of WSN, SR = wireless range of the sensor nodes, and DF 

= data transmission interval. 

The simulation results also show that the gain of the malicious node in Scenario 1 is 

small. Figure 7.2 shows that the percentage of data delivery in Scenario 1 tends to get 

closer to the percentage of data delivery in Scenario 0. This means that the malicious 

node fails to attract more sensor nodes to its subtree by faking its etx values. The gain 

of the malicious node is measured as the drop in the percentage of data delivery. This 

is measured by subtracting the percentage of the data delivery value in Scenario 1 from 

the value in Scenario 0. Table 7.5 shows the maximum drops in the percentage of data 

delivery for each WSN configuration. 

7.4.3 Simulation of CTP Scenario 2 

The malicious node in Scenario 2 lies about its path cost. In the experiments of Scenario 

2, we have configured the malicious node to announce a path cost value of 20. The 



155

WSN = 25, SR = 45, Scenario = 1 

(45, 45) (55, 55) (65, 65) 

Location of malicious node 

(a) 25-node WSN

WSN = 50, SR = 35, Scenario = 1 

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75) 

Location of malicious node 

(b) 50-node WSN

WSN = 100, SR = 25, Scenario = 1 

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85) 

Location of malicious node 

(c) 100-node WSN 
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Figure 7.2: Effectiveness of malicious node in CTP Scenario 1 without IDS running
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Table 7.5: Percentage of drop in data delivery for CTP Scenario 1 
Size of WSN Drop Data frequency Location of malicious node 

25-node 
25-node 
50-node 
50-node 
100-node 
100-node 

2.16% 
1.92% 
2.57% 
2.94% 
1.84% 
1.88% 

100,000 
1,000,000 
100,000 

1,000,000 
100,000 

1,000,000 

(45, 45) 
(55, 55) 
(35, 35) 
(35, 35) 
(35, 35) 
(45, 45) 

malicious node does not choose the lowest path cost value, 10, because this means that 

the malicious node is a child of the base station. Thus, it can be easily detected if the 

sensor nodes know the ID of the base station. 

Effectiveness of Malicious Node without Running the IDS 

Figure 7.3 shows the simulation results of Scenario 2. As seen in the figure, the percentage 

of data delivered to the base station is proportional to the distance of the malicious node 

from the base station. This means that the malicious node is more effective in locations 

far from the base station. It succeeds to enlarge its subtree when it is far from the base 

station because the path cost it offers is lower than the other path costs in the same 

area. Table 7.6 shows that the maximum drops in the percentage of data delivery occur 

between the centre of the WSN and the far edge from the base station. 

Table 7.6: Percentage of drop in data delivery for CTP Scenario 2 
Size of WSN Drop Data frequency Location of malicious node 

25-node 
25-node 
50-node 
50-node 
100-node 
100-node 

13.04% 
14.53% 
20.81% 
23.35% 
31.00% 
34.60% 

100,000 
1,000,000 
100,000 

1,000,000 
100,000 

1,000,000 

(65, 65) 
(65, 65) 
(65, 65) 
(75, 75) 
(65, 65) 
(65, 65) 

In locations close to the base station, the sensor nodes find comparable path costs to 

the base station. Thus, if a sensor node chooses a good neighbouring sensor node as its 

next hop, then the path cost of the malicious node is not competitive enough to trigger a 
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Figure 7.3: Effectiveness of malicious node in CTP Scenario 2 without IDS running
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parent switch. The efficiency of the malicious node increases away from the base station, 

where it reaches the maximum beyond the centre of the simulation environment. Around 

the center of the WSN, the path costs are higher so the low path cost of the malicious 

node is an incentive for the neighbouring sensor nodes to join its subtree. Moreover, these 

neighbouring sensor nodes will offer low path costs, which will encourage more sensor 

nodes to join the subtree of the malicious node. This phenomenon is reversed near the 

edge of the WSN where fewer sensor nodes can join the subtree of the malicious node. 

Mainly, these sensor nodes are the neighbouring sensor nodes only. These neighbouring 

sensor nodes are the ones near the edges of the WSN. Consequently, they cannot expand 

the subtree of the malicious node as they do near the center of the WSN. 

Also, the figure shows that the malicious node is more successful in low-traffic WSNs. 

In a low-traffic WSN, 1,000,000 time units, a small number of lost packets will have an 

impact on the percentage of data delivered to the base station; however, the impact is 

smaller on high-traffic WSNs, 100,000 time units. In general, the drop in the percentage 

of data delivery increases with the size of the WSN because more traffic is generated due 

to the increased number of sensor nodes. See Table 7.6. 

