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ABSTRACT

The weighted four-point, implicit, finite difference technique is a full dynamic
solution technique representing standard hydraulic engineering practice for
simulation of one-dimensional, gradually-varied, unsteady open channel flow.
Under certain flow conditions, the technique fails due to numerical instabilities
within the solution. Because of the potential for such instability, many engineers
rely on approximate solution methods and thus accept inaccurate resuits. This
thesis describes a method in which a full dynamic solution was obtained
throughout the simulation, except for those time steps which exhibited severe
instability. For these time steps, the momentum equation was reduced to an
approximate equation by reducing the contribution of the acceleration terms. A
multiplicative coefficient was included for each of the momentum equation terms,
and the value of some of the coefficients automatically reduced when instability
was detected. With this method, a full dynamic solution was applied even under

suddenly varied flow conditions.
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CHAPTER 1. INTRODUCTION

As world resources, both financial and natural, become more scarce, all
engineered systems must become more efficient in design and operation. Water
conveyance systems for irrigation are no exception and, by their very nature, are
often introduced in areas where water itself is in limited supply. In order to use
these systems efficiently, the best available technology must be apblied for their
operation as well as for their design. In his paper, Manz (1994) suggested that
maximum use should be made of existing conveyance system infrastructure
since replacement or extensive rehabilitation is frequently neither affordable nor
necessary, and the required performance improvements can often be achieved
by modifying existing management and operational practices. Such modifications
are most readily identified through the use of computer simulations of the
hydraulic system. Manz (1994) suggested that through the use of appropriate
simulation models, existing and proposed conveyance systems could be
evaluated in order to improve the quality of delivery, to minimize water and
energy losses, to minimize capital and rehabilitation costs, and to minimize

management, operational, and maintenance costs.
1.1 The Need for Simulation

In order to operate, and design, an irrigation system efficiently, standard



engineering practice includes the use of computer models to simulate the
unsteady flow conditions in the open-channel system. Many different models are
used, the most accurate of which provide a solution to the full dynamic equations
describing the flow. The advantages of such a full dynamic solution, over an
approximate solution technique, include: (1) solution accuracy, (2) calculation of
the time to an event, (3) consideration of channel backwater effects, and (4)
consideration of wave dispersion and attenuation. Dynamic modeis require
adequate input data including flow conditions and channel characteristics, such
as cross-section, bed slope, and channel roughness. For a manmade irrigation
canal system, channel characteristics and flow conditions, which are controlled
and gradually varied, are usually known and available. Thus, sufficient input
data is generally available so that, as Manz (1994) suggested, the accuracy of a
dynamic simulation is attainable for irrigation conveyance systems through the

use of an appropriate, cost-effective, full dynamic model.

in the past, dynamic simulation models have not been widely used because the
numerical solution technique can become unstable under certain flow conditions.
If severe numerical instability occurs during the simulation, the solution
technique can fail and cause the program to terminate, leaving the user without
a useful resuit. Because of the potential for such failure, approximate methods,
which are not subject to such instability, have been widely applied with little

concern over the solution inaccuracies introduced by the approximations. In



order to provide an accurate solution for open-channel irrigation systems, a full
dynamic solution is required. Manz (1994) suggested that a suitable simulation
model shoulid apply the best available technology within a robust format so that
application under a wide variety of input conditions would reliably and easily
provide the most accurate result reasonably possible. He described such a
model as a robust application without undue compromise of the integrity of the
various hydraulic, hydrologic, and operational theories or algorithms used in the
solution procedure. In his paper, Lai (1986) described a robust procedure as one
which provides a result that degrades slowly as the problem deviates farther and
farther from the assumptions upon which the procedure is based. In other words,
instability, and subsequent program failure, does not suddenly occur when flow
conditions are varied. A robust model which avoids severe numerical instabilities
is needed so that the best available technology, a full dynamic solution of the

open channel flow equations, can be obtained under virtually all flow conditions.

1.2 Simulation Procedures

For simulation of one-dimensional, gradually varied, unsteady, open channel
flow in a well defined channel, the best available solution is provided by an
accurate numerical solution of the full dynamic St. Venant Equations. These
equations have been derived by numerous authors including Henderson (1966).

The four-point implicit finite difference technique, described by Amein (1968), is
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a full dynamic solution technique which, as reported by Manz (1994), represents
standard hydraulic engineering practice and is based on verified theory. This
solution technique offers the following advantages over other full dynamic
solution methods (Manz, 1991): (1) the solution ¢an be obtained at desired
locations along the channel without reducing the solution accuracy by
interpolation, (2) realistic control structures, such as radial gates, can be easily
programmed, (3) the required input data is the same as channel design data so
is generally available, and (4) adjustment of the finite difference parameters (Ax,
At, ©) provides a stable and robust solution under conditions of varied channel
characteristics and flow conditions. The technique has been verified and
calibrated, and the accuracy, conservation, convergence and stability
investigated by El Maawy (1991). The solution method was found to be
satisfactory by the Canadian Society of Civil Engineers Task Committee on
River Models (1990) in its program to evaluate river simulation models and, as
reported by Fread (1981), is used in the widely accepted US National Weather

Service model DWOPER.

Much of the traditional literature, including Henderson (1966) and Chow,
Maidment, and Mays (1988), reports that the weighted four-point implicit solution
technique is inherently stable for all flow conditions with properly selected finite
difference parameters. Fread (1981) reported computational problems with the

solution procedure for rapidly rising hydrographs and nonlinear channel cross-



sections. El Maawy (1891) reported numerical instabilities under conditions of
rapidly varied flow in combination with certain time intervals. A rapidly varying
flow condition can occur briefly in time within a gradually varied flow profile and
the resulting numerical instability in the soiution procedure can cause a program
using the four-point implicit technique to terminate. Manz (1994) discussed that
within a simulation, this type of flow condition (a surge or bore) could be caused
by rapid adjustment of hydraulic structures which couid occur during emergency
conditions or improper canal operation. The potential occurrence of such
numerical instability has supported the continued use of simulation programs

employing less accurate, approximate solution techniques.

in order to simplify the required solution techniques, approximate methods were
developed by simplifying the dynamic St. Venant continuity and momentum
equations describing open channel flow so that a direct mathematical solution
could be obtained. The most common simplifications involved neglecting some
or all of the nonlinear terms in the momentum equation. Commonly used
approximate techniques include the following: (1) the diffusion wave model, in
which the acceleration, or differential velocity, terms are neglected, (2) the
kinematic wave model, in which the acceleration and pressure slope, or depth,
terms are neglected, and (3) the steady-state model, in which steady-state flow
conditions are determined for each time and input condition. The weli-accepted

US Army Corps of Engineers’ river model HEC-RAS (1995), and previously



HEC-2, uses the steady-state technique and well-accepted stormwater models,
such as SWMM (Huber, 1988) and OTTHYMO (Wisner, 1989), use a modified

kinematic technique for the routing component.

Standard practice for solution under severe flow conditions, such as a brief
surge, is currently application of an approximate solution method throughout the
simulation period. The simplifications applied in the approximate methods allow
the use of a simpler procedure which avoids numerical instabilities; however, the
resulting solution is not accurate. Approximate solutions are particularly
inaccurate for unsteady flow conditions in which backwater or dispersion effects
are significant or for channels in which lateral inflows and outflows (rainfail,
seepage, etc.) occur. Although all of these effects are generally significant in an

irrigation canal system, approximate methods are stili widely used today.

1.3 A Robust Simulation Procedure

Use of a full dynamic solution for open channel simulation models has
historically been avoided for the following two reasons: (1) use of a high-speed
digital computer is required to solve the numerical procedure, and (2) numerical
instability resulting in program failure can occur under certain flow conditions.
The first reason is virtually obsolete today as high-speed personal computers

are widely available. The potential for severe numerical instability remains the



only hurdle preventing the widespread appilication of an accurate dynamic
solution procedure to problems of unsteady, gradually varied, open channel flow

in well defined channels.

An even more robust solution procedure than the weighted four-point implicit
finite difference technique is required in order to provide a simulation model
which is suitable under virtually all conditions and provides an accurate solution
to the dynamic equations. The work presented here represents an important step
toward creating such a robust and accurate model. The four-point implicit
technique was used to solve the full dynamic St. Venant equations and a
procedure developed to suppress severe numerical instabilities, caused by
briefly occurring, rapidly varied, flow conditions, which would otherwise have
caused the simulation to fail. A modification was made to the solution technique
so that, for the brief time period of numerical instability only, the momentum
equation used within the solution procedure was reduced from the full dynamic
equation toward a simplified equation used in the approximate techniques. In
this way, the best available technology was applied at all times during the
simulation while the severe unstable condition causing program failure was

avoided.



CHAPTER 2. OBJECTIVES

For most flow conditions in a well-defined open channel, the best available
technology today is an accurate numerical solution to the full dynamic St. Venant
equations. The four-point implicit finite difference technique provides a well-
documented, widely accepted, verified, easily applicable solution method for
these equations. Although fairly robust, this technique is susceptible to failure,
and subsequent program termination, due to numerical instabilities which can
occur within the solution due to sudden changes in flow or channel conditions.
The objective of this thesis work was to develop an extremely robust model for

which these numerical instabilities do not cause program failure.

To suppress the instability causing program failure, the potential of reducing the
contributions of some of the terms in the momentum equation, namely the two
acceleration terms, was investigated. Muiltiplicative coefficients were included in
the momentum equation, one for each term. The objective was to avoid program
failure by reducing the value of the coefficients, and thus the contribution of the
associated terms, in the solution. The investigation required identification of
criteria which would predict insipient instability and thus could be used to reduce
the value of these coefficients automatically within the solution procedure, and

thus prevent program failure.



CHAPTER 3. PROBLEM CLARIFICATION

3.1 Introduction

This chapter includes a derivation of the St. Venant equations of open channel
flow from the principles of conservation of mass and of conservation of
momentum. The assumptions made in these derivations, and necessary for the
proper application of these equations, are then summarized. Momentum
equation terms, each accounting for a part of the fluid motion and contributing a
different effect to the solution, are identified and described. Two approximate
solution techniques, the kinematic wave and the diffusion wave, are introduced
based on the removal of various terms in the momentum equation. The idea of
developing a model which would apply the best available solution technique is
then introduced and the basis of using the full dynamic equations whenever
possible and moving towards the approximate diffusion technique within the
solution procedure by removing the momentum equation acceleration terms is
discussed. The approximate solution technique is necessary since numerical
instabilities which develop in the full-dynamic solution due to severe flow
conditions otherwise caused the solution program to fail. The four-point implicit
finite difference solution technique used for this work is described in detail and
the stability and accuracy of the technique discussed. A discussion of flow

conditions causing instabilities reported in the literature is aiso included. A
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description of a method used previously to increase the robustness of the
technique, by adjustment of the parameters At and 6 within the solution
procedure, is inciuded and the potential for further improved robustness by
adjustment of the momentum equation coefficients to control solution stability is

introduced in the problem statement.

3.2 Saint Venant Equations

The theory describing one-dimensional, gradually-varied, unsteady flow was
originally presented by De Saint Venant in 1871. This flow is described by two
one-dimensional, partial differential equations which are collectively known as
the St. Venant equations and represent the conservation of mass and the
conservation of momentum. The complete derivation of these equations has
been well documented by Henderson (1966) and Chow (1959), so only a

summarized derivation has been presented here.

The principle of conservation of mass states that, within a channel element, the
net change in discharge plus the change in storage must be zero. As presented
by Robertson and Crowe (1985), the principle of conservation of mass for an

incompressible fluid of constant density can be stated as:
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_ |rate of change of volume

flow volume entering| |flow volume exiting
~ | in that channel element

a channel element a channel element

Application of this principle to the channel element shown in Figure 3.1 allowed

the following derivation of the continuity equation:

flow volume entering] _ [ , _8A Ax 8V Ax
[ a channel element ] - (A 3}“5‘)[\’ 3‘;‘*—2-) +q;Ax + pAx
flow volume exiting| _ 0A Ax 8V Ax .
{a channe! element | ~ (A*'g;“z-) [V‘*a’-{) +Q,Ax +ilx
rate of change of
volume stored in | = JAAX) _ SA Ax
a channel element| Ot &t

where:

q; = rate of bulk lateral inflow per unit length (flow direction velocity component)
q, = rate of bulk lateral outflow per unit length (velocity in direction of flow)
p =rate of distributed lateral inflow per unit length (no velocity component)

i =rate of distributed lateral outflow per unit length (no velocity component)

The continuity equation then becomes:
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5V oA LBA _

+p-qQ. —-i) =0
5 Ve Ty (@rP-d-i) [3.1]

A

For a non-prismatic channel, width B is a function of time (t) and of longitudinal

distance (x), so that:

oA Oy 8A Oy oB
— =B and — =B +ry—
ot ot Ox Ox ybx [3-2]

Dividing equation [3.1] through by B and assuming a prismatic channel where
width B is not a function of distance (x), the continuity equation used for this

thesis work is obtained as:

A dV Sy oy 1 .

— cmmgm— v-_.. P et ™ - . - - = 0

Box  ox &t B(ql P-G, 1) [3.3]
322Th m ion

The momentum equation is a combination of the momentum principle and

Newton’s Second Law of Motion, as presented by French (1985), states that:

momentum in the

flux entering the
control volume

forces applied to a
control volume

control volume

[the sum of external

[rate of change of

[ net momentum
+

Application of this principie to the channel element shown in Figure 3.2, and
assumption of a uniform velocity distribution across the channel, allows the

foliowing derivation of the momentum equation:
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[sum of extemal forces] = 3_F = F, ~F, -F, -F,-F,+F,+Fg

—

[net momentum flux entering a channel element] = g(LQ\-n-Ax
X

[rate of change of momentum in a channel element] = -gi(-‘-’-\-’f‘ﬂ

The momentum equation then becomes:

5(PQV) 1. _ S(pVAAX)
LFrae M=3 [3.4]

3.2.2.1 Forces acting on element

Assuming a hydrostatic pressure distribution, and referring to Figure 3.2, the

hydrostatic pressure force is given by the equation:

y y
F, = fv(y-n)dA = fv(y—n)de [3.5]
0 (o]

where: dA =B dy, and

B is a function of n.
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From Figure 3.2,

5F
Fig = Fpy + =2 Ax [3.6]

and, since F, + F, represents the change in F, due to the change in width, B,

with channei distance x,

y
Fi+F, = [Axv(y-n)-g—g-dn [3.7]
0

Using the derivative product rule,

] / o] Y (] ]
—P = yB__y dn + -n)—d
Ox .£ 5x n _!;V(y ”)5 n [3.8]

Combining equations [3.6] through [3.8], the following is obtained:

o)

y
Fo-Fp-(F +F,) = —Axfye—g{-dn = ~yAx2XLA (3.9]
(o)

pt

Ox
y

since A=/Bdn.
0

Assuming the channel bed is constant (no scour or deposition), the shear force
acting on the fluid by the bed is equal to the stress muitiplied by the contact area

so that:
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F; = T,PAX [3.10]

For conditions of uniform flow, the shear force, F_, resists the weight of the fluid,

F,. so that:

F, = T,PAx = F, = YAAXS, [3.11]

which provides:

T, = YRS, [3.12]

Assuming that the resistance equations developed for uniform flow (where S, =
Sy) are applicable to this unsteady, non-uniform flow, the shear force acting on

the channel element is given by:

Fs = (YRS,)PAx = YAAXS, [3-13]

where: P = wetted perimeter, and

R = % hydraulic radius.

