
THE UNIVERSITY OF CALGARY

Implementing Digital Signai Processing Algorithms

Using Serial Arit hmet ic

P.J.W. Graumann

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTmNT OF ELECTRICAL AND COMPUTER

ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 1996

@ P.J.W. Graumann 1996

Nationai Library Bibliothèque nationaie
du Cariada

Acquisiti~~l~ and Acquisitions et
BtUiographk Services senrices bibiiographiques
395 w e l r i smt 39s. r~ wdlin~tori
O&awaON K 1 A W dltawaON K T A W
Canada canalfa

The authur bas granted a non-
exclusive licence dowing the
National Li'brazy of Canada to
reproduce, laan, distribide or sell
copies of bismer thesis by any means
and in any fonn or fomiat, makiog
this thesis avaiiable to interested
persons.

The author retahs ownership of the
copyright in M e r thesis. Neither
die thesis nor subsbntilil extmcts
fiom it may be printed or otherwise
reproduced with the author's
permission.

L'auteur a accordé une licence non
excluive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distr'buerou
vendre des copies & sa thèse de
p l - manière et sous quelqye
fonne que ce soit pour mettre des
exemplaires de cette thèse à la
disposition des personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa thèse. Ni
la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou
autrement reproduits saris son
auîorisatioa

Abstract

This t hesis descri bes a set of computer aided design tools. implemented by the aut hor.

which can be used to shorten the design t h e of haxd-wired digital signal processing

sys t ems. These tools convert a bit-serial or digit-serial register t rasfer level circuit.

tlescril>ed in DFIRST. into a gate Ievel technology specific implementation. The

DS I l 1 ?;i~iittlator used to perform design rule checks. serial timing alignment checks

a t i r 1 ci t-c-riii simulations on DFIRST netlists is introduced, The TRAXS hardware

i . o t ~ i ! ~ i l t * r - c - w i \ - e r t s the DFIRST primitives to generic gate level implementations and

i I i w i t l q ~ l i t - ol>timizations to the obtain a smder/faster implementation in the target

- I I I Sm-eral digital filters are implemented using DFIRST and TRANS and

l i i w t l i 16~t-r ii TR ANS optimizations are evaluated using these designs. Finally the

i 4L- i - i i \ . t ~ i i i r ~ of TR-4NS optimizat ions. and the quality of solutions generated for

c l i l i t - r t a i i t tligil -it-idth filters are presented and ciiscussed.

Acknowledgement s

1 am gratefd to Micronet. Dr. Turner. and the Electrical Engineering Department

for their financial support during this research. 1 wodd dso like to t h a d Dr. Tunier

for his patience during the slow times and his good advice in the tough spots. 1 would

escpecidy like to thank the numerous graduate and summer students who imple-

mented circuits using these tools. There ivere a lot of questions to answer. softwue

bugs to exterminate and late nights. but most of these projects were successful in

the end and the results of this research are the better for their efforts.

Dedicat ion

For my Beloved wife Iioreen.

Table of Contents

Title Page i

Approval Page

... Abstract 111

Adcnowledgements iv

Dedicat ion v

Table of Contents vi

List of Tables x

List of Figures xii

1 Introduction 1
. 1.1 Digital Signal Processing 1

1 2 Digital Signal Processor Implementat ions -1 .
1.2.1 Programmable Devices . 3 .

. 1 . . 2 Custorn hplementations 3
. 1 - 2 3 htegrated Circuit Efficiency 4

. 1-13 Architectures 5
. 1.3.1 Number Formats 6

. 1.3.2 Word Formats 8
. 1.4 S-ynthesis 10

. 1.4.1 Y-Chart 12
. 1.4.' Silicon Compilation 1.5

. 1.4.3 Validation 17
. 1 ..5 Research Goals 18

. 1.6 Overview 19

2 DFIRST Language and Simulator 21
. 2.1 DFIRST Architecture 21

. 2.2 Design Example 21
. 2.3 DFIRST Language Parameters 26

. 2.3.1 Signal Declarat ions 27
. 2.3.2 Aierarchy 29

. 2.3.3 Instantiation 30

. 2.3.4 Encapsdation 30
. 2.3.5 110 Pads 32
. 2.3.6 Constants 33

2.3 DSIM . 34
. 2.4.1 Signal timing 34

. 2.42 Pardel vs . Serial Signals 33
. 2.4.3 Data File Format 36

. 3-44 Signal Tracing 40
. 2.2.5 Number Interpretation 41

. 2.1.6 Simulation errors and svamings 41 . - 2.3 Sumrnary . 43

3 DFIRST Primitives 44
. 3.1 Standard Components 44

. 3 2 Storage 45
. .3.3 Serial Adder 46

. 3.3.1 Adder schematic 50
. 3.4 Right Shift 51

. 3.4.1 Digit Serial 52
. 13.4.2 DFIRST instantiation .53

. 13-5 Left Shift 54
. 3 - 5 1 Digit Serial Left Shifter -56

. 3.5 . 2 DFIRST. 57

. 13.6 Paralle1 to Serial 58
. 3.6.1 CPiord Recircuiation 60

. 3.6.2 Fan-out Control 62
. 3-63 DFIRST 62

. 3.7 Serial to Parallel Converter 63
. 3.7.1 DFIRST 6.5

. 3.S Multiplication 63
. 3.8.1 Two's Complement Multiplication 65

. 3.8 2 Two's Complement Multiplier Lmplementat ion 67
. 3.9 CoeEcient Recoding 69
. 3.9.1 Booth Recoding 70

. 3.9.2 Modified Booth Recoding il
3.10 Lyon's Multiplier . 72

LI . 3.11 FIRST Multiplier 1 3
LI- . 3.12 Radix Four DFIRSTmultiplier rn

. 3.13 Radix Eight DFIRST Multiplier 78

vii

3-14 Evaluation of Bit-Serial DFIRST multipliers 80
3.14.1 Haxdware Complexity . 80
-3.14.2 Critical Path . 82

3.15 Digit-Serial multiplier . 83
3.15.1 DFIRST . 85

3.16 Pardel coefficient Muitipliers . Y6
-3.16.1 DFIRST . 88
3.16.2 Extended Multipiy . Y8
3.16.3 DFIRST . 91
3.16.4 Constant Multiplication . 91
6 D I T . 92

3.17 Controlgenerator . 91
13.18 Other DFIRST Primitives . 95
.3.19 Summary . 96

4 TRANS Hardware Compiler 97
. 4.1 - W C -4rchitectures 97

4.1.1 SILINS FPGAs . 98
1 ACTEL FPG-4s . - - . - - . . . - . c . - - . t c - - - - - - - . 100
4-13 ACTEL Softtt.are . 101

4.2 TR-ANS overt-iew . 102
4.3 Technolo~ Files . 103
4.4 Netlist Flattening . 106
4.5 Redundant Hardware . 106
4.6 Hardware Mapping . 107

1.6.1 CeU Internd Connections . 109
4.6.2 XILINX Mappings . 110

4.7 RAM mapping . 112
4.7.1 Shilred Addressing Uaits . Il4

4.8 Delay Caldation . 116
4.9 Summary . 118

6 Applications 120
5.1 Digital Filters . 120

5.1.1 FIR Filters . 121
5-12 Bilinear LDI Digital Filter . 1 2
1 . 3 WaveDigital Filter . 123
.5.1.3 W2 Filter . 124

5.2 High Level Synthesis Tools . 134
5.2.1 BITSYN - . 127

.S.?.? SW4FU . 127
*523 FIRGEN-DIGIP-4RSE . 1%

5.3 Mapping Performance . 129
5.3. i ACTEL Mapping . 130
5.3.2 RAM Mapper Performance . 131
3.3.3 Overd Performance . 134
.5.3.4 Filter Implementat ion Cornparisons 13.5

5.4 61 Tap FIR Filter . 137
5.5 Digit-Serial Circuits . 110

.5.5.1 Digit-Serial Muitipliers . 110
5-52 Digit-Seriai Filters . 143
.5 ..5 .3 Opt imization Performance . 144

5.6 Summarj- . 150

6 Summary and Discussion 152
6.1 Future Work . 1.54

6.1.1 Design E n t - and Validation 155
6 . 1.2 Synthesis . 156
6.1.3 Optimization . 1.5

Bibliography 159

A 61 Tap FIR Filter Coefficients 166

List of Tables

7.1 Possible DFIRST signal Dedarations 28

3.1 Timing .Mi gnment VerÏfication for Twots Complement Multiplier Stage 6S
a.2 Booth Recoding for two coefficient bits 71
3 . 3 Modified Booth Recoding for three coeflicient bits '1'2
3.4 Hardware Complexity for various Bit-Serial &ldtipliers 81
1.4 Bi t-Serid MuIt iplier Critical Paths S-

.I . I ('ost in CLBs for Several Lengths of R.4Ms 11.5

1 M'TEL CellCountsforTest Fihers 130
7.2 M'TEL Criticd Path Lengths (ns) 131
. 1 ' l i - i Filter Contiguous Shift Register Lengths 132

.t I TI{:\SS Address Allocations and CLB Cost Estimate 13'2 . .
. 1.. I - w r Address Allocations and CLB Cost Estimate 1313
J . (S I 1.1 TS 4000 Series R-4M Mapping 13:3
C -
. I - 1 L/FG for SILINS 4000 Series RAM Mapping 134

. - 7 ()wi.all -4rea Reductions by TRANS Optimizations 1134
. - 7 - 01-wall Critical Path Reductions by TRAWS Optimizations 1:34

.7 . l (J Si i ~ i i l ~ e r of Clock Cycles per hput Sample 1%
.ï.I I A('TEL Area-Time Products for Test Filters 136

.ï.12 -\("TEL Area-Time Products for Test Filters 1138
3.1 :I Arvii and Computation Time 1-12

.Y1 - 1 A('TEL Area Before and After TRANS Optimizations 144
.? 1 - :\< 'TEL Critical Paths Before and After TR-4NS Optimizatioos 145

5 . 1 (i :\rra Reductions and R-4M Efficiency for 117
.XI; :\<'TEL -4rea for Different Digit Width LDI Filters 148

.5.lS Efficiency data for Test LDI Filter . 148
. 5-19 Final .YI' Products for Different Digit Width LDI Filters 149

4.1 .YI LINS I/O Block Resources . 99
4 2 Sirnplified Block Diagram of a 4000 Series -;ILIN?C CLB 100
4.3 -4CTEL S-module . 101
4.4 TRANS Hardware Compiler Flow Diagram 104
4.5 Sample TRANS Technology File . 105
4.6 Redundant Hardware Remoid Operation Saving One DFF IO7
4.7 Mapping Source(a) and Target(b) for DFM ACTEL CeIl 108
4.8 Source(a) and Target(b) for ACTEL Full Adder Implementation . . . 109
4.9 Source(a) and Target(b) for DFM CeU with Interna1 Connection . . . 110
4.10 Two Bit Shift Register Implemented in one XILINS IOB 111
4.1 1 R-AM Implementation of Eight Bit Shift Register with Timing . . . 11.3

5.1 FIR Filter Structure . 121
.5.2 Linear Phase FIR filter structure (odd order) 1-12
5.3 5th Order Bilinear LDI Filter Structure 123
5.4 7th Order Wave Digital Filter Structure 1-15
5 .5 N:! Filter Structure Generated by Noisegen 126
3.6 Multiplier Test Circuit . 141
.?.T Digit-Serial Multiplier hrea-Tirne Products 143

. 5.8 CVord Delay Implementatioa for Digit Widths 1 to 6 146

Chapter 1

Introduction

The use of Digi ta1 Signal Processing (DSP) Integrated Circuits (ICs) has increased

dramaticdy They are used in everything from cellular phones to microrvave ovens

to CD players. The operations perfomed by these devices increases in complexity

as IC geometries shrink and the need for faster/smder processing devices increases.

This increased complexity results in larger ICs and longer design times to create

working products from specifications. in order to shorten the design cycle and hence

reduce the time to market for a new device. designers must rely on more and more

sophisticated and capable Computer Aided Design (CAD) toois. This t hesis de-

scribes a C'AD tooi. implemented by the author. which can be used to reduce the

t ime required to convert a DSP IC specification to a digital circuit implementat ion.

1.1 Digital Signal Processing

-4 signal is defined as a physical quantity which conveys information [OSS9]. An ana-

log signal is one in which the independent variable such as time. and the dependent

variable such as amplitude can take on a continuum of values. In these systems time

is going forward and the amplitude contains sorne information to be processed. In a

cliscrete time system. time can oniy take a discrete set of values and the amplitude

information is continuous in nature. In a digital signal both time and amplitude

are discrete in nature. -4 digital signal can be represented by a sequence of finite

precision. or quantized. numbers representing the information in a signal at discrete

intervds of time.

The transformation of one signal to another signal is defined as signal processing.

During this transformation unwanted portions of the first signal may be removed or

information may be added to create a desired output signal. Digital Signal Processing

(DSP) is performed using simple computational blocks such as addition. mdtipli-

cation. conditionals and storage elements. The types and interconnections of these

processing elements d e h e the processing algorithm and control the behai-iour of the

processing system.

1.2 Digit al Signal Processor Implementat ions

1.2.1 Programmable Devices

General purpose Digital Signal Processing devices such as the TMS3-O [InsSS]. t.he

ADSP2100 [DevSg] and the Motorola 56001 [Mot891 have been used extensively to

perform DSP operations. Their programmable nature makes them easy to use and

re-use in the face of ever changing specifications. Programmable devices generally

contain one multiplier. one adder and a bit shifting unit as well as a number of

registers and intemal m e m o . These resources make programmable DSPs able to

perform most signal processing applications. The wide use of these devices also

means t hat Silicon implement at ion technology will be constantly upgraded. resd t ing

in ever faster and lârger versions in the sarne processor famil. The large numbers

of devices which are fabricated also reduces the per unit cost. resulting in lower

rnonetary costs for the user.

kihile the programmable nature of these devices makes them easy to use it also

results in reduced algorit hm security. The processing application must be stored in a

memory device of some sort which can be easily copied. Aiso. because these devices

are so flexible they may not be particuiarly weU suited to a specific application. The

programmable nature adds some overhead to circuit area and the fked nature of the

resources may not be optimal for many algorithms. This can mean slow performance

or hrger system cost.

1.2.2 Custom Irnplementations

Digital Signal Processing applications may also be implemented using custom inte-

grated circuits. There are three different general forms of t hese devices: full custom.

semi-custom gate mays and Field Programmable Gate Arrays (FPGSs). In fd l cus-

tom the designer has complete control over the placement. sizing and in te rco~ec t of

every transistor constituting a given design. Full nistorn devices require the longest

design time but yield the most efficient solutions in terms of area. throughput or cost

(given sufficient quantities). The cornplexit- of the design process for full custom

devices rnakes re-design and re-fabrication very e-xpensive. forcing the designer(s)

to get the product right the e s t time or face long delays and higher costs. The

implementation time from specification to working [Cs For these devices can range

from several months to a year.

In semi-custom integrated circuits, or Ma& Programmable Gate Airays (MP-

G-as). the transistor patterns are k e d . The designer only has control over the

interconnection of groups of transistors as logic and the interconnection of these

logic elements. This results in a smaller design time but also renilts in slower. larger

circuits as compared to a hiU custom implementation. The fabrication time for

these det-ices is shorter than that of full custom devices and can be several weeks to

months. The re-design time for these components is much less than that for full cus-

tom devices but significant effort is still needed to change the circuit and re-fabricate

the final device,

Field programmable gate arrays are similar to MPGAs except that the intercon-

nection wires axe programmable in the field instead of requiring a fabrication facility

to place the interconnects. These devices can be classified into two basic types. one

time programmable such as ACTEL [-4CTS9] FPGAs and n time programmable

such as SILINS [ML941 FPGAs. These devices lead to implementations which are

relat ively large and slow and not particulady well suited to high throughput or high

volume applications. They are weil suited for proto-typing and in situations where

the application requirements change over time. The availability of these devices has

Iecl to novel applications in which a single FPGA is re-programmed on the y to

perform different portions of a single large application.

1.2.3 Integrated Circuit Efficiency

For any application there may be several possible IC implementations- The efficiency

of different implementations is judged in terms of the amount of circuit area required.

the time required to compute the algorithm and the power consurnption of the circuit.

One measure used to evaluate the efficiency of an IC implementation is the Area-

Time (.AT) product [ACSOI which e q u d y weights both area and tirne.

The area of an implementation is the total area required for processing blocks.

routing resources and I/O pads. This measure may be a simple cell count of tech-

nology specific elements required for the implementation. The time of an implemen-

tation is made up of two parts. the criticai path and the number of clock cycles

required to complete one computation of the irnplemented algorithm.

The critical path of a spchronous circuit dictates the maximum clock rate at

which the circuit wiU correctiy function. The critical path is the maximum D-type

fli p-ff op (DFF) to D-type fiip-flop logic delay tirne. TSs logic delay is made up

of logic rlenient propagation delays. routing delays and set-up and hold times on

1 I i f I) i-Ts. The logic element delay for each component is dependent on the out put

Ir J;I< lit ir! Tor 1 lia t element. -4 higher number of loads means that a higher total current

i- rt pi r t d ft-oiii the driving point. dso each load and wiring element adds capacitance

1 1 1 1 1 ii oi I 1 1 B I I t of an'- element. The combination of this load current requirement and

I l i t * l(,;iïl (-il lmcit ance dictates the time required to drive a node to the required state.

' 1 ' 1 ~ S I . ~~roduct of IC is the area (cell count. mm2) multiplied by the critical

lm 1 I I It~igt li (t inie) multiplied by the number of clock cycles to process one input

L I H I H ~ I ~ * -

1.3 Architectures

The architecture of a- system defines a set of rules or principles which guide the

design and functionali ty of anything created using t hat architecture. For instance

Roman architecture brings to mind columns of stone and archways while. Egyptian

architecture bnngs to mind sand-stone blocks and hierogl-vphs. in a sirnilar way the

architecture of a digital signal processor can be defined. In the DSP domain the

parameters of the architecture include the number format used to store a nurnber.

the word format used in data transfers. the number of bits used to represent each

word and the number. t-ype and interconnection of computing resources.

1.3.1 Number Formats

The number format refers to the particdar digital represenation of numbers used by

a given DSP architecture. The number format dictates the operations necessq- to

perform arithrnetic operations and causes some arithmetic operations to be simpler

at the expense of causing other operations to be more difficult to perform. The

number format: together with the number of bits used to represent a value. also

controls the range of values which can be represented.

In most number formats the value of a number is broken down into a series of

digits. each digit taking on a range of values. having a weighting factor associated

with it according to the digit significance. In the decimal representation each digit

takes on one of 10 values and the weight for each digit is 10". where n is the digit

number (staxting from zero). In the cornputer world a digit weighting of 10 is net

practical so a binary number system is used. Here each digit takes on one of two

d u e s which are commonly referred to as 1 and O or high and low. A common

number format for the representation of b i n q number is Trvo's Cornplement (TC).

In TC the weighting for each binary digit is 2" where n is the digit number. with

the Most Significant Bit (MSB) having a negative weighting. The decimai d u e of

an N bit TC number is given in equation 1.1. An N bit TC number can represent

numbers from -Zn-' to Y-' - 1.

Another number format is the Canonic Signed Digit Format (CSD) [LELSl].

Each digit of a CSD number c m take on one of three different values 1. -1 and 0. so

this number format is a t e r n e - systern. Since computers are by their nature b i n w

two b i n q bits are required to represent each singe bit of a CSD nmber. This

results in poor storage properties for CSD numbers but for representing fked coef-

ficients this number format has some advantages over other systems- Since several

redundant foms exïst for each number. the designer may choose the most suitable

one for a given application. resdting in reduced area or increased speed. The mlue

of a CSD number c m be cdculated using equation 12.

Another number format commonly used in cornputer systems is floating point

numbers. Here each number is broken into an elcponent (exp) and a mantissa (man).

The value of the floating point number is man * P. Both the mantissa and the

exponent may be positive or negative resdting in a dramatic increase in dpamic

range over a fked point system. The number of bits used to represent the mantissa

and the e-xponent are chosen to obtain the desired accuracy and d-mamic range.

Other number systems such as the Residue Wumber System (RNS) [SJJTSG].

Logarithmic Wumber System (LNS) [Lew93], and the Symmetric Level Index (SLI)

[CTSS] are used in computing machines. Each of these number systems has unique

properties which can be used to combat shortcomings in other number systems such

as long carry paths. expensive multiplication and division. or s m d d ~ a m i c ranges.

Mihile these number systems are usefd. the number systems used in this thesis are

TC and CSD. TC and CSD are chosen for their simple integer number representation

and their relatively small operator size.

1.3.2 Word Formats

Another architecture parameter of a DSP system is the format in which each word

of data is stored or transmitted from one component to another. The most common

format. used in most cornputers and DSP chips. is full parallel. Ln this format the

Fi bits of a data word are transmitted in parallel on N different wires. during one

cycle of the -stem. The primary advantage of the parallel format is the speed of.

transmission. one data word per system cycle on each data bus. However the parallel

transmission of data leads to severd disadvantages.

The N bit result of each operator is also computed in parallel resulting in separate

processing elements for each bit of the output data word. For some arithmetic

operations information from the generation of one bit of output must be used in the

computation of the next bit of output. This carrying or rippling of information from

one computation to the next leads to long computation times for the completion

of one paralie1 output word. This computation time or propagation delay can be

reduced by using methods such as carry look ahead [..\nn86] which shortens time

to calculate the full p a r d e l result but also results in Larger circuit area for the

computat ional unit. Anot her method to shorten the propagation delay t hrough an

operator is pipelining the operator so that a result is o d y partially completed on

each dock cycle. This results in shorter propagation delays but requires more clock

cycles to generate the f d resdt.

The N bits of a pardel data word also lead to large data buses which are difficult

to route and consume a large amount of integrated circuit area. This large routing

requirement often resdts in large pin counts for an integrated circuit and Ion* uti-

lizations for semi-custom devices in which the routing resources cannot be tuned to

meet the requirements of a particular design.

Bit-serial architectures have been proposed to create high performance. low cost

VLSI implementations of DSP applications [DRY% J0h9-2. NT91. ErcU]. in bit-serial

an X bit data word is transrnitted on a single wire. one data bit per dock cycle. The

word can be transmitted in the Most Significant Bit (MSB) first format [Er&] or

in the Least Significant Bit (LSB) b s t forrnat [DRSS. Par91. PMSS]. The MSB first

format is most suitable for operations such as division. square-root and sorting since

t hese operations are naturdly perfonned from MSB to LSB. The LSB first format is

best suited for addition and multiplication since information is propagated from LSB

to MSB in these operations. In most bit-serial systems only one of these formats

is used at the periphery of each computational block but may be converted to the

appropriate form within each operator.

h o t her advant age of the bit-serial architecture is the reduced rout ing require-

ments. Communication between operators is done using only a single wire. while

in a p a r d e l architecture N wires are needed. This results is less area overhead for

routing. higher design routability and utilization for semi-custom technologies and

reduced pincounts for integrated circuits designed using the bit-serial architecture.

Bit-serial operators are N times smdler in size than the pardel version of the

same operator. The penalty for this size advantage is the processing time. bit serial

operators are N times slower than a parallei operator (as defined without carry

logic). If the two systems were operating at the same clock rate they would be

e q u d y efficient in terms of area-time (AT) product. However the propagation delay

through a bit-serial component is l/Nth of that for the parauel component, so the

maximum clock rate permitted in a bit-serial system is higher than in a pardel

system. Thus when the maximum clodi rate is considered bit-serial -stems have a

better AT product than pardel systems [HCSO].

Digit-serial [AC901 is a word format in which each fixed precision data word is

transmitted on CV (Digit-Width) different wires. the total word being divided into

S/W=P separate digits. For many architectures there must be an integer number of

digits in each data word. this restriction is not necessary but results in simpler control

s t mct ures for the overall system. As N' approaches f d parallel the rout ing resources.

operator size and latency increase. while the number of clock cycles required to

complete one full computation decreases.

1.4 Synthesis

Over the last few decades rapid developments in integrated circuit technolog-- have

made possible the integration of larger and larger electronic systems. In order to

support this growth in complexity new design methodologies and more sophisticated

Computer Aided Design (CAD) software took have been required. Initially this

CAD software focused on design verification through simulation. but starting in the

late 1970's C AD software began to take over some of the design tasks traditionally

done by hand. The various types of automation and the resulting effects on design

High LeveYSystem Level
Synthesis

Figure 1.1: Time Line

time are showm in figure 1.1 taken from [NILD92].

Over the years design automation advancements such as automatic placement

and routing. hierarchy generators and logic level s ~ t h e s i s have reduced design time

considerably. ..At present the next generation of automation software is concerned

with high-level or system level spthesis. These CAD tools will automatic&- convert

a high level descript ion of an algorithm or even a specification of an algorit hm to a

final IC implementat ion.

The use of high level or system level synthesis resdts in shorter design cycles

and reduced tirne to market for integrated circuits. This occurs because of increased

designer efficiency and fewer design errors since many of the error-prone steps of the

design have been replaced by automated tools.

