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The weighted four-point, implicit, finite difference technique is a full dynamic 

solution technique representing standard hydraulic engineering practice for 

simulation of onedimensional, gradually-varied, unsteady open channel flow. 

Under certain flow conditions, the technique fails due to numerical instabilities 

within the solution. Because of the potential for such instability, many engineers 

rely on approximate solution methods and thus accept inaccurate results. This 

thesis describes a method in which a full dynamic solution was obtained 

throughout the simulation, except for those time steps which exhibited severe 

instability. For these time steps, the momentum equation was reduced to an 

approximate equation by reducing the contribution of the acceleration tens. A 

multiplicative coefficient was included for each of the momentum equation terms, 

and the value of some of the coefficients automatically reduced when instability 

was detected. With this method, a full dynamic solution was applied even under 

suddenly varied flow conditions. 
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CHAPTER 1. INTRODUCtK)N 

As world resources, both financial and natural, become more scarce, all 

engineered systems must become more efficient in design and operation. Water 

conveyance systems for irrigation are no exception and, by their very nature, are 

often introduced in areas where wter itself is in limited supply. In order to use 

these systems efficiently, the best available technology must be applied for their 

operation as well as for their design. In his paper, Maw (1 994) suggested that 

maximum use should be made of existing conveyance system infrastructure 

since replacement or extensive rehabilitation is frequently neither affordable nor 

necessary, and the required performance improvements can aften be achieved 

by modifying existing management and operational practices. Such modifications 

are most readily identified through the use of computer simulations of the 

hydraulic system. Manz (1 994) suggested that through the use of appropriate 

simulation models, existing and proposed conveyance systems could be 

evaluated in order to improve the quality of delivery, to minimize water and 

energy losses, to minimize capital and rehabilitation costs, and to minimize 

management, operational, and maintenance costs. 

1 .I The Need for Simulation 

In order to operate, and design, an irrigation system efficiently, standard 



2 

engineering practice includes the use of computer models to simulate the 

unsteady flow conditions in the openchannel system. Many different models are 

used, the most accurate of which provide a solution to the full dynamic equations 

describing the flow. The advantages of such a full dynamic solution, over an 

approximate solution technique, include: (1 ) solution accuracy, (2) calculation of 

the time to an event, (3) consideration of channel backwater effects, and (4) 

consideration of wave dispersion and attenuation. Dynamic models require 

adequate input data including flow conditions and channel characteristics, such 

as cross-section, bed slope, and channel roughness. For a manmade irrigation 

canal system, channel charaderistics and flow conditions, which are controlled 

and gradually varied, are usually known and available. Thus, sufficient input 

data is generally available so that, as M a n  (I 994) suggested, the accuracy of a 

dynamic simulation is attainable for irrigation conveyance systems through the 

use of an appropriate, cost-effective, full dynamic model. 

In the past, dynamic simulation models have not been widely used because the 

numerical solution technique can become unstable under certain flow conditions. 

If severe numerical instability occurs during the simulation, the solution 

technique can fail and cause the program to terminate, leaving the user without 

a useful result. Because of the potential for such failure, approximate methods, 

which are not subject to such instability, have been widely applied with little 

concern over the solution inaccuracies introduced by the approximations. In 
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order to provide an accurate solution for openchannel irrigation systems, a full 

dynamic solution is required. Manz (1 994) suggested that a suitable simulation 

model should apply the best available technology within a robust format so that 

application under a wide variety of input conditions would reliably and easily 

provide the most accurate result reasonably possible. He -bed such a 

model as a robust application without undue compromise of the integrity of the 

various hydraulic, hydrologic, and operational theories or algorithms used in the 

solution procedure. In his paper, Lai (1986) described a robust procedure as one 

which provides a result that degrades slowly as the problem deviates farther and 

farther from the assumptions upon which the procedure is based. In other wards, 

instability, and subsequent program failure, does not suddenly occur when flow 

conditions are varied- A robust model which avoids severe numerical instabilities 

is needed so that the best available technology, a full dynamic solution of the 

open channel Row equations, can be obtained under virtually all flow conditions. 

1.2 Simulation Procedures 

For simulation of onedimensional, gradually varied, unsteady, open channel 

flow in a well defined channel, the best available solution is provided by an 

accurate numerical solution of the full dynamic St Venant Equations. These 

equations have been derived by numerous authors including Henderson (1966). 

The four-point implicit finite difference technique, described by Amein (1968), is 
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a full dynamic solution technique which, as reported by Manz (1 994  represents 

standard hydraulic engineering practice and is based on verified theory. This 

solution technique offers the following advantages over other full dynamic 

solution methods (Manz, 1 991 ): (1 ) the solution can be obtained at desired 

locations along the channel reducing the solution accuracy by 

interpolation, (2) realistic control structures, such as radial gates, can be easily 

programmed, (3) the required input data is the same as channel design data so 

is generally available, and (4) adjustment of the finite difference parameters (Ax, 

At, 8) provides a stable and robust solution under conditions of varied channel 

characteristics and flow conditions. The technique has been verified and 

calibrated, and the accuracy, conservation, convergence and stability 

investigated by El Maawy (1991). The solution method was found to be 

satisfactory by the Canadian Society of Civil Engineers Task Committee on 

River Models (1 990) in its program to evaluate river simulation models and, as 

reported by Read (1981), is used in the widely accepted US National Weather 

Service model DWOPER. 

Much of the traditional literature, including Henderson (1966) and Chow, 

Maidment, and Mays (1 988). reports that the weighted four-point implicit solution 

technique is inherently stable for all flow conditions with properly selected finite 

difference parameters. Read (I 981 ) reported computational problems with Me 

solution procedure for rapidly rising hydrographs and nonlinear channel cross- 
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sections. El Maawy (1 991 ) reported numerical instabilities under conditions of 

rapidly varied flow in combination with certain time intervals. A rapidly varying 

flow condition can occur briefly in time within a gradually varied Row profile and 

the resulting numerical instability in the solution procedure can cause a program 

using the four-point implicit technique to term inate. Manz (1 994) discussed that 

within a simulation, this type of flow condition (a. surge or bore) could be caused 

by rapid adjustment of hydraulic structures which could occur during emergency 

conditions or improper canal operation. The potential occurrence of such 

numerical instability has supported the continued use of simulation programs 

employing less accurate, approximate solution techniques. 

In order to simplify the required solution techniques, approximate methods were 

developed by simplifying the dynamic St Venant continuity and momentum 

equations describing open channel flow so that a direct mathematical solution 

could be obtained. The most common simplifications involved neglecting some 

or all of the nonlinear terms in the momentum equation. Commonly used 

approximate techniques include the following: (1 ) the difhrsion wave model, in 

which the acceleration, or d i ient ia l  velocity, terms are neglected, (2) the 

kinematic wave model, in which the aceeleration and pressure slope, or depth, 

terms are neglected, and (3) the steady-state model, in which steady-state flow 

conditions are determined for each time and input condition. The well-accepted 

US Army Corps of EngineersJ river model HEC-RAS (1 995), and previously 



6 

HEC-2, uses the steady-state technique and well-accepted stormwater models, 

such as SWMM (Huber, 1988) and O M 0  (Wisner, 1989). use a modified 

kinematic technique for the routing component 

Standard practice for solution under severe flow conditions, such as a brief 

surge, is currently application of an approximate solution method throughout the 

simulation period. The simplifications applied in the approximate methods allow 

the use of a simpler procedure which avoids numerical instabilities; however, the 

resu It ing solution is not accurate. Approximate solutions are particularly 

inaccurate for unsteady flow conditions in which backwater or dispersion effects 

are significant or for channels in which lateral inflows and outflows (rainfall, 

seepage, etc.) occur. Although all of these effects are generally significant in an 

irrigation canal system, approximate methods are still widely used today. 

1.3 A Robust Simulation Procedure 

Use of a full dynamic solution for open channel simulation models has 

historically been avoided for the following two reasons: (1 ) use of a high-speed 

digital computer is required to solve the numerical procedure, and (2) numerical 

instability resulting in program failure can occur under certain flow conditions. 

The first reason is virtually obsolete today as high-speed personal computers 

are widely available. The potential for severe numerical instability remains the 
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only hurdle preventing the widespread application of an accurate dynamic 

solution procedure to problems of unsteady, gradually varied, open channel flow 

in well defined channels. 

An even more robust solution procedure than the weighted four-point implicit 

finite difference technique is required in order to provide a simulation model 

which is suitable under virtually all conditions and provides an accurate solution 

to the dynamic equations. The wwk presented here represents an important step 

toward creating such a robust and accurate model. The four-point implicit 

technique vms used to solve the full dynamic S t  Venant equations and a 

procedure developed to suppress severe numerical instabillies, caused by 

briefly ocarmng, rapidly varied, flow conditions, which would otherwise have 

caused the simulation to fail. A modification was made to the solution technique 

so that, for the brief time period of numerical instability only, the momentum 

equation used within the solution procedure was reduced from the full dynamic 

equation toward a simplified equation used in the approximate techniques. In 

this w y ,  the best available technology was applied at all times during the 

simulation Mile the severe unstable condition causing program failure was 

avoided. 



CHAPTER 2. OBJECTIVES 

For most flow conditions in a well-defined open channel, the best available 

technology today is an accurate numerical solution to the full dynamic St Venant 

equations. The four-point implicit finite difference technique provides a well- 

documented, widely accepted, verified, easily applicable solution method for 

these equations. Although fairly robust, this technique is susceptible to failure, 

and subsequent program termination, due to numerical instabilities which can 

occur within the solution due to sudden changes in flow or channel conditions. 

The objective of this thesis work was to develop an extremely robust model for 

which these numerical instabilities do not cause program failure. 

To suppress the instability causing program failure, the potential of reducing the 

contributions of some of the terms in the momentum equation, namely the two 

acceleration terms, was investigated. Multiplicative coefficients were included in 

the momentum equation, one for each term. The objective ~ l a s  to avoid program 

failure by reducing the value of the coefficients, and thus the contribution of the 

associated terms, in the solution. The investigation required identification of 

criteria which would predict insipient instability and thus could be used to reduce 

the value of these coefficients automatically within the solution procedure, and 

thus prevent program failure. 



CHAPTER 3. PROBLEM CLARtFlCAnON 

3.1 Introduction 

This chapter includes a derivation of the S t  Venant equations of open channel 

flow from the principles of conservation of mass and of conservation of 

momentum. The assumptions made in these derivations, and necessary for the 

proper application of these equations, are then summarized. Momentum 

equation terms, each accounting for a part of the fluid motion and contributing a 

different effect to the solution, are identified and described. Two approximate 

solution techniques, the kinematic wave and the diffusion wave, are introduced 

based on the removal of various terms in the momentum equation. The idea of 

developing a model which would apply the best available solution technique is 

then introduced and the basis of using the full dynamic equations whenever 

possible and moving towards the approximate diffusion technique within the 

solution procedure by removing the momentum equation acceleration terms is 

discussed. The approximate solution technique is necessary since numerical 

instabilities which develop in the fulldynamic solution due to severe flow 

conditions otherwise caused the solution program to fail. The four-point implicit 

finite difference solution technique used for this wwk is described in detail and 

the stability and accuracy of the technique discussed. A discussion of flow 

conditions causing instabilities reported in the literature is also included. A 
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description of a method used previously to increase the robustness af the 

technique, by adjustment of the parameters At and 9 within the solution 

procedure, is included and the potential for further improved robustness by 

adjustment of the momentum equation coefficients to control solution stability is 

introduced in the problem statement. 

3.2 Saint Venant Equations 

The theory describing onedimensional, gradually-varied, unsteady flow was 

originally presented by De Saint Venant in 1871. This flow is described by two 

one-dimensional, partial differential equations which are collectively known as 

the St. Venant equations and represent the conservation of mass and the 

conservation of momentum. The complete derivation of these equations has 

been well documented by Henderson (1966) and Chow (1959), so only a 

summarized derivation has been presented here. 

The principle of conservation of mass states that, within a channel element, the 

net change in discharge plus the change in storage must be zero. As presented 

by Robertson and Crow (1 985), the principle of conservation of mass for an 

incompressible fluid of constant density can be stated as: 



[ Row volume entering flow volume exiting rate of change of volume 
a channel element ] - [a ctwnnel element ] = [ in m a  ctwnnel element I 

Application of this principle to the channel element shown in Figure 3.1 allowed 

the following derivation of the continuity equation: 

flow volume entering 6A 
a channel element 

flow volume exiting A + dA Ax ,,+ 5V Ax + gh + [a  channel element I=( ik 2)[ Bx 2 )  

rate of change of 
volume stored in = I ww = Mb, 

a channel element at 6 t 

where: 

q, = rate of bulk lateral inflow per unl length (Row direction velocity component) 

qo = rate of bulk lateral outflow per unit length (velocity in direction of flow) 

p = rate of distributed lateral inflow per unit length (no velocity component) 

i = rate of distributed lateral outflow per unit length (no velocity component) 

The continuity equation then becomes: 





For a non-prismatic channel, width B is a function of time (1) and of longitudinal 

distance (x), so that: 

and 

Dividing equation [3-11 through by B and assuming a prismatic channel where 

width B is not a function of distance (x), the continuity equation used for this 

thesis work is obtained as: 

3.2-2 The Momentum Eauation 

The mornentum equation is a combination of the momentum principle and 

Newton's Second Law of Motion, as presented by French (1985), states that: 

the sum of external] [ net momentum ] = [ rate of change of 
forces applied to a + flux entering the momentum in the 

control volume control volume control volume 

Application of this principle to the channel element shown in Figure 3.2, and 

assumption of a uniform velocity distribution across the channel, allows the 

follow*ng derivation of the momentum equation: 
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[sum of external forces] = F = Fp( - Fp - F, - F, - F, + F, + F, 
4 

[net momentum flux entering a channel element] = W Q V )  &( 
6x 

[rate of change of momentum in a channel element] = ~ ( P V A ~ )  
5t 

The momentum equation then becomes: 

3.2.2.1 Forces actina on the element 

Assuming a hydrostatic pressure distribution, and referring to Figure 3.2, the 

hydrostatic pressure force is given by the equation: 

where: dA = B dy, and 

6 is a function of rl. 