Effectiveness of Malicious Node with Running the IDS 

Next, we discuss the effectiveness of the malicious node when Test2() is running. Since 

Test2() uses the watchdog concept, the detection of the malicious node depends on the 

number of common neighbouring sensor nodes with its parent. One can expect that 

the larger the number of common neighbours is, the more successful Test2() will be. 

However, some of the common neighbours are not children of the malicious node. As a 

result, they cannot detect the malicious node and thus, they do not change their parents 

to good ones. 

Figure 7.4 [135] shows the effectiveness of the malicious node when Test2() is running. 
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We can see that in the sparse WSN of 25 sensor nodes the effectiveness of the malicious 

node is not affected. First, the number of common neighbours between the malicious 

node and its parent is small so a small number of sensor nodes can detect the malicious 

node. Out of the small number of neighbours that can detect the malicious node, an even 

smaller number may be its children. Accordingly, most of the children of the malicious 

node cannot detect it and they do not change their malicious parent to a good one. 

As the WSNs get denser, the number of common neighbouring sensor nodes between 

the malicious node and its parent increases. In addition, the number of children of the 

malicious node increases so a larger number of the common neighbours are children of 

the malicious node. These children that detect the malicious node switch their parents 

to good ones so the percentage of data delivery at the base station increases. Figure 

7.4(b) shows that the percentage of data delivery will rise from 78.36% to 81.65% if the 

malicious node is placed at (75, 75). Whereas, it rises from 72.95% to 86.51 % at location 

(85, 85), see Figure 7.4(c). 

Success of Detecting Malicious Node 

As discussed previously, the larger number of the common neighbouring sensor nodes 

helps to detect the malicious node. However, the path cost offered by the malicious node 

and the location of the malicious node in the WSN affect detection as well. Figure 7.5 

shows that the detection of the malicious node increases as the distance between the 

malicious node and the base station increases. 

The malicious node is configured to announce a path cost value of 20. So, if the 

malicious node is in a location where this value is not suspicious, then no neighbouring 

sensor node can detect it. The locations (45, 45) in Figure 7.4(a), (35, 35) in Figure 7.4(b), 

and (25, 25) in Figure 7.4(c) satisfy this condition. In these locations, the malicious node 

is close to the base station and its parent is 1-hop away from the base station. Hence, 
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Figure 7.4: Effectiveness of malicious node in CTP Scenario 2 with IDS running
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Figure 7.5: Success of detecting malicious node in CTP Scenario 2
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the parent of the malicious node has lower path cost due to its proximity to the base 

station. Accordingly, the common neighbouring sensor nodes cannot find any violations 

of the path cost for the malicious node. If the malicious node is located far from the 

base station, the path cost of its parent will get higher and the common neighbours can 

now detect it. At the farthest location from the base station (85, 85) in Figure 7.5(c), 

the malicious node is detected 87.37% of the time. 

Although Figure 7.5 shows that at least 40% of the neighbours of the malicious node 

are able to detect it, the simulation results of data delivery confirm that most of these 

neighbours are not children of the malicious node. To rectify the poor effectiveness of 

Test2(), the sensor nodes must exchange their lists of suspected neighbours. To do this 

exchange in a secure fashion, the sensor nodes must: 

•	 encrypt the exchanged list so that the malicious node does not discover that it is 

detected; 

•	 have a trust mechanism to ensure that sensor nodes do not slander good sensor 

nodes; and 

•	 minimize the size of the list to decrease the volume of additional traffic and to 

prevent quick battery depletion. 

Clearly, the three items do not meet the stated constraints of this dissertation of not 

using encryption, performing in-node processing, and eliminating any additional traffic 

in the WSN. 

7.4.4 Simulation of CTP Scenario 3 

In Scenario 3, the malicious node announces its real path cost but it does not adapt 

its beacon transmission interval after sending each beacon. Thus, it tries to influence 

the computation of the etx values of its neighbouring sensor nodes by sending frequent 



163 

beacons. The malicious node is configured to use the minimum beacon transmission 

interval, 128 time units, for each beacon transmission. 

Effectiveness of Malicious Node without Running the IDS 

By sending frequent beacons, the malicious node influences the computations of the etx 

values of its neighbouring sensor nodes. The frequent beacons help them to reach the 

minimum etx value to the malicious node quickly. However, their choice of the malicious 

node as the next hop depends on the value of its path cost, which depends on how far 

the malicious node is from the base station. Figure 7.6 shows that the malicious node is 

more successful in locations close to the base station. 

Near the base station, the malicious node has a low path cost value. Consequently, 

the routes through the malicious node encourage the neighbouring sensor nodes to join 

the subtree of the malicious node. Far from the base station, the routing cost of the 

malicious node gets higher. As a result, the low etx values of the neighbouring sensor 

nodes are not incentive enough to lure them to join the subtree of the malicious node. 