Figure 1.2: Y-chart

\\'Iic*ii t li-c-trssiiig synthesis issues it is usefui to refer to a Y-chart introduced by Gajski

ait< l 1<111iii i ~ i 1 !)SR [GIS31 as shonm in figure 1.2. In a y-chart. a design is represented

i ii t l ir iv* di lfrreiit domains. the behavioural. the structural and the physical domains.

TIie Iwlia\-ioiiral domain is used to describe the behaviour of a system without an-

iiotioii of hou- the behaviour is implernented. in the structural domain a circuit is

rep resen t et1 by a hierarchy of funct ional elements and t heir interconoect ions. In the

phÿsical domain a circuit becomes a layout without any reference to functionality.

The various rings of this chart indicate different levels of abstraction for the circuit

with the outermost ring being the most abstract and the imermost ring being the

most specific. The imermost level is referred to as the circuit level. at this level

of abstraction the structural elements are transistors? resistors and capacitors. The

behaviour of these elements becomes a set of differential equations relating currents

and voltages for each component. The next level of abstraction is referred to as

the logic level. in this level the entire circuit is composed of collections of transistors

known as gates. The behavioural representation of this information is a set of boolean

equations. The voltages and currents at the circuit level have b e n abstracted to the

logical values true and fdse or 1 and 0.

At the next level of abstraction the logical values have been groupeci into words

of data. The structural elements which make up this level are collections of gates

such as adders. registers. Arithmetic Logic Units and multiplexers. This level of

abstraction is referred to as the Register Transfer Level (RTL).

The next level of abstraction is referred to as the algorithmic level. At this point

the behavioural description of a circuit is an algorithm or sequence of operations

required to perform a given task. In the structural domain this corresponds to a

collection of RTL components to f o m a processor or subsystem.

The highest level of abstraction is homm as the system level. At this point

the behaviour of a system is described ody in terms of functionality. No notion of

implementat ion is present . This corresponds to the complete system in the structural

domain.

in the physicd domain the various levels of abstraction correspond to ever larger

polygons or blocks finally resulting in complete integrated circuits or connections of

integrated circuits as on a Printed Circuit Board (PCB).

Y-charts can be used to d e h e the various information conversions which may be

required during a design. as shom in figure 1.3. The traositions on one axis of this

chart axe defined as refinement abstraction and optimization. Any transition from

physid~eomcaical Domain

Figure 1.3: Y-chart Transfomat ions

the periphery of this chart to the interior. on any axis. is the process of refinement.

and the reverse t ransitioo is abstraction. An arc wtiose head and tail are at the same

level of abstraction describes an optimizat ion. D wing an opt imizat ion the basic

functionality remains the same but the design has been improved with respect to

some cost factor such as speed or area.

The transition between different axes of this chmt are defined as s ~ t h e s i s . anal-

ysis. generat ion and extract ion. in synt hesis a behavioural description is converted

to the structural domain. this defines how a behaviour is to be implernented at an?

level of abstraction. The reverse process. anaipis. converts structural informat ion

back to a behaviour. Anabsis is generaily used for design verification. The process

of creating a layout from a stnicturai description is defined as generation and the re-

verse process is an extraction. Extraction is also used during verification to esamine

the effects of routing delays and signal loading on the performance of the system-

1.4.2 Silicon Compilation

The dtimate goal of a synthesis system is to convert a system level specification in the

behavioural domain to the lowest level representation in the physicd domain. Any

software tool which can perform this conversion can be c d e d a silicon compiler.

In practice this task can not be canied out in a single step but is broken d o m

into several smde r s-ynthesis. optimization and generation steps. There are several

different ways to break this design process d o m into steps. one possible method is

described below.

The first step in this process is system level s-ynthesis. This process converts a

system level specification to a set of algorithrnically defined subprocessing modules.

On the Y-chart this operation combines a behaviowal refinement and a s ~ t h e s i s

operatioo. Each of these subprocessing modules executes in parailel to perfom t h e

desired algorithm. The input specification consists of a function to perform. such as

a digital fiter transfer function or a cornputer instruction set and a set of constraints

on the solution such as the desired speed. size and power consumption for the final

solut ion.

The nest step in the design process is to convert the algorithmic description

of the system to an interco~ection of realizable processing elements or high level

synthesis. On the Y-chut this operation may combine a refinement in either the

behavioural domain or the structural domain wi th some s-ynthesis. The input to t bis

stage is algorithms defined in terms of processing elements such as adders. multipliers.

control structures such as branches and loops and storage elements. The output from

this stage of s-ynthesis is a s tmaurd Register Transfer Level (RTL) design containing

adders. multipliers. control structures and registers. This RTL level design may be a

shared resource implernentation where each operator within the design may perform

two or more different operations during the algorit hm computat ions. This s ~ t hesis

step is often broken dom into three major portions which are resource allocation.

scheduling and resource assignment .

Ln resource d o c a t ion a set of functional units which will perform the requked

processing steps is selected. The resource assignment phase assigns each aigorithm

operat ion to one functional bloclc made available by the resource doca t ion operat ion.

The scheduling step assigns time steps to each operation on each functional resource.

This synthesis operation has been addressed by several softmare programs. such

as HAL (Force Directed) [P1<87]. SP.4ID [HESS]. MAHA [PPMSG]. SE (Simulated

Evolut ion) [LM901 S AVAGE [ND90]. BITSkW [NT9 11 and SNAFU [Joh97]. Each

of these programs searches the design space and attempts to find the most suitable

design. given the user constraints and an estimate of area-time characteristics of each

function unit amilable to the spthesis system.

The RTL description must now be converted to a gate level description using

RTL synthesis. This process converts the hinctional units (behavioural/structural)

which have been docated and scheduled to gate level implementations (structural)

containing simple gates and storage elements. In doing this. some knowledge of

the implementation architecture is required in order to generate the most effective

implementation possible.

Finally the logicâl descriptions are converted to collections of gates and storage

elements. representing the cells or primitives available wit hin the final implementa-

tion technology. The objective here is to obtain the most appropriate technologv

specific representation for each logical operation. minimizing area and/or tirne delay

for each block. This step can be carried out early if the RTL description is converted

directly to a technology dependent format. After the circuit has been mapped to

technology specific ceils the design is placed and routed. This operation attempts to

find the optimd placement for each ceil of the design which will minimize the routing

area and dela? for each intercomection in the circuit. F h d y ail the interconnec-

tions in the design are routed using the available area or routing resources in the

device. The design is nom* ready for fabrication as required by the implementation

technology.

1.4.3 Validation

The design of complex digital circuits is inherent- an error prone process. Even

wit h the use of CAD tools the resulting circuits are not guaranteed to be function-

ally correct. In order to deal with this problem it is important to use validation

software which checks the results of a design step to make sure the circuit functions

as intended. There are basically two different methods of vaiidation. formd methods

and simdation.

In formal methods the transformations applied at each stage are proven to be

correct and maintain functionality. If d circuit trmsfonnations are proven to be

error free then the hal circuit will function as specified. In formal methods it is

critical to correctly specie the operation of the system and to be certain that the

proofs are complete.

In simulation a set of test inputs or test vectors are applied to the input(s)

of a circuit. the outputs are examined against the expected results and if they are

consistent then the circuit is fuoctioning correctI. The diffidty here is in identi&ing

the correct set of test vectors which wiü exercise aU circuit components to reveal any

Bam. In simulation it is critical to understand ùiput/output signal requirements

from a circuit under test. any deviation between this understanding and the reai

world circuit requirements will render the simulation invalid.

dust as there are several levels of abstraction for a design there are also severai

levels of simulation and design verification. As each Ievel of synthesis or refmement

is applied. the resuits are checked with an ever more detailed simulator or formal

proof. requiring longer and longer nui tirnes as the design is refined.

1.5 Research Goals

The objective of this research is to generate a CAD tool which will autornatically

convert an RTL behavioural description of a DSP application to a structural digital

logic circuit containing logic elements. D-t-pe Bipflops and technology specific ele-

ments. The target implernentation technologies WU include gate arrays. FPG As and

fdl custom implementations. The CAD tool should be flexible enough to support

new architectures with a minimum of changes to the CAD tool itself. The target

applications for this compiler are low to medium (up to 9 MHz) throughput rate

digital filters and other DSP applications which are dominated by additions and

multiplications. For the input/output specifications an architecture which utilizes a

bit-serial or digit-serial (reduced routing), TC fixed point word traveling in the LSB

firs t format (addit ions and multiplications) d I be used.

The compiler rviH convert a RTL behaviourd description, defined in the DFIRST

language which is an extension of the bit-serial Ianguage FIRST [DR%], into a

gate level stmcturd description. This process is performed by s~thes iz ing the be-

haviourd RTL description into a structural gate level description. A series of a p

propriate optimizations are then appiied to obtain a technology specific gate level

implementat ion for the DSP application.

Tltt~ otitpitt of this compiler must be easily retargetable to deal with the ever

<*sl)au(lii IR set of new technologies and new data formats. In addition the circuit

gi*t wrët I t d 4 loiilci be reasonabl- optimal for the chosen implementation technology

1 t i f t I i r use of the compiler. The final generation stages of the overall design

1 u-t 1'-te< 1 I I W. 1 Aicement and routing. will be perfomed by vendor supplied software

i t A L w t-i<(-li implementation technology

1 II orclchi- t o reduce design time for the final implementation several analysis steps

~lit,i[ld IW i i w c l to verify the correctness of each refinement or optimization step.

;\ > (* l ~ i i rit I 4 . si iiiulation program, DSIM (Dfirst SIWulator). will be created in order

i u 1 wrfort i i RT L simulations. present ly available logic simulators d l be used t O

perfon t 1 11 I 1 i t delay gate level simulations. Findy. extraction software supplied by

tlir itiiplenientation technology vendor c m be used to extract the wiring delays for

final t irning verification.

In the foIlowing chapter the DFIRST architecture specifics as well as language s-yn-

tau are presented. In addition the DSIM RTL simulator for the DFIRST language

is discussed and the input/output format is presented. In chapter 3 the RTL hard-

wme elements which make up the DFIRST language are presented. In particdar

the architecture for DFIRST adden. muitiplers. bit shifters and format conversion

operators is given.

In chapter 4 the T R A M gate compiler which can convert DFIRST to technology

specific gate ievel implementations is presented. In particular the set of refinements

and optimizations which can be applied to the circuit in order to obtain a smaller.

more efficient design is discussed. In chapter -5 several examples which have b e n

generated and tested using DFIRST. DSLhI and TRAM are given. F i n a l - in chapter

6 some conclusions on the DFIRST language and TRANS are presented. In addition

sorne possible avenues for future research are explored.

Chapter 2

DFIRS T Language and Simulator

This chapter presents the DFIRST register transfer level digit-serial hardware de-

scription laquage. The DFIRST data word format and control signds are discussed

and the DFIRST Ianguage s ~ t a x is presented. including operator instantiation. hi-

erarchy. signal declarat ions. chip to chip communication. and constants. In addition

the DSIM simulator is discussed including input/output data formatting and simu-

lat ion error report ing.

2.1 DFIRST Architecture

In a bin- data DSP environment. operations are performed on N bit words of digital

data. This data can be trmsmitted in a number of formats. The most common

format is bit pardel. in which d W bits of the word are transmitted sirnultaneousl~

on N diEerent wires. The disadvantages of Parallel architectures are that large

amounts of chip area are required for operator implementation and routing and that

paraIlel operators have long propagation paths leading to a reduced maximum

operating clock frequency . Alternatives to word pardel data transmission are bit-

serial or digit-serial formats. In bit-serial the N bits of a data word are transmitted

on a single wire in N clock cycles. This leads to operators which are tjpicaliy N

times srnaller thon pardel versions of the same operator but require 'i times more

' Look-ahead-carry techniques lead to reduced propagation delays but require more hardware.

LSD

BI 83 BS B7 B9 B U B13 BIS DATA
BO B2 B4 B6 B8 BI0 B U B14 WORD

CONTROL
SIGNAL

CLOCK
- -

Figure 2.1: Sample DFIRST DataWord

clock cycles to complete the transmission of one data word.

In digit-serial architectures the ?j bit data word is divided into P separate digits.

each W bits wide. For the DFIRST architecture. X must be equal to WxP. That is.

t here must be an integer number of digits in each data word. This restriction is not

required in general. but the control circuitry is much simpler d e n all data words are

divided into an integer number of digits. Since the data for each word takes several

clock cycles to propagate along a given data path. a word framing control signal

indicating some fixed point in the data word is needed. In the DFIRST architecture

a control signai indicating the Least Significant Digit (LSD) time of the data word

is used. as shown in figure 2.1. For some operations in DFIRST a Most Significant

Digit (MSD) indicating signal may also be required to completely frame a given data

word.

Each operator within DFIRST is pipelined at the digit level. resulting in a short

propagation delay through any logic elements and a higher potential operating fre-

quency for the overall system. Each operator has a Iatency(L) which is the number

of bit or digit clock cycles cequired to generate the LSD of the output signal(s), after

the arrikal of the input signds. The LSD of each input to an operator must arrive

and be valid during the same clock cycle in order to assure correct operation.

The iteration time for a serial algorithm is defined as Q. the nurnber of clock

cycles required for one complete iteration of the algorithm. Some pipelining latency

may occur between the arrival of the first input and the completion of the first output

signal but the system c m accept a new input every Q dock cycles. The Q of an

algorithm is dictated b - the minimum number of dock cycles required to update

al1 intemal states in a recursive system. If all of the operations within the DSP

algorithm are implemented on dedicated resources then the resulting serial circuit

n-il1 eshibit the minimum Q possible for that system wit h the given operator set.

In pract ice a more area efficient implement ation can be obtained by sharing p hys-

ical components between the various operations wit hin an algorit hm. This requires

the multiplexing of large components such as multipliers and dividers. and results

in a larger iteration time (Q) but can result in significant area savings. For some

applications the optimal area-time product measure exists within a shared resource

environment [NT91. Johg?. Naggl].

-4 generic DFIRST operator is shown in figure 2.2. Each operator requires several

input and output signals which may be bit-serial. digit-serial or parallel depending

on the particular operator. As well, seveal parameters may be required to specify

the exact nature of the operator. these parameters may include for example digit

width. data wordlength. coefficient wordlength and latency. Each primitive will

Control Data
Inputs Inputs

Control Data
outputs outputs

Figure 2.2: Generic DFIRST Operator

eshibit a latency which is dependent on the parameter settings for that element.

this latency(L) is recorded in the small box before each of the output signals. Each

out put from a primitive usually has the same L but this may not be the case for al1

2.2 Design Example

The Signal Flow Graph (SFG) for a biquadratic [Jac89] digital filter is shown in

figure 2.3. For this example let W=1 (bit-serial) and assume that the latency of each

of the five multipliers is 10 and that the latency of each of the four adders is one.

In any serial circuit it is useful to label a single point as reference time zero. which

means that the LSD of the signal at that point is valid at time zero. For this filter

Figure 2.3: Biquad Digital Filter Flow Grapb

let the input signal be the reference point. The final bit-serial circuit. complete with

timing information. is s h o w in figure 2.1.

From figure 2.4. where the LSB times for each signal are shown. it c m be seen

that the minimum time required to cornpute each of the state variables is twelve clock

cycles as found in loopl. this time is the Minimum System Wordlength (MSW) of the

system. It is interesting to note that the first delay element T l is not implemented

as a separate element but is distributed through multipler B and adders A l and -42.

The second delay is implemented using a one-wordlength long shift register. So for

this circuit. using these primitives. we fhd that Q=12 and that the LSD of the fint

output is completed at time twelve.

Figure 2.4: Bit-Serial Implementation of Biquad Filter

2 -3 DFIRST Language Parameters

I'Iw 1) 1:lIKI- language is based on the FIRST (Fast Implementation of Real-time

Siciiitl Tr-iitdorms) hardware description language developed b - Denyer and Renshaw

[I) I{ %>]. '1-liio; language was used as a RTL description language for bit-serial systems.

I) W ~ I - ailcl Iieiishaw also developed a simulator (simfist) for use with the language

i i i i > r i I < ~ t o facilitate rapid design and testing of FIRST descriptions. The language

also iricl~idecl a compiler (fcc) which converted the high level FIRST language into a

full ciistoni SMOS IC implementation. In order to develop DFIRST several addit ions

mere made to this FIRST language.

The DFIRST laquage fully supports not only bit-serial architectures (W = 1)

but also digit-serial architectures (iV > RI > 1) and p a r d e l architectures (W = X) .

It is also possible to rnix digit widths within a single design. The language supports

elements which have a latency of zero dock cycles. such as simple gates. in order to

d o w greater flexibility when designing serial circuits. Several new primitives such

as CSD multipliers. pardel to serial and serid to pardel converters and conditional

operators are aiso included to increase the range of possible applications.

2.3.1 Signal Declarations

In any hardware description language. information is transferred fiom operator to

operator with signals or variables. Each signal can have a Miiety of parameters

attached to it. defining the precision or format of the information contained in the

kariable. In the DFIRST language each signal must have a digit width nhich defines

the W of the signal. Each signal also requires a Bag indicating whether the informa-

tion is serid or pardel in nature. This is required because the timing constraints

on the two t-ypes of signals are different. Each signal must also be defined as either

a control signal containing timing information or a data signal containing processing

informat ion.

The SIGNAL command is used to declare each data signal in the system. Severd

different styles of signai declarations are available. these are shown in table '2.1

From table 2.1 it can be seen that the THROUGH and * signai rnodifiers are

equivalent in DFIRST and can be used to flag a signal as being parallel. The default

digit width is adjusted using the DIGIT command which must be at the top of the

DFIRST file. For example. to set the default digit width to two for a whole system.

the compiler directive 'DIGIT 2' should be on the first line of the DFIRST file. The

signal orientation which indicates whether the most significant bit is the smallest

or largest bit number is not presently adjustable. The default setting in this case

forces the MSB to be the smallest bit number in both seriai and parallel signals.

1 1 signd is the Most SiePificant Bit (MSB) of the 1

Signal Dedaration

sig
sigO THROUGH n

Meaning
A digit-serial signal of the default width.
Define an n+l bit wide pardel signal. The sigO

sig[O:n] -4-n n+l bit wide digit-serial signai. The sigO sig-

sig[n:O]
nal is the MSB of the digit.
-4n n+l bit wide digit-serid signal. The sign sig-

'sig[O:n]

Table 2.1: Possible DFIRST signal Declarations

n d is the MSB of the digit-
The ' signd modifier may be w d to set a sig-

sigb]

This bit order can only be over-ridden by exactly specifying this information using

nal to be pardel. This is equivalent to the
THROUGH signal t-vpe from above.

n bit wide digit serid signal.

the sig[hISB:LSB] signal declaration.

For the most part DFIRST can accept any alphanumeric strings as signal names.

there are no restrictions on the length of names. and nurnbers can be used in the

narnes but not as the fist character. There are however some reserved signal names

which must be avoided. These include the V D D ? and 'GND' signals which are used

to tie inputs high or low respective- and the '?iCœ (no-connect) pin which is used as

a place holder in situations where a signal is generated but is not used. Also. signal

names cannot start with the character '.Y' as this is used to specify a hexadecimai

fixed value signal.

The control signais can be deciared using the CONTROL signal type instead of

the SIGNAL constmct introduced earlier. There are in general two different sorts

of control signds? LS B/MSB indicating signals and word selection signals. The

LSB/MSB indicating signals are used to frame serid data words and are high for

only one clock cycle per data word. Word selection signals are used for data steering

and are high or low for one or more entire data words. There is no difierence in the

declaration of t hese two different types of cont rol signals.

One way of reducing the complexity of a system. is to break the overall operation

down into a hierarchy of simpler operations. In doing this. the task performed by

a system is broken down into convenient sub-modules which do a portion of the

overaii processing. Each of these sub-modules can be broken down into even s m d e r

portions resdting in further simplification. The use of hierarchy not only reduces

design cornplexity but dso increases design re-usability. It is very difficdt to re-use

a complete system in a new project but a sub-module which performs a generic task.

can easily be re-used. or modified for re-use. resdting in reduced design times for

future projects.

The five hierarchical levels within DFIRST have been retained frorn the original

FIRST language and include the SYSTEàI. SUBSYSTEM, CHIP. OPERATOR and

PRIMITIVE levels. The SYSTEM level represents the entire system which performs

the processing task. a CHIP represents a single integrated circuit and the PRIMI-

TIVES are pre-designed components amilable within the DFIRST language. Each

of these three hierarchy levels camot rnake use of components at the same level. so a

CHIP cannot contain another CHIP within itself. The other two levels of hierarchy

are provided to facilitate partitioning. A SUBSYSTEM is a collection of CHIPS and

other SUBSYSTEMs. and an OPERATOR is a collection of PRIMITIVES and other

OPER-.TORS.

2.3-3 hstantiation

To instantiate an operator of any hierarchïcal level the follming s ~ t a x is used:

l a b e l : name [parmlist] (cntrllist) datalist

The label is an optional feature which d o m the user to name an individual

component for future reference. if no label is present then a unique label is generated

by the program reading the DFIRST netlist. The name defines the type of operator

being instantiated. the parmlist contains user defined parameters specific to each

operator. The ctrllist contains a.ii the control signals for the operator. and the datalist

contains al1 the data signâls for the operator. For the cntrlist and the datalist the

inputs and outputs are separated by an arrokv (- >). For example a serial adder

could be instantiated as follows:

ADD [i,O,O,O] (CO) aO,bO,GND -> s0,NC

In this example the label for the adder is not included so one will be generated

by the program reading the netlist. Information on what the parameters. and 1/0

signals for this operator are discussed in chapter 3.

2.3.4 Encapsulation

In order to encapsulate a set of operators within a hierarchical element the following

syntas is used:

hierarchy name (ctrllist) datalist

CONTROL ctrlsignals

SIGNAL datasignais

inst ancelist

END

The f i s t line of the hierarchicd elernent. or rnacro. defines the hierarchy Ievel.

the reference name and the input/output signds for the part. The hieiarch y must

be one of the four non-primitive hierarchicd types SYSTEM. SUBSYSTEM. CHIP

or OPERATOR. The name can be any dphaoumeric string which does not conflict

with a PRIMITIVE name. previously defmed element or DFIRST kepvord. The

ctrlist contains a Listing of control inputs and control outputs with the inputs and

outputs being separated by an arrow. The datalist contains a List of au data signal

inputs and outputs. again with the 110 signais being separated by the ~ m w .

The interna1 portion of the macro defines the behaviour of the elernent. The

ctrlsignals iist contains a listing of all intenially defined control signals separated by

commas. The ctrllist signals must not be included here and no arrow separator is

required to define input and output signals. The datasignals list defines the intemal

data signals. If the signal lists are too long the Line can be continued by ending

one line wit h a comma and continuing the signal declarations on the next iine. In

addition any number of CONTROL and SIGNAL commands may be present but

they must occur before the instancelist begins.

The instancelist is a sequence of components which describe the funct ionality of

the macro. The elements of the instancelist are instantiated as shown in section

2.3.3. There are some limitations on the components which can be used within a

macro depending on the hierarchy Ievel of the operator. O d y PRIMITIVES and

OPERATORS can be used within OPERATORS and CHIPS, and only CHIPS and

SUBSk*STEMs can be used within SUBSYSTEMs and SYSTEMs, In aU cases a

recursive definition is Uegal. so no instances of name can be contained within the

rnacro description of name.

2.3.5 1/0 Pads

The input-output pads of an integrated circuit perform the important function of

buffering signals from the chip intemal environment to the chip extemai environment.

They are used to provide suaicient drive for -stem Ievel signals and to provide

static and overdrive protection for each I/O signal. In a spchronous system simple

buffering of 110 signals is not sufficient in a mdti-chip environment. due to the phase

difference or clock skew between different devices. CIock skew is caused b - differing

propagation delays for a dock signal arriving at two or more different points. Since

cloclis are active on edges only. a s m d skew can cause a circuit to fail. In order to

correct for this problem. D t-ype Bipflops are inserted on both the input and output

pads. wit h the input pads being rising edge triggered elements and the outputs being

faliing edge triggered elements. This configuration dows for a combined clock skew

and signal d e l - of up to one half of the clock period. in either direction [DR%].

The 110 pads within FIRST are ody included at the CHIP level of the laquage

and cannot be used at any other level of the DFIRST hierarchy. The 110 pads are

instantiated using two DFIRST commands. Pi\DIN for input pads and PADOUT

for output pads. The syntax of these commands is as follows:

PADIN (ext ern-cntrl->intern,cntrl) extern-data->intern,dat a

PADOUT (intern-cntr l ->exto-cntr l) intern-data->extern,data

The e2te.m signds represent chip extemal signals and the intern signals are the

chip internid versions of the external signds. A b d e r of the appropriate t-ype (in-

put/output. rising/fahg edge triggered DFF) will exist between the extemai and

the intemal signal. The PI\D commands must be placed between the signal decla-

rat ion section and the instance List of a CHIP level macro.

2.3-6 Constants

llariy of t l i c primitives within DFIRST are parameterized in terms of wordlength.

~ > t ' * c - i + i m ~ a t i c l lateoc. Often one change in system specifications such as the system

\ w - t l lw ICI l I or coefficient wordlengt h resuits in a drastic change in the parameter

Y*! t i icc- i i i i (I i lie bit level timing for al1 elernents in the system. CO?ISTANTs can be

I I W I I t B -1 I W I <*II the re-design time when high level system parameters are changed.

