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SOLUTIONS FOR THE CONSTRAINED DYNAMIC PLANT LAYOUT
PROBLEM

Abstract

Much of the research in facility layout has focused on static
layouts where the material handling flow is assumed to be  
constant over the planning horizon. But in today's market based,
dynamic environment, this assumption may no longer be true. Layout
rearrangement may be required, for which available funds may be
limited. This research investigates the facility layout problem
under the two assumptions of changing demand and a constraint on
the layout rearrangement funds.

The problem is formulated, a new algorithm is proposed to solve the
problem and it is compared to an extension of the old algorithm
that has been used to solve the problem thus far. In addition,
different factors that affect dynamic facility layout design and
operation are statistically examined. The results indicate that the
proposed algorithm has advantages over the old one and that some of
the factors and their combinations can have significant effects on
layout design and operation.

Keywords: Facility layout, Two-State Variable Dynamic   
          Programming, Constrained Shortest Path 
          
     



SOLUTIONS FOR THE CONSTRAINED DYNAMIC

PLANT LAYOUT PROBLEM1

1.0 Introduction

Historically, most of the research in facility layout has focused

on the static plant layout problem (SPLP). Various heuristic

solution procedures have been used to solve these problems since

optimal solutions can be obtained only for very small problems.

(For a detailed review of the SPLP literature see Kusiak and

Heragu, 1987.)

The dynamic plant layout  problem (DPLP), introduced by Rosenblatt

(1986), extends the SPLP by assuming that it may be desirable to

make changes in the layout over time. Further complicating the

problem are layout rearrangement costs which would be incurred if

departments are actually shifted during the time horizon.

In this paper the DPLP is considered under an additional relevant

present day constraint: a cap on the amount of funds that can be

spent on layout rearrangement. We model the constrained dynamic

      The authors wish to thank Profs. John F. Muth and James H.1

Patterson of Indiana University, Bloomington, USA and Prof. Ishwar
Murthy of the Louisiana State University, Baton Rouge, USA for their
assistance in conducting this research. We also wish to acknowledge
the reviewers of this paper for their suggestions.
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plant layout problem (CDPLP) as a singly constrained shortest path

problem (CSP) and compare it to dynamic programming (DP), which

Rosenblatt uses to solve the DPLP. 

The importance of the budget constraint has been stressed in

studies of plant layout practices conducted by the Department of

Industry in the U.K. (1976) and by Nicol and Hollier (1983). The

studies observed that layout planning had low priority in most

companies. Therefore, ad hoc layout planning was common and in some

cases lack of funds had led to poor layouts. Budgeting the funds

allocated for layout rearrangement is one method for dealing with

the lack of financial resources.

This paper makes three contributions: (1) it extends the

unconstrained dynamic formulation to the case where funds for

layout rearrangement are limited, (2) it identifies a new approach

to solve the constrained version  of the dynamic phase of the DPLP,

and (3) the paper investigates the effect of the different problem

characteristics on the new algorithm in terms of the quality and

speed of the solution.
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(4)

2.0 Problem Formulation

The constrained dynamic plant layout problem (CDPLP) can be

formulated as an extension of the SPLP.
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The objective function minimizes the sum of the cost of layout

rearrangement and the cost of material flow between departments 

during the planning horizon. Constraint set (1) requires every

department to be assigned to a location in every period and (2)

requires every location to have a department assigned to it in

every period. (3) adds shifting costs to the material flow cost if

a department is shifted between locations in a period. The total

amount of funds used for layout rearrangement is constrained to be

less than the budgeted amount by (4).

 

3.0 Solving the CDPLP

The first procedure is a DP algorithm based on Bellman & Dreyfus,

(1962) which is the most commonly used method in previous studies.

The DP algorithm used here has two state variables, one for the

layouts and the other for the amount of the constrained resource

available.  

An alternate algorithm based on a singly constrained network model

is also used to solve the problem. The underlying shortest path

model is represented in the following diagram.
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Figure 1   The Constrained Dynamic Plant Layout Problem

itL  Layout i in time period t 

S,E Source and end nodes respectively (dummy layouts)
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(7)

(8)

it,k(t+1)C The sum of the material handling cost in layout i in
period t and the cost of rearranging layout i in
period t to layout k in period (t+1) 

P Possible number of layouts in each period which is 
  
constant across periods.