Table 7.7 shows that the maximum drops in the percentage of data delivery occur in 

locations close to the base station. 

Table 7.7: Percentage of drop in data delivery for CTP Scenario 3 
Size of WSN Drop Data frequency Location of malicious node 

25-node 
25-node 
50-node 
50-node 
100-node 
100-node 

5.61% 
5.83% 
3.84% 
4.00% 
11.00% 
10.55% 

100,000 
1,000,000 
100,000 

1,000,000 
100,000 

1,000,000 

(55, 55) 
(45, 45) 
(45, 45) 
(45, 45) 
(35, 35) 
(35, 35) 

Effectiveness of Malicious Node with Running the IDS 

Test3() implements a state machine to test the arrival of beacons from neighbouring 

sensor nodes. A sensor node that does not adapt its beacon transmission interval for 
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Figure 7.6: Effectiveness of malicious node in CTP Scenario 3 without IDS running
 



165 

three consecutive transmissions will be blacklisted by its neighbouring sensor nodes. 

Figure 7.7 shows that the percentage of data delivery is boosted to almost 100% in 

the three sizes of the WSNs. Since each sensor node is running a local copy of Test3(), 

all the neighbouring sensor nodes detect the malicious node. The high percentage of 

data delivery means that most of the neighbouring sensor nodes are able to detect the 

malicious node. It also means that all of them have blacklisted the malicious node and 

the children sensor nodes have switched their malicious parent to good ones. 

As explained earlier and as shown by the black bars in Figure 7.7, the malicious 

node is more effective near the base station in Scenario 3, which means that it has more 

children and a larger subtree. Accordingly, when the children sensor nodes detect their 

parent sensor node as malicious, they change their parent to a good one and succeed in 

avoiding the malicious node. At far locations from the base station, the malicious node 

is not as effective, and the black bars are higher. This means that the subtree of the 

malicious node is smaller, but when the small number of children sensor nodes change 

their malicious parent the percentage of data delivery rises to 100%. 

Success of Detecting Malicious Node 

Figure 7.8 shows that Test3() detects the malicious node with a success percentage of 

at least 95%. The lowest percentage occurs in dense networks, 100-node, where packet 

collisions are high. The state machine of Test3() requires three consecutive violations 

for the beacon transmission intervals to blacklist a sensor node. Thus, with high packet 

collisions, especially when the malicious node broadcasts more beacons than usual, miss­

ing a single packet reinitiates the detection process. Although the low success does not 

support the high percentage of data delivery, the neighbouring sensor nodes that fail to 

detect the malicious node are not necessarily the children of the malicious node. Thus, 

their failure to detect the malicious node does not affect the data delivered to the base 
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Figure 7.7: Effectiveness of malicious node in CTP Scenario 3 with IDS running
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station. 

7.4.5 Simulation of CTP Scenario 4 

Scenario 4 is the combination of Scenarios 2 and 3. The malicious node in Scenario 4 

announces a low path cost value with frequent beacons. The malicious node is configured 

to announce 20 for its path cost using the minimum beacon transmission interval of 128 

time units. 

Effectiveness of Malicious Node without Running the IDS 

One can expect that the simulation results of Scenario 4 will be similar to the simulation 

results of Scenarios 2 and 3 combined. However, Figures 7.9 and 7.10 show that the drop 

in the percentage of data delivery exceeds the combined drop from Scenarios 2 and 3. 

Combining Scenarios 2 and 3 amplifies the drop to more than double the summation of 

their drops in some cases. Figures 7.9 and 7.10 show the percentage of data delivery in 

Scenario 0 as a reference. The effectiveness of Scenario 4 is compared to the summation 

and double the summation of the drop in the percentage of data delivery in Scenarios 2 

and 3. Table 7.8 shows the maximum drops in the percentage of data delivered to the 

base station. 

Table 7.8: Percentage of drop in data delivery for CTP Scenario 4 
Size of WSN Drop Data frequency Location of malicious node 

25-node 
25-node 
50-node 
50-node 
100-node 
100-node 

37.05% 
40.08% 
40.63% 
52.04% 
54.54% 
67.14% 

100,000 
1,000,000 
100,000 

1,000,000 
100,000 

1,000,000 

(65, 65) 
(65, 65) 
(65, 65) 
(55, 55) 
(55, 55) 
(45, 45) 
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Figure 7.9: Effectiveness of malicious node in CTP Scenario 4 in high-traffic WSNs
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Effectiveness of Malicious Node with Running the IDS 

Since Scenario 4 combines Scenarios 2 and 3, it can be detected with Test2() or Test3(). 

However, Test3() is more successful in detecting the malicious node. Therefore, we 

discuss the simulation results of detecting the malicious node under Test3(). 