For small angles of ¢, where sin¢ = tan¢, the force due to the weight of the fluid

in the element is:

F, = Wsing = yAAxS, [3.14]

The force due to wind shear on the surface of the channel element can be
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derived similarly to that done above for the channel bed, with the following

result:

Fs = YAAXS,, [3.15]

322, m m ri nel Element

Referring again to Figure 3.2, the net momentum flux entering channel element

is the momentum entering minus the momentum exiting:

[momentum entering] = pQV + pq,Ax v, [3.16]
[momentum exiting] = pQV + %EQY)-AX +pq,AxV [3.17]

[net momentum entering] = -g{f—m& +PQAxv; - pq,AxV  [3.18]

where, v; is the velocity component in the direction of flow of bulk lateral inflow.

3.2.2. o) n

Referring again to Figure 3.2, the rate of change, or accumulation, of momentum
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in the channel element is:

[momentum accumulation] =

5(pVAAx)
S [3.19]

Combining equations [3.9], [3.13], [3.15], [3.18], and [3.19], the following

momentum equation is obtained:

~vax LA -yALXS, - YAAXS, - yAAXS,
Ox

(3.20]
- ____g(pQV) Ax +pqAxv, - pq AxV = ______::pVAAx)
X

Dividing by pAx and rearranging:

O(VA)  &(V(VA)) .

5t " ox +qu—VQ.+A9(Sf e*Sw) =0 [321]

Expanding the first two terms, assuming wind shear is negligible and bulk lateral
inflow and outflow are zero, substituting equation [3.1] into [3.21], and

rearranging and simplifying, the momentum equation becomes:

8V 8V v
e V3x-+9 +9(Sf~So)+Kq =0 [3.22]
where: qQ=p-i.
3235 ions Made in the D ic Equati

Several assumptions were made in the derivation and simplification of the
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original St. Venant equations in order to obtain the forms of equations [3.3] and
[3.22]. These assumptions are further discussed by Chow et al. (1988) and
Weinmann (1977). For the derived equations to be applicable for a particular
combination of flow conditions and channel characteristics, the assumptions
must be reasonable. The assumptions are summarized as follows:
~ one-dimensional flow (longitudinal flow variations only);

» horizontal water surface and uniform velocity distribution across the channel:

» incompressible, homogeneous flow;

« gradually varied flow with hydrostatic pressure distribution throughout;

» resistance effects adequately described with resistance coefficients and
equations developed for steady uniform turbulent flow;

« longitudinal channel axis approximated as a straight line;

» fixed channel bottom slope (no scour or deposition);

» channel bottom slope small so that sing = tan¢;

« zero net bulk lateral inflow entering channel;

=~ total distributed outflow is q, (zero momentum in direction of flow);

«negligible wind effects; and

» prismatic channel.

3.3 Terms in the Momentum Equation

The momentum equation consists of five terms, referred to as ‘term1' through
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‘termS’, each representing a physical process affecting flow momentum, as
discussed by Chow et al. (1988) and as indicated in equation [3.23] below. A
multiplicative coefficient was introduced for each term to establish the
momentum equation used for the robustness model developed for this thesis

work as follows:

ov 'e\" Oy v
— V—o et S-S —q =0
A1 6t + A2 6x + Aag 6x + 4g( f 0) ¥ AS A q [3‘23]
term1 term2 term3 term4 term5
kinematic wave

diffusion wave

full dynamic wave

where:
term1 = A,%I—/- the local acceleration term,
term2 = %V%{L the convective acceleration term,

term3 = A,Q g_y. the pressure force term,
X
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termd4 = A,g(S, - S,) with A,gS; the friction force, or shear, term,
and A,gS, the gravity force, or bed slope, term, and

terms = AS-X-q the net distributed inflow term.

The two acceleration terms, local and convective, are collectively known as the
inertial terms and represent the change in momentum due to the change in
velocity with time (momentum accumulation) and the change in velocity with
channel distance (momentum flux), respectively. The pressure force term
represents the change in momentum due to the change in depth, and thus the
change in hydrostatic pressure, along the channel. The friction and gravity force
terms represent the difference between the forces due to the weight of the fiuid
and to the shear against the channel bottom and are proportional to the friction
and bed slopes of the channel, respectively. The inflow term represents the net

distributed inflow for the channel section.

In the following discussion regarding the contributions and significance of the
various momentum equation terms, information presented by Weinmann (1977),
Henderson (1966), and Chow (1959) has been included. For routing a
hydrograph down a steep channel, the friction and gravity slope terms dominate
the flow characteristics. For channels of flat bed slope, the pressure term is also

important. The acceleration terms are important for steeply rising or falling



hydrographs. When backwater effects from channel transitions or boundary
structures are significant, the pressure and acceleration terms are important.
These terms are the only terms in the equation that can simulate velocity
changes in time or in the upstream direction. The pressure and acceleration
terms allow calculation of backwater effects and wave attenuation and
subsidence and thus produce the looped discharge rating curve expected for

unsteady, gradually varied flow.

Henderson (1966) reported that for a fast-rising flood in a steep naturai channel
(S,>.002), the contribution of the pressure term, convective acceleration, and
local acceleration terms were about one, two, and three orders of magnitude,
respectively, less that the gravity term. Weinmann (1977) suggested that the
magnitude of the pressure term was dependent on the steepness of the inflow
hydrograph and inversely proportional to channel slope. He also reported that
for channels of flat bed slope, the pressure term might be of similar magnitude to
the gravity term and the two acceleration terms somewhat smaller than the
pressure term. For steeper channels, he reported a pressure gradient term of
about an order of magnitude smaller than friction slope and acceleration terms
an order of magnitude smaller again. Both Henderson (1966) and Weinmann
(1977) reported that for steep slopes, the gravity slope term dominated the flow
but the acceleration terrns were significant, while for flat bed slopes, the

pressure term was important. The pressure and acceleration terms were



reported to be important for fast-rising hydrographs and whenever backwater

effects or the time of an event were important to the resuit.
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The relative significance of the two acceleration terms, term1 and term2, has not

been discussed in the literature. Although both represent acceleration effects,

they are derived separately within the momentum equation (see Section 3.2).

Term1 was derived from the momentum accumulation within the control volume

while term2 was derived from the momentum fiux through the control section.
Weinmann (1977) and Henderson (1966) only discuss their combined

significance and magnitude, without mention of their respective contributions.

Before high-speed digital computers were readily available to solve numerical
methods, solution of the full dynamic St. Venant Equations, represented by
equations [3.3] and [3.22], presented serious difficulty. In order to simplify the
solution procedure required for unsteady flow routing, approximate methods

were developed in which certain terms in the momentum equation were

neglected in order to linearize the momentum equation. An explicit solution could

then be obtained for linear conditions. Justification for the removal of the various

terms was based on the assumption that the contribution of the neglected terms

was small compared to the remaining terms. The most commonly used
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approximate methods are the diffusion wave, in which the two acceleration terms
are neglected, and the kinematic wave in which the pressure term is neglected

as well as the acceleration terms.

With a kinematic wave solution technique, only the channel and friction slope
terms are retained so that uniform flow is calculated. In this case, a straight-line
rating curve is predicted which is characteristic of steady-state flow, as
discussed by French (1985). Weinmann (1977) summarized that a kinematic
wave solution cannot predict backwater effects and can only model the wave
crest, can only propagate the crest downstream, reports maximum stage and
maximum discharge at the same time, and underestimates the maximum
discharge. A diffusion wave technique includes the pressure term and so can
represent wave attenuation and subsidence and can provide an approximate

looped rating curve.

As mentioned previously, approximate methods are still widely used for open
channel unsteady flow modelling applications. These techniques are applied
without justification of whether the terms which are neglected are truly negligible.
The contribution of these neglected terms is assumed to be unimportant for
solution of the problem. The resulits of the approximate solution are then

accepted and used in the remainder of the design process.
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For this work, multiplicative coefficients were inciuded for each of the momentum
equation terms. Referring to equation [3.23], if coefficients A, and A, were set to
Zero, then term1 and term2 would be set to zero and the diffusion wave equation
obtained; and, with A,, A,, and A,, set to zero, the kinematic wave equation
would be abtained. These coefficients were introduced so that the solution
procedure could be varied from solution of the full dynamic momentum equation

through the diffusion equation to the kinematic equation.

In a kinematic wave procedure, the acceleration and pressure terms are
neglected so the solution cannot predict backwater effects nor provide the
looped rating curve characteristic of unsteady open channel flow. The diffusion
technique includes the pressure term and so can approximate these effects.
These two effects are significant to many problems of unsteady, open-channel
flow problems where predictions are often required regarding the effect of
operating a canal structure or the anticipated time and maximum values of depth
and discharge for a flood condition. In an operated canal with numerous gate
and weir structures separating reaches of relatively short length, backwater
effects would likely be extremely significant. The uniform flow conditions
simulated by the kinematic wave equation may never exist in such a canal. Thus,

for long, steep channels with slowly-rising hydrographs where gravity and friction
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effects dominate, a kinematic, or even a steady-state model, may provide
reasonable results. For a channel of intermediate slope with transitions or
control structures causing backwater effects, a fuil dynamic solution is required
for an accurate resuit. In other words, terms are neglected arbitrarily to simplify
the solution procedure without consideration of whether the neglected terms are
significant. In cases where backwater effects are known to exist, the acceleration

terms are neglected even though their effects are known to be important.

Of course, a solution can only be as accurate as the input data available, so
where the quality of the input data is sufficiently poor that the model result will be
approximate anyway, an approximate solution method may provide acceptable
results. Weinmann (1977) concluded that approximate techniques may be
warranted for simulation of channels for which some or all of the following
conditions are true: (1) accurate channel geometry and flow conditions are not
known, (2) channel bottom is very rough, (3) flow conditions vary very slowly,
and (4) flow conditions are supercritical. For manmade channels with regular
cross-sections and controlled flows, an accurate solution technique is virtually
always warranted. In spite of the obvious problems, models based on the

kinematic technique are still widely accepted.

3.3.3 Application of Best Available Solution Procedure
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The standard open-channei flow mode! used in industry today is the US Army
Corps of Engineers (1995) model HEC-RAS, formerly known as HEC-2.
Aithough an unsteady component is reportedly to be released in the near future,
only the steady flow version is currently available. The QUALHYMO (Rowney,
1991) and SWMM (Huber, 1988) families of stormwater models include several
open-channel routing options including kinematic wave and dynamic solution
methods. The dynamic solution component to the SWMM model, EXTRAN, is
unstable under varying flow conditions, so the approximate method solutions are

still generally used.

As described above, the availability of high-speed digital computers makes the
main reason for using an approximate solution technique for unsteady flow
routing, that a proper fuil dynamic solution requires use of numerical methods,
unjustifiable. The required solution procedures are readily solved using a
personal computer and relatively simple programming techniques. Except under
extreme flow conditions where a numerical solution technique may become
mathematically unstable, the improved accuracy of a full dynamic solution
greatly outweighs any difficulty introduced by the requirement for a numerical
solution. Because potentially important terms in the momentum equation are
assumed negligible and removed, an approximate solution procedure does not
provide the best answer. Today, the best available technology is the

simultaneous solution of the full dynamic equations.
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3.4 Numerical Solution of Full Dynamic Equations

For the system of full dynamic, St. Venant equations, including the continuity
equation [3.3] and momentum equation [3.23] described above, there is no
known analytical solution. The system can only be solved by use of a numerical
solution technique and a digital computer. Numerical methods to solve the
complete form of the St. Venant equations were described by Strelkoff (1969),
among others. For reasons discussed in Section 1.2, the four-point implicit, finite
difference method developed by Amein and Fang (1970) for the solution of the
system of equations, together with the boundary conditions, was used for this
work. This method has been used extensively by many authors including
Weinmann (1977), Fread (1981), and Manz (1994) and reportedly provides an
accurate solution to the full dynamic equations. Manz (1994) summarized the
advantages of this solution method over other full-dynamic solution techniques
as follows: (1) the ability to incorporate distributed lateral inflow or outflow (e.g.
precipitation or seepage), (2) no restrictions on the hydraulic and operational
characteristics of the modelled hydraulic control structures (eg. radial gates), (3)
relatively minor programming effort, (4) use of the same input information
required for the design of canals and associated control structures, and (5) is

based on verified theory and standard hydraulic engineering practise.
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4.1 -Poi icit Finite Differ T

The four-point implicit solution technique has been widely used in industry and
well documented by Weinmann (1977), Fread (1981), and El-Maawy (1991) as
an accurate and robust solution technique for unsteady flow routing. The method
is useful for practical application since the solution is obtained at specified
locations in space and time, the value of Ax need not be constant along the
reach, and the stability of the solution can be controlled by variation of the finite
difference parameters Ax, At, and 8. The robustness of the four-point implicit
technique is due to the flexibility of the technique which aliows this variation of

Ax, At, and 8 within the solution procedure.