.\ ('O.\'S-L-\NT is a string which is given a numerical value made up from other

t - ~ i 1.1 i i i I I x it i i c l iiitrnerical operations such as addition and multiplication. The possible

i i l i c-gchr i i r i t liiiiet ic operations are addition. subtraction. multiplication and division.

D r a c - k c - t + arc also supported. The evduation order for CONST-WTs is brackets.

fol l o i t - w l 1)y niult iplication/division and ha l l y additionJsubtraction. A CONST.4XT

is clefiiiecl iising the following syntax and must be defined before it is used within

the DFIRST code. A CONSTANT c m be used in any parameter location. In the

following example the CWL constant is set to eight and the LATENCY constant is

set to 13.

CONSTANT Cm58

CONSTANT LATENCY=3*CUL/2+1

For any hi& level language it is important to have an effective simulation program to

aid in the design process. A register transfer level simulator models the behaviour of

the language elements at the RTL which results in fast simulation times as compared

to lower level simulations (gate level or transistor level). In order to be effective. a

high level simulator shodd include a comprehensive design d e checker to highlight

as man- design faults as possible at an early stage so that fewer t ime consuming

runs of a lower level simulator are necessaq. A simulator should have an effective

data entry system in order to speed up the circuit debugging and finaily a simulator

shouid be as fast as possible so that the designer does not spend an undue amount

of time waiting for a simulation. The RTL simulator for the DFIRST language is

t he DFIRST Simulator or DSIW

DSIM is an event driven simulator which models each data signal as a fixed point

?i bit integer. with a time value to indicate when that signal became ialid (LSD

time). The primitive functions are perforrned on the integer d u e s and the time

d u e s are used to veri& timing constraints on each signal.

2.4.1 Signal timing

The time steps within the simulator are broken down into two different camponents.

the bit time and the gate time. The bit time represents the clock cycle at which a

signal becomes valid. The gate time is a finer scale time nrhich accounts for the delay

tirne through a component which has a zero clock cycle latency. For most DFIRST

components the bit time is ail that is needed because most primitives have a latency

of at least one clock cycle. However some DFlRST components. such as simple gates

and zero delay adden and multiplexors. have a latency of zero ciock cycles. For these

components the gate level timing is needed during simulation. Each clock cycle is

broken down into 20 gate ticks. and the latency of any zero d e l - component is

set to one gate tick. Any combination of zero del- elements must generate a final

value within this time or the simulation wilI generate incorrect results. This set of

delays does not reflect routing delays or even real component delays but does d o w

for correct unit delay simulationt which is necessary at early stages in the design

process. For more exact simulations. with more reaiistic logic delays. a gate level

timing simdator must be used.

The gate level simulation portion of DSIM uses the transport delay mode1 [Vie9:3].

which simulates every transition even those tvhich may be only one gate tick wide. An

alternative strategy is inertial delay rnodeling which effectiveIy filters any transition

mhich is shorter than or equal to the delay through a logicd element. The transport

delay mode1 results in slightl- longer settling times for logicd blocks but is sirnpler

to implement.

2.4.2 Paralie1 vs. Serial Signals

Most DFIRST primitives. such as ADD or MULT, have input/output signals which

are exclusively serial in nature. Other primitives such as PTOSB and PMULT have

inputs which must be in the parailel format. Within the simulator both signai types

are treated the same in âII respects except with regard to timing violations.

Each serial signal in a system travels in a LSD first format on W wires. The

LSDs of aU serial signals miving at any operator must arrive at exactly the same

time. lf this is not the case a timing fault will be flagged and the user must correct

the timing of t hese signols.

Parallel signals travel on N wires and once a pardel bus is given a value it will

hoId that d u e until a new value takes it's place. This holding feature on pardel

signals means that the timing of pardel signais is not as critical to proper operation.

The correct data on a parailel bus must be present on a paraUel bus when the control

signal which samples the bus arrives.

2.4.3 Data File Format

In order to simulate a DFIRST netlist with DSIM the user must provide input stim-

ulus information. cvhich output signds are to be examined. t h e simulation duration

and the data wordiength of the DFIRST system. This information is provided in the

DSIbl data file-

The WORDLENGTH command must be the first command in the DSIM data

file- This WORDLENGTH value is used within the simulator to check ovedom on

al1 signals within the simulation. The commaod to set the simulation time frame is

the SIMUL,4TION CYCLES cornmand. which indicates the number of data tvords

to be simulated. The number of dock cycles in the simulation will be SIMUL-ATION

CYCLES ' WORDLENGTH. The s ~ t a v of these two cornmands is as follows for a

data wordlength of 16 bits and a simulation duration of 100 data words (1600 cloclc

cycles) .

WORDLENGTH 16

SIMULATION CYCLES 100

The command for inputting data to the simulator is divided into two separate

portions. the signal declarat ion and the signal simulation data. Since the input sig-

nais to a simulation may be seriai in nature. a LSD time must dso be provided with

the data for the signal. This timing information is added using the SIGNAL corn-

mand which uses a signal within the simulation. which has known timing properties.

to define the LSD time for input signal(s). in the following example the sipals ain

and bin wiU have the same LSD time as the simulation internal signal CO.

SIGNAL ain,bin SYN WITH CO

The synchronizing signal may be a control signal or a data signal. chip internal

or chip external but generally a system level (chip extemal) control signal is used for

t his purpose since the input data signals are usudy chip external.

The simulation data is provided using the inputsignal command. Where an in-

putsignal is a- signal name declared using a SIGNAL command in the data file.

Data is provided as a set of ordered pairs of numbers. the first number is the word

t ime and the second number is the data value. The word time is defined in tenns of

the synchronizing signal for this inputsignal. A word time of zero means that at the

first occurrance of the sync signal this input signal should take on the d u e indi-

cated by the data d u e for word time zero. Each LSD occurrence of the sync signal

increments the word t h e . l n y word times which are not present d l maintain the

previous setting of the data value. The data ordered pair list must be terminated

by either a -1 or a -2 value. A negative one value means that this inputsignal should

maintain the same signal value (the last data d u e specified) until the end of the sim-

ulation. a negative two value means that the pattern of the data should be repeated

from the first d u e in the order pair List. In addition a separate file which contains

the data for the signal can be inciuded by using the FILE constmct. the format of

the data file is the same as the standard data style. The examples presented here

illustrate the data format- the data terrninators and the FILE command.

Example 2

Cs igbl

CsigcJ FILE sig-in

In Example L the value of the signal siga foIIows the sequence 1. -1. 1. 4. -5. S.

O. During time 1 the value of the signal remains as in the previous time and at any

time after t ime .5 the value of siga is O. In example 2 the value of sigb has a repeating

sequence of '0J .&S. for the durot ion of the simulation. In the final example the file

sigin contains the data for the sigc input signal- The format of the sigin file is the

same as the standard input data.

The CV4TCH command is used to observe data signais during the simulation. The

W W C H command specifies which signals ore to be observed during the simulation

and the name of the file in which to store the information. Any simulation signal

can be LUTCHed and the timing granulait- for the output information con be set

to either GATE. BIT or S-.MPLE format.

If the BIT level format (default) is used t hen the timing informat ion for a11 signals

generated within the simulation will be the dock cycle number. If the GATE level

format is used then all BIT times wiil be scded by the gate ticks parameter. At this

timing level the performance of gate level combinational circuits can be observed.

The final timing format is the SAMPLE format. here the timing for the output signal

is word level information. In the SAMPLE format the timing information starts fiom

zero and is incremented by one for each successive output value.

The s ~ t a x of the LK4TCH command is demonstrated in the following esunples.

h a m p l e 1

MATCH sig STORE IN sig-out

Example 2

WATCH sigi,sig2 STORE in sig-out VITH SAMPLE

In Example 1 the simulation information from sig is stored in the file sig.out.

The timing information in this case is the default BIT level format. In Example 2

the information for both sigl and si@ is stored in sig.out and the timing information

for bot li signals is set to the SAMPLE format.

Tlic ordering of the DSIM data file commands must be WORDLE-YGTH. SIMU-

l.;*I*IO S (**C'LES. SIGNAL. CVATCH. followed by the [inputsignal] data commands

ii titi t I i r lilv rii~ist be terminated by an END cornmand. Any number of SIGNAL and

\\\'I('1 1 C-miiiiands may be present in the data file. there must also be one [inputsig-

tiiil: wi~ii~;itid for each signal declared using the S1Ghi.U cornmand.

.-\II! ~ ic i io l \rit liin the simulation may be used in the SIGNAL and LKUCH com-

i i l i i i i i l ~ . iiii-litdirig CHIP interna1 signals and signds which are several loyers of hier-

arc-II? <I(v-p i l i t lie design. However signal names used within the DSIM data file must

Iir iiiiiclue. Son-unique signal names will occur when several instances of a single

user definecl operator are used or the same signal name is used nithin two separate

user defined operators. For these signals some of the hierarchy tree must be traced

to more precise- identify which signal is being referenced.

In order to trace a signal within a particular operator which may have a confiict.

the instance of the operator must be labeled as defined in section '2.3.3. Now the

signals within that operator can be uniquely identified as illustrated in the following

example.

WATCH sigl/macl,sig2/mac2 STORE IN sig-out

In this WATCH command the signal sigl within the operator labeled 'macl' and

the signal 'sig2' within the operator labeled 'mac2' will be watched and the resdts

stored in the file sig-out. Any number of / operators may be used to trace the

hierarchy of a given signal.

2.4.5 Number Interpretation

In any bit serial system a number of different effective wordlengths may be present.

The p r i m q wordlength is the data wordlength or System CVordLength (SWL) of

the circuit in question. In addition to this data length each multiplier may have a

different Coefficient WordLength (CWL). and each Paraliel converter may have a

different number of pardel bits to convert.

The d e for interpreting or inputting data to alI these parts is that each data

value is a two's cornplement (TC) number of the required length. A value of -1

indicates that ail bits of the word in question are set to one. A value of 1 indicates

that the Least Significant Bit (LSB) of any word is one and d other bits are zero.

2.4.6 Simulation errors and warnings

One of the most important aspects of a simulation program is the error reporting.

The earlier an error is identified the less time is bvasted proceeding with a faulty

design. DSIM reports two general Iünds of circuit errors: design d e errors and

simdat ion timing errors.

The design emors reported by DSLbI include sourceless or loadless nets or multiply

driven nodes occurring wit hin the design. Loadless nodes c m occur wit hin a design

and result in ordy wasted area generating signai(s) which are not uitimateiy aeeded.

Sourceless nodes however must be corrected before finai implementation. since a

Boating input to a logic element resdts in mdefined values at the output of that

etement. These sourceless nodes may be tied high or low using M 3 D or GND signals

to absolutely define the operation of the resulting logic. Multiply driven nodes are

also design errors which must be corrected. Each node in a DFIRST file must have

only one driving element.

The second kind of erron reported by DSIM include d simulation timing errors

and interna1 signal overflows. Unlike the design d e errors. these problems are

progressively harder to identifjr and correct as circuit refinernents are performed.

Design nile errors can be flagged a t any Ievel of abstraction and are readily t raceable

to a single cause. Timing errors axe more difficult to trace to a single root cause.

Al1 serial signals arriving at a DFIRST primitive have strict requirements for

their relative LSD times. For most elements all input signds must have their LSD

valalid during the same clock cycle for correct operatioo. If a timing violation occun

DSIbI reports the offending swy-mbol and the timing of ail signds connected to that

primitive. Using this information a timing error can be quickly corrected.

Intemal signd overflows occuring during a simulation are also reported by DSIM.

Al1 data signals mithin the DFIRST language are fixed precision values. A word over-

flow can occur after addition. subtraction, and multiplication by constants greater

than one. DSIM checks all values generated within a simulation against the bounds

of it's precision and if an ovedow occurs, DSIM reports the violating signal and the

time at whkh the violation occurred. The simulation continues after this error but

the results generated may not accurately reflect real circuit operation.

DFIRST is a Register Transfkr Level language which supports the description of

bit-serial or digit-serial DSP circuits. AU serial signals in DFIRST travel on W

wires in the LSD first data format. The serial signals within the DFIRST ianguage

require a frilfning control pulse which indicates mhere either the LSD or the MSD is

in the data uvord. The DFIRST language uses five levels of hierarchy (PRIMITIVE.

OPERATOR. CHIP. SUBSYSTEM. and SYSTEM) to simplie the partitionhg of

a large application into smaller pieces. The DFIRST language also supports clock

skew robust CHIP to CHIP intercomection of serial data signals.

The DFIRST primitives are parameterized in terms of precision. digit-width data

wordlength and latency Each primitive exhibits a l a t e n - (L) which defines the

nurnber of clock cycles between the a r r i d of input signal(s) to the operator and the

generation of the output signaI(s).

The event driven DSIM simulator is used to simulate the performance of circuits

described in the DFIRST hardware description language. DSIM loads both the

DFIRST netlist and a data file to perform a simulation. In the data file a user

describes the wordlength of the serial signals within the circuit. the length of the

simulation. the input signals and their desired stimulus and the signds which are

to be rnonitored during the simulation. DSIM also performs design rule checks

on DFIRST circuits and provides feedback on serid timing alignment and overfloiv

errors which may occur during a simulation.

Chapter 3

DFIRST Primitives

Ln this chapter the gate level form of some DFIRST primitives is presented. In

p a r t i d a s DFIRST adderslsubtracters. rÏght/Ieft shifters. multipliers and format

converters are implemented using non-technology specific or generic gate level ele-

ments.

In addition to generic gate level implementat ions. where appropriate. alternat e

implementations are presented to highlight the strong points and the weak points of

each implementation. The latency and critical path of each operator is discussed in

t e m s of the operator parameters and digit width.

3.1 Standard Components

-411 DFIRST primitives are made up from a s m d set of logic elements. including

standard gates such as AND. OR. XOR. NAND. NOR. SNOR and INVERTERS as

well as two to one multiplexor elements. delay elements (DFFs) and BL.-\TCHes. h

BLATCH is an active high clock enabled DFF element which only latches the input

signal to the output if the control pin is high. The interna1 logic for multiple'cors and

BLATCHes as weil as their schematic representation are shown in figure 3.1. The

control signal for both of these elements is normally connected vertically. and the

data pins(s) are connected horizontaily to the component. The upper input signal of

the MUS is selected if the control signal is low and the other data input is selected

- -

BLATCH

Figure 3.1: Schematic Representation for a DFF and BLATCH

if the control signal is high.

3.2 Storage

Bit-serial or digit serial data storage is implemented using the BITDELAY DFIRST

primitive. This primitive may aiso be used to control the timing alignment of serial

signals. The BITDELAY primitive is implemented using W shift registers of the

appropriate length. A W=2. Iength=6 BITDEL.4k- primitive is implemented using

2 6-bit shift registers. For control signals the CBITDELAY primitive is used. The

implementation of this primitive is the same as the BITDELAY primitive.

The instantiation of BITDEL.4y and CBITDELAY primitives is as follows. Note

that the digit-width of the BITDEL.AY primitive is determined by the digit-width of

the input/output signds of the BITDELAY part. The digit-width of the input and

output signal must be the same.

BITDELAY [31 din -> dout

CBITDELAY C31 (cin -> cout)

Addition is a naturauy LSD fist operation so it is weU suited to the DFIRST ar-

chitecture. -4 cany-save bit-serid adder is shown in figure :3.2. During the first

dock cycle the LSBs of both input words are present on the data Lines A and B. At

this LSB time the control signal is high and is used to set the caw input on the

full-adder to a user defined \due. The surn is generated and delayed by one clock

cycle to pipeline the operator (latency=l) and the c m y is stored for use in the nest

dock cycle. On the next clock cycle the second bits of both A and B are available

and the carry output from the previous clock cycle is used as the c a n y input to the

full adder. The addition pcoceeds in this manner until all N bits of the data words

are processed.

The extension of the bit-serial adder to a digit-serial adder can be implemented

by using CF' full adders with a ripple cany from the LSB to the MSB of the digit.

the most significant bit ca- output is saved and used as the LSB c m y input on

the foilowing dock cycle. During the LSD time the control signal clears the carry

feedback and sets the c a r y input to a user selected value. The resulting hardware

for a digit serial adder with W=3 is shown in figure 3.:3.

As the data wordlength (N) increases the hardware size of the digit-serial adder

Figure 3.2: Bit-Serid Ca- Save Adder

I O I (-liiitige. unlike parallel adders which linearly increase in size with data

\ \ . t ~ i - r l l < * l i i i 1 1 ' . Tlie number of dock cycles required for the complete addition is N/CLr.

I'lti' ~ J I W I - ~ I <II- can be converted to a subtraction operator by complementing aIl W

I i i 5 tif 1 I i c b Ii i t i put and sett ing the carry input high (complement and add one).

'1'11~ iitiriiher of full adden and pipelining delays for the s u m is equal to the digit

ivitlt 11. so t lie size of digit-seriai adders increases Linearly with W. The number of

clock c - d e s required to process a given data word decreases linearly with the digit

width because more bits of the data rvords are being processed during each clock

cycle. The maximum logic propagation delay or critical path of a digit serial adder

is LV full adders plus the c m y input generation logic.

The DFIRST c d to a digit serial adder is:
-

lgnoring fast carry met hods.

FADD
A0 *

Figure 3.3: Digit-Serial C w Save Adder (W=3)

A
BO S
B

CO
CI

FADD
A2

SUMO -
-

A
B2
-B

FADD

A
Crru. !!!- B S

CO -
C I

S U M 2
S

CO -
CI

ADD Uatency.0 ,O, O] (CO) a, b, carin -> sum, carout

The latency parameter of a3 ADD element selects the latency (L) of the adder

asd can be any integer value (including zero) in the DFIRST language. WX1atency

pipelining delays are used at the output of the adder to generate the desired Iaten-

If the latency selection is zero then no pipelining delays are placed at the sum output.

This option must be used with some care because a cascade of zero delay parts ivill

result in longer critical paths for the overd circuit. Clihenever using zero delay

components some consideration must be given to the t-ype of operators being driven

by the primitive.

The second. third and fourth parameters are remnants from the old FIRST lan-

guage and were used to optionally implement pre-delays of one bit on each of the

three input signals. This feature is not supported in the DFIRST Ianguage and zeros

are inserted in place of these values. In order to implernent these delays separate

BITDELAY operators must be used.

The CO signal is the LSD indicating framing control signal while a and b are the

data inputs which must have the same LSD time as the control signai. The carin

signal is normally set to GND but can be set to VDD to implement a ca rq input

of one. The sum is the sum output of the adder and the carout signal is the camy

output from the Most Significant (MS) f d adder. The carry output signal is not

generally used and a NC signal is often connected here. The digit width of the adder

is selected by the digit width of the input and output data signals. -411 three data

sipals a.6 and sum must be of the same digit width.

The DFIRST instantiation of a subtracter is:

(a) (b)

Figure 3.4: Adder Schernatics (a) cin grounded and zero delay (b) latency of L

The subtracter has the same options as the DFIRST adder. The borin signai is

normaily set to GND but c m be set to VDD in order to irnplement an increment b -

one on the difference output.

3.3.1 Adder schernatic

The digit-serial adder is one of the primitiveelements used to build up more cornplex

operators as discussed in the following sections. The schemat ic diagrarn(s) represent-

ing a digit-serial adder is shown in figure 3.1. if there are only two inputs on one side

of the adder then the cin signal is assumed to be connected to GND (grounded). The

signal connected to the bottom of the element is the control signal and the signal

on the right is the sum output from the adder. If no latency block is present then

the adder has a latency of zero clock cycles. otherwise the latency is indicated by

L. If there are three inputs then the lower most is the cin signal. The adder can be

converted to a subtracter by placing a negative sign above one of the two data input

signals. -4 negative sign above both data signds is invaiid as this operation cannot

be implemented in a single serial adder.

A O P+1 OUT

Figure 3.5: Circuit for Bit-Serial right shift by P

3.4 Right Shift

-4 right shift operation can be used to perfonn a power of two division. This operation

right shifts the N bit data word by p bits resulting in a division by P. In TC right

shifting. the lower p bits are removed and the upper p bits become sign extensions.

the p+lth bit is the LSB of the output ivord. The general form of a bit-serial right

shift element is shown in figure X.5.

The data signal (A) arrives at the BL.-\TCH element at time zero. The control

path delay chah is pl delays Long. the p points of this delay chah are used as inputs

to a p input nor gate. if p=l then the nor gate becornes an inverter. The output

from this nor gate is lon* for p clock cycles starting at tirne zero. LWle cshift is

lom the BL-4TCH element recycles the previous output from the shifter w-hich is the

MSB of the previous word in a f d y word packed system. This perfonns p bits of

sign extension on the previous data word. Also at this time the p least significant

bits of the present word are discardecl. On the next dock cycle the p+lth bit of

the present ivord becomes the next output and is delayed by one clock cycle by the

T~IIL~ Ti
& -

BI1 B8 BS B2

I> BI1 B9 B6 B3

BI1 BlO B7 B4

Figure :3.6: Twelve bit W=3 serial data word and data word right shifted by two

flipflop in the BLATCH. The resuiting latency of this primitive is p+l clock cycles.

p for the right shifting action and one to pipeline the operator.

3.4.1 Digit Serial

The digit serial version of the DSHIFT element is more complicated to implement

because the bits making up each digit are re-arrânged if the shift value p is not an

integer multiple of the digit ividth W. Consider the digit serial data word shoivn in

figure 3.6. with W=3 and a shift value of p=?.

This right shift operation has resdted in the WO iine being moved to the W1

line with a delay of one. the \VI line being moved to the LW lïne also with a delay

of one and the W2 bit being moved to the W O position with no delay. Also. the

upper two bits have becorne sign ex?ensions. In order to implement an a r b i t r e -

digit width right shift element it is usefd to break the operation down into two

cornponents. The first portion re-orders and delays the bits forming the digit as well

as performing sign extension across the digit. The second portion performs right

shifts by integer multiples of the digit width.

Since there are an arbitrary number of possible digit widths and shift values it

is not practical to use a library of different elernents CO implement the two sections

of t h e shifter. Instead d of the hardware for the shifter is generated using delay

Figure 3.7: Digit-Serial right shift operator for W=3 and p=4

elements ând mult iplexors.

The second section of the right shifter is the same as the bit-serial version oniy

repeated for each bit of the digit. Each bit is a selection between the incorning bit

of data or the sign bit of the previous word. If the sign bit is selected then the

present word is right shifted and the previous word is sign extended. The hardware

generated for a W=3. right shift by four operator is given in figure 3.7.

The latency of digit serial rïght shift operators is determined as follows. If the

shift value p is an integer multiple of the digit width W then the latency is due to

the integer shifting section o d y and is p l P V + 1. If p < CF* then the latency of the

operator is due to the second section only and is one. CVhen a combination of both

sections is used the Latency is p/W' + 2.

3.4.2 DFIRST instantiation

The right shift operator in DFIRST is the DSHIFW primitive and is instantiated

as

DSHIFTA [pl (CO) a -> o u t

ahere p is the number of bits by which to right shifi. The CO control signal

and the a data signal must have the same LSD t b e . Another operator which is

maintained from the FIRST laquage is the DSHIFT operator which performs the

same operation but has a Iatency of p+3 for the bit-serial shifter and is not available

iit digit-serial. The DSHIFT operator accepts the same parameters and input signâls

a5 t I I< - I)S I I I FTA operator but a second parameter which enables a pre-delay on the

i i i p ~ ~ +ial is also required. The pre-delay feature is not implemented in DFIRST

m i i l i f i i w l d must be implemented using the BITDELAY primitive.

3.5 Left Shift

l . d i 41ilt i ~ ~ r ! i5 a cornmon operation which can be used to implement a multiplication

I I > - il I)ow*r of t 1.0. The left shift operation left shifts the N bit data word by m bits

~ ~ < d u r t r i i i ~ a H i~~~dtiplication by 5m. In TC left shifting the bottom m bits of the

<lata n-orcl lm-onie zero and the top most rn bits of the input must have been sign

est c~tisioiir]>rior to the left shift operation or an overfiow occurs. The general form

for a bit-serial left shifter is s h o w in figure 3.8.

The data signal I N and the input control signal CTRL arrive at the shifter at

time zero. The control signai is delayed by m-1 clock cycles. rnuch Lice the right shift

operator. and m nodes of this shift register are nored together to generate the cshifi

signal. If m=l t hen no shift register is required and the cshift signal is the inversion

of C . During the m clock cycles in which cshift is low the output from the shifter is

zero. during this time m bits of the input data word must be stored to be output in

Figure 3.8: Circuit for Bit-Serial left shift by P

their new left shifted positions. this is done with an m bit shift register on the input

data line. After m clock cycles the LSB of the input word arrives at the multiplexor

input and the cshift control signal goes high dowing this bit and the remaining X-m

bits of the input word through to the output pipeline d e l - For this implementation

the upper most m bits of the input signal are not present in the output signal so

these bits of the input word should have been sign extensions or the output of the

s hifter is not correct.