From Figure 3.2. 

6F 
F,, = F,, + -e&f 

i5x 

and, since F, + F, represents the change in F, due to the change in width, 6, 

with channel distance x, 

Using the derivative product rule, 

Combining equations [3.6] through [3.8], the following is obtained: 

Y 
BY 6~ F,, - F,, - (F, +F2) = -bx yB-dq = -y&-A 
ax 

0 
ax 

Y 
since A=IBdq. 

0 

Assuming the channel bed is constant (no scour or deposition), the shear force 

acting on the fluid by the bed is equal to the stress multiplied by the contact area 

so that: 



For conditions of uniform flow, the shear force, F,, resists the weight of the fluid, 

F,, so that: 

which provides: 

Assuming that the resistance equations developed for uniform flow (where S, = 

Sf) are applicable to this unsteady, nonvniform flow, the shear force acting on 

the channel element is given by: 

F, = (yRS,)PL\x = yAbxS, 

where: P = wetted perimeter, and 

A R = - , hydraulic radius. 
P 

For small angles of @, where sin@ = tan@, the force due to the weight of the fluid 

in the element is: 

The force due to wind shear on the surface of the channel element can be 



derived similarly to that done above for the channel bed, with the following 

result: 

F, = yAAxS, [3.15] 

3-2.2.2 Momentum Enterina the Channel Element 

Referring again to Figure 3.2, the net momentum flux entering channel element 

is the momentum entering minus the momentum exiting: 

[momentum entering] = p Q V + pqi& vi 

[momentum exiting] = p QV + 6(pQV) AX + p q , ~ x ~  
6x 

[net momentum entering] = - b(pQV)hr+pq&w,-pq,hV [3.18] (3x 

where, vi is the velocity component in the direction of flow of bulk lateral inflow. 

3.2.2.3 Rate of Chanae of Momentum 

Referring again to Figure 3.2, the rate of change, or accumulation, of momentum 



in the channel element is: 

[momentum accumulation] = ~ P V A W  
6t 

Combining equations [3.9], (3.1 31, [3.15], [3.18], and [3.19], the following 

momentum equation is obtained: 

Dividing by pAx and rearranging: 

Expanding the first two terms, assuming wind shear is negligible and bulk lateral 

inflow and outflow are zero, substituting equation [3.1] into [3.21], and 

rearranging and simplifying, the momentum equation becomes: 

Mere: q = p-i .  

ions -Qvnamic Ewtions 

Several assumptions were made in the derivation and simplification of the 
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original S t  Venant equations in order to obtain the f m s  of equations [3.3] and 

[3.22]. These assumptions are further discussed by Chow el al. (1 988) and 

Weinrnann (1 977). For the derived equations to be applicable for a particular 

combination of flow conditions and channel characteristics, the assumptions 

must be reasonable. The assumptions are summarized as follows: 

one-dirnensional flow (longitudinal flow variations only); 

horizontal water sutface and uniform velocity distribution across the channel; 

incompressible, homogeneous flaw; 

gradually varied flow with hydrostatic pressure distribution throughout; 

resistance effects adequately described with resistance coefficients and 

equations developed for steady uniform turbulent flow; 

longitudinal channel axis approximated as a straight line; 

fixed channel bottom slope (no scour or deposition); 

channel bottom slope small so that sin@ = tan*; 

zero net bulk lateral inflow entering channel; 

total distributed outflow is q, (zero momentum in direction of Row); 

negligible *nd effeds; and 

prismatic channel. 

3.3 Terms in the Momentum Equation 

The momentum equation consists of five tens, referred to as 'terrnl' through 
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YermS, each representing a physical process affecting flow momentum, as 

discussed by Chow et al. (1988) and as indicated in equation [3.23] below. A 

multiplicative coefficient wes introduced for each term to establish the 

momentum equation used for the mbustness model developed for this thesis 

work as follow: 

kinematic wave A 

diffusion wave 

foil dynamic wave 

where: 

the local acceleration term, 

the convective acceleration term, 

Qf term3 = 4 g  - the pressure force term, 
5x 
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term4 = A,g(S, - So) with A,gS, the fn'ction force, or shear, term, 

and A,g So the gravity force, or bed slope, term, and 

v term5 = 4 - q  the net distributed inflow term. 
A 

The Ma acceleration tenns, local and convective, are colledively known as the 

inertial tenns and represent the change in momentum due to the change in 

velocity with time (momentum accumulation) and the change in velocity with 

channel distance (momentum flux), respectively. The pressure force term 

represents the change in momentum due to the change in depth, and thus the 

change in hydrostatic pressure, along the channel. The friction and gravity force 

terms represent the difference between the forces due to the weight of the fluid 

and to the shear against the channel bottom and are proportional to the Wction 

and bed slopes of the channel, respectively. The inflow term represents the net 

distributed inflow for the channel section. 

In the following discussion regarding the contributions and significance of the 

various momentum equation terms, information presented by Weinmann (1 9?7), 

Henderson (1 966), and Chow (1 959) has been included. For routing a 

hydrograph down a steep channel, the friction and gravity slope tenns dominate 

the flow characteristics. For channels of flat bed slope, the pressure term is also 

important The acceleration terms are important for steeply rising or falling 
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hydrographs. When backwater effects from channel transitions or boundary 

structures are significant, the pressure and acceleration terms are important 

These terms are the only terms in the equation that can simulate velocity 

changes in time or in the upstream direction. The pressure and acceleration 

tenns allow calculation of backwater effects and wave attenuation and 

subsidence and thus produce the looped discharge rating curve expected for 

unsteady, gradually varied flow. 

Henderson (1 966) reported that for a fast-rising flood in a steep natural channel 

(So > .002), the contribution of the pressure term, convective acceleration, and 

local acceleration terms were about one, two, and three orders of magnitude, 

respectively, less that the gravity term. Weinmann (1977) suggested that the 

magnitude of the pressure term was dependent on the steepness of the inflow 

hydrograph and inversely proportional to channel slope. He also reported that 

for channels of flat bed slope, the pressure term might be of similar magnitude to 

the gravity term and the two acceleration terms somewhat smaller than the 

pressure term. For steeper channels, he reported a pressure gradient term of 

about an order of magnitude smaller than ftidion slope and acceleration tenns 

an order uf magnitude smaller again. Both Henderson (1966) and Weinmann 

(1977) reported that for steep slopes, the gravity slope term dominated the flow 

but the acceleration terms were significant, Wile for flat bed slopes, the 

pressure term was important The pressure and acceleration terms were 
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reported to be important for fast-rising hydrographs and whenever backwater 

effects or the time of an event were important to the result 

The relative significance of the two acceleration terms, term1 and term2, has not 

been discussed in the literature. Although both represent acceleration effects, 

they are derived separately *thin the momentum equation (see Section 3.2). 

Term1 was derived from the momentum accumulation within the control volume 

while term2 was derived from the momentum flux through the control section. 

Weinmann (1 977) and Henderson (1966) only discuss their combined 

significance and magnitude, without mention of their respective contributions. 

3.3.1 Momentum Fauation Aporoximationg 

Before high-speed digital computers were readily available to solve numerical 

methods, solution of the full dynamic S t  Venant Equations, represented by 

equations [3.3] and [3.22], presented serious difficulty. In order to simpli$y the 

solution procedure required for unsteady flow routing, approximate methods 

were developed in which certain terms in the momentum equation w r e  

neglected in order to linearize the momentum equation. An explicit solution could 

then be obtained for linear conditions. Justification for the removal of the various 

terms was based on the assumption that the contribution of the neglected terns 

was small compared to the remaining terms. The most commonly used 
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approximate methods are the diffusion wave, in which the two acceleration terms 

are neglected, and the kinematic wave in vrhich the pressure term is neglected 

as well as the acceleration terms- 

Wlth a kinematic wave solution technique, only the channel and fridion slope 

terms are retained so that uniform flow is calculated. In this case, a straight-line 

rating curve is predicted which is characteristic of steady-state flow, as 

discussed by French (I 985). Weinmann (1 977) summarized that a kinematic 

wave solution cannot predict backwater eff8ds and can only model the wave 

crest, can only propagate the crest downstream, reports maximum stage and 

maximum discharge at the same time, and underestimates the maximum 

discharge. A diffusion wave technique includes the pressure term and so can 

represent wave attenuation and subsidence and can provide an approximate 

looped rating curve. 

As mentioned previously, approximate methods are still widely used for open 

channel unsteady flow modelling applications. These techniques are applied 

without justification of whether the terms which are neglected are truly negligible. 

The contribution of these neglected terms is assumed to be unimportant for 

solution of the problem. The results of the approximate solution are then 

accepted and used in the remainder of the design process. 
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For this work, multiplicative coefficients were induded for eadl of the momentum 

equation terms. Referring to equation 13-23], if coefficients A, and A, were set to 

zero, then term1 and term2 w l d  be set to zero and the diffusion wave equation 

obtained; and, with A,, 4, and &, set to zero, the kinematic wave equation 

would be obtained. These coefficients were introduced so that the solution 

procedure could be varied from solution of the full dynamic momentum equation 

through the diffusion equation to the kinematic equation. 

- olication of &proximat ions 3.3.3 AQ 

In a kinematic wave pmcedure, the acceleration and pressure terms are 

neglected so the solution cannot predict backwater effects nor provide the 

looped rating curve characteristic of unsteady open channel flow. The diffusion 

technique includes the pressure term and so can approximate these Meds. 

These two effects are significant to many problems of unsteady, open-channel 

flow problems where predictions are often required regarding the effect of 

operating a canal structure or the anticipated time and maximum values of depth 

and discharge for a flood condition. In an operated canal with numerous gate 

and weir structures separating reaches of relatively short length, b a W t e r  

effects wwld likely be extremely significant The uniform flow conditions 

simulated by the kinematic wave equation may never exist in such a canal. Thus, 

for long, steep channels with slowly-rising hydrographs where gravity and friction 



effects dominate, a kinematic, or even a steady-state model, may provide 

reasonable results. For a channel of intermediate slope with transitions or 

control structures causing backwater effects, a full dynamic solution is required 

for an accurate result In other words, terms are neglected arbitrarily to simplify 

the solution procedure without consideration of whether the neglected terms are 

significant In cases Were backwater effects are kncnnm to exist, the acceleration 

terms are neglected even though their effects are known to be important 

Of course, a solution can only be as accurate as the input data available, so 

where the quality of the input data is sufficiently poor that the model result wi-ll be 

approximate anywy, an appmximate solution method may provide acceptable 

results. Weinmann (1 977) concluded that approximate techniques may be 

warranted for simulation of channels for which some or all of the following 

conditions are true: (1 ) accurate channel geometry and flow conditions are not 

known, (2) channel bottom is very rough, (3) flow conditions vary very slowly, 

and (4) flow conditions are supermWal. For manmade channels with regular 

cross-sections and control led flows, an accurate solution technique is virtually 

always warranted. In spite of the obvious problems, models based on the 

kinematic technique are still widely accepted. 
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The standard open-channel flow model used in industry today is the US Army 

Corps of Engineers (1 995) model HEC-RAS, formerly known as HEC-2. 

Although an unsteady component is reportedly to be released in the near Mure, 

only the steady flow version is currently available. The QUALHYMO (Rowney, 

1991 ) and SWMM (Huber, 1988) families of stormwater models include several 

openchannel routing options including kinematic wve and dynamic solution 

methods. The dynamic solution component to the SWMM model, EXTRAN, is 

unstable under varying flow conditions, so the approximate method solutions are 

still generally used. 

As described above, the availability of high-speed digital computers makes the 

main reason for using an approximate solution technique for unsteady flow 

routing, that a proper full dynamic solution requires use of numerical methods, 

unjustifiable. The required solution procedures are readily solved using a 

personal computer and relatively simple programming techniques. Except under 

extreme flow conditions where a numerical solution technique may become 

mathematically unstable, the improved accuracy of a full dynamic solution 

greatly outwighs any difficulty introduced by the requirement for a numerical 

solution. Because potentially important terms in the momentum equation are 

assumed negligible and removed, an approximate solution procedure does not 

provide the best answer. Today, the best available technology is the 

simultaneous solution of the full dynamic equations. 



3.4 Numerical Solution of Full Dynamic Equations 

For the system of full dynamic, S t  Venant equations, including the continuity 

equation [3.3] and momentum equation 13-23] deswbed above, there is no 

known analytical solution. The system can only be solved by use of a numerical 

solution technique and a digital computer. Numerical methods to solve the 

complete form of the S t  Venant equations were described by StrelkofF (1 969), 

among others. For reasons discussed in Section 1 -2, the four-point implicit, finite 

difference method developed by Arnein and Fang (1 970) for the solution of the 

system of equations, together with the boundary conditions, was used for this 

w o k  This method has been used extensively by many authors including 

Weinmann (1 977), Fread (1 981 ), and Manz (1 994) and reportedly provides an 

accurate solution to the full dynamic equations. Manz (1 994) summarized the 

advantages of this solution method over other fulldynamic solution techniques 

as follovus: (1 ) Me ability to incorporate distributed lateral inflow or outflow (e-g. 

precipitation or seepage), (2) no restridions on the hydraulic and operational 

characteristics of the modelled hydraulic control structures (eg. radial gates), (3) 

relatively minor programming Mort, (4) use of the same input information 

required for the design of canals and associated control structures, and (5) is 

based on verified theory and standard hydraulic engineering practise. 