As described by Weinmann (1977), the equation system to be solved consists of
two nonlinear, first order, first degree, partial differential hyperbolic equations,
the continuity and momentum equations, with x and t as independent variables
and y and V as dependent variables. The other terms are constants or functions
of the independent or dependent variables. For each time step of increment At,
the solution invoives the determination of depth and velocity at the ends of each
channel section, each of some length Ax. The continuity and momentum
equations are approximated by finite difference equations, and written at each
channel section to be used in the computation. For a reach divided into N

channel sections where the values of velocity and depth are to be evaluated, two



31
finite difference equations are written at each section giving 2(N-1) equations for
the 2N unknowns. Since the system of finite difference equations contains two
mare unknowns than equations, boundary equations at the upstream and
downstream extremes of the channel reach are required to provide two
additional equations. Together with the two boundary conditions and a complete
initial condition, a system of 2N nonlinear algebraic equations is produced. The
resulting system of equations is solved simuitaneously by an iterative procedure.
The coefficient matrix which resuits from the system of finite difference equations
has a banded pentadiagonal structure which allows use of an efficient solution
aigorithm in order to minimize both required computer storage and computing
time. The solution is marched forward in time using the previous solution as the

first estimate for the next time.

The Newton Raphson technique was chosen as the iterative procedure for
solution of the system since it converges quickly when the first approximation of
the solution is reasonable and, as reported by Lai (1986), is efficient and
reliable. In the program, a solution was accepted at each finite interval of time,
defined by At, when successive iterative values of depth and velocity varied by
less than the specified tolerance value of 0.001 m. Numerical solution of a
steady-state backwater calculation was used as the initial condition required to
start the procedure. The downstream boundary was set as a full-width, sharp-

crested weir, and the upstream boundary set with an inflow discharge
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hydrograph. Within the simulation, one or both of the boundary conditions was
adjusted to cause a change in flow conditions. The weir was either raised or
lowered and/or the discharge hydrograph either increased or decreased. Using
the solution from the previous time step as the initial estimate, the Newton

Raphson technique was used to converge to the solution at the new time step.

4 bility and r of th int Implicit Technique

The Amein four-point implicit finite difference technique has been used
extensively in open channel models, including the US National Weather Service
models DWOPER and DAMBRK as well as Manz’' (1994) model ICSS, and thus
the stability and accuracy of the solution method have been well investigated by
Weinmann (1977), El-Maawy (1991) and others. As discussed by Lai (1986), the
stability and convergence of the solution technique affects the accuracy of the
result. The stability of the solution technique refers to the difference between the
numerical solution and the exact solution of the finite difference equations.
Convergence refers to the difference between the theoretical solution of the
partial differential equations and the finite difference equations. Accuracy refers
to the difference between the actual solution of the problem, which remains
unknown, and the computed result. Stability is obtained when small numericai
errors, which include truncation errors due to discretization of the differential

equations and round-off errors due to the limit of calculation precision, are not
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amplified by the computational procedure.

Traditional references such as Chow et al. (1988) and French (1985) reported
the stability of the implicit method to be independent of the Courant condition;
however, El Maawy (1991) found this to be true only within a range. The Courant

condition represents the ratio of %x-t-— and is caiculated as: At < -éi where C

w
is the celerity of the wave and equal to /gy for a kinematic wave (French,
1985). Thus, the Courant number, C_, is calculated as 2x_tc‘” and should be

less than or equal to one for the Courant condition to be satisfied.

The implicit finite difference technique has generally been considered
unconditionally stable for any ratio of %’{- when 0 is held within the range 0.5 <6
< 1. Fread (1973) reported, however, that instabilities were encountered for
certain upstream boundary hydrographs and At time steps even for 6 values
within this range. He reported that the accuracy of the solution was effected by
the size of the time step and the characteristics of the discharge hydrograph at
the upstream channel boundary. Fread also reported that aithough a large At
was desirable in order to reduce computation time, especially for long-duration
simulations, when At was made large truncation errors caused distortion,
dispersion and attenuation of the peak. El Maawy (1991) reported serious
instabilities when Ax was significantly larger than would be suggested by the

Courant condition, and when 8 was close to 0.5 with a steep hydrograph. Both



reported that values of 6 less than 0.5 caused severe instabilities. El-Maawy
also observed that At must be small enough to detail the flow adequately, and
that an upper limit to At existed to ensure stability as the flow variation became
more severe. Both reported that the solution was reliably stable, convergent and
accurate when At and Ax were selected to satisfy the Courant condition.

Lai (1986) reported that some dispersion always occurred for 6 values greater
than 0.5, a condition which was more pronounced as At was increased and less
significant as Ax was decreased. Fread (1973) found that distortion was
minimized when 6 values were in the lower range, and recommended a value for
8 of 0.55 to balance distortion due to large time steps while ensuring theoretical
stability. El-Maawy (1991) found that a 8 of 0.6 was effective for rapidly varying
flow, and a 8 of 0.55 effective for more gradual flow variations. Fread (1973)
summarized his analysis indicating that stability decreases with increasing
values of At and decreasing values of 8 as well as with steepening inflow
hydrographs, and that distortion increases with increasing channel length or
Manning roughness n and decreases with increasing initial channel depth or

channel bottom slope.

With the four-point implicit technique, the finite difference parameters Ax, At,
and 0 are selected to control convergence, stability, and dispersion of the
solution wave. As discussed by Fread (1981), when At was reduced within the

procedure, the solution became more stable. In reducing At, the Courant
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number, proportional to %t; was reduced. A similar effect could have been
obtained with an increased Ax, however, variation of Ax within the procedure can
cause reduced solution accuracy since interpolation could be required in order

to obtain results at the desired locations along the channel.

The previous discussion emphasized that although the four-point implicit
technique has been reported to be unconditionally stable for values of 6 greater
than 0.5, severe instabilities can occur under some flow conditions. Fread (1983)
found cases of instability, resulting from steep input hydrographs and changes in
cross section, sufficiently severe that adjustment of Ax, At, and 8 was not
sufficient to provide a solution. French (1985) reported that steep inflow
hydrographs, and resulting surges, and sudden channel transitions could cause
rapidly-varied flow conditions. Solution difficulty wouid be expected for
conditions approaching rapidly varied flow since the St. Venant equations are
valid only for gradually-varied flow; however, even gradually-varied flow
conditions can result in unstable calculations causing failure. Relatively steep
water surface and discharge profiles would be more likely to result in sofution
failure since the large values of the pressure and acceleration terms could
induce instabilities in the numerical solution. A flow profile for which the pressure

slope term, % is negative, such as for an M2 water surface profile, would be
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likely to produce faiture for a mild channel slope, since the depth could approach
zero within an unstable calculation. For the channel used for this thesis work,
with a sharp-crested weir as the downstream control, gradually varied flow
conditions would produce an M1 backwater curve with slightly positive -gz- term
structure. A sudden increase in the inflow hydrograph would produce a surge
with a steep M2 profile at its leading edge. An increase in downstream weir
depth could exaggerate this effect by initially reducing the downstream
discharge against the raised weir and thus increasing the relative surge. For a
steep channel, the momentarily decreased discharge over the raised weir could
produce a similarly steep S2 profile and negative -g—i- term. Thus, an unstable
condition might be induced in the gradually-varied unsteady flow model by
simultaneously introducing a sudden increase in the inflow hydrograph and an

increase in the height of the weir.

2.4.4 Solution Robust ith Variation of At and 6

In his paper, Fread (1981) described an automatic procedure used in the
program DWOPER, contained within the finite difference solution algorithm to
increase the robust nature of the four-point implicit method. He reported that
rapidly rising hydrographs and non-linear cross-section properties caused
computational problems resulting in non-convergence in the Newton-Raphson

iteration or in erroneously low computed depths at the leading edge of steep



37
wave fronts. When either of these conditions were sensed in the program, an
automatic procedure consisting of two parts was implemented. First, the time
step (At) was reduced by a factor of 2 and the computations repeated; if the
same problem persisted, At was again halved and the computation repeated.
This continued until a successful solution was obtained or the time step had
been reduced to 1/16 of the original size. If a successful solution was obtained,
the computation proceeded to the next time step using the original At. If the
solution using -%t— was unsuccessful, the 6 weighting factor was increased by
0.1 and a time step of % used. Upon achieving a successful solution, 8 and At
were restored to their original values. Unsuccessful solutions were treated by
increasing 6 and repeating the computation until 8 = 1, at which point the

At

automatic procedure terminated and the sofution with 6 = 1 and > was used to

advance forward in time, resetting At and 6 again to the original values.

The four point implicit finite difference method provides the flexibility to vary the
finite difference parameters At and 6 in the middie of a simulation, as described
above. However, the instability described by Fread, due the mathematical errors
resulting from steep input hydrographs and changes in cross section, can be
sufficiently severe that adjustment of At and 6 is unsuccessful in allowing a
solution. Fread described that if the algorithm used in DWOPER was

At

unsuccessful, the solution obtained with T and © = 1 was accepted. Fread did

not report investigation of conditions for which these parameters did not allow a
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solution.

3.5 Problem Statement

For practical application, a solution technique must be reliably robust under
virtually all flow conditions. With variation of At and 6 within a simulation, the
four-point implicit finite difference technique is both reliable and robust for many
flow conditions and channel characteristics, however numerical instability
causing program failure can still occur. For this thesis work, a method to adjust
parameters in addition to At and 8 was developed in order to investigate the
potential for an even more robust solution technique. The procedure developed
aliowed a full dynamic solution to be applied throughout a simulation, except for
those time steps exhibiting numerical instability. For those unstable time steps,
an approximate technique, in which the contribution from some of the terms in
the momentum equation was reduced, was applied so that program termination
was avoided. In this way, the best available procedure was used for each time
step. In other words, a full dynamic solution was provided for all time steps
except those for which the technique was unable to provide any solution; only

then was an approximate technique applied.



CHAPTER 4. ROBUSTNESS MODEL

4.1 Introduction

This chapter begins with a description of the four-point implicit finite difference
solution technique and the discretized continuity and momentum equations used
for this work, including the muitiplicative coefficients A, through A; applied to the
various terms in the momentum equation. This method was used to investigate
the potential of a ‘robustness model’ which would eliminate program failure due
to numerical instability. The method involved an automatic adjustment of the
coefficients, A, and A,, as well as the traditional parameters of At and 6. The
criteria used for application of the adjustments, and a logic flowchart of the
program, were also included. A description of the channel characteristics, finite
difference parameters, and flow conditions selected to test the robustness of the
model follow. The chapter concludes with a description of a modelled stable
solution and a discussion of the contributions of the various momentum equation

terms to that solution.

4.2 Description of the Four-Point implicit Model

For this thesis work, a single channel reach computer simulation model was

programmed to solve the full dynamic St. Venant equations using the four-point,
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implicit, finite difference technique described by Weinmann (1977) and Fread
(1981). As discussed in Section 1.2, this technique represents standard
engineering practise and has been verified and investigated by others. The
model included a steady state backwater calculation for the initial condition, an
input hydrograph of discharge versus time for the upstream boundary condition,
and flow over a sharp-crested weir for the downstream boundary. Lateral inflow
and outflow were set to zero since this was intended to be a general
investigation of the effects of adjusting the contribution of the momentum
equation terms, rather than specific for certain channel and flow conditions.

Downstream weir height was variable within the simulation.

The work done be El Maawy (1991), based on the four-point impilicit technique,
included calibration. His results were used to verify the robustness modeil
developed for this thesis work. The resuits using the robustness model agreed

well (within less than five percent) with El Maawy’s calibrated resuits.

For convenience, the St. Venant equations of one-dimensional, unsteady,
gradually varying, open channel flow, equations [3.3] and [3.23] discussed
above, were repeated here:

Continuity equation:

AV O 8 1

Box  Vox ot B WP %*)=0 [3.3]
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Momentum equation:
v &v dy Vv
— V_._. -— s -s — = 0
Asr * A B +A396x * A9(S, - S,) + As2q [3.23]

After application of the four-point implicit finite-difference technique and
simplification, the discretized continuity and momentum equations of the
following form were used for programming. A description of the discretization of

these equations was included in Appendix A.

Continuity equation:
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Cio = (1-8)[Vi, +V/]
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4.3 Robustness Model

As discussed in Section 3.4.2, the four-point implicit technique is very stable for
a wide range of input conditions. The technique allows solution stability to be
controlied within the procedure through adjustment of the finite difference
parameters Ax, At, and 6. Fread (1983) described a procedure used in the
DWOPER program, as discussed in Section 3.4.4, in which the parameters At
and 6 were adjusted when an incipient instability or program failure was sensed.

In that program, when either non-convergence in the Newton-Raphson iteration
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or an erroneously low computed depth was detected, an automatic procedure
was initiated to first reduce At, and then to increase 6 in order to increase the
stability of the solution. Although effective in increasing solution stability
generally, the solution technique described by Fread (1983) was subject to
failure under certain flow conditions for which adjustment of At and 6 was

insufficient to prevent program faiiure.

As discussed in Chapter 2, the objective of this work was to investigate the
potential for a very robust version of the four-point implicit technique in which
severe instabilities developed in the solution were sufficiently suppressed that
program termination was avoided. In addition to adjustment of the finite
difference parameters At and 8, the momentum term coefficients, A, and A,
(discussed in Section 3.3), were automatically reduced in order to suppress the
instability introduced by their respective momentum terms. As the values of the
two selected coefficients (A, and A,) were reduced to zero, the contribution from
the momentum equation acceleration terms (term1 and term2) was reduced to
negligible and the instabilities introduced by these terms eliminated. When the
coefficients were set between zero and one, the contribution from the affected
terms was reduced so that any numerical instability introduced by these terms
was suppressed. With coefficients A, and A, set to zero, the contribution from
the momentum equation acceleration terms was neglected and the solution

technique was a diffusion wave approximate technique. If coefficients A,, A, and
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A,, were set to zero, the acceleration and pressure terms would be neglected

and the solution would become a kinematic wave approximate technique.

The initial intent for this work was to reduce the solution from full dynamic
through diffusion, by reducing coefficients A, and A, towards zero, and then to
kinematic by reducing A, towards zero as well. The initial condition used for this
work was a steady-state backwater calculation behind a weir. The kinematic
equation describes uniform flow for which the friction and gravity slopes are
balanced. With coefficients A,, A, and A, set to zero, the solution technique
would attempt to solve for a zero residual condition where the residual was the
difference between the friction and channel bed slope terms (given zero
distributed inflow). The calculated residuals would then be the difference
between the steady flow initial condition and the uniform flow condition, which
would always be non zero. Therefore, reduction of the momentum equation to

the kinematic form would be unreasonable with a backwater calculation initial

condition.

For this work, coefficient A; was not adjusted since, as discussed above,
application of a kinematic approximate solution was not reasonable with the
selected initial condition. Adjustment of coefficients A, and A,, and thus
reduction of the momentum equation towards the diffusion wave equation, was

investigated. The parameter Ax was not adjusted since interpolation, with a
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resulting loss of accuracy, would have been required for x-locations between

previous channel sections.