The latency of the left shift component for any value of m is one due to the

pipelining delay at the output of the multiplexor. Udike most DFIRST operators

the left shifter can be implemented with a negative latency since the first relevant

bit of the input signal arrives at the operator m clock cycles after the start of the

operation. If the operator is started at time -m theo the LSB of the input signal

can be connected directly to the multiplexor input and no data delay shift register

is required. This implementation is faster (negative m latency) and smaller (no

input storage chah) but has not been implemented to remain consistent with other

Figure 3.9: Sixteen bit W=l serial data word and data word left shifted by three

DFIRST primitives.

3.5.1 Digit Serial Left Shifter

The digit-serial Ieft shift operator is very similar to the digit-serial right shift operator

in that the bits which make up each digit have to re-arranged if the number of bits

to shift b- is not an integer multiple of the digit width. h W=4 digit-serial data

word and the resulting data word after a Ieft shift by 3 bits is s h o w in figure 3.9.

For this shifting operation the W O digit is moved to the CV3 bit position and the

W1.W. W3 bits are moved to the WO. W1 and W bit positions respectively in the

next digit. So some bits may be moved and others may be moved and delayed.

The left shift element may be broken down into two sections. one section to

perform the bit re-arrangement and another section to perform left shifts on entire

digits.

The second portion of the Left shift element is the same as the bit-serial cornp*

nent. repeated for each bit forming the digit. The number of delays to insert in front

of the multiplexor and the number of clock cycles which the multiplexor must select

the zero is equal to the integer division of m/W. In order to generate the control

signal for the multiplexors in this stage m / W l delays must be used for the control

path and an m/W input nor gate must be used to generate the select signal. If

Figure 3.10: Digit-serid Left shift operator with W=3 and P=.5

rn/w=l then no control delay chah is needed and the select signal is the inversion

of the input control signal. The resdting hardware for trvo left shift operations and

the inputs and resulting outputs are shown in figure 3-10.

The latency for the arbitraq- digit width left shift operator is dways one regard-

less of digit width or shift value. Both sections of the element are generated wit hout

pipelining delays and the output of the operator is pipelined to force a latency of

one. The digit-serial left shifter can also be implemented with a negative latency

saving all data storage elements within the shifter. This implementation has not

been included in DFIRST to remain consistent with other primitives.

3.5.2 DFIRST

The left shift operator within DFIRST is the MSHIFT operator which is instant iated

using the following s ~ t a u :

MSHIFT Cm, O] (C O) in -> out

The m parameter indicates the number of bits to left shift the input data signal

(in) by. The control signaI (CO) and the input signal must have the same LSD

time. The digit width of each MSHIFT operator is determined by the digit width

Figure 3.1 1: Bit-Serial Pardel to Serial Converter

of the input a d output data signals which must both have the same digit width.

The second parameter represented an optional pre-delay on the input signal in the

FIRST language. but is not supported in DFIRST.

In most digital systems data is communicated in a word pardel format using NP

separate wires for an XP bit data word. To interface this parallel information to a

serid processing system. format conversion elements such as parallel to serial and

serial to pardel converters must be used.

The parailel to serial cooverter is responsible for converting an external NP bit

pardel data word to an N bit serial word for internal use. If N P < :V then the

parallel to serial converter must provide sign extension for bits to the left of the

incoming data and insert zeros for the bits to the right of input word. If N P > N

then the 'i most significant bits of the parauel data should be used as input. The

hardware for a simple bit-serial paralle1 to serial converter is shown in figure 3.11.

Each element of the converter is a multiplexor in front of a D t-ype ûipflop. If

the control signal is high then the paralle1 input lines are loaded into the bit delays.

otherwise the other mm input is selected forming a shift register. The converter

Figure 3.12: Paralel to Serial Converter (W=3. .IP=8. G=l)

shorvn in figure 3.11 accepts XP bits of p a r d e l input. inserts G ground bits to the

right of the p a r d e l data and can perform an a r b i t r q amount of sign extension due

to the recirculation of the MSB.

The conversion of a bit-serid p a r d e l to serial converter to digit-serial is relative-

straight forward. The latching elements of the converter are manged in a W bit

wide fashion with the parallel inputs of the least significant G bits being tied to

ground and the ~a râ l l e l inputs of the remaining NP elements being comected to the

appropriate bits of the input signal. The serid inputs of dl elements are c o ~ e c t e d

to the output of the previous latch in the same bit position of the W bit wide digit.

The serial inputs of the upper most elements are d connected to the serial output

from the latch to which the sign bit of the paralle1 input is connected. The resulting

hardware for a W=3. NP=S. G=4 parallel to serial converter is shown in figure 3.1'2.

The latencp of al1 converters in this configuration is one. from Iatching the parallel

inputs to the generation of the LSD of the serid output.

3.6.1 Word Recirculation

In many applications it is usefd to be able to Save a pa rde l input signal for fu-

ture use. This operation can be performed within the pardel to serial converter

by changing the shift register operation of the converter to a recirculating register

fonn. This feature requires one additonal control signal to place the converter in

recirculating mode and one additional parameter to set the data wordlength to be

stored.

The fonn of this converter is similar to the standard non-recircdating form except

for the addition of a feedback path from the serial output to most significant bit of

the converter. Ln this feedback path there are N-NP-G additionai £lipflops which

rnakes the total loop delay around the device exactly one SWL. The lcntrl signal

goes high for one clock cycle to load the p d e l inputs and then rernains low while

the converter is shifting and recirculating. The serial input to the most significant

element of the converter is nom- one of three things? parallel input. sign extension or

recirculating data. The scntrl signal is used to control the number OF sign extensions

and must be high for SWL-NP-G dock cycles. -4 fuil recirculating pardel to serial

converter with NP=& G=4. SWL=l6 is shown in figure 3.13

The cin signal is the standard LSB indicating signd and the crnux signal is a

higher order control signal which is high for one entire data word and then low for

one or more full data words. Dï th this converter the LSB of the input data word is

valid once every SWL clock cycles until the converter is loaded again by both cin and

cmux being hi&. The latency of this converter is now two clock cycles because of

the additional DFF in the control path. If the recirculating property is not needed

Figure 3.13: Parallel to Serial Converter with data stoiage

then the cmux control signal is tied hi& and the additional hardnmre needed to

implement word storage is not generated. In this case the latency of the converter

is stiIl two to maintain consistency.

3.6.2 Fan-out Control

la the parailel to serial converter the control signal used to Ioad the pardel data and

l e s t significant guard bits is connected to at Ieast WP+G loads. This high fanout

results in slow transitions of the control signal. this transition time may become the

cri t ical pat h. limit ing the maximum bit dock frequency. depending on the magnitude

of Y+G and the technology being used. In order to control this situation a Fan-out

Control (FC) parameter has been added to the parauel to serial primitive. The FC

parameter indicates the number of driving points which are available for the pardel

loading signal. The N+G loads wit hin the converter are divided equally between the

FC driving points. These signals are generated by FC parailel DFFs whose inputs

are connected to the output of the cin-crnux AND gate.

3.6.3 DFIRST

The DFIRST call for a pardel to serial converter is:

PTOSB m,G,FC,SUL] (cin,cmux) in0 THROUGH N-1 -> out

Each of the four parameten are as described above and the SWL >= !V P + G.

The most significant bit of the NP bit input bus is in0. The latency of this part

is always two from the arrivd of the cin signal to the generation of the LSD of the

output signal. The recirculating and fanout control options are not available on digit

Figure 3.14: Bit-Serid Seriai to Paralle1 Converter (NP=S.SIi=2)

serial paraliel to serial converters. These two features are used infrequently and were

not included for the digit serial version of the part.

3.7 Serial to Parallel Converter

-4 serial to parallel converter can be used to convert a DFIRST serial signal to a

parallel format used by an e-xternal pardel data device. To defme the operation of

the DFIRST serial to pardel converter two parameters are required. the number of

parallel bits to generate (NP) and a formatting parameter which selects the N P bits

of the serial word to convert to pardel. In the parauel to serial converter this ivas

done by selectirtg the nurnber of least significant end guard bits to add. but in the

serial to parallel converter this parameter is the number of most signifiant bits to

skip (SIC). This component c m be broken d o m into two parts. a shift register to

store the serial word and a NP bit parallel latch to load and store the parallel data

until the next output time. -4 bit-serial serial to parallei converter is shown in figure

3.13 with NP=S and SI\I=2.

At the LSB time of the present data word the previous data word is present

in the shift register. this word is latched into the pârallel storage elements. The

length of the shift register chain is NP+% and the final output of this chain is

Figure 3.15: Serial to Pardlel Converter (W=X NP=& SI<=-)

amilable as a second output from the primitive. For proper use ail of the bits which

have been skipped must be sign extensions or the parallel output will not refiect the

true value of the serial data word. The additional delays on the control and data

input are present to facilitate a fan-out control signal and have a consistent delay

performance for the primitive. Like the parallel to serial converter one control signal

drives severai (N P) loads which may be excessive. In order to combat this fanout

problern FC separate control signals are generated using FC DFFs and the XP loads

are shared equally between each DFF output.

-4 digit-serial serial t o p a r d e l converter is very similar to the bit-serial primitive.

The only change is that the shift register used to store the data word is W- bits wide

and the NP bit parallel output signal is derived fmm selected points within this shift

register. Like the parailel t o serial converter the fanout control parameter is not

ava,ilable for digit serial components. The hardware for a W=3. NP=& SI<=- serial

to parallel converter is shown in figure 3-15.

3.7.1 DFIRST

The DFIRST caiI to a senal to pardel converter is:

STOPB [NP,SK,Fc] (ctrl) in -> delout, out0 THROUGH N P 4

The three parameters perform the functions discussed above. The ctrf control

signa1 indicates the LSB of the previous data word to the word being converted to

pardel. The delout data signal has a latency of NP+SK+l and the pardel output

is generated two dock cycles after the primitive is triggered.

3.8 Multiplication

Most signal processing applications require several multiplications nhich must be per-

formed in as Little time as possible. using as little device area as possible. DFIRST

multipliers perfom the multiplication of an N bit data word by a Coefficient Word

Lengt h (C WL) bit coefficient. Depending on the application different t-ypes of coeffi-

cients may be used such as f d y general bit-serid. f d y general parallel and constant

coefficients. In the following sections the hardware implernentations of DFIRST

mult ipliers are discussed.

3 -8.1 Two's Complement Multiplication

-4 general twos complement multiplication can be implemented using equation 3.1.

where P is the product. Y is the CWL bit coefficient and S is the N bit data word.

X5 x4 X3 X2 X1 XO

XYS Y4 Y3 Y2 Y1 Y0

PIOP9 P8 W Pd P5 P4 P3 P2 Pl PO

Figure 3.16: Twots Complement Long Multiplication

For this multiplication there are CWL partial products. Multiplication of each

partial product b - 2' is done by left shifting the input data value by i and multipli-

cation by the ith bit of the coefficient is done by anding the entire data word with

the it h coefficient bit. To implement the negative sign bit of the coefficient the most

significant partial product is subtracted instead of added as for the other partial

products.

The resulting product is CWL+Kl bits long. In finite precision machines o n l -

a fixed number of bits resulting from a multiplication can be saved as the result.

any remaining bits are discarded resulting in truncation errors in the product. For

the DFIRST architecture the outputs from all operators must conform to the X bit

data word size. so CWL-1 bits of product must be discarded. The product can be

brokeo into two portions. the upper iI bit word and the lower CWL-l bit word. If the

lower data word is discarded the multiplication becomes fractional with the decimal

point residing just to the right of the most significant bit of the coefficient. .-\ long

multiplication with the CWL=N=ô is shown in figure 3.16.

Figure 9-17: Bit-Serid Two's Complement Multiplier Stage

3.8.2 Two's Complement Multiplier Implementation

In designiog the simple twos complement multiplier it is assumed that the least

significant bit of the CWL bit coefficient and the N bit data signal arrive at the

multiplier at time zero. Also at this time a LSB indicating active high control

signal is available. The multiplier can be broken d o m into C WL different sections.

each generating a single output which is the accumulated product obtained from

the weighted summation of all partial products generated up to and including the

present stage. All of the CWL stages are identical except for the fina stage nhich

implements the sign bit of the coefficient.

There are CWL different sections in the multipliert the ith stage generates the

ith partial product and sums this product with the accumulated results from the

previous stages. The first stage in the chain is the zeroeth. The hardware for the ith

section where CR'L - 1 > i > O is shown in figure 3.17.

The ith section must store the ith coefficient bit for use in the i th stage and delay

the serial coefficient input for use in the i f l th stage. The t h e that the coefficient

bit arrives at the ith section is i. The control signal valid at time 2i is used to latch

the coefficient bit into the S signal which is MLid one clock cycle later or %+l. The

LSB t ime of the data arriving at the ith section is 2i and this data is delayed by tvvo

for input to the next stage. The data signal vaJid at time 3if 1 is ma.rked as S. The

coi11 rol sigiial is delayed in the same manner as the data. The data (ri) is multipliecl

11) - i II(* st orocl ith coefficient bit using an AND gate where both S and X are valid

ai i i i i i < b 9i+ 1. This partial product is added with the summation of previous partial

1 ~rtltliv-i -. i i l ~ < ~ at time 2i+l. The PPSI input of the zeroeth stage is grounded. This

l) i ~ l - l i i ~ l ~ ~ r o r l ~ ~ c - t sununation is right shifted bp one bit for addition in the next stage

of i II(* riiiil~ i[>lier. The latency of the shift operation is two. resulting in a time of

->i-:I L J ~ 1 l i t * i t li partial product.

-1,) \-(*rifi- t lie boundaq- times for this multiplier section it is required that the

I I i i i i i t * of the i+lth stage be equal to the output time of the ith stage for each

sigiiit 1. l ' l i ~ t iming verification for each data and control signal is shown in table 4.1.

Signai
Coefficent

Table 3.1: Timing Aiignment Verification for Two's Cornplement Multiplier Stage

L

The circuit- for the hal (i = C W L - 1) stage is shown in figure 3.18. The final

stage differs from the previous stages in three regards. The serial coefficient is not

passed on to another stage. the partial product generated in this stage is subtracted

ith Output
i+l

Data
Control

Partial Product Sumrnation

i+lth Input
i+l

2i+2
2i+2
'-3i+:3

S(i+l)
2(i+l)

2(i+l)+l

Figure 3-18: Bit-Serial Two's Complement Multiplier Final Stage

from the previous partial products because this stage represents the sign bit of the

coefficient and finaily the result of the summation is not right shifted by one because

the output from this adder is already at the correct precision as s h o w in figure 3.16.

The resulting latency for this multiplier implementation is 2CWL dock cycles.

3 -9 Coefficient Recoding

Binary numbers are often represented in higher radix forms to reduce the corn-

plexity of representing a given number. Some commonly used number formats are

octal (radix 8) and hexadecimal(radix 16) which require N/3 and 311 digits re-

spectively to represent an 3 bit binary number. Recoding the multiplier coefficient

into higher radices can be used to design smai.ler/faster multiplier implementations

[PM89. L-761.

Recoding methods can be broken down into two major types. redundant and non-

redundant. In non-redundant recoding methods each bit of the coefficient is used

to generate only one recoded value. while in a redundant recoding some bits of the

coefficient may be used in determining several different recoded d u e s . Redundancy

can be added to a recoding in order to sirnpli& the possible recoded values [Loi61

at the e-xpense of increased recoding cost.

The second major characteristic of recoding method is the radix. The radix of a

recoding scheme determines how many bits of coefficient are examined to generate a

single recoded output. The d i x of a non-redundant recoding is zR where R is the

number of bits used to generate a single recoded value. The radix of a redundant

recoding met hod is 2(R- 1). The TC multiplier is a non-redundant radix two recoded

multiplier imp lement at ion. In the following sections different recoding met hods are

used in order to obtain a smaller/faster multipler.

3.9.1 Booth Recoding

A bit-serial two's complement multiplier has an irregular implementation since the

final stage is different than the previous stages. The multiplier can be made com-

pletely regular by using a redundant radix 2 recoding on the coefficient bits of the

multiplier [PM89]. In this recoding scheme two bits of the coeEcient are combined

to create a single signed recoded coefficient bit in the set -1-0.1. The product for a

booth recoded multiplication can be calculated using equation 3.2. In this recoding

the ith bit is implemented as the i+lth bit minus the ith bit. The recoding table for

the pair of bits yi and yi-1 is given in table 3.2. If ' i=O then the i-lth bit is set to

zero.

Table 3.2: Booth Recoding for two coefficient bits

yi
O
O
I

A multiplier implemented using this recoding is regdar but the size of each

module is larger than the module size for the TC multiplier and no speed up is

obtained so this recoding is not used for DFIRST multiplier implementations.

' yi-1
O
1
O

I l

3.9.2 Modified Booth Recoding

Recoded Value
O
1

-1
O

The modified booth recoding uses three coefficient bits to generate a single repre-

sentation for two bits of the coefficient Each two bits of the coefficient are used to

generate a single partial product. so only CWL/2 partial products are needed to

generate the final product . In modified boot h recoding the i and the i+ l th bit form

a single digit. If the ith bit is set. it is implemented as one i th bit. and if the i+l t h bit

is set it is implemented as the i+2th bit minus the i+lth bit. Given this relationship

the product for a TC multiplication using this recoding scherne can be calculateci

using equation 3.3.

Using this recoding method each two bits of the coefficient are represented by

one element from the set -2. -1. 0. 1. 2. The recoding table for the bits y;+~. pi and

- - -

Table 3.3: Modified Booth Recoding for three ~ ~ e s c i e n t bits

yi-l is given in table 3.3. For this recoding y-, is set to zero.

3.10 Lyon's Multiplier

One bit-serial multiplier implementation which uses modified boot h recoding is

Lyon's multiplier [Lyo76]. Each partial product is generated using three coefficient

bits (yici. y;. yi-1) and two data signals (S and 2X) according to table 3.3. In Lon's

original implementation each two bit coeEcient section was identical. leading to a

cornpletely regular structure.

The arrangement of this multiplier is like the TC multiplier described in section

6.8.1. except for the pastid product formation stage nhich is more cornplex. Again

it is assumed that the LSBs of ail input signals and the control signal arrive at

the multiplier at reference time zero. For this multiplier there are CWL/? stages

numbered i=O through i=CWL/2-1. The hardware implementation for the ith stage

is shown in figure 3.19.

In the coefficient control stage the appropriate bits of the coefficient are converted

to three gating signals. -4 is high when the recoded coefficient value is either 1 or -1.

COEFIN -rial, COEFOUT

u
PPSI

Figure 3.19: Lyon Modified Booth Recoded Bit-Serial Multiplier Stage

B is high when the recoded value is either 2 or -2 and C is high when the recoded

value is negative. These control signals are combined with the X (1 times data) and

7X (2 times data) data signals to form the partial product for this stage. The SS

signal is the data signal which is valid at time two. At time one when the 2X signal

is first used a zero is inserted by the C2 control signal since the data here is the MSB

of the previous word. If the partial product is negative for this stage then the X'ZS

or O product is complernented and the carin input of the partial product summation

adder is set high (complement and add one). The partial product generated here is

right shifted by 2 bits to obtain the correct data precision for use in the next stage.

Some modifications are needed on both the first and last modules of this multiplier

to conform to the D FIRST wordlengt h requirements.

The input section must be modified to make sure that the y-[coeEcient bit is

zero. In the multiplier module shonm in figure 3.19 a zero must precede the LSB of

the coefficient into the multiplier or the recoding for first module will be faulty-. In

DFIRST this data signal is the MSB of the previous word so a s m d modification to

the recoding stage which gates this signal off at the correct time is required.

For a DFIRST multiplier the decimal point on the coefficient is placed just to

the right of the coefficient sign bit. If the multiplier module shom in 3.19 is used as

the final stage the decimai point is left of the MSB. so in the hd stage the product

output need only be right shifted by one bit to obtain the desired product. The

nor gate which controls the operation of the right shift BL-ATCH is replaced by an

inverter.

The resulting Latency for the modified DFIRST version is 3CWL/'Z + 1 from the

amika1 of the LSBs of the inputs to the generation of the LSB of the product.

3.11 FIRST Multiplier

The original FIRST multiplier designed by Denyer and Renshaw PR851 is a redun-

dant radix four recoded coefficient multiplier. The primaxy difference between the

L o n and FIRST multipliers Lies in the partial product formation stage. For Lyon's

multiplier the three coefficient bits yi. yi-1) are recoded into three gating sig-

nal': controlling the one time and two times products as well as the sign of the partial

~ ~ r o (l t i (- i . 1 1 1 the FIRST multiplier the three coefficient bits and the two data signals

art. ~ ~ i t > \ (n < I iiito a single block w-hich generates one of the following elements (X . S.

O. iii~i S i i i d riot 2S). If the partial product is negative the carry input of the partial

p t - d w wiitiier is tied high. The other major difference lies in the mamer in which

1 l i t * lmri i d 1)il~tluct from one stage is passed on to the next stage. For Lyon's rnulti-

1) l i t b l - I l i t - Imri in1 product summation is right shifted bq- two bits and passed on to the

S I I I I l In the FIRST multiplier the un-modified partial product summation.

é i &w t*si<*iision signal and a control signal are passed on to the ne13 stage. The

w i i r d 4giial selects either the partial product or the sign extension signal for use in

t lit* ~) i l i ' t io l procluct summation of the next stage. The FIRST multiplier is described

i i i [U R S I . Tlie latency of this multiplier is 3TCWL/2+2.

3.12 Radix Four DFIRST multiplier

The prima. multiplier type used in the DFIRST language uses a non-redundant

radix four recoding on the coefficient. So for all stages. except the final stage. two

bits of coefficient yi and y i + ~ are recoded into the digit set 0.1,2.3. In the final

stage the last two bits of the coefficient are recoded into the set 0.1 .-2.-1. This form

Figure 3.20: Radix Four DFIRST Intemal Multiplier Section

of multiplier is not generally used because of the 3X product needed in al1 stages

except the last. In order to f o m this pa+rtiai product an additional adder is required.

however in bit-serial the size of this adder is relative- small. The hardware for ail

stages but the last is shown in figure 3.20.

The two coefficient bits for this stage are loaded at two difEerent times. The low

bit of the radis four digit is loaded at time 3i and the high bit is loaded at

3 i + l . This is possible because the high bit used in conjunction with the 2S

signal. is not needed until time 3i+2. The two coefficient bits are valid at time

t ime

data

:3i+l

and 3i+2 respectively. These two signais are used as gating signals for the S and

-2X signals. If the low bit is on then S is enabled and if the high bit is on then the

ZS signal is enabled. These two products are summed together at time 3i+l. nith

PPSI
' + .

PPSO

SI, . I

Figure 3.21: Radix Four Bit-Serid Final hIultipLer Stage

a zero being inserted in the LSB of the 2S line at time 3i+ 1. This partial product

is delayed and passed on to the partid product summer a t time 3i+2 The partial

product summation is right shifted by two bits and passed on to the nest stage for

use in the next partial product summation. Tii the first stage the partial product

summat ion input is grounded and ail input signds (control-data and coefficient) are

valid at time reference zero.

The final radix four stage is responsible for the sign bit of the coefficient and

oui'; needs to right shift the product generated by one bit instead of two to match

DFIRST precision requirements. The final stage of this multiplier is shown in figure

5.21. If the low bit of the digit is on then the partial product for this stage is either

1 or -1 depending on the value of the high bit. If onlp the high bit is set then the

partial product is X. If the hi& bit is set then the partial product is negated and the

cany input of the partial product stage is tied hi& (cornpiement and add one). If

neither bit is set then the partial product for this stage is zero. The final summation

is right shifted by one bit. The overd latency for this multiplier is 3CWL/-Z+l.

3.13 Radix Eight DFIRST Multiplier

For a radix eight non-redundant coefficient recoding it is necessary to recode each

three bits of coefficient (yi. Yi+i. into a single d u e . For a non-redundant recod-

ing each t hree bits of coefficient would be converted into one of the set 0.1 .'1.3..L.5.6.;

where yi is weighted by I. Yi+, is weighted by '1 and yi+z is weighted by 4. For the

final stage containhg the sign bit of the coefficient the weighting for yi+, is 4. this

results in a digit set of 0.1.2.3.-1.-2.-3.4 for the final multiplier section. For radis

eight recoding only CWL/3 separate partial products are fonned but the hardware

complexity to generate each partial product is higher than in lower radis multipliers.

-4 radix eight non-redundant recoded multiplier module is shown in figure 3.22.

This multiplier module is very similar to the non-redundant radix four multiplier

module from section 3.20. In this module three coefficient bits are stored as gating

sipals in the partial product formation stage. and the partial product from this

stage rnust be right shifted by three bits to âlign this product for summation in

the following stage. A 1S signal is required to generate the partial product which

means that the data shifted ieft by two bits is needed. For the first stage the partial

product summation input signal is tied Iow. resulting in one less adder for the overd

multiplier. In the final stage the 1X product is subtracted instead of added in the

Figure 3.32: Radix Eight DFIRST Multiplier Section

partial product formation stage. This is done by complementing the 9(product Line

and setting the c m y input signai high on the LX + IY adder. The final stage dso

only right shifts the hal product by two bits in order to conform to the DFIRST

convent ions for decimal point placement. The result ing latency for t his m d t iplier is

3.14 Evaluation of Bit-Serial DFIRST multipliers

To select which bit-serial multiplier implementation to use the size of the multiplier.

the latency and the ctitical path within the multiplier must be considered. Each of

the different multiplier implementations eshibit different charactenstics for each of

these parameters. In this section the performance of these mdtipliers is evaluated.