The effectiveness of the malicious node when Test3() is running depends on its 

location and the size of the WSN. In the 25-node and 50-node WSNs, the percent of 

data delivery is almost 100%, see Figures 7.11(a) and 7.11(b). However, in the 100-node 

WSN, the percentage of data delivery can be as low as 95% especially in locations far 

from the base station, see location (65, 65) in Figure 7.11(c). 

By broadcasting low path cost value in frequent beacons, the malicious node attracts 

more sensor nodes to its subtree as explained previously and as shown by the black bars 

in Figure 7.11 [135]. As a consequence of its success, more data packets are routed to 

the malicious node. This leads to higher packet collisions in the vicinity of the malicious 

node, which affects the computations of link qualities and path costs of its neighbours. 

The high packet collisions lead to a phenomenon that occurred in dense WSNs, 100­

node. Between the centre of the WSN and its far edge from the base station, the parent 

of the malicious node forms a loop by joining the subtree of the malicious node. This 

happens because the parent sensor node suffers from high path costs due to packet 

collisions and it finds the best path through one of the children of the malicious node. 

This loop cannot be broken because the malicious node is configured to drop data packets 

passing through it. Therefore, the parent sensor node will never find its data packet 

returning back to it. We can see that the percentage of data delivery at the base station 

is as low as 95.27% when the malicious node is at location (65, 65), Figure 7.11(c). 
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Figure 7.11: Effectiveness of malicious node in CTP Scenario 4 with IDS running
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Success of Detecting Malicious Node 

Figure 7.12 shows that Test3() achieves almost the same success percentage in Scenario 

4 as it does in Scenario 3. However, some false detections do occur in Scenario 4 especially 

in far locations from the base station in dense WSNs. Collisions lead to resetting the 

beacon transmission intervals or missing the appropriate beacons to test. 

7.5 Summary 

This Chapter presented and discussed the simulation results of attack scenarios on CTP 

routing protocol. It began by explaining the extensions made to ns-2 to support CTP 

and the proposed IDS followed by explaining the setup of the simulation environment. 

Three attack scenarios on CTP were discussed. In the first scenario, a malicious node 

broadcast a low path cost value to the base station. The effectiveness of the malicious 

node increased in locations far from the base station where the path costs were higher 

than the value offered by the malicious node. A detection module was proposed to 

detect this type of malicious node by comparing the path costs of children sensor nodes 

to their parent sensor nodes. A child sensor node must have a path cost greater than its 

parent’s. The success of this module depended on the location of the malicious node and 

the density of the WSN. In the second attack scenario, the malicious node violated the 

beacon transmission intervals by using the minimum interval to send frequent beacons. 

The effectiveness of the malicious node depended on its location in the WSN. In locations 

close to the base station, the malicious node had low path cost so the frequent beacons 

helped in luring more sensor nodes. In far locations, the malicious node had high path 

cost so it is not as effective. A detection module was proposed that tests the arrival times 

of beacons. A node that did not adapt its beacon transmission interval was detected as 

malicious. The third scenario combined the previous two scenarios. The malicious node 



174

WSN = 25, SR = 45, DF = 100,000, Scenario = 4 

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 

Pe
rc

en
ta

ge
 o

f 
de

te
ct

io
n 

(45, 45) (55, 55) (65, 65) 

Location of malicious node 

TP 
FP 

(a) True & false detections in 25-node WSN

WSN = 50, SR = 35, DF = 100,000, Scenario = 4 

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 

Pe
rc

en
ta

ge
 o

f 
de

te
ct

io
n 

(35, 35) (45, 45) (55, 55) (65, 65) (75, 75) 

Location of malicious node 

TP 
FP 

(b) True & false detections in 50-node WSN

WSN = 100, SR = 25, DF = 100,000, Scenario = 4 

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 

Pe
rc

en
ta

ge
 o

f 
de

te
ct

io
n 

(25, 25) (35, 35) (45, 45) (55, 55) (65, 65) (75, 75) (85, 85) 

Location of malicious node 

TP 
FP 

(c) True & false detections in 100-node WSN 

Figure 7.12: Success of detecting malicious node in CTP Scenario 4
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in the last scenario was more vicious because it combined a low path cost value with 

frequent beacons. Due to its success, the second detection module was tested to detect 

the malicious node in the combined scenario. 

The next Chapter concludes the dissertation and suggests directions for future work. 
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Chapter 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Summary 

WSNs are becoming an important component in our daily life. They are used in a 

broad range of applications, such as military, medical, or environmental monitoring. 