4.3.1 Program Logic

A simplified flowchart of the procedure, illustrating the logic applied in the
robustness model, is shown in Figure 4.1. The logic follows the four-point implicit
finite difference technique except that prior to a solution advancing to the next
iteration, for any specific iteration within a specific time step, the solution was
checked against a specific criteria and, for a positive outcome, an adjustment
was made to a selected parameter (At, 8, A, and/or A,). An example of the

FORTRAN program code was included in Appendix B.

As illustrated in Figure 4.1, the unsteady flow calculation loop was started
following initialization and calculation of the initial condition. The initial condition
was a steady flow backwater calcuiation behind the downstream sharp crested
weir. The constants were then calculated based on the depth and velocity values
obtained for either the initial condition or for the previous time step. The Newton
Raphson iteration loop was started and the values of the residuals, the
difference between the function values and the theoretically correct value zero,
were calculated and checked against an acceptable minimum value. If all the

residuals, for that time step and iteration, were less than the minimum value, the



[ input flow conditions /

initiolize porometers

steady-state backwater colculation (y, V);

initiclize first estimates
of (y, V. A Sf)

time step increment
for unsteady flow

caiculate constants for
previous timestep using (v. V) ;

Newton Raphson Iteration

calculate (A, Sf) using latest estimates
colculate residuals

Check residuals™,__faise

47

> volue

true
calculate partial differentiols

solve pentadiogonal matrix

opply corrections
to (v.V);

Eigure 4.1 Program Flowchart




true (instobiity
detected)

(At &,

adjust desired parameter

Alo Al)

moke new estimate for (y, V) ;

number of iterations

48

output message
“no_convergence”

/— output solution array j
for this timestep (v, V) i

calculation
time

< max stimulation

time

false

| output final information |

end progrom

Figure 4.1 Program Flowchart, continued
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estimate was accepted as the solution and the unsteady flow loop restarted for
the next time step. For each time step, the solution obtained for the previous

time step was used as the initial estimate for the next.

if all the residuals were not less than the minimum value, as would occur at a
time step for which the input flow condition, or downstream boundary, had been
changed, the partial differentials were calculated and a pentadiagonal matrix
procedure used to solve the simuitaneous equations. The corrections (Ay and
AV) returned from the matrix solver were then applied to the previous estimate

values to provide the new solution at this time step.

This solution was then tested against the selected robustness criterion. The
criterion was selected to detect a serious instability in the solution prior to
program failure. If the criteria was met, indicating that a serious instability had
occurred, an adjustment was made to the desired parameter (At, 6, A,, or A,).
After the adjustment, the constants were recalculated using the adjusted
parameter(s), the Newton iteration loop was re-entered, and the process was
repeated. With this procedure, the programmed model provided a full dynamic
solution at all time steps except those for which a numerical instability was

detected by the selected criterion.
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In order to detect a numerical instability, and incipient program failure, a
procedure was programmed to check whether a selected criterion was met for
any time step calculation within the solution procedure, as described above.
When the selected criteria was met for the first time within a given time step, At
was reduced by half and the computation for that time step repeated. As
discussed in Section 3.4.2, such a reduction of At reduced the Courant number,

which shifted the calculation towards the stable condition defined by Cn = 1.

If the instability criteria was met again, 8 was increased to 0.6, with At kept at
one-half, and the computation again repeated. If the criteria was met for a third
time, 6 was adjusted to 0.8. If the criteria was met again, coefficients A, and A,
were gradually reduced from one towards zero. These coefficients were kept
equivalent for the initial investigation. Possible adjustments, applied in
subsequent calculations when the criteria continued to be met, were to 0.8, 0.5,
0.3, and 0.1. After each adjustment, a solution for the affected time step was
again attempted, using % and 6 = 0.8. If the criteria was not met, indicating that
there were no severe numerical instabilities, the solution was accepted and the
parameters reset to their original values for the next time step calculation. A

maximum 6 value of 0.8 was selected to minimize dispersion of the solution.

Experiments showed that the applied adjustments were virtually identical
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whether 0.8 or 1.0 was used as the maximum adjusted vaiue for 6; however, the

dispersion effect of the large 0 value was noticeably less with a 8 value of 0.8.

433 Sel iteria

Two criteria were selected to test for numerical instability and incipient program
failure and thus to determine the time steps for which a parameter adjustment
was made. The two selected criteria were: (1) an erroneous solution for which a
channel depth less than zero (y < 0) was calculated, and (2) a supercritical flow
condition for which Froude number was greater than one (Fr > 1). These two
criteria were used in separate simulations so that a comparison could be made
of the adjustments and affected time steps. These criteria were selected
because they were effective in selecting time steps for which numerical
instability occurred and they were theoretically reasonable. The depth in the
channel should not be less than zero and the channel and boundary conditions

were selected for conditions of subcritical flow.

Several other potential criteria were investigated but with disappointing results.
Both Reynolds number and Courant number were tested, but neither was found
to indicate the time steps exhibiting instability for the tested flow conditions.
Actual values of various momentum equation terms were aiso tested, however

no consistent numeric value was found which was applicable to a variety of time
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steps. For the tested flow conditions, the same value of momentum equation
terms was reported for time steps with and without instability. Rather than an
actual value, a relative change in value of one or more of the momentum terms
might prove possible as a criteria. Such an investigation was beyond the scope
of this work since the terms would be expected to vary with different flow
conditions and this work was intended to be a general application of improved
robustness rather than specific to the flow and channel conditions tested.
Several different values of Froude number (0.5, 2, 3) were also tested, and
although parameter adjustments were applied to slightly different time steps in
each case, no clear justification was found for one value over another. The
criterion of Froude number greater than one was selected since it indicates the

theoretical boundary between subcritical and supercritical flow conditions.

4.4 Parameter Selection

The stability and convergence of the model were assessed by varying the finite
difference parameters, Ax, At, and 6, which affect the stability of the solution.
Using the selected channel characteristics, these parameters were varied until
the solution appeared stable and convergent. Calculations of Courant number
(See Section 3.4.2) were based on the kinematic wave speed. Lateral inflow was

set to zero for all conditions evaluated.
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Channel characteristics were selected so that a realistic channel was
represented in the model. The selected channel was a rectangular, prismatic
channel (B = 3 m) with a fairly smooth (n = .007) and fairly steep (S, = .001) bed
so that the unstable conditions necessary to test the robustness program wouid
be relatively easy to create. In order to ensure adequate detail near the
downstream weir, Ax was set to 1 m for 20 m from the weir and was not varied in

this region.

4. inite Differen ramet

For investigation of the effect of the finite difference parameters Ax, At, and 9,
the inflow hydrograph was set to a constant 5 m*s and the downstream weir
height changed in height instantaneously from 1.5 m to 1.0 m two minutes into
the simulation. Each parameter was then varied while the others were heid
constant. First, Ax was varied, while holding At and 8 constant, then At was
varied with Ax and 8 constant, and finally © was varied between 0.5 and 1.0, with
Ax and At held constant. The impact of the variation of the momentum
coefficients, A, and A,, affecting the acceleration terms, was then investigated

using the previously determined values of Ax, At, and 6.
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The resuits of the investigation into the effects of varying the parameters Ax, At,
8, and A, and A,, were illustrated in Figures 4.2 to 4.5. The figures were plotted
for a modelled distance approximately half the distance between the upstream
and downstream boundaries. The results verified previous work and theory since
the most stable and reasonable solution was obtained with At and Ax selected to
provide Cn = 1.0, with 6 greater than but close to 0.5, and with A, and A, equal

to 1.

The variation of Ax around 70 m, to produce Courant numbers very different
from 1.0, caused instability to be introduced into the solution, as illustrated in
Figure 4.2. The solution appeared stable and smooth for Ax =70 m,
corresponding to Courant number between 1.0 and 1.2. When Ax was increased
to 100 m (C,, = 0.7) orreduced to 30 m (C, = 2.2), the solution showed
instabilities in the form of overshooting at the peak and steps in the previously
smooth curve. For the large Ax, the resulting profile was substantially altered in
shape suggesting that this increment was too large to properly detail the flow.
The instabilities were only apparent for times near the abrupt change in the
inflow hydrograph. For later times, the various Ax profiles were similar showing

the reflection back from the weir at about 12 minutes.

The effect of variation of At, with Ax set at 70 m as determined in the previous

step, was illustrated in Figure 4.3. The result was similar to that for Ax with the
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most stable solution obtained with At=20s (C, = 1.0). A reduced Atof 10s (C,
= 0.5) caused instabilities resulting in a distinctly stepped curve, overshooting
and searching at the peak, and undershooting as the hydrograph started to rise.
A further reduction of At caused very large spikes in the solution and finally
caused the program to fail. Again, the instabilities were observed near the time

of the change in inflow.

The effect of variation of 8, with Ax =70 m and At = 20 s as previously
determined, was illustrated in Figure 4.4. Stable solutions were obtained for 6 =
0.55, 0.6, and 0.8. With 6 greater than 0.55, dispersion of the wave was
apparent with the peak flattening and widening more severely as 6 was
increased towards 1. With 8 = 0.5, the solution showed instability producing a
seriously stepped curve. This instability continued for the full duration of the
simulation. As suggested by theory, the best solution, stable and without obvious
dispersion, was obtained with 8 = 0.55. When 8 was reduced below 0.5, the

program failed.

The effect of varying the momentum coefficients A, and A,, with the other
parameters as previously selected, was illustrated in Figure 4.5. The most
accurate solution was expected for A, = A, = 1.0 since the full dynamic
equations were solved in that case. The parameters selected above (Ax=70m,

At=20s, 6=0.55) provided a smooth curve with A, = A, = 1, which included the
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reflection effect from the downstream weir at about 12 minutes. With A, and A,
reduced below 1.0, the entire solution was shifted to an earlier time and the peak
increased and narrowed. The weir reflection was still evident aithough increased
in amplitude and aiso shifted to an earlier time. A similar effect was reported by
Smith (1980) who found the length of gradually varied flow profile was reduced
with an approximate model. As previously discussed, the solution technique
used for this work was a full-dynamic method when all coefficients (A, to A;)
were set equal to 1, and the approximate diffusion technique when A, and A,

were reduced to zero.

When A, and A, were reduced to zero, the solution became somewhat unstable
and appeared to search between extremes causing a stepped discharge profile.
The weir reflection was no longer reported clearly since a diffusion technique
solution can only approximate effects in the downstream direction. As discussed
in Section 4.3, only coefficients A, and A, were varied, and these were kept

equivalent for this portion of the work.

Results from this investigation suggested that the best solution parameters for
this channetl and conditions were the following: Ax=70m, At=20s, 6 = 0.55,
and A, = A, = 1. Assuming the celerity of a kinematic wave, these parameters
provided a Courant number very close to one for these flow conditions. In order

to enhance the potential instability, so that recovery could be tested, the
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parameters selected for the rest of this work were as follows: Ax = 50 m, At =20
s, and 6 = 0.52, which provided a Courant number of slightly more than one
under these flow conditions. Within 20 m of the downstream weir, Ax was set at

1 m. The values of Ax were not varied.

4.4.3 Stable Flow Condition

In order to verify that the model was successful, and to provide a comparison for
the later unstable solutions, the channel characteristics and finite difference
parameters selected above were used to determine a flow condition which
provided a stable full dynamic solution. The selected flow condition was a
constant inflow hydrograph at 5 m*/s with adjusted weir height from 1.5 m to

1.0 m at 0.5 minutes. The resulting full dynamic solution, piotted at the indicated
locations along the channel, was shown in Figure 4.6. The discharge profile
indicated a fairly stable solution. Some instability was evident on the rising limbs
of the profiles where a sawtooth wave was apparent. Of interest to the
discussion of Section 4.4.4 below, the rising limb of the discharge profile

occurred at about 3 minutes for the 750 m x-location discharge profile.

44 ibuti i

The contributions, and relative significance, of momentum equation term1



62

'1="y="V ‘26'0=9 '80Z = 1V ‘wQg = xv
‘UwozZrewgLog| = Md 'S/l G = D) 'pejesipu) SBJUB)SIP-X 18 UMOYS §8|ij0.d
‘uolinjos e\qe;s Joj se))joid ebieyosiq g emnbiy

E: om: cmn o onn 06 —-- g
(uw) swy uopenwys
G¢ 174 Sl ol G 0
— . _ : , H ml
S | _ 0 3
S -
\ _ o
een| G m
)

- ea gma g



63
through term4 for the stable flow condition described above was shown in Figure
4.7. The values plotted for each term were from distance location X = 750 m.
TermS was zero for this work since it represented lateral inflow, which was set to

zero initially. (The momentum equation terms were defined in Section 3.3.)

Term4, the combined friction and gravity force term, remained fairly constant
throughout the simulation at a value of about -0.1. The sign of the term indicates
that gravity effects dominate friction effects, since term4 is proportional to

S - S,, as expected for subcritical flow conditions. For most of the simulation
time, term3, the pressure force term, contributed a value of about +0.1, virtually
balancing the contribution of termd4. The positive value of this term, proportional
to g—i indicated that the depth was increasing downstream, as expected
towards the weir, except for a moment when the profile reversed. Term1 and
term2, the local and convective acceleration terms, respectively, contributed
virtuaily zero for most of the simulation, except near the time at which the
change in weir height was applied. A dramatic change in the values of the

acceleration terms, term1 and term2, and the pressure term, term3, occurred at

about three minutes into the simulation.

The values of term1 and term3 were affected dramatically while the value of
term2 was affected to a lesser degree. The changes in term1 and term2 were

positive while the change in term3 was negative and the values of these
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changes were such that the sum of the terms remained close to zero. The
changes in term3 were balanced by the sum of the changes in term1 and term2.
As mentioned in Section 4.4.3 and as shown in Figure 4.6, the rising limb of the
discharge profile also occurred at a time of about 3 minutes. The simuitaneous
occurrence of a dramatic change in discharge profile and in the values of term1
and term2 suggests that numerical instability in the solution can be reduced by

reduction of coefficients A, through As.
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CHAPTER 5. NUMERICAL EXPERIMENTS

5.1 Introduction

Numerical experiments were performed through repeated application of the
model. Several unstable flow conditions were selected for which program failure
could not be prevented by adjustment of the traditional stability parameters of At
and 6. Adjustment of coefficients A, and A,, as well as At and 6, was then
applied for these flow conditions and program failure prevented. The stable full
dynamic solutions discussed in Section 4.4.3 provides a comparison for the

unstable solutions obtained here.