3.4.1 Four-Point Irnd~c~t Fln~te Oiffe * -  - -  rence Techni- 

The four-point implicit solution technique has been widely used in industry and 

well documented by Weinmann (1977), Fread (1 981 ), and El-Maawy (1 994 ) as 

an accurate and robust solution technique fw unsteady flow routing. The method 

is useful for practical application sime the solution is obtained at specified 

locations in space and time, the value of Ax need not be constant along the 

reach, and the stability of the solution can be controlled by variation of the finite 

difference parameters Ax, At, and 8. The robustness of the fourpoint implicit 

technique is due to the flexibility of the technique which allows this variation of 

Ax, At, and 0 within the solution procedure- 

As described by Weimnann (1977), the equation system to be solved consists of 

two nonlinear, first order, first degree, partial differential hyperbolic equations, 

the continuity and momentum equations, with x and t as independent variables 

and y and V as dependent variables. The other terms are constants or functions 

of the independent or dependent variables. For each time step of increment At, 

the solution involves the determination of depth and velocity at the ends of each 

channel section, each of some length Ax The continuity and momentum 

equations are approximated by finite difference equations, and written at each 

channel section to be used in the computation. For a reach divided into N 

channel sections where the values of velocity and depth are to be evaluated, two 
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finite difference equations are Hlritten at each section giving 2(N-I ) equations for 

the 2N unknowns. Since the system of finite difference equations contains two 

more unknowns than equations, boundary equations at the upstream and 

downstream extremes of the channel reach are required to provide t w ~  

additional equations. Together with the two boundary conditions and a complete 

initial condition, a system of 2N nonlinear algebraic equations is produced. The 

resulting system of equations is solved simultaneously by an iterative procedure. 

The coefficient matrix which results fmm the system of finite difference equations 

has a banded pentadiagonal structure which allowe, use of an efficient solution 

algorithm in order to minimize both required computer storage and computing 

time. The solution is marched forward in time using the previous solution as the 

first estimate for the next time. 

The Newton Raphson technique was chosen as the iterative procedure for 

solution of the system since it converges quickly when the first approximation of 

the solution is reasonable and, as reported by Lai (1986), is efficient and 

reliable. In the program, a solution was accepted at each finite interval of time, 

defined by At, when successive iterative values of depth and velocity varied by 

less than the specified tolerance value of 0.001 m. Numerical solution of a 

steady-state backwater calculation was used as the initial condition required to 

start the procedure. The downstream boundary was set as a full-width, sharp- 

crested weir, and the upstream boundary set with an inflow discharge 



32 

hydrograph. Within the simulation, one or both of the boundary conditions was 

adjusted to cause a change in flow conditions. The weir was either raised or 

lowered andlor the discharge hydrograph either increased or decreased. Using 

the solution from the previous time step as the initial estimate, the Newton 

Raphson technique was used to converge to the solution at the new time step. 

3.4.2 Stabilitv and Accuracv of the Four Point Imdicit Technique 

The Amein fourgoint implicit finite difference technique has been used 

extensively in open channel models, including the US National Weather Service 

models DWOPER and DAMBRK as well as Man2 (1994) model ICSS, and thus 

the stability and accuracy of the solution method have been well investigated by 

Weinmann (1 977), El-Maawy (1 991 ) and others. As discussed by Lai (1 986), the 

stability and convergence of the solution technique affects the accuracy of the 

result. The stability of the solution technique refers to the difference between the 

numerical solution and the exact solution of the finite difference equations. 

Convergence refers to the difference between the theoretical solution of the 

partial differential equations and the finite difference equations. Accuracy refers 

to the difference between the actual solution of the problem, which remains 

unknown, and the computed result Stability is obtained when small numerical 

errors, which include truncation errors due to discretization of the differential 

equations and roundoff errors due to the limit of calculation precision, are not 



amplified by the computational procedure. 

Traditional references such as Chow et al. (1988) and French (1 985) reported 

the stability of the implicit method to be independent of the Courant condition; 

however, El Maawy (1 991 ) found this to be true only  thin a range. The Courant 

at hx condition represents the ratio of - and is calculated as: At ,t -, where C, 
Ax c w  

is the celerity of the wave and equal to fi for a kinematic wave (French, 

At 1985). Thus, the Courant number, c , is calculated as -C, and should be 
n Ax 

less than or equal to one for the Courant condition to be satisfied- 

The implicit finite difference technique has generally been considered 

Ax unconditionally stable for any ratio of - Men 0 is held within the range 0.5 0 
At 

c 1. Fread (7 973) reported, however, that instabilities were encountered for - 

certain upstream boundary hydrographs and At time steps even for e values 

w-thin this range. He reported that the acarracy of the solution was effected by 

the size of the time step and the characteristics of the discharge hydrograph at 

the upstream channel boundary. Fread also reported that although e large At 

was desirable in order to reduce computation time, especially for long-duration 

simulations, when At was made large truncation errors caused distortion, 

dispersion and attenuation of the peak. El Maawy (I 991 ) reported serious 

instabilities when Ax was significantly larger than would be suggested by the 

Courant condition, and when 8 was close to 0.5 with a steep hydrograph. Both 
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reported that values of 8 less than 0.5 caused severe instabilities. El-Maawy 

also observed that At must be small enough to detail the flow adequately, and 

that an upper limit to At existed to ensure stability as the flow variation became 

more severe. Both reported that the solution was reliably stable, convergent and 

accurate when At and Ax were selected to satisfy the Courant condition. 

Lai (1 986) reported that some dispersion always occurred for 9 values greater 

than 0.5, a condition which HRS more pronounced as At was increased and less 

significant as & wes decreased. Fread (1 973) found that distortion was 

minimized when 0 values were in the lower range, and recommended a value for 

8 of 0.55 to balance distortion due to large time steps while ensuring theoretical 

stability. El-Maawy (I 991 ) found that a 8 of 0.6 was effective for rapidly varying 

flow, and a 8 of 0.55 effective for more gradual flow variations. Fread (1973) 

summarized his analysis indicating that stability decreases with increasing 

values of At and decreasing values of 8 as well as with steepening inflow 

hydrographs, and that distortion increases with increasing channel length or 

Manning roughness n and decreases with increasing initial channel depth or 

channel bottom slope. 

With the fourpoint implicit technique, the finite difference parameters Ax, At, 

and 8 are selected to control convergence, stability, and dispersion of the 

solution wave. As discussed by Fread (1 981 ), when At was reduced within the 

procedure, the solution became more stable. In reducing At, the Courant 



number, proportional to was reduced. A similar Wed could have been 
Ax 

obtained with an increased bq however, variation of Ax within the procedure can 

cause reduced solution accuracy since interpolation could be required in order 

to obtain results at the desired locations along the channel. 

3.4.3 Failure Flow Conddlons . - 

The previous discussion emphasized that although the four-point implicit 

technique has been reported to be unconditionally stable for values of 0 greater 

than 0.5, severe instabillies can occur under some flow conditions. Fread (1 983) 

found cases of instability, resulting from steep input hydrographs and changes in 

cross section, sufficiently severe that adjustment of Ax, At, and 0 was not 

sufficient to provide a solution. French (1985) reported that steep inflow 

hydrographs, and resulting surges, and sudden channel transitions could cause 

rapidly-varied flow conditions. Solution difficulty wuld be expected for 

conditions approaching rapidly varied flow since the St Venant equations are 

valid only for gradually-varied flow; however, even gradually-varied flow 

conditions can result in unstable calculations causing failure. Relatively steep 

water surface and discharge profiles would be more likely to result in solution 

failure since the large values of the pressure and acceleration terms could 

induce instabilities in the numerical solution. A flow profile for which the pressure 

slope term, 3, is negative, such as for an M2 water sutface profile, would be 
ax 
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likely to produce failure for a mild channel slope, since the depth could approach 

zero within an unstable calculation. For the channel used for this thesis wwk, 

with a sharpcrested wir as the dormstream control, gradually varied flow 

conditions would produce an MI backwater curve with slightly positive term 
6x 

structure. A sudden increase in the inflow hydrograph would produce a surge 

with a steep M2 profile at its leading edge. An increase in downstream weir 

depth could exaggerate this effect by initially reducing the downstream 

discharge against the raised weir and thus increasing the relative surge. For a 

steep channel, the momentarily decreased discharge over the raised wir could 

produce a similarly steep S2 profile and negative * term. Thus, an unstable 
ax 

condition might be induced in the gradually-varied unsteady flow model by 

simultaneously introducing a sudden increase in the inflow hydrograph and an 

increase in the height of Me weir. 

3.4.4 Solaon Robustness with Vawian . - and 9 

In his paper, Fread (1 981 ) described an automatic procedure used in the 

program DWOPER, contained within the finite difference solution algorithm to 

increase the robust nature of the fowgoint implicit method. He reported that 

rapidly rising hydrographs and non-linear cross-section properties caused 

computational problems resulting in nonconvergence in the Newton-Raphson 

iteration or in erroneously low computed depths at the leading edge of steep 
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wave fronts. When either of these conditions were sensed in the program, an 

automatic procedure consisting of two parts was implemented. First, the time 

step (At) was reduced by a factor of 2 and the computations repeated; if the 

same problem persisted, At was again halved and the computation repeated. 

This continued until a successfjll solution was obtained or the time step had 

been reduced to 1 M 6 of the original size. If a successful solution was obtained, 

the computation proceeded to the next time step using the original ht If the 

At solution using - mas unsuccessful, the 8 weighting fador was increased by 
16 

&t 0.1 and a time step of - used. Upon achieving a successful solution, €3 and At 
2 

were restored to their original values. Unsuccessful solutions were treated by 

increasing 8 and repeating the computation until 8 = 1, at which point the 

At automatic procedure terminated and the solution with 8 = 1 and - was used to 
2 

advance forward in time, resetting At and 9 again to the original values. 

The four point implicit finite difference method provides the flexibility to vary the 

finite difference parameters At and 0 in the middle of a simulation, as described 

above. However, the instability described by Fread, due the mathematical errors 

resulting from steep input hydrographs and changes in cmss section, can be 

sufficiently severe that adjustment of At and 8 is unsuccessful in allowing a 

solution. Fread described that if the algorithm used in OWOPER was 

At unsuccessful, the solution obtained with - and 8 = 1 was accepted. Fread did 
16 

not report investigation of conditions for whW these parameters did not allow a 



solution. 

3.5 Problem Statement 

For practical application, a solution technique must be reliably robust under 

virtually all flow conditions. With variation of At and 9 within a simulation, the 

fourpoint implicit finite difference technique is both reliable and robust for many 

flow conditions and channel characteristics, however numerical instability 

causing program failure can still occur. For this thesis work, a method to adjust 

parameters in addition to At and 0 8 s  developed in order to investigate the 

potential for an even more robust solution technique. The procedure developed 

allovved a full dynamic solution to be applied throughout a simulation, except for 

those time steps exhibaing numerical instability. For those unstable time steps, 

an approximate technique, in which the contribution from some of the terms in 

the momentum equation was reduced, w s  applied so that program termination 

was avoided. In this way, the best available procedure was used for each time 

step. In other words, a full dynamic solution w s  provided for all time steps 

except those for which the technique was unable to provide any solution; only 

then w s  an approximate technique applied. 



CHAP'TER 4. ROBUSTNESS MODEL 

4.1 Introduction 

This chapter begins with a description of the four-point implicit finite difference 

solution technique and the discretized continuity and momentum equations used 

for this wrk, including the multiplicative coefficients A, through A, applied to the 

various terms in the momentum equation. This method uws used to investigate 

the potential of a 'robustness model' which wwld eliminate program failure due 

to numerical instability. The method involved an automatic adjustment of the 

coefficients, A, and 4, as well as the traditional parameters of At and 0- The 

criteria used for application of the adjustments, and a logic flowchart of the 

program, were also included. A description of the channel characteristics, finite 

difference parameters, and flow conditions selected to test the robustness of the 

model follow. The chapter concludes with a description of a modelled stable 

solution and a discussion of the contributions of the various momentum equation 

terms to that solution- 

4.2 Description of the F our-Point Implicit Model 

For this thesis wwk, a single channel reach computer simulation model was 

programmed to sdve the full dynamic St. Venant equations using the fourpoint, 
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implicit, finite difference technique described by Weinmam (19?7) and Fread 

(1 981). As discussed in Section 1.2, this technique represents standard 

engineering practise and has been verified and investigated by others. The 

model included a steady state backwater calculation for the initial condition. an 

input hydrograph of di-arge versus time for the upstream boundary condition, 

and flow over a sharpcrested weir for the downstream boundaw. Lateral infIaw 

and outflow were set to zero since this was intended to be a general 

investigation of the effects of adjusting the contribution of the momentum 

equation terms, rather than specific for certain channel and flow conditions. 

Downstream weir height was variable within the simulation. 

The work done be El Maawy (1 991 ), based on the four-point implicit technique, 

included calibration. His results were used to verify the robustness model 

developed for this thesis work. The results using the robustness model agreed 

well (within less than five percent) with El Maawy's calibrated results. 