N Number of time periods in the planning horizon   

Mathematically the model can be represented as

it,k(t+1)x The arc representing the material handling cost in 
layout i in period t and the cost of rearranging
layout i in period t to layout k in period (t+1)
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it,k(t+1)C The sum of the material handling cost in layout i in 
period t and the cost of rearranging layout i in
period t to layout k in period (t+1) 

it,k(t+1)b Resource used in rearranging layout i in period t to 
 layout k in period (t+1)

S,i1x Arc connecting source to layout i in period t

iN,Ex Arc connecting layout i in period t to end

B Available budget for resource
      

Constraint sets 5, 6 and 7 represent flow conservation and

constraint 8 represents the budget constraint. Nodes S and E are

S,i1 iN,Edummy nodes and x  and x  are dummy arcs to facilitate the

shortest path formulation described below. All other nodes

represent layouts. Each arc has two parameters associated with it:

it,k(t+1) it,k(t+1) 11C  and b . For example, in Figure 1 node L  represents a

layout in period 1 during which some material flow costs are

incurred. At the end of this period we might decide to rearrange

22the layout. Node L   represents the rearranged layout in period 2.

11 22The arc L  - L  therefore represents the sum of the material

it,k(t+1)handling cost and the cost of layout rearrangement (b ) and is

it,k(t+1)denoted by C . Over the planning horizon, therefore, the

shortest path through the network will provide the lowest cost

constrained dynamic layout plan.

The motivation for this approach is the efficiency of the network

based algorithms. Though the CSP is NP-complete (Garey and Johnson,

1979), Mote et al. (1988) report impressive computational results
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with their parametric programming based algorithm to solve the CSP.

By relaxing the constraint and considering it as another objective,

the CSP model is converted into a bi-criterion shortest path (BSP)

model. Solving the BSP provides all the pareto-optimal paths to the

model. A pareto-optimal path is one which cannot be dominated by

11any other path.  As an illustration, in Figure 1, let path S - L  -

22 PNL  - ... - L  - E be a pareto-optimal path in the network with the

total cost (sum of material handling and layout rearrangement) C

and associated layout rearrangement costs R (less than B). This

means that there are no other paths in the network with total cost

less than C and at the same time having layout rearrangement costs

less than R. The other paths will have higher C and lower R or vice

versa. Mote et al. (1987) report that such (pareto-optimal) paths

are small in number. This pareto-optimal path also provides an

upper bound. The upper bound fathoms other potential pareto-optimal

paths with higher length, improving the efficiency of the

algorithm. The FORTRAN implementation is a specialized primal

shortest path simplex algorithm and it outperformed other CSP

algorithms (Mote et al., 1988)

4.0 Experimental Design and Computational Analysis

A study was conducted in order to evaluate the effect of different

factors on the quality of solution and the CPU time required for

solving the CDPLP.  
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4.1 Problem Set

Eight different problems were used. Each problem was a computer

generated six department, five period problem similar to the one in

Rosenblatt. The material handling flows and the department shifting

costs were generated from the uniform distribution (see Table 1 for

the ranges). The individual material handling flows generated (from

one department to another) were proportionally adjusted so that

their sum equalled the total material flow in the layout during

each period which remained constant during the horizon. This was

done in order to prevent any period from dominating the others. The

generated shifting costs were also proportionally adjusted so that

the average department shift cost was 15% of the average department

flow cost. Flow dominance was introduced by randomly selecting

between 1 and 3 departments from each period and increasing the

flow to these departments by a factor of 5 to 7. The shape of the

facility and the cost to move a unit distance were held constant

over the horizon. 

(Insert Table 1 here)

4.2 Performance Measures and Computational Factors

The performance measures used in the study were the solution

quality (sum of material handling and layout rearrangement costs)

over the planning horizon, and the CPU time required for the

solution. Four different factors were used in the study. Details
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for each factor are given next.

Solution Technique

As described earlier, two techniques were compared, dynamic

programming (DP) and the simplex based constrained shortest path

(CSP). Both algorithms obtain optimal solutions and were

implemented in FORTRAN.

Number of Layouts Included (SIZE)

Though it was expected that including more layouts (larger problem

size) would result in higher solution times and better solutions,

we were also interested in determining whether the increase in time

was different for the two procedures. Two settings of fifty layouts

(small) and one hundred layouts (large) in each period were used. 