5.2 Results

For unstable condition #1, flow conditions were selected for which a full dynamic
solution could be obtained with adjustment of At and 6. For unstable conditions
#2 and #3, flow conditions were chosen for which a full dynamic solution could
not be obtained. To obtain a solution for these conditions, adjustment of A, and
A, as well as At and 6, was required. The various flow conditions are
summarized in Table 5.1. The automatic procedure programmed into the model
caused application of parameter adjustments according to the two selected

criteria, y < 0 and Fr > 1 (as described in Section 4.3). The parameter
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Table 5.1 Selected Flow-Conditions

input
flow Q
condition (m3/s)

1 5
2 2t05
3 2t05

change
attime

(min)

0.5
0.5

weir
Pw
(m)

1t00.5
0.5t0 1

11t013

change channel

at time L
(min) {m)
0.5 1200
0.5 600
0.5 1200

Table 5.2 Applied Parameter Adjustments

67

flow Figure
condition

initial parameters:

1 51
1a 52
1b 53

2 54
2a 55
2b 56
2c 57

3 58
3a 59

3b 5.10

intitial
Cn

1113
1.1-13
1.1-13
09-14

0.8-1.5
0.9-1.4

09-1.8

1

criterion
applied

y<o0
Fr>1

Fr>1
y<o0
Fr>1

y<o0
Fr>1

solution timesteps
result affected

failure
success 59-80
success 46-91

failure

failure 3-end
success 15
success 3-21

failure
success 26-43
SucCcess 3-32

adjusted parameters
Ot theta A1=A2
20 0.52 10
10
10 08
10 0.8
10 08 0.1
10 0.8 0.5
10 08 05,03
10 0.8 0.5
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adjustments applied for solution are summarized in Table 5.2.

5.21Un le Full i luti

Flow conditions for ‘unstable condition #1' included a constant inflow hydrograph
at 5 m*s and a sudden decrease in weir height from 1.0 m to 0.5 m at 0.5
minutes. Channel length was 1200 m. The partial profile obtained without
adjustment of any parameters, with an insipient instability in the X = 50 m profile
just before program failure, was shown in Figure 5.1. The complete profile
obtained with automatic adjustment of At applied according to the criteriay <0,
was shown in Figure 5.2. The complete profile obtained with automatic
adjustment of At and 6 applied according to the criteria Fr > 1 was inciuded in
Figure 5.3. For this flow condition, adjustment of the traditional parameters of At
and 6 was sufficient to prevent program failure so that a full dynamic solution

was obtained throughout the simulation.

Flow conditions for ‘unstable condition #2' included a sudden increase in the
inflow hydrograph from 2 m¥/s to 5 m%/s and a sudden increase in weir height
from 0.5 m to 1.0 m, both at 0.5 minutes. Channel length was 600 m. The partial

profile obtained without adjustment of any parameters, with an insipient
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instability in the X = 50 m profile just before program failure, was shown in
Figure 5.4. The partial profile obtained with adjustment of only the traditional
parameters At and 8 was shown in Figure 5.5. This result suggests that a full
dynamic solution under these conditions was not possible due to instability
causing program failure. The complete profile obtained with automatic
adjustment of A, and A,, as well as At and 6, applied according to the criteria
y <0 was shown in Figure 5.6. Although significant instability is still apparent in
the solution, a solution was obtained without program failure. The instability was
observed to coincide with time steps to which no parameter adjustment was
applied. This resuit suggests that the y < O criteria did not identify all the time
steps for which numerical instability occurred. The complete profile obtained with
automatic adjustment of A, and A, as well as At and 6 applied according to the
criteria Fr > 1 was shown in Figure 5.7. Substantially less instability was
apparent in this solution suggesting that the adjustments were applied to more
appropriate time steps. Again a solution was obtained without program failure.
The solution appeared smoothed, suggesting that solution accuracy may have
been reduced and that the criteria Fr > 1 may have applied the parameter
adjustment at too many time steps. With the criteria Fr > 1, reduction of A, and
A, to a value of 0.5, as indicated in Table 5.2, was sufficient to suppress the
instability and allow program completion. With the criteria y < 0, reduction of A,
and A, to a value of 0.1 was required to sufficiently reduce instability. Since the

criterion Fr > 1 applied adjustments to a broader range on time steps, the
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occurring instability may have been reduced allowing a less sever reduction of
A, and A,. Flow conditions for ‘unstable condition #3' involved a sudden increase
in inflow hydrograph from 2 m¥s to 5 m%s and a sudden increase in weir height
from 1.1 m to 1.3 m, both at 0.5 minutes. Channel length was 1200 m. The
partial profile obtained without adjustment of any parameters, with an insipient
instability in various profiles just before program failure, was shown in Figure
5.8. A complete solution was not obtained with adjustment of At and 8 only. The
complete profile obtained with automatic adjustment of A, and A, as well as At
and 6 applied according to the criteria y < 0 was shown in Figure 5.9. Some
instability was still apparent in the solution and, again, this instability was
observed to coincide with time steps for which no parameter adjustment was
applied. The complete profile obtained with automatic adjustment of A, and A, as
well as At and 8 applied according to the criteria Fr > 1 was shown in Figure
5.10. Again, little instability was apparent in the solution suggesting that the

adjustments were applied to the appropriate time steps.

An investigation of the relative significance of the two acceleration terms, term1
and term2, was completed by aliowing adjustment of only one of the respective
coefficients, A, and A,, at a time. The same unstable flow conditions were used

as reported above and summarized in Table 5.1. For unstable flow conditions
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2b, 2¢, and 3b, adjustment of coefficient A, alone resuited in program failure. For
these same flow conditions, adjustment of coefficient A, alone was successful.
For conditions 2b and 3b, with applied criteria y < 0 and Fr > 1, respectively, to
prevent failure, adjustment of A, alone was required for more time steps than
required in the solution with both A, and A, adjusted. For condition 2¢ with
criterion Fr > 1, however, adjustment of A, alone occurred for fewer time steps
than required in the solution with both A, and A, adjusted. For unstable flow
condition 3a, with criteria y < 0, the opposite was true. Adjustment of A, alone
resulted in program failure, while adjustment of A, alone provided a solution with
fewer adjusted time steps than the solution with adjustment of A, and A,

together.

The results of this investigation were thus inconclusive since the significance of
the terms was not consistent. Resuits indicated that in order to prevent program
failure, different acceleration terms required suppression for different flow

conditions.
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CHAPTER 6. SUMMARY AND CONCLUSION

Using the widely accepted, four-point implicit, finite difference technique to solve
the full dynamic, St. Venant equations for gradually-varied, open-channel,
unsteady flow, an extremely robust single-reach simulation model was
developed. This ‘robustness model’ was used to investigate a potential method
of avoiding program failure by suppressing the severe numerical instabilities
developed in the solution procedure under certain flow conditions. An instability
criterion was used in the model against which the solution obtained within the
numerical technique was automatically checked. This check was performed for
each time step, as the calculations progressed. If the criterion indicated
instability in the solution, an automatic procedure was commenced in which
solution parameters were adjusted to suppress the instability. Robustness was
enhanced with this technique so that a solution was successfully obtained under

flow conditions which otherwise caused the program to fail.

The additional robustness was created within the four-point technique by
assigning a multiplicative coefficient to each of the terms in the momentum
equation and then reducing the value of some of these coefficients towards zero.
The contribution of the term(s) affected by the coefficient(s) was thus reduced for
those time steps for which the selected instability criterion was met. Reduction of

coefficients A, and A, which were applied to the two acceleration terms in the
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momentum equation, was investigated for the tested flow and channel

conditions.

As coefficients A, and A, were reduced from one towards zero, the solution
proceeded from the full dynamic towards the diffusion technique. Theoretically,
the solution could be taken from the full dynamic through the diffusion to the
kinematic, with adjustment of A, as well; however, the flow and boundary
conditions used for this work were incompatible with the uniform flow modelied
by the kinematic equation. In the diffusion technique, the two acceleration terms
are neglected while with the kinematic technique, the acceleration and pressure
slope terms are neglected. In the robustness model, when A, and A, are set to
zero, the solution procedure uses the diffusion equation; and, if A,, A,, and A,
were set to zero, the procedure solves the kinematic equation. in this way, the
model provides a solution of the full dynamic equations for all time steps except
those selected by the criterion as exhibiting instability. For those time steps
meeting the instability criterion, an approximate soiution is provided. By applying
the parameter adjustments for oniy those time steps for which the instability
criterion is met, a full dynamic solution is obtained for all possible time steps so

that the best possible accuracy is maintained throughout the simulation.

As discussed by Fread (1983), the stability of the four-point technique can be

enhanced within a simulation by reducing the value of At, thus reducing the



Courant number, or by increasing the value of 8. The criterion used by Fread
was y < 0, and the adjustment was applied automatically when the criterion was
met. With adjustment of At and 6, a full dynamic solution was provided. Fread
reported flow conditions for which these adjustments were insufficient, but he did
not report investigation of a method to further increase the stability of the
solution. In the work for this thesis, adjustments were applied to At and 8 initially
and then, for time step solutions which continued to meet the instability criterion,
the values of the coefficients A, and A, were gradually reduced. The coefficients
were reduced in value between one and zero depending on the persistence of
the instability. The tested unstable flow and channel conditions caused the
program to fail when only At and 6 were adjusted, but allowed a successful

solution when A, and A, were also adjusted.

Adjustment of the coefficients was done automatically within the program when
the solution obtained for a given time step met the selected instability criterion.
Two different criteria were successfully tested to suppress instability which
otherwise caused program failure, and several others were investigated. The
successfully used criteria were (1) depth less than zero (y < 0), and (2) Froude
number greater than one (Fr > 1). Both criteria were used effectively in
preventing program failure which otherwise occurred for the same flow

conditions with adjustment of At and 6 only.
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The criterion Fr > 1, appeared to cause reduction of the momentum equation
coefficients, A, and A,, to occur more frequently than may have been necessary.
Several other values of Froude number were tested, however none was found
satisfactory. The criterion y < 0, appeared to miss some time steps for which
significant instability, although not sufficient to cause program termination,
developed in the momentum equation acceleration terms. This resuit was
expected since only negative instability ‘spikes’ reaching zero depth would be

detected leaving positive instabilities unaffected.

In order to improve the stability of the solution technique, some of the accuracy
of the full dynamic solution was traded for increased robustness. The method of
adjusting the coefficients developed for the robustness model, and the reduction
of the sofution from the full dynamic towards the diffusion technique, provided
the desired additional robustness. The success of the tested procedure in
preventing program termination indicates that development of a widely
applicable and extremely robust version of the four point implicit finite difference
technique is practical. Such a modei would aliow application of the best
available technology, a full dynamic technique, so that an accurate solution
could be obtained even under difficult flow conditions. Current standard
engineering practice includes application of an approximate model, often a
steady-state or kinematic model, for the full duration of a simulation when flow

conditions cause solution instability. Through the work for this thesis, a method
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to switch from a solution of the full dynamic equations to an approximate method
and back again within a simulation run, and to apply the approximate technique
for only those time steps exhibiting numerical instability likely to cause program
failure, has been identified. This technique could change the entire approach to
open channel flow modeliing by eliminating the use of approximate method

simulations in well-defined channels.

Only full dynamic simulation methods provide sufficiently accurate solutions to
problems of open channel design and operation to address the issue of
efficiency of use. In a world where water and financial resources are becoming
more scarce and more valuable, the efficiency of water conveyance structures is
of increasing importance. The potential benefit of widespread use of the
accurate solutions provided by application of full dynamic simuiation methods is

efficient design and operation of conveyance systems and accurate prediction of

flood events.
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CHAPTER 7. DISCUSSION AND RECOMMENDATIONS

For open channel flow modeliing, the use of approximate techniques, which
provide a solution to an approximation of the full dynamic equations of open
channel flow, is accepted as standard engineering practice. Commonly used
approximate models include the diffusion, kinematic, and steady flow
techniques. As discussed throughout this thesis, the diffusion and kinematic
techniques approximate the momentum equation by neglecting the acceleration
terms and the acceleration and pressure slope terms, respectively. Removal of
these terms is based on the assumption that their contribution to the solution is
negligible. The results of the investigation undertaken for this thesis suggest that
the contribution from these terms is significant for the flow and channeil
conditions modelled in this work. As well, the results suggest that neither the
diffusion nor the kinematic technique is reasonable for many applications of

open channel flow in well defined channels.

Without the acceleration terms or the pressure siope term, the momentum
equation, as used in a kinematic solution procedure, is simply the equation for
uniform flow (for zero lateral inflow), as indicated in equation [3.23]. Uniform flow
would only occur in a very long consistent channel where gravity and friction
forces were balanced. In an operated canal, channel sections are often fairly

short and are separated by some type of structure or change in channel cross-
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section. Flow conditions in such an operated channel would likely be affected by
backwater effects, such as reflections from a channel constriction, so that
uniform flow would not occur. A kinematic technique, therefore, would not be

appropriate for such channel and flow characteristics.

The diffusion equation neglects the acceleration terms but includes the pressure
slope term so that backwater effects can be approximated. However, results from
the robustness model developed for this thesis indicated that with the two
acceleration term coefficients, A, and A,, set to zero, numerical instability was
introduced into the solution. This result demonstrated that a term other than the
acceleration terms was responsible for this instability. The investigation of the
acceleration and pressure slope terms indicated that all three terms were
affected by instability when a rapid change in input flow conditions occurred in
the model, as discussed in Section 4.4.4. By neglecting the acceleration terms
(term1 and term2), and the pressure term (term3), the momentum equation was
left unbalanced so that the contribution of one term was not reduced by an
opposite contribution from another. in the derivation of the momentum equation,
the sum of the terms (term1 through term5) was set to zero. Clearly, when some
terms are neglected, this assumption can only be true if the values of the
neglected terms are near zero. Where rapid changes in input flow conditions
occurred, the results of this work indicate that the values of the acceleration

terms are not sufficiently near zero to justify neglecting the terms completely. In
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addition, the results indicate that the sum of the acceleration and pressure slope
terms is necessary to produce a correct solution. These results support the
recommendation of Weinmann (1977) that the acceleration terms are important
for steeply rising or falling hydrographs. Use of a diffusion equation technique,
therefore, must be questioned for simulation of changing flow conditions. The
robustness model allowed the use of an accurate, full dynamic solution with
application of the less-accurate diffusion technique only at those time steps for

which the calculation exhibited numerical instability.