For convenience, the St. Venant equations of one-dimensional, unsteady, 

gradually varying, open channel flow, equations [3.3] and [3.23] discussed 

above, were repeated here: 

Continuity equation: 



Momentum equation: 

After application of the four-point implicit finite-difference technique and 

simplification, the discretized continuity and momentum equations of the 

following form were used for programming. A description of the discretization of 

these equations was included in Appendix A 

Continuity equation: 

where: 

Cl = -[&jl + ,,/I 



Momentum equation: 

4 4 *" + v/" ] + 4 c,* + -0 c,,[v/:; - v/+l] + -8 c,, [v;!, 
9 9 

where: 



4.3 Robustness Model 

As discussed in Section 3.4.2, the four-point implicit technique is very stable for 

a wide range of input conditions. The technique allows solution stability to be 

controlled within the procedure through adjustment of the finite difference 

parameters Ax, At, and 8. Fread (1983) described a procedure used in the 

DWOPER program, as discussed in Section 3.4.4, in which the parameters At 

and 8 were adjusted when an incipient instability or program failure was sensed. 

In that program, when either nonanvergence in the Newton-Raphson iteration 
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or an erroneously low computed depth was detected, an automatic procedure 

was initiated to first reduce At, and then to increase 8 in order to increase the 

stability of the solution. Although effective in increasing solution stability 

generally, the solution technique described by Fread (1983) ~ l a s  subject to 

failure under certain Row conditions for which adjustment af At and d was 

insufficient to prevent program failure. 

As discussed in Chapter 2, the objective of this wrk w s  to investigate the 

potential for a very robust version of the four-point implicit technique in which 

severe instabilities developed in the solution were sufficiently suppressed that 

program termination was avoided. In addition to adjustment of the finite 

difference parameters At and 9, the momentum term coefficients, A, and 4 

(discussed in Section 3.3), were automatically reduced in order to suppress the 

instability introduced by their respective momentum terms. As the values of the 

two selected coefficients (A, and 4) w e  reduced to zero, the contribution from 

the momentum equation acceleration terms (term1 and term2) was reduced to 

negligible and the instabilities introduced by these terms eliminated. When the 

coefficients were set between zero and one, the contribution ftom the affected 

terms was reduced so that any numerical instability introduced by these terms 

was suppressed. With coefficients A, and 4 set to zero, the contribution from 

the momentum equation acceleration terms was neglected and the solution 

technique was a diffusion wave approximate technique. If coefficients A,, A, and 
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4, were set to zero, the acceleration and pressure terms would be neglected 

and the solution wuld become a kinematic wave approximate technique. 

The initial intent for this work was to reduce the solution from full dynamic 

through difhrsion, by reducing cc)efFicients A, and 4 towards zero, and then to 

kinematic by reducing A, towards zero as well. The initial condition used for this 

work was a steady-state badwater calculation behind a weir. The kinematic 

equation describes uniform flow for which the fridion and gravity slopes are 

balanced. With coefficients A,, 4 and A, set to zero, the solution technique 

would attempt to solve for a zero residual condition where the residual was the 

difference between the friction and channel bed slope terms (given zero 

distributed inflow). The calculated residuals would then be the difference 

between the steady flow inlial condition and the uniform flow condition, which 

would always be non zero. Therefore, reduction of the momentum equation to 

the kinematic form wuld be unreasonable with a backwater calculation initial 

condition. 

For this wwk, coefficient 4 was not adjusted since, as discussed above, 

application of a kinematic approximate solution was not reasonable with the 

selected initial condition. Adjustment of coefficients A, and 4, and hw 

reduction af the momentum equation towards the diffusion wave equation, was 

investigated. The parameter Ax was not adjusted since interpolation, with a 
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resulting loss of accuracy, would have been required for x-locations between 

previous channel sections. 

A simplified flowchart of the procedure, illustrating the logic applied in the 

robustness model, is shom in Figure 4.1. The logic follows the four-point implicit 

finite difference technique except that prior to a solution advancing to the next 

iteration, for any specific iteration within a specific time step, the solution was 

checked against a specific criteria and, for a positive outcome, an adjustment 

was made to a selected parameter (At, 8, A, andlor 4). An example of the 

FORTRAN program code was included in Appendix 6. 

As illustrated in Figure 4.1, the unsteady flow calculation loop was started 

following initialization and calculation of the initial condition. The initial condition 

was a steady flow backwater calculation behind the downstream sharp crested 

weir. The constants were then calculated based on the depth and velocity values 

obtained for either the initial condition or for the previous time step. The Newton 

Raphson iteration loop was started and the values of the residuals, the 

difference between the fundion values and the theoretically correct value zero, 

were calculated and checked against an acceptable minimum value. If all the 

residuals, for that time step and iteration, were less than the minimum value, the 
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estimate w s  accepted as the solution and the unsteady flow loop restarted for 

the next time step. For each time step, the solution obtained for the previous 

time step was used as the initial estimate for the next 

If all the residuals were not less than the minimum value, as ~lould occur at a 

time step for which the input flow condition, or downstream boundary, had been 

changed, the partial differentials were calculated and a pentadiagonal matrix 

procedure used to solve the simultaneous equations. The corrections (Ay and 

AV) returned from the matrix solver were then applied to the previous estimate 

values to provide the new solution at this time step. 

This solution was then tested against the selected robustness criterion. The 

criterion was selected to detect a serious instability in the solution prior to 

program failure. If the criteria was met, indicating that a serious instability had 

occurred, an adjustment was made to the desired parameter (At, 8, A,, or 4). 

After the adjustment, the constants were recalculated using the adjusted 

parameter(s), the Newton iteration loop was re-entered, and the process was 

repeated. Wth this procedure, the programmed model provided a full dynamic 

solution at all time steps except those for which a numerical instability was 

detected by the selected criterion. 



In order to detect a numerical instability, and incipient program failure, a 

procedure was programmed to check whether a selected criterion was met for 

any time step calculation within the solution procedure, as described above. 

When the seleded criteria vws met for the first time within a given time step, At 

was reduced by haw and the computation for that time step repeated. As 

discussed in Section 3.4.2, such a reduction of At reduced the Courant number, 

which shifted the calculation towards the stable condition defined by Cn = 1. 

If the instability criteria was met again, 8 was increased to 0.6, with At kept at 

one-half, and the computation again repeated. If the criteria was met for a third 

time, e was adjusted to 0.8. If the criteria was met again, coefficients A, and A, 

were gradually reduced from one towards zero. These coefficients wre kept 

equivalent for the initial investigation. Possible adjustments, applied in 

subseqwnt calculations when the criteria continued to be met, were to 0.8, 0.5, 

0.3, and 0.7. After each adjustment, a solution for the affected time step was 

At again attempted, using - and 8 = 0.8. If the criteria was not met, indicating that 
2 

there were no severe numerical instabilities, the solution w s  accepted and the 

parameters reset to their original values for the next time step calculation. A 

maximum 0 value of 0.8 was selected to minimize dispersion of the solution. 

Experiments showed that the applied adjustments were virtually identical 
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whether 0.8 or 1.0 was used as the maximum adjusted value for 8; however, the 

dispersion effect of the large 8 value was noticeably less with a 8 value of 0.8. 

4-3.3 Selected Criteria 

Two criteria wre selected to test for numerical instability and incipient program 

failure and thus to determine the time steps for which a parameter adjustment 

was made. The selected criteria were: (1) an erroneous solution for which a 

channel depth less than zero (y c 0) was calculated, and (2) a supercritical flow 

condition for which Froude number was greater than one (Fr > I ). These tww 

criteria were used in separate simulations so that a comparison could be made 

of the adjustments and affected time steps. These were selected 

because they were effective in selecting time steps for which numerical 

instability occurred and they were theoretically reasonable. The depth in the 

channel should not be less than zero and the channel and boundary conditions 

were selected for conditions of subcritical flow. 

Several other potential criteria were investigated but with disappointing results. 

Both Reynolds number and Courant number were tested, but neither was found 

to indicate the time steps exhibiting instability for the tested flow conditions. 

Actual values of various momentum equation terms Illrere also tested, however 

no consistent numeric value was found which was applicable to a variety of time 
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steps. For the tested flow conditions, the same value d momentum equation 

terms was reported for time steps with and without instability. Rather than an 

actual value, a relative change in value of one or more of the momentum terms 

might prove possible as a criteria. Such an investigation was beyond the scope 

of this work since the terms would be expected to vary with different flow 

conditions and this wwk was intended to be a general application of improved 

robustness rather than specific to the flow and channel conditions tested. 

Several different values of Froude number (0.5,2,3) were also tested, and 

although parameter adjustments were applied to slightly different time steps in 

each case, no clear justification was found for one value over another. The 

criterion of Froude number greater than one vms selected since it indicates the 

theoretical boundary between submitical and supercritical flow conditions. 

4.4 Parameter Selection 

The stability and convergence of the model were assessed by varying the finite 

difference parameters, & At, and 0, which affect the stability of the solution. 

Using the selected channel characteristics, these parameters were varied until 

the solution appeared stable and convergent Calculations of Courant number 

(See Section 3.4.2) w r e  based on the kinematic wave speed. Lateral inflow was 

set to zero for all conditions evaluated. 



Channel characteristics were selected so that a realistic channel w s  

represented in the model. The selected channel was a redangular, prismatic 

channel (B = 3 rn) with a fairly smooth (n = .OW)  and fairly steep (S, = .001) bed 

so that the unstable conditions necessary to test the robustness program vmuld 

be relatively easy to create. In order to ensure adequate detail near the 

downstream weir, Ax was set to 1 m for 20 rn from the weir and was not varied in 

this region. 

For investigation of the effect of the finite difference parameters & At, and 0, 

the inflow hydrograph was set to a constant 5 m31s and the downstream weir 

height changed in height instantaneously from 1.5 rn to 1.0 m tw minutes into 

the simulation. Each parameter was then varied while the others were held 

constant. First, Ax was varied, while holding At and 0 constant, then At was 

varied with Ax and 8 constant, and finally 8 was varied between 0.5 and 1 .O, with 

Ax and At held constant The impact of the variation of the momentum 

coefficients, A, and 4, affecting the acceleration terms, was then investigated 

using the previously determined values of Ax, At, and 8. 
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The results of the investigation into the MBds of varying the parameters Ax, At, 

8, and A, and 4, were illustrated in Figures 4.2 to 4.5. The figures were plotted 

for a modelled distance approximately haw the distance between the upstream 

and downstream boundaries. The results verified previous work and theory since 

the most stable and reasonable solution was obtained with At and Ax selected to 

provide Cn = 1.0, with 0 greater than but dose to 0.5, and with A, and A, equal 

to 1. 

The variation of Ax around 70 rn, to produce Courant numbers very different 

from 1.0, caused instability to be introduced into the solution, as illustrated in 

Figure 4.2. The solution appeared stable and smooth for Ax = 70 m, 

corresponding to Courant number betwen 1.0 and 1.2. When Ax was increased 

to 100 rn (C, = 0.1) or reduced to 30 rn (C, = 2.2), the solution showed 

instabilities in the form of overshooting at the peak and steps in the previously 

smooth curve. For the large Ax, the resulting profile was substantially altered in 

shape suggesting that this increment was too large to properly detail the Row. 

The instabilities were only apparent for times near the abrupt change in the 

inflow hydrograph. For later times, the various Ax profiles were similar showing 

the reflection back from the weir at about 12 minutes. 

The effect of variation d At, with Ax set at 70 m as determined in the previous 

step, was illustrated in Figure 4.3. The result was similar to that for Ax with the 
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most stable solution obtained with At = 20 s (C, = 1.0). A reduced At of of 0 s (C, 

= 0.5) caused instabilities resulting in a distinctly stepped curve, overshooting 

and searching at the peak, and undershooting as the hydrograph started to rise. 

A further reduction of At caused very large spikes in the solution and finally 

caused the program to fail. Again, the instabilities were observed near the time 

of the change in inffow. 

The effect of variation of 0, with Ax = 70 m and At = 20 s as previously 

determined, was illusttaled in Figure 4.4. Stable solutions were obtained for 8 = 

0.55,0.6, and 0.8. With 0 greater than 0.55, dispersion of the wave was 

apparent with the peak flattening and widening more severely as 0 was 

increased towards 1. With e = 0.5, the solution showed instability producing a 

seriously stepped curve. This instability continued for the full duration of the 

simulation. As suggested by theory, the best solution, stable and without obvious 

dispersion, was obtained &th 8 = 0.55. When 0 was reduced below 0.5, the 

program failed. 

The effect of varying the momentum coefficients A, and 4, with the other 

parameters as previously selected, was illustrated in Figure 4.5. The most 

accurate solution w s  expected for A, = 4 = 1.0 since the full dynamic 

equations were solved in that case. The parameters selected above (&=70m, 

At=20s, 8=0.55) provided a smooth curve with A, = 4 = 1, which included the 
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reflection effect from the downstream weir at about 12 minutes. With A, and 4 

reduced belaw 1.0, the entire solution urns shifted to an earlier time and the peak 

increased and narrowed. The weir refledion was still evident although increased 

in amplitude and also shifted to an earlier time. A similar effect was reported by 

Smith (1 980) who found the length of gradually varied flow profile was reduced 

with an approximate model. As previously discussed, the solution technique 

used for this work was a full-dynamic method when all coefficients (A, to &) 

were set equal to 1, and the approximate diffusion technique when A, and A, 

were reduced to zero. 

When A, and 4 were reduced to zero, the solution became somewhat unstable 

and appeared to search betwen extremes causing a stepped discharge profile. 