Method for Generating Static Layouts (LAY)

Three methods were employed in order to select the static layouts

to be included: a) select the best static layouts in each period

(referred as the 'best layouts'), b) select the layouts randomly

(referred to as the 'random layouts') and, c) use a combination of

random layouts as well as the best layouts, each contributing half

of the layouts selected (these are referred to as the 'mixed

layouts'). The times required for generating these candidate

layouts was not included in the computer time measure described
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above.

Tightness of Constraint (CONSTR)

The budget constraint was either tight or loose.  To determine the

levels, the unconstrained problem was first solved. Then the funds

available for layout rearrangement was set to be loosely

constrained (90% of unconstrained usage) or tightly constrained

(50% of the unconstrained usage).

 

4.3 Experiments

Three different experiments were conducted. The first two used the

six department problems described earlier. The third consisted of

three problems with twelve, fifteen and twenty departments

respectively, each with a four period horizon. This problem was

used to test whether the results of the six department experiments

could be generalized.

In the first experiment, the effect of the SIZE (2 levels) and LAY

(3 levels) factors on solution quality was investigated. The ALG

and CONSTR factors were not included (both the algorithms are

optimizing and tighter constraints were designed to result in

poorer solutions). Thus there were 3*2 or 6 factor combinations in

the full factorial design. Each factor combination was run with all

the eight problems resulting in 48 computer runs. In the second,

the effect of the four factors on solution time was investigated.

11



In the full factorial design employed, there were 3 levels of the

LAY factor and 2 levels each of the ALG, SIZE and CONSTR factors.

This resulted in 3*2*2*2 or 24 factor combinations. With eight

problems used in each, 192 computer runs were made.

The ANOVA procedure was employed. F-Tests were used to test the

null hypotheses for the main effects and interactions. Specific

differences between the factor levels were identified using Tukey's

method of pairwise comparisons (Neter et al., 1985). No significant

problems were found with deviations from normality or constancy of

variance which might make the use of these tests suspect.  The

experiments were conducted using an IBM 3090 computer. The SAS

package was used to perform the ANOVA.

In the large layouts experiment, it was not possible to obtain the

static optimal solutions because of the layout size. CRAFT was used

to obtain heuristic solutions. Using different initial layouts,

five final layouts were obtained for each of the four periods. The

objective of this experiment was to test whether using heuristic

layouts is better than using random layouts. The other factors like

the type of algorithm, the problem size and the constraint

tightness are related to the dynamic part of the CDPLP and were not

relevant in this experiment. Two different shift cost levels (15%

and 10% of the material flow levels) and three constraint tightness

levels were used along with each layout type giving 12 cells. With

the 12, 15 and 20 department problems this resulted in 96 computer
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runs.  

5.0 Results

Table 2 gives a summary of the results for the solution quality

experiment. The values are percentages over or below (negative) a

base cost solution and are averages from the eight replications.

The factor combination of the large problem size and best layout

was designated as the base solution value. To determine whether

these differences were significant the F-Test and Tukey's Test were

used.

(Insert Table 2 here)

Both the number of layouts included and the method of layout

selection have  significant effects on the quality of the solution.

The interaction between the two factors is not significant. Using

a larger number of layouts resulted in a lower cost solution which

was expected. The  results also show based on Tukey's Test that

there is no significant difference in solution quality between the

best layout selection method and the mixed layout selection method.

Both these however, performed significantly better than the random

selection method. 

Table 3 gives a summary of the results for the solution time

experiment. All values are in CPU seconds and are eight replication

averages. It appears from this table that the CSP approach is
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better overall than the DP approach. In order to further analyze

the results, F-Tests and Tukey's Tests were employed. All the main

effects were significant. In addition five two-way and two three-

way interactions were found. 

(Insert Table 3 here.)

The most important effect in the table is that of the type of

algorithm.  Overall the CSP algorithm performed much better than

the DP algorithm. The solution times for the CSP varied from 0.30

CPU seconds for the small problems to 11.0 CPU seconds for the

large problems. For the DP procedure it varied between 0.15 and

850.0 CPU seconds.  As expected larger problem sizes required more

solution time. But more important are the different effects the

problem size had on the algorithms. 