Approximate methods may be useful for flow conditions with little variation in
channels of flat bed slope and relatively unknown cross-section. In well-defined
channeils with varied flow conditions and numerous structures, only a full
dynamic solution can provide a correct result. Irrigation systems generally have
very regular and known cross-sections and controlled, variable flow conditions.
In order for such a system to be efficiently designed and operated, so that
construction, operation, and maintenance costs are minimized while availabie
water supply is maximized, an accurate full dynamic simulation model is
required. The success of the robustness model developed for this thesis work
indicates that an extremely robust model can be developed to provide a solution
for the fuil dynamic equations throughout the simulation except for those time
steps which exhibit numerical instability sufficient to otherwise cause program

failure. For those time steps, the method provides a solution for an approximate
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momentum equation.

Several potential criteria for identifying the time steps affected by severe
numerical instability were investigated. Although the two criteria used for this
work were successful in preventing program failure, additional criteria could be
investigated in order to determine the one(s) that provides the most effective
selection of time steps for which to apply the approximation. Application of the
coefficient adjustment to too many time steps resuits in a less accurate solution,
while application to too few time steps results in severe instability affecting the
solution or causing program failure. In order to deveiop the best possible criteria,
the contribution of the various momentum equation terms, for a variety of flow
and channel conditions, needs to be fully understood so that their appropriate

contribution can clearly be distinguished from instability.

Through the investigations completed for this thesis work, the foliowing areas

were identified for further study:

1. Investigation of other potentially useful criteria for automatic application of
coefficient adjustment and determination of the most effective criterion under
various flow conditions. Possible criteria could include the magnitude or change

in magnitude of the various momentum equation terms.
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2. Investigation of the significance of the various momentum equation terms on
numerical instability and of the relative magnitude and sign of terms under

various flow and channel conditions.

3. Investigation of the effect on solution accuracy of using an approximate
technique briefly within the full-dynamic solution. The approximate technique is
known to move events earlier in time and to reduce the effects of attenuation
and wave reflection, and a quantitative study of these effects on the overall

solution would be of value.

4. Investigation of reduction of the other coefficients, A;, A,, and A;, as

applicable for various flow and boundary conditions.



RN

LITERATURE CITED

Amein, M. (1968). An implicit method for numerical flood routing. Water
Resources Research, 4, 719-726.

Canadian Society for Civil Engineering Task Committee on River Models.
(1990). Comparative evaluation of river models. Proceedings of the Annual
Conference of the CSCE. Hamilton, Ontario. V, 282-300.

Chow, V. T. (1959). Open-Channel Hydraulics. New York: McGraw-Hill Book

Company.

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. New

York: Mcgraw-Hill Book Company.

El-Maawy, A.A. 1991. Weighted Four-Paint Implicit Method of Solution the St.
Venant Equations. University of Caigary, Calgary, Alberta.

92

Fread, D. L. (1973, April). Effects of Time Step Size in Implicit Dynamic Routing.

al, 9(2). 338-

351.



93

Fread, D.L. (1981). Numerical Hydrodynamic Modelling of Rivers for Flood
Forecasting by the National Weather Service. Proceedings of the Intemational

nference of Numeri flin i I r
Water Resources and Environmental Applications. Bratislava, Czechoslovakia.
French, R. H. (1985). Open-Channe! Hydraulics. New York: McGraw Hill Book
Company.

Henderson F. M. (1966)._ Qpen Channel Flow. New York: Macmillan Publishing
Company.

Huber W. C. & Dickinson R.E. (1988). SWMM: Storm Water Management
Model, Version 4. U.S. Environmental Protection Laboratory. Athens, Georgia.

Lai, C. (1986). Numerical Modelling of Unsteady Open-Channel Flow. Advances
in Hydroscience, 14, 161-344.

Manz, D. H. (1994). Modelling Irrigation Conveyance Systems using the ICSS
Model. F

Models. Rome, Italy.

Manz, D. H. (1991). [Open Channel Hydraulics]. Unpublished course notes for



94

Enci 725, University of Calgary, Caigary, Alberta.

Robertson, J. A. & Crowe, C. T. (1985). Engineering Fluid Mechanics. Boston:

Houghton Mifflin Company.

Rowney, A.C. & Macrae, C.R. (1991). Qualhymo Users Manual. Release 2.1,

The Royal Military College of Canada, Dept. of Civil Engineering, Kingston, Ont.

Smith, A. A. (1980). A Generalized Approach to Kinematic Flood Routing.
Journal of Hydrology, 45, Amsterdam: Eisevier Scientific Publishing Company.

Weinmann, P. E. (1977). iISon I i hods for I

Rivers. Monash University.

Wisner, P. (1989). interhymo/Qfthymo 89. University of Ottawa, Department of

Civil Engineering. Ottawa.

US Army Corps of Engineers Hydrologic Engineering Center. (1995.) HEC-RAS
aft. Davis, CA.: Author.




95

APPENDIX A. FOUR-POINT IMPLICIT FINITE DIFFERENCE TECHNIQUE

The St. Venant equations used for this work, derived in Section 3.2, describe
one-dimensional, unsteady, gradually varying, open channel flow and are
applicable for cases which comply with the assumptions specified in the
derivation. The two full dynamic equations, [3.3] and [3.23), were discretized for
numerical solution as described below. The four-point implicit finite difference
scheme was used to replace the non-linear partial differential St. Venant
equations with a set of 2N non-linear simuitaneous equations. The generalized
Newton iterative method was then used to reduce the set of non-linear equations

to a set of linear equations for solution.

A.1 Distance Time Grid

At a point m on the distance-time grid shown in Figure A.1, and located entirely
within the corner grid points (i, j), (i+1,j), (i,j+1), and (i+1, j+1)as shown, any

variable a is defined as (Manz, 1991):

a(m) = ol +af' [« L2, +al [A1]
2 - 2ol -af"]+ L2, -l A2]
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da(m) _ 1 [ j1 1 [ i1 _ i
&t 2At[a€’: _ag"]J'EKt'[d‘ '~ A3

where, 6 is the weighting factor.

The subscripts | and j represent the position along the distance axis and the time
value, respectively, so that the velocity at any point and time is represented by
Vij , for example. At time j, all values are known from the previous time step
calculation, so that the unknowns, velocity and depth, occur at time j+1. The
governing continuity and momentum equations (Equations [3.3] and [3.23]) must
be satisfied at the point m. The finite difference operators, specified by
equations [A.1], [A.2], and [A.3], were applied to these equations with the results

indicated below.
A.2 Continuity Equation

The non-linear partial differential continuity equation used for this work was:

A b8V oy Oy 1 .
— V— P wmten ~ —— R - + = o
Box ox ot B (G +P-q 1) (3.3]

Application of the above finite difference scheme to equation [3.3], with
simplification, provided the following discretized version of the continuity

equation:



i+
Yiia * VY

At i . jo1
* Re0C Vi v ]+ ﬁ—ieca[(é) {
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Ax B

+ z—t;ez[vii: + Vijd][yij:: _ yijﬂ
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C, = —[yi{»‘l *Yij]
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A.3 Momentum Equation

The non-linear partial differential momentum equation used for this work was:
oV 3\ Oy Vv
— t AV —— + bt 48 S,-S ~q =0
A15t A, x Aagﬁx + A9(S,-S,) + Ag e [3.23]

This equation included the muitiplicative coefficients applied for each of the
momentumn equation terms and used to investigate the robustness of the solution
technique, as discussed in Section 3.3. Application of the above finite difference
scheme (Equations [A.1], [A.2], and [A.3]) to equation [3.23], with simplification,

provided the following discretized version of the momentum equation:
T a7 A - el -]

« 2260, vl -vi"| « Zec, i - vi7] + A,

« 2A48[ylY -y!"'] + ACiy + ABAX[S]] +S{7]

1

V i+t Vv it
(%%,

[4.2]

+ACiy + ACys + ';Agzqux +AC =0

where:
s = nzM"l Vi

1 B

P} - e .
_,_F}S (and similarly for S,;J. S{. and S,'i’1 ), and,

- (Zi - Zi¢1 )
Ax
and where the following are constants using known (time j) values of the

S, , where z is the elevation from a reference datum,
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variabies:

cg-gl—ﬁ-v v/]

Cyo = (1 "6)[\/3;1 *Vij]
Cry = (1- e[h, vi]
)2[( viif-(vF]

Cs = 201 -0)[yl, - v/]
4= Z[Zijd 'zij]
Cys = Ax(1-8)[S]  +S{]

(%1%

A.4 Solution Procedure

C12 =

(1-8)

C,e = Axq
16 g

There are (N-1) points in space like m, shown in Figure A.1, in the distance-time
grid between time j and time j+1. The two finite difference equations (Equations
[A.4] and [A.5]) were written at each point, and the resuiting (N-1) continuity
equations and (N-1) momentum equations were represented by

F(yi™t, Vit yll vy, and Gy, ViIT', vl Vi), respectively. The two
additional equations required to make the set of 2N equations for the 2N

unknowns (y; and V;) were obtained from an upstream and a downstream
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boundary condition represented by G,(y,, V,) and F(yy. V), ). respectively.

Estimate values were assigned to the unknowns based on the solution to the
previous time, and residuals calculated as the value that each equation differs
from zero. Where r,; and r,; represented the residuals for the F and G
functions, respectively, the set of equations to be solved for the residuals on the

k™ iteration, and for unknown time j+1, were:

L

Go(ytk: V) r?fo

K
14

it

F, (Y1k: V1k- sz1 Vzk)

G, (Y1k: V1k, yzk: Vzk) = rzl,(1
K ygk Lk yyk stc. k [A4]
Fily; Vi ¥ia. Vi) = fyi

Gi(yikx vjk: yff1: vivk1) = rz“(i
etc.
FN(Y; .V»i‘ ) = r1’.(N

According to the Newton iteration scheme, a new estimate for the unknowns was
calculated as:

v =y +dy, and,

k-1 k [A-S]
Vi o=V eadV,
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For each time step, the residuals were calculated and checked against the limit.
If all the residuals are less than the limit, the solution(y,, V;) was accepted. If
any of the residuals was larger than the limit, the partial derivatives of the F, and
G, equations were calculated and defined as a matrix [A]. The residuals
calculated were defined as matrix [B]. A sparse pentadiagonal matrix solution
technique was used to solve the matrix equation [A}[X] = [B] for the solution
matrix [X] which then represented the values of dy; and dV, to be used for the

next estimate of y, and V,. The matrix equation was defined as:

5y, ' TEv, o 20
5F 5F 5F 5F

~dy, + ———dV, + —dy, + —dV, = N
S, eV, ' By, 2o,
(o} oG o] oG
3y, 3V, 3y, av,
5F 5F 5F 5F s ASl

i dyt * J dvi + i y!ﬂ * —L'dviﬂ = -r; i
oy, oV, oY, .4 ov, .,
oG oG, oG. oG.

! dyl + ! WI + &_ Yo + —"_"dviﬂ = =l
Oy; 5V, 8Y;.1 V...
etc.

oF oF
— Yn > dvy = Nin
Oyn oV,

The new estimates were then calculated according to equation [A.7], and the
iterative process is repeated until the values of the residuals was less than the

set limit, or a maximum number of iterations was exceeded.



APPENDIX B. PROGRAM CODE

The following FORTRAN code was used for the robustness model:

* Robustness model for thesis - June 1996 - C. Vrkljan

*

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DQUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
INTEGER NQ,NP,MJ

QpP, QI, SO, MANN, DELT, SIMTIM, RGO, REM
TIME, LTOT, DELXW, DELX2, SUM, SIML, TIMCEK
TIM(11l), QIN(10), QUPS(100), DELX(100)

Z(100), XsT(100), YANS(100,100), VANS (100,100}
YNEW(100), YOLD(100), VNEW(100), VOLD(100)
DELXUN(100), V(100), QQ(100), XANS(100)

G,Q, PW,B, YW,QW,DQW, CE, CW, MATRXB(100)

Anl1, P, SF,FY1, FPl,XLAST,UDELX, FR, RE

AR, PP,YY, ONEW(10), MATRXA(100,100), QANS(100)
Y(100),FY(50),FP(50) ,A(100),P(100), DELTJI(100)
AOLD (100), POLD(100) ,SFOLD(100) ,ANEW (100)

PNEW (100) ,SFNEW(100) ,VALUE, TEA,Al,A2,A3,A4,A5
C1(100),C2(100),C3(100}),C4(100),C5(100)
c6(100),C7(100),C8(100),C9(100),C10(100)
c11(100),C12(100),C13(100),C14(100),C15(100)
€16(100) ,RF(100),RG(100) ,FMTF(200) ,MATRXX (100)
DIFY(100),DIFV(100),DIGY(100),DIGV(100)

EMTA (200) , FMTE (200) , FMTD (200) , FMTC (200)
PWIN(10),TIMP(10),PWJ(100)

TERM1, TERM3, INTHA, INAl,INA2, INA3

M, E,EOLD,UNUS, J,H,N,K,I1,COUNT,CRIT

OPEN (31, FILE='INPUT2.DAT')
OPEN (35, FILE='FLOWINZ2.DAT')
OPEN (21, FILE='UNST.OQUT')
OPEN (27, FILE='TEMPLOT.TXT')
OPEN (28, FILE='TERMS.TXT')

*

*

hhrkehhRAhkhR TRt

READ (31,*) QI,QP,B,SO,MANN,LTOT
READ (31,*) DELXW,DELX2,INTHA, INAl, INAZ,INA3,DELT,A4,AS

DELTJ (1) = DELT
*

* initialize
*

TIM(1) = 0.0DO
G = 9.807D0

* upstream flow-time and variable weir height

READ (35,*) NQ,
DO 100 I =1, NQ
READ (35,*) Q
100 CONTINUE
READ (35,*) NP
DO 101 I = 1, NP

SIMIIM

IN(I}, TIM(I)

READ (35,*) PWIN(I), TIMP(I)

101 CONTINUE

103



* number of time calcs ***
MJ = (SIMTIM * €0.0) / DELT + 1
* Q ~ time series ***
DO 110 3 =1, MJ
TIME = DELT * (J ~ 1.)
DO 112 I = 1, NQ
IF ( T .EQ. NQ ) THEN
QUPS (J) = QIN(NQ)
GO TO 115
ENDIF
TIMCHK = TIM(I+l1l) * 60.0
IF ( TIME .LT. TIMCHK ) THEN
QUPS (J) = QIN(I)