The TC irnplement at ion and Lyon's implementation of the multiplier are included

only for cornparison reasons and are not a part of the DFIRST language.

3.14.1 Hardware Complexity

One important characteristic of any operator is the integrated circuit area required

to perform the operation. The size of DFIRST multipliers is measured in numbea

of elements such as delays. blatches, adders and rasdom Iogic gates. For a generic

implementation technology it is difficult to estirnate the relative sizes for each corn-

ponent. In order to get some rneasure for the size of random logic gates the number

of gate inputs excluding inversions is used as an estimate for the additional gate

area. The CWL parameterized size estimates foc each of the bit-serial multiplier

implementations are shom in table 3.4. To better understand the size relationships

Table i3.4: Hardware Complexity for various Bit-SeriaI Multipliers

of the different mdtipliers, the gate count can be converted to LSI logic [Log861 gate

equivalents. Lo this technology a DFF is *5 gates. a BLATCH is S gates. bit-serial

Radtv S

IOCwL/9
4CWL/:3

CWL
IXWL/S
4CWL

adders are 1.5 gates and each two gate inputs is 1 gate equivalent . The information

Resource

Delays
Blatches
Adders

Gate Inputs
LSI Gates

in this table does not include the slight modifications to hardware complexity due

FIRST
13CWL/2
4CWL/2

to small changes in the first and last multiplier sections as these are insignificant as

Latency

-
TC

5CUiL
3CWL
C\VL

ICWL
5TCWL

Radix4
8CWL/2
3CWLI'L

the C WL becomes large. Also included in the table is the latency for each muit iplier

Lyon

8CWL/2
4CWL/Z
CWL/3

15CWLJ2
4SCWZ

3CWL/2+2

implementation.

The TC multiplier has the highest latency and does not exhibit significant hard-

2CWL 3CWL/2+L 1 4CCVL/%+l

CWL/?
26CWL/2
63CWL

ware savings to warrant the extra latency when compared to the other multipliers. Of

the radix four multipliers exhibit ing a Iatency proportional to 3CWLf2 the FIRST

3CWL/2+l

Ci WL
- TCWLJZ

49CWL

multiplier is clearly the largest. It is Iarger than Lyon's implementation and larger

than the DFIRST radix four multiplier. The non-redundant multipliers use twice

as man- adder elements but fewer BLATCHes and fewer random gate inputs. The

radix Y implementation has a s m d e r latency than the radis four recoded multiplier

implementations and uses fewer hardware resources than the radix four FIRST mul-

tiplier. The penalty for t hese advantages is the critical path of this multipier when

compared to the other implementations.

1 Resource 1 TC 1 Lyon 1 FIRST 1 Radix 1 1 Radix S 1

- - - - - - - -

Table 3.5: Bit-Serial Multiplier Critical Paths

3.14.2 Critical Path

The critical path of a digital logic circuit defines the longest logical d e l - path be-

t mwi wgist ers or D-type Bip-ffops. This is a very important parameter in logic

r IV-ici1 1 WC-a iisr it dictates the maximum clock frequency at which a circuit will func-

1 i o r i t-trrîv-t 1'. The shorter the critical path the higher the potentiai maximum clock

i l - 1 - l i t * crit ical path for each of the four bit-serial rnultipliers discussed in the

~ I - ~ T ~ U I I . - tac-t ions is presented in table 3.5. The critical paths are measured in terms

id I l i t . I I iasi I tiiim number of adders. rntcxes and random gates between latching ele-

iiit-III.. ' l l i î ~ I~racketed numbers indicate alternate paths which may be the critical

p i t i I I i I ~ y > t * i ~ (l i i i g on the technolo= of implementation. AU random gates are treated

~ V ~ I I ~ 1 1 ~ - rcbgarclless of type or number of inputs and inverters are not included as t hey

coi1 i y p i d ly Ile absorbed into other components. No provision for loading or routing

dela!- is i nrluded as t hese are technology and implementation dependent parameters.

Tliese t wo components of the critical path should be relatively small since each ele-

ment drives only one or two loads and the bit-serial nature of the data path should

yield short wiring delays.

PPSO

Figure 3.23: Digit-Serial (W='L) DFIRST Mdtiplier Module

3.15 Digit - Serial multiplier

For the DFIRST digit-serial multiplier a non-redundant radis four recoding scheme

was selected for it's reduced number of partial products and it's simple structure.

The hardware for a W=2 multiplier module is s h o w in figure 3-23.

The format of this multiplier is very simiiar to the non-redundant radis four

multiplier described in section 3.12 except that ail data operations axe on W=2

digits. The trvo bits of coefficient storage needed for partial product formation in

t his section are loaded on the same clock cycle instead of the staggered load used

in the bit-serial version. AU intemal data path and coefficient path shift registers

are W bits wide. The partial product is formed by the addition of ttvo radix tour

digits representing X and 2X. The X signal is derived fkom the X tap of the data

d e l - register. The low bit of the 2X signal is the high bit of the 2X data deIay tap

gounded at the LSD time to place a zero in the LSB of the 2X signal. The high bit

of the 2X signal is the low bit of the S data d e l . The partial product adder is a W

bit adder and the output from this adder is delayed for m a t i o n nrith the partial

product input. The partial product summation is right shifted by two bits to align

the partial product output for use in the next stage. The rïght shift element only

has a iatency of two instead of the latency three shifter needed in bit-serial. This

reduced shifter latency leads to a multiplier module which only requires a 2 bit shift

register for the data and control delay chains. The overd Iatency of this multiplier

is CWLfl instead of the 3CWL/%+1 latency required for the bit-serial version.

For the first stage of a CWL bit multiplier the partial product input is grounded.

In the final stage the two most significant coefficient bits are recoded into the set

0.1 .-1.2 and the final partial product must be right shifted by only one bit instead

of two as for the other modules in the multiplier.

To extend the digit width of this multiplier beyond 7 all of the data inputs and

outputs from the module must be W bits wide and the interna1 partial product for-

mation. partid product summation and right shift elements must be W bits wide.

The only major change cornes in the coefficient storage portion of the multiplier.

Only two bits of coefficient are required for each multiplier module but the number

of coefficient bits arriving each dock cycle is greater than two for CLv > 2. In order

to latch the coefficients into the correct places in the multiplier a two stage Iatching

PPSI PPSO

Figure 3.24: Digit-Serial Multiplier Section

scheme is used. The latches which store the coefficients within each multiplier stage

are still present but their inputs corne Erom another Iatching stage instead of a de-

layed coefficient input signal. The pre-latching stage is effectively a serid to parauel

converter which converts the digit-serial input word to a CWL long paraliel output

word. -4 srnall difference occurs on the first two bits of parallel output. these two

bits can be connected directly to the multiplier coefficient input Lines. -\ W bit wide

non-redundant radix four multiplier module is s h o w in figure :3.24.

3.15.1 DFIRST

Each of the different DFIRST multipliers can be accessed using the foilowing s ~ t a . s :

MULT [type,CUL] (cin -> cout) data,coeff -> product,deldata

The CHZ pasmeter selects the number of coefficient bits in the multiplier. The

type parameter selects which mdtiplier implementation to use. If type=O t hen the

original FIRST multiplier described in section 3.1 1 is used. if type=l then the non-

redundant radix four multiplier desmbed in section 3.12 is used or if t-ype=? then

the non-redundant radix eight multiplier descrïbed in section 3.13 is used. If' type=1

the non-redundant radix four bit-serial multiplier is used or the arbitraq digit width

multiplier described in section 3.15 is used. The digit width of the multiplier in t his

case is determined by the digit width of the data signals connected to the primitive.

the digit width of each data input or output signal must be the same.

If type is two then the CWL must be a multiple of three(radix eight recoding)

otherwise the CWL must be even(radis four recoding). The three input signals cin.

data and coeff must be valid at the same bit time. The three output signals cout.

product and deldata representing the output control signal. product and delayed input

data respectively aJ.I have the same l a t e n -

3.16 Parallel coefficient Multipliers

The multipliers previously described accept both the coefficient and the data input

in serial format. In some cases it may be more appropriate to accept the coefficient

input in the pardel signal format. ParaHel coefficient inputs can be used effectively

when a multiplier is shared between several different multiplication operations. where

the different coefficient values are fixed at design time [NT91. Joh9%]. The different

coefficients can be stored in a parallel look up table and provided as pardel coefficient

inputs to the multiplier when needed.

Figure 3.25: Parallel Coefficient DFIRST Multiplier Section

The conversion of the serial coefficient multiplier to the parallel coefficient mul-

tiplier is done by removing the serial coefficient delays and providing one esternal

parallel input for each coefficient bit of each multiplier section. The parailel coeffi-

cient multiplier is derived Lom the non-redundant radiv four multiplier described in

section 3.12. The resulting hardware for a pardel coefficient multiplier module is

shown in figure 3.25.

The latency for this pardel coefficient multiplier is the same as the serial coef-

ficient version. 3*CWL/2 +1 for the bit-serial part and CWLfl for the digit serid

parts. Each bit of the pardel coefficient can be set at time zero. the coefficient

storage section of the multiplier tvill load the coefficient bits as needed.

3.16.1 DFIRST

The DFIRST c d to instantiate a paraUe1 coeffic

PMULT [CUL] (cin->cout) data, coef f 0 THROI

-Ali of the input signals to the multipIier mur

one multiplier latency later each of the three out

of the multiplier is dictated by the digit width <

to the multiplier. each of these signds must ha\

significant bit of the coefficient is coeff0.

3.16.2 Extended Multiply

The multipliers discussed to this point all irnple~

data signal by some number between plus and

number larger than one is required then a left sJ

the data path before the fractional multiply F

latency for the multiplication is SXCWL/2 + 2 t

can be obtained by incorporating the left shift <

This is one way to make use of the negative la

using left &ift operators as discussed in section

multiply for an arbitra- decimal point placemei

two portions. The fist portion, or upper word. is

standard serial multiplier primitive and the secol

from the bits thrown away by the right shift op

product summation. Each of these bits are put t

Figure 3-26: Extended Multiplier Section

aiid t II<- alqwopriate bit of this data is used as the LSB of the output. The multiplier

I ~ l w k i o gc.iierate and accumulate both the upper and lower products is shown in

Tiie first stage of this multiplier was modified to remove the partial product

suniniat.ion stage cornpletely and pass the partial product for the first stage direct-

to the right shift and least significant word accumulation stage. The removal of the

pipelining stage speeds up the multiplier by one dock cycle.

Io the final multiplier stage the product is not right shifted by one bit as in other

bit-serial multipliers. This effectively left shifts the the product corning out of the

Figure 3-27: Final Product Generation Element for DFIRST Extended Multiply

extended multiplier by one bit when compâred to the other bit-serial rnultipliers. In

place of the shifting component a DFF is used to pipeline the most significant word

output. In order to combine the LSW and MSW into the final product output one

format ting stage is needed as shown in figure 3-27.

The output from the FBIUS (four to one mus) is used to select either the LSW

or the MSW .\;O form the finai product. The cmsb signal indicates the LSB time for

the MSW output from the multiplier. The clsb signal indicates the valid time for

the bit of output from the multiplier which is to form the LSB of the final product.

The time for this signai is 3*CWL/-shift. From the arrival of the clsb signal until

the cmsb signal is valid the LSW output forms the product for the multiplier. after

the arrival of the cmsb signal the MSW output forrns the output from the multiplier.

-4 DFF element is added at the multiplexor output to pipeline the operator. In

order to Save some hardware the LVFORM portion of the multiplier can be discarded

if the left shift value is one. because the MSW output from the multiplier already

contains a left shift by one. The &al latency for the extended multiplier primitive

is 3'CWL/t?+l-shift where the shift value is a positive non-zero integer. The data

signal on the input to the extended rnultiply requires 2+shift most significant end

sign extensions or the product will ovedow,

3.16.3 DFIRST

The DFIRST c d to an extended multiply primitive is:

MUL'TEX ECWL . shi f t] (CO->tout) data. coeff -> product . deldata

The CWL parameter indicates the CWL for the multiplier and must be an even

integer as in aii other radix four multiplier DFIRST multipliers. All of the multiplier

inputs must be valid at the same clock cycle and the cout and product outputs are

generated :IxCWL/2-shift+l dock - c l e s later. The deldata output has a latency of

3"CLi7L/'Z-1. This primitive is not amilable in digit-serial.

3.16.4 Constant Multiplication

Ml previously discussed DFIRST multiplier implementations perform the multipli-

cation of an arbitrary data signal by an arbitrmy coefficient. In many instances

multiplications by a fixed coefficient are required [JacSg. 'IT91. Johg"]. here a gen-

eral coefficient multiplier codd be used with the coefficient input being set to the

desired constant but a smaller fixed coefficient multiplier could also be used.

The fixed coeEcient multiplier uses a series of shifts and add/subtract operat ions

to obtain the final product. For this multiplication a Canonic Signed Digit (CSD)

[LELSl] recoding scheme is used on the coefficient. In CSD each bit of a number is

eit her positive or negative so a variety of different implementations are possible for

most integers. In practice a CSD nurnber has at most half of the CWL bits set and

the other hall are zero. With only half of the bits set. at most. o d y half as many

adders are required to accumulate the final product.

To generate a fked coefficient multiplier three different pieces of information are

needed. the precision or CwL of the multiplier and two constants representing the

CSD value of the coefficient for the multiplication. The coefficient is broken d o m

into a d u e portion which indicates which bits of the coefficient are set and a sign

portion which indicates which set bits are negative. The strategy to implement the

multiplication is to add or subtract the data signal fiom the accumdated partial

product according to the coefficient being implemented. The result of each addi-

tion/subtraction operation is rïght shifted to align the adder output for use with the

next data input. The resdting hardware for a 15/33 and a 27/64 constant multi-

plication is shoun in figure 3.28. The 15/32 constant is implemented as (16-1)/32

and the 27/64 constant is implemented as (3-1-11/64. The SHIFTMCLT imple-

rnentation of 15/32 can be mitten as ((din >> 4) + din) >> 1. The SHIFThKïLT

implementation of 27/64 can be written as ((((din >> 3) + d i n) >> 3) + din) >> 1.

3.16.5 DFIRST

The DFIRST c d to a constant multiplication primitive is:

SHIFTMITtT [CUL, value, sign] (cin -> cout) data -> product , d e l

The CWL parameter sets the number of bits present in the Kxed coefficient. the

value is an unsigned integer representing which bits are set in the coefficient and

the sign is an unsigned integer representing which coefficient bits are negative. The

effective value for the coefficient can be determined using equation 3.4:

IH/ PROD

Figure 3.28: Bit-Seriai Constant Mult ipliers (a) 15/32 (b) 27/64

where only bits present in value are used in sign and sign < ualue.

For the SHIFTMULT primitive there must be at least one positive bit in the

fked coefficient. This restriction forces at least one input on an adder to be positive.

since both inputs on a single adder cannot be subtracted. The cin signal and the

data signal are valid at the same bit time and the latency for the three output signals

is the CWL plus the number of bits which are set in the coefficient. The DFIRST

calls representing the two multipliers shown in figure 3-28 are:

SHIFTMTLT [5,17,11 (C O) din -> prod , deldata

SHIFTMTLT [6,37,5] (C O) din -> prod ,deldata

The hardware for a SHIFTMVLT operator can be generated using the DFIRST

primitives for data delays. additions and right shifting. but the SHIFTMULT prim-

itive is much simpler to use. The circuit designer must only select which constants

to use and not be concerned with the exact details of each implementation. The

SHIFTMULT primitive is oniy available in bit-serial.

3.17 Controlgenerator

The CONTROLGENERATOR DFIRST primitive. generates all control signais re-

quired within a given DFIRST design and is present in ail DFIRST designs. The

commands which make up a CONTROLGENER.4TOR are CYCLES and EVENTs.

The CYCLE command takes a single parameter which describes the division factor

by which the previous CYCLE output is divided. The first CYCLE output is a data

framing signal which is high for o d y one cbck cycle per period of the CYCLE (one

data word). .U subsequent CYCLE commands are steering control signds which are

high or low for one or more fdI data words. Each EVENT command s~chronizes

one input signal to one cycle in the CONTROLGEWMTOR. Once an EVENT

is detected on the input signal the synchronized output control signal appears as

one full cycle of the CYCLE command just previous to the EVENT command. The

first output from a CONTROLGENERATOR is retained from the FIRST Ianguage

but is not used in DFIRST. this signal is connected to W. The instantiation of a

DFIRST CONTROLGENER-4TOR is shown belon.. The resulting control signals

are shown in figure 3.29. The hardware implernentation of the DFIRST CONTRO L-

GENERATOR is f d y discussed in [NT91].

CONTROLGENERATOR (ein -> NC, C O , cOO, C I O , eout)

CYCLE Ci61

CYCLE [2]

CYCLE [21

EVENT

ENDCONTROLGENERATOR

3.18 Other DFIRST Primitives

The DFIRST language also includes a division (DIVIDE) operator. a square-root

operator (SQRT). conditional operators which compare to serid signals and generate

steering logic depending on the result of the cornparison and an ORDER primitive

Figure 3.29: Control Signals from Sample CONTROLGENER.4TOR

w11 id 1 ?;or1 5 two serial input signals into the larger and srnalier values. Each of these

pritiiil i ix- is only available in the bit-serial format and axe described in [GraSJa]

1 I l 1 SI ~ j r i i i i i t ives are parameterized in terms of precision. digit-widt h and data

IVUI-~ l l t v ici I i . The DFIRST language primitives include right and left shifters. adders.

. i i I I I nii-i w-3. parallel to serial and serid to pardel converters and multipliers. Each

~)riiiii t il-(* ib Imilt up from simple logic gates. multiplexors. BLATCHes and delay

~ ~ (~ I I I ~ ~ I I I F. Nore complex primitives. such as multipliers. are also built up from the

si i i al 1c.i srria 1 adder and shifter components. The digit-serial multiplier uses a non-

rctliiiiclaiit radis four recoding on the coefficient bits to reduce circuit area and latency

aiid is available in both serial and pardel coeEcient versions. The non-redundant

radis eight multiplier. the EXMULT (extended d-marnic range coefficients) and the

CSD fised coefficient SHIFTMULT primitives are oniy avaiiable in the bit-serial

(W=l) form.

Chapter 4

TRANS Hardware Compiler

-4 high level hardware description language is useful for descrîbing circuits and per-

fonning high level circuit simulations but one more step is required to generate a ha1

implementation. The high level language must be converted to a lower level gate

or transistor level format to implement a high level circuit description on a real de-

vice. In this chapter the TRANS hardware compiler is discussed as it pertains to the

D FIRST register t ransfer level language. The TRANS compiler converts a D FIRST

netlist into a format suitable for use with full custom. semi-custom or FPGA devices.

In this chapter the netlist transformations and reductions most appropriate for the

bit-serial and digit-serial hardwaxe description language will be discussed. The out-

put formats used rill concentrate on the SILINS [);IL911 and ACTEL [ACT891

FPGA devices.

4.1 ASIC Architectures

In order to convert a high level Ianguage to an implementation in an application spe-

cific integrated circuit it is important to understand the nature of the implementation

device. Each implementat ion technology evhibi ts different s t rengt hs and weaknesses

which must be exploited or avoided in order to obtain a good implementation. In

this section the architectural features of SILINS and ACTEL field programmable

gate arrays wiil be discussed. In part icular a short overview of technologv resources

for internd logic. device input-output and routing wÏU be presented. The abilities of

vendor provided software wiil dso be discussed in order to reveal what is required

from TR4NS to obtain a more efficient circuit in each technology

SILINX FPGAs use static RAM to store the configuration for each routing eiement

and codgurable block within the device. The configuration information for a circuit

can be loaded from a PC serial port or on power-up fiom serial or paralle1 ROSIS

[SIL94]. Once the device is configured. the functionality of the FPGA does not

change until a new program is loaded. The reconfigurability of XILINS FPGAs

makes them very usefui for protetyping digital circuits and for use in applications

where the requirements of the -\SIC may change over tirne. The routing resources

[SIL94] are divided into vertical and horizontal routing channels with a switching

mat rix being used to connect signals together where the routing channels cross. Local

neares t neighbor connections are also present .

The configurable logic elements are divided into two categories. Input/Output

Blocks (IOBs) and Configurable Logic Blocks (CLBs). The IOBs are used to corn-

municate with devices external to the XILINX FPGA and the CLBS are used to

perform interna1 digital logic functions. The form for a 1000 series [OB is shown in

figure 1.1. This block is configurable as either an input. output or bidirectional 110

pad. in addition each input or output signal can be latched using an edge sensitive

DFF as needed.

The 4000 series CLB is a 9 input. 4 output logic block which contains 3 Look-

Up-Tables (LUT) and two DFFs. The 3000 series CLB can perform two a r b i t r q

Figure 4.1: XILMX I/O Block Resources

functions of four variables or a single five input function. A very useful feature

present in the 4000 series CLB is the ability to convert the two 4 input L t T s into

RAM. In this way each CLB can implemeot a 16x2 or a 32x1 RAM element. The

resources contained in a 4000 series CLB are shona in figure 4.2.

XILINX Software

The XILINS implementation software converts a netlist specified in terms of generic

logic elements to a final implementation. The job of mapping generic logic elements

t o CLBs is autornâtically performed by XILINX tools. Recentiy other CLB mapping

algorithms [Ne0911 have performed better than the XILINS provided software but

the CLB mapping problern is not addressed within TRANS. The XILINX software

also performs the placement and routing [XILSI] operation on the CLBs and IOBs

which make up a design. After this step the circuit is ready to load onto the device

and be tested in a physical circuit.

The SILINX software performs most of the operations necessary to obtain a good

Figure 4.2: Sirnplified Block Diagram of a 4000 Series SILINS CLB

circuit irnplementation from a generic gate level netlist . TRANS performs some

useful circuit opt imizat ions to improve hardware efficiency in SILI-U'S devices. The

redundant hardware removal operation is presented in section 4.5. better utilkation

of the 1/0 ring DFFs is discussed in section 4.6 and the use of the 1000 series RAM

to reduce shift register size is discussed in section 4 - 6 2

4.1.2 ACTEL FPGAs

ACTE L FPG As are one t ime programmable devices which use ant i-fuse technol-

ogy [ACT89]. An anti-fuse is a component which before programming e'diibits a

low resistance and can be 'blown' to become an open circuit. In an unprogramrned

ACTEL device dl the anti-fuses are present and the circuit is implemented by blow-

ing appropriate elements to create the interconnections desired. The interna1 Logic

elements are multiplexor based cells and the I/O pads can be configured to be in-

Figure -2.3: ACTEL S-module

-

-

put/outputs or bidirectional pads with optional level sensitive latches for input and

output signals.

CLIC

m
DO1

D l 0

Dl1
S 1 SO

Two different types of ceus are present in the ACTEL [-4CT89I technolog-. Half

of the cells are C-modules and the other half are sequential ceUs or S-modules. The

, -
CLR

S-module combines a multiplexor t-ype cell with a Iatching element (level or edge

2-

sensitive) as shown in figure 4.3.

4.1.3 ACTEL Software

A

The ACTEL software performs the placement and routing operation but the input

net Iist must be in ACTEL specific ceils. There is no method of converting a circuit

specified in generic logic to a circuit which uses .ACTEL specific cells other than as a

one to one mapping. This operation is performed by the hardware mapping facility

of TRANS as explained in section 4.6. Another operation which can be performed to

reduce circuit size on -4CTEL devices is to remove redundant hardware as described

OUT -

in section 4.5.

4.2 TRANS overview

The TR-4NS [GraSlc] hardwaxe compiler must perforrn several operations upon a

DFIRST netlist in order to obtain an efficient implementation in the target tech-

nology. These transformations begin with the sy-nthesis of the RTL components of

the DFIRST language into a generic gate Ievel circuit containhg only simpIe gates

(AND. OR. NAND. etc.). D-type Bipflops and inputfoutput pads. Each of the

DFIRST primitives is compiled (as discussed in chapter 3) from gate level compo-

nents and larger primitives provided in a technology I i b r q . The DFIRST library

contains elements ranging from BLATCHes and bit-serial adders to the bit-serial

multiplier sections presented in section 3.8.

The generic gate level implementations generated by the assernbly portion of

TR-ANS are not suitable for use with every output technolog-. Each implementation

device whether it be Ml custom. semi-tustom or an FPGA has a ceil libraxy which

must be used to construct each circuit. The ce11 library can be a set of rnulti-gate

elements such as two to one multiplexors as in the case of ACTEL FPGAs. or each

technology element can be a look up table (LUT) as in NILINX FPGAs. In either

case the gene& logic elements must be converted to technology specific elements

in order to obtain a more efficient irnplementation. The SILINS LUT mapping

procedure is performed by the .XILIWX software suppiied by XILINS. but a ce11

based mapper is needed for the ACTEL architectures. In order to make the TRANS

mapping operation as flexible as possible a d e based systern is used which loads

an e-xternal d e data base file to control the mapping procedure. This rule file is

generated once for each technology and can be changed in the light of technology

updates or new ceii iibranes.