The solution time increase was much greater for the DP algorithm

when going from small to large problems, than for the CSP. This

difference is due to the fact that the DP algorithm is a pure

enumeration algorithm whereas the CSP is a combination of the

simplex method and enumeration. Enumeration methods are sensitive

to both the number of constraints and the number of arcs while the

simplex method is sensitive mainly to the number of constraints.

Since the CDPLP has many more arcs as compared to constraints

(nodes or layouts), the effect of increased problem size is felt

more by DP.
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The constraint level also had an effect on solution time. Tighter

constraints lead to more fathoming of arcs and thus  reduced

solution time. This effect is also greater on the DP approach. 

Based on Tukey's Test there is statistically no difference in the

solution times between the best and the mixed layout methods or

between the random and mixed layout methods. However, there is a

significant difference between the random and best layout methods.

This is due to the fact that the random layout method used higher

absolute constraint values, due to poorer candidate solutions

(static layouts). This resulted in less fathoming of the arcs. As

before, the effect was higher on DP.

Table 4 gives the results from the large layout experiment. No

statistical analysis was employed. Each cell value is the average

of the three large layouts and is the percentage above the mixed

layout cost solution. The mixed layouts had 20 heuristic layouts

and 30 random layouts for a total of 50 layouts in each period. In

fact, in every computer run the mixed layout method performed

better than the random layout method which had 100 layouts in each

period. The difference ranged from 0.5% to 7.5%.

(Insert Table 4 here.) 
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6.0 Conclusion

Three important results are observed from this study. First, when

the DPLP is extended to include a constraint on the amount of money

that can be  spent on layout rearrangement, the CSP performs better

than DP in most of the situations tested. The only conditions under

which the DP algorithm outperforms the CSP algorithm is if the

problem size is small, or the constraints are very tight.

Combinations of these also favour the DP algorithm. But in

practice, the above conditions are not likely to occur and so the

CSP approach seems to be a better alternative for the CDPLP. 

Second, it appears that selecting the  candidate static layouts by

including some randomly generated static layouts as well as the

best layouts is statistically just as good as using just the best

layouts. It was observed in the study that the mixed layout method

generally resulted is solutions close in quality to the best layout

method and sometimes surpassed it. This was due to the random

layouts included in the selection. Thus, using the mixed method is

a good alternative to the best layout since the penalty is usually

very small while there is always the chance that we could surpass

the best layout selection method.

Third, even if we cannot obtain the optimal static solution which

will be the case with most practical sized layouts, using 

heuristic static layout solutions (obtained using CRAFT in our

study) is better than selecting the candidate static layouts
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randomly.

This study examined the DPLP under a financial constraint. This

model can also be easily adapted to study the DPLP under other

constraints such as a restriction on the amount of productive time

spent on layout rearrangement. Other issues, such as the

sensitivity of this model to forecast errors and the possibility of

adding more constraints would be interesting topics for further

studies. Further details regarding this paper can be found in

Balakrishnan (1991).
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Problem Individual Flow Shifting Cost 
Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

1 100 200 100 500
2 200 400 100 500
3 300 600 400 1000
4 100 200  100 500
5 500 1000 500 1500
6 1000 2000 1000 3000
7 200 500 200  700
8 100 200 100 1000

Ranges for the Uniform Distributions

Table 1

SIZE
LAY

Small
%

Large
%

Best 25.86 1.21
Random 26.07 1.83
Mixed 24.99 1.50

Solution Quality Results

Table 2
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ALG CSP DP
SIZE Small Large Small Large
CON.
LAY

Tight Loose Tight Loose Tight Loose Tight Loose

Best 0.94 1.27 4.00 4.79 3.50 20.09 33.02 243
Mix. 1.27 1.67 5.49 6.43 6.89 45.53 103 425
Ran. 1.01 1.39 4.23 5.00 5.31 31.89 48.88 297

Solution Time Results

Table 3

Better
Layout

High
Shift

%

Low
Shift

%
Unconstrained

Random 2.70 4.48
Mixed 0.00 0.00

10% Constrained
Random 2.35 3.10
Mixed 0.00 0.00

50% Constrained
Random 1.95 1.99
Mixed 0.00 0.00

Results From the Large Problems Experiments

Table 4
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