The weir reflection w s  no longer reported clearly since a diffusion technique 

solution can only approximate effects in the downstream direction. As discussed 

in Section 4.3, only coefficients A, and 4 were varied, and these were kept 

equivalent for this portion of the work 

Results from this investigation suggested that the best solution parameters for 

this channel and conditions ware the following: Ax = 70 m, At = 20 0, 8 = 0.55, 

and A, = A, = 1. Assuming the celerity of a kinematic wave, these parameters 

provided a Courant number very close to one for these flow conditions. In order 

to enhance the potential instability, so that recovery couM be tested, the 
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parameters selected for the rest of this wwk were as follows: Ax = 50 m, At = 20 

s, and 9 = 0.52, which provided a Courant number of slightly more Wan one 

under these flow conditions. Wthin 20 m of the downstream weir, Ax was set at 

1 m- The values of Ax Here not varied- 

4-4-3 Stable Flow Condition 

In order to verify that the model w s  successful, and to provide a comparison for 

the later unstable solutions, the channel characteristics and finite difference 

parameters selected above were used to determine a flow condition which 

provided a stable full dynamic solution. The selected flow condition was a 

constant inflow hydrograph at 5 m31s with adjusted weir height from 1.5 m to 

1 -0 m at 0.5 minutes. The resulting full dynamic solution, plotted at the indicated 

locations along the channel, was shown in Figure 4.6. The discharge profile 

indicated a fairly stable solution. Some instability was evident on the rising limbs 

of the profiles where a sawtooth wave was apparent Of interest to the 

discussion of Section 4.4.4 below, the rising limb of the discharge profile 

occurred at about 3 minutes for the 750 rn x-location discharge profile. 

4.4.4 Contnbutm of Momerlfum Eg~lat . * 

ion Terms 

The contributions, and relative significance, of momentum equation term1 
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through term4 for the stable flow condition described above was shown in Figure 

4.7. The values plotted for each term were from distance location X = 750 rn. 

Term5 was zero for this work since it represented lateral inflow, which was set to 

zero initially. (l%e momentum equation terms were defined in Section 3.3.) 

Term4, the combined fridion and gravity force term, remained fairly constant 

throughout the simulation at a value of about -0. I. The sign of the term indicates 

that gravity effeds dominate fi-iction effects, since term4 is proportional to 

Sf - Sol as expected for subcritical flow conditions. For most of the simulation 

time, terrn3, the pressure force term, contributed a value of about 9.1, virtually 

balancing the contribution of term4. The positive value of this term, proportional 

to byl indicated that the depth ~ l a s  increasing downstream, as expected 
6x 

towards the weir, except for a moment when the pmfile reversed. Term1 and 

terrn2, the local and convective acceleration terms, respectively, contributed 

virtually zero for most of the simulation, except near the time at which the 

change in weir height was applied. A dramatic change in the values of the 

acceleration terms, tennl and tenn2, and the pressure term, term3, occurred at 

about three minutes into the simulation. 

The values of term1 and term3 were Mected dramatically while the value of 

term2 w s  affected to a lesser degree. The changes in term1 and term2 were 

positive while the change in term3 was negative and the values of these 
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changes were such that the sum of the terms remained close to zero. The 

changes in tern3 w r e  balanced by the sum of the changes in term1 and term2 

As mentioned in Section 4.4.3 and as shown in Figure 4.6, the rising limb of the 

discharge profile also occurred at a time of about 3 minutes. The simultaneous 

occurrence of a dramatic change in discharge profile and in the values of term1 

and term2 suggests that numerical instability in the solution can be reduced by 

reduction of coefficients A, through 4. 



CHAPTER 5. NUMERICAL EXPERIMENTS 

5.1 Introduction 

Numerical experiments were performed through repeated application of the 

model. Several unstable flow conditions were selected for which program failure 

could not be prevented by adjustment of the traditional stability parameters of At 

and 8. Adjustment of coefficients A, and 4, as well as At and 8, was then 

applied for these flow conditions and program failure prevented. The stable full 

dynamic solutions discussed in Section 4-4.3 provides a comparison for the 

unstable solutions obtained here. 

5.2 Results 

For unstable condition #1, flow conditions were selected for which a full dynamic 

solution could be obtained with adjustment of At and 0. For unstable conditions 

#2 and #3, flow conditions were chosen for which a hlll dynamic solution auld 

not be obtained. To obtain a solution for these conditions, adjustment of A, and 

4 as well as At and 8, was required. The various flow conditions are 

summarized in Table 5.1. The automatic procedure programmed into the model 

caused application of parameter adjustments according to the two selected 

criteria, y < 0 and Fr > 1 (as described in Section 4.3). The parameter 



input change wir change channel 
flow Q at time Pw attime L 

condition (m3/s) (min) (m) (min) (m) 

Table 5.2 Applied Parameter Adjustments 

flow Fiure 
condition 

nitial parameters: 

intitial criterion solution timesteps 
Cn applied resutt affected 

failure 
y e 0  success 59-60 
Fr> 1 success 46-91 

failure 
Fr > 1 failure Send 
y e 0  success 15 
Fr> 1 success 3-21 

failure 
y e 0  success 26-43 
Fr> 1 success S32 

adjusted parameters 
& theta Al=A2 



adjustments applied for solution are summarized in Table 5.2. 

5.7.1 Unstable Full Dynamic SQLUtion 

Flow conditions for 'unstable condition #I' included a constant inflow hydrograph 

at 5 m3/s and a sudden decrease in weir height from 1.0 m to 0.5 rn at 0.5 

minutes. Channel length was 1200 m. The partial profile obtained without 

adjustment of any parameters, with an insipient instability in the X = 50 m profile 

just before program failure, was shown in Figure 51 .  The complete profile 

obtained with automatic adjustment of At applied according to the criteria y c 0, 

was shown in Figure 5.2. The complete profile obtained with automatic 

adjustment of At and 9 applied according to the criteria Fr > 1 was included in 

Figure 5.3. For this flow condition, adjustment of the traditional parameters of At 

and 8 was sufficient to prevent program failure so that a full dynamic solution 

was obtained throughout the simulation. 

Flow conditions for 'unstable condition #2' included a sudden increase in the 

inflow hydrograph from 2 m3/s to 5 m3/s and a sudden increase in weir height 

from 0.5 m to 1.0 m, both at 0.5 minutes. Charnel length was 800 m. The partial 

profile obtained without adjustment of any parameters, with an insipient 









instability in the X = 50 m profile just before program failure, was shown in 

Figure 5.4. The partial profile obtained with adjustment of only the traditional 

parameters At and 0 HOS shown in Figure 5.5. This result suggests that a full 

dynamic solution under these conditions was not possible due to instability 

causing program failure. The complete profile obtained with automatic 

adjustment of A, and 4, as well as At and 0, applied according to the aiteria 

y < 0 was shown in Figure 5.6. Although significant instability is still apparent in 

the solution, a solution was obtained without program failure. The instability was 

observed to coincide with tirne steps to which no parameter adjustment was 

applied. This result suggests that the y c 0 criteria did not identify all the tirne 

steps for which numerical instability occurred. The complete profile obtained with 

automatic adjustment of A, and A, as well as At and 8 applied according to the 

criteria Fr > 1 was shown in Figure 5.7. Substantially less instability was 

apparent in this solution suggesting that the adjustments were applied to more 

appropriate time steps. Again a solution was obtained without program failure. 

The solution appeared smoothed, suggesting that solution accuracy may have 

been reduced and that the Fr > 1 may have applied the parameter 

adjustment at too many time steps. Wth the criteria Fr > 1, reduction of A, and 

4 to a value of 0.5, as indicated in Table 5.2, was sufficient to suppress the 

instability and allow program completion. With the criteria y c 0, reduction of A, 

and A, to a value of 0.1 was required to sufficiently reduce instability- Since the 

criterion Fr > i applied adjustments to a broader range on time steps, the 
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occurring instability may have been reduced allowing a less sever reduction af 

A, and 4- Flow conditions for 'unstable condition #3' involved a sudden increase 

in inflaw hydrograph from 2 m3/s to 5 5% and a sudden increase in weir height 

from 1 .I rn to 1.3 m, both at 0.5 minutes. Channel length w s  1200 m. The 

partial profile obtained without adjustment of any parameters, with an insipient 

instability in various profiles just before program failure, was shown in Figure 

5.8. A complete solution was not obtained with adjustment of At and 8 only. The 

complete profile obtained with automatic adjustment of A, and 4 as well as At 

and 8 applied according to the criteria y c 0 was shown in Figure 5.9. Some 

instability was still apparent in the solution and, again, this instability was 

observed to coincide with time steps for which no parameter adjustment was 

applied. The complete profile obtained with automatic adjustment of A, and A, as 

well as At and 8 applied according to the criteria Fr > 1 was shown in Figure 

5.10. Again, little instability was apparent in the solution suggesting that the 

adjustments were applied to the appropriate time steps. 

3 AQStment of Coefficients 4=A, 

An investigation of the relative significance of the hm acceleration terms, term1 

and term2, was completed by allowing adjustment of only one of the respective 

coefficients, A, and A,, at a time. The same unstable ffow conditions were used 

as reported above and summarized in Table 5.1. For unstable flow conditions 









81 

Zb, Zc, and 3b, adjustment of coefficient A, alone resulted in program failure. For 

these same flow conditions, adjustment of coefficient A, alone ~ l a s  successful. 

For conditions 2b and 3b, with applied criteria y < 0 and Fr > 1, respectively, to 

prevent failure, adjustment of 4 alone w s  required for more time steps than 

required in the solution with both A, and A, adjusted. For condition 2c with 

criterion Fr > 1, however, adjustment of 4 alone occurred for f-r time steps 

than required in the solution with both A, and A, adjusted. For unstable flow 

condition 3a, with criteria y < 0, the opposite was true. Adjustment of 4 alone 

resulted in program failure, Mi le adjustment of A, alone provided a solution with 

fewer adjusted time steps than the solution with adjustment of A, and A, 

together. 

The results of this investigation were thus inconclusive since the significance of 

the terms was not consistent Results indicated that in order to prevent program 

failure, different acceleration terms required suppression for different flow 

conditions. 



CHAPTER 8. SUMMARY AND CONCLUSION 

Using the widely accepted, four-point implicit, finite difference technique to solve 

the full dynamic, St Venant equations for gradually-varied, open-channel, 

unsteady flow, an extremely robust single-reach simulation model was 

developed. This 'robustness model' was used to investigate a potential method 

of avoiding program failure by suppressing the severe numerical instabilities 

developed in the solution procedure under certain flow conditions. An instability 

criterion was used in the model against which the solution obtained within the 

numerical technique was automatically checked. This check was performed for 

each time step, as the calculations progressed- If the criterion indicated 

instability in the solution, an automatic procedure ~ l a s  commenced in which 

solution parameters were adjusted to suppress the instability. Robustness was 

enhanced with this technique so that a solution was successfully obtained under 

flow conditions which otherwise caused the program to fail. 

The addlional robustness was created within the four-point technique by 

assigning a multiplicative coefficient to each of the terms in the momentum 

equation and then reducing the value of some of these coefficients t m r d s  zero. 

The contribution of the term($) affeded by the coefficient(s) was thus reduced for 

those time steps for which the selected instability criterion was met Reduction of 

coefficients A, and A, which -re applied to the two acceleration terms in the 



momentum equation, was investigated fw the tested flow and channel 

conditions, 

As coefficients A, and 4 wre  reduced fmm one towards zero, the solution 

proceeded from the full dynamic towards the diffusion technique. Theoretically, 

the solution could be taken from the full dynamic through the diffusion to the 

kinematic, with adjustment of 4 as well; however, the flow and boundary 

conditions used for this work were incompatible vrith the uniform Row modelled 

by the kinematic equation. In the diffusion technique, the hrvo acceleration terms 

are neglected while with the kinematic technique, the acceleration and pressure 

slope terms are neglected. In the robustness model, when A, and 4 are set to 

zero, the solution procedure uses the difision equation; and, if A,, 4, and A, 

were set to zero, the procedure solves the kinematic equation. In this way, the 

model provides a solution of the full dynamic equations for all time steps except 

those selected by the criterion as exhibiting instability. For those time steps 

meeting the instability criterion, an approximate solution is provided. By applying 

the parameter adjustments for only those time steps for which the instability 

criterion is met, a full dynamic solution is obtained for all possible time steps so 

that the best possible accuracy is maintained throughout the simulation. 

As discussed by Fread (1983), the stability of the fourgoint technique can be 

enhanced within a simulation by reducing the value of At, thus reducing the 



Courant number, or by increasing the value of 0. The criterion used by Fread 

was y c 0, and the adjustment was applied automatically when the criterion was 

met. With adjustment of At and €I8. a full dynamic solution was provided. Fread 

reported flow conditions for which these adjustments were insufficient, but he did 

not report investigation of a method to further increase the stability of the 

solution. In the work for this thesis, adjustments were applied to At and 8 initially 

and then, for time step solutions which continued to meet the instability criterion, 

the values of the coefficients A, and 4 were gradually reduced. The cxlefficients 

were reduced in value between one and zero depending on the persistence of 

the instability. The tested unstable flow and channel conditions caused the 

program to fail when only At and 0 were adjusted, but allowed a successful 

solution when A, and A, were also adjusted. 

Adjustment of the coefficients was done automatically within the program when 

the solution obtained for a given time step met the selected instability criterion- 

Two different criteria were successfully tested to suppress instability Mi& 

othewise caused program failure, and several others mre investigated. The 

successfully used criteria were (1) depth less than zero (y < O), and (2) Froude 

number greater than one (Fr > I). Both were used effectively in 

preventing program failure which otheMse occurred for the same flow 

conditions with adjustment of At and 9 only. 
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The criterion Fr > 1, appeared to cause reduction of the momentum equation 

coefficients, A, and 4, to occur more frequently than may have been necessary- 

Several other values of Froude number w r e  tested, however none was found 

satisfactory. The criterion y c 0, appeared to miss some time steps for which 

significant instability, although not sufficient to cause program termination, 

developed in the momentum equation acceleration terms. This result was 

expected since only negative instability 'spikes' reaching zero depth would be 

detected leaving positive instabilities unaffected. 