Another mapping which can be used for serid circuits generated by the DFIRST

language. is RAM mapping. In some technologies. such as SILINX 1000 series

FPCAs. it is possible to implement RAM on the FPGA [XIL94]. The XILINS RAM

is cornpIeteIy configurabie in terms of R.4M depth and RAM width. Lking this on-

chip RA11 together with an addressing unit. an area efficient shift register can be

i i i i 1 ~ lci i ici1 t PCI [SIL94] . In order to further reduce implementation size the addressing

i i i i i i - of diflerent serial RAMs can be shared. In order to do this effectively size

i-I i t ~ i a i i.- i i i t lie target l i b r q for serid R-4Ms and addressing units is needed.

S t * \ t n r i i l ci1 lier netlist utilities are available within TRAWS including. netlist flat-

i t8 i i i iiz t r t - i i i o i r ail hierarchical elements. removing redundant hardware elements

t t i rtmtliit-t- r - i r r i i i t size. performing a gate count to estimate size. and computing the

(-ri1 i t - i t l I > i t t II lrngth of a circuit. The delay calcuiation operation requires a data

f i I f * IV l iidr r lvscri bes the expected delay time for each technology element wit h re-

s p w t ~ i i t put loading. The overd flow of the TRANS compiler and the additional

i i i î w i i a i i o i i required to perform each step in the pcocess is shown in figure 4.4.

4.3 Technology Files

Eacli supported T R A M input or output language format has some technology spe-

cific primitives. For the DFIRST language t hese primitives include B LATCHes.

FAD Ds. and bit-serial multiplier sections. For the ACTEL FPG A technology the

primitives are multi-gate cells and special purpose input/output pads. Each of these

technology specific components must be converted to a format which can be used in

DFIRST Cell H RTL Assembler

' Redundant Hardware
\

Removal
\ J

RAM Irnplementation 1 SirSIlatabase

Figure 4.4: TRANS Hardware Compiler Flow Diagram

*
f \

Path Delay
. Information CeU Delay vs.

Loading Database
-

\ 1

Delay Calculatnr

E'CB Layout
information

f

r 3
Board Fie

W.

\ J

Board Mapper

MUX ((A0 A l SE) (O)) @ 1 muxJog

ADDER ((A B C) (S CO)) @ 2 adder.Iog

I N D E ((Dm CLR) (Q)) indn.log

ouTDf.T= ((D CLK) (QI- 1 0utdffJog

Figure 1.5: Sample TRAM Technologv File

ot her technologies. This conversion can be performed using technology files or 'tech'

files.

A tech file is used to define several characteristics for each primitive in the tech-

nology database. A tech file is used to defbe the pinout for any element in the

Library including direction (input/output) and whether the pin is connected to an

[/O pad. making that signal external to an IC. A tech file also defines the gate count

for each macro in the library which can be used to estimate the size of a circuit in

t hat technology. Finaiiy the tech file provides the location of a file where a netlist de-

scribing the function of each l i b r q element can be found. This netlist contains only

generic logic elements. -4 sampie technology file describing a 2-1 Multiplexor (MUS)

element. a full adder (ADDER) and two chip If0 ceLls (INDFF and OUTDFF) is

shown in figure 4.5.

The signais contained in the first set of brackets ore macro inputs and the signals

in the second set of brackets are output signds. A ':EXTT modifier on a signal is

used to identifi. that signal as being c o ~ e c t e d to an I/O pad. The number foUowing

the C& symbol. if present. defines the gate count for that Iibrary element and can be

any integer representing the ce11 count or area of the primitive. The cell count for any

primitive defaults to zero. The string at the end of each macro description identifies

a file ivhich contains a description of the cell using ody generic logic elernents.

4.4 Netlist Flattening

After reading in a DFIRST file the circuit is an interconnection of user defined

operat ors, DFIRST technology specsc elements and generic logic element S. The

operation of netiïst flattening converts a circuit containhg several levels of hierarchy

into a circuit which contains o d y generic logic and output l ibraq elements. This

operation removes partitions which were introduced to provide rnoddaxity and malre

the design procedure simpler. After flattening the design optimization steps c m

operate on the whole design resulting in improved performance at each optimization

step.

4.5 Redundant Hardware

One optimization which is suitable for use with any target technolog.. is to remove

a- redundant hardware [C;ra92c] present in the design. redundant hardware often

results during the creation of large circuits in which several levels of hierarchy are

used to partition the design into manageable pieces. -4s well. the assembly of param-

eterized operators. as performed by TRANS. m a - introduce other levels of hierarchy

into the design. These large elements may often have components which are repeated

resulting in rvasted resources.

If two identical components have identicd inputs but output signals which are

connected to different parts of the circuit, one of the elements is redmdant. The

redundant element can be removed and the load(s) which were driven by the removed

part are merged onto the output of the rernaining element . This operat ion increases

the loading on the rernaining component and thus cannot be implemented without

Figure 4.6: Redundant Hardware Removai Operation Saving One DFF

penalty. This loading factor can be controiied through a user defined parameter

(FANOUT) which is used to limit the maximum fanout allowed for aqv node. If

a hardware removai operation results in this b i t being violated the reduction is

aborted and no change is made to the circuit. A hardware reduction operation

which removes one redundant Epflop from the circuit is shown in figure 1.6.

Another f o m of redundant Iogic is loadless logic which occurs when a signal

is generated but is not used. Several of the DFIRST primitives generate several

output signals. If one or more of these signals is not used some loadless hardware is

introduced. TRANS can be directed to remove this form of redundant logic.

4.6 Hardware Mapping

To obtain an efficient implementation. the generic logic used to implement the

DFIRST primitives must be mapped into the ceils avaiiable within a target tech-

nolog-. For the XILINX FPGA this process is carried out by XILINX suppiied

software. However for the ACTEL FPGAs the generic gates of the flattened serial

design must be mapped to a unique set of cells available in the -4CTEL architecture.

This process is carried out using a rule based mapping optirnization [GraEc].

(a) (b)

Figure 4.7: Mapping Source(a) and Target(b) for DFM ACTEL Cell

-4 mapping d e consists of a source logicd arrangement to be found within a de-

sign. and a target irnplementation which is used as a replacement for al1 the hardware

identified as a match to the source arrangement. -4 sample d e is shown in figure 4.7.

In t his example the logic required to implement a two to one multiplexer driving a

D type ûipflop is the source arrangement to be located. Each instance of the source

wvhich is found within the design is replaced by the cell DFM. which is a technologv

specific hardware element. For this example the starting logical arrangement uses

sis ACTEL cells and the mapped hardware uses oniy one ACTEL cell.

The mapping for a fuil adder element into ACTEL logic elements is showvn in

figure 1.S. Here the original logic for the fidi adder is replaced by a F M B ACTEL

ce11 and two inverters to maintain functionôlity Both implementations use four

ACTEL1 cells but the inverters can be more easiiy used in subsequent mapping

operat ions. possi bly f u t her reducing the size of the f d adder implementat ion.

For a mapping d e to be executed an exact match for the source logicd arrange-

ment must be found. This match not only includes functionality but also imple-

mentation style. If the two to one multiplexor from figure 4.7a were implernented in

the design using NAND gates. this reduction mle would fail to execute. To avoid

t his difficulty al1 source arrangements are described in t e m s of non-inverting logical

FALB

Figure 4.8: Source(a) and Target(b) for ACTEL F d Adder hplementation

elements (AND. OR). At the beginning of the mapping procedure a series of rules

are applied which convert inverting logical elements (NAXD. XOR) to tme logical

elements and inverten. Cascaded inverters and dernorgan equivalent circuits are

used to reduce the circuit further. After this process the entire circuit is described in

terms of AXD. OR. XOR and INVERTER logic gates. This circuit can be mapped

effectively using the mapping d e s defined in t ems of these four Iogical elements.

The remainder of the d e file consists of a collection of mapping d e s . The rules

containing the largest amount of logic ase executed before d e s containing smder

logical blocks. Precedence is given to rules which can add additional generic element s

to the circuit. such as the mapping shown in figure 1.8. By adding the additional

generic elements to the circuit early in the mapping procedure the opportunities to

combine this logic into other mapping operations is maximized.

4.6.1 Ceil Interna1 Connections

One difficulty which cm arise when using rule based mapping is the presence of

internaily connected nodes within an otherwise exact match to the source logical

Figiirc 4.9: Source(a) and Target(b) for DFM CeU with hternal Connection

arrii i t y - i t t c * ~ t t . C'oosider the DFM shown in figure 4.9. the interna1 node marked S is

II-(VI t-lu*i\-liw-e in the design and the mapping cannot proceed unless S is regenerated.

I ï ~ r t II(- c - i n - t i i t shown this means performing the mapping as usual and adding one

eAlii i i~ti i i l :\ID gate to drive node X. The oumber of ACTEL cells for this logical

I , l t ~ l i Ironi six before the mapping to two after the mapping shown in figure

i .!). Siiii-<* ii ~riapping which extracts intemal nodes adds additional hardware to the

ci rr-iiii . i t i. possible that the circuit size after mapping to be larger t han the original

c i ri-i i i i &-. 1 f t his occurs no replacement operation is performed leaving the circuit

4.6.2 XILINX Mappings

The Iiardware mapping operation is not needed for XILINX FPGAs since the XIG

INS software aiready performs logic mapping to CLBs. However hardware mapping

may be used to implement some special purpose reductions particular to DFIRST

and SILINS FPGAs. One rnapping which can be used within the XILINS archi-

tecture is to convert logic to a form which uses the clock enable pins available on

DFFs within SILINS CLBs. The BLATCH DFIRST primitive can be implemented

Figure 4.10: Two Bit Shift Register Implemented in one XILINS IOB

directly using a clock enabled flipflop. By doing this. more of the LUT within a

SILINX CLB becomes amilable to implement other logic within the design. This

mapping becornes particularly usefd in the 1000 series devices where the LUT output

and the fip-0op output from a CLB can be used independenth

Another feature which can be exploited using hardware mapping is the DFFs

withia the [/ O ring of XILIN?(FPGAs. Each IOB contains two DFFs which can be

configured as a two bit shift register as shown in figure 4.10. In this configuration

the extemal connection to the pad must be left unconnected at the board level or the

shift register will not function correctly. Since serial designs make extensive use of

shift registers. this feature is usefui for fitting large designs onto a particu1a.r SILIXS

device. The mapping algorit hm h d s two bit shift registen and converts them to the

IOB representation. To control the amount of fipflops mapped into the IO ring the

user specifies how mmy IOBs can be used in this marner. Each such IOB frees up

two CLB DFF elements which can be used for other operations within the circuit.

4.7 RAM mapping

Senal algorithms implemented in DFJRST t-ypicdy contain a large number of shift

registers for variable storage and timing s~chronization. This storage c m be im-

plemented using simple shift register c h a h made up of DFF elements. but a more

efficient means of implementing these registers can be used if serid RAM elements

are available in the target library.

The RAM based implementation of an N bit shift register requires an N bit deep.

1 bit wide RAM, a modulus N counter to control the address of the RAM. and one

final output DFF. During a single dock cycle the data hom one RAM location wiiI

be written to the output Bip-flop. t hen the ne-* input d u e to the shift register wiil

be stored at the same address and the counter controlling the address pins of the

memory d l be incremented. An eight bit shift register implemented using RAAI

and the corresponding timing diagram is shown in figure 4-11.

The first f&ng edge (point 1 in figure 4.11) increments theeight bit counter to an

address value of n. With the address at location n the RAM begins reading the old

data at this location. At the foilowing rising edge (point 2) the data fiom the RAM

is latched into the output DFF element and a neu- input is presented on the DIB-

signal. At this point the RAM is rvriting the new value to location n. overwriting

the old value there. At the next falling edge (point 3) the RAM stops rvriting and

the address is incremented to location n+l and the process repeats.

This irnplementat ion of a shift register uses one N bit deep serial RAM. one output

DFF and one N bit counter which contains h (l) N DFFs and some combinational

logic. Since onl- a single input and output are present on the serid R.\M. no interna1

Eight Bit
Serial RAM

DO

Figure 1.1 1: RAM Implementation of Eight Bit Shift Register with Timing

values of a shift register implemented in this marner are available. Therefore this

rnapping can o d y be used on contiguous (no internd points used) shift registers.

4.7.1 Shared Addressing Units

In many DFIRST circuits several different contiguous Shift Registen (SR) of mrying

lengths may be present. Each of these shift registers may be implemented directly.

with each shift register requiring one RAM and one counter. Boivever a more area

efficient circuit is possible if the addressing units are shared betnreen different RAM

units. Since several different shift register lengths may be present in a given circuit

and a mod N counter must o d y drive N deep mernories. it ma- be necessary to

divide the irnplementation of some SRs into a combination of RAM and DFF shift

registers. For esample a nine bit shift register can be implemented using an 8 bit

Rhbl SR as described in figure 1.1 1 and one additional DFF element .

In order to determine a good address sharing strategy the size of d relevant

components in the implementation technology must be known. For the SILIXS

4000 series FPGAs the sizes for N bit RAMs. N bit DFF shift registers and N bit

counters is shown in table 4.1. üsing this information a good mixture of R-4M SRs.

counters and DFF SRs c m be obtained.

The first step of the RAM mapping algorithm is to go through the circuit. which

must be flattened. to find ail contiguous shift register lengths greater than a designer

specified minimum length (LENGTH). The identified SRs are sorted from the short-

est to the longest. Starting from the shortest SR. two implementations for the SR

are generated. The first implementation uses an N bit serial memory and an N bit

serial RAM. The second implementation uses the Iargest previously generated h1 bit

1 Lendh 1 RAM Addressing Unit 1 Shift Reeister 1

TabIe 4.1: Cost in CLBs for Several Lengths of RAMs.
Addressing Unit s and Shift Registers

addressing unit (M < N). an M bit serial RAM and X-M DFF elements. The size

of the two implementations is compared and the s m d e r of the two is chosen as the

implementation for this SR. The algorithm proceeds in this way until all SRs have

been rnapped. F i n d - the DFFs used to implement the original shift regïster(s) are

removed from the circuit.

One drawback to a shared addressing unit architecture is the potential loading

on each addressing mit. An addressing unit which is driving too mmy serial RAMs

will have a degraded performance in t e m s of the transition times on the addressing

lines. this may have an impact on the critical pat h of the overd circuit. In order

to account for this a user detùied parameter (ADRLOAD) can be used to set the

maximum number of loads for each addressing unit in the circuit. Any RAMs in

excess of this parameter will be driven by a separate addressing unit.

-4nother TRANS parameter (ADRUNIT) is also amilable which dows the user

to control the addressing units used in a design. The user can insert any number and

addressing units of an- length into the circuit. This featw is usefd if the simple

addressing unit ailocation algonthm used by TRA'IS resuits in a Iarger than optimal

design.

4.8 Delay Calculation

The critical path of a synchronous circuit dictates the maximum clodc rate at-which

the circuit wiiI correctly function. The critical path is the maximum DFF to DFF

togic delay time. This logic delay is made up of logic element propagation delays.

routing delays and set-up and hold tirnes on the DFFs. The logic element d e l -

for each component is dependent on the output loading for that element. -4 higher

number of loads mems that a higher total current is required from the driving point.

also each load and wiring element adds capacitance to the output of any element.

The combinat ion of t his load current requirement and the load capacitance dictates

the time required to drive a node to the required state. It is usefd to be able to

estimate the critical path of a circuit at an early stage in order to know the maximum

clock speed for the circuit and where improvements may be made to decrease the

cri t ical pat h lengt h.

To estimate the delay on any path it is necessary to understand the behaviour of

each ce11 in the technology library in terms of the loading to delay time relationship.

Also it is important to account for any routing delays which may be present in the

path. This routing delay time is not known until after the circuit has been fully

placed and routed. This post layout timing is more accurate than the pre-layout

estimate but is still only an estimation. The exact critical path will v a q from device

to device and over temperature and voltage raages. To calculate the delay time for

any path it is necessq to include an estimate of this routing deiay at some operating

point.

The loading factor - delay performance information for a technolog- is imported

into TRANS using a delay file. In this file each Library element is described in t ems

of the input loading factor for each input pin and the delay time relative to load for

eacli otit put pin. The delay fiIe description for an ACTEL three input NAND gate

is c;ito\vii IwIow.

.\II t l i ~ iiilormation pertaining to the NAND3 c d is contained within a set of

I D 1-;if - l i t - i .. TI IC- first intemal set of brackets indicates the loading factor for each input

~j i i i c i r i t II(- r - t 4 l . for the NA'iD3 element each of the three input pins exhibits a loading

f i t (-1 o r - UT m c * . The second set of brackets contains the load performance informat ion

foi. <*ii(-li c i i r t pitt pin from a cell. The curly brackets are used to separate the data

foi- O I I ~ . O I I I put pin from another. since a n a d gate has ody one output there is

oiily oiiv siDi of curly brackets. Each set of square brackets indicates two numbers

r ~ p w s r i i t ing t lie Ioading factor and the corresponding delay time for that output pin

on t lie cell. The loading factors must be in sequence from smdest to largest and

both t h e loading factor and the delay time must be integer values. tn this esample

the iinits for the delay times are tenths of nanoseconds. The delay time for any

loading factor not present in the table is obtained by linear extrapolation.

The delay data for ACTEL devices is avaiIabIe within the ACTEL data sheets

[ACT89]. The delay information includes a statistical measure of the expected rout-

ing delay based on the loading factor but the exact routing delay will be implemen-

tation and device dependent. The delay figure determined using this information is

useful to get an idea of where the criticd path is and to compare the critical pat hs

of different implementat ions.

The TRAM hardware compiler reads in a DFIRST netlist and generates all prim-

itives using generic logic elements as described in Chapter 3. This is then flattened

by TRANS to remove aU hierarchicd levels wit hin the design. -4 series of opt imiza-

tions can be applied to this flattened netlist resulting in a more efficient technology

specific implementat ion.

SILINS devices are N times programmable Field Programmable Gate -4rrays

cont aining Configurable Logic Blocks. 110 B locks a d programmable rout ing re-

sources. Each 4000 series CLB is a nine input. four output block containing two four

input LUTs. one three input LUT and two D t-ype flipflops. Each four input L I T

can be configured as a serial RAM containing 16 one bit memory locations.

ACTEL FPG A s are one time programmable devices containing Cmoddes. S-

modules. programmable I/O pins and anit-hise based programmable connection re-

sources. The Grnodules are single output multiplexor based cells which can imple-

ment one funct ion of 8 variables. and many different functions of C or fewer inputs.

The S-modules are single output cells which can perform one logic function of C

inputs and many different functions of 6 or fewer inputs. This module also contains

a level or edge t riggered Iat ching elernent .

TRANS optimizations include redundant hardwase removd. RAM mapping and

Iogic mapping. The redundant hardware removal optimization removes redundant

logic from a circuit. The RAM mapping optimization converts contiguous shift

register chains (cornmon in digi t-serial designs) to a smdler implementat ion using

a serial RAM. a counter and a single DFF. This optimization can be used with the

XILMX 1000 series technology which can implement serial RAW. The logic mapping

op t imizat ion convert s logic implement ed using generic logic elements t O t echnology

specific logic eiements. This operation is performed using a d e database containing

a set of rules describing a source logical arrangement to be found and a replacement

logical arrangement which leads to a smder implementation in the target technolo~.

Chapter 5

Applications

The DFIRST language has been used to design a variety of different circuits in-

cluding digital filters [GT9'1. NT91], a digital osciilator [Worg'a]. a spread spectnun

receiver/transmitter pair [Pat93] and a free field listening on headphones system

[Bei94]. T hese tools have also been used b - students in graduate level courses [TG951

to design and implement class projects.

In this chapter the implementation of several DFIRST designs will be discussed.

Digital fdter implementations for some common filter structures are presented in sec-

tion 5.1. To generate the DFIRST code for each digital filter the synthesis programs

BITSYX [INT91]. SNAFP [Johg-21. FIRGEN [TGG9->] and DIGIPARSE will be used

to convert a high level digicap [TurS] filter description to a DFIRST description.

These circuits will be used to investigate the reduction and mapping operations of

T R A M for the ACTEL FPGAs and SILLNS 4000 series FPG-4s.

5.1 Digital Filters

Digital f3ters are critical components in many products ranging from CD players

to Cellular telephones. These filters can be broken d o m into two main categories.

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Several

IIR filters will be designed including a %th order bilinear LDI filter [BmZ]. a 7th

order wave digital filter [Fet86] and a custom designed digital füter designed using

Figure -5.1: FLR Filter Structure

the filter optimization program noisegen [Kac95]. A 61 tap FIR filter will also be

designed. Each of t hese filters will be implemented using different s ~ t hesis programs

and then a series of applicable reductions wiH be applied in order to investigate the

performance of the TRANS reduction utiiities on each design.

5.1.1 FIR Filters

Finite Impulse Response filters are used when absolute stability is required or when

linear phase is necessary The main drawback of FIR filters is the high a te r orders

required to implement sharp transitions. low passband ripple or high stop band

attenuation digital tilters [Jac89]. The classicd structure of an FIR filter is shown

in figure .%l. For an N tap FIR filter N-1 registers. and N multipliers are needed to

implement the filter. Each of the multiplier outputs are summed together using N-1

adders.

The FIR filter shonm in figure 5.1 is an arbitrary phase implementation. to guar-

antee Iinear phase it is necessary that the coefficients of the filter be symmetrical or

anti-s-vmmetricd around the center tap [Jac89]. Taking advantage of t his s - i m e t r -

Figure 5.2: Linear Phase FIR filter structure (odd order)

results in the structure shown in figure 5.2. For a symmetrical FIR Nter only N/2

multiplications are necessa- the number of registers and addition operations are

the same as in the generai implementation.

The coefficients. given in appendix A. for this fdter are constant values imple-

menting a k e d transfer function. The coefficients for tbis filter were generated usine

NOMAD [Svi91] and in order to reduce implementation complexity the CSD coeffi-

cient option within NOMAD was used. The coefkient wordlength was selected to

be 12 bits and the number of bits for each coeficient was Limited to 3 bits. the data

wordlength [vas chosen to be 16 bits.

5.1.2 Bilinear LDI Digital Filter

Lossless Discrete Integrator (LDI) [Bru751 fiiters are IIR filters which are developed

by transforming a voltage-current signal flow graph of an analog proto-type ladder

Figure 5.3: 5th Order Bilinear LDI Filter Structure

filter to the digital domain [BruEl. The test filter is the Bilinear LDI filter shown

in figure 5.3. This signal flou. graph requires 9 multiplications. 11 additions and 5

registers to store state variables.

For this digital filter a coefficient wordlenth of only 6 bits will be used and the

data wordlength will be 17 bits.

5.1.3 Wave Digital Filter

Wave filters are another implementation style for IIR iîlters. CVâve füters are derived

by transforming an analog protetype filter to the digital dornain [FetSG]. The sample

filter implemented here is the ït h order wave filter shonm in figure 5.4. This filtering

operation requires ï multiplications, 21 additions and 7 registers.

For this filter the coefficient precision was chosen to be 6 bits and the data

wordlength is 18 bits.

The t liircl [IR digital Mter used to test the mappings and optimizations of TRANS

was h i WC[using NOISEGEN [Kac95] a simulated anneaIing based signal flow graph

op1 iitiiza i i o i i tool. NOISEGEN talres as input a DIGICAP netList describing a fixed

c - i i ~ - l I i ~ - i (v i t digital filter. This starting netiist is optimized using simulated annealing

[I i i i ~ . ! ~ ~ : 1') olbtain a filter which h a , the same tmsfe r hinction but is less

1 <, finit < - ~) i . c & i o n effects within the filter. The flow graph for the -N2' füter

- -
alllrt* -) . - J - i i i f i ,

sensitive

is shotvn

5.2 High Level Synthesis Tools

TC> p t l l w a ~ cb a mite of register transfer level test designs from the filter specifications

~ I I t I1c. prm-ious sections. a variety of high level synthesis tools will be ernployed. High

levd 5)-ritliesis for digital Mters is the process of converting a completely specified

signal flow graph containing N multipliers and P adders to a register transfer level

implementation containing fixed resources which may be shared between the various

operations required to implement the digital filter. In this section the synthesis tools

BITSYW.SNAFU.FIRGEi\i and DIGIPARSE wiil be discussed. The strate0 used

by each CAD tool to synthesize the design will be presented to better understand

the t-ype of circuits which are generated by each synthesis tool.

Figure -5.5: N2 Filter Structure Generated by Noisegen

lated annealing [Kacg51 to search for a solution which eshibits the most desirable

area and t hroughput characterist ics.

SN..\FU o d y uses the LSB/MSB indicating output from the DFIRST control

generator. This signal is delayed as required to generate al1 timing signals required

in the RTL implementation. Multiplexing signals are generated from these delayed

pulses and are used to select the correct data and coefficient input to each shared

operator. The data wordength is dways the user specified value and is not restricted

by the minimum system wordlength of the circuit. Using this control scheme the

number of dock cycles per input sample is always the minimum requimd. One

drawback to the SXAFG control scheme is the long control path delays which are

present if the cycle time for one complete computation is long. SNAFU. like BITSYY.

uses the parallel coefficient serid multiplier together with logic circuit ROMs to

implement m d t iplicat ion by fked coefficient values.

FIRGEN or FIR filter GENerator [TGG95] is a program dedicated to the bit-serial

implementation of FIR filtem. The input to this program is simply the set of co-

efficients required to implement the desired transfer function and word length pa-

rameters to select the data and coefficient wordlengths for the fiiter. No attempt is

made within FIRGEN to share any hardware resources. instead each multiplier is

implemented using a fked CSD recoded SHIFTMULT multiplier.

The process of converting a set of coefficients to a RTL implementation is carried

out in several simple steps. The fvst step is to generate the delay chain of the FIR

filter using Y-1 data wordlength long registers. Then al1 the taps which exhibit the

same coefncient are added together. this reduces the number of mdtipliers in the

circuit by at Ieast two for a symmetrical FlR filter. Finally the output of these

adders are multiplied by the appropriate coefficient and summed together using a

tree of bit-serial adders. The resulting circuit can accept a new input sample every

SWL dock cycles where SWL is the data wordlength selected by the user.

DIGIPARSE is the IIR equivalent of FIRGEN. The input to this program is a

DIGICAP specified netlist for a fixed coefficient digital filter. DIGIP.4RSE then

implements every operator in the graph as is. using CSD recoded SHIFTMLïLTs

to irnplement each multiplication within the filter. Like FIRGEN. the user c m

specify the desired coefficient and data path precisions but the number of clock

cycles required between samples is determined by DIGIPARSE. This time will be

the longest path nithin the filter between an input or state variable and the output

or another state tariable.

5.3 Mapping Performance

To test the hardware mapping operation (section 1.6) of TRANS. the fifth order

bilinear LDI filter. seventh order wave filter and the N2 filter were synthesized using

BITSI'N. SN-4FU and DIGIP.4RSE. The impulse response of all three digital filters

was generated using the DSIM simdator and checked against the ideal impulse re-

sponses generated by DIGICAP. The DSIM impulse response simulations for aII nine

test filters matched the DIGICAP impulse response simulations. This verifies that

each filter example pedoms as expected.

Table -5.1: ACTEL Cell Counts for Test Filters
Before(B) and mer(.!) Hardware Mapping

5.3.1 ACTEL Mapping

1 BITSk'N

The nine sample designs (three flters generated using three different s ~ t h e s i s pro-

grams) were mapped to the -4CTEL technology using TRANS. The gate count (mea-

Filter
LDIS

Wave'i
N-2

SNAFU

sured in ACTEL ceus) before and after hardware mapping and the percentage re-

B
1
1265
M6

A
66'2
690
419

B
1434
1139

DIGIPARSE

duction in cell counts are shown in table 5-1 _

per
45.8
-25.5
O

B
1055
1081
493

The original (before) cell counts from table 5.1 reflect the circuit size without

A 1 per

any mapping or reduction operations. In this case a two to one multiplexor is im-

4
586 782

739
1016 1520 -

plemented using 2 AND gates. one inverter and one OR gate (4 cells) as specified in

per
44.5 '45.5

46.6
48.8

the generic logic library After hardware mapping a two to one multiplexor would

be irnplemented using o d p a single -4CTEL ceil. The percent reductions in circuit

size due to the mapping operation ranged ranged from 41 to 50 percent for ACTEL

5 3
24s

designs.

47.0
49.7

After mapping to the ACTEL technology each design was simdated at the gate

level using LOGSIM [B W94 to verify that the test filters still function correctl. For

al1 the test flters it was found that the LOGSIM gate level simulations matched the

DSIM RTL simulations.

Another aspect of the hardware mapping operation which can be examined is

it's effect on the critical path of each digital filter. The cntical path measured by

1 BITSIX 1 1 DIGIPARSE 1

Table -5.2: -4CTEL Critical Path Lengths (ns)
Before(B) and -4fter(A) Hardwaxe Mapping

TRASS hefore and &ter hardware rnapping and the percentage reduction in the

cric i ra1] n t 11 length is shonm in table -5.2.

I I I t lit. original circuit a two to one multiplexor has three levels of logic and

i1T1 tbr 1 I I (* iiml)ping operation this same function h a only one level. The hardware

i ~ i i i l q ~ i i i c ulwration reduced the critical path length of of the ACTEL designs by 10

I ~ J -3) l)t*rt-tn1it.

5.3.2 RAM Mapper Pedormance

1 1 C I t II(- prrfonnance of the RAM mapping operation each of the nine filter im-

[J I P H w r i t ii t ior ir was translated to the XILINS 4000 series technology. first wit hout

t I I < * I(A 11 iiiapper and then with the R.4M mapper enabled. During the RAM map-

per t raiislation a LEXGTH parameter (section 4-62) of 6 will be used. Here any

coiitiguoiis shift register of length greater than 6 is converted to the RAM imple-

nientation. In each case a more 'optimalo addressing scheme is selected using the

ADRUNT parameter in favor of the addressing unit(s) selected by TRANS. For

both the RAM mapped and RAM unmapped translations the redundant hardware

removal operation was enabled with a F.4NOUT (section 4.5) setting of 10.

t' major factor in the effectiveness of the RAM mapping operation is the selec-

Table -5.3: Test Filter Contiguous Shift Register Lengths

Table -5.4: T R A M Address Allocations and CLB Cost Estimate

DIGIF'ARSE
8x3, 9x3. 10.
12x5. 13. 17x3

t ion of addressing units to control the various serial mernories in the circuit. The

SNAFU -
6x4. 1x4. 9x3.
10x8, 11. 12x4.

LDI-5

contiguous shift register lengths required by each test filter are shoivn in table 5.3.

BITSYN
8. 9. 10: 11. 12x4.
13, 14x3. 16. 17:

Along with the memon- lengths in the circuit. the expected cost for the merno-

irnplementation in CLBs is also shown. The addressing scheme used by TRAXS

is not optimal in ternis of the number of CLBs required to RAM map the register

lengths of each example. The addressing scheme chosen by TRAXS for each filter

and the resulting CLB count estimate is shom in table 5.4.

With the ADRUXIT parameter the user can select which addressing units are

present within the design. Using this feature an improved set of addressing units

can be generated as given in table -5.-5. Comparing table -5.4 and -5.5 shows that a

user generated addressing scheme can reduce the implementation size of the RAhI

rnapping by up to 50 percent. Each of the oine filter implementations behaves

sirnilarly in t his regard.

Table .5.6 compares the RAM mapped (user selected addressing units) circuits

Table *5..5: User Address ,Uocations and CLB Cost Estimate

1 1 BITSYN 1 SNAFU 1 DIGIPARSE 1

DIGIPARSE
8.9.12.1'7=21

6.8 = 8
1.5 = 8

1 Filter 1 FG 1 DFF
I

FG 1 DFF 1 FG 1 DFF 1

SNAFU
6.7.9J0,12.16=31.5

8J1 = 17.3
11.16 = 16

LDI.5
WaveQ

W2

Table 3.6: XILINX 11000 Series RAM Mapping
Percentage Increase in FGs and Percentage Decrease in DFFs

BITSkTu'
8,12.14,18 = % ?
SJ1.13.16 = 23
6-1-5.17=17.*5

to the unmapped circuits. Table -5.6 shows the percentage reduction in the number

of Function Generators (FGs) and the percentage reduction in the number of DFFs

used by the nine sample circuits. This table shows that the number of FGs increases

as the number FFs decreases. .As expected the RAM mapper trades off DFF usage

for FG usage.

A useful measure which can be use to investigate this trade-off further is the

number of DFF elements which can be implemented per function generator. This

FF/FG efficiency factor is defined as the change in DFF elements divided by the

change in FG elements affected by the RAM mapping optimization.

The resulting trade-off figure for each of the nine filter implementations is give

in table 5.7. The trade-off figures range from 3.8 FFs/FG to 9.6 FFs/FG. The

magnitude of t his figure depends on the number and length of the diff'erent addressing

units used to implement the R.4M mapping.

Table 5.7: DFFs/FG for SILINX 4000 Series R 4 M Mapping

Filter

LDI5
Waveï

N.3

1 1 B1TSk-J' 1 SNMU 1 DIGIPARSE 1

5.3.3 Overall Performance

This section discusses the overdl area reductions implemented by TRANS on the

DIGIPARSE
FF/FG

3 -8
3 -25
-5 .O

BITSYN
FF/FG

4-5
4.9
4.6

nine sample designs for the ACTEL and SILINS FPGA devices. For each test filter

SNAFU
FF/FG

4.3
6.0
7-6

the Ibest" implementation will be compared to the unoptimized circuit for each

target technolog).. For the ACTEL designs both the circuit size and circuit critical

path will be used to select the best design. Only the size measured in CLBs will be

used to compare XILINS implementations. Table 5.8 shows the total reductions in

circuit size and table -5.9 shows the reductions in critical path length-

The ACTEL a e a reductions ranged from 48 percent to 57.9 percent and the

corresponding crit ical pat h reductions ranged from 36.0 percent to 57.1 percent.

1 1 B1TSk-I 1 SNAFU 1 DIGIPARSE 1

Table 5.9: Overall Critical Path Reductions by TRANS Optimizations

Table -5.10: Number of CIock Cycles per Input Sarnple

Reductions in the XlOOO technology can be attributed to the redundant hardware

rernod operat ion and the RAM mapping operat ion. Overall reduct ions in circuit

size of from 33 to 52 percent were observed on the nine test f'dters. wit h the majority

of füters e-xhibiting orea reductions of 40 to 4.5 percent.

5.3.4 Filter Impiementation Cornparisons

In the previous sections three different filters (ldi5.waveT.N2) were irnplemented us-

ing three different sqnthesis programs (BITSIT. SNAFP. DIGIPARSE). The three

implementations of each digital filter can be compared to determine which s ~ t h e s i s

tool is the most useful for each circuit. The figure of merit used to compare each

filter miL be the area time (AT) product [HC90] which equally weights circuit area

and processing t ime.

The cornparisons will be performed using the ACTEL gate counts and aitical

path lengths. The area meastue is the number of ACTEL cells required by each

design. The time can be obtained by rnultiplying the critical path length by t.he

number of dock cycles required to process a single sample. For each filter the solut ion

yielding the smallest AT product will be used for this cornparison. The number of

dock cycles required between samples for each of the nine filters is given in table

5-10.

The total AT products for each of the nine filters is given in table -5.1 l. For each

Table -5.1 1: ACTEL -4rea-Time Products for Test Filters

row of this table (filter type) the DIGIP-4RSE .4T products are normalized to a value

of one. The remaining elements on the row are nomalized to this value. For each

fiiter the DIGIPARSE Hter results in the mallest -4T product. the SNAFU circuits

were next best and BITSYi yielded the biggest /slowest solutions.

The differential in circuit quality rvas smdest in the wave filter implementation.

The reason for this Lies in the topology of wave digital filten. which contain sev-

eral cascaded multiplication operations. This reduces the cost of shasing a general

pwpose multiplier between several multiplication operations. Since the result from

one multiplication must be computed before the next can begin. very Little of the

processing cm be done in paraHel. -4s such the speed (measured in clock cycles) of

t h e resource shared solutions and the non-shared solutions are not that different.

In the LDI and N2 Nters more of the structure can be computed in pardel. which

results in a higher cost for sharing resources. In a shared multiplier environment an

operation which could proceed must wait for a multiplication unit to be free. resulting

in e-xtra wait time and additional registers to store intermediate results.

For ail of the circuits the DIGIPARSE solutions yielded the smdest number of

dock cycles for the computation. the srndest critical path length and the smallest

area. These results indicate that îdters requirïng fixed coefficient values should be

implemented using one dedicated CSD multiplier per multiplication in the filter.

LD 15
DIGIPARSE

1.0
BITSIX

7.09

' SNAFU
6.19

5.4 61 Tap FIR Filter

Given the NOMAD generated finite precision coefficients. the bit-serial DFIRST

RTL filter description can be synthesized using FIRGEN. This filter contains 31

CSD multipliers. 60 16 bit shift registers for state storage. and 60 adders to sum the

multiplieroutputs. The input/output signals from this filter are 1'2 bit pardel values.

The format converting pardel to senal and seriâl to pardel DFIRST primitives are

used to interface to externd pardel -4/D and DIA converters.

The DFIRST filter implementation generated by FIRGEN as translated to the

SILINX 1000 series architecture with no optimizations enabled and the circuit. oc-

cupied $31 percent of the 384 CLB DFFs in the 400e5PGl56 target device. and 53

percent of the 3S4 Function Generators in the FPGA. This original circuit would

require more than four 4005 devices for a f d implementation.

The first reduction which con be applied is to remove redundant hardware ele-

rnents (section 4.5). The cootroiling FANOUT parameter is set to 10 for this reduc-

t ion.

The resulting circuit from this operation requires 347 percent of available DFFs

and 80 percent of FGs. a significant improvement over the original circuit containhg

redundant hardware. The next operation will be to apply the RAM mapping in

order to convert al1 the state storage elements to RAM irnplementations and reduce

the number of DFFs in the design. The minimum contiguous shift register length is

set to 6. The resulting shift register lengths and user selected addressing units are

given in figure 5.13.

With this RAM mapping optimization the resulting area requirements are 137

Table -5.12: ACTEL Area-Time Products for Test FiIters

I)f*r(-(*rii III--1's and 108 percent FGs. In order to reduce the number of FGs hardware

-4ddressing Uni ts
1

Lengt h -
I

i l i ë i 1 1 1 ~iiic q w r a t ion presented in section 46.1 wiil be applied. Here ail BL-4TCH

Number
r

1 J-1 M - 31 rt i c i rtrm wiU be replaceci with the dock enabled Bipflop available within the

S 1 1.1 S S IOoO architecture. When this mapping is used 58 separate replacements

iiri- ~)vrlortiic*d II- TRANS and the resulting circuit size is 137 percent DFFs and 96

~ w r i - w i t 1--(;S. Some reduction in the DFF count is still required before the placement

aiid root iiig can be attempted.

111 order to reduce the number of DFFs usecl within the CLBs of the 4005 amther

mapping presented in section 4.6.0 is used to rnap DFFs to the IO ring. For the filter

irnplementation O - 12 inputs and 12 outputs ore needed for the filter. This leaves

a large number (Y6) of 110 pads which may be used as two bit shift registen. The

I/O mapper optirnization rnapped 81 two bit shift registers to the I/O ring. The

resulting circuit size is 106 percent DFFS. 96 percent FGs and 98 percent 10s.

The 84 IO cells used in the 110 ring mapping removed 168 DFFs from the intemal

circuitry. this is a reduction in internd DFF usage by 168/3S4=13.75 percent. The

actual reduction in DFF count was only 137 - 106 = 31 percent. The reason for

t his discrepancy Lies in the reductions which are performed by the SILINS mapping

tool PPR before placement and routùig. One reduction done here involves removing

components which do not drive any intemal loads (loadless signais). After this

mapping operation some DFFs which previously drove no interna1 loads are now

connected to extenial pins. These elements can not be removed by PPR. To correct

for this the loadless components can be removed using TRANS.

When this optirnizattion is enabled the IO mapping and the RAM mapping o p

erations change. Some loadless DFFs which were previously mapped to RAM im-

plementat ions have now been removed. The resulting circuit size is now 101 percent

DFFs. 96 percent

mapper function.

This circuit is

shrink the design

FGs and 86 percent [Os. Only 54 IO blocks are used by the IO

stilI slightly larger than what the 400.5 can accommodate. To

further the FANOUT parameter is changed to 12 from 10. The

resulting circuit area is now 97 percent DFFs. 96 percent FGs and 84 percent 10s.

This circuit can now be placed and routed.

The PPR program terminates indicating that not au DFFs can be placed within

the circuit. This problem occurs when using the clock enable pin on the 11000 series

CLB DFF. Both DFFs in the CLB must be driven by the same clock enable signal.

If this is not possible. one of the two DFFs cannot be used. These lost DFF elements

caused this design to be too large for the target device. In order to shrinlc the design

further the FANOUT parameter is increased to 20 The circuit size is 91 percent

DFFs. 94 percent FGs and 81 percent 10s. This design now f d y places and routes

within a single 400JPGl56.

The overd reductions in internai DFF count for this FIR 6Iter is 3 . 9 percent. At

the same time the fmction generator count was increased by 13.3 percent. The final

circuit was implemeoted and tested on a single 4005PG156. The circuit f ~ i o n e d

correctly at 20 MHz. even with the FANOUT of 20 on some interna1 signals. Since

the number of bits per input word is 16 the number of samples per cycIe processed

by this unit is 20 * 106/16 = 1.25 M sarnpIes/second.

5.5 Digit- Serial Circuits

The DFIRST language can describe circuits of variable digit-widths. In the follow-

ing section TRAXS circuit transformations are tested on higher digit-width circuits.

The a r b i t r q digi t4dth multiplier circuit from section 3-15 wiil be used to inves-

tigate the speedlarea tradeoffs of using higher digit width components. -4s well.

one digit-serial digital filter will be designed using SNAFU and mapped by TRANS

to the ACTEL and XILINS technologies to investigate the performance of TRANS

optirnizations on higher digit width circuits.

5.5.1 Digit-Serial Multipliers

To examine the speedlarea trade-offs of higher digit width components the DFIRST

digit-serial multiplier units will be used. The CWL for the multiplier is eight and

the data wordlength is 18 bits. Different digit-width rnultipliers ranging from W=l

to W=6 will be used for the test. For the 4 and 5 bit digit widths a data wordlength

of 20 bits will be used since there must be an integer number of digits per data word.

Coefficient (8 Bits)

.1 OUT (18 [20] Bits)

Data (18 [20] Bits)
I
I

I i l

Figure 5.6: Multiplier Test Circuit

Generator I
The results obtained for these two circuits wiU be weighted by the appropriate factor

to remove the effect of the altered data wordlength.

The DFIRST circuit will consist of two parde l to serial converters. one for the 8

bit coefIicient and one for the data signal. a digit serial multiplier. a serial to parallel

converter and a control generator as shown in figure 3.6.

Converting the DFIRST code for the circuit given in figure 5.6 between the

different digit width circuits is relative- simple. The first step is to change the dfault

digit width setting to the desired value using the DIGIT (section 2.3.1) compiler

directive. This parameter defines the default digit-width for al1 serid signais in the

DFIRST file. The next step is to change the f i s t CYCLE (section 3.17) count to

the appropriate setting. The CYCLE count indicates the number of dock cycles per

data word and is set to SWL/W. For the sin different digit-width circuits in question

the CYCLE parameter is set to 18, 9. 6. 5: 1 and 3 for digit-widths of 1 to 6 bits

I I I
I 1

{ A 2) ' I A L }

Table -5.13: Area and Computation Time
for Different Digit CVidth DFIRST Mdtipliers

respect ively

Each of the six multiplier circuits converted to the SILINX 4000 and ACTEL

technologies. The S I L I N S designs were implemented on a single 400.5PG156 device

and the critical paths for aII the circuits were measured by increasing the clock fre-

Total
Time(ns)

3 15.8
200
188

192.3
1903
176.5

Ares
(CLBs)

quency unt il the circuits stop ped funct ioning correct 1 . The delay calculat ion feat ure

of TR-AKS was used to calculate the critical path iengths for the ACTEL designs.

Total
Time(ns)

489-6
306.0
'-244.8
238

217-6
183.6

1

Area
(Ceus)

91
133
184
394 --
264
304

Critical
Path(ns)

The critical path length rnultiplied by the number of clock cycles required to generate

the output (CYCLE count) indicates the total time needed for the multiplication.

Critical
Path(ns)

37.2
34-0
40.8
47-6
54 -4
61-3

The cell counts. n i t icd path lengths and to td multiplication times for each design

are given in table 5-13. The times for the 4 and 5 bit digit-width multipliers have

beea multipliecl by 1Sf30 to normalize these circuits for cornparison purposes.

Gsing the data from table 5.13 the area-time product for each implementation

can be computed. The area-time product vs. digit width for DFIRST multipliers

implemented in SILINS 4000 and ACTEL FPGAs is shown in figure 5.7. A U .XI'

1
3 -
3
4
-5

- 6

products are normalized to the bit-serial -4T value for each technolog-

The .AT product curve shows that the Iow digit-width multipliers have a lower

17
2-5
36
43
-50
-5 S

17-15
93 9

31 -3
38.3
47.6
58.8

Figure 5.7: Digit-Serial Mult ipiier Area-Time Products

area-time product than the more parailel designs. -4 digit-width of 2 results in the

most AT efficient multiplier. For the other digit widths the reduction in the number

of dock cycles is accompanied by a larger increase in size and critical path length

resulting in larger AT products.

5.5.2 Digit-Serial Filters

To examine the performance of the TRAM circuit trânsforrnations on digit-seriai

circuits the SNAFU program was used to s ~ t h e s i z e the ldi.5 digital filters. described

in section 5.12. using different digit width architectures.

The filter was synthesized using digit widths ranging from W=l to W=6. The

original data wordlength for this filter was 18 bits but for the W=l and W=J füters

the intemal wordlength %vas changed to 20 in order to maintain an integer number

Table .5.11: ACTEL Ares Before and .Mer TRANS Optimizations
for Different Digit Width LDI Filters

DW
1
3 -
3
4
*5
6

of digits in each rvord. The i m p S e response for each of the different digit-width

designs was simulated using DSIM and were found to function correct- Each of

these designs vas then translated to the logsirn format for a gate level simulation.

During this process the redundant hardware remover (F.42TOCT=IO) and the hard-

ware mapper to the ACTEL library were enabled. Each of the fdters were found

to function correctly and gave identical impulse responses to the impulse responses

generated by DSIM.

5.5.3 Optimization Performance

Before
1434
1784
2136
2523
2865
3182

Each of the filters were mapped to the ACTEL technology using the hardware mapper

and the Redundant Hardware Remover with a FANOUT Lmit of 10. The percentage

reduction in circuit size is given in table -5.14 and the percentage reductions in critical

paths is given in table 5.15.

The performance of the hardware mapper increases both in t e m s of circuit area

and circuit critical path as the digit width increases. The hardware mapper has the

greatest impact on the logic elements within the design and a Iesser impact on the

DFFs in a design. Since the ratio of logic to pipelining elements increases with digit

-Mer
760
887
1066
1'2.31
1356
1466

Percent Reduction
-27.0
-50-3
50.1
51 -6
-32.4
-53.9

DW 1 Before(ns) 1 . . . e r (n s) 1 Percent Reduction 1

Table -5.1-5: ACTEL Crit ical Pat hs Before and .Mer TRt\NS Optimizat ions
for Different Digit Width LDI Fiiters

11-id c I I t l ir cflect of the hardware mapping operation dso increases wit h increasing

digit w i t 1 1 11.

L I I I t Iw effectiveness of the RAM rnapping operation on higher digit-width

(- i n - i i i l - I l i t . ris filters were converted to the XILINS 4000 series technology- One

1 \ 1 l iriiil~[)iiig control parameter which becomes increasingingl- important as the

I I iiicreases is the LENGTH (section 4-71 parameter. This parameter dic-

iiiiiiinium length of contiguous shift registers which wil1 be converted to

~Icitient.ations. This parameter is normally set to 6. which results in all

sliifi rtyisic-t- cliains of 7 DFFs or more being converted to RAM. This tvorks weil

for Ilil-n-rial circuits which make use of long shift register chains but not as weU for

Liiglier digit n-idth circuits.

C'onsicler the implementation of an 1s bit word deIay implemented in karious

different digit widths as s h o m in figure 5.8. The bit-serial word del- is a single 18

bit shift register. the W=2 implementation is two 9 bit shift registers and the W=6

implementation is six three bit shift registers. So the word delay implernentation

results in W N/W long shift registers. The longest delay t-y-pically used in SNAFU

circuits is one word delay [Joh92]. This means that the LENGTH parameter must be

Figure 5.8: Wbrd Delay Implementation for Digit Widths 1 to 6

decreased as the digit widt h increases. The percentage improvement for each circuit

over the unoptimized circuit in terms of CLBs is given in table 5.16. Also presented

is the n u b e r of DFFs/FG which were implemented in each case.

As the LENGTH parameter decreases the DFF utilization decreases and the FG

utilization increases. this is expected since more DFFs are being mapped to RAM.

However the efficiency of the mapping operation decreases as LENGTH decreases.

A SILINS serial RAM element has four address lines. one data input and one data

output. that is up to 16 bits deep and only one bit wide. Ifoniy a three deep RAM is

required a full 16 bit RAM must be inciuded in the final implementation. with only

three elements of the RAM actuaily being used. The fact that RAM blocks corne in

[DW 1 Area Reduction 1 DFFs/FG 1

Table 5-16: Ares Reductions and RAM Efficiency for
Different Digit Width LDI Fïlters

16 bit chu& results in the Loss of efficiency for short shift register chains.

As the digit width increases the percentage reductions in DFF utilization de-

creases. This occurs because as the digit width increases fewer DFFs are found to be

suit able for RAM reduction. As. weli the efficiency of the R.4M reduction in terms

of the number DFFs/FG also decreases as the digit width increases. This occurs

because the more of the RAMs being used are of the shorter lengths as the digit

midth increases. until at W=6 almost all of the RAMs are three bits long. As a

result the net effect of the RAM reduction optimization decreases in effectiveness as

LV ~ncreases.

Filter Performance

In this section the different digit-width LDI filters will be compared in terms of area

and time in order to determine the relationship between digit width and overaLi filter

performance.

The area of ACTEL digit-serial LDI filters is given in table 5.17. Here all values

are normalized to the bit-serial settings. As the digit widt h increases the size of the

circuit implementation also increases. A W=2 filter is less than double the size of

a bit-serial filter. This is expected since some DFIRST operators such as registers

1-1
Table Xi: ACTEL Area for Different Digit Width LDI Filtea

- - - - - - - - -

Table .5.lS: Efficiency data for Test LDI Fiiter

D V

1
3 -

and format converters do not grow lineariy in size with digit width but may remain

constant in size regardless of digit width.

Cr ~ O C ~ S

S -5
45

The critical path length of these digitd filters is shown in figure 5-18. The

path length does increase lineariy with digit width but o d y after W=3. before this

ACTEL
Critical Path(ns)

30.2
3 1 2

point the delay curve is relatively flat. The reason for this lies in the t-ype of fiIters

ACTEL
Total Time(ns)

2567
1404

generated by SNAFU. This synthesis tool makes use of zero delay multiplexors in

front of al1 shared components, if the depth of these multiplexors is too large then

the t hese elements form the critical pat h. In the case of bit-serial circuits this results

in critical paths which are longer than e-xpected for this architecture. The depth of

t hese multiplexor elements is relatively constant regardless of digit-width. At W =3

the ca- pat hs within the adder elements becomes longer t han the multiplexor dela'.

Table .5.l9: Final AT Products for Different Digit Width LDI Filters

The number of dock cycles required between input samples for each of the s k

filters is given in table -5.18. Here the W=2 filter requires approximately half the

number of clock cycles as the bit-serial filter. However the higher digit width Mters

do not divide the number of clock cycles required by W as might be e-xpected. The

reason for this lies in the latency of the digit-serial DFIRST multipliers.

Digit-serial DFIRST multipliers (W- > L) have a l a t e n - of the CWL+l while

bit-serial multipliers have a latency of SXCWL/2 +1 so after W=2 no further im-

provements are possible in the latency of DFIRST serial multipliers. What does

decrease with increasing W is the number of clock cycles required to completely

multiply or add two nurnbers together which is K/W. Ifeach multiplier did not have

any wait cycles then one new output wodd be generated every N/W clock cycles.

but if this is not possible then the multiplier must wait for the next inputs to be vaiid

before starting the ne* operation. Since the multipliers can not be fdly utilized.

the number of clock cycles does not decrease Linearly with W.

With the circuit area. circuit critical path and the number of clock cycles per

sample known. the final AT products for these filters can be computed as shown in

table -5.19. Again al1 .4T products are normalized to the bit-serial values for both

technologies. The most AT efficient design is the W=2 digit-serial design.

Three fixed coefficient IIR Nters, a fifth order bilinear LDI filter. a seventh order

LVUX digital Hter and a third order 'NZ' filter generated using NOISEGEN were

designed using using BITSYN. S WAFU and DIGIF'ARSE. The BITSk'N and SNAFU

spthesis programs generate resource sharing solutions tvhile DIGIPARSE uses CSD

multiplier coefficients and no resource sharing. SNAFV can generate arbitra- digit

width solutions while the other methods are bit-serial O - The impulse response

for ail nine s ~ t hesized solut ions was obtained using DSIM and the results matched

the high level simulations of each filter generated using DIGICAP.

The nine test flters were mapped to the ACTEL technolog-- using the TRANS

Iogic rnapping optirnization. The resulting reductions in circuit area ranged from 44-

-50 percent. and critical path length reductions from 40 to -50 percent. The impulse

response for the ACTEL implementation was generated using the gate level simulator

logsim and were found to match the RTL DSIM simulations.

Using the redundant hardware removal operat ion (FANOUT= IO) and the Iogic

mapper total area reductions for the -4CTEL circuits ranged from 4S to 58 percent

and total critical path reductions ranged from 36 to 57 percent.

The nine IIR filters were mapped to the SILINX 4000 series technology using

TR-4NS. the RAM optimization and the redundant hardware opt imization wit h a

F.4NOL.T of 10. The addressing units docated to each problem were customized

to each application using the ADRUNIT TRANS parameter to obtoin the smaiiest

circuit area. The overall reductions in SILINS circuit orea ranged from 33 to 52

percent for the nine test filters. The DFF/FG RAM mapping tradeoff figure ranged

from 3.25 to 7.8 DFFs/FG for these filters.

The area-time circuit eEciency parameter for each of the nine ILR flters was

calculated. It was found that the DIGIP.4RSE solutions required the smdes t circuit

area. the smdlest number of clock cycles and had the shortest critical path lengt h

for the three test IIR flters.

fixed coefficient 61 tap bit-serial FR3 filter was designed using FIRGEN. which

implements ail coefficients usùig SHIFTMULTs. The Data wordlength for this filter

is 16 bits and the CWL is 12 bits- and no more than three coefficient bits are set

in each coefficient. NOMAD was used to generate the fixed precision coefficients for

the FIR filter.

The 61 TAP FIR filter was mapped to the SILlNX 4000 technology and imple-

mented on a single 4005PG1.36 device. The TRANS optimizations used included

RAM mapping. redundant hardware rernoval (F'.\NOUT 'O)? BLATCH mapping to

dock enabled DFF elements and 1/0 ring mapping (54 I/O pins). The overall re-

duction in circuit area was 78.9 percent. The final FPG.4 resoource utiiization rvas 91

percent DFFs, 94 percent FGs and 81 percent [OB$. The FIR filter operated cor-

rectly at a 20 MHz bit clock rate. resulting in a sampling rate of 1.25 MSamples/s.

Six diKerent digit width solutions. rasging fiom W=l to W=6. for the fifth order

LDI digital filter were synthesized using SNAFU. Each of these circuits was mapped

to the ACTEL technology using the the TRANS hardware mapping optimization

and the redundant hardware removd operation (FANOUT=10). Each of these six

circuits rvas simulated using logsim and found to function correctly. The most .Yï

efficient digit width was found to be W=2.

Chapter 6

Summary and Discussion

In t his t hesis a set of CAD tools for implementing bit-seriai and digit-serial digital sig-

nal processing systems has been presented. The entry language for rhese CAD tools is

t lir r q i s t r r t ransfer level hardware description langauge DFLRST. The DFIRST lm-

y~asc* i' i i rd to describe the intercomection and timing of Iaoguage primitives such

a. i i i i i l t piit-r-. right shifters and adden. The DSbI event driven sirnulator is used

1 0 - i ~ i r i i l i t i < IIFIRST circuits. DSI'iI performs h i t e precision simulations and serial

+ i ~ r ~ i i l t i i i i i i i r alignrnent verification on DFIRST circuits. The TR..\NS gate compiler

i3 I I - # - l t C D (-oi iwrt DFIRST circuits to technology specific gate level irnplenientat ions.

- I - i i < * lir-i o p r a t ion perfonned by TR-WS is to convert DFIRST primitive elenients

1 O pt*iii*ric* ga t e level implementations containing oulp simple gates and D-type flip-

I i q 1 ~ + b i i ~ (- i l r 3. A series of optirnizations such as redundant hardware renioial. RAM

t i i i t p p i irg fur sliift registers and hardware mapping to technotop specific Iiardware

eleiiirtit s are iised to reduce final circuit implementation area.

O t lier Ili t-serial or digit-serial research efforts include PARS IFA L [HCgO]. C AT HE-

D R A L [GMSG] which has become part of a commercial tool available from Mentor

Graphics Corporation. and work by ILI< Parhi [ParSI]. The DFIRST language is a n

extension of the FIRST (DR851 hardware descript ion language. Addit ions to FIRST

implemented by DFIRST include full digit-serial support. additional components

such as p a r d e l to serial and serial to parde l converters. and extended irnplementa-

tions of serial rnultipliers.

Bit-serid and digit-serial circuits are not commonly used in industry applications

due to a shortage of effective C.4D tools to aid in the rapid conversion of ideas to

implementations. a longer Iearning curve as compared to parallel designs due to serial

timing alignment complications. and a perception that serial processing systems must

have a low throughput rate. One of the objectives of this research was to address

t hese t hree concerns. The DFIRST language. DSIM simulator and T M N S compiler

form an effective C AD environment for the irnplernentation of many signal processing

applications.

Serid processing circuits are ideal for low throughput applications where there

is ample time between input samples to complete the necessaq processing. Ln this

environment the s m d operator size and simple routing requirernents of serial designs

can be e-xploited to create srnail efFicient solutions. For higher throughput applica-

tions. bit-serial or digit-serial circuits are not necessarily slow. Consider the 61 tap

FIR filter implemented in this thesis. Only 16 clock cycles are required between

input samples resulting in a throughput rate of 1-25 M samples per second. Since

bit-serial processing ehen t s require a small circuit area. many separate elements

can be used in parallel to complete the overail task. Therefore. serial architectures.

implement serial data word. parallel operation execution. while pardlel architecu-

t u e s implement paraIlel data word. seriai operation execution. If a large number of

processing elements can be used as pardel processors then bit-serial or digit serial

archituctures c m be used to obtain relatively high throughput rates.

The VHDL [AG931 and Verilog (Pd961 behavioural hardware description lan-

guages are often used to describe. simulate and implement digital signd processing

systems. Both of t hese laquages use 'if then elset constructs. arithmetic operations.

and conditional operations to describe the behaviour of a digital circuit. Each of

these operations are perfomed on parailel data signds of virtudy any signal width.

However these behaviourai languages are not well suited to bit-seriai or digit-serial

circuit description. A bit-serial signal is communicated on ody a single wire. so alI

operations within VHDL or Verilog must take place on this single wire. The benefits

of high level constmcts are lost somewhat. since an add becomes ody- a single f d

adder and a multiply becomes a single 'and' gate. As weil. the notion of a data

word is lost within these langauges. The full data word is broken down into several

different signals separated by DFF eiements. Under these conditions it is difficult to

perform word Ievel simulations and bit-serial timing alignment verificat ion.

6.1 Future Work

The ultimate CAD design tool would convert a design specification. including timing

constraints and available implementation technology details. into an optimal circuit

implementation. The design specification must be entered in minimal time. the run

time for the CAD tools must aiso be minimal and the created design must meet al1

timing specifications and occupy the smallest possible area in the technology used.

In every regard present day automated design tools can be improved. Attain-

able improvements to the tool set discussed in this thesis include design entry

(DFIRST) and validation (DSIM) improvements which will expand the capabilities

of the present system. The synthesis operation of converting the RTL description to

a technology dependent design can be improved to support a greater variety of com-

ponents and generate smaller more efficient hardware implementations for esist ing

components. Findy the set of optimizations used within TRWS can be extended

to increase final solution quaLity. -4 set of possible irnprovements for the present

CAD tools is presented in the foUoming sections.

6.1.1 Design Entry and Validation

There are s eved short comings in the DFIRST language and the DSIM simulator

which can be addressed. The most critical is that DFIRST and DSIM support

mixed-mode circuits ivhich combine digi t-serial operations and gate level operat ions.

Currently gate level operations occur on serial data rvords not on individual bits

or digits within the ivord. True gate level simulation within the serial frame-work

would remove the need for extemal gate level hardware to be designed using other

gate level tools. This rvould significantly shorten design cycles for circuits containing

a wide range of different hardware elements.

Another feature which could be added is multi-rate data support- Here different

data rate circuits. as result from interpolation or decimation operations. can be

described in a single file and simultaneously simulated. Supporting different data

wordlengths within a singie design instead of limiting the entire design to a single

serial data word length could aiso be added.

The next generation of the DFIRST description language could be made corn-

pletely behavioural. In this language generic operations such as "' for multiply and

'+' for addition would replace the instantiation of specific primitives. The contest

of each behavioural operation wodd be defined by the type (pasdel or serial) and

data width of the 110 signals on each operation. -4 '=' sign wodd senre as a format

conversion operation. Another benefit of this type of behavioural language would be

that the serial control signals would not have to defined by the user. The compiler

would derive the control structures as required. As weIi. the description of bit-serial.

digit-serial or pa rde l architectures would appear the same. the ody difierence be-

ing the signal declarations for internd signds. The optimal form for this language

would be similar to commoniy used hardware description languages such as VHDL

and Vërilog with the o d y major ciifference being the inclusion of support for serial

signals.

6.1.2 Synthesis

Presently several of the primitives within the DFIRST language such as SRIFT-

hIGLTs. and MGLTESes are available only for the bit-serial data format. These

elements can be extendecl to include d l digit-widths. As well. several other primi-

tives such as Dividers. Conditionds. and Square root operators can be made anilable

in any digit width to increase the flexibility of the DFIRST language. Other more

compler operations such as sine. cosine. and FFTs can also be added to the language.

These more complex operators may require severd parameters to f d y describe the

desired operator but their inclusion would significantIy shorten design times for cir-

cuits requiring t hese funct ions. Memory interface component s for extemal S RAM or

DRAM components would also be useW.

Presently only one arbitraxy digit-width multiplier structure has been used to

implement t hese elements. This operator uses the non-redundant coefficient recod-

ing in order to reduce multiplier size and shorten multiplier latency. Other recoding

schemes should be investigated to improve the quatity of arbitrary digit width mul-

tiplier primitives. Modified-booth recoding is commonly used in pa rde l multipiiers

and dl lead to improved multiplier performance. particularly for higher digit widths.

Support of fidl pardel operators can also be added to increase the Bexibility of the

DFlRST language.

6.1.3 Optimization

The d e based mapping m e n t l y used by TRAWS is effective for serial circuits

designed wit h DFLRST since the structures generated are regular and contain mostly

multiplexors. blatches and adders. If DFEST is e-upanded to include true gate level

parts. and full paxauel operation the mapper must be improved to accommodate

these more cornplex circuits. -4 hill climbing optimizer such as simulated annealing

may be used in conjunction with the hardware mapper to obtain a smaller circuit.

Ln addition the critical path information specïfying input loads and output delay

times should be Linked with mapper so that the critical path can be shortened at the

espense of hardware size or the critical path length can be made longer to allow for

a smaller circuit. The path and area constraints must be user controlled. Re-timing

which moves register elements fortvard and backward within the circuit ma? also be

included to increase the effectiveness of the hardwae mapper-

The RAM mapper can be improved SC that an optimal addressing unit allocation

is automaticaily generated by TRANS. Currently TRAM allocates a sub-optimal

addressing unit scheme which must be fine tuned by a knowledgeable user to obtain

the best result. As well. the range of addressing schernes can be increased to accom-

modate multiple addressing units per contiguous shift register chain. Present ly each

shift register chah is controlled by a single addressing unit. Simulated ameding

may also be employed here to generate a more optimal solution.

Another featw which may be added is an automatic signal buffering option

which automaticdy adjusts d l interna1 driving points so that no node is over Ioaded.

resulting in long delays for signal transitions on this node. This operation should

be tied in with critical path delay estimates to be sure that the critical path of the

circuit is as short as possible.

[ACT891 ACTEL. -4dion Logic Systern Software Reference Manual. Acte1 Corpo-

ration. 1989.

[-4G9:1] J. R. Armstrong and F. G. Gray. Structured Logic Design mith VHDL.

f rentice Hall Professional Technicd Reference. 1993.

[A 1 1 1 i II. Annaratone. Digital CMOS Circuit Design. Eiluwer -4cademic Pub-

li4iers. 1986.

! 1 I I<. Beingessner. Localization of sound using headphones. Department of

IYIf rt r-ical and Compvter Engineering. DRiuersity of Calgary. .WC. Th ezis.

I!)ti-I.

[I I 1.. T. Bruton. Lorv sensitivity digital ladder filters. IEEE Transactions on

(*irruits and Systems vol. CAS-". pp168-176. Mar. 1975.

3 2 11. Bauer and R. Weatley. Logsim user's guide. Department o,f Electrical

(r r d Compvter Engineering. University of Calgary. Interna1 Report. 1992.

[C'TSS] C'. W. Clenshaw and P. R. Tumer. The symmetric level-index system.

IM.4 Journal of :Vumerieal Analysis. June 1988.

[DevSg] hnalog Devices. DSP Products Data Book. Analog Devices. 1989.

[DR851 P. Denyer and D. Renshaw. C'MI Signal Processingr A Bit Serial A p -

proach. Addison- Wesley Publishing Company. 1985.

[Erc84]

[Fet 861

[cI;sa]

[GMSG]

[Gra92a]

[Gr& b]

[Gra92c]

[Gra93d]

[GT92]

M. D. Ercegovac. On-Line arithmetic: .!in overview. Real Tirne Signal

Processing? 19%.

A. Fettweis. Wave digital filters: Theory and practice. Proceeding of the

lEEE, 1986-

D. Gajsk and R. Iiuhn. Guest editor's introduction: New VLSI tools.

IEEE cornputer. 1983.

J. l'an Ginderdeuren and H. De Man. Application specific intregrated

filters for hifi digital audio signal processing. ICASSP. 1986.

P. Graumann. DFIRST Primitive L i b r q . Depart ment of Electrical and

Computer Engineering. Lhiuersit y of Calgary. Inten?al Report. 199%.

P. Graumann. DFIRST User's Guide. Department of Electrical and Corn-

puter Engineering. University of Calgary. interna1 Report. 1992.

P. Graumann. TRANS User's Guide. Department of Electrieal and Corn-

puter Engineering, University of Calgary. Interna1 Report. 1992.

P. J. Graumann. Design and implementation of serial multipliers and

dividers. Department of Electrical and Computer Engineering. L;niversit y

of Calgary Intenial Report. 1992.

P. J. Graumann and L. E. Tumer. Implementing DSP dgorithms

using pipelined bit-serial arithmetic and FPGAs. First International

-4 CiWSIGD.4 W-orkshop on FPG,.ls. pages 1'23-13s. 1992.

[Hay86] S. Haykin. Adaptive Filter Theory. Prentice Hd. 1986.

[HC90] R. Hartley and P. Corbett. Digit-serial processing techniques. IEEE

Transactions on Cirruits and Systems. 37(6):?07-719. June 1990.

[HESS] B. S. Haroun and M. 1. ELmasryassass Architecture synthesis for DSP silicon

compiiers. IEEE Transactions on Compu ter rlided Design. 1989.

[In& S] Texas Inst niments. Third Generat ion TMS3-0 User S Guide. Texas In-

struments.. 1988.

[JacSS] L. B. Jackson. Digital Filters and Signal Processing. 2nd Edition. Iiluwer

Academic Publishers. 1989.

[.Joh9Z] B. Johnston. DSP system optimization using simulated anneaiing. De-

parfment 01 Electrical and Cornputer Engineering. CTniuersit y of Calga y.

~'11s~. Thesis. 1992.

[Iiac95] R. Iiacelenga. Digital filter architecture design using primitives. network

transforms and simulated annealing. Departmen t of Electrical and Com-

pu t e r Engineering? LÏniversit y of Calgary. PhD. Thesis. 1993.

[LELSl] Y. C. Lim. J. B. Evans, and G. Liu. Decomposition of binary integers into

signed power-of-two terms. IEEE Transactions on Circuits and Syst e ms.

38(6):667-673. June 1991-

[Lew93] D. M. Lewis. An accurate LNS arithmetic unit using interleaving memory

funct ion interpolator. Proceeding of the 1 1 th Symposium on Cornputer

.Arith,metic. June 1993.

[LM901 T. -4. Ly and J. T. Mowchenko. Applying simulated evolution to data

path allocation in hi& Ievel synthesis. Proceedings CCVLSL 1990.

[Log861 LSI Logic. Data Book and Design Manual. LSI Logic. 1986.

[LI-0761 R. F. Lyon. Two-ç complement pipeline mult ipliers. IEEE Transactions

on Communications. pages 415425. April 1976.

[MLD92] P. Michel. LL Lauther. and P. D y . The synthesis approach to digitai

systern design. Iiluwer Academic Publishers. L992.

[Mot891 Motorola. DSP56000/DSP56001 DSP Lker 's Manual. Motorola. 1989.

[%g91] R. Xagalla. S-nthesis of DSP systerns using pipelined bit-serial arith-

metic. Department of Elecfrieal and Cornputer Engineering. lhivers i ty of

Calgary. MSc. Th esis. 199 1.

[ND901 .J. P. Neil and P. B. Denyer. E-xploring design space using S-WAGE:

-4 simulated annealing based vlsi architecture generator. B r d ibfid,west

Symposium on Circuits and Systems. 1990.

[Ne0911 Neocad. Neocad User manual. Neocad Inc.. 1994.

[NT911 R. Nagda and L. E. Turner. Pipelined bit-serial synthesis of digital filter

algorithm. froc. of the IFIP TCIO/CVG 10.5 International Conf. IZSI.

1991.

[Obeig] R. M. M. Oberman. Digital Circuits for Binary ..Lrithmetic. Macmillan

Press Ltd.. 1979.

[OSYS] A . V . OppenheimandR. W. Schafer. Discrete-The Signal Processing.

Prent ice Hd. 1989.

[Pal96] S. Palnith. C'erilog KDL : -4 Guide to Digital Design and Synthesis. Pren-

tice H d Professional Technicd Reference, 1996.

[Par911 K. I i . Parhi. -1 systematic approach for design of digit-serial signal process-

ing architectures. IEEE Transactions on Circuits and Systems. 3Y(1):35&

37.5, Aprii 1991.

[Pat93] E. Patton. Digital hardware rake transceiver. Depart ment of Electrical

and Comp ut e r Engineering. Lin ive rsit y of Calgary. MSc. Th es&. l W 3 .

[PGTSJ] G. Panneerselvam. P. J. W. Graumann. and L. E. Turner. hplementation

of fast fourier transforms and discrete cosine transforms in FPGAs. 5th

International Conierence on Field-Programmable Logic and Applications.

199.5.

[PIiS7] P. G. Paulin and J. P. Knight . Forcedirected scheduling in automatic data

path s ~ t h e s i s . 24th A CM/.EEE Design -4utomation Con ference. 1987.

[PM891 I ï . K. Pridâni and J. L. Meador. A noareciundant radix-4 serial multi-

plier. IEEE Journal of Solid State Circuits. 24(6):1729-1736. Decernber

1989.

[PPM86] .A. C. Parker. J. T. Pizarro. and M. Mlinar. Maha: -4 program for datapath

synthesis. IEEE %'rd Design Automation Conference. 1986.

[Tur SS]

[Vie9 11

[Vie931

M. -4. Soderstrand. W. K. Je&ns, G.

Nurnber System .4rithmetic: Modern

cessing. IEEE Press. 1986.

163

A. Jullien. and F. J. Taylor. Residue

Applications in Digital Signal Pro-

S. G . Smith. M. S. McGregor. and P. B. Denyer. Techniques to increase

the computational throughput of bit-serial architectures. International

Con feren ce on Acoust ics. Speech and Signal Processing, 1987.

hl. J. Svihura. NOMAD User's Guide. Departnent of Electricai and Corn-

put er Engineering. Lhiversity of Calgagary. Internal Report. 1991.

Synopsys. Synopsys Design Compiler Re ference Man ual Vërsion 2.2. S yn-

opsys Inc.. 1991.

L. E. Turner and P. J. W. Graumann. Rapid hardware prototyping of

digit al signal processing systems using field programmable gate arrays. 5th

International Conference on Field-Programmable Logic and Applications.

l99.j.

L. E. Turner. P. J. W. Graumann. and S. G. Gibb. Bit-serial FIR filters

wit h csd coefficients for FPGAs. 5th International Con ference on Field-

Programmable Logic and Applications. 1995.

L. E. Turner. Digicap useros guide. Internal Report. 1985.

ViewLogic. VIE W7ogic Re ference ikfanual. VIEWlogic Systems. Inc. 199 1.

Viewlogic. CÇorXview plus on Windous: VHDL reference manual and

user 's guide. Viewlogic. 1993.

[Wor92a] S. D. Worthington. Limit cycles and sinusoidal oscillations in digital s s -

tem. Department of Electrical and Cornputer Engineering. Chiuersity of

Calgary. i2.ISc. Thesis 1992.

[\Vor92b] S. D. Lbrthington. A new digital sinusoidal oscillator. Canadian Micro-

efectronic Coprorations. TEXPO presentation. 199.2.

[SIL94])(ILI'iX. XXI?\iS Programmable Logic Dafa Book -Xih?c Inc.. 1994.

[YGSG] T. koshimura and S. Goto. A de-based and algorithmic approach for logic

s-mthesis. hternational Conference on Cornputer Aided Design. 1986.

Appendix A

61 Tap FIR Filter Coefficients

61 Tap Filter fked point coefficients. 1-1 bit CSD values. The coefficients are centered

a hout t lie center top (C[030]) to gaurantee linear phase operation.

CCOOOJ = 9

CCOOl] = -4

C[OO2] = -18

CC0033 = 5

C CO041 = 16

CCOOS] = -2

C [006] = -5

C[OO7] = -2

C[008] = -19

C[OO9] = 6

CC010I = 40

CC0111 = -9

CC0121 = -39

CC0131 = 6

C [O141 = 14

cCoi5l = O

CC0161 = 38

