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Abstract 

This t hesis descri bes a set of computer aided design tools. implemented by the aut hor. 

which can be used to shorten the design t h e  of haxd-wired digital signal processing 

sys t  ems. These tools convert a bit-serial or digit-serial register t rasfer level circuit. 

tlescril>ed in DFIRST. into a gate Ievel technology specific implementation. The 

DS I l 1  ?;i~iittlator used to perform design rule checks. serial timing alignment checks 

a t i r 1  ci t-c-riii simulations on DFIRST netlists is introduced, The TRAXS hardware 

i . o t ~ i ! ~ i l t * r -  c - w i \ - e r t s  the DFIRST primitives to generic gate level implementations and 

i I i w  i t l q ~ l i t -  ol>timizations to the obtain a smder/faster implementation in the target 

- I I I  Sm-eral digital filters are implemented using DFIRST and TRANS and 

l i i w  t  l i  16~t-r ii TR ANS optimizations are evaluated using these designs. Finally the 

i 4L- i - i  i \ . t ~ i i i r ~  of TR-4NS optimizat ions. and the quality of solutions generated for 

c l i  l i t - r t a i i  t tligil -it-idth filters are presented and ciiscussed. 
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Chapter 1 

Introduction 

The use of Digi ta1 Signal Processing ( DSP) Integrated Circuits ( ICs ) has increased 

dramaticdy They are used in everything from cellular phones to microrvave ovens 

to CD players. The operations perfomed by these devices increases in complexity 

as IC geometries shrink and the need for faster/smder processing devices increases. 

This increased complexity results in larger ICs and longer design times to create 

working products from specifications. in order to shorten the design cycle and hence 

reduce the time to market for a new device. designers must rely on more and more 

sophisticated and capable Computer Aided Design (CAD ) toois. This t hesis de- 

scribes a C'AD tooi. implemented by the author. which can be used to reduce the 

t ime required to convert a DSP IC specification to a digital circuit implementat ion. 

1.1 Digital Signal Processing 

-4 signal is defined as a physical quantity which conveys information [OSS9]. An ana- 

log signal is one in which the independent variable such as time. and the dependent 

variable such as amplitude can take on a continuum of values. In these systems time 

is going forward and the amplitude contains sorne information to be processed. In a 

cliscrete time system. time can oniy take a discrete set of values and the amplitude 

information is continuous in nature. In a digital signal both time and amplitude 

are discrete in nature. -4 digital signal can be represented by a sequence of finite 



precision. or quantized. numbers representing the information in a signal at discrete 

intervds of time. 

The transformation of one signal to another signal is defined as signal processing. 

During this transformation unwanted portions of the first signal may be removed or 

information may be added to create a desired output signal. Digital Signal Processing 

( DSP) is performed using simple computational blocks such as addition. mdtipli- 

cation. conditionals and storage elements. The types and interconnections of these 

processing elements d e h e  the processing algorithm and control the behai-iour of the 

processing system. 

1.2 Digit al Signal Processor Implementat ions 

1.2.1 Programmable Devices 

General purpose Digital Signal Processing devices such as the TMS3-O [InsSS]. t.he 

ADSP2100 [DevSg] and the Motorola 56001 [Mot891 have been used extensively to 

perform DSP operations. Their programmable nature makes them easy to use and 

re-use in the face of ever changing specifications. Programmable devices generally 

contain one multiplier. one adder and a bit shifting unit as well as a number of 

registers and intemal m e m o .  These resources make programmable DSPs able to 

perform most signal processing applications. The wide use of these devices also 

means t hat Silicon implement at ion technology will be constantly upgraded. resd t ing 

in ever faster and lârger versions in the sarne processor famil. The large numbers 

of devices which are fabricated also reduces the per unit cost. resulting in lower 

rnonetary costs for the user. 



kihile the programmable nature of these devices makes them easy to use it also 

results in reduced algorit hm security. The processing application must be stored in a 

memory device of some sort which can be  easily copied. Aiso. because these devices 

are so flexible they may not be particuiarly weU suited to a specific application. The 

programmable nature adds some overhead to circuit area and the fked nature of the 

resources may not be optimal for many algorithms. This can mean slow performance 

or hrger system cost. 

1.2.2 Custom Irnplementations 

Digital Signal Processing applications may also be implemented using custom inte- 

grated circuits. There are three different general forms of t hese devices: full custom. 

semi-custom gate mays  and Field Programmable Gate Arrays (FPGSs). In fd l  cus- 

tom the designer has complete control over the placement. sizing and in te rco~ec t  of 

every transistor constituting a given design. Full nistorn devices require the longest 

design time but yield the most efficient solutions in terms of area. throughput or cost 

(given sufficient quantities). The cornplexit- of the design process for full custom 

devices rnakes re-design and re-fabrication very e-xpensive. forcing the designer(s) 

to get the product right the e s t  time or face long delays and higher costs. The 

implementation time from specification to working [Cs For these devices can range 

from several months to a year. 

In semi-custom integrated circuits, or Ma& Programmable Gate Airays (MP- 

G-as). the transistor patterns are k e d .  The designer only has control over the 

interconnection of groups of transistors as logic and the interconnection of these 

logic elements. This results in a smaller design time but also renilts in slower. larger 



circuits as compared to a hiU custom implementation. The fabrication time for 

these det-ices is shorter than that of full custom devices and can be several weeks to 

months. The re-design time for these components is much less than that for full cus- 

tom devices but significant effort is still needed to change the circuit and re-fabricate 

the final device, 

Field programmable gate arrays are similar to MPGAs except that the intercon- 

nection wires axe programmable in the field instead of requiring a fabrication facility 

to place the interconnects. These devices can be classified into two basic types. one 

time programmable such as ACTEL [-4CTS9] FPGAs and n time programmable 

such as SILINS [ML941 FPGAs. These devices lead to implementations which are 

relat ively large and slow and not particulady well suited to high throughput or high 

volume applications. They are weil suited for proto-typing and in situations where 

the application requirements change over time. The availability of these devices has 

Iecl to novel applications in which a single FPGA is re-programmed on the y to 

perform different portions of a single large application. 

1.2.3 Integrated Circuit Efficiency 

For any application there may be several possible IC implementations- The efficiency 

of different implementations is judged in terms of the amount of circuit area required. 

the time required to compute the algorithm and the power consurnption of the circuit. 

One measure used to evaluate the efficiency of an IC implementation is the Area- 

Time (.AT) product [ACSOI which e q u d y  weights both area and tirne. 

The area of an implementation is the total area required for processing blocks. 

routing resources and I/O pads. This measure may be a simple cell count of tech- 



nology specific elements required for the implementation. The time of an implemen- 

tation is made up of two parts. the criticai path and the number of clock cycles 

required to complete one computation of the irnplemented algorithm. 

The critical path of a spchronous circuit dictates the maximum clock rate at 

which the circuit wiU correctiy function. The critical path is the maximum D-type 

fli p-ff op ( DFF) to D-type fiip-flop logic delay tirne. TSs logic delay is made up 

of logic rlenient propagation delays. routing delays and set-up and hold times on 

1 I i f  I ) i-Ts. The logic element delay for each component is dependent on the out put 

Ir J;I< lit ir! Tor 1 lia t element. -4 higher number of loads means that a higher total current 

i- rt pi r t d  ft-oiii the driving point. dso each load and wiring element adds capacitance 

1 1 1  1 1 ii oi I 1 1 B I  I t of an'- element. The combination of this load current requirement and 

I l i t *  l(,;iïl (-il lmcit ance dictates the time required to drive a node to the required state. 

' 1 ' 1 ~  S I .  ~~roduct of IC is the  area (cell count. mm2) multiplied by the critical 

lm 1 I I  It~igt li ( t inie) multiplied by the number of clock cycles to process one input 

L I H I H ~ I ~ * -  

1.3 Architectures 

The architecture of a- system defines a set of rules or principles which guide the 

design and functionali ty of anything created using t hat architecture. For instance 

Roman architecture brings to mind columns of stone and archways while. Egyptian 

architecture bnngs to mind sand-stone blocks and hierogl-vphs. in a sirnilar way the 

architecture of a digital signal processor can be defined. In the DSP domain the 

parameters of the architecture include the number format used to store a nurnber. 



the word format used in data transfers. the number of bits used to represent each 

word and the number. t-ype and interconnection of computing resources. 

1.3.1 Number Formats 

The number format refers to the particdar digital represenation of numbers used by 

a given DSP architecture. The number format dictates the operations necessq- to 

perform arithrnetic operations and causes some arithmetic operations to be simpler 

at the expense of causing other operations to be more difficult to perform. The 

number format: together with the number of bits used to represent a value. also 

controls the range of values which can be represented. 

In most number formats the value of a number is broken down into a series of 

digits. each digit taking on a range of values. having a weighting factor associated 

with it according to the digit significance. In the decimal representation each digit 

takes on one of 10 values and the weight for each digit is 10". where n is the digit 

number (staxting from zero). In the cornputer world a digit weighting of 10 is net 

practical so a binary number system is used. Here each digit takes on one of two 

d u e s  which are commonly referred to as 1 and O or high and low. A common 

number format for the representation of b i n q  number is Trvo's Cornplement (TC). 

In TC the weighting for each binary digit is 2" where n is the digit number. with 

the Most Significant Bit (MSB) having a negative weighting. The decimai d u e  of 

an N bit TC number is given in equation 1.1. An N bit TC number can represent 

numbers from -Zn-' to Y-' - 1. 



Another number format is the Canonic Signed Digit Format (CSD) [LELSl]. 

Each digit of a CSD number c m  take on one of three different values 1. -1 and 0. so 

this number format is a t e r n e -  systern. Since computers are by their nature b i n w  

two b i n q  bits are required to represent each singe bit of a CSD nmber. This 

results in poor storage properties for CSD numbers but for representing fked coef- 

ficients this number format has some advantages over other systems- Since several 

redundant foms exïst for each number. the designer may choose the most suitable 

one for a given application. resdting in reduced area or increased speed. The mlue 

of a CSD number c m  be cdculated using equation 12. 

Another number format commonly used in cornputer systems is floating point 

numbers. Here each number is broken into an elcponent (exp) and a mantissa (man). 

The value of the floating point number is man * P. Both the mantissa and the 

exponent may be positive or negative resdting in a dramatic increase in dpamic 

range over a fked point system. The number of bits used to represent the mantissa 

and the e-xponent are chosen to obtain the desired accuracy and d-mamic range. 

Other number systems such as the Residue Wumber System (RNS) [SJJTSG]. 

Logarithmic Wumber System (LNS) [Lew93], and the Symmetric Level Index (SLI) 

[CTSS] are used in computing machines. Each of these number systems has unique 

properties which can be used to combat shortcomings in other number systems such 



as long carry paths. expensive multiplication and division. or s m d  d ~ a m i c  ranges. 

Mihile these number systems are usefd. the number systems used in this thesis are 

TC and CSD. TC and CSD are chosen for their simple integer number representation 

and their relatively small operator size. 

1.3.2 Word Formats 

Another architecture parameter of a DSP system is the format in which each word 

of data is stored or transmitted from one component to another. The most common 

format. used in most cornputers and DSP chips. is full parallel. Ln this format the 

Fi bits of a data word are transmitted in parallel on N different wires. during one 

cycle of the -stem. The primary advantage of the parallel format is the speed of. 

transmission. one data word per system cycle on each data bus. However the parallel 

transmission of data leads to severd disadvantages. 

The N bit result of each operator is also computed in parallel resulting in separate 

processing elements for each bit of the output data word. For some arithmetic 

operations information from the generation of one bit of output must be used in the 

computation of the next bit of output. This carrying or rippling of information from 

one computation to the next leads to long computation times for the completion 

of one paralie1 output word. This computation time or propagation delay can be 

reduced by using methods such as carry look ahead [..\nn86] which shortens time 

to calculate the full p a r d e l  result but also results in Larger circuit area for the 

computat ional unit. Anot her method to shorten the propagation delay t hrough an 

operator is pipelining the operator so that a result is o d y  partially completed on 

each dock cycle. This results in shorter propagation delays but requires more clock 



cycles to generate the f d  resdt. 

The N bits of a pardel data word also lead to large data buses which are difficult 

to route and consume a large amount of integrated circuit area. This large routing 

requirement often resdts in large pin counts for an integrated circuit and Ion* uti- 

lizations for semi-custom devices in which the routing resources cannot be tuned to 

meet the requirements of a particular design. 

Bit-serial architectures have been proposed to create high performance. low cost 

VLSI implementations of DSP applications [DRY% J0h9-2. NT91. ErcU]. in bit-serial 

an X bit data word is transrnitted on a single wire. one data bit per dock cycle. The 

word can be transmitted in the Most Significant Bit (MSB) first format [Er&] or 

in the Least Significant Bit (LSB) b s t  forrnat [DRSS. Par91. PMSS]. The MSB first 

format is most suitable for operations such as division. square-root and sorting since 

t hese operations are naturdly perfonned from MSB to  LSB. The LSB first format is 

best suited for addition and multiplication since information is propagated from LSB 

to MSB in these operations. In most bit-serial systems only one of these formats 

is used at the periphery of each computational block but may be converted to the 

appropriate form within each operator. 

h o t  her advant age of the bit-serial architecture is the reduced rout ing require- 

ments. Communication between operators is done using only a single wire. while 

in a p a r d e l  architecture N wires are needed. This results is less area overhead for 

routing. higher design routability and utilization for semi-custom technologies and 

reduced pincounts for integrated circuits designed using the bit-serial architecture. 

Bit-serial operators are N times smdler in size than the pardel  version of the 

same operator. The penalty for this size advantage is the processing time. bit serial 



operators are N times slower than a parallei operator (as defined without carry 

logic). If the two systems were operating at the same clock rate they would be 

e q u d y  efficient in terms of area-time (AT) product. However the propagation delay 

through a bit-serial component is l/Nth of that for the parauel component, so the 

maximum clock rate permitted in a bit-serial system is higher than in a pardel  

system. Thus when the maximum clodi rate is considered bit-serial -stems have a 

better AT product than pardel  systems [HCSO]. 

Digit-serial [AC901 is a word format in which each fixed precision data word is 

transmitted on CV (Digit-Width) different wires. the total word being divided into 

S/W=P separate digits. For many architectures there must be an integer number of 

digits in each data word. this restriction is not necessary but results in simpler control 

s t mct ures for the overall system. As N' approaches f d  parallel the rout ing resources. 

operator size and latency increase. while the number of clock cycles required to 

complete one full computation decreases. 

1.4 Synthesis 

Over the last few decades rapid developments in integrated circuit technolog-- have 

made possible the integration of larger and larger electronic systems. In order to 

support this growth in complexity new design methodologies and more sophisticated 

Computer Aided Design (CAD) software took have been required. Initially this 

CAD software focused on design verification through simulation. but starting in the 

late 1970's C AD software began to take over some of the design tasks traditionally 

done by hand. The various types of automation and the resulting effects on design 
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Figure 1.1: Time Line 

time are showm in figure 1.1 taken from [NILD92]. 

Over the years design automation advancements such as automatic placement 

and routing. hierarchy generators and logic level s ~ t h e s i s  have reduced design time 

considerably. ..At present the next generation of automation software is concerned 

with high-level or system level spthesis. These CAD tools will automatic&- convert 

a high level descript ion of an algorithm or even a specification of an algorit hm to a 

final IC implementat ion. 

The use of high level or system level synthesis resdts in shorter design cycles 

and reduced tirne to market for integrated circuits. This occurs because of increased 

designer efficiency and fewer design errors since many of the error-prone steps of the 

design have been replaced by automated tools. 



Figure 1.2: Y-chart 

\\'Iic*ii t li-c-trssiiig synthesis issues it is usefui to refer to a Y-chart introduced by Gajski 

ait< l 1<111iii i ~ i  1 !)SR [GIS31 as shonm in figure 1.2. In a y-chart. a design is represented 

i ii t l ir iv* di lfrreiit domains. the behavioural. the structural and the physical domains. 

TIie Iwlia\-ioiiral domain is used to describe the behaviour of a system without an- 

iiotioii of hou- the behaviour is implernented. in the structural domain a circuit is 

rep resen t et1 by a hierarchy of funct ional elements and t heir interconoect ions. In the 

phÿsical domain a circuit becomes a layout without any reference to functionality. 

The various rings of this chart indicate different levels of abstraction for the circuit 

with the outermost ring being the most abstract and the imermost ring being the 

most specific. The imermost level is referred to as the circuit level. at this level 

of abstraction the structural elements are transistors? resistors and capacitors. The 



behaviour of these elements becomes a set of differential equations relating currents 

and voltages for each component. The next level of abstraction is referred to as 

the logic level. in this level the entire circuit is composed of collections of transistors 

known as gates. The behavioural representation of this information is a set of boolean 

equations. The voltages and currents at the circuit level have b e n  abstracted to the 

logical values true and fdse or 1 and 0. 

At the next level of abstraction the logical values have been groupeci into words 

of data. The structural elements which make up this level are collections of gates 

such as adders. registers. Arithmetic Logic Units and multiplexers. This level of 

abstraction is referred to as the Register Transfer Level (RTL). 

The next level of abstraction is referred to as the algorithmic level. At this point 

the behavioural description of a circuit is an algorithm or sequence of operations 

required to perform a given task. In the structural domain this corresponds to a 

collection of RTL components to f o m  a processor or subsystem. 

The highest level of abstraction is homm as the system level. At this point 

the behaviour of a system is described ody in terms of functionality. No notion of 

implementat ion is present . This corresponds to the complete system in the structural 

domain. 

in the physicd domain the various levels of abstraction correspond to ever larger 

polygons or blocks finally resulting in complete integrated circuits or connections of 

integrated circuits as on a Printed Circuit Board (PCB). 

Y-charts can be used to d e h e  the various information conversions which may be 

required during a design. as shom in figure 1.3. The traositions on one axis of this 

chart axe defined as refinement abstraction and optimization. Any transition from 
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Figure 1.3: Y-chart Transfomat ions 

the periphery of this chart to the interior. on any axis. is the process of refinement. 

and the reverse t ransitioo is abstraction. An arc wtiose head and tail are at  the same 

level of abstraction describes an optimizat ion. D wing an opt imizat ion the basic 

functionality remains the  same but the design has been improved with respect to 

some cost factor such as speed or area. 

The transition between different axes of this chmt are defined as s ~ t h e s i s .  anal- 

ysis. generat ion and extract ion. in synt hesis a behavioural description is converted 

to the structural domain. this defines how a behaviour is to be implernented at an? 

level of abstraction. The reverse process. anaipis. converts structural informat ion 

back to a behaviour. Anabsis is generaily used for design verification. The process 

of creating a layout from a stnicturai description is defined as generation and the re- 

verse process is an extraction. Extraction is also used during verification to esamine 



the effects of routing delays and signal loading on the performance of the system- 

1.4.2 Silicon Compilation 

The dtimate goal of a synthesis system is to convert a system level specification in the 

behavioural domain to the lowest level representation in the physicd domain. Any 

software tool which can perform this conversion can be c d e d  a silicon compiler. 

In practice this task can not be canied out in a single step but is broken d o m  

into several smde r  s-ynthesis. optimization and generation steps. There are several 

different ways to break this design process d o m  into steps. one possible method is 

described below. 

The first step in this process is system level s-ynthesis. This process converts a 

system level specification to a set of algorithrnically defined subprocessing modules. 

On the Y-chart this operation combines a behaviowal refinement and a s ~ t h e s i s  

operatioo. Each of these subprocessing modules executes in parailel to perfom t h e  

desired algorithm. The input specification consists of a function to perform. such as 

a digital fiter transfer function or  a cornputer instruction set and a set of constraints 

on the solution such as the desired speed. size and power consumption for the final 

solut ion. 