They are composed of resource-constrained devices called sensor nodes that communicate 

wirelessly. These sensor nodes are scattered in an environment to collect data from their 

surroundings. To relay the collected data to a central controller, the sensor nodes depend 

on a routing protocol. Routing protocols for WSNs sacrifice the security aspects to meet 

the limited resources of the sensor nodes. Hence, WSNs are susceptible to different types 

of routing attacks, ranging from stealing collected data to injecting false data. 

Routing protocols for WSNs aim to deliver data to a central controller reliably. To 

achieve an acceptable level of reliability, routing protocols have to fulfill certain cost 

metrics. Some routing protocols are concerned with conserving the power resources of 

the sensor nodes. Others are concerned with choosing routes that achieve the lowest 

latency to deliver data to the central controller. Others choose routes that comprise 

reliable wireless links. This dissertation studies protocols of the third type. 

Link quality routing protocols choose routes to the base station that have reliable 

links. This reliability can be measured as the ratio of packet reception or the number of 

required transmissions and retransmissions. These protocols may require the cooperation 

of the sensor nodes to compute link qualities or the sensor nodes may compute the 

qualities independently. This dissertation studies MintRoute as a representative of the 

former group, and CTP as a representative of the latter group. 



177 

Analysis and simulation are adopted as the research methodology in this dissertation. 

The two routing protocols are analyzed for possible vulnerabilities that may be used to 

exploit the computations of link qualities. Then detection mechanisms are proposed to 

detect malicious nodes that exploit these vulnerabilities. Finally, both protocols and 

their proposed IDSs are simulated in ns-2 to detect the effectiveness of the IDSs. The 

effectiveness of the malicious node is measured as the percentage of data delivered to the 

base station when the malicious node is configured to drop data packets. The success of 

the IDSs is measured as the percentage of true detections versus the percentage of false 

detections. 

8.1.1 Cooperative Link Quality Routing Protocols 

Chapter 4 discusses a vulnerability in cooperative link quality routing protocols that 

a malicious node can use to influence the computations of link qualities to its favour. 

MintRoute is chosen as a case study of this type of link quality protocols for WSNs. 

The sensor nodes in a WSN using MintRoute cooperate to compute bidirectional link 

qualities without any trust mechanism. Thus, if a sensor node advertises an incorrect 

link quality, no sensor node can refute or validate the claimed link quality. The malicious 

node may exaggerate the values of its link qualities to convince its neighbouring sensor 

nodes that it has a better route to the base station, thus luring them to send their traffic 

through it. 

Then an IDS is proposed to detect any malicious nodes that may use this vulnerability. 

The proposed IDS uses the sequence numbers of MintRoute packets to validate the 

advertised link qualities. Sensor nodes can compute an upper bound on the advertised 

link qualities by introducing an artificial gap in their sequence numbers. This gap in the 

sequence numbers gives the tricking sensor node a minimum view of what its neighbours 

perceive as missed packets. If the neighbours only miss the size of the sequence number 
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gap, then their advertised link qualities will match the expected link qualities. Otherwise, 

their link qualities will be different than the expected link qualities. Each sensor node 

in the WSN runs a local copy of the proposed IDS and each reaches a decision about 

a malicious node on its own. Therefore, the proposed IDS does not add any extra 

communications in the WSN, which is a great asset. However, it requires extra storage 

space for an additional 98 bytes per sensor node. 

Chapter 4 ends with discussing possible scenarios that a malicious node may exhibit 

and how the proposed IDS is enhanced to face them. We assume that the malicious 

node is adaptive and that it guesses the neighbouring sensor nodes that perform the 

sequence number gap trick. By this guess, the malicious node may avoid being detected 

by advertising the correct link qualities. Accordingly, the proposed IDS is adapted to 

detect the malicious node even when no sensor node is performing the sequence number 

gap trick. 

Chapter 5 discusses the simulation results of MintRoute IDS. If MintRoute IDS 

succeeds in detecting the malicious node, then the children of the malicious node will 

change their routes to good ones. Thus, the percentage of data delivery to the base station 

shall increase. The simulation results show that MintRoute IDS is very successful when 

the malicious node is a simple one that always advertises exaggerated link qualities. 

However, the performance of the IDS degrades when the malicious node is adaptive. 

The malicious node tries to escape detection by building thresholds for the expected 

number of packets from its neighbours. If the number of packets exceeds the threshold, 

the malicious node will advertise the true link quality to the corresponding neighbour. 

The tighter the threshold is, the lower the performance of the IDS will be. However, the 

tighter threshold means that sensor nodes may not choose the malicious node route if 

its link qualities are not good enough. This degradation in performance is very apparent 

with the large sequence number gaps because it is easier to guess that the sequence 
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number gap trick is being played. The simulation results of the enhanced IDS where the 

sensor nodes test the link qualities at all times show that the enhanced IDS outperforms 

the basic IDS with the different thresholds of the malicious node. 