In order to improve the stability of the solution technique, some of the accuracy 

of the full dynamic solution was traded for increased robustness. The method of 

adjusting the coefficients developed for the robustness model, and the reduction 

of the solution from the full dynamic towards the diffusion technique, provided 

the desired additional robustness. The success of the tested procedure in 

preventing program termination indicates that development of a widely 

applicable and extremely robust version of the four point implicit finite difference 

technique is practical. Such a model would allow application of the best 

available technology, a full dynamic technique, so that an accurate solution 

could be obtained even under difficult flow conditions. Current standard 

engineering practice indudes application of an approximate model, often a 

steady-state or kinematic model, for the full duration of a simulation when Row 

conditions cause solution instability. Through the work for this thesis, a method 
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to switch from a solution of the full dynamic equations to an approximate method 

and back again within a simulation run, and to apply the approximate technique 

for only those time steps exhibiting numerical instability likely to cause program 

failure, has been identified. This technique could change the entire approach to 

open channel flow modelling by eliminating the use of approximate method 

simulations in welldefined channels. 

Only full dynamic simulation methods provide sufficiently accurate solutions to 

problems of open channel design and operation to address the issue of 

efficiency of use. In a world where water and financial resources are becoming 

more scarce and more valuable, the efficiency of water conveyance structures is 

of increasing importance. The potential benefit of widespread use of the 

accurate solutions provided by application of full dynamic simulation methods is 

efficient design and operation of conveyance systems and accurate prediction of 

flood events. 



CHAPTER 7. DISCUSSION AND RECOlUMENOAl'lONS 

For open channel flow modelling, the use of approximate techniques, which 

provide a solution to an approximation of the full dynamic equations of open 

channel flow, is accepted as standard engineering practice. Commonly used 

approximate models include the diffusion, kinematic, and steady flow 

techniques. As discussed throughout this thesis, the diftrsion and kinematic 

techniques approximate the momentum equation by neglecting the acceleration 

terms and the acceleration and pressure slope terms, respectively. Removal of 

these terms is based on the assumption that their contribution to the solution is 

negligible. The results of the investigation undertaken for this thesis suggest that 

the contribution from these terms is significant for the Row and channel 

conditions modelled in this wrk As well, the results suggest that neither the 

diffusion nor the kinematic technique is reasonable for many applications of 

open channel flow in WII defined channels. 

Without the acceleration terms w the pressure slope term, the momentum 

equation, as used in a kinematic solution procedure, is simply the equation for 

uniform flow (for zero lateral inflow), as indicated in equation [3.23]. Uniform flow 

wuld only o c a ~  in a very long consistent channel where gravity and fridion 

forces were balanced. In an operated canal, channel sections are often fairly 

short and are separated by some type of structure or change in channel cross- 
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section. Flow conditions in such an operated channel would likely be affeded by 

badwater effects, such as reflections from a channel constriction, so that 

uniform flow wu ld  not occur. A kinematic technique, therefore, wuld not be 

appropriate for such channel and flow characteristics. 

The difiusion equation neglects the acceleration terms but includes the pressure 

slope term so that backwater Meds can be approximated. However, results from 

the robustness madel developed for this thesis indicated that with the hho 

acceleration term coefficients, A, and 4, set to zero, numerical instability ~ l a s  

introduced into the solution. This result demonstrated that a term other than the 

acceleration terms was responsible for this instability. The investigation of the 

acceleration and pressure slope terms indicated that all three terms ware 

affected by instability when a rapid change in input flow conditions occurred in 

the model, as discussed in Section 4.4.4. By neglecting the acceleration tems 

(terml and tern), and the pressure term (term3), the momentum equation was 

left unbalanced so that the contribution of one term wes not reduced by an 

opposite contribution from another. In the derivation of the momentum equation, 

the sum of the terms (terml through terrn5) was set to zero. Clearly, when some 

terms are neglected, this assumption can only be true if the values of the 

neglected terms are near zero. Where rapid changes in input flow conditions 

occurred, the results of this work indicate that the values of the acceleration 

terms are not sufficiently near zero to justify neglecting the tems completely. In 
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addition, the results indicate that the sun  of the acceleration and pressure slope 

terms is necessary to produce a correct solution. These results support the 

recommendation af Weinmann (1 977) that the acceleration terms are important 

for steeply rising or falling hydrographs. Use of a diffusion equation technique, 

therefore, must be questioned for simulation of changing flow conditions. The 

robustness model allowed the use of an accurate, full dynamic solution with 

application of the less-accurate diRusion technique only at those time steps for 

which the calculation exhibited numerical instability. 

Approximate methods may be useful for flow conditions with little variation in 

channels of Rat bad slope and relatively unknown cross-section. In umll4efined 

channels with varied flow conditions and numerous structures, only a full 

dynamic solution can provide a correct result. Irrigation systems generally have 

very regular and known cross-sections and controlled, variable flow conditions. 

In order for such a system to be efficiently designed and operated, so that 

construction, operation, and maintenance costs are minimized while available 

water supply is maximized, an accurate hrll dynamic simulation model is 

required. The success of the robustness model developed for this thesis work 

indicates that an extremely robust model can be developed to provide a solution 

for the full dynamic equations throughout the simulation except for those time 

steps which exhibit numerical instability sufficient to otherwise cause program 

failure. For those time steps, the method provides a solution for an approximate 



momentum equation. 

Several potential criteria for identifying the time steps aff8ded by severe 

numerical instability were investigated. Although the Wm criteria used for this 

work were successful in preventing program failure, additional criteria could be 

investigated in order to determine the one(s) that provides the most effective 

selection of time steps for which to apply the approximation. Application of the 

coefficient adjustment to too many time steps results in a less accurate solution, 

while application to too few time steps results in severe instability affecting the 

solution or causing program failure. In order to develop the best possible criteria, 

the contribution of the various momentum equation terms, for a variety of flow 

and channel conditions, needs to be fully understood so that their appropriate 

contribution can clearly be distinguished from instability. 

Through the investigations completed for this thesis work, the following areas 

were identified for further study: 

1. Investigation of other potentially usefbl criteria for automatic application of 

coefficient adjustment and determination of the most effective criterion under 

various flow conditions. Possible criteria could include the magnitude or change 

in magnitude of the various momentum equation terns. 
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2. lnvestigation of the significance of the various momentum equation terms on 

numerical instability and of the relative magnitude and sign of terms under 

various flow and channel conditions. 

3. Investigation of the eRed on solution accuracy of using an approximate 

technique briefly within the full-dynamic solution. The approximate technique is 

known to move events earlier in time and to reduce the effects of attenuation 

and wave reflection, and a quantitative study of these effects on the overall 

solution wuld be of value- 

4. Investigation of reduction of the other coeffidents, &, &, and &, as 

applicable for various flow and boundary conditions. 



92 

LITERATURE CITED 

Arnein, M. (1 968). An implicit method for numerical flood routing. Water 

Resources Research, & 71 9-726. 

Canadian Society for Civil Engineering Task Committee on River Models. 

(1 990). Comparative evaluation of river models. Proceedinas of the Annual 
# 

Conference of the CSCE. Hamilton, Ontario. V, 282-300. 

Chow, V. T. (1 959). Open-Channel Hvdraulics. New York: McGraw-Hill Book 

Company. 

Chow, V. T., Maidment, 0. R., & Mays, L. W. (1988). &plied Hydrology. New 

York: McgmwHill Book Company. 

El-Maawy, AA 1991. Weiahted Four - Point Imo licit Method of Solution the St. 

Venant Fauations, University of Calgary, Calgary, Alberta. 

Fread. D. L. (1 973, April). Effects of Time Step Size in Implicit Dynamic Routing. 

American Wate . . 
r Resources Assoc~at~on. Water Resources Journal, s(2). 338- 

351. 



93 

Fread, D L  (1 981 ). Numerical Hydrodynamic Modelling of Rivers for Flood 

Forecasting by the National Weather Service. proceediqp of the International 

nfer ce of m ~ C h a n c a l n e l .  andove r 1 and F low for 

Water Resources and Fnvironmental qR~licationq- Bratislava, Czechoslovakia. 

French, R H. (1 985). Open-Channel Hv-uIicg. New Yo* McGraw Hill Book 

Company. 

Henderson F. M. (1966). Open Channel Flow. New York- Maanillan Publishing 

Company. 

Huber W. C. 8 Dickinson RE. (1 988). S s  

Model. Version 4. US. Environmental Protection Laboratory. Athens, Georgia. 

Lai, C. (1986). Numerical Modelling of Unsteady Open-Channel Flow. Advances 

in Hvdroscience, 14,161-344. 

Maw, D. H. (1 994). Modelling Irrigation Conveyance Systems using the JCSS 

Model. prwdi-wert C o n s w n  an I m p  

Models. Rome, Italy. 

Manz, D. H. (1 991). [Open Channel Hydraulics]. Unpublished course notes for 



End 725, University of Calgary, Calgary, Alberta. 

Robertson, J. A 8 Crowe, C. T. (1985).+Dgineerina Flyid Wanics.  Boston: 

Houghton Mifflin Company. 

Rowney, AC. 8 Maaae, C.R. (1 991 ). Qualhymo Users Manual. Release 2 . 1 - 

The Royal Military College of Canada, Dept of Civil Engineering, Kingston, Ont. 

Smith, A. A (1 980). A Generalized Approach to Kinematic Flood Routing. 

Journal of &&&gy, Amsterdam: Elsevier Scientific Publishing Company. 

Weinrnann, P. E. (1977). Comparison of Flood Routina Methods for Natural 

Rivers. Monash University. 

Wisner, P. (1 989). Intern o/OUhymo 89. University of Ottawa, Department of 

Civil Engineering. Ottawa. 

US Army Corps of Engineers Hydrologic Engineering Center. (1995.) HEC - RAS 

River Analysis Svstem H v w i c  Reference Manwl - DrM. Davis, CA: Author. 



95 

APPENDIX A FOUR-POINT IMPUCIT FINITE DIFFERENCE TECHNIQUE 

The St Venant equations used for this work, derived in Section 3.2, descri-be 

one-dimensional, unsteady, gradually varying, open charmel flow and are 

applicable for cases which comply with the assumptions specified in the 

derivation. The two full dynamic equations, [3.3] and [3.23], were discretized for 

numerical solution as described below. The four-point implicit finite difference 

scheme was used to replace the non-linear partial differential St Venant 

equations with a set of 2N non-linear simultaneous equations. The generalized 

Newton iterative method was then used to reduce the set of non-linear equations 

to a set of linear equations for solution. 

A1 Distance lime Grid 

At a point m on the distance-time grid show in Figure Al, and located entirely 

within the comer grid points (i, j), (i+1, j), (i, j+1), and (i+i, j+l )as shown, any 

variable a is defined as (Mant, 1991 ): 



Distance 

mure A.1 Distance - Time Grid 



where, 8 is the weighting factor. 

The subscripts I and j represent the position along the distance axis and the time 

value, respectively, so that the velocity at any point and time is represented by 

v,', for example. At time j, all values are known from the previous time step 

calwlation, so that the unknowns, velocity and depth, occur at time j+1. The 

governing continuity and momentum equations (Equations [3.3] and [3.23]) must 

be satisfied at the point m. The finite difference operators, specified by 

equations [All, [A.2], and [A3], were applied to these equations with the results 

indicated below. 

A2 Continuity Equation 

The non-linear partial differential continuity equation used for this wwk was: 

Application of the above finite difference scheme to equation [3.3], with 

simplification, provided the following disaetized version of the continuity 

equation: 



where: 



A3 Momentum Equation 

The non-linear partial differential momentum equation used for this work was: 

This equation included the multiplicative coefFicients applied for each of the 

momentum equation terms and used to investigate the robustness of the solution 

technique, as discussed in Section 3.3. Application of the above finite difference 

scheme (Equations [A I], [A2], and (A.31) to equation [3.23], with simplification, 

provided the following discretized version of the momentum equation: 

where: 

s j - 1  = n2 i-1 ,itl 
fi /vl 1 , [PI' (and simiuny n q+l s i .  m a  sj 1. and. 4"' +1 1-1 

So = (' - '" ) , where z is the elevation hPrn e reference datum, 
Ax 

and where the following are constants wing known (time j) values of the 



varia bies: 

C,, = (1  -e)[v/+, +v/] 

C,, = (1  -O)[V!*, -v/] 

114 Solution Procedure 

There are (N-I ) points in space like m, shown in Figure A1 , in the distance-time 

grid betwen time j and time j+l. The two finite difference equations (Equations 

[A41 and [A5]) were written at each point, and the resulting (N-1) continuity 

equations and (N-I ) momentum equations were represented by 

F, (y,"f , v/" , yK , v / !  ) , and ~~(y! ' '  , v/*', yiy , ~i!;' ) , respectively. The hnro 

additional equations required to make the set of 2N equations for the 2N 

unknowns (y, and Vi) w e  obtained from an upstream and a downstream 
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boundary condition represented by %(y, , V1 ) and FN ( y, , V, ) , respectively. 

Estimate values were assigned to the unknowns based on the solution to the 

previous time, and residuals calculated as the value that each equation differs 

from zem. Where r:, and r& represented the residuals for the F and G 

functions, respectively, the set of equations to be solved for the residuals on the 

km iteration, and for unknown time j+i, were: 

According to the Newton iteration scheme, a new estimate for the unknowns was 

calculated as: 

k ' = yi + dyi and, 

v y  = vik + mi 



102 

For each time step, the residuals were calculated and checked against the limit 

If all the residuals are less than the limit, the solution ( y,, Vi) was accepted. If 

any of the residuals was larger than the limit, the partial derivatives of the Fi and 

G, equations were calculated and defined as a matrix [A]. The residuals 

calculated w r e  defined as matrix [B]. A sparse pentadiagonal matrix solution 

technique was used to solve the matrix equation [AID<] = [B] for the solution 

matrix D(1 which then represented the values of dyi and dVi to be used for the 

next estimate of yi and V,. The matrix equation was defined as: 

The new estimates were then calculated according to equation [A7], and the 

iterative process is repeated until the values of the residuals was less than the 

set limit, or a maximum number of iterations was exceeded. 