GO TO 115
ENDIF
112 CONTINUE
115 UNUS = 1

DO 113 I = 1, NP
IF ( I .EQ. NP ) THEN
PWJ (J) = PWIN(NP)
GO TO 116
ENDIF
TIMCHK = TIMP(I+1}) * 60.0
IF ( TIME .LT. TIMCHK ) THEN
PWJ(J) = PWIN(I)
GO TO 116
ENDIF
113 CONTINUE
1l1le UNUS = 1
110 CONTINUE

* initialize for steady flow CAlcs ****rrrrktrarerennss

PW = PWIN(1)
SUM = 0.0D0
M = (LTOT - 20.) / DELX2 + 21
WRITE (21,*) ‘M ="', M
DO 120 I =1, M-1
IF ( I .LT. 21 ) THEN
DELX(I) = DELXW

ELSE

DELX(I) = DELX2
ENDIF
SIML = SUM + DELX (I}
SUM = SIML

120 CONTINUE
*‘

verify input
IF ( SO .GT. 0.1 ) THEN

PRINT *, 'WARNING Channel slope is large. So = ',SO
WRITE (21,*) 'WARNING Channel slope is large.'
ENDIF

IF ( MANN .GT. 1 ) THEN
PRINT *, 'WARNING Mannings roughness is large. n = ', MANN

ENDIF

*

boundary condition : sharp-crested weir
* negligible viscous and surface tension effects



* 4+ * A

Q = QUPS(1l) + ( QP - QI } * SIML

YW = 0.0DO0

CALL WEIR ( G, Q, FW, B, YW)

AAl =B * YW

B + 2.0D0*W

Q**2.0D0 *MANN**2

P1**(4.0D0/3.0D0) / (AAl1**(10.0D0/3.0DO))

Pl
SF

LA

PRINT *, 'depth at weir YW = ', YW
PRINT *, ‘'depth PW = ', PW

calculate Froude number
FR = ( Q**Z / (G * B**2 *» !'w-k*3) )**0'5
IF ( FR .GT. 1.0 ) THEN
PRINT *, 'Steady flow is supercritical'
WRITE (21,*) 'Steady flow is supercritical®*
GO TO 8999
ENDIF
IF ( FR .EQ. 1.0 ) THEN
PRINT *, 'Flow is critical’
WRITE (21,*) 'Flow is critical®

ENDIF
IF ( FR .LT. 1.0 )} THEN
PRINT *
PRINT *, 'Fr =*', FR
PRINT *, 'Flow is subcritical at weir®
PRINT ~*

WRITE (21,*) °‘Flow is Subcritical at weir’
ENDIF
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steady flow calculations L2222 2 22 2 22 222222l 2sdssts sttt Sl S S R

Newton's Iterative Method
Y =y - £(y)/£'(y)

QO(l) =¢Q

YY = YW

XLAST = 0.0D0

DO 140 I = 2, M
UDELX = DELX(I-~1)
XST(I) = XLAST + UDELX
QQ(I) = Q@ + (QP-QI) * XST(I)
Z(I) = Z(1l) + SO ® XST(I)
A(I-1) =B * Y(I-1)
P(I-1) = B + 2.0DO*Y(I-1)

AA = A(I-1)
PP = P(I-1)
XLAST = XST(I)
+*
FYl ({QP-QI)*UDELX/2.0D0*G) * ((QQ(I-1)+QQ(I))/ (AA**2))

w0 Wvr n »

( (MANN**2) *UDELX/2.0D0)
((PP**(4.0D0/3.0D0) )/ (AA**(10.0D0/3.0D0))
((QQ(I-1)**2) + (QQ(I)**2))) + Z(I-1) - 2(I)
(-1.0D0) + B/ (2.0D0O*G* (AA**3))

(QQ(I-1)**2 + QQ(I)**2)

(QP-QI) /G*UDELX*B/ (RA**3) * QQ(I)

FPl

L I I



+ (MANN**2) *UDELX* (QQ(I)**2)
(4.0DC * (PP**(1.0D0/3.0DO0})
(3.0D0 * (AA**(10.0D0/3.0D0)))
5.0DC * ( PP**(4.0D0/3.0D0)) * B
(3.0DC * (AA**(13.0D0/3.0D0))) )
Y(I) = ¥(I-1) - FY1l / FP1

*

ALRELROREY R
NN 8

Do 150 J = 2, S0

A(I}) =B * Y(I)
P(I) =B + 2.0D0 * Y(I)
*
FY (J) ¥Y(I-1) - ¥Y(I) - 1.0D0/(2.0D0*G)

( QO(I~1)**2/A(I-1)**3

QO(I)**2/A(X)**3) * ( A(I-1) - A(I) )

(QF-QI) * UDELX/(2.0D0*G} *( QQ(I-1)/A(I~-1)**2
QQ(I)/A(I)**2)

(MANN**2.0ODO*UDELX/2.0D0)

( QQ(I-1)**2 * (P(I-1)**4

A(I-1)**10) **(1.0D0/3.0D0)

QO(I)**2 * (P(I})**4 / A(I)**10)
**(1.0D0/3.0D0) } + Z(I-1) - Z(I)

FONnnaonunn
FN At bRy

{-1.0D0) + B/ (2.0D0*G)

( QQ(I-1)**2/A(I-1)**3
3.0D0*QQ(I)**2*A(I-1) / A(I)**4
2.0DO*QQ (I} **2 / A(I)**3 )

(QP~QI) *UDELX*B/G * QQ(I)/A(I)**3
MANN**2*UDELX*QO (I)**2

( (4.0DO*P(I)/(3.0D0*A(I)**10)})
**(1.0D0/3.0D0) -~ (5.0DO*P(I)**4 * B
/(3.0D0*A(I)**13) )}**(1.0D0/3.0D0) )

FP(J)

L+ #)

LRUR R RV R R RLRT
* 4

YY = ¥(I) - EY(J) / FP(J)
IF ( ABS ( YY - Y(I) ) .LT. 0.0005 ) GO TO 160
IF (YY .LT. 0.0DO) THEN
PRINT *, 'Y less than zero in steady calc at I ="', J

WRITE (21,*) 'Y less than zero in steady calcat I = ', J

ENDIF
FR = ( Q**2 / (G * B**2 * YY**3) )**0.5
IF (FR .GT. 1.0D0) THEN

WRITE (21,*) 'Steady flow is supercritical at I = ',J

PRINT *, 'sSteady flow is supercritical at I = ',J
GO TO 9989
ENDIF
Y(I) =YY
150 CONTINUE
PRINT *, ‘'Steady flow calculations did not converge!'
GO TO 9998
160 UNUS = 1
140 CONTINUE
*

A(M) = B * Y(M)
DO 170 I =1, M
V(I) = QQ(I) / A(I)
170 CONTINUE
*

PRINT *, 'Steady Flow calulations completed’
PRINT *, ' °
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* * * #*

2

*

2

2

2

v

»*

2
*

initialize for unsteady flow CaAlCs **** XX ErTAAXXXNXAXXX KX ANNENS

turn solution around
EOLD = 0
DO 200 =M, 1, -1

E = EOLD + 1

XANS (E) = XST(I)
YANS (E, 1) = Y(I)
YNEW (E) = Y(I)
YOLD (E} = YNEW(E)
VANS (E, 1) = V(I)
VNEW (E) = V(I}
VOLD (E) = VNEW (E}
IF (I .GT. 1 ) THEN
DELXUN(E) = DELX(I-1)
ENDIF
EOLD = E

00 CONTINUE
set unsteady delta-x and distance

DO 201 E = 1, M-21

DELXUN(E)} = DELX2
01 CONTINUE
DO 202 E = M-20, M~-1

DELXUN (E) = DELXW
a2 CONTINUE
XANS (1) = 0.0DO
XANS (2) = DELX2
DO 203 E =2, M

XANS (E) = XANS(E-1) + DELXUN(E-1)
03 CONTINUE

set elevation Z
Z(1) = SIML * SO
Z{M) = 0.0DO
DO 210 I = 2, M-1
Z(I) = Z(I-1) - SO * DELXUN(I-1)

10 CONTINUE
VALUE = .001
WRITE (28,*) ' J K I terml term2 term3 term4’®
WRITE (28,*) * J K I YBNS(I) OQANS(I}) TERM1 FR RE'
WRITE (28,*) ' '
WRITE (27,*) ' XANS(I) I J YANS(I,J) QANS (I) DELTJ
THETA Al

WRITE (27,*) ' °

unsteady flow iteration lalalalalaioiedobaladofododolafadoldafl

DO 500 J = 2, MT
WRITE (21,*) 'start of j-loop J= ', J

DELTJ (J) = DELT
DELTJ(J-1) = DELT
THA = INTHA

COUNT = 0

Al = INAL

A2 = INA2
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A3 = INA3
K=0
*
PRINT *, ' ="', J
ONEW(1l) = QUPS (J)
DO 310 I =1, M

AOLD(I) = B * YOLD(I)
POLD(I) =B 4+ 2.0D0 * YOLD(I)
SFOLD(I) = (VOLD(I)**2) * MANN**2
$ ** ( (POLD(I)/ROLD(I))**(4.0D0/3.0D0) )
SFOLD(I) = ABS(VOLD(I)) * (VOLD(I)) * MANN**2_0DO
$ * ( (POLD(I)/AOLD(I))**(4.0D0/3.0DC) )
310 CONTINUE
CRIT = 0
315 UNUS=1
*
* constants
DO 320 H = 1, M-1
Cl(H) = (-1.0D0)*(YOLD(H+1l) + YOLD(H))
C2(H) = (l1.0DO-THA)/B * (AOLD(H+l) + AOLD(H))
C3(H) = (1.0DO-THA) ** (VOLD(H+l) ~ VOLD(H))
C4(H) = DELTJ(J-1)/DELXUN(H) * C2(H) * C3(H)
CS (H) = (1.0DO-THA) * (VOLD(H+l1) + VOLD(H)}
C6(H) = (1.0DO-THA) * (YOLD(H+l) - YOLD(H))
C7(H) = DELTJ(J~1)/DELXUN(H) * CS5(H) * C6 (H)
C8(H) = DELTJ(J-1)* (QP-QI)* (1.0DO-THA)* 2.0DO/B
CS(H) = (-1.0D0/G)*DELXUN (H)/DELTJ(J-1)

S * (VOLD (H+1)+VOLD(H))

ClO0(H) = (1.0DO-THA) * (VOLD(H+l) + VOLD(H))
Cll(H} = (1.0DO-THA) * (VOLD(H+1) - VOLD(H))
Cl2(H) = ((1.0DO-THA}**2) / G*( (VOLD(H+1)**2)
$ - (VOLD(H) **2) )
Cl13(H) = 2.0D0*(1.0DO-THA) * (YOLD(H+1l) - YOLD(H))
Cl4(H) = 2.0D0* (Z(H+1l) - Z(H))
C15(H) = DELXUN(H)*(1.0DO-THA) *"(SFOLD (H+1)+SFOLD(H))
Cl6(H) = DELXUN(H)/G *(QP-QI)*(1.0DO-THR)
$ *( (VOLD(H+1)/AOLD (H+1}) + (VOLD(H)/AOLD (H)) )
320 CONTINUE
*
* Newton Iterative Method *****%i*xsartdtwrss

330 PRINT *, 'K = ',K

K=K+ 1
DO335 I =1, M

ANEW(I) =B * YNEW(I)

PNEW(I) =B + 2.0D0 * YNEW(I)

SENEW(I) = ABS(VNEW(I)) * (VNEW(I)) * MANN**2 0DO
$ * ( (PNEW(I)/ANEW(I))**{4.0D0/3.0D0) )
335 CONTINUE
*

* calculate residuals

DO 340 H = 1, M-1
RG(H) = Al/G *DELXUN(H) /DELTJ(J) * (VNEW (H+1l)+VNEW (H))
+ AL*CO(H) + A2/G* (THA**2) *((VNEW(H+1)**2)
- (VNEW(H) **2))
A2/G*THA*C1ll (H) * (VNEW(H+1) + VNEW(H))
RG (H)
A2/G*THA*C1l0 (H) * (VNEW (H+1) -~ VNEW(H))

RG(H)

w w W »
+ 0+
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+ A2*C12(H) + 2.0DO*A3~THA* (YNEW(H+1) - YNEW (H))
+ A3*Cl3(H) + A4*THA*DELXUN (H) * (SENEW(H+1)
+ SFNEW(H)) + A4*CI4(H) + A4*Cl5(H)
+ AS/G* (QP-QI) *THA*DELXUN (H) *( (VNEW(H+1)
/ RANEW(H+1)) + (VNEW(H)/ANEW(H)) ) + A5*C16 (H)
MATRXB (2*H+1) = (-1.0D0)*RG(H)

LR R R

*

RF(H) = YNEW(H+1) + YNEW(H) + CI1(H)
+DELTJ (J) /DELXUN (H) * (THA**2) /B * (ANEW (H+1)
+ANEW (H) ) * (VNEW (H+1) -VNEW (H) ) + DELTJ (J) /DELXUN (H)
*THA*C2 (H) * (VNEW (H+1) ~VNEW (H) ) + DELTJ (J) /DELXUN (H)
*THA*C3 (H) /B* (ANEW (H+1) +ANEW (H) ) +C4 (H) +C7 (H) ~C8 (H)
+DELTJ (J) /DELXUN (H) * (THA**2) * (VNEW (H+1) +VNEW (H) )
* (YNEW (H+1) ~YNEW (H) ) + DELTJ (J) /DELXUN (H) *THA*CS (H)
* (YNEW (H+1) ~YNEW (H) ) + DELTJ (J) /DELXUN (H) *THA*C6 (H)
* (VNEW (H+1) +VNEW (H) ) = 2.0DO*DELTJ (J) * (QP-QI) *THA/B
MATRXB (2*H) = (-1.0DQ)*RF (H)

AR LR RURET R RT

*

w
Y
o

CONTINUE

L

set boundary values
INEW (M) - PWJ(J)
CE .6020D0 + .0750D0 * HW/PWJ (J)
cw 2.0D0/3.0D0 *CE * ({2.0D0*G)**0.50D0)
IF ( YNEW(M) .LT. PWJ(J) ) THEN
oW = 0.0DO
GO TO 341
ENDIF
QW = CW *B * (HW**1.50DO)
341 UNUS = 1
RGO = QUPS(J) ~ VNEW(1l)*ANEW(1l)
REM = VNEW (M) *ANEW (M) - QW
MATRXB(1) = (~1.0D0) *RGO
MATRXB (2*M) = (-1.0D0)*RFM