MintRoute IDS has shown far more true detections than false detections. However, 

the average number of true detections decreases with the tighter threshold of the malicious 

node, but the enhanced IDS boosts the number back. The simulation results show that 

large sequence number gaps increase false detections because low link qualities are not 

advertised, which cause mismatches between expected link qualities and advertised link 

qualities. Also, the enhanced IDS has shown an increase in the average number of false 

detections because all the advertisements are tested, and not only when the sequence 

number gap trick is being played. 

8.1.2 Non-cooperative Link Quality Routing Protocols 

Chapter 6 describes three possible scenarios that a malicious node may follow to exploit 

non-cooperative link quality routing protocols for WSNs. CTP is chosen as a case study of 

this type of link quality routing protocols. In addition, a combined scenario is explained. 

In CTP, sensor nodes do not cooperate to compute link qualities, but a malicious node 

may manipulate some parameters of CTP to influence the computations of other sensor 

nodes. In the first scenario, the malicious node advertises a low path cost value to the 

base station by lying about the link quality to its parent. In the second scenario, the 

malicious node advertises a low total path cost to the base station. In the third scenario, 

the malicious node sends frequent beacons by fixing the beacon transmission intervals 

and not adapting them with every beacon. The final scenario combines the second and 

third scenarios. The aim of the malicious node in all scenarios is to convince more sensor 

nodes that it has a low path cost to the base station. 

An IDS that is composed of three detection modules is proposed to detect the attack 
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scenarios on CTP. The first detection module detects the first scenario by implementing 

the sequence number gap trick. However, since the sensor nodes do not share their link 

quality computations, only the parent of the sensor node can implement the trick and 

test the advertised path cost of the malicious node. The second detection module detects 

the second scenario by testing the following property: the path cost of a child sensor node 

must be greater than the path cost of its parent. The third detection module implements 

a state machine to detect the third scenario. The state machine tests the arrival times 

of beacons and checks that they follow an adaptive behaviour. The combined scenario 

can be detected by either the second detection module or the third detection module. 

Chapter 7 presents the results of simulating CTP and its IDS. The malicious node 

in Scenario 1 failed to convince its neighbouring sensor nodes of its path to the base 

station. Basically, lying about the link quality to its parent is not effective because this 

link constitutes one portion of the total path to the base station. However, in the second 

scenario when the malicious node lies about its total path cost to the base station, it lures 

more sensor nodes especially in locations far from the base station. When the malicious 

node offers a low path cost in a vicinity where the path costs are high, it will be easier 

to lure more sensor nodes. Sending frequent beacons only in the third scenario will not 

be beneficial if the path cost of the malicious node is high. So, in locations far from the 

base station the malicious node is not as successful as in close locations because its path 

cost is higher. A malicious node that combines the second and third scenarios succeeds 

in luring more sensor nodes. 

The success of the second detection module to detect the malicious node that follows 

the second scenario depends on the value of path cost offered by the malicious node and 

the density of the network. If the malicious node is offering a path cost that is greater 

than its parent’s, then the IDS will not be able to detect it. This case occurs close to 

the base station where the sensor nodes have low path costs. In far locations, it will be 
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easy to detect the malicious node if it is offering a lower path cost than the sensor nodes 

in vicinity. Also, the number of sensor nodes in the WSN affects the detection since 

the second detection module depends on the number of common neighbours between 

the malicious node and its parent. If this number is large, then the IDS will detect 

the malicious node easily. However, the effect of this detection on the malicious node 

depends on the number of common neighbours that are children of the malicious node. 

If the number of children that detect the malicious node is large, then they will change 

their parent to a good one. 

The success of the third detection module depends on the amount of traffic in the 

WSN. More traffic leads to more packet collisions, which causes the third detection 

module to reset the detection process. Thus, the third detection module has its lowest 

detection in dense networks where more sensor nodes generate more traffic. 

8.2 Discussion 

This dissertation shows that sensor nodes can detect a malicious node that violates the 

link quality routing protocols independently and without sharing any information or 

forwarding it to the base station. In addition, it has shown that cryptography is not 

required to ensure data availability. 

In the case of routing protocols that require cooperation between the sensor nodes to 

compute link qualities, the sensor nodes can introduce a gap in their sequence numbers 

to compute expected link quality values for their neighbours. Any neighbour that shares 

a link quality that does not conform with its corresponding expected link quality value 

will be detected as malicious. 

In the case of routing protocols that do not require the sensor nodes to cooperate to 

compute link qualities, the sensor nodes can use the watchdog concept or a state machine 
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to detect a malicious node that uses incorrect values for the parameters of the link quality 

protocol. 