APPENDR B. PROGRAM CODE 

The following FORTRAN code w s  used for the robustness model: 

* Robustness model for thesis  - June 1996 - C. Vrkljan * 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 
INTEGER 
OPEN (3  

PRECISION QP, QI, SO, m, DELT, SIMTIM, RGO, REM 
PRECISION TIPE, LTOT, D E W ,  D E W ,  SUM, SIML, TXMCRK 
PRECISION TIM(111, QIN(10), PUPS (100). DELX (100) 
PRECISION 2 (1001, XST (loo), YANS (100, loo), VANS (100,100) 
PRECISION YNERT(lOO), YOLD ( l o o ) ,  VNEW(100) p VOLD(100) 
PRECISION DELXUN (100) , V 1100 1 ,  QQ (100) , XANS (100 ) 
PRECISION G,Q, PIO,B, YW,QIQ,DQW, CE, CW, MAT- (100 
PRECISION AA1, PI, SF, E'YI, FPl,XLAST,UDELX, E'R, RE 
PRECISION AA, PP,YYr QNEIQ(10) , ~RXA(100, loo), QANS (100) 
PRECISION Y (100) ,E'Y (501, FP(501 ,A(100), P(100). DELTJ(100) 
PRECISION AOLD (100). POLD (100) ,SFOLD (LOO) , ~ ( 1 0 0 )  
PRECISION PNEW(100). SE'NEW(100) ,VAI;UE,!CEA,Al,A2,A3,A4,~ 
PRECISION Cl(100). C2 (100). C3 (100) ,C4 (100) ,CS (100) 
PRECISION C6(100),C7(100),C8 (lOO),C9(1OO),ClO(lOO) 
PRECISION C11(100) ,C12 (100) ,Cl3 (100) ,Cl4 (100) ,CIS (100) 
PRECISION C16(100) ,RF(100) ,RG(100) ,FMPE'(200) ,MATRXX(100) 
PRECISION DIEY(100) ,DIEV(100) ,DIGY (LOO) ,DICiV(100) 
PRECISION FMTA(200 1, E'MTE (200) , FMTD (200) . E'MTC (200) 
PRECISION FWIN(10) ,TIMP(lO) ,PWJ(100) 
PRECISION TERMl, TERM3, INTIIA, INAl, INR2, INP3 
NQr~,~,MpE,EOLD,UNUS,J,K,N,K~ll,COUNTrCRZT 
1, PILE= ' INPUT2. DAT ' 1 

OPEN (35, PILE= ' FLOPQIN2. DAT ' ) 
OPEN (21, FILE='UNST.OUT' 1 
OPEN (27, FILE='TEMPLOT-TXT') 
OPEN ( 28, FILE= ' TERMS, TXT ' ) 

* 

READ (31, * )  QI.QP,B,SO,MANN,LTOT 
READ ( 3  *) DELXWpDELX2,INTHA, I=, INA2,INA3,DELT,A4,W 
DELTJ (1) = DELT 

* i n i t i a l i z e  
* 

* upstream flow-time and variable weir height 
READ (35,*) NQ, SIMTIM 
DO 100 I = I, NQ 

READ (35,') QIN(IJ, TIM(1) 
100 CONTINUE 

READ (as,*)  NP 
DO 101 I - 1, Np 

READ (35,*) PPQIN(I) ,  TIPP(I) 
101 CONTINUE 



rt number o f  time calcs *** 
M = (SIMTIM * 6 0 . 0 )  / DELT + 1 
f Q - time series *** 
DO 110 J = 1, MJ 

TIME = DELT * (J - 1 . )  
DO 112 I = 1, NQ 

IF ( I .EQ- NQ THEN 

END1 F 
TfMC?XK = TIM(It1) * 6 0 - 0  
If ( TIME .LT. TIMCBK ) TE$EN 

QUPS(J1 = QIN(1) 
GO TO 115 

END1 F 
112 CONTINUE 
115 W S  = 1 

DO 113 1: = I, NP 
IF ( I .EQ- NP ) THEN 

PWJ(J) = PWINCNP) 
GO TO 116 

ENDIF 
TIMCHK = TIMP(I+l) * 6 0 - 0  
IF ( T m  .LT- TIMCHK ) THEN 

PWJ(J) = PWIN(11 
GO TO 116 

ENDIF 
113 CONTINUE 
116 UNUS = 1 
110 CONTmuE 
i 

* i n i t i a l i z e  for steady f l o w  calcs ******************** * 
EJW = PWIN(1) 
SUM = 0-OD0 
M = (LTOT - 20.) / DEU(2 t 21 
WRITE (21,* 'M = ' , M 
DO 1 2 0  I = 1, M-1 

IF ( I .LT- 21 1 THEN 
DELX(1) = D E W  

ELSE 
DELX(I1 = DELIS2 

ZNDX F 
SIML = SUM + DEIX(1) 
SUM = SIML 

1 2 0  CONTINUE 

e verify input 
IF ( SO -GT- 0.1 THEN 

PRINT *, 'WXRNING Channel slope is lacge. S o  = ' ,SO 
WRITE (21, * 1 WARNING Channel slope is large. ' 

ENDIF 
IF ( MANN .GT. I THEN 

PRINT *, WARNING Mannings roughness i s  large. n = *, MNW 
ENDIF 

* boundary condition : sharp-crested weir * negligible viscous and surface tension effects 



PRINT *, 'depth at w e i r  YW = ', YW 
PRINT *, 'depth PW = ', PW 

* 
~r calculate Froude number 

FR = ( Q**2 / (G  * 8**2 * YW**3) )**0.5 
IF ( FR -GT. 1-0 ) THEN 

PRINT *, 'Steady f l o w  is supercriticalt 
WRITE (21, * 1 ' Steady flow is supercritical * 
GO TO 9999 

E N D 1  F 
IF ( FR -EQ. 1-0 ) THEN 
PRINT *, ' F l o w  is criticalr 
WRITE (21, * I ' Flow is critical ' 

ENDIF 
IF ( FR .LT- 1-0 ) THEN 

PRINT * 
PRINT *, 'Fr =*, PR 
PRINT *, 'Flow is subcritical at weirt 
PRINT * 
WRITE (21, *) ' F l o w  is Subcritical at weirr 

ENDIF 
* 

Z(1) = O.ODO 
Y ( 1 )  = YW 
XST(1) = O.ODO 
Q Q W  = Q 
YY = YW 
XLAST = 0-OD0 
DO 140 I = 2, M 

UDEWr = DELX(1-1) 
XST ( I ) = XLAST + UDELX 
QQ(1) = Q + (QP-QI) * XST(1) 
Z ( 1 )  = Z(I) + SO XST(1) 
A(1-1) = B * Y(1-I) 
P(1-11 = B + 2-ODOfY(I-1) 
AA A(1-1) 
PP = P(1-1) 
XtAST = XST(I) 



$ + (MANN**2) *UDELX* (QQ (I) * * 2 )  
$ * (4.ODO * (PP**(l.OD0/3,0DO)) 
$ / (3,ODO* (AA**(IO,OD0/3.ODO))) 
$ -5,ODO * (PP**(4.OD0/3.ODO)) * B  
$ / (3.ODO" (AA**(13-0D0/3.0DO))) ) 
Y(1) = Y(I-1) - FYI / ET1 

* 

FP (J) = (-1 - ODO) + B/ (2,0DO*G) 
$ * ( QQ(1-I)**2/A(I-T)**3 
$ + 3.ODO*QQ(I) **2*A(I-1) / A(1)  **4 
$ - Z-ODO*QQ(T) **2 / A(1)  **3 ) 
$ - (QP-Qf *UDELX*B/G * QQ (I ) /A(I ) **3 
$ + MANN**Z*U'DELX*QQ (I) **2 
$ * ( (4-ODO*P(I)/ (3.ODO*A(I )**lo) ) 
$ ** (1-0D0/3.ODO) - (S,ODO*P(I) **4 * B 
$ / (S.ODO*A(I) **l3) ) **(l.OD0/3,ODO) ) 
* 

YY = Y ( 1 )  - FY(J) / FP(J) 
IF ( ABS ( YY - Y(1) ) .LT- 0.0005 1 GO TO 160 
IF (YY -LT* OeODO) THEN 
PRINT *, 'Y less than zero i n  steady calc at I = ', J 
WRITE (21,*) *Y less than zero in steady calc at 1 = *,  J 
ENDIF 
FR = ( Q**2 / (G * B**2 * YY**3) )**0.5 

IF (FR .GT. I.ODO) TIEN 
WRITE (21, *) 'Steady f l o w  is supercritical at I = ', J 
PRINT *, 'Steady f l o w  is supercritical at I = ',J 
GO TO 9999 

ENDIF 
Y ( I )  = YY 

150 CONTINUE: 
PRINT *, 'Steady f l o w  calculations did not converge!' 

GO TO 9999 
160 UNUS = 1 
140 CONTIMJE 
* 

PRINT *, 'Steady F l o w  calulations completed' 
PRINT *, ' ' 



* turn solu t ion  around 
EOLD = 0 
DO 200 I = M, I, -I 

E = EOLD + I 
* XANS(E) =XST(I) 

YANS ( E , I )  = Y(I) 
YNEW(E) =Y(I) 
YOLD(E1 = YNEW(E) 
VANS (E, 1) = V(1) 
VNEW(E) = V ( I )  
VOLD(E) =VNEW(E) 

* IF ( I -GT- 1 )  THEN 
t DELXUN(E1 = DELX(1-I) 
* ENDIF 

EOLD = E 
200 CONTINUE 
f set unsteady delta-x and distance 
DO 201 E = 1, M-21 
DELXUN(E1 = DELX2 

201 CONTINUE 
DO 202 E = M-20, M-1 

D E W C E )  = DELXW 
202 CONTINUE 
XANS(I) = 0-OD0 
XANS ( 2  1 = DELX2 
DO 203 E = 2, M 
XANS(E) = XANS(E-I) + DELXUN(E-1) 

203 CONTINUE 
* 
* s e t  elevation 2 
Z(1) = S f M L  * SO 
Z (M) = 0-OD0 
DO 210 I = 2, M-l 

Z(1) = Z(1-1) - SO DEUCUN(1-1) 
210 CONTINUE 
9r 

VALUE = -001 
WRITE ( 2 8 , * )  ' J K I tenal tena2 term3 tenn4' 

* WRITE ( 2 8 , * )  ' J K I YANS(1) QANSII) TERMl FR RE' 
WRITE ( 2 8 , * )  ' 
WRITE ( 2 7 , * )  ' XANS(1) 

$ THETA Al' 
WRITE ( 2 7 , * )  ' ' 

* 
e unsteady flow i teration ******************** 
* 
DO 500 J = 2 ,  MJ 
WRITE (21, * I  ' s tart  of j-loop J= ' , J 

* 
DELTJ (J) = DELT 
DELTJ(3-1) = DELT 
THA = INTHA 
COUNT = 0 
Al -- INAl 
A2 = 1- 



PRINT *, 'J = ' r  ‘7 
QNEW(1) = QUPS(J) 
DO 310 I = I, M 

AOLD(1) = B * YOLD(1) 
POLD(1) = B + 2.ODO * YOLD(1) 
SFOLD(1) = (VOLD(I)**2) * MANN**2 

$ ( (POLD(1) /AOLD(I) ) ** (4.0D0/3,ODO) ) 
SFOLD(1) = ABS(VOLD(1)) * (VOLD(1)) * MANNe*2-OD0 

$ * ( (POLD(I)/AOTS(I))**(4,OD0/3.ODO) ) 
310 CONTINLJE 

CRIT = 0 
3 1s m s = 1  
* 
* constants 

DO 320 H = I, M-1 
CI (HI = (-1- OD0 1 * (YOLD (H+l) + YOLD (H) ) 
C2 (HI = (1.ODO-TBA) /B * (AOLD (H+1) + AOLD (HI ) 
C3 (HI = (1. ODO-THAI WOLD (H+I) - V O W  (HI ) 
C4(R) = DELTJ(J-I) /DELXUN(H) * C2 (HI * C3 (H) 
CS (R) = (1. ODO-THA) * (VOLD (H+I) + VOLD (HI ) 
C6 (HI = (1 .ODO-THAI * (YOLD (H+I) - YOLD (HI ) 
C7 (HI = DELTJ(J-l)/DEWZUN(H) * CS(H) * C6(H) 
C8 (HI = DELTJ(J-1) * (QP-QI) * (1,ODO-THA) *. 2- ODO/B 
c9 (HI = (-LODO/G) *DELXUN(H) /DELTJ(J-I) 

* (VOLD(H+l)+VOLD(K) ) 
CIO (H) = (1 . ODO-THA) * (VOID (H+1) + VOID (H) ) 
ClI (H) = (1 . ODO-THA) * (VOLD (H+l) - VOLD (H) ) 
C12 (H) = ( (1.ODO-THAI **2) / G* ( (VOLD(H+l) **2) 

- (VOLD(H)**2) 1 
Cl3 (H) = 2.0DOe (1.ODO-THA) * (YOLD(Ei+l) - YOLD (H) ) 
CT4(H) = 2-ODO*(ZtH+l) - Z ( H ) )  
C15 (8) = DELXUN(H)* (1.ODO-THAI (SE'OLD (H+l) +SFOLD (H) 1 
C16 (H) = DELXUN(H) / G  * (QP-QI) * (l.ODO-TB-1 