HW

* check residuals
DO 350 I = 1, 2*M
IF ( ABS{MATRXB(I)) .GT. VALUE) GO TO 325
350 CONTINUE
GO TO 499
325 UNUS = 1
v*

* calculate partials
*
WRITE (21,*) ‘'start partials K= ', K
DO 360 H = 1, 2*M
DO 361 I =1, 2*M
MATRXA(H,I) = 0.0DO
361 CONTINUE
360 CONTINUE
DO 370 H = 1, M-1
DIGY (H) = (~2.0D0) *A3*THA
+ 4.0D0/3.0D0*A4*THA*DELXUN (H)
*SFNEW (H) *(2.0DO/PNEW (H) -B/BNEW(H))
- A5* (QP-QI) *THA*DELXUN (H) *B/G
* ( VNEW (H) / (ANEW (H) **2) )
MATRXA (2*H+1,2*H-1) = DIGY (H)
DIGY (H+1) = 2.0DO*A3*THA + 4.0D0/3.0D0*A4*THA*DELXUN (H)

AR OREDET
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v

371

*SENEW (H+1) *(2.0D0/PNEW(H+1) -B/ANEW (H+1))
- A5* (QP-QI) *THA*DELXUN (H) *B/G
*( VNEW (H+1)/ (ANEW (H+1) **2) )
MATRXA (2*H+1,2*H+1) = DIGY (H+1)
DIGV(E) = Al/G*DELXUN (H) /DELTJ (J)
- 2.0D0*A2* (THA**2) /G * VNEW(H)
~ A2/G*THA*C10(H) + A2/G*THA*C11 (H)
+ 2.0DO*A4*THA*DELXUN (H) *SENEW (H) /VNEW (H)
+ AS5/G* (QP-QI) *THA*DELXUN (H) /ANEW (H)
MATRXA (2*H+1,2*H) = DIGV(H)
DIGV(H+1) = Al/G*DELXUN (H)/DELTJ(J)
2.0DO*A2/G* (THA**2) * VNEW (H+1)
A2/G*THA*C1lO({H) + A2/G*THA*C11 (H)
DIGV (H+1)
2.0DO*A4*THA*DELXUN (H} *SENEW (H+1) /VNEW (H+1)
A5/G* (QP-QI) *THA*DELXUN (H) /ANEW (H+1)
MATRXA (2*H+1,2*H+2) = DIGV (H+1)

DIGV (H+1)

+ 404+

DIFY (H} = 1.-2.*DELTJ(J) /DELXUN (H) * (THA**2) *VNEW (H)
+ DELTJ (J) /DELXUN (H) *THA*C3 (H)
- DELTJ (J) /DELXUN (H) *THA*CS (H)
MATRXA (2*H,2*H-1) = DIFY (H)
DIFY (H+1) = 1.0DO0+2.0DO*DELTJ (J) /DELXUN (H)
* (THA**2) *VNEW (H+1)
+ DELTJ (J) /DELXUN (H) *THA*C3 (H)
+ DELTJ(J) /DELXUN (H) *THA*CS (H)
MATRXA (2*K, 2*H+1) = DIFY (H+1)
DIFV (H) = (-1.0D0) *DELTJ(J) /DELXUN (H) * (THA**2) /B
*( ANEW (H+1) +ANEW (H) )
DELTJ (J) /DELXUN (H) *THA*C2 (H)
DIFV (H)
DELTJ (J) /DELXUN (H) * (THA**2] ®( YNEW (H+1)
-YNEW (H) ) + DELTJ(J)/DELXUN (H) *THA*C6 (H)
MATRXA (2*H,2*H} = DIFV(H)
DIEV (H+1) = DELTJ(J)/DELXUN (H)* (THA**2) /B* (ANEW (H+1)
+ANEW (H) )
+ DELTJ(J) /DELXUN (H) *THA*C2 (H)
DIFV (HE+1l) = DIEV(H+1l)
+ DELTJ (J) /DELXUN (H) * (THA**2) * (YNEW (H+1)
~YNEW(H) ) + DELTJ(J)/DELXUN (H) *THA*C6 (H)
MATRXA (2*H,2*H+2) = DIFV (H+1)
CONTINUE
WRITE (21,*) 'end DIG&FY cales K = ',K,' J= ',J

DIFV (H)

+ 0

check depth is above weir crest
IF ( YNEW(M) .LT. PWJ(J) ) THEN
DQW = 0.0DO
GO TO 371
ENDIF
DOQW = CW*B*3.0D0/2.0DO*( (YNEW (M)~-PWJ(J)) **0.50D0)
MATRXA (2*M,2*M~1) = VNEW(M)*B -~ DQW
MATRXA(2*M,2*M) = B * YNEW (M)
MATRXA(1,1) = (-B) * VNEW(1l)
MATRXA(1,2) = (-B) * YNEW(1)

matrix solution for Y & V adjustments ***rxxsxxrrrxrrrsn

N = 2*M
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DO 400 I = 1, N-2
FMTE (I) = MATRXA(I+2,I)
FMTF(I) = MATRXA(I,I+2)
400 CONTINUE
DO 410 I =1, N-1
FMTA(I) = MATRXA(I+1,TI)
FMTC(I) = MATRXA(I,I+1)
410 CONTINUE
DO 420 I =1, N
FMTD(I} = MATRXA(I,I)
420 CONTINUE
*

* PENTA routine
DO 402 I = 2, N-1
XMULT=FMTA(I-1) / EMTD(I-1)
EMTD(I)=FMTD(I) - XMULT*EMTC(I-1)
EMTC(I)=FMTC(I) - XMULT*EFMTF(I-1)
MATRXB (I)=MATRXB(I) - XMULT*MATRXB(I-1)
XMULT=FMTE (I-1) / FEMTD(I-1)
EMTA(I)=FMTA(I) - XMULT*EMTC(I-1)
FMTD(I+1)=FMTD(I+1) -~ XMULT*EMTF(I-1)
MATRXB (I+1)=MATRXB(I+1) - XMULT*MATRXB(I-1)
402 CONTINUE
XMULT = FMTA{N-1) / EMTD(N-1}
FMTD(N) = FMTD(N) - XMULT*EMTC(N-1)
MATRXX (N) = (MATRXB (N)~XMULT*MATRXB (N-1) }/FMTD (N)
MATRXX (N—1) =(MATRXB (N-1) ~-FMTC (N-1) *MATRXX (N) )
$ / EMTD(N-1)
DO 403 I = N-2, 1, -1
MATRXX (I) = (MATRXB(I)-FMTF(I)*MATRXX (I+2)

$ — FMTC(I)*MATRXX(I+1)) / EMTDI(I)

403 CONTINUE

* criterion Check E2 2 2 282322222222 22222222224

WRITE (21,*) ‘test new estimate J = ',J,'I = ',I,' K = ',K

DO 404 I =1, M
Y(I) = YNEW(I) + MATRXX(2*I-1)
V(I) = VNEW(I) + MATRXX(2*I)
IF ( ¥(I) .LT. 0.005DO ) THEN
WRITE (21,*) 'y is < Smm J = ',J,' K = ',K,"
PRINT *, 'y is < Siqm J = ',J,' K= ',K,' I
GO TO 491
ENDIF
404 CONTINUE
GO TO 495
491 CRIT = CRIT + 1
WRITE (21,*) 'Ytest(I) < 0.005 at J = ',J,' K ="',
WRITE (21,*) 'CRIT = ',CRIT

IF (CRIT .EQ. 1} GO TO 701
IF (CRIT .EQ. 2) GO TO 702
IF (CRIT .EQ. 3) GO TO 703
IF (CRIT .EQ. 4) GO TO 704
IF (CRIT .EQ. S5) GO TO 705
IF (CRIT .EQ. 6) GO TO 706
IF (CRIT .GT. 6) GO TO 485

701 DELTJ (J) = DELTJ(J) / 2.0D0
DELTJ (J-1) = DELTJ(J)

K

I
'

’

I

I,I
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WRITE (21,*) 'set delt = ',DELTJ(J),' J = ',J,' K= ',K

GO TO 315

702 THA = 0.60DO
WRITE (21,*) 'set tha = ',THA,' g ="',J,' K= ',K
GO TO 315

703 THA = 0.80DOC
WRITE (21,*) 'set tha = ',THA,' J = ',J,' K = ',K
GO TO 315

704 Al = 0.5D0
A2 = Al
WRITE (21,*) 'set A1 A2 = *',Al,' I ="',J,' K= "',K
GO TO 315

705 Al = 0.3p0
A2 = Al
WRITE (21,*) 'set Al A2 = *,Al,'" 0 ="',J,' K= ',K
GO TO 31S

706 Al = 0.1DO
A2 = Al
WRITE (21,*) 'set A1 A2 = *',71,' J="'J,' K= "',K
GO TO 315

*

s* criterion check ends LA S 223 2222222 2222 X 2 PR 2 g2

495 UNUS = 1

* make new estimate
WRITE (21,*) 'make new estimate J = ',J,'I = ',I,' K = ',K
DO 450 I =1, M
YINEW(I) = YNEW(I) + MATRXX(2*I-1)
VNEW(I) = VNEW(I) + MATRXX(2*I)
IF ( YNEW(I) .LT. 0.0DO ) THEN
WRITE (21,*) 'y is zero inside new estimate loop'
WRITE (21,*) ‘'at Jg=1'J,'" K="'K,' I=°7°.I
ENDIF
450 CONTINUE
»*

IF ( K .LT. 30 ) GO TO 330

498 PRINT *, ' no convergence at j = ',J
PRINT *, ' reached iteration #k =', K
WRITE (21,*) * '

WRITE (21,*) ' no convergence at j = ',J

WRITE (21,*) ' !
495 UNUS = 1
*

DO 501 =1, M
YANS(I,J) = YNEW(I)
VANS (I, J) VNEW(I)
YOLD(I) = YNEW(I)
VOLD(I) = VNEW(I)
QANS (I) = VANS(I,J) * YANS(I,J) * B
501 CONTINUE
WRITE (21,*) 'YW = ',YNEW(M),' I =M= ',M,'T = ',J

i

****output for plotting

L IR B 2

plot at approximate end and mid-~points
I1=2
WRITE (27,931) XANS(Il1),Il,J,YANS(I1,J),QANS(I1),DELTJ(J),THA,AL
Il=(M-20)/3



WRITE (27,931) XANS(Il),I1,J,YANS(I1,J),.QANS(I1),DELTJ(J),THA,Al

Il=(M-20)*2/3

WRITE (27,931) XANS(Il),I1,J,YANS(I1l,J),QANS(Il),DELTJ(J),THA,Al

I1=M-20

WRITE (27,931) XANS(Il),Il1l,J,YANS(I1l,J),QANS(Il),DELTJ(J),THA,AL

Il=M

WRITE (27,931) XANS(Il),Il,J,YANS(I1,J),QANS(Il),DELTJ(J),THA,Al

*

* ****check terms

DO 339 H=1, S
Il=2
IF (H .EQ. 2) Il=(M-20)/3
IF (H .EQ. 3) Il1=(M-20)*2/3
IF (H .EQ. 4) Il=M-20
IF (H .EQ. 5) Il=M-1

TERML = Al/G*DELXUN(I1)}/DELTJ(J)* (VNEW(I1+1)+VNEW(I1))

S + A1*CS(I1)

TERM2 = A2/G* (THA**2.0D0) *((VNEW(Il+l)**2)
$ - (VNEW(I1l)**2)) + A2*Cl2(Il)
TERM2 = TERM2

S + A2/G*THA*C11(I1l) *(VNEW(I1l+l) + VNEW(Il))

S + A2/G*THA*C10(Il) *(VNEW(Il+l) - VNEW(I1l))
TERM3 = 2.0DO*A3*THA?(YNEWJIl+l)—YNEW(Il))fA3*Cl3(Il)
TERM4 = A4*THA*DELXUN(I1)* (SFNEW(I1+1l)+SENEW(I1))

S + A4*Cl4(I1l) + A4*Cl5(I1)

FR = VNEW(I1l) / ( (G * YNEW(I1l))**0.5DO )
RE = VNEW(Il) * YNEW(Il) / 0.0000165DO
WRITE (28,932) J, K, I1, TERMl,TERM2,TERM3, TERM4
399 CONTINUE
*

500 CONTINUE

+ j loop end AKX EXERTEEALAEREARN TR hr
*

WRITE (27,*) ' '
WRITE (27,*) ‘input hydrograph®
WRITE (27,*) ' time (s) Q (m3/s) PwW’
DO 801 J = 2, MJ
WRITE (27,905) DELTJ(J), QUPS(J-1),PWJ(J)
801 CONTINUE
*

901 FORMAT ('',2I4.0,6E12.4)
502 FORMAT ('',I6.0,E12.4)
903 FORMAT ('',I4.0,2E12.4)
304 FORMAT ('',5E12.4)

905 FORMAT (":3E12.4)

906 FORMAT ('',4E12.4)

907 FORMAT ('',I4.0,4E12.4)
908 FORMAT ('',4E13.6)

309 FORMAT ('',3I4.0,2E12.4)
912 FORMAT ('',2I4.0)

911 FORMAT ('',I4.0,4E15.4)
930 FORMAT ('',I4.0,2E16.8)
931 FORMAT ('',E12.4,2I3.0,5E12.4)
932 FORMAT ('',3I3.0,4E12.4)
9998 END

*

SUBROUTINE WEIR (G, Q, PW, B, YW)
* iterative solution for depth over rect. s.c. weir
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DOUBLE PRECISION G, Q, BW, B, YW, C, CE, C1
C =0.6D0 * 2.0D0/3.0D0 * ((2.0D0*G)**0.50D0)
DO 300 K= 1, 9
H= (@ / (C* B))**(2.0D0/3.0D0)
CE = 0.6020D0 + 0.0750D0 * H / PW
Cl =CE * 2.0D0/3.0D0 * ((2.*G)**0.50D0)
IF ( ABS (C - Cl1) .LT. 0.00050D0) GO TO 30S
cC=2=cCl
300 CONTINUE
IF ( ABS (C - Cl) .GT. 0.0005) THEN
PRINT *, 'Ce did not converge'
WRITE (21,*) 'Ce did not converge'

ENDIF

305 c =2C1l

H=(Q/ (C*B) )**(2.0D0/3.0D0)
YW = H + PW

RETURN

END

114