Since the proposed detection mechanisms for both types of routing protocols do not 

require the sensor nodes to share detection results, no extra communication is generated 

in the WSNs. Thus, both IDSs are energy efficient. In addition, no cryptographic 

mechanisms are necessary to secure transmission of detection results. 

MintRoute IDS tests neighbouring sensor nodes that are in the routing table only. 

Other neighbouring sensor nodes are not considered for parent choice and thus, there is 

no need to test their link qualities. In total, MintRoute IDS adds 98 bytes to the memory 

of the sensor nodes to operate efficiently. Thus, MintRoute IDS scales constantly with 

the size of the WSN. 

On the other hand, CTP IDS depends on the history of beacons broadcast of each 

neighbouring sensor node. It needs to keep track of last beacon broadcast of all neigh­

bouring sensor nodes and not just the ones in the routing table. To achieve this, CTP 

IDS creates an additional table to keep this information. Each entry in the new table 

requires 18 bytes. Hence, CTP IDS scales linearly with the size of the WSN. 

8.3 Future Work 

This dissertation focuses on detecting a single stationary malicious node that exploits 

the vulnerabilities of link quality routing protocols for WSN. The two types of link 

quality routing protocols are investigated for the possible vulnerabilities. An IDS is 

proposed to detect the vulnerabilities of each type of link quality routing protocols. Two 

routing protocols and the two IDSs are implemented and simulated in ns-2 to evaluate the 

performance of the IDSs. The simulation experiments show promising results. However, 

there are other topics that are worth investigation. 
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Larger WSN sizes 

The proposed IDSs are tested in relatively small WSNs. A WSN may contain thousands 

of sensor nodes. As the number of sensor nodes gets larger, more packet collisions occur 

due to the larger traffic volume, and each sensor node has a larger number of neighbouring 

sensor nodes. 

With more packet collisions, the IDSs may miss the appropriate packets for the de­

tection test. This may lead to suspecting good sensor nodes as malicious or may lead 

to failing to detect the malicious node. Since both IDSs save extra information about 

the sensor nodes, the number of neighbours that a sensor node can track is limited by 

the available memory size. Accordingly, more simulation experiments are required to 

evaluate the effects of packet collisions and neighbourhood sizes on the performance of 

the IDSs. 

Clustered WSNs 

Some WSNs may use cluster-based or hierarchical routing protocols. Cluster-based rout­

ing protocols operate differently than the flat routing protocols studied in this disser­

tation. In cluster-based routing protocols, some sensor nodes, cluster heads, aggregate 

data collected from the members of their clusters and send one report to the base station. 

Cluster-based routing protocols put a challenge for the sensor nodes after they detect a 

malicious node that acts as a cluster head. In this dissertation, the sensor nodes are 

configured to change routes when they detect the malicious node. This behaviour gives 

us the ability to measure the effect of the malicious node before and after the detection. 

However, this behaviour is not feasible in cluster-based routing protocols because the 

sensor nodes have no other choice but to route their data through the malicious node. 

Post detection behaviour of sensor nodes is important to investigate to make sure that 

the sensor nodes can communicate with the rest of the WSN. 
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Multiple Malicious Nodes 

The simulation results show that both IDSs are effective in detecting a single malicious 

node that exploits link quality routing protocols for WSNs. Multiple malicious nodes 

can pose a greater threat to WSNs. If they are implanted in an area that has a low 

density of sensor nodes, their detection may lead to undesirable consequences. First, if 

there is no other route to the base station, the good sensor nodes will have no choice 

but to route through the malicious nodes. Second, if few other routes exist, they may 

become congested if the good sensor nodes change their routes to them. The study of 

the behaviours of the good sensor nodes after detection is important. 

Traffic-expelling Malicious Node 

Another type of malicious nodes is a node that tries to expel or minimize the amount of 

traffic that passes through it. The malicious node tries to conserve its battery power to 

live longer than the other sensor nodes. It waits until some of its neighbouring sensor 

nodes consume their batteries and die. Afterwards, the malicious node can claim the IDs 

of the dead neighbours (Sybil attack) or attract the traffic from the remaining neighbours 

(sinkhole attack). To expel traffic, the malicious node needs only to announce low link 

qualities. When the neighbouring sensor nodes compute route costs to the base station, 

the route through the malicious node will have a low link quality and will not be cho­

sen. When the malicious node decides the time to start its attack, it can announce or 

exaggerate its true link qualities. 
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Appendix A
 

A.1 Algorithm of RandomMLCG 

The algorithm of acRandomMLCG comprises three routines. The first routine, InitRan­

domMLCG(), initializes the seed of the random number generator. The second routine, 

Rand16(), returns a two-byte random number and, finally, the third routine, Rand32(), 

returns a four-byte random number. 