* Newton Iterative Method ****************** 
* 

* calculate residuals 
DO 340 H = 1, M-1 

RG (H) = A ~ / G  *DEWLUN (H) /DELTJ (J) * (VNEOQ (He) +VNEW (H) ) 
S + X * C ~  (HI + A ~ / G *  (THA**2) * ( (VNEW (H+l) **2) 
$ - m J E W ( H ) * * 2 ) )  
$ + AZ/G*THA*Cll (HI * (VNEW(H+l) + VNEW(H) ) 

RG(H) = RG(H) 
$ + A ~ / G * T ~ * c ~ O  (HI * (VNEPQ (El+-I) - VNEW(H) ) 



+ A2*C12 (R) + Z.ODO*A3=THA* (YNEW(H+I) - m ( E )  
+ A3*C13(H) + A4*TBA*DELXUN(H) *(SFNEII(Htl) 
+ SE'NEW(H) + A4*C14 (8)  + AOeC15 (HI 

+ -/G* (QP-QI) *TBA*DELXUN(B) * ( (+(H+I) 
/ -(B+l) ) + (VNEsr(H) /ANEPT(Ii) ) + A5*Cl6 (g) 

=(2*H+l) (-I.ODO)*RG(H) 

CONTINUE 

set  boundary values 
HkT = YNEW (MI - PWJ (J) 
CE = -6020DO + -0750DO * HW/PWJ(J) 
C '  = 2 - ODO/3.ODO *CE * ( ( 2 .  ODWG) **0. SODO) 
IF ( YNEW(M) -LT. PWJ(J) ) THEN 
QW = O.ODO 
GO TO 341 

ENDIF 
QW = cw *B * (m**i.50~0) 

UNUS = 1 
RGO = QUPS(J) - VNEW(I)*ANEW(I) 
REM = VNEW(M)*ANEW(M) - QW 
MATRXB(1) = (-1-ODO)*RGO 
MATRXB (2*M) = (-1 - OD0 ) *RFM 

check residuals 
350 I = I, 2*M 

calculate partials 

WRITE (21,*) 'start partials K= ', K 
DO 360 H = 1, 2*M 

DO 361 I = 1, 2*M 
MA!rRXA(H,I) = 0-OD0 

361 CONTI'NUE 
3 60 CONTINUE 

DO 370 El = 1, M-1 
DLGY (HI = (-2. ODO) *A3*THA 

$ + 4.OD0/3- 0DO*A4*THAIrDELXUN (H) 
$ *SEN5W(Hl * (2.0DO/PNEW(H) -B/ANEW(H) ) 
$ - a* (QP-QI *T~*DELXUN (R) *B/G 
$ * (  VNEW(H)/(AEElf(H)**2) 1 

MATRXA(2*H+lr 2*H-1) = DZGY (H) 
DIGY(H+l) = 2.ODO*A3*THA + 4.OD0/3.ODO*A4*THA*DELXUN(H) 



*SPNEW(fE+I) * (2-000/PNEW(~+l) -B/ANEW(K+l) 1 
- As* (QP-QI *TBA*DELXUN (H) *B/G 

* ( VNEW(H+I) / (ANEW(H+l) **2) I 
MATRXA (2*H+1,2*R+l) = DIGY (H+I) 
DIGV (HI AI/G*DEIXUN (B) /DELTJ (3) 

- 2.0DO*A2* (THA**2) / G  * VNEW(H) 
- A2/G*TRA*ClO (HI + A2/GeTHA*CII (Ei) 
+ 2.0DO*A4*THA*DEfXUN (HI *SFNEW (H) /VNEPQ (H) 
+ M/G* (QP-QI) *THA*DElXUN (H) /ANEW(B) 

MATRXAtZ*B+l, 2*H) = DIGV (H) 
DIGV (H+I 1 = Al/G*DELXUN (H) /DELTJ (J) 

+ ~.ODO*AZ/G* (THA*'*Z) " VNEW(fl+l) 
+ A~/G*THA~c~O (HI + A2/G*THA'tCIl (H) 

DIGV(K+I) = DIGV(H+I) 
+ 2,0DO*A4*TBA+DELXUN(H) *Sl?NEW(fl+l) /VNEW(H+l) 
+ AS/G* (QP-QT) *TBA*DELXUN(H) /ANEOT(H+l) 

MATRXA(Z*EI+l, ZtH+2) DIGV (H+l) 

D I F Y  (HI = 1.-2. *DELTJ(J) /DEDWN(H) * (TBA**2) *VNEW(H) 
$ + DELTJ (J) / D E I X J N  (HI *THA*C3 (8) 
$ - DELTJ (J) /DELXUN(Ei) *THA*Cs (K) 

MATRXA(Z*H, 2*H-1) = DIEY (H) 
D I F Y  (H+1) = 1 - ODO+Z,ODO*DELTJ (J) /DELXUN (H) 

$ * (THAe*2) *VNEOQ(Ii+l) 
$ + DELTJ (J) / D E W ( H )  *TEA*C3 (H) 
$ + DELTJ (J) /DELXUN (HI *TAtC5  ()I) 

MATRXA(2*H, 2*H+1) = DIEY (H+l) 
DIEV (a) = (-1-ODO) *DELTJ(J) /DELXUN(H) * (THA**2) /B 

$ * (  ANEW(H+I)+ANEW(H) ) 
$ - DELTJ (J) /DEWNN (H) *TE?A*C2 (H) 

D I F V ( R )  = DIE'V(H) 
$ + DELTJ(J) /DELXUN(H) * (THA**2) ( YNEW (X+1) 
$ -YNEW (HI + DELTJ (J) /DELXUN (B) *THA*C6 (H) 

MATRXA(2*Hf 2*H) = DIFV(H)  
DIFV(H+l) = DEZ;TJ(J) / D E U N N  (H) * (TfIA**2) /B* (ANEW(H+l) 

$ +-(HI 1 
S + DELTJ (J) /DEIXJN (H) *TH?%*C2 (H) 

D I F V ( H + l )  = DIW(H+l) 
$ + DELTJ(J) /DELXUN(H) * (TRA**2) * (YNEW(H+I) 
$ -YNEW (HI ) + DELTJ( J) /DEWCUN (H) *THA*C6 (H) 

MATRXA(2*H, 2*H+2 1 = D I F V  (H+l) 
370 CONTINUE 

WRITE (21,*) 'end DIGCFY calcs K = ',K,' J= ',J 
* 
t check depth is above w e i r  crest 

IF ( YNEW(M) .LT. PWJ(3) THEN 
DQW = 0,ODO 
GO TO 371 

ENDIF 
DQW = CW*Be3 , OD0/2. ODO* ( (YNEPQ (MI -PWJ (J) ) **0,50DO) 

371 MATRXA(Z*M, 2*M-I)  VNEOP(M) *B - DQW 
MATRXA(Z*M,2*M) = B * YNEW(M) 
MATRXA(1,1) (-B) * VNEW(1) 
MATRXA(1,Z) = (4) * -(I) 

* matrix solution for Y & V adjustments ***********we*****  
* 



PENTA routine 

WRITE (21,*) 'test new estimate J = t , J , l I  = r , ~ , l  K = I r ~  

DO 404 I = 1, M 
Y ( I )  = YNEW(1) +- MATRXX(2*1-I) 
V ( I )  = VNEW(I) + M A T R X X ( ~ * T )  
IF ( Y ( 1 )  .LT. 0 .005DO ) TREN 

WRITE (21,*) ' y  is < 5 m  J = ' , J r l  K =  ',K,* I = ',I 
PRINT *, ' y  is < 5mm J =  ',J,' K r  I = r f 
GO TO 491 

ENDIF 
4 0 4  CONTINUE 

Go TO 495 
4 9 1  CRIT = CRIT + 1 

WRITE (21,*) ' Y t e s t ( 1 )  c 0.005 a t  J = '.J,' K =',K 
WRITE (21,)) 'CRIT = ',CRXT 

I F  (CRIT .EQ. I)  GOT0 701 
IF (CRIT .EQ. 2)  GO TO 702 
IF (CRIT .EQ. 3 )  GO TO 703 
I F  (CRIT -EQ. 4 )  GO TO 7 0 4  
IF (CRIT -EQ. 5 )  GO TO 7 0 5  
IF (CRIT .EQ. 6)  GO TO 7 0 6  
IF (CRIT -GT. 6)  G O T 0  495 

7 0 1  DELTJ(J) = DELTJ(J) / 2.ODO 
D E L T J ( J - I )  DELTJ(J) 



WRITE (21,') 'set delt = T , ~ ~ ~ ~ ~ ( ~ ) , l  J = ',J,' K = t , ~  

GO TO 315 

WRITE (21,*) 'set tha = ',TBA,~ J = ',J,' K = 1 , ~  

GO TO 315 

WRITE (21,*) 'set tha = t,TRA,t J = ',Jtr K = ',K 
GO TO 315 

WRITE (21,*) 'set Al A2 = ' ,R1, '  J = ',Jrl K = ',K 
GO TO 315 

WRITE ( Z I P * )  *set Al A2 = ',~1,' J = ',J,' K I 1 , ~  

W TO 315 
706 Al. = 0.1DO 

A2 = Al 
WRITE (21 , ' )  'set Al A2 = ',=, J = ', J, ' K = ',K 
GO TO 315 

* 
* Cr i t e r ion  Check 
49s UNUS = 1 
* 
+ make n e w  estimate 

WRITE (21,*) 'make new 
DO 450 I = I, M 

YNEWI) = YNEW(1) + 

WRITE (21,') ' y  is zero inside new estimate loopt 
WRITE (21,') Iat J =  ',J,' K =  ',K,' I =  ',I 

ENDIF 
450 CONTINUE 
* 
IF ( K -LT. 30 GO TO 330 

498 PRINT *, ' no convergence at j = ',J 
PRINT *, * reached i t e r a t i o n  #k zt ,  K 
WRITE (21,*) ' ' 
WRITE (21, *)  ' no convergence at j = ,J 
WRITE (21,*) ' ' 
499 m s  = 1 
* 

* ****output for plotting 
* 
* p lo t  at approximate end and mid-points 
I1=2 



WRITE (27,931) 
* 
* ****check terms 
DO 399 H = 1, 5 
11=2 
IF (H -EQ. 2 )  Il=(M-20) /3 
IF (H -EQ. 3 )  Il=(M-20) *2/3 
IF (B -EQ- 4)  11=M-20 
IF (H -EQ. 5 )  Il=M-l 

TERM2 = A2/G* (THA**2.0D0) * ( (VNEW [Il+l) **2) 
$ - (VNEW(I1) * * 2 )  1 + A2*C12 (11) 

TERM2 = TERM2 
$ + A2/G*TLIA*CI1(11) *(VNEW(Il+l) + VNEW(I1)) 
$ + AZ/G*THA*ClO (11) * ( ~ ( I l + l )  - VNEW(11) 1 

TERM3 = 2.ODO*A3*THA* (YNEW(IlC1) -YNEW(Il) ) +A3*C13 (11) 
TERM4 = A4*THA*DELXUN(Il) (SFNEW(IL+I) +SE'NEW(Il) ) 

$ + A4*C14(11) + A4*C15 (11) 
FR=VNEW(Il) / ( ( G *  YNEW(Il))**O-SDO ) 
RE = VNEW(I1) * YNEX(I1) / 0-0000169DO 
WRITE (28,932) J, K, 11, TERMI,TERM2,TERM3,TERM4 

399 CONTINUE 
* 
500 CONTINUE 
* j loop end ***'*********************** 
* 
WRITE (27,*) ' ' 
WRITE (27, * ) input hydrograph ' 
WRITE ( 2 7 , * )  ' time (s) Q (m3/s) PW' 
DO 801 3 = 2, M3 

WRITE (27,905) DELTJ(J), QUPS(J-l)pPWJ(J) 
801 CONTINUE 
* 
901 FORMAT ( "  rZ14-0,6E1204) 
902 FORMAT ( " ,16.0rE12.4) 
903 FORMAT (",14-0,2312.4) 
904 FORMAT (",5312.4) 
905 FORMAT (t',3E12-4) 
906 FORMAT (",4312.4) 
907 FORMAT (",14.0,4312.4) 
908 FORMAT ( ' ' ,4313.6) 
909 FORMAT (1',314-0,2E12-4) 
912 FORMAT (",214.0) 
911 FORMAT ( ' ' ,14.0r 4El5.4) 
930 FORMAT (",I4-0,2E16.8) 
931 FORMAT ( '  ',E12- 4,213.Of5E12. 4 )  
932 FORMAT ( ' ' * 313 - 0,4312 - 4) 
9999 END 
* 
SUBROUTINE WEIR (Gf Q, PWr B, YW) 

iterative solution for depth over recto S.C. weir 



DOUBLE PRECISION G, Q, PW, B, YW, C, CE, CI 
C = O.6DO * 2,0D0/3 .OD0 * ( (2,0DO*G) **O.SODO) 
DO 300 K = 1, 9 

H = ( Q  / (C * B))**[2.OD0/3-ODO) 
CE = 0,602000 + 0.0750DO * H / PW 
Cl = CE * 2-OD0/3,ODO * ( ( 2 . * G )  **O.5ODO) 
IF ( ABS ( C  - C1) -LT, 0.00050DO) GO TO 305 
C = C1 

300 CONTINOE 
IF ( ABS ( C  - Cl) -GT. 0-0005) THEN 

PRINT *, 'Ce did not converge1 
WRITE (21,*) ICe  did not converge1 

ENDIF 
305 C = C1 
H = ( Q / (C*B) I * *  (Z.ODO/3,ODO) 
Y W = H + P w  
RETURN 
END 