The nest step in the design process is to convert the algorithmic description 

of the system to an interco~ection of realizable processing elements or high level 

synthesis. On the Y-chut this operation may combine a refinement in either the  

behavioural domain or the structural domain wi th some s-ynthesis. The input to t bis 

stage is algorithms defined in terms of processing elements such as adders. multipliers. 

control structures such as branches and loops and storage elements. The output from 



this stage of s-ynthesis is a s tmaurd  Register Transfer Level (RTL) design containing 

adders. multipliers. control structures and registers. This RTL level design may be a 

shared resource implernentation where each operator within the design may perform 

two or more different operations during the algorit hm computat ions. This s ~ t  hesis 

step is often broken dom into three major portions which are resource allocation. 

scheduling and resource assignment . 

Ln resource d o c a t  ion a set of functional units which will perform the requked 

processing steps is selected. The resource assignment phase assigns each aigorithm 

operat ion to one functional bloclc made available by the resource doca t  ion operat ion. 

The scheduling step assigns time steps to each operation on each functional resource. 

This synthesis operation has been addressed by several softmare programs. such 

as HAL (Force Directed) [P1<87]. SP.4ID [HESS]. MAHA [PPMSG]. SE (Simulated 

Evolut ion) [LM901 S AVAGE [ND90]. BITSkW [NT9 11 and SNAFU [Joh97]. Each 

of these programs searches the design space and attempts to find the most suitable 

design. given the user constraints and an estimate of area-time characteristics of each 

function unit amilable to the spthesis system. 

The RTL description must now be converted to a gate level description using 

RTL synthesis. This process converts the hinctional units (behavioural/structural) 

which have been docated and scheduled to gate level implementations ( structural) 

containing simple gates and storage elements. In doing this. some knowledge of 

the implementation architecture is required in order to generate the most effective 

implementation possible. 

Finally the logicâl descriptions are converted to collections of gates and storage 

elements. representing the cells or primitives available wit hin the final implementa- 



tion technology. The objective here is to obtain the most appropriate technologv 

specific representation for each logical operation. minimizing area and/or tirne delay 

for each block. This step can be carried out early if the RTL description is converted 

directly to a technology dependent format. After the circuit has been mapped to 

technology specific ceils the design is placed and routed. This operation attempts to 

find the optimd placement for each ceil of the design which will minimize the routing 

area and dela? for each intercomection in the circuit. F h d y  ail the interconnec- 

tions in the design are routed using the available area or routing resources in the 

device. The design is nom* ready for fabrication as required by the implementation 

technology. 

1.4.3 Validation 

The design of complex digital circuits is inherent- an error prone process. Even 

wit h the  use of CAD tools the resulting circuits are not guaranteed to be function- 

ally correct. In order to deal with this problem it is important to use validation 

software which checks the results of a design step to make sure the circuit functions 

as intended. There are basically two different methods of vaiidation. formd methods 

and simdation. 

In formal methods the transformations applied at each stage are proven to be 

correct and maintain functionality. If d circuit trmsfonnations are proven to be 

error free then the hal circuit will function as specified. In formal methods it is 

critical to correctly specie the operation of the system and to be certain that the 

proofs are complete. 

In simulation a set of test inputs or test vectors are applied to the input(s) 



of a circuit. the outputs are examined against the expected results and if they are 

consistent then the circuit is fuoctioning correctI. The diffidty here is in identi&ing 

the correct set of test vectors which wiü exercise aU circuit components to reveal any 

Bam. In simulation it is critical to understand ùiput/output signal requirements 

from a circuit under test. any deviation between this understanding and the reai 

world circuit requirements will render the simulation invalid. 

dust as there are several levels of abstraction for a design there are also severai 

levels of simulation and design verification. As each Ievel of synthesis or refmement 

is applied. the resuits are checked with an ever more detailed simulator or formal 

proof. requiring longer and longer nui tirnes as the design is refined. 

1.5 Research Goals 

The objective of this research is to generate a CAD tool which will autornatically 

convert an RTL behavioural description of a DSP application to a structural digital 

logic circuit containing logic elements. D-t-pe Bipflops and technology specific ele- 

ments. The target implernentation technologies WU include gate arrays. FPG As and 

fdl  custom implementations. The CAD tool should be flexible enough to support 

new architectures with a minimum of changes to the CAD tool itself. The target 

applications for this compiler are low to medium (up to 9 MHz) throughput rate 

digital filters and other DSP applications which are dominated by additions and 

multiplications. For the input/output specifications an architecture which utilizes a 

bit-serial or digit-serial (reduced routing), TC fixed point word traveling in the LSB 

firs t format ( addit ions and multiplications) d I  be used. 



The compiler rviH convert a RTL behaviourd description, defined in the DFIRST 

language which is an extension of the bit-serial Ianguage FIRST [DR%], into a 

gate level stmcturd description. This process is performed by s~thes iz ing the be- 

haviourd RTL description into a structural gate level description. A series of a p  

propriate optimizations are then appiied to obtain a technology specific gate level 

implementat ion for the DSP application. 

Tltt~ otitpitt of this compiler must be easily retargetable to deal with the ever 

<*sl)au(lii IR set  of new technologies and new data formats. In addition the circuit 

gi*t wrët I t d  4 loiilci be reasonabl- optimal for the chosen implementation technology 

1 t i f  t I i r  use of the compiler. The final generation stages of the overall design 

1 u-t 1'-te< 1 I I  W. 1 Aicement and routing. will be perfomed by vendor supplied software 

i t A  L w  t-i<(-li implementation technology 

1 II orclchi- t o reduce design time for the final implementation several analysis steps 

~lit,i[ld IW i i w c l  to verify the correctness of each refinement or optimization step. 

;\ > ( * l ~ i i  rit I 4 .  si iiiulation program, DSIM (Dfirst SIWulator). will be created in order 

i u 1 wrfort i i RT L simulations. present ly available logic simulators d l  be used t O 

perfon t 1 11 I 1 i t delay gate level simulations. Findy. extraction software supplied by 

tlir itiiplenientation technology vendor c m  be used to extract the wiring delays for 

final t irning verification. 

In the foIlowing chapter the DFIRST architecture specifics as well as language s-yn- 

tau are presented. In addition the DSIM RTL simulator for the DFIRST language 



is discussed and the input/output format is presented. In chapter 3 the RTL hard- 

wme elements which make up the DFIRST language are presented. In particdar 

the architecture for DFIRST adden. muitiplers. bit shifters and format conversion 

operators is given. 

In chapter 4 the T R A M  gate compiler which can convert DFIRST to technology 

specific gate ievel implementations is presented. In particular the set of refinements 

and optimizations which can be  applied to the circuit in order to obtain a smaller. 

more efficient design is discussed. In chapter -5 several examples which have b e n  

generated and tested using DFIRST. DSLhI and TRAM are given. F i n a l -  in chapter 

6 some conclusions on the DFIRST language and TRANS are presented. In addition 

sorne possible avenues for future research are explored. 



Chapter 2 

DFIRS T Language and Simulator 

This chapter presents the DFIRST register transfer level digit-serial hardware de- 

scription laquage. The DFIRST data word format and control signds are discussed 

and the DFIRST Ianguage s ~ t a x  is presented. including operator instantiation. hi- 

erarchy. signal declarat ions. chip to chip communication. and constants. In addition 

the DSIM simulator is discussed including input/output data formatting and simu- 

lat ion error report ing. 

2.1 DFIRST Architecture 

In a bin- data DSP environment. operations are performed on N bit words of digital 

data. This data can be trmsmitted in a number of formats. The most common 

format is bit pardel. in which d W bits of the word are transmitted sirnultaneousl~ 

on N diEerent wires. The disadvantages of Parallel architectures are that large 

amounts of chip area are required for operator implementation and routing and that 

paraIlel operators have long propagation paths leading to a reduced maximum 

operating clock frequency . Alternatives to word pardel  data transmission are bit- 

serial or digit-serial formats. In bit-serial the N bits of a data word are transmitted 

on a single wire in N clock cycles. This leads to operators which are tjpicaliy N 

times srnaller thon pardel  versions of the same operator but require 'i times more 

' Look-ahead-carry techniques lead to reduced propagation delays but require more hardware. 
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Figure 2.1: Sample DFIRST DataWord 

clock cycles to complete the transmission of one data word. 

In digit-serial architectures the ?j bit data word is divided into P separate digits. 

each W bits wide. For the DFIRST architecture. X must be equal to WxP. That is. 

t here must be an integer number of digits in each data word. This restriction is not 

required in general. but the control circuitry is much simpler d e n  all data words are 

divided into an integer number of digits. Since the data for each word takes several 

clock cycles to propagate along a given data path. a word framing control signal 

indicating some fixed point in the data word is needed. In the DFIRST architecture 

a control signai indicating the Least Significant Digit (LSD) time of the data word 

is used. as shown in figure 2.1. For some operations in DFIRST a Most Significant 

Digit ( MSD ) indicating signal may also be required to completely frame a given data 

word. 

Each operator within DFIRST is pipelined at the digit level. resulting in a short 



propagation delay through any logic elements and a higher potential operating fre- 

quency for the overall system. Each operator has a Iatency(L) which is the number 

of bit or digit clock cycles cequired to generate the LSD of the output signal(s), after 

the arrikal of the input signds. The LSD of each input to an operator must arrive 

and be valid during the same clock cycle in order to assure correct operation. 

The iteration time for a serial algorithm is defined as Q. the nurnber of clock 

cycles required for one complete iteration of the algorithm. Some pipelining latency 

may occur between the arrival of the first input and the completion of the first output 

signal but the system c m  accept a new input every Q dock cycles. The Q of an 

algorithm is dictated b -  the minimum number of dock cycles required to update 

al1 intemal states in a recursive system. If all of the operations within the DSP 

algorithm are implemented on dedicated resources then the resulting serial circuit 

n-il1 eshibit the minimum Q possible for that system wit h the given operator set. 

In pract ice a more area efficient implement ation can be obtained by sharing p hys- 

ical components between the various operations wit hin an algorit hm. This requires 

the multiplexing of large components such as multipliers and dividers. and results 

in a larger iteration time (Q) but can result in significant area savings. For some 

applications the optimal area-time product measure exists within a shared resource 

environment [NT91. Johg?. Naggl]. 

-4 generic DFIRST operator is shown in figure 2.2. Each operator requires several 

input and output signals which may be bit-serial. digit-serial or parallel depending 

on the particular operator. As well, seveal parameters may be required to specify 

the exact nature of the operator. these parameters may include for example digit 

width. data wordlength. coefficient wordlength and latency. Each primitive will 
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Figure 2.2: Generic DFIRST Operator 

eshibit a latency which is dependent on the parameter settings for that element. 

this latency( L )  is recorded in the small box before each of the output signals. Each 

out put from a primitive usually has the same L but this may not be the case for al1 

2.2 Design Example 

The Signal Flow Graph (SFG) for a biquadratic [Jac89] digital filter is shown in 

figure 2.3. For this example let W=1 (bit-serial) and assume that the latency of each 

of the five multipliers is 10 and that the latency of each of the four adders is one. 

In any serial circuit it is useful to label a single point as reference time zero. which 

means that the LSD of the signal at that point is valid at time zero. For this filter 



Figure 2.3: Biquad Digital Filter Flow Grapb 

let the input signal be the reference point. The final bit-serial circuit. complete with 

timing information. is s h o w  in figure 2.1. 

From figure 2.4. where the LSB times for each signal are shown. it c m  be seen 

that the minimum time required to cornpute each of the state variables is twelve clock 

cycles as found in loopl. this time is the Minimum System Wordlength (MSW) of the 

system. It is interesting to note that the first delay element T l  is not implemented 

as a separate element but is distributed through multipler B and adders A l  and -42. 

The second delay is implemented using a one-wordlength long shift register. So for 

this circuit. using these primitives. we fhd that Q=12 and that the LSD of the fint 

output is completed at time twelve. 



Figure 2.4: Bit-Serial Implementation of Biquad Filter 

2 -3 DFIRST Language Parameters 

I'Iw 1 )  1:lIKI- language is based on the FIRST (Fast Implementation of Real-time 

Siciiitl Tr-iitdorms) hardware description language developed b -  Denyer and Renshaw 

[ I  ) I{ %>]. '1-liio; language was used as a RTL description language for bit-serial systems. 

I ) W ~ I -  ailcl Iieiishaw also developed a simulator (simfist ) for use with the language 

i i i  i > r i I < ~  t o facilitate rapid design and testing of FIRST descriptions. The language 

also iricl~idecl a compiler (fcc) which converted the high level FIRST language into a 

full ciistoni SMOS IC implementation. In order to develop DFIRST several addit ions 

mere made to this FIRST language. 

The DFIRST laquage fully supports not only bit-serial architectures ( W = 1) 

but also digit-serial architectures ( iV > RI > 1) and p a r d e l  architectures ( W = X ) .  

It is also possible to  rnix digit widths within a single design. The language supports 

elements which have a latency of zero dock cycles. such as simple gates. in order to 



d o w  greater flexibility when designing serial circuits. Several new primitives such 

as CSD multipliers. pardel  to serial and serid to pardel converters and conditional 

operators are aiso included to increase the range of possible applications. 

2.3.1 Signal Declarations 

In any hardware description language. information is transferred fiom operator to 

operator with signals or variables. Each signal can have a Miiety of parameters 

attached to it. defining the precision or format of the information contained in the 

kariable. In the DFIRST language each signal must have a digit width nhich defines 

the W of the signal. Each signal also requires a Bag indicating whether the informa- 

tion is serid or pardel  in nature. This is required because the timing constraints 

on the two t-ypes of signals are different. Each signal must also be defined as either 

a control signal containing timing information or a data signal containing processing 

informat ion. 

The SIGNAL command is used to declare each data signal in the system. Severd 

different styles of signai declarations are available. these are shown in table '2.1 

From table 2.1 it can be seen that the THROUGH and * signai rnodifiers are 

equivalent in DFIRST and can be used to flag a signal as being parallel. The default 

digit width is adjusted using the DIGIT command which must be at the top of the 

DFIRST file. For example. to set the default digit width to two for a whole system. 

the compiler directive 'DIGIT 2' should be on the first line of the DFIRST file. The 

signal orientation which indicates whether the most significant bit is the smallest 

or largest bit number is not presently adjustable. The default setting in this case 

forces the MSB to be the smallest bit number in both seriai and parallel signals. 



1 1 signd is the Most SiePificant Bit (MSB) of the 1 

Signal Dedaration 

sig 
sigO THROUGH n 

Meaning 
A digit-serial signal of the default width. 
Define an n+l bit wide pardel signal. The sigO 

sig[O:n] -4-n n+l bit wide digit-serial signai. The sigO sig- 

sig[n:O] 
nal is the MSB of the digit. 
-4n n+l bit wide digit-serid signal. The sign sig- 

'sig[O:n] 

Table 2.1: Possible DFIRST signal Declarations 

n d  is the MSB of the digit- 
The ' signd modifier may be w d  to set a sig- 

sigb] 

This bit order can only be over-ridden by exactly specifying this information using 

nal to be pardel. This is equivalent to the 
THROUGH signal t-vpe from above. 

n bit wide digit serid signal. 

the sig[hISB:LSB] signal declaration. 

For the most part DFIRST can accept any alphanumeric strings as signal names. 

there are no restrictions on the length of names. and nurnbers can be used in the 

narnes but not as the fist character. There are however some reserved signal names 

which must be avoided. These include the V D D ?  and 'GND' signals which are used 

to tie inputs high or low respective- and the '?iCœ (no-connect) pin which is used as 

a place holder in situations where a signal is generated but is not used. Also. signal 

names cannot start with the character '.Y' as this is used to specify a hexadecimai 

fixed value signal. 

The control signais can be deciared using the CONTROL signal type instead of 

the SIGNAL constmct introduced earlier. There are in general two different sorts 

of control signds? LS B/MSB indicating signals and word selection signals. The 

LSB/MSB indicating signals are used to frame serid data words and are high for 

only one clock cycle per data word. Word selection signals are used for data steering 



and are high or low for one or more entire data words. There is no difierence in the 

declaration of t hese two different types of cont rol signals. 

One way of reducing the complexity of a system. is to break the overall operation 

down into a hierarchy of simpler operations. In doing this. the task performed by 

a system is broken down into convenient sub-modules which do a portion of the 

overaii processing. Each of these sub-modules can be broken down into even s m d e r  

portions resdting in further simplification. The use of hierarchy not only reduces 

design cornplexity but dso increases design re-usability. It is very difficdt to re-use 

a complete system in a new project but a sub-module which performs a generic task. 

can easily be re-used. or modified for re-use. resdting in reduced design times for 

future projects. 

The five hierarchical levels within DFIRST have been retained frorn the original 

FIRST language and include the SYSTEàI. SUBSYSTEM, CHIP. OPERATOR and 

PRIMITIVE levels. The SYSTEM level represents the entire system which performs 

the processing task. a CHIP represents a single integrated circuit and the PRIMI- 

TIVES are pre-designed components amilable within the DFIRST language. Each 

of these three hierarchy levels camot rnake use of components at the same level. so a 

CHIP cannot contain another CHIP within itself. The other two levels of hierarchy 

are provided to facilitate partitioning. A SUBSYSTEM is a collection of CHIPS and 

other SUBSYSTEMs. and an OPERATOR is a collection of PRIMITIVES and other 

OPER-.TORS. 



2.3-3 hstantiation 

To instantiate an operator of any hierarchïcal level the follming s ~ t a x  is used: 

l a b e l  : name [parmlist] (cntrllist) datalist 

The label is an optional feature which d o m  the user to name an individual 

component for future reference. if no label is present then a unique label is generated 

by the program reading the DFIRST netlist. The name defines the type of operator 

being instantiated. the parmlist contains user defined parameters specific to each 

operator. The ctrllist contains a.ii the control signals for the operator. and the datalist 

contains al1 the data signâls for the operator. For the cntrlist and the datalist the 

inputs and outputs are separated by an arrokv (-  >). For example a serial adder 

could be instantiated as follows: 

ADD [i,O,O,O] (CO) aO,bO,GND -> s0,NC 

In this example the label for the adder is not included so one will be generated 

by the program reading the netlist. Information on what the parameters. and 1/0 

signals for this operator are discussed in chapter 3. 

2.3.4 Encapsulation 

In order to encapsulate a set of operators within a hierarchical element the following 

syntas is used: 

hierarchy name (ctrllist) datalist 

CONTROL ctrlsignals 



SIGNAL datasignais 

inst ancelist 

END 

The f i s t  line of the hierarchicd elernent. or rnacro. defines the hierarchy Ievel. 

the reference name and the input/output signds for the part. The hieiarch y must 

be one of the four non-primitive hierarchicd types SYSTEM. SUBSYSTEM. CHIP 

or OPERATOR. The name can be any dphaoumeric string which does not conflict 

with a PRIMITIVE name. previously defmed element or DFIRST kepvord. The 

ctrlist contains a Listing of control inputs and control outputs with the inputs and 

outputs being separated by an arrow. The datalist contains a List of au data signal 

inputs and outputs. again with the 110 signais being separated by the ~ m w .  

The interna1 portion of the macro defines the behaviour of the elernent. The 

ctrlsignals iist contains a listing of all intenially defined control signals separated by 

commas. The ctrllist signals must not be included here and no arrow separator is 

required to define input and output signals. The datasignals list defines the intemal 

data signals. If the signal lists are too long the Line can be continued by ending 

one line wit h a comma and continuing the signal declarations on the next iine. In 

addition any number of CONTROL and SIGNAL commands may be present but 

they must occur before the instancelist begins. 

The instancelist is a sequence of components which describe the funct ionality of 

the macro. The elements of the instancelist are instantiated as shown in section 

2.3.3. There are some limitations on the components which can be used within a 

macro depending on the hierarchy Ievel of the operator. O d y  PRIMITIVES and 



OPERATORS can be used within OPERATORS and CHIPS, and only CHIPS and 

SUBSk*STEMs can be used within SUBSYSTEMs and SYSTEMs, In aU cases a 

recursive definition is Uegal. so no instances of name can be contained within the 

rnacro description of name. 

2.3.5 1/0 Pads 

The input-output pads of an integrated circuit perform the important function of 

buffering signals from the chip intemal environment to the chip extemai environment. 

They are used to provide suaicient drive for -stem Ievel signals and to provide 

static and overdrive protection for each I/O signal. In a spchronous system simple 

buffering of 110 signals is not sufficient in a mdti-chip environment. due to the phase 

difference or clock skew between different devices. CIock skew is caused b -  differing 

propagation delays for a dock signal arriving at two or more different points. Since 

cloclis are active on edges only. a s m d  skew can cause a circuit to fail. In order to 

correct for this problem. D t-ype Bipflops are inserted on both the input and output 

pads. wit h the input pads being rising edge triggered elements and the outputs being 

faliing edge triggered elements. This configuration dows  for a combined clock skew 

and signal d e l -  of up to one half of the clock period. in either direction [DR%]. 

The 110 pads within FIRST are ody included at the CHIP level of the laquage 

and cannot be used at any other level of the DFIRST hierarchy. The 110 pads are 

instantiated using two DFIRST commands. Pi\DIN for input pads and PADOUT 

for output pads. The syntax of these commands is as follows: 

PADIN (ext ern-cntrl->intern,cntrl) extern-data->intern,dat a 

PADOUT ( intern-cntr l ->exto-cntr l )  intern-data->extern,data 



The e2te.m signds represent chip extemal signals and the intern signals are the 

chip internid versions of the external signds. A b d e r  of the appropriate t-ype (in- 

put/output. rising/fahg edge triggered DFF) will exist between the extemai and 

the intemal signal. The PI\D commands must be placed between the signal decla- 

rat ion section and the instance List of a CHIP level macro. 

2.3-6 Constants 

llariy of t l i c  primitives within DFIRST are parameterized in terms of wordlength. 

~ > t ' * c - i + i m ~  a t i c l  lateoc. Often one change in system specifications such as the system 

\ w - t  l lw ICI l I or coefficient wordlengt h resuits in a drastic change in the parameter 

Y*!  t i icc- i i i i ( I  i lie bit level timing for al1 elernents in the system. CO?ISTANTs can be 

I I W  I I t B -1 I W I  <*II the re-design time when high level system parameters are changed. 

.\ ( 'O.\'S-L-\NT is a string which is given a numerical value made up from other 

t - ~ i  1.1 i i  i I I x it i i c l  iiitrnerical operations such as addition and multiplication. The possible 

i i l i  c-gchr i i  r i t  liiiiet ic operations are addition. subtraction. multiplication and division. 

D r a c - k c - t +  arc also supported. The evduation order for CONST-WTs is brackets. 

fol l o i t - w l  1)y niult iplication/division and ha l l y  additionJsubtraction. A CONST.4XT 

is clefiiiecl iising the following syntax and must be defined before it is used within 

the  DFIRST code. A CONSTANT c m  be used in any parameter location. In the 

following example the CWL constant is set to eight and the LATENCY constant is 

set to 13. 

CONSTANT Cm58 

CONSTANT LATENCY=3*CUL/2+1 



For any hi& level language it is important to have an effective simulation program to 

aid in the design process. A register transfer level simulator models the behaviour of 

the language elements at  the RTL which results in fast simulation times as compared 

to lower level simulations (gate level or transistor level). In order to be effective. a 

high level simulator shodd include a comprehensive design d e  checker to highlight 

as man-  design faults as possible at an early stage so that fewer t ime consuming 

runs of a lower level simulator are necessaq. A simulator should have an effective 

data entry system in order to speed up the circuit debugging and finaily a simulator 

shouid be as fast as possible so that the designer does not spend an undue amount 

of time waiting for a simulation. The RTL simulator for the DFIRST language is 

t he  DFIRST Simulator or DSIW 

DSIM is an event driven simulator which models each data signal as a fixed point 

?i bit integer. with a time value to indicate when that signal became ialid (LSD 

time). The primitive functions are perforrned on the integer d u e s  and the time 

d u e s  are used to veri& timing constraints on each signal. 

2.4.1 Signal timing 

The time steps within the simulator are broken down into two different camponents. 

the bit time and the gate time. The bit time represents the clock cycle at which a 

signal becomes valid. The gate time is a finer scale time nrhich accounts for the delay 

tirne through a component which has a zero clock cycle latency. For most DFIRST 

components the bit time is ail that is needed because most primitives have a latency 



of at least one clock cycle. However some DFlRST components. such as simple gates 

and zero delay adden and multiplexors. have a latency of zero ciock cycles. For these 

components the gate level timing is needed during simulation. Each clock cycle is 

broken down into 20 gate ticks. and the latency of any zero d e l -  component is 

set to one gate tick. Any combination of zero del- elements must generate a final 

value within this time or the simulation wilI generate incorrect results. This set of 

delays does not reflect routing delays or even real component delays but does d o w  

for correct unit delay simulationt which is necessary at early stages in the design 

process. For more exact simulations. with more reaiistic logic delays. a gate level 

timing simdator must be used. 

The gate level simulation portion of DSIM uses the transport delay mode1 [Vie9:3]. 

which simulates every transition even those tvhich may be only one gate tick wide. An 

alternative strategy is inertial delay rnodeling which effectiveIy filters any transition 

mhich is shorter than or equal to the delay through a logicd element. The transport 

delay mode1 results in slightl- longer settling times for logicd blocks but is sirnpler 

to implement. 

2.4.2 Paralie1 vs. Serial Signals 

Most DFIRST primitives. such as ADD or MULT, have input/output signals which 

are exclusively serial in nature. Other primitives such as PTOSB and PMULT have 

inputs which must be in the parailel format. Within the simulator both signai types 

are treated the same in âII respects except with regard to timing violations. 

Each serial signal in a system travels in a LSD first format on W wires. The 

LSDs of aU serial signals miving at any operator must arrive at exactly the same 



time. lf this is not the case a timing fault will be flagged and the user must correct 

the timing of t hese signols. 

Parallel signals travel on N wires and once a pardel bus is given a value it will 

hoId that d u e  until a new value takes it's place. This holding feature on pardel 

signals means that the timing of pardel signais is not as critical to proper operation. 

The correct data on a parailel bus must be present on a paraUel bus when the control 

signal which samples the bus arrives. 

2.4.3 Data File Format 

In order to simulate a DFIRST netlist with DSIM the user must provide input stim- 

ulus information. cvhich output signds are to be examined. t h e  simulation duration 

and the data wordiength of the DFIRST system. This information is provided in the 

DSIbl data file- 

The WORDLENGTH command must be the first command in the DSIM data 

file- This WORDLENGTH value is used within the simulator to check ovedom on 

al1 signals within the simulation. The commaod to set the simulation time frame is 

the SIMUL,4TION CYCLES cornmand. which indicates the number of data tvords 

to be simulated. The number of dock cycles in the simulation will be SIMUL-ATION 

CYCLES ' WORDLENGTH. The s ~ t a v  of these two cornmands is as follows for a 

data wordlength of 16 bits and a simulation duration of 100 data words (1600 cloclc 

cycles ) . 

WORDLENGTH 16 

SIMULATION CYCLES 100 



The command for inputting data to the simulator is divided into two separate 

portions. the signal declarat ion and the signal simulation data. Since the input sig- 

nais to a simulation may be seriai in nature. a LSD time must dso be provided with 

the data for the signal. This timing information is added using the SIGNAL corn- 

mand which uses a signal within the simulation. which has known timing properties. 

to define the LSD time for input signal(s). in the following example the sipals ain 

and bin wiU have the same LSD time as the simulation internal signal CO. 

SIGNAL ain,bin SYN WITH CO 

The synchronizing signal may be a control signal or a data signal. chip internal 

or chip external but generally a system level (chip extemal) control signal is used for 

t his purpose since the input data signals are usudy chip external. 

The simulation data is provided using the inputsignal command. Where an in- 

putsignal is a- signal name declared using a SIGNAL command in the data file. 

Data is provided as a set of ordered pairs of numbers. the first number is the word 

t ime and the second number is the data value. The word time is defined in tenns of 

the synchronizing signal for this inputsignal. A word time of zero means that at the 

first occurrance of the sync signal this input signal should take on the d u e  indi- 

cated by the data d u e  for word time zero. Each LSD occurrence of the sync signal 

increments the word t h e .  l n y  word times which are not present d l  maintain the 

previous setting of the data value. The data ordered pair list must be terminated 

by either a -1 or a -2 value. A negative one value means that this inputsignal should 

maintain the same signal value (the last data d u e  specified) until the end of the sim- 

ulation. a negative two value means that the pattern of the data should be repeated 



from the first d u e  in the order pair List. In addition a separate file which contains 

the data for the signal can be inciuded by using the FILE constmct. the format of 

the data file is the same as the standard data style. The examples presented here 

illustrate the data format- the data terrninators and the FILE command. 

Example 2 

Cs igbl 



CsigcJ FILE sig-in 

In Example L the value of the signal siga foIIows the sequence 1. -1. 1. 4. -5. S. 

O. During time 1 the value of the signal remains as in the previous time and at any 

time after t ime .5 the value of siga is O. In example 2 the value of sigb has a repeating 

sequence of '0J .&S. for the durot ion of the simulation. In the final example the file 

sigin contains the data for the sigc input signal- The format of the sigin file is the 

same as the standard input data. 

The CV4TCH command is used to observe data signais during the simulation. The 

W W C H  command specifies which signals ore to  be observed during the simulation 

and the name of the file in which to store the information. Any simulation signal 

can be LUTCHed and the timing granulait- for the output information con be set 

to either GATE. BIT or S-.MPLE format. 

If the BIT level format (default ) is used t hen the timing informat ion for a11 signals 

generated within the simulation will be the dock cycle number. If the GATE level 

format is used then all BIT times wiil be scded by the gate ticks parameter. At this 

timing level the performance of gate level combinational circuits can be observed. 

The final timing format is the SAMPLE format. here the timing for the output signal 

is word level information. In the SAMPLE format the timing information starts fiom 

zero and is incremented by one for each successive output value. 

The s ~ t a x  of the LK4TCH command is demonstrated in the following esunples. 

h a m p l e  1 

MATCH sig STORE IN sig-out 



Example 2 

WATCH sigi,sig2 STORE in sig-out VITH SAMPLE 

In Example 1 the simulation information from sig is stored in the file sig.out. 

The timing information in this case is the default BIT level format. In Example 2 

the information for both sigl and si@ is stored in sig.out and the timing information 

for bot li signals is set to the SAMPLE format. 

Tlic ordering of the DSIM data file commands must be WORDLE-YGTH. SIMU- 

l.;\*I*IO S ( *\*C'LES. SIGNAL. CVATCH. followed by the [inputsignal] data commands 

ii titi t I i r  lilv rii~ist be terminated by an END cornmand. Any number of SIGNAL and 

\\\'I( '1 1 C-miiiiands may be present in the data file. there must also be one [inputsig- 

tiiil: wi~ii~;itid for each signal declared using the S1Ghi.U cornmand. 

.-\II! ~ ic i io l  \rit liin the simulation may be used in the SIGNAL and LKUCH com- 

i i l i i i i i l ~ .  iiii-litdirig CHIP interna1 signals and signds which are several loyers of hier- 

arc-II? <I(v-p i l i  t lie design. However signal names used within the DSIM data file must 

Iir iiiiiclue. Son-unique signal names will occur when several instances of a single 

user definecl operator are used or the same signal name is used nithin two separate 

user defined operators. For these signals some of the hierarchy tree must be traced 

to more precise- identify which signal is being referenced. 

In order to trace a signal within a particular operator which may have a confiict. 

the instance of the operator must be labeled as defined in section '2.3.3. Now the 

signals within that operator can be uniquely identified as illustrated in the following 

example. 



WATCH sigl/macl,sig2/mac2 STORE IN sig-out 

In this WATCH command the signal sigl within the operator labeled 'macl' and 

the signal 'sig2' within the operator labeled 'mac2' will be watched and the resdts 

stored in the file sig-out. Any number of / operators may be used to trace the 

hierarchy of a given signal. 

2.4.5 Number Interpretation 

In any bit serial system a number of different effective wordlengths may be present. 

The p r i m q  wordlength is the data wordlength or System CVordLength (SWL) of 

the circuit in question. In addition to this data length each multiplier may have a 

different Coefficient WordLength (CWL). and each Paraliel converter may have a 

different number of pardel  bits to convert. 

The d e  for interpreting or inputting data to alI these parts is that each data 

value is a two's cornplement (TC) number of the required length. A value of -1 

indicates that ail bits of the word in question are set to one. A value of 1 indicates 

that the Least Significant Bit (LSB) of any word is one and d other bits are zero. 

2.4.6 Simulation errors and warnings 

One of the most important aspects of a simulation program is the error reporting. 

The earlier an error is identified the less time is bvasted proceeding with a faulty 

design. DSIM reports two general Iünds of circuit errors: design d e  errors and 

simdat ion timing errors. 

The design emors reported by DSLbI include sourceless or loadless nets or multiply 

driven nodes occurring wit hin the design. Loadless nodes c m  occur wit hin a design 



and result in ordy wasted area generating signai(s) which are not uitimateiy aeeded. 

Sourceless nodes however must be corrected before finai implementation. since a 

Boating input to a logic element resdts in mdefined values at the output of that 

etement. These sourceless nodes may be tied high or low using M 3 D  or GND signals 

to absolutely define the operation of the resulting logic. Multiply driven nodes are 

also design errors which must be corrected. Each node in a DFIRST file must have 

only one driving element. 

The second kind of erron reported by DSIM include d simulation timing errors 

and interna1 signal overflows. Unlike the design d e  errors. these problems are 

progressively harder to identifjr and correct as circuit refinernents are performed. 

Design nile errors can be flagged a t  any Ievel of abstraction and are readily t raceable 

to a single cause. Timing errors axe more difficult to trace to a single root cause. 

Al1 serial signals arriving at a DFIRST primitive have strict requirements for 

their relative LSD times. For most elements all input signds must have their LSD 

valalid during the same clock cycle for correct operatioo. If a timing violation occun 

DSIbI reports the offending swy-mbol and the timing of ail signds connected to that 

primitive. Using this information a timing error can be quickly corrected. 

Intemal signd overflows occuring during a simulation are also reported by DSIM. 

Al1 data signals mithin the DFIRST language are fixed precision values. A word over- 

flow can occur after addition. subtraction, and multiplication by constants greater 

than one. DSIM checks all values generated within a simulation against the bounds 

of it's precision and if an ovedow occurs, DSIM reports the violating signal and the 

time at whkh the violation occurred. The simulation continues after this error but 

the results generated may not accurately reflect real circuit operation. 



DFIRST is a Register Transfkr Level language which supports the description of 

bit-serial or digit-serial DSP circuits. AU serial signals in DFIRST travel on W 

wires in the LSD first data format. The serial signals within the DFIRST ianguage 

require a frilfning control pulse which indicates mhere either the LSD or the MSD is 

in the data uvord. The DFIRST language uses five levels of hierarchy (PRIMITIVE. 

OPERATOR. CHIP. SUBSYSTEM. and SYSTEM) to simplie the partitionhg of 

a large application into smaller pieces. The DFIRST language also supports clock 

skew robust CHIP to CHIP intercomection of serial data signals. 

The DFIRST primitives are parameterized in terms of precision. digit-width data 

wordlength and latency Each primitive exhibits a l a t e n -  (L) which defines the 

nurnber of clock cycles between the a r r i d  of input signal(s) to the operator and the 

generation of the output signaI(s). 

The event driven DSIM simulator is used to simulate the performance of circuits 

described in the DFIRST hardware description language. DSIM loads both the 

DFIRST netlist and a data file to perform a simulation. In the data file a user 

describes the wordlength of the serial signals within the circuit. the length of the 

simulation. the input signals and their desired stimulus and the signds which are 

to be rnonitored during the simulation. DSIM also performs design rule checks 

on DFIRST circuits and provides feedback on serid timing alignment and overfloiv 

errors which may occur during a simulation. 



Chapter 3 

DFIRST Primitives 

Ln this chapter the gate level form of some DFIRST primitives is presented. In 

p a r t i d a s  DFIRST adderslsubtracters. rÏght/Ieft shifters. multipliers and format 

converters are implemented using non-technology specific or generic gate level ele- 

ments. 

In addition to generic gate level implementat ions. where appropriate. alternat e 

implementations are presented to highlight the strong points and the weak points of 

each implementation. The latency and critical path of each operator is discussed in 

t e m s  of the operator parameters and digit width. 

3.1 Standard Components 

-411 DFIRST primitives are made up from a s m d  set of logic elements. including 

standard gates such as AND. OR. XOR. NAND. NOR. SNOR and INVERTERS as 

well as two to one multiplexor elements. delay elements ( DFFs) and BL.-\TCHes. h 

BLATCH is an active high clock enabled DFF element which only latches the input 

signal to the output if the control pin is high. The interna1 logic for multiple'cors and 

BLATCHes as weil as their schematic representation are shown in figure 3.1. The 

control signal for both of these elements is normally connected vertically. and the 

data pins(s) are connected horizontaily to the component. The upper input signal of 

the MUS is selected if the control signal is low and the other data input is selected 



- - 

BLATCH 

Figure 3.1: Schematic Representation for a DFF and BLATCH 

if the control signal is high. 

3.2 Storage 

Bit-serial or digit serial data storage is implemented using the BITDELAY DFIRST 

primitive. This primitive may aiso be used to control the timing alignment of serial 

signals. The BITDELAY primitive is implemented using W shift registers of the 

appropriate length. A W=2. Iength=6 BITDEL.4k- primitive is implemented using 

2 6-bit shift registers. For control signals the CBITDELAY primitive is used. The 

implementation of this primitive is the same as the BITDELAY primitive. 

The instantiation of BITDEL.4y and CBITDELAY primitives is as follows. Note 

that the digit-width of the BITDEL.AY primitive is determined by the digit-width of 



the input/output signds of the BITDELAY part. The digit-width of the input and 

output signal must be the same. 

BITDELAY [31 din -> dout 

CBITDELAY C31 (cin -> cout) 

Addition is a naturauy LSD fist  operation so it is weU suited to the DFIRST ar- 

chitecture. -4 cany-save bit-serid adder is shown in figure :3.2. During the first 

dock cycle the LSBs of both input words are present on the data Lines A and B. At 

this LSB time the control signal is high and is used to set the caw input on the 

full-adder to a user defined \due. The surn is generated and delayed by one clock 

cycle to pipeline the operator (latency=l) and the c m y  is stored for use in the nest 

dock cycle. On the next clock cycle the second bits of both A and B are available 

and the carry output from the previous clock cycle is used as the c a n y  input to the 

full adder. The addition pcoceeds in this manner until all N bits of the data words 

are processed. 

The extension of the bit-serial adder to a digit-serial adder can be implemented 

by using CF' full adders with a ripple cany from the LSB to the MSB of the digit. 

the most significant bit ca- output is saved and used as the LSB c m y  input on 

the foilowing dock cycle. During the LSD time the control signal clears the carry 

feedback and sets the c a r y  input to a user selected value. The resulting hardware 

for a digit serial adder with W=3 is shown in figure 3.:3. 

As the data wordlength (N)  increases the hardware size of the digit-serial adder 



Figure 3.2: Bit-Serid Ca- Save Adder 

I O  I (-liiitige. unlike parallel adders which linearly increase in size with data 

\ \ . t ~ i - r l l < * l i i i  1 1 ' .  Tlie number of dock cycles required for the complete addition is N/CLr. 

I'lti' ~ J I W I - ~ I  <II- can be converted to a subtraction operator by complementing aIl W 

I i i  5 tif 1 I i c b  Ii i t i put and sett ing the carry input high (complement and add one). 

'1'11~ iitiriiher of full adden and pipelining delays for the s u m  is equal to the digit 

ivitlt 11. so t lie size of digit-seriai adders increases Linearly with W. The number of 

clock c - d e s  required to process a given data word decreases linearly with the digit 

width because more bits of the data rvords are being processed during each clock 

cycle. The maximum logic propagation delay or critical path of a digit serial adder 

is LV full adders plus the c m y  input generation logic. 

The DFIRST c d  to a digit serial adder is: 
- 

lgnoring fast carry met hods. 
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Figure 3.3: Digit-Serial C w  Save Adder (W=3) 
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ADD Uatency.0 ,O, O] (CO)  a, b, carin -> sum, carout 

The latency parameter of a3 ADD element selects the latency (L)  of the adder 

asd can be any integer value (including zero) in the DFIRST language. WX1atency 

pipelining delays are used at the output of the adder to generate the desired Iaten- 

If the latency selection is zero then no pipelining delays are placed at the sum output. 

This option must be used with some care because a cascade of zero delay parts ivill 

result in longer critical paths for the overd circuit. Clihenever using zero delay 

components some consideration must be given to the t-ype of operators being driven 

by the primitive. 

The second. third and fourth parameters are remnants from the old FIRST lan- 

guage and were used to optionally implement pre-delays of one bit on each of the 

three input signals. This feature is not supported in the DFIRST Ianguage and zeros 

are inserted in place of these values. In order to implernent these delays separate 

BITDELAY operators must be used. 

The CO signal is the LSD indicating framing control signal while a and b are the 

data inputs which must have the same LSD time as the control signai. The carin 

signal is normally set to GND but can be set to VDD to implement a ca rq  input 

of one. The sum is the sum output of the adder and the carout signal is the camy 

output from the Most Significant (MS) f d  adder. The carry output signal is not 

generally used and a NC signal is often connected here. The digit width of the adder 

is selected by the digit width of the input and output data signals. -411 three data 

sipals  a.6 and sum must be of the same digit width. 

The DFIRST instantiation of a subtracter is: 



(a) (b) 

Figure 3.4: Adder Schernatics (a) cin grounded and zero delay (b) latency of L 

The subtracter has the same options as the DFIRST adder. The borin signai is 

normaily set to GND but c m  be set to VDD in order to irnplement an increment b -  

one on the difference output. 

3.3.1 Adder schernatic 

The digit-serial adder is one of the primitiveelements used to build up more cornplex 

operators as discussed in the following sections. The schemat ic diagrarn(s) represent- 

ing a digit-serial adder is shown in figure 3.1. if there are only two inputs on one side 

of the adder then the cin signal is assumed to be connected to GND (grounded). The 

signal connected to the bottom of the element is the control signal and the signal 

on the right is the sum output from the adder. If no latency block is present then 

the  adder has a latency of zero clock cycles. otherwise the latency is indicated by 

L. If there are three inputs then the lower most is the cin signal. The adder can be 

converted to a subtracter by placing a negative sign above one of the two data input 

signals. -4 negative sign above both data signds is invaiid as this operation cannot 

be implemented in a single serial adder. 
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Figure 3.5: Circuit for Bit-Serial right shift by P 

3.4 Right Shift 

-4 right shift operation can be used to perfonn a power of two division. This operation 

right shifts the N bit data word by p bits resulting in a division by P. In TC right 

shifting. the lower p bits are removed and the upper p bits become sign extensions. 

the p+lth bit is the LSB of the output ivord. The general form of a bit-serial right 

shift element is shown in figure X.5. 

The data signal ( A )  arrives at the BL.-\TCH element at time zero. The control 

path delay chah is pl delays Long. the p points of this delay chah are used as inputs 

to a p input nor gate. if p=l  then the nor gate becornes an inverter. The output 

from this nor gate is lon* for p clock cycles starting at tirne zero. LWle cshift is 

lom the BL-4TCH element recycles the previous output from the shifter w-hich is the 

MSB of the previous word in a f d y  word packed system. This perfonns p bits of 

sign extension on the previous data word. Also at this time the p least significant 

bits of the present word are discardecl. On the next dock cycle the p+lth bit of 

the present ivord becomes the next output and is delayed by one clock cycle by the 
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Figure :3.6: Twelve bit W=3 serial data word and data word right shifted by two 

flipflop in the BLATCH. The resuiting latency of this primitive is p+l clock cycles. 

p for the right shifting action and one to pipeline the operator. 

3.4.1 Digit Serial 

The digit serial version of the DSHIFT element is more complicated to implement 

because the bits making up each digit are re-arrânged if the shift value p is not an 

integer multiple of the digit ividth W. Consider the digit serial data word shoivn in 

figure 3.6. with W=3 and a shift value of p=?. 

This right shift operation has resdted in the WO iine being moved to the W1 

line with a delay of one. the \VI line being moved to the LW lïne also with a delay 

of one and the W2 bit being moved to the W O  position with no delay. Also. the 

upper two bits have becorne sign ex?ensions. In order to implement an a r b i t r e -  

digit width right shift element it is usefd to break the operation down into two 

cornponents. The first portion re-orders and delays the bits forming the digit as well 

as performing sign extension across the digit. The second portion performs right 

shifts by integer multiples of the digit width. 

Since there are an arbitrary number of possible digit widths and shift values it 

is not practical to use a library of different elernents CO implement the two sections 

of t h e  shifter. Instead d of the hardware for the shifter is generated using delay 



Figure 3.7: Digit-Serial right shift operator for W=3 and p=4 

elements ând mult iplexors. 

The second section of the right shifter is the same as the bit-serial version oniy 

repeated for each bit of the digit. Each bit is a selection between the incorning bit 

of data or the sign bit of the previous word. If the sign bit is selected then the 

present word is right shifted and the previous word is sign extended. The hardware 

generated for a W=3. right shift by four operator is given in figure 3.7. 

The latency of digit serial rïght shift operators is determined as follows. If the 

shift value p is an integer multiple of the digit width W then the latency is due to 

the integer shifting section o d y  and is p l  P V  + 1. If p < CF* then the latency of the 

operator is due to the second section only and is one. CVhen a combination of both 

sections is used the Latency is p/W' + 2. 

3.4.2 DFIRST instantiation 

The right shift operator in DFIRST is the DSHIFW primitive and is instantiated 

as 



DSHIFTA [pl (CO)  a -> o u t  

ahere p is the number of bits by which to right shifi. The CO control signal 

and the a data signal must have the same LSD t b e .  Another operator which is 

maintained from the FIRST laquage is the DSHIFT operator which performs the 

same operation but has a Iatency of p+3 for the bit-serial shifter and is not available 

iit digit-serial. The DSHIFT operator accepts the same parameters and input signâls 

a5 t I I< -  I)S I I I  FTA operator but a second parameter which enables a pre-delay on the 

i i i p ~ ~  +ial is also required. The pre-delay feature is not implemented in DFIRST 

m i i l  i f  i i w  l d  must be implemented using the BITDELAY primitive. 

3.5 Left Shift 

l . d i  41ilt i ~ ~ r !  i5 a cornmon operation which can be used to implement a multiplication 

I I > -  il I)ow*r of t 1.0. The left shift operation left shifts the N bit data word by m bits 

~ ~ < d u r t r i i i ~ a  H i~~~dtiplication by 5m. In TC left shifting the bottom m bits of the 

<lata n-orcl lm-onie zero and the top most rn bits of the input must have been sign 

est c~tisioiir ]>rior to the left shift operation or an overfiow occurs. The general form 

for a bit-serial left shifter is s h o w  in figure 3.8. 

The data signal I N  and the input control signal CTRL arrive at  the shifter at 

time zero. The control signai is delayed by m-1 clock cycles. rnuch Lice the right shift 

operator. and m nodes of this shift register are nored together to generate the cshifi 

signal. If m=l t hen no shift register is required and the cshift signal is the inversion 

of C .  During the m clock cycles in which cshift is low the output from the shifter is 

zero. during this time m bits of the input data word must be stored to be output in 



Figure 3.8: Circuit for Bit-Serial left shift by P 

their new left shifted positions. this is done with an m bit shift register on the input 

data line. After m clock cycles the LSB of the input word arrives at the multiplexor 

input and the cshift control signal goes high dowing this bit and the remaining X-m 

bits of the input word through to the output pipeline d e l -  For this implementation 

the upper most m bits of the input signal are not present in the output signal so 

these bits of the input word should have been sign extensions or the output of the 

s hifter is not correct. 

The latency of the left shift component for any value of m is one due to the 

pipelining delay at the output of the multiplexor. Udike most DFIRST operators 

the left shifter can be implemented with a negative latency since the first relevant 

bit of the input signal arrives at the operator m clock cycles after the start of the 

operation. If the operator is started at time -m theo the LSB of the input signal 

can be connected directly to the multiplexor input and no data delay shift register 

is required. This implementation is faster (negative m latency) and smaller (no 

input storage chah) but has not been implemented to remain consistent with other 



Figure 3.9: Sixteen bit W=l serial data word and data word left shifted by three 

DFIRST primitives. 

3.5.1 Digit Serial Left Shifter 

The digit-serial Ieft shift operator is very similar to the digit-serial right shift operator 

in that the bits which make up each digit have to re-arranged if the number of bits 

to shift b- is not an integer multiple of the digit width. h W=4 digit-serial data 

word and the resulting data word after a Ieft shift by 3 bits is s h o w  in figure 3.9. 

For this shifting operation the W O  digit is moved to the CV3 bit position and the 

W1.W. W3 bits are moved to the WO. W1 and W bit positions respectively in the 

next digit. So some bits may be moved and others may be moved and delayed. 

The left shift element may be broken down into two sections. one section to 

perform the bit re-arrangement and another section to perform left shifts on entire 

digits. 

The second portion of the Left shift element is the same as the bit-serial cornp* 

nent. repeated for each bit forming the digit. The number of delays to insert in front 

of the multiplexor and the number of clock cycles which the multiplexor must select 

the zero is equal to the integer division of m/W. In order to generate the control 

signal for the multiplexors in this stage m / W l  delays must be used for the control 

path and an m/W input nor gate must be used to generate the select signal. If 



Figure 3.10: Digit-serid Left shift operator with W=3 and P=.5 

rn/w=l then no control delay chah is needed and the select signal is the inversion 

of the input control signal. The resdting hardware for trvo left shift operations and 

the inputs and resulting outputs are shown in figure 3-10. 

The latency for the arbitraq- digit width left shift operator is dways one regard- 

less of digit width or shift value. Both sections of the element are generated wit hout 

pipelining delays and the output of the operator is pipelined to force a latency of 

one. The digit-serial left shifter can also be implemented with a negative latency 

saving all data storage elements within the shifter. This implementation has not 

been included in DFIRST to remain consistent with other primitives. 

3.5.2 DFIRST 

The left shift operator within DFIRST is the MSHIFT operator which is instant iated 

using the following s ~ t a u :  

MSHIFT Cm, O] ( C O )  in -> out  

The m parameter indicates the number of bits to left shift the input data signal 

(in) by. The control signaI (CO) and the input signal must have the same LSD 

time. The digit width of each MSHIFT operator is determined by the digit width 



Figure 3.1 1: Bit-Serial Pardel to Serial Converter 

of the input a d  output data signals which must both have the same digit width. 

The second parameter represented an optional pre-delay on the input signal in the 

FIRST language. but is not supported in DFIRST. 

In most digital systems data is communicated in a word pardel format using NP 

separate wires for an XP bit data word. To interface this parallel information to a 

serid processing system. format conversion elements such as parallel to serial and 

serial to pardel converters must be used. 

The parailel to serial cooverter is responsible for converting an external NP bit 

pardel  data word to an N bit serial word for internal use. If N P  < :V then the 

parallel to serial converter must provide sign extension for bits to the left of the 

incoming data and insert zeros for the bits to the right of input word. If N P  > N 

then the 'i most significant bits of the parauel data should be used as input. The 

hardware for a simple bit-serial paralle1 to serial converter is shown in figure 3.11. 

Each element of the converter is a multiplexor in front of a D t-ype ûipflop. If 

the control signal is high then the paralle1 input lines are loaded into the bit delays. 

otherwise the other mm input is selected forming a shift register. The converter 



Figure 3.12: Paralel to Serial Converter (W=3. .IP=8. G=l) 

shorvn in figure 3.11 accepts XP bits of p a r d e l  input. inserts G ground bits to the 

right of the p a r d e l  data and can perform an a r b i t r q  amount of sign extension due 

to the recirculation of the MSB. 

The conversion of a bit-serid p a r d e l  to serial converter to digit-serial is relative- 

straight forward. The latching elements of the converter are manged  in a W bit 

wide fashion with the parallel inputs of the least significant G bits being tied to 

ground and the ~a râ l l e l  inputs of the remaining NP elements being comected to the 

appropriate bits of the input signal. The serid inputs of dl elements are c o ~ e c t e d  

to the output of the previous latch in the same bit position of the W bit wide digit. 

The serial inputs of the upper most elements are d connected to the serial output 

from the latch to which the sign bit of the paralle1 input is connected. The resulting 

hardware for a W=3. NP=S. G=4 parallel to serial converter is shown in figure 3.1'2. 

The latencp of al1 converters in this configuration is one. from Iatching the parallel 

inputs to the generation of the LSD of the serid output. 



3.6.1 Word Recirculation 

In many applications it is usefd to be able to Save a pa rde l  input signal for fu- 

ture use. This operation can be performed within the pardel  to serial converter 

by changing the shift register operation of the converter to a recirculating register 

fonn. This feature requires one additonal control signal to place the converter in 

recirculating mode and one additional parameter to set the data wordlength to be 

stored. 

The fonn of this converter is similar to the standard non-recircdating form except 

for the  addition of a feedback path from the serial output to most significant bit of 

the converter. Ln this feedback path there are N-NP-G additionai £lipflops which 

rnakes the total loop delay around the device exactly one SWL. The lcntrl signal 

goes high for one clock cycle to load the p d e l  inputs and then rernains low while 

the converter is shifting and recirculating. The serial input to the most significant 

element of the converter is nom- one of three things? parallel input. sign extension or 

recirculating data. The scntrl signal is used to control the number OF sign extensions 

and must be high for SWL-NP-G dock cycles. -4 fuil recirculating pardel to serial 

converter with NP=& G=4. SWL=l6 is shown in figure 3.13 

The cin signal is the standard LSB indicating signd and the crnux signal is a 

higher order control signal which is high for one entire data word and then low for 

one or more full data words. Dï th  this converter the LSB of the input data word is 

valid once every SWL clock cycles until the converter is loaded again by both cin and 

cmux being hi&. The latency of this converter is now two clock cycles because of 

the additional DFF in the control path. If the recirculating property is not needed 



Figure 3.13: Parallel to Serial Converter with data stoiage 



then the cmux control signal is tied hi& and the additional hardnmre needed to 

implement word storage is not generated. In this case the latency of the converter 

is stiIl two to maintain consistency. 

3.6.2 Fan-out Control 

la the parailel to serial converter the control signal used to Ioad the pardel  data and 

l e s t  significant guard bits is connected to at Ieast WP+G loads. This high fanout 

results in slow transitions of the control signal. this transition time may become the 

cri t ical pat h. limit ing the maximum bit dock frequency. depending on the magnitude 

of Y+G and the technology being used. In order to control this situation a Fan-out 

Control (FC) parameter has been added to the parauel to serial primitive. The FC 

parameter indicates the  number of driving points which are available for the pardel  

loading signal. The N+G loads wit hin the converter are divided equally between the 

FC driving points. These signals are generated by FC parailel DFFs whose inputs 

are connected to the output of the cin-crnux AND gate. 

3.6.3 DFIRST 

The DFIRST call for a pardel  to serial converter is: 

PTOSB m,G,FC,SUL] (cin,cmux) in0 THROUGH N-1 -> out 

Each of the four parameten are as described above and the SWL >= !V P + G. 

The most significant bit of the NP bit input bus is in0. The latency of this part 

is always two from the arrivd of the cin signal to the generation of the LSD of the 

output signal. The recirculating and fanout control options are not available on digit 



Figure 3.14: Bit-Serid Seriai to Paralle1 Converter (NP=S.SIi=2) 

serial paraliel to serial converters. These two features are used infrequently and were 

not included for the digit serial version of the part. 

3.7 Serial to Parallel Converter 

-4 serial to parallel converter can be used to convert a DFIRST serial signal to a 

parallel format used by an e-xternal pardel  data device. To defme the operation of 

the DFIRST serial to pardel converter two parameters are required. the number of 

parallel bits to generate (NP) and a formatting parameter which selects the N P  bits 

of the serial word to convert to pardel. In the parauel to serial converter this ivas 

done by selectirtg the nurnber of least significant end guard bits to add. but in the 

serial to parallel converter this parameter is the number of most signifiant bits to 

skip (SIC). This component c m  be broken d o m  into two parts. a shift register to 

store the serial word and a NP bit parallel latch to load and store the parallel data 

until the next output time. -4 bit-serial serial to parallei converter is shown in figure 

3.13 with NP=S and SI\I=2. 

At the LSB time of the present data word the previous data word is present 

in the shift register. this word is latched into the pârallel storage elements. The 

length of the shift register chain is NP+% and the final output of this chain is 



Figure 3.15: Serial to Pardlel Converter (W=X NP=& SI<=-) 

amilable as a second output from the primitive. For proper use ail of the bits which 

have been skipped must be sign extensions or the parallel output will not refiect the 

true value of the serial data word. The additional delays on the control and data 

input are present to facilitate a fan-out control signal and have a consistent delay 

performance for the primitive. Like the parallel to serial converter one control signal 

drives severai ( N P )  loads which may be excessive. In order to combat this fanout 

problern FC separate control signals are generated using FC DFFs and the XP loads 

are shared equally between each DFF output. 

-4 digit-serial serial t o  p a r d e l  converter is very similar to the bit-serial primitive. 

The  only change is that the shift register used to store the data word is W- bits wide 

and the NP bit parallel output signal is derived fmm selected points within this shift 

register. Like the parailel t o  serial converter the fanout control parameter is not 

ava,ilable for digit serial components. The hardware for a W=3. NP=& SI<=- serial 

to parallel converter is shown in figure 3-15. 



3.7.1 DFIRST 

The DFIRST caiI to a senal to pardel converter is: 

STOPB [NP,SK,Fc] (ctrl) in -> delout, out0  THROUGH N P 4  

The three parameters perform the functions discussed above. The ctrf control 

signa1 indicates the LSB of the previous data word to the word being converted to 

pardel. The delout data signal has a latency of NP+SK+l and the pardel output 

is generated two dock cycles after the primitive is triggered. 

3.8 Multiplication 

Most signal processing applications require several multiplications nhich must be per- 

formed in as Little time as possible. using as little device area as possible. DFIRST 

multipliers perfom the multiplication of an N bit data word by a Coefficient Word 

Lengt h (C WL) bit coefficient. Depending on the application different t-ypes of coeffi- 

cients may be used such as f d y  general bit-serid. f d y  general parallel and constant 

coefficients. In the following sections the hardware implernentations of DFIRST 

mult ipliers are discussed. 

3 -8.1 Two's Complement Multiplication 

-4 general twos complement multiplication can be implemented using equation 3.1. 

where P is the product. Y is the CWL bit coefficient and S is the N bit data word. 
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Figure 3.16: Twots Complement Long Multiplication 

For this multiplication there are CWL partial products. Multiplication of each 

partial product b -  2' is done by left shifting the input data value by i and multipli- 

cation by the ith bit of the coefficient is done by anding the entire data word with 

the it h coefficient bit. To implement the negative sign bit of the coefficient the most 

significant partial product is subtracted instead of added as  for the other partial 

products. 

The resulting product is CWL+Kl bits long. In finite precision machines o n l -  

a fixed number of bits resulting from a multiplication can be saved as the result. 

any remaining bits are discarded resulting in truncation errors in the product. For 

the DFIRST architecture the outputs from all operators must conform to the X bit 

data word size. so CWL-1 bits of product must be discarded. The product can be 

brokeo into two portions. the upper iI bit word and the lower CWL-l bit word. If the 

lower data word is discarded the multiplication becomes fractional with the decimal 

point residing just to the right of the most significant bit of the coefficient. .-\ long 

multiplication with the CWL=N=ô is shown in figure 3.16. 



Figure 9-17: Bit-Serid Two's Complement Multiplier Stage 

3.8.2 Two's Complement Multiplier Implementation 

In designiog the simple twos complement multiplier it is assumed that the least 

significant bit of the CWL bit coefficient and the N bit data signal arrive at the 

multiplier at time zero. Also at this time a LSB indicating active high control 

signal is available. The multiplier can be broken d o m  into C WL different sections. 

each generating a single output which is the accumulated product obtained from 

the weighted summation of all partial products generated up to and including the 

present stage. All of the CWL stages are identical except for the fina stage nhich 

implements the sign bit of the coefficient. 

There are CWL different sections in the multipliert the ith stage generates the 

ith partial product and sums this product with the accumulated results from the 

previous stages. The first stage in the chain is the zeroeth. The hardware for the ith 

section where CR'L - 1 > i > O is shown in figure 3.17. 



The ith section must store the ith coefficient bit for use in the i th stage and delay 

the serial coefficient input for use in the i f l th  stage. The t h e  that the coefficient 

bit arrives at the ith section is i. The control signal valid at time 2i is used to latch 

the coefficient bit into the S signal which is MLid one clock cycle later or %+l. The 

LSB t ime of the data arriving at the ith section is 2i and this data is delayed by tvvo 

for input to the next stage. The data signal vaJid at time 3if 1 is ma.rked as S. The 

coi11 rol sigiial is delayed in the same manner as the data. The data (ri) is multipliecl 

11) -  i II(* st orocl ith coefficient bit using an AND gate where both S and X are valid 

ai  i i i i i < b  9i+ 1. This partial product is added with the summation of previous partial 

1 ~rtltliv-i -. i i l ~ < ~  at time 2i+l. The PPSI input of the zeroeth stage is grounded. This 

l ) i ~ l - l  i i ~ l  ~ ~ r o r l ~ ~ c - t  sununation is right shifted bp one bit for addition in the next stage 

of i II(* riiiil~ i[>lier. The latency of the shift operation is two. resulting in a time of 

->i-:I L J ~  1 l i t *  i t li partial product. 

-1,) \-(*rifi- t lie boundaq- times for this multiplier section it is required that the 

I I  i i i i i t *  of the i+lth stage be equal to the output time of the ith stage for each 

sigiiit 1. l ' l i ~  t iming verification for each data and control signal is shown in table 4.1. 

Signai 
Coefficent 

Table 3.1: Timing Aiignment Verification for Two's Cornplement Multiplier Stage 

L 

The circuit- for the hal (i = C W L  - 1) stage is shown in figure 3.18. The final 

stage differs from the previous stages in three regards. The serial coefficient is not 

passed on to another stage. the partial product generated in this stage is subtracted 

ith Output 
i+l 

Data 
Control 

Partial Product Sumrnation 

i+lth Input 
i+l 

2i+2 
2i+2 
'-3i+:3 

S(i+l ) 
2(i+l) 

2(i+l)+l 



Figure 3-18: Bit-Serial Two's Complement Multiplier Final Stage 

from the previous partial products because this stage represents the sign bit of the 

coefficient and finaily the result of the summation is not right shifted by one because 

the output from this adder is already at the correct precision as s h o w  in figure 3.16. 

The resulting latency for this multiplier implementation is 2CWL dock cycles. 

3 -9 Coefficient Recoding 

Binary numbers are often represented in higher radix forms to reduce the corn- 

plexity of representing a given number. Some commonly used number formats are 

octal (radix 8) and hexadecimal(radix 16) which require N/3 and 311 digits re- 

spectively to represent an 3 bit binary number. Recoding the multiplier coefficient 

into higher radices can be used to design smai.ler/faster multiplier implementations 

[PM89. L-761. 

Recoding methods can be broken down into two major types. redundant and non- 



redundant. In non-redundant recoding methods each bit of the coefficient is used 

to generate only one recoded value. while in a redundant recoding some bits of the 

coefficient may be used in determining several different recoded d u e s .  Redundancy 

can be added to a recoding in order to sirnpli& the possible recoded values [Loi61 

at the e-xpense of increased recoding cost. 

The second major characteristic of recoding method is the radix. The radix of a 

recoding scheme determines how many bits of coefficient are examined to generate a 

single recoded output. The d i x  of a non-redundant recoding is zR where R is the 

number of bits used to generate a single recoded value. The radix of a redundant 

recoding met hod is 2( R- 1 ). The TC multiplier is a non-redundant radix two recoded 

multiplier imp lement at ion. In the following sections different recoding met hods are 

used in order to obtain a smaller/faster multipler. 

3.9.1 Booth Recoding 

A bit-serial two's complement multiplier has an irregular implementation since the 

final stage is different than the previous stages. The multiplier can be made com- 

pletely regular by using a redundant radix 2 recoding on the coefficient bits of the 

multiplier [PM89]. In this recoding scheme two bits of the coeEcient are combined 

to create a single signed recoded coefficient bit in the set -1-0.1. The product for a 

booth recoded multiplication can be calculated using equation 3.2. In this recoding 

the ith bit is implemented as the i+lth bit minus the ith bit. The recoding table for 

the pair of bits yi and yi-1 is given in table 3.2. If ' i=O then the i-lth bit is set to  

zero. 



Table 3.2: Booth Recoding for two coefficient bits 

yi 
O 
O 
I 

A multiplier implemented using this recoding is regdar  but the size of each 

module is larger than the module size for the TC multiplier and no speed up is 

obtained so this recoding is not used for DFIRST multiplier implementations. 

' yi-1 
O 
1 
O 

I l  

3.9.2 Modified Booth Recoding 

Recoded Value 
O 
1 

-1 
O 

The modified booth recoding uses three coefficient bits to generate a single repre- 

sentation for two bits of the coefficient Each two bits of the  coefficient are used to  

generate a single partial product. so only CWL/2 partial products are needed to 

generate the final product . In modified boot h recoding the i and the i+ l  th bit form 

a single digit. If the ith bit is set. it is implemented as one i th  bit. and if the i+l  t h  bit 

is set it is implemented as the i+2th bit minus the i+lth bit. Given this relationship 

the product for a TC multiplication using this recoding scherne can be calculateci 

using equation 3.3. 

Using this recoding method each two bits of the coefficient are represented by 

one element from the set -2. -1. 0. 1. 2. The recoding table for the bits y;+~. pi and 



- - -  

Table 3.3: Modified Booth Recoding for three ~ ~ e s c i e n t  bits 

yi-l is given in table 3.3. For this recoding y-, is set to zero. 

3.10 Lyon's Multiplier 

One bit-serial multiplier implementation which uses modified boot h recoding is 

Lyon's multiplier [Lyo76]. Each partial product is generated using three coefficient 

bits (yici. y;. yi-1) and two data signals (S and 2X) according to table 3.3. In Lon's 

original implementation each two bit coeEcient section was identical. leading to a 

cornpletely regular structure. 

The arrangement of this multiplier is like the TC multiplier described in section 

6.8.1. except for the pastid product formation stage nhich is more cornplex. Again 

it is assumed that the LSBs of ail input signals and the control signal arrive at 

the multiplier at reference time zero. For this multiplier there are CWL/? stages 

numbered i=O through i=CWL/2-1. The hardware implementation for the ith stage 

is shown in figure 3.19. 

In the coefficient control stage the appropriate bits of the coefficient are converted 

to three gating signals. -4 is high when the recoded coefficient value is either 1 or -1. 



COEFIN -rial, COEFOUT 

u 
PPSI 

Figure 3.19: Lyon Modified Booth Recoded Bit-Serial Multiplier Stage 



B is high when the recoded value is either 2 or -2 and C is high when the recoded 

value is negative. These control signals are combined with the X (1 times data) and 

7X (2  times data) data signals to form the partial product for this stage. The SS 

signal is the data signal which is valid at time two. At time one when the 2X signal 

is first used a zero is inserted by the C2 control signal since the data here is the MSB 

of the previous word. If the partial product is negative for this stage then the X'ZS 

or O product is complernented and the carin input of the partial product summation 

adder is set high (complement and add one). The partial product generated here is 

right shifted by 2 bits to obtain the correct data precision for use in the next stage. 

Some modifications are needed on both the first and last modules of this multiplier 

to conform to the D FIRST wordlengt h requirements. 

The input section must be modified to make sure that the y-[ coeEcient bit is 

zero. In the multiplier module shonm in figure 3.19 a zero must precede the LSB of 

the coefficient into the multiplier or the recoding for first module will be faulty-. In 

DFIRST this data signal is the MSB of the previous word so a s m d  modification to 

the recoding stage which gates this signal off at the correct time is required. 

For a DFIRST multiplier the decimal point on the coefficient is placed just to 

the right of the coefficient sign bit. If the multiplier module shom in 3.19 is used as 

the final stage the decimai point is left of the MSB. so in the hd stage the product 

output need only be right shifted by one bit to obtain the desired product. The 

nor gate which controls the operation of the right shift BL-ATCH is replaced by an 

inverter. 

The resulting Latency for the modified DFIRST version is 3CWL/'Z + 1 from the 

amika1 of the LSBs of the inputs to the generation of the LSB of the product. 



3.11 FIRST Multiplier 

The original FIRST multiplier designed by Denyer and Renshaw PR851 is a redun- 

dant radix four recoded coefficient multiplier. The primaxy difference between the 

L o n  and FIRST multipliers Lies in the partial product formation stage. For Lyon's 

multiplier the three coefficient bits yi. yi-1) are recoded into three gating sig- 

nal': controlling the one time and two times products as well as the sign of the partial 

~ ~ r o ( l t i ( - i  . 1 1 1  the FIRST multiplier the three coefficient bits and the two data signals 

art. ~ ~ i t > \ ( n < I  iiito a single block w-hich generates one of the following elements ( X .  S. 

O. iii~i S i i i d  riot 2S). If the partial product is negative the carry input of the partial 

p t - d w  wiitiier is tied high. The other major difference lies in the mamer in which 

1 l i t *  lmri i d  1)il~tluct from one stage is passed on to the next stage. For Lyon's rnulti- 

1 ) l i t b l -  I l i t -  Imri in1 product summation is right shifted bq- two bits and passed on to the 

S I  I I  I l  In the FIRST multiplier the un-modified partial product summation. 

é i  &w t*si<*iision signal and a control signal are passed on to the ne13 stage. The 

w i i  r d  4giial selects either the partial product or the sign extension signal for use in 

t lit* ~ ) i l i ' t  io l procluct summation of the next stage. The FIRST multiplier is described 

i i i  [ U R S I .  Tlie latency of this multiplier is 3TCWL/2+2. 

3.12 Radix Four DFIRST multiplier 

The prima. multiplier type used in the DFIRST language uses a non-redundant 

radix four recoding on the coefficient. So for all stages. except the final stage. two 

bits of coefficient yi and y i + ~  are recoded into the digit set 0.1,2.3. In the final 

stage the last two bits of the coefficient are recoded into the set 0.1 .-2.-1. This form 



Figure 3.20: Radix Four DFIRST Intemal Multiplier Section 

of multiplier is not generally used because of the 3X product needed in al1 stages 

except the last. In order to f o m  this pa+rtiai product an additional adder is required. 

however in bit-serial the size of this adder is relative- small. The hardware for ail 

stages but the last is shown in figure 3.20. 

The two coefficient bits for this stage are loaded at two difEerent times. The low 

bit of the radis four digit is loaded at time 3i and the high bit is loaded at 

3 i + l .  This is possible because the high bit used in conjunction with the 2S 

signal. is not needed until time 3i+2. The two coefficient bits are valid at time 

t ime 

data 

:3i+l 

and 3i+2 respectively. These two signais are used as gating signals for the S and 

-2X signals. If the low bit is on then S is enabled and if the high bit is on then the 

ZS signal is enabled. These two products are summed together at time 3i+l. nith 



PPSI 
' + .  

PPSO 

SI, . I 

Figure 3.21: Radix Four Bit-Serid Final hIultipLer Stage 

a zero being inserted in the LSB of the 2S line at time 3i+ 1. This partial product 

is delayed and passed on to the partid product summer a t  time 3i+2 The partial 

product summation is right shifted by two bits and passed on to the nest stage for 

use in the next partial product summation. Tii the first stage the partial product 

summat ion input is grounded and ail input signds (control-data and coefficient ) are 

valid at time reference zero. 

The final radix four stage is responsible for the sign bit of the coefficient and 

oui'; needs to right shift the product generated by one bit instead of two to match 

DFIRST precision requirements. The final stage of this multiplier is shown in figure 

5.21. If the low bit of the digit is on then the partial product for this stage is either 

1 or -1 depending on the value of the high bit. If onlp the high bit is set then the 



partial product is X.  If the hi& bit is set then the partial product is negated and the 

cany input of the partial product stage is tied hi& (cornpiement and add one). If 

neither bit is set then the partial product for this stage is zero. The final summation 

is right shifted by one bit. The overd latency for this multiplier is 3CWL/-Z+l. 

3.13 Radix Eight DFIRST Multiplier 

For a radix eight non-redundant coefficient recoding it is necessary to recode each 

three bits of coefficient (yi. Yi+i. into a single d u e .  For a non-redundant recod- 

ing each t hree bits of coefficient would be converted into one of the set 0.1 .'1.3..L.5.6.; 

where yi is weighted by I. Yi+, is weighted by '1 and yi+z is weighted by 4. For the 

final stage containhg the sign bit of the coefficient the weighting for yi+, is 4. this 

results in a digit set of 0.1.2.3.-1.-2.-3.4 for the final multiplier section. For radis 

eight recoding only CWL/3 separate partial products are fonned but the hardware 

complexity to generate each partial product is higher than in lower radis multipliers. 

-4 radix eight non-redundant recoded multiplier module is shown in figure 3.22. 

This multiplier module is very similar to the non-redundant radix four multiplier 

module from section 3.20. In this module three coefficient bits are stored as gating 

sipals in the partial product formation stage. and the partial product from this 

stage rnust be right shifted by three bits to âlign this product for summation in 

the following stage. A 1S signal is required to generate the partial product which 

means that the data shifted ieft by two bits is needed. For the first stage the  partial 

product summation input signal is tied Iow. resulting in one less adder for the overd 

multiplier. In the final stage the 1X product is subtracted instead of added in the 



Figure 3.32: Radix Eight DFIRST Multiplier Section 



partial product formation stage. This is done by complementing the 9( product Line 

and setting the c m y  input signai high on the LX + IY adder. The final stage dso 

only right shifts the hal product by two bits in order to conform to the DFIRST 

convent ions for decimal point placement. The result ing latency for t his m d t  iplier is 

3.14 Evaluation of Bit-Serial DFIRST multipliers 

To select which bit-serial multiplier implementation to use the size of the multiplier. 

the latency and the ctitical path within the multiplier must be considered. Each of 

the different multiplier implementations eshibit different charactenstics for each of 

these parameters. In this section the performance of these mdtipliers is evaluated. 

The TC irnplement at ion and Lyon's implementation of the multiplier are included 

only for cornparison reasons and are not a part of the DFIRST language. 

3.14.1 Hardware Complexity 

One important characteristic of any operator is the integrated circuit area required 

to perform the operation. The size of DFIRST multipliers is measured in numbea 

of elements such as delays. blatches, adders and rasdom Iogic gates. For a generic 

implementation technology it is difficult to estirnate the relative sizes for each corn- 

ponent. In order to get some rneasure for the size of random logic gates the number 

of gate inputs excluding inversions is used as an estimate for the additional gate 

area. The CWL parameterized size estimates foc each of the bit-serial multiplier 

implementations are shom in table 3.4. To better understand the size relationships 



Table i3.4: Hardware Complexity for various Bit-SeriaI Multipliers 

of the different mdtipliers, the gate count can be converted to LSI logic [Log861 gate 

equivalents. Lo this technology a DFF is *5 gates. a BLATCH is S gates. bit-serial 

Radtv S 

IOCwL/9 
4CWL/:3 

CWL 
IXWL/S 
4CWL 

adders are 1.5 gates and each two gate inputs is 1 gate equivalent . The information 

Resource 

Delays 
Blatches 
Adders 

Gate Inputs 
LSI Gates 

in this table does not include the slight modifications to hardware complexity due 

FIRST 
13CWL/2 
4CWL/2 

to small changes in the first and last multiplier sections as these are insignificant as 

Latency 

- 
TC 

5CUiL 
3CWL 
C\VL 

ICWL 
5TCWL 

Radix4 
8CWL/2 
3CWLI'L 

the C WL becomes large. Also included in the table is the latency for each muit iplier 

Lyon 

8CWL/2 
4CWL/Z 
CWL/3 

15CWLJ2 
4SCWZ 

3CWL/2+2 

implementation. 

The TC multiplier has the highest latency and does not exhibit significant hard- 

2CWL 3CWL/2+L 1 4CCVL/%+l 

CWL/? 
26CWL/2 
63CWL 

ware savings to warrant the extra latency when compared to the other multipliers. Of 

the radix four multipliers exhibit ing a Iatency proportional to 3CWLf2 the FIRST 

3CWL/2+l 

Ci WL 
- TCWLJZ 

49CWL 

multiplier is clearly the largest. It is Iarger than Lyon's implementation and larger 

than the DFIRST radix four multiplier. The non-redundant multipliers use twice 

as man- adder elements but fewer BLATCHes and fewer random gate inputs. The 

radix Y implementation has a s m d e r  latency than the radis four recoded multiplier 

implementations and uses fewer hardware resources than the radix four FIRST mul- 

tiplier. The penalty for t hese advantages is the critical path of this multipier when 

compared to the other implementations. 



1 Resource 1 TC 1 Lyon 1 FIRST 1 Radix 1 1 Radix S 1 

- - - - - - - - 

Table 3.5: Bit-Serial Multiplier Critical Paths 

3.14.2 Critical Path 

The critical path of a digital logic circuit defines the longest logical d e l -  path be- 

t mwi wgist ers or D-type Bip-ffops. This is a very important parameter in logic 

r IV-ici1 1 WC-a iisr it dictates the maximum clock frequency at which a circuit will func- 

1 i o r i  t-trrîv-t 1'. The shorter the critical path the higher the potentiai maximum clock 

i l  - 1 - l i t *  crit ical path for each of the four bit-serial rnultipliers discussed in the 

~ I - ~ T ~ U I I .  - tac-t  ions is presented in table 3.5. The critical paths are measured in terms 

id I l i t .  I I  iasi I tiiim number of adders. rntcxes and random gates between latching ele- 

iiit-III.. ' l l i î ~  I~racketed numbers indicate alternate paths which may be the critical 

p i t i  I I  i I ~ y > t * i ~ ( l i i i g  on the technolo= of implementation. AU random gates are treated 

~ V ~ I I ~  1 1 ~ -  rcbgarclless of type or number of inputs and inverters are not included as t hey 

coi1 i y p i d  ly Ile absorbed into other components. No provision for loading or routing 

dela!- is i nrluded as t hese are technology and implementation dependent parameters. 

Tliese t wo components of the critical path should be relatively small since each ele- 

ment drives only one or two loads and the bit-serial nature of the data path should 

yield short wiring delays. 
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Figure 3.23: Digit-Serial (W='L) DFIRST Mdtiplier Module 

3.15 Digit - Serial multiplier 

For the DFIRST digit-serial multiplier a non-redundant radis four recoding scheme 

was selected for it's reduced number of partial products and it's simple structure. 

The hardware for a W=2 multiplier module is s h o w  in figure 3-23. 

The format of this multiplier is very simiiar to the non-redundant radis four 

multiplier described in section 3.12 except that ail data operations axe on W=2 

digits. The trvo bits of coefficient storage needed for partial product formation in 

t his section are loaded on the same clock cycle instead of the staggered load used 



in the bit-serial version. AU intemal data path and coefficient path shift registers 

are W bits wide. The partial product is formed by the addition of ttvo radix tour 

digits representing X and 2X. The X signal is derived fkom the X tap of the data 

d e l -  register. The low bit of the 2X signal is the high bit of the 2X data deIay tap 

gounded at the LSD time to place a zero in the LSB of the 2X signal. The high bit 

of the 2X signal is the low bit of the S data d e l .  The partial product adder is a W 

bit adder and the output from this adder is delayed for m a t i o n  nrith the partial 

product input. The partial product summation is right shifted by two bits to align 

the partial product output for use in the next stage. The rïght shift element only 

has a iatency of two instead of the latency three shifter needed in bit-serial. This 

reduced shifter latency leads to a multiplier module which only requires a 2 bit shift 

register for the data and control delay chains. The overd  Iatency of this multiplier 

is CWLfl instead of the 3CWL/%+1 latency required for the bit-serial version. 

For the first stage of a CWL bit multiplier the partial product input is grounded. 

In the final stage the two most significant coefficient bits are recoded into the set 

0.1 .-1.2 and the final partial product must be right shifted by only one bit instead 

of two as for the other modules in the multiplier. 

To extend the digit width of this multiplier beyond 7 all of the data inputs and 

outputs from the module must be W bits wide and the interna1 partial product for- 

mation. partid product summation and right shift elements must be W bits wide. 

The only major change cornes in the coefficient storage portion of the multiplier. 

Only two bits of coefficient are required for each multiplier module but the number 

of coefficient bits arriving each dock cycle is greater than two for CLv > 2. In order 

to latch the coefficients into the correct places in the multiplier a two stage Iatching 
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Figure 3.24: Digit-Serial Multiplier Section 

scheme is used. The latches which store the coefficients within each multiplier stage 

are still present but their inputs corne Erom another Iatching stage instead of a de- 

layed coefficient input signal. The pre-latching stage is effectively a serid to parauel 

converter which converts the digit-serial input word to a CWL long paraliel output 

word. -4 srnall difference occurs on the first two bits of parallel output. these two 

bits can be connected directly to the multiplier coefficient input Lines. -\ W bit wide 

non-redundant radix four multiplier module is s h o w  in figure :3.24. 

3.15.1 DFIRST 

Each of the different DFIRST multipliers can be accessed using the foilowing s ~ t a . s :  

MULT [type,CUL] (cin -> cout)  data,coeff -> product,deldata 



The CHZ pasmeter selects the number of coefficient bits in the multiplier. The 

type parameter selects which mdtiplier implementation to use. If type=O t hen the 

original FIRST multiplier described in section 3.1 1 is used. if type=l then the non- 

redundant radix four multiplier desmbed in section 3.12 is used or if t-ype=? then 

the non-redundant radix eight multiplier descrïbed in section 3.13 is used. If' type=1 

the non-redundant radix four bit-serial multiplier is used or the arbitraq digit width 

multiplier described in section 3.15 is used. The digit width of the multiplier in t his 

case is determined by the digit width of the data signals connected to the primitive. 

the digit width of each data input or output signal must be the same. 

If type is two then the CWL must be a multiple of three(radix eight recoding) 

otherwise the CWL must be even(radis four recoding). The three input signals cin. 

data and coeff must be valid at the same bit time. The three output signals cout. 

product and deldata representing the output control signal. product and delayed input 

data respectively aJ.I have the same l a t e n -  

3.16 Parallel coefficient Multipliers 

The multipliers previously described accept both the coefficient and the data input 

in serial format. In some cases it may be more appropriate to accept the coefficient 

input in the pardel signal format. ParaHel coefficient inputs can be used effectively 

when a multiplier is shared between several different multiplication operations. where 

the different coefficient values are fixed at design time [NT91. Joh9%]. The different 

coefficients can be stored in a parallel look up table and provided as pardel  coefficient 

inputs to the multiplier when needed. 



Figure 3.25: Parallel Coefficient DFIRST Multiplier Section 

The conversion of the serial coefficient multiplier to the parallel coefficient mul- 

tiplier is done by removing the serial coefficient delays and providing one esternal 

parallel input for each coefficient bit of each multiplier section. The parailel coeffi- 

cient multiplier is derived Lom the non-redundant radiv four multiplier described in 

section 3.12. The resulting hardware for a pardel coefficient multiplier module is 

shown in figure 3.25. 

The latency for this pardel coefficient multiplier is the same as the serial coef- 

ficient version. 3*CWL/2 +1 for the bit-serial part and CWLfl for the digit serid 

parts. Each bit of the pardel coefficient can be set at time zero. the coefficient 

storage section of the multiplier tvill load the coefficient bits as needed. 



3.16.1 DFIRST 

The DFIRST c d  to instantiate a paraUe1 coeffic 

PMULT [CUL] (cin->cout ) data, coef f 0 THROI 

-Ali of the input signals to the multipIier mur 

one multiplier latency later each of the three out 

of the multiplier is dictated by the digit width < 

to the multiplier. each of these signds must ha\ 

significant bit of the coefficient is coeff0. 

3.16.2 Extended Multiply 

The multipliers discussed to this point all irnple~ 

data signal by some number between plus and 

number larger than one is required then a left sJ 

the data path before the fractional multiply F 

latency for the multiplication is SXCWL/2 + 2 t 

can be obtained by incorporating the left shift < 

This is one way to make use of the negative la 

using left &ift operators as discussed in section 

multiply for an arbitra- decimal point placemei 

two portions. The fist portion, or upper word. is 

standard serial multiplier primitive and the secol 

from the bits thrown away by the right shift op 

product summation. Each of these bits are put t 



Figure 3-26: Extended Multiplier Section 

aiid t II<- alqwopriate bit of this data is used as the LSB of the output. The multiplier 

I ~ l w k  i o  gc.iierate and accumulate both the upper and lower products is shown in 

Tiie first stage of this multiplier was modified to remove the partial product 

suniniat.ion stage cornpletely and pass the partial product for the first stage direct- 

to the right shift and least significant word accumulation stage. The removal of the 

pipelining stage speeds up the multiplier by one dock cycle. 

Io the final multiplier stage the product is not right shifted by one bit as in other 

bit-serial multipliers. This effectively left shifts the the product corning out of the 



Figure 3-27: Final Product Generation Element for DFIRST Extended Multiply 

extended multiplier by one bit when compâred to the other bit-serial rnultipliers. In 

place of the shifting component a DFF is used to pipeline the most significant word 

output. In order to combine the LSW and MSW into the final product output one 

format ting stage is needed as shown in figure 3-27. 

The output from the FBIUS (four to one mus) is used to select either the LSW 

or the MSW .\;O form the finai product. The cmsb signal indicates the LSB time for 

the MSW output from the multiplier. The clsb signal indicates the valid time for 

the bit of output from the multiplier which is to form the  LSB of the final product. 

The time for this signai is 3*CWL/-shift. From the arrival of the clsb signal until 

the cmsb signal is valid the LSW output forms the product for the multiplier. after 

the arrival of the cmsb signal the MSW output forrns the output from the multiplier. 

-4 DFF element is added at the multiplexor output to pipeline the operator. In 

order to Save some hardware the LVFORM portion of the multiplier can be discarded 

if the left shift value is one. because the MSW output from the multiplier already 

contains a left shift by one. The &al latency for the extended multiplier primitive 

is 3'CWL/t?+l-shift where the shift value is a positive non-zero integer. The data 



signal on the input to the extended rnultiply requires 2+shift most significant end 

sign extensions or the product will ovedow, 

3.16.3 DFIRST 

The DFIRST c d  to an extended multiply primitive is: 

MUL'TEX ECWL . shi f t ]  (CO->tout) data. coeff -> product . deldata 

The CWL parameter indicates the CWL for the multiplier and must be an even 

integer as in aii other radix four multiplier DFIRST multipliers. All of the multiplier 

inputs must be valid at the same clock cycle and the cout and product outputs are 

generated :IxCWL/2-shift+l dock - c l e s  later. The deldata output has a latency of 

3"CLi7L/'Z-1. This primitive is not amilable in digit-serial. 

3.16.4 Constant Multiplication 

Ml previously discussed DFIRST multiplier implementations perform the multipli- 

cation of an arbitrary data signal by an arbitrmy coefficient. In many instances 

multiplications by a fixed coefficient are required [JacSg. 'IT91. Johg"]. here a gen- 

eral coefficient multiplier codd be used with the coefficient input being set to the 

desired constant but a smaller fixed coefficient multiplier could also be used. 

The fixed coeEcient multiplier uses a series of shifts and add/subtract operat ions 

to obtain the final product. For this multiplication a Canonic Signed Digit (CSD) 

[LELSl] recoding scheme is used on the coefficient. In CSD each bit of a number is 

eit her positive or negative so a variety of different implementations are possible for 

most integers. In practice a CSD nurnber has at most half of the CWL bits set and 



the other hall are zero. With only half of the bits set. at most. o d y  half as many 

adders are required to accumulate the final product. 

To generate a fked coefficient multiplier three different pieces of information are 

needed. the precision or CwL of the multiplier and two constants representing the 

CSD value of the coefficient for the multiplication. The coefficient is broken d o m  

into a d u e  portion which indicates which bits of the coefficient are set and a sign 

portion which indicates which set bits are negative. The strategy to implement the 

multiplication is to add or subtract the data signal fiom the accumdated partial 

product according to the coefficient being implemented. The result of each addi- 

tion/subtraction operation is rïght shifted to align the adder output for use with the 

next data input. The resdting hardware for a 15/33 and a 27/64 constant multi- 

plication is shoun in figure 3.28. The 15/32 constant is implemented as (16-1)/32 

and the 27/64 constant is implemented as (3-1-11/64. The SHIFTMCLT imple- 

rnentation of 15/32 can be mitten as ((din >> 4) + din) >> 1. The SHIFThKïLT 

implementation of 27/64 can be written as ((((din >> 3 )  + d i n )  >> 3 )  + din ) >> 1. 

3.16.5 DFIRST 

The DFIRST c d  to a constant multiplication primitive is: 

SHIFTMITtT [CUL, value, sign] (cin -> cout ) data -> product , d e l  

The CWL parameter sets the number of bits present in the Kxed coefficient. the 

value is an unsigned integer representing which bits are set in the coefficient and 

the sign is an unsigned integer representing which coefficient bits are negative. The 

effective value for the coefficient can be determined using equation 3.4: 



IH/ PROD 

Figure 3.28: Bit-Seriai Constant Mult ipliers (a) 15/32 (b ) 27/64 



where only bits present in value are used in sign and sign < ualue. 

For the SHIFTMULT primitive there must be at least one positive bit in the 

fked coefficient. This restriction forces at least one input on an adder to be positive. 

since both inputs on a single adder cannot be subtracted. The cin signal and the 

data signal are valid at the same bit time and the latency for the three output signals 

is the CWL plus the number of bits which are set in the coefficient. The DFIRST 

calls representing the two multipliers shown in figure 3-28 are: 

SHIFTMTLT [5,17,11 ( C O )  din -> prod , deldata 

SHIFTMTLT [6,37,5] ( C O )  din -> prod ,deldata 

The hardware for a SHIFTMVLT operator can be generated using the DFIRST 

primitives for data delays. additions and right shifting. but the SHIFTMULT prim- 

itive is much simpler to use. The circuit designer must only select which constants 

to use and not be concerned with the exact details of each implementation. The 

SHIFTMULT primitive is oniy available in bit-serial. 

3.17 Controlgenerator 

The CONTROLGENERATOR DFIRST primitive. generates all control signais re- 

quired within a given DFIRST design and is present in ail DFIRST designs. The 

commands which make up a CONTROLGENER.4TOR are CYCLES and EVENTs. 

The CYCLE command takes a single parameter which describes the division factor 



by which the previous CYCLE output is divided. The first CYCLE output is a data 

framing signal which is high for o d y  one cbck cycle per period of the CYCLE (one 

data word). .U subsequent CYCLE commands are steering control signds which are 

high or low for one or more fdI data words. Each EVENT command s~chronizes  

one input signal to one cycle in the CONTROLGEWMTOR. Once an EVENT 

is detected on the input signal the synchronized output control signal appears as 

one full cycle of the CYCLE command just previous to the EVENT command. The 

first output from a CONTROLGENERATOR is retained from the FIRST Ianguage 

but is not used in DFIRST. this signal is connected to W. The instantiation of a 

DFIRST CONTROLGENER-4TOR is shown belon.. The resulting control signals 

are shown in figure 3.29. The hardware implernentation of the DFIRST CONTRO L- 

GENERATOR is f d y  discussed in [NT91]. 

CONTROLGENERATOR (ein -> NC, C O ,  cOO, C I O ,  eout) 

CYCLE Ci61 

CYCLE [2] 

CYCLE [21 

EVENT 

ENDCONTROLGENERATOR 

3.18 Other DFIRST Primitives 

The DFIRST language also includes a division (DIVIDE) operator. a square-root 

operator (SQRT). conditional operators which compare to serid signals and generate 

steering logic depending on the result of the cornparison and an ORDER primitive 



Figure 3.29: Control Signals from Sample CONTROLGENER.4TOR 

w11 id 1 ?;or1 5 two serial input signals into the larger and srnalier values. Each of these 

pritiiil i ix- is only available in the bit-serial format and axe described in [GraSJa] 

1 I l  1 SI ~ j r i  i i i i t  ives are parameterized in terms of precision. digit-widt h and data 

IVUI-~ l l t v  ici I i . The DFIRST language primitives include right and left shifters. adders. 

. i i  I I I  nii-i w-3. parallel to serial and serid to pardel  converters and multipliers. Each 

~)riiiii t il-(* ib Imilt up from simple logic gates. multiplexors. BLATCHes and delay 

~ ~ ( ~ I I I ~ ~ I I I  F. Nore complex primitives. such as multipliers. are also built up from the 

si i i  al 1c.i srria 1 adder and shifter components. The digit-serial multiplier uses a non- 

rctliiiiclaiit radis four recoding on the coefficient bits to reduce circuit area and latency 

aiid is available in both serial and pardel  coeEcient versions. The non-redundant 

radis eight multiplier. the EXMULT (extended d-marnic range coefficients) and the 

CSD fised coefficient SHIFTMULT primitives are oniy avaiiable in the bit-serial 

(W=l)  form. 



Chapter 4 

TRANS Hardware Compiler 

-4 high level hardware description language is useful for descrîbing circuits and per- 

fonning high level circuit simulations but one more step is required to generate a ha1 

implementation. The high level language must be converted to a lower level gate 

or transistor level format to implement a high level circuit description on a real de- 

vice. In this chapter the TRANS hardware compiler is discussed as it pertains to the 

D FIRST register t ransfer level language. The TRANS compiler converts a D FIRST 

netlist into a format suitable for use with full custom. semi-custom or FPGA devices. 

In this chapter the netlist transformations and reductions most appropriate for the 

bit-serial and digit-serial hardwaxe description language will be discussed. The out- 

put formats used rill concentrate on the SILINS [);IL911 and ACTEL [ACT891 

FPGA devices. 

4.1 ASIC Architectures 

In order to convert a high level Ianguage to an implementation in an application spe- 

cific integrated circuit it is important to understand the nature of the implementation 

device. Each implementat ion technology evhibi ts different s t rengt hs and weaknesses 

which must be exploited or avoided in order to obtain a good implementation. In 

this section the architectural features of SILINS and ACTEL field programmable 

gate arrays wiil be discussed. In part icular a short overview of technologv resources 



for internd logic. device input-output and routing wÏU be presented. The abilities of 

vendor provided software wiil dso be discussed in order to reveal what is required 

from TR4NS to obtain a more efficient circuit in each technology 

SILINX FPGAs use static RAM to store the configuration for each routing eiement 

and codgurable block within the device. The configuration information for a circuit 

can be  loaded from a PC serial port or on power-up fiom serial or paralle1 ROSIS 

[SIL94]. Once the device is configured. the functionality of the FPGA does not 

change until a new program is loaded. The reconfigurability of XILINS FPGAs 

makes them very usefui for protetyping digital circuits and for use in applications 

where the requirements of the -\SIC may change over tirne. The routing resources 

[SIL94] are divided into vertical and horizontal routing channels with a switching 

mat rix being used to connect signals together where the routing channels cross. Local 

neares t neighbor connections are also present . 

The configurable logic elements are divided into two categories. Input/Output 

Blocks (IOBs) and Configurable Logic Blocks (CLBs). The IOBs are used to corn- 

municate with devices external to the XILINX FPGA and the CLBS are used to 

perform interna1 digital logic functions. The form for a 1000 series [OB is shown in 

figure 1.1. This block is configurable as either an input. output or bidirectional 110 

pad. in addition each input or output signal can be latched using an edge sensitive 

DFF as needed. 

The 4000 series CLB is a 9 input. 4 output logic block which contains 3 Look- 

Up-Tables (LUT) and two DFFs. The 3000 series CLB can perform two a r b i t r q  



Figure 4.1: XILMX I/O Block Resources 

functions of four variables or a single five input function. A very useful feature 

present in the 4000 series CLB is the ability to convert the two 4 input L t T s  into 

RAM. In this way each CLB can implemeot a 16x2 or a 32x1 RAM element. The 

resources contained in a 4000 series CLB are shona in figure 4.2. 

XILINX Software 

The XILINS implementation software converts a netlist specified in terms of generic 

logic elements to a final implementation. The job of mapping generic logic elements 

t o  CLBs is autornâtically performed by XILINX tools. Recentiy other CLB mapping 

algorithms [Ne0911 have performed better than the XILINS provided software but 

the CLB mapping problern is not addressed within TRANS. The XILINX software 

also performs the placement and routing [XILSI] operation on the CLBs and IOBs 

which make up a design. After this step the circuit is ready to load onto the device 

and be tested in a physical circuit. 

The SILINX software performs most of the operations necessary to obtain a good 



Figure 4.2: Sirnplified Block Diagram of a 4000 Series SILINS CLB 

circuit irnplementation from a generic gate level netlist . TRANS performs some 

useful circuit opt imizat ions to improve hardware efficiency in SILI-U'S devices. The 

redundant hardware removal operation is presented in section 4.5. better utilkation 

of the 1/0 ring DFFs is discussed in section 4.6 and the use of the 1000 series RAM 

to reduce shift register size is discussed in section 4 - 6 2  

4.1.2 ACTEL FPGAs 

ACTE L FPG As are one t ime programmable devices which use ant i-fuse technol- 

ogy [ACT89]. An anti-fuse is a component which before programming e'diibits a 

low resistance and can be 'blown' to become an open circuit. In an unprogramrned 

ACTEL device dl the  anti-fuses are present and the circuit is implemented by blow- 

ing appropriate elements to create the interconnections desired. The interna1 Logic 

elements are multiplexor based cells and the I/O pads can be configured to be in- 



Figure -2.3: ACTEL S-module 
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put/outputs or bidirectional pads with optional level sensitive latches for input and 

output signals. 
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Two different types of ceus are present in the ACTEL [-4CT89I technolog-. Half 

of the cells are C-modules and the other half are sequential ceUs or S-modules. The 

, - 
CLR 

S-module combines a multiplexor t-ype cell with a Iatching element (level or edge 

2- 

sensitive) as shown in figure 4.3. 

4.1.3 ACTEL Software 

A 

The ACTEL software performs the placement and routing operation but the input 

net Iist must be in ACTEL specific ceils. There is no method of converting a circuit 

specified in generic logic to a circuit which uses .ACTEL specific cells other than as a 

one to one mapping. This operation is performed by the hardware mapping facility 

of TRANS as explained in section 4.6. Another operation which can be performed to 

reduce circuit size on -4CTEL devices is to remove redundant hardware as described 

OUT - 

in section 4.5. 



4.2 TRANS overview 

The TR-4NS [GraSlc] hardwaxe compiler must perforrn several operations upon a 

DFIRST netlist in order to obtain an efficient implementation in the target tech- 

nology. These transformations begin with the sy-nthesis of the RTL components of 

the DFIRST language into a generic gate Ievel circuit containhg only simpIe gates 

(AND. OR. NAND. etc.). D-type Bipflops and inputfoutput pads. Each of the 

DFIRST primitives is compiled (as discussed in chapter 3) from gate level compo- 

nents and larger primitives provided in a technology I i b r q .  The DFIRST library 

contains elements ranging from BLATCHes and bit-serial adders to the bit-serial 

multiplier sections presented in section 3.8. 

The generic gate level implementations generated by the assernbly portion of 

TR-ANS are not suitable for use with every output technolog-. Each implementation 

device whether it be Ml custom. semi-tustom or an FPGA has a ceil libraxy which 

must be used to construct each circuit. The ce11 library can be a set of rnulti-gate 

elements such as two to one multiplexors as in the case of ACTEL FPGAs. or each 

technology element can be a look up table (LUT) as in NILINX FPGAs. In either 

case the gene& logic elements must be converted to technology specific elements 

in order to obtain a more efficient irnplementation. The SILINS LUT mapping 

procedure is performed by the .XILIWX software suppiied by XILINS. but a ce11 

based mapper is needed for the ACTEL architectures. In order to make the TRANS 

mapping operation as flexible as possible a d e  based systern is used which loads 

an e-xternal d e  data base file to control the mapping procedure. This rule file is 

generated once for each technology and can be changed in the light of technology 



updates or new ceii iibranes. 

Another mapping which can be used for serid circuits generated by the DFIRST 

language. is RAM mapping. In some technologies. such as  SILINX 1000 series 

FPCAs. it is possible to implement RAM on the FPGA [XIL94]. The XILINS RAM 

is cornpIeteIy configurabie in terms of R.4M depth and RAM width. Lking this on- 

chip RA11 together with an addressing unit. an area efficient shift register can be 

i i i i  1 ~ lci i  ici1 t PCI [SIL94] . In order to further reduce implementation size the addressing 

i i i i i i  - of diflerent serial RAMs can be shared. In order to do this effectively size 

i-I i t ~ i a i  i.- i i i  t lie target l i b r q  for serid R-4Ms and addressing units is needed. 

S t * \ t n r i i l  ci1 lier netlist utilities are available within TRAWS including. netlist flat- 

i  t8 i  i i iiz t r t - i i i o i r  ail hierarchical elements. removing redundant hardware elements 

t t i  rtmtliit-t- r - i r r i i i t  size. performing a gate count to estimate size. and computing the 

(-ri1 i t - i t l  I > i t t  II lrngth of a circuit. The delay calcuiation operation requires a data 

f i  I f *  IV l iidr r lvscri bes the expected delay time for each technology element wit h re- 

s p w  t ~ i i t  put loading. The overd flow of the TRANS compiler and the additional 

i i i î w i i a i i o i i  required to perform each step in the pcocess is shown in figure 4.4. 

4.3 Technology Files 

Eacli supported T R A M  input or output language format has some technology spe- 

cific primitives. For the DFIRST language t hese primitives include B LATCHes. 

FAD Ds. and bit-serial multiplier sections. For the ACTEL FPG A technology the 

primitives are multi-gate cells and special purpose input/output pads. Each of these 

technology specific components must be converted to a format which can be used in 
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Figure 1.5: Sample TRAM Technologv File 

ot her technologies. This conversion can be performed using technology files or 'tech' 

files. 

A tech file is used to define several characteristics for each primitive in the tech- 

nology database. A tech file is used to defbe the pinout for any element in the 

Library including direction (input/output) and whether the pin is connected to an 

[/O pad. making that signal external to an IC. A tech file also defines the gate count 

for each macro in the library which can be used to estimate the size of a circuit in 

t hat technology. Finaiiy the tech file provides the location of a file where a netlist de- 

scribing the function of each l i b r q  element can be found. This netlist contains only 

generic logic elements. -4 sampie technology file describing a 2-1 Multiplexor (MUS) 

element. a full adder (ADDER) and two chip If0 ceLls (INDFF and OUTDFF) is 

shown in figure 4.5. 

The signais contained in the first set of brackets ore macro inputs and the signals 

in the second set of brackets are output signds. A ':EXTT modifier on a signal is 

used to identifi. that signal as being c o ~ e c t e d  to an I/O pad. The number foUowing 

the C& symbol. if present. defines the gate count for that Iibrary element and can be 

any integer representing the ce11 count or area of the primitive. The cell count for any 

primitive defaults to zero. The string at the end of each macro description identifies 

a file ivhich contains a description of the cell using ody generic logic elernents. 



4.4 Netlist Flattening 

After reading in a DFIRST file the circuit is an interconnection of user defined 

operat ors, DFIRST technology specsc elements and generic logic element S. The 

operation of netiïst flattening converts a circuit containhg several levels of hierarchy 

into a circuit which contains o d y  generic logic and output l ibraq elements. This 

operation removes partitions which were introduced to provide rnoddaxity and malre 

the design procedure simpler. After flattening the design optimization steps c m  

operate on the whole design resulting in improved performance at each optimization 

step. 

4.5 Redundant Hardware 

One optimization which is suitable for use with any target technolog.. is to remove 

a- redundant hardware [C;ra92c] present in the design. redundant hardware often 

results during the  creation of large circuits in which several levels of hierarchy are 

used to partition the design into manageable pieces. -4s well. the assembly of param- 

eterized operators. as performed by TRANS. m a -  introduce other levels of hierarchy 

into the design. These large elements may often have components which are repeated 

resulting in rvasted resources. 

If two identical components have identicd inputs but output signals which are 

connected to different parts of the circuit, one of the elements is redmdant. The 

redundant element can be removed and the load(s) which were driven by the removed 

part are merged onto the output of the rernaining element . This operat ion increases 

the loading on the rernaining component and thus cannot be implemented without 



Figure 4.6: Redundant Hardware Removai Operation Saving One DFF 

penalty. This loading factor can be controiied through a user defined parameter 

(FANOUT) which is used to limit the maximum fanout allowed for aqv node. If 

a hardware removai operation results in this b i t  being violated the reduction is 

aborted and no change is made to the circuit. A hardware reduction operation 

which removes one redundant Epflop from the circuit is shown in figure 1.6. 

Another f o m  of redundant Iogic is loadless logic which occurs when a signal 

is generated but is not used. Several of the DFIRST primitives generate several 

output signals. If one or more of these signals is not used some loadless hardware is 

introduced. TRANS can be directed to remove this form of redundant logic. 

4.6 Hardware Mapping 

To obtain an efficient implementation. the generic logic used to implement the 

DFIRST primitives must be mapped into the ceils avaiiable within a target tech- 

nolog-. For the XILINX FPGA this process is carried out by XILINX suppiied 

software. However for the ACTEL FPGAs the generic gates of the flattened serial 

design must be mapped to a unique set of cells available in the -4CTEL architecture. 

This process is carried out using a rule based mapping optirnization [GraEc]. 



(a) (b) 

Figure 4.7: Mapping Source(a) and Target(b) for DFM ACTEL Cell 

-4 mapping d e  consists of a source logicd arrangement to be found within a de- 

sign. and a target irnplementation which is used as a replacement for al1 the hardware 

identified as a match to  the source arrangement. -4 sample d e  is shown in figure 4.7. 

In t his example the logic required to implement a two to one multiplexer driving a 

D type ûipflop is the source arrangement to be located. Each instance of the source 

wvhich is found within the design is replaced by the cell DFM. which is a technologv 

specific hardware element. For this example the starting logical arrangement uses 

sis ACTEL cells and the mapped hardware uses oniy one ACTEL cell. 

The mapping for a fuil adder element into ACTEL logic elements is showvn in 

figure 1.S. Here the original logic for the fidi adder is replaced by a F M B  ACTEL 

ce11 and two inverters to maintain functionôlity Both implementations use four 

ACTEL1 cells but the inverters can be more easiiy used in subsequent mapping 

operat ions. possi bly f u t  her reducing the size of the f d  adder implementat ion. 

For a mapping d e  to be executed an exact match for the source logicd arrange- 

ment must be found. This match not only includes functionality but also imple- 

mentation style. If the two to one multiplexor from figure 4.7a were implernented in 

the design using NAND gates. this reduction mle would fail to execute. To avoid 

t his difficulty al1 source arrangements are described in t e m s  of non-inverting logical 



FALB 

Figure 4.8: Source(a) and Target(b) for ACTEL F d  Adder hplementation 

elements (AND. OR). At the beginning of the mapping procedure a series of rules 

are applied which convert inverting logical elements ( NAXD. XOR) to tme logical 

elements and inverten. Cascaded inverters and dernorgan equivalent circuits are 

used to reduce the circuit further. After this process the entire circuit is described in 

terms of AXD. OR. XOR and INVERTER logic gates. This circuit can be mapped 

effectively using the mapping d e s  defined in t ems  of these four Iogical elements. 

The remainder of the d e  file consists of a collection of mapping d e s .  The rules 

containing the largest amount of logic ase executed before d e s  containing smder  

logical blocks. Precedence is given to rules which can add additional generic element s 

to the circuit. such as the mapping shown in figure 1.8. By adding the additional 

generic elements to the circuit early in the mapping procedure the opportunities to 

combine this logic into other mapping operations is maximized. 

4.6.1 Ceil Interna1 Connections 

One difficulty which cm arise when using rule based mapping is the presence of 

internaily connected nodes within an otherwise exact match to the source logical 



Figiirc 4.9: Source(a) and Target(b) for DFM CeU with hternal Connection 

arrii i t y - i t  t c * ~ t t .  C'oosider the DFM shown in figure 4.9. the interna1 node marked S is 

II-(VI t-lu*i\-liw-e in the design and the mapping cannot proceed unless S is regenerated. 

I ï ~ r  t II(- c - i n - t i i t  shown this means performing the mapping as usual and adding one 

eAlii i i~ti i i l  :\ID gate to drive node X. The oumber of ACTEL cells for this logical 

I , l t ~ l i  Ironi six before the mapping to two after the mapping shown in figure 

i .!). Siiii-<* ii ~riapping which extracts intemal nodes adds additional hardware to the 

ci rr-iiii . i t  i. possible that the circuit size after mapping to be larger t han the original 

c i  ri-i i i i &-. 1 f t his occurs no replacement operation is performed leaving the circuit 

4.6.2 XILINX Mappings 

The Iiardware mapping operation is not needed for XILINX FPGAs since the XIG 

INS software aiready performs logic mapping to CLBs. However hardware mapping 

may be used to implement some special purpose reductions particular to DFIRST 

and SILINS FPGAs. One rnapping which can be used within the XILINS archi- 

tecture is to convert logic to a form which uses the clock enable pins available on 

DFFs within SILINS CLBs. The BLATCH DFIRST primitive can be implemented 



Figure 4.10: Two Bit Shift Register Implemented in one XILINS IOB 

directly using a clock enabled flipflop. By doing this. more of the LUT within a 

SILINX CLB becomes amilable to implement other logic within the design. This 

mapping becornes particularly usefd in the 1000 series devices where the LUT output 

and the fip-0op output from a CLB can be used independenth 

Another feature which can be exploited using hardware mapping is the DFFs 

withia the [ / O  ring of XILIN?( FPGAs. Each IOB contains two DFFs which can be 

configured as a two bit shift register as shown in figure 4.10. In this configuration 

the  extemal connection to the pad must be left unconnected at the board level or the 

shift register will not function correctly. Since serial designs make extensive use of 

shift registers. this feature is usefui for fitting large designs onto a particu1a.r SILIXS 

device. The mapping algorit hm h d s  two bit shift registen and converts them to the 

IOB representation. To control the amount of fipflops mapped into the IO ring the 

user specifies how mmy IOBs can be used in this marner. Each such IOB frees up 

two CLB DFF elements which can be used for other operations within the circuit. 



4.7 RAM mapping 

Senal algorithms implemented in DFJRST t-ypicdy contain a large number of shift 

registers for variable storage and timing s~chronization. This storage c m  be im- 

plemented using simple shift register c h a h  made up of DFF elements. but a more 

efficient means of implementing these registers can be used if serid RAM elements 

are available in the target library. 

The RAM based implementation of an N bit shift register requires an N bit deep. 

1 bit wide RAM, a modulus N counter to control the address of the RAM. and one 

final output DFF. During a single dock cycle the data hom one RAM location wiiI 

be written to the output Bip-flop. t hen the ne-* input d u e  to the shift register wiil 

be stored at the same address and the counter controlling the address pins of the 

memory d l  be incremented. An eight bit shift register implemented using RAAI 

and the corresponding timing diagram is shown in figure 4-11. 

The first f&ng edge (point 1 in figure 4.11) increments theeight bit counter to an 

address value of n. With the address at  location n the RAM begins reading the old 

data at this location. At the foilowing rising edge (point 2) the data fiom the RAM 

is latched into the output DFF element and a neu- input is presented on the DIB- 

signal. At this point the RAM is rvriting the new value to location n. overwriting 

the old value there. At the next falling edge (point 3) the RAM stops rvriting and 

the address is incremented to location n+l and the process repeats. 

This irnplementat ion of a shift register uses one N bit deep serial RAM. one output 

DFF and one N bit counter which contains h ( l ) N  DFFs and some combinational 

logic. Since onl-  a single input and output are present on the serid R.\M. no interna1 
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Figure 1.1 1: RAM Implementation of Eight Bit Shift Register with Timing 



values of a shift register implemented in this marner are available. Therefore this 

rnapping can o d y  be used on contiguous (no internd points used) shift registers. 

4.7.1 Shared Addressing Units 

In many DFIRST circuits several different contiguous Shift Registen (SR) of mrying 

lengths may be present. Each of these shift registers may be implemented directly. 

with each shift register requiring one RAM and one counter. Boivever a more area 

efficient circuit is possible if the addressing units are shared betnreen different RAM 

units. Since several different shift register lengths may be present in a given circuit 

and a mod N counter must o d y  drive N deep mernories. it ma- be necessary to 

divide the irnplementation of some SRs into a combination of RAM and DFF shift 

registers. For esample a nine bit shift register can be implemented using an 8 bit 

Rhbl SR as described in figure 1.1 1 and one additional DFF element . 

In order to determine a good address sharing strategy the size of d relevant 

components in the implementation technology must be known. For the SILIXS 

4000 series FPGAs the sizes for N bit RAMs. N bit DFF shift registers and N bit 

counters is shown in table 4.1. üsing this information a good mixture of R-4M SRs. 

counters and DFF SRs c m  be obtained. 

The first step of the RAM mapping algorithm is to go through the circuit. which 

must be flattened. to find ail contiguous shift register lengths greater than a designer 

specified minimum length (LENGTH). The identified SRs are sorted from the short- 

est to the longest. Starting from the shortest SR. two implementations for the SR 

are generated. The first implementation uses an N bit serial memory and an N bit 

serial RAM. The second implementation uses the Iargest previously generated h1 bit 



1 Lendh 1 RAM Addressing Unit 1 Shift Reeister 1 

TabIe 4.1: Cost in CLBs for Several Lengths of RAMs. 
Addressing Unit s and Shift Registers 

addressing unit (M < N). an M bit serial RAM and X-M DFF elements. The size 

of the two implementations is compared and the s m d e r  of the two is chosen as the 

implementation for this SR. The algorithm proceeds in this way until all SRs have 

been rnapped. F i n d -  the DFFs used to implement the original shift regïster(s) are 

removed from the circuit. 

One drawback to a shared addressing unit architecture is the potential loading 

on each addressing mit.  An addressing unit which is driving too mmy serial RAMs 

will have a degraded performance in t e m s  of the transition times on the addressing 

lines. this may have an impact on the critical pat h of the overd circuit. In order 

to account for this a user detùied parameter ( ADRLOAD) can be used to set the 

maximum number of loads for each addressing unit in the circuit. Any RAMs in 

excess of this parameter will be driven by a separate addressing unit. 

-4nother TRANS parameter (ADRUNIT) is also amilable which dows the user 

to control the addressing units used in a design. The user can insert any number and 

addressing units of an- length into the  circuit. This featw is usefd if the simple 



addressing unit ailocation algonthm used by TRA'IS resuits in a Iarger than optimal 

design. 

4.8 Delay Calculation 

The critical path of a synchronous circuit dictates the maximum clodc rate at-which 

the circuit wiiI correctly function. The critical path is the maximum DFF to DFF 

togic delay time. This logic delay is made up of logic element propagation delays. 

routing delays and set-up and hold tirnes on the DFFs. The logic element d e l -  

for each component is dependent on the output loading for that element. -4 higher 

number of loads mems that a higher total current is required from the driving point. 

also each load and wiring element adds capacitance to the output of any element. 

The combinat ion of t his load current requirement and the load capacitance dictates 

the time required to drive a  node to the required state. It is usefd to be able to 

estimate the critical path of a circuit at an early stage in order to know the maximum 

clock speed for the circuit and where improvements may be made to decrease the 

cri t ical pat h lengt h. 

To estimate the delay on any path it is necessary to understand the behaviour of 

each ce11 in the technology library in terms of the loading to delay time relationship. 

Also it is important to account for any routing delays which may be present in the 

path. This routing delay time is not known until after the circuit has been fully 

placed and routed. This post layout timing is more accurate than the pre-layout 

estimate but is still only an estimation. The exact critical path will v a q  from device 

to device and over temperature and voltage raages. To calculate the delay time for 



any path it is necessq to include an estimate of this routing deiay at some operating 

point. 

The loading factor - delay performance information for a technolog- is imported 

into TRANS using a delay file. In this file each Library element is described in t ems  

of the  input loading factor for each input pin and the delay time relative to load for 

eacli otit put pin. The delay fiIe description for an ACTEL three input NAND gate 

is c;ito\vii IwIow. 

.\II t l i ~  iiilormation pertaining to the NAND3 c d  is contained within a set of 

I D 1-;if - l i t - i  .. TI IC- first intemal set of brackets indicates the loading factor for each input 

~j i i i  c i r i  t II(- r - t 4 l .  for the NA'iD3 element each of the three input pins exhibits a loading 

f i t  (-1 o r -  UT m c * .  The second set of brackets contains the load performance informat ion 

foi. <*ii(-li c i i r t  pitt pin from a cell. The curly brackets are used to separate the data 

foi- O I I ~ .  O I I I  put pin from another. since a n a d  gate has ody one output there is 

oiily oiiv siDi of curly brackets. Each set of square brackets indicates two numbers 

r ~ p w s r i i t  ing t lie Ioading factor and the corresponding delay time for that output pin 

on t lie cell. The loading factors must be in sequence from smdest to largest and 

both t h e  loading factor and the delay time must be integer values. tn this esample 

the iinits for the delay times are tenths of nanoseconds. The delay time for any 

loading factor not present in the table is obtained by linear extrapolation. 

The delay data for ACTEL devices is avaiIabIe within the ACTEL data sheets 

[ACT89]. The delay information includes a statistical measure of the expected rout- 

ing delay based on the loading factor but the exact routing delay will be implemen- 



tation and device dependent. The delay figure determined using this information is 

useful to get an idea of where the criticd path is and to compare the critical pat hs 

of different implementat ions. 

The TRAM hardware compiler reads in a DFIRST netlist and generates all prim- 

itives using generic logic elements as  described in Chapter 3. This is then flattened 

by TRANS to remove aU hierarchicd levels wit hin the design. -4 series of opt imiza- 

tions can be applied to this flattened netlist resulting in a more efficient technology 

specific implementat ion. 

SILINS devices are N times programmable Field Programmable Gate -4rrays 

cont aining Configurable Logic Blocks. 110 B locks a d  programmable rout ing re- 

sources. Each 4000 series CLB is a nine input. four output block containing two four 

input LUTs. one three input LUT and two D t-ype flipflops. Each four input L I T  

can be configured as a serial RAM containing 16 one bit memory locations. 

ACTEL FPG A s  are one time programmable devices containing Cmoddes. S- 

modules. programmable I/O pins and anit-hise based programmable connection re- 

sources. The Grnodules are single output multiplexor based cells which can imple- 

ment one funct ion of 8 variables. and many different functions of C or fewer inputs. 

The S-modules are single output cells which can perform one logic function of C 

inputs and many different functions of 6 or fewer inputs. This module also contains 

a level or edge t riggered Iat ching elernent . 

TRANS optimizations include redundant hardwase removd. RAM mapping and 



Iogic mapping. The redundant hardware removal optimization removes redundant 

logic from a circuit. The RAM mapping optimization converts contiguous shift 

register chains ( cornmon in digi t-serial designs ) to a smdler implementat ion using 

a serial RAM. a counter and a single DFF. This optimization can be used with the 

XILMX 1000 series technology which can implement serial RAW. The logic mapping 

op t imizat ion convert s logic implement ed using generic logic elements t O t echnology 

specific logic eiements. This operation is performed using a d e  database containing 

a set of rules describing a source logical arrangement to be found and a replacement 

logical arrangement which leads to a smder  implementation in the target technolo~.  



Chapter 5 

Applications 

The DFIRST language has been used to design a variety of different circuits in- 

cluding digital filters [GT9'1. NT91], a digital osciilator [Worg'a]. a spread spectnun 

receiver/transmitter pair [Pat93] and a free field listening on headphones system 

[Bei94]. T hese tools have also been used b -  students in graduate level courses [TG951 

to design and implement class projects. 

In this chapter the implementation of several DFIRST designs will be discussed. 

Digital fdter implementations for some common filter structures are presented in sec- 

tion 5.1. To generate the DFIRST code for each digital filter the synthesis programs 

BITSYX [INT91]. SNAFP [Johg-21. FIRGEN [TGG9->] and DIGIPARSE will be used 

to convert a high level digicap [TurS] filter description to a DFIRST description. 

These circuits will be used to investigate the reduction and mapping operations of 

T R A M  for the ACTEL FPGAs and SILLNS 4000 series FPG-4s. 

5.1 Digital Filters 

Digital f3ters are critical components in many products ranging from CD players 

to Cellular telephones. These filters can be broken d o m  into two main categories. 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Several 

IIR filters will be designed including a %th order bilinear LDI filter [BmZ]. a 7th 

order wave digital filter [Fet86] and a custom designed digital füter designed using 



Figure -5.1: FLR Filter Structure 

the filter optimization program noisegen [Kac95]. A 61 tap FIR filter will also be 

designed. Each of t hese filters will be implemented using different s ~ t  hesis programs 

and then a series of applicable reductions wiH be applied in order to investigate the 

performance of the TRANS reduction utiiities on each design. 

5.1.1 FIR Filters 

Finite Impulse Response filters are used when absolute stability is required or when 

linear phase is necessary The main drawback of FIR filters is the high a te r  orders 

required to implement sharp transitions. low passband ripple or high stop band 

attenuation digital tilters [Jac89]. The classicd structure of an FIR filter is shown 

in figure .%l. For an N tap FIR filter N-1 registers. and N multipliers are needed to 

implement the filter. Each of the multiplier outputs are summed together using N-1 

adders. 

The FIR filter shonm in figure 5.1 is an arbitrary phase implementation. to guar- 

antee Iinear phase it is necessary that the coefficients of the filter be symmetrical or 

anti-s-vmmetricd around the center tap [Jac89]. Taking advantage of t his s - i m e t r -  



Figure 5.2: Linear Phase FIR filter structure (odd order) 

results in the structure shown in figure 5.2. For a symmetrical FIR Nter only N/2 

multiplications are necessa- the number of registers and addition operations are 

the same as in the generai implementation. 

The coefficients. given in appendix A. for this fdter are constant values imple- 

menting a k e d  transfer function. The coefficients for tbis filter were generated usine 

NOMAD [Svi91] and in order to reduce implementation complexity the CSD coeffi- 

cient option within NOMAD was used. The coefkient wordlength was selected to 

be 12 bits and the number of bits for each coeficient was Limited to 3 bits. the data 

wordlength [vas chosen to be 16 bits. 

5.1.2 Bilinear LDI Digital Filter 

Lossless Discrete Integrator (LDI) [Bru751 fiiters are IIR filters which are developed 

by transforming a voltage-current signal flow graph of an analog proto-type ladder 



Figure 5.3: 5th Order Bilinear LDI Filter Structure 

filter to the digital domain [BruEl. The test filter is the Bilinear LDI filter shown 

in figure 5.3. This signal flou. graph requires 9 multiplications. 11 additions and 5 

registers to store state variables. 

For this digital filter a coefficient wordlenth of only 6 bits will be used and the 

data wordlength will be 17 bits. 

5.1.3 Wave Digital Filter 

Wave filters are another implementation style for IIR iîlters. CVâve füters are derived 

by transforming an analog protetype filter to the digital dornain [FetSG]. The sample 

filter implemented here is the ït h order wave filter shonm in figure 5.4. This filtering 



operation requires ï multiplications, 21 additions and 7 registers. 

For this filter the coefficient precision was chosen to be 6 bits and the data 

wordlength is 18 bits. 

The t liircl [IR digital Mter used to test the mappings and optimizations of TRANS 

was h i  WC[ using NOISEGEN [Kac95] a simulated anneaIing based signal flow graph 

op1 iitiiza i i o i i  tool. NOISEGEN talres as input a DIGICAP netList describing a fixed 

c - i i ~ - l I i ~ - i ( v i t  digital filter. This starting netiist is optimized using simulated annealing 

[ I i i i ~ . ! ~ ~ :  1') olbtain a filter which h a ,  the same tmsfe r  hinction but is less 

1 <, finit < -  ~ ) i . c & i o n  effects within the filter. The flow graph for the -N2' füter 

- - 
alllrt* - ) . - J -  i i i  f i ,  

sensitive 

is shotvn 

5.2 High Level Synthesis Tools 

TC> p t l l w a ~  cb a mite of register transfer level test designs from the filter specifications 

~ I I  t I1c. prm-ious sections. a variety of high level synthesis tools will be ernployed. High 

levd 5)-ritliesis for digital Mters is the process of converting a completely specified 

signal flow graph containing N multipliers and P adders to a register transfer level 

implementation containing fixed resources which may be shared between the various 

operations required to implement the digital filter. In this section the synthesis tools 

BITSYW.SNAFU.FIRGEi\i and DIGIPARSE wiil be discussed. The strate0 used 

by each CAD tool to synthesize the design will be presented to better understand 

the t-ype of circuits which are generated by each synthesis tool. 





Figure -5.5: N2 Filter Structure Generated by Noisegen 





lated annealing [Kacg51 to search for a solution which eshibits the most desirable 

area and t hroughput characterist ics. 

SN..\FU o d y  uses the LSB/MSB indicating output from the DFIRST control 

generator. This signal is delayed as required to generate al1 timing signals required 

in the RTL implementation. Multiplexing signals are generated from these delayed 

pulses and are used to select the correct data and coefficient input to each shared 

operator. The data wordength is dways the user specified value and is not restricted 

by the minimum system wordlength of the circuit. Using this control scheme the 

number of dock cycles per input sample is always the minimum requimd. One 

drawback to the SXAFG control scheme is the long control path delays which are 

present if the cycle time for one complete computation is long. SNAFU. like BITSYY. 

uses the parallel coefficient serid multiplier together with logic circuit ROMs to 

implement m d t  iplicat ion by fked coefficient values. 

FIRGEN or FIR filter GENerator [TGG95] is a program dedicated to the bit-serial 

implementation of FIR filtem. The input to this program is simply the set of co- 

efficients required to implement the desired transfer function and word length pa- 

rameters to select the data and coefficient wordlengths for the fiiter. No attempt is 

made within FIRGEN to share any hardware resources. instead each multiplier is 

implemented using a fked CSD recoded SHIFTMULT multiplier. 

The process of converting a set of coefficients to a RTL implementation is carried 

out in several simple steps. The fvst step is to generate the delay chain of the FIR 

filter using Y-1 data wordlength long registers. Then al1 the taps which exhibit the 



same coefncient are added together. this reduces the number of mdtipliers in the 

circuit by at Ieast two for a symmetrical FlR filter. Finally the output of these 

adders are multiplied by the appropriate coefficient and summed together using a 

tree of bit-serial adders. The resulting circuit can accept a new input sample every 

SWL dock cycles where SWL is the data wordlength selected by the user. 

DIGIPARSE is the IIR equivalent of FIRGEN. The input to this program is a 

DIGICAP specified netlist for a fixed coefficient digital filter. DIGIP.4RSE then 

implements every operator in the graph as is. using CSD recoded SHIFTMLïLTs 

to irnplement each multiplication within the  filter. Like FIRGEN. the user c m  

specify the desired coefficient and data path precisions but the number of clock 

cycles required between samples is determined by DIGIPARSE. This time will be 

the longest path nithin the filter between an input or state variable and the output 

or another state tariable. 

5.3 Mapping Performance 

To test the hardware mapping operation (section 1.6) of TRANS. the fifth order 

bilinear LDI filter. seventh order wave filter and the N2 filter were synthesized using 

BITSI'N. SN-4FU and DIGIP.4RSE. The impulse response of all three digital filters 

was generated using the DSIM simdator and checked against the ideal impulse re- 

sponses generated by DIGICAP. The DSIM impulse response simulations for aII nine 

test filters matched the DIGICAP impulse response simulations. This verifies that 

each filter example pedoms as expected. 



Table -5.1: ACTEL Cell Counts for Test Filters 
Before( B ) and mer(.!) Hardware Mapping 

5.3.1 ACTEL Mapping 

1 BITSk'N 

The nine sample designs ( three flters generated using three different s ~ t h e s i s  pro- 

grams) were mapped to the -4CTEL technology using TRANS. The gate count (mea- 

Filter 
LDIS 

Wave'i 
N-2 

SNAFU 

sured in ACTEL ceus) before and after hardware mapping and the percentage re- 

B 
1 
1265 
M6 

A 
66'2 
690 
419 

B 
1434 
1139 

DIGIPARSE 

duction in cell counts are shown in table 5-1 _ 

per 
45.8 
-25.5 
O 

B 
1055 
1081 
493 

The original (before) cell counts from table 5.1 reflect the circuit size without 

A 1 per 

any mapping or reduction operations. In this case a two to one multiplexor is im- 

4 
586 782 

739 
1016 1520 - 

plemented using 2 AND gates. one inverter and one OR gate (4 cells) as specified in 

per 
44.5 '45.5 

46.6 
48.8 

the generic logic library After hardware mapping a two to one multiplexor would 

be irnplemented using o d p  a single -4CTEL ceil. The percent reductions in circuit 

size due to the  mapping operation ranged ranged from 41 to 50 percent for ACTEL 

5 3  
24s 

designs. 

47.0 
49.7 

After mapping to the ACTEL technology each design was simdated at the gate 

level using LOGSIM [B W94 to verify that the test filters still function correctl. For 

al1 the test flters it was found that the LOGSIM gate level simulations matched the 

DSIM RTL simulations. 

Another aspect of the hardware mapping operation which can be examined is 

it's effect on the critical path of each digital filter. The cntical path measured by 



1 BITSIX 1 1 DIGIPARSE 1 

Table -5.2: -4CTEL Critical Path Lengths (ns) 
Before(B) and -4fter(A) Hardwaxe Mapping 

TRASS hefore and &ter hardware rnapping and the percentage reduction in the 

cric i ra1 ] n t  11 length is shonm in table -5.2. 

I I I  t lit. original circuit a two to one multiplexor has three levels of logic and 

i1T1 tbr 1 I I ( *  iiml)ping operation this same function h a  only one level. The hardware 

i ~ i i i l q ~ i i i c  ulwration reduced the critical path length of of the ACTEL designs by 10 

I ~ J  -3) l)t*rt-tn1it. 

5.3.2 RAM Mapper Pedormance 

1 1 C I  t II(- prrfonnance of the RAM mapping operation each of the nine filter im- 

[ J I P H  w r i  t ii t ior ir was translated to the XILINS 4000 series technology. first wit hout 

t I I < *  I( A 11 iiiapper and then with the R.4M mapper enabled. During the RAM map- 

per t raiislation a LEXGTH parameter (section 4-62) of 6 will be used. Here any 

coiitiguoiis shift register of length greater than 6 is converted to the RAM imple- 

nientation. In each case a more 'optimalo addressing scheme is selected using the 

ADRUNT parameter in favor of the addressing unit(s) selected by TRANS. For 

both the RAM mapped and RAM unmapped translations the redundant hardware 

removal operation was enabled with a F.4NOUT (section 4.5) setting of 10. 

t' major factor in the effectiveness of the RAM mapping operation is the selec- 



Table -5.3: Test Filter Contiguous Shift Register Lengths 

Table -5.4: T R A M  Address Allocations and CLB Cost Estimate 

DIGIF'ARSE 
8x3, 9x3. 10. 
12x5. 13. 17x3 

t ion of addressing units to control the various serial mernories in the circuit. The 

SNAFU - 
6x4. 1x4. 9x3. 
10x8, 11. 12x4. 

LDI-5 

contiguous shift register lengths required by each test filter are shoivn in table 5.3. 

BITSYN 
8. 9. 10: 11. 12x4. 
13, 14x3. 16. 17: 

Along with the memon- lengths in the circuit. the expected cost for the merno- 

irnplementation in CLBs is also shown. The addressing scheme used by TRAXS 

is not optimal in ternis of the number of CLBs required to RAM map the register 

lengths of each example. The addressing scheme chosen by TRAXS for each filter 

and the resulting CLB count estimate is shom in table 5.4. 

With the ADRUXIT parameter the user can select which addressing units are 

present within the design. Using this feature an improved set of addressing units 

can be generated as given in table -5.-5. Comparing table -5.4 and -5.5 shows that a 

user generated addressing scheme can reduce the implementation size of the RAhI 

rnapping by up to 50 percent. Each of the oine filter implementations behaves 

sirnilarly in t his regard. 

Table .5.6 compares the RAM mapped (user selected addressing units) circuits 



Table *5..5: User Address ,Uocations and CLB Cost Estimate 

1 1 BITSYN 1 SNAFU 1 DIGIPARSE 1 

DIGIPARSE 
8.9.12.1'7=21 

6.8 = 8 
1.5 = 8 

1 Filter 1 FG 1 DFF 
I 

FG 1 DFF 1 FG 1 DFF 1 

SNAFU 
6.7.9J0,12.16=31.5 

8J1 = 17.3 
11.16 = 16 

LDI.5 
WaveQ 

W2 

Table 3.6: XILINX 11000 Series RAM Mapping 
Percentage Increase in FGs and Percentage Decrease in DFFs 

BITSkTu' 
8,12.14,18 = % ?  
SJ1.13.16 = 23 
6-1-5.17=17.*5 

to the unmapped circuits. Table -5.6 shows the percentage reduction in the number 

of Function Generators ( FGs) and the percentage reduction in the number of DFFs 

used by the nine sample circuits. This table shows that the number of FGs increases 

as the number FFs decreases. .As expected the RAM mapper trades off DFF usage 

for FG usage. 

A useful measure which can be use to investigate this trade-off further is the 

number of DFF elements which can be implemented per function generator. This 

FF/FG efficiency factor is defined as the change in DFF elements divided by the 

change in FG elements affected by the RAM mapping optimization. 

The resulting trade-off figure for each of the nine filter implementations is give 

in table 5.7. The trade-off figures range from 3.8 FFs/FG to 9.6 FFs/FG. The 

magnitude of t his figure depends on the number and length of the diff'erent addressing 

units used to implement the R.4M mapping. 



Table 5.7: DFFs/FG for SILINX 4000 Series R 4 M  Mapping 

Filter 

LDI5 
Waveï 

N.3 

1 1 B1TSk-J' 1 SNMU 1 DIGIPARSE 1 

5.3.3 Overall Performance 

This section discusses the overdl area reductions implemented by TRANS on the 

DIGIPARSE 
FF/FG 

3 -8 
3 -25 
-5 .O 

BITSYN 
FF/FG 

4-5 
4.9 
4.6 

nine sample designs for the ACTEL and SILINS FPGA devices. For each test filter 

SNAFU 
FF/FG 

4.3 
6.0 
7-6 

the Ibest" implementation will be compared to the  unoptimized circuit for each 

target technolog).. For the ACTEL designs both the circuit size and circuit critical 

path will be used to select the best design. Only the size measured in CLBs will be 

used to compare XILINS implementations. Table 5.8 shows the total reductions in 

circuit size and table -5.9 shows the reductions in critical path length- 

The ACTEL a e a  reductions ranged from 48 percent to 57.9 percent and the 

corresponding crit ical pat h reductions ranged from 36.0 percent to 57.1 percent. 

1 1 B1TSk-I 1 SNAFU 1 DIGIPARSE 1 

Table 5.9: Overall Critical Path Reductions by TRANS Optimizations 



Table -5.10: Number of CIock Cycles per Input Sarnple 

Reductions in the XlOOO technology can be attributed to the redundant hardware 

rernod operat ion and the RAM mapping operat ion. Overall reduct ions in circuit 

size of from 33 to 52 percent were observed on  the nine test f'dters. wit h the majority 

of füters e-xhibiting orea reductions of 40 to 4.5 percent. 

5.3.4 Filter Impiementation Cornparisons 

In the  previous sections three different filters (ldi5.waveT.N2) were irnplemented us- 

ing three different sqnthesis programs (BITSIT. SNAFP. DIGIPARSE). The three 

implementations of each digital filter can be compared to determine which s ~ t h e s i s  

tool is the most useful for each circuit. The figure of merit used to compare each 

filter miL be  the area time (AT) product [HC90] which equally weights circuit area 

and processing t ime. 

The cornparisons will be performed using the ACTEL gate counts and aitical 

path lengths. The area meastue is the number of ACTEL cells required by each 

design. The time can be obtained by rnultiplying the critical path length by t.he 

number of dock cycles required to process a single sample. For each filter the solut ion 

yielding the smallest AT product will be used for this cornparison. The number of 

dock cycles required between samples for each of the nine filters is given in table 

5-10. 

The total AT products for each of the nine filters is given in table -5.1 l. For each 



Table -5.1 1: ACTEL -4rea-Time Products for Test Filters 

row of this table (filter type) the DIGIP-4RSE .4T products are normalized to a value 

of one. The remaining elements on the row are nomalized to this value. For each 

fiiter the DIGIPARSE Hter results in the mallest -4T product. the SNAFU circuits 

were next best and BITSYi yielded the biggest /slowest solutions. 

The differential in circuit quality rvas smdest  in the wave filter implementation. 

The reason for this Lies in the topology of wave digital filten. which contain sev- 

eral cascaded multiplication operations. This reduces the cost of shasing a general 

pwpose multiplier between several multiplication operations. Since the result from 

one multiplication must be computed before the next can begin. very Little of the 

processing cm be done in paraHel. -4s such the speed (measured in clock cycles) of 

t h e  resource shared solutions and the non-shared solutions are not that different. 

In the LDI and N2 Nters more of the structure can be computed in pardel. which 

results in a higher cost for sharing resources. In a shared multiplier environment an 

operation which could proceed must wait for a multiplication unit to be free. resulting 

in e-xtra wait time and additional registers to store intermediate results. 

For ail of the circuits the DIGIPARSE solutions yielded the smdest  number of 

dock cycles for the computation. the srndest critical path length and the smallest 

area. These results indicate that îdters requirïng fixed coefficient values should be 

implemented using one dedicated CSD multiplier per multiplication in the filter. 

LD 15 
DIGIPARSE 

1.0 
BITSIX 

7.09 

' SNAFU 
6.19 



5.4 61 Tap FIR Filter 

Given the NOMAD generated finite precision coefficients. the bit-serial DFIRST 

RTL filter description can be synthesized using FIRGEN. This filter contains 31 

CSD multipliers. 60 16 bit shift registers for state storage. and 60 adders to sum the 

multiplieroutputs. The input/output signals from this filter are 1'2 bit pardel  values. 

The format converting pardel to senal and seriâl to pardel DFIRST primitives are 

used to interface to externd pardel -4/D and DIA converters. 

The DFIRST filter implementation generated by FIRGEN  as translated to the 

SILINX 1000 series architecture with no optimizations enabled and the circuit. oc- 

cupied $31 percent of the 384 CLB DFFs in the 400e5PGl56 target device. and 53 

percent of the 3S4 Function Generators in the FPGA. This original circuit would 

require more than four 4005 devices for a f d  implementation. 

The first reduction which con be applied is to remove redundant hardware ele- 

rnents (section 4.5). The cootroiling FANOUT parameter is set to 10 for this reduc- 

t ion. 

The resulting circuit from this operation requires 347 percent of available DFFs 

and 80 percent of FGs. a significant improvement over the original circuit containhg 

redundant hardware. The next operation will be to apply the RAM mapping in 

order to convert al1 the state storage elements to RAM irnplementations and reduce 

the number of DFFs in the design. The minimum contiguous