Algorithm A.1 Routines of the RandomMLCG algorithm
 

procedure InitRandomMLCG(s): 
SET seed TO (uint32 t)(s + 1)  

procedure Rand16(): 
return (uint16 t)Ran32() 

procedure Rand32(): 
SET tmpSeed TO (uint64 t)(33614U × (uint64 t)seed) 
SET q TO (uint32 t)tmpSeed 
SET q TO q  >> 1 
SET p TO (uint32 t)(tmpSeed >> 32) 
SET mlcg TO p + q 
SET value TO ((mlcg & 0x80000000)  = 0)  
if value is true then 

SET mlcg TO mlcg & 0x7FFFFFFF 
SET mlcg TO mlcg + 1 

SET seed TO mlcg 
RETURN mlcg 

A.2 Algorithm of the Queue 

The queue algorithm consists of three routines that implement a simple FIFO queue. To 

utilize the space efficiently, the queue algorithms implement a circular queue [139]. The 
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first routine, Enqueue(), simply adds an element to the end of the queue. The second 

routine, Dequeue(), returns the first element of the queue and empties its space. The 

last routine, Element(), returns the queue element at the index position in the queue 

without deleting it. In the case of CTP, the queue element is of type CTP data packet. 

Algorithm A.2 Routines of the queue algorithm
 

procedure Enqueue(queue element): 
if size of queue ≤ maximum queue size then
 

ADD queue element at tail of queue
 
INCREMENT tail of queue
 
if tail = maximum queue size then
 

SET tail TO 0
 
INCREMENT size of queue
 
RETURN SUCCESS
 

else 
RETURN FAIL 

procedure Dequeue(): 
SET t TO element at head of queue 
if queue is not empty then 

INCREMENT head of queue [ it is a circular queue so move the head forward 
if head of queue = maximum queue size then 

SET head of queue TO 0 

DECREMENT size of queue 

RETURN t 

procedure Element(index): 
SET index TO index + head of queue 
if index ≥ maximum queue size then 

SET index TO index - maximum queue size
 

RETURN element from queue at index
 

A.3 Algorithm of the Message Pool 

The message pool algorithm implements a general dynamic memory allocation structure 

and it contains three routines. The InitP ool() routine initializes the size of the pool. 
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Elements from the pool are returned with the Get() routine and new elements are added 

with the Put() routine. The pool element is of type CTP data packet. 

Algorithm A.3 Routines of the message pool algorithm
 

procedure InitPool(S): 
SET size TO s 
SET free TO size 
SET index TO 0 

procedure Get(): 
if there is free space in the pool then 

SET rval TO element at index in the pool 
SET element at index TO null 
DECREMENT free 
INCREMENT index 
if index = size of pool then 

SET index TO 0
 
RETURN rval
 

RETURN NULL
 

procedure Put(newV al): 
if free ≥ size then 

RETURN fail 
else 

SET emptyIndex TO index + free 
if emptyIndex ≥ size then 

SET emptyIndex TO emptyIndex - size 

SET pool element at emptyIndex TO newV al 
INCREMENT free 
RETURN SUCCESS 

A.4 Algorithm of the Message Cache 

The message cache stores the signatures of the CTP data packets. The signature of a 

packet contains its origin, sequence number, type, and Time Has Lived (THL). The 

message cache algorithm contains 4 routines. Init() initializes the size of the cache. 

Lookup1() returns the index of a packet if the packet exists in the cache. Insert() inserts 
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a new packet in the cache. Inserting a new element in a full cache will replace the oldest 

element. Inserting an element already in the cache will update its signature and age. 

Remove() removes a packet from the cache. 

Algorithm A.4 Routines of the LRU cache algorithm
 

procedure InitCache(S): 
SET size TO s 
SET first TO 0 
SET count TO 0 

procedure Lookup1(message): 
for i = 0 to count-1 do 

SET index TO (i + first) mod size; 
if signature of message = signature of stored message at index then 

BREAK 
RETURN i 

procedure Lookup2(message): 
RETURN (Lookup1(m) < count) 

procedure Remove(index): 
if index ≥ count then 

RETURN 
if index = 0  then 

SET first TO (first + 1) mod size [ shift all by moving first 
else 

for j =  index to j < count-1 do [ shift all elements down 
MOVE cache element at [(j + first + 1) mod size] TO [(j + first) mod size] 

DECREMENT count 

procedure Insert(message): 
if count = size then 

SET i TO Lookup2(message) [ if message is in cache, remove it temporarily 
REMOVE (i mod count) [ otherwise, remove the first item in cache 

STORE signature of message at location first + count in cache 
INCREMENT count 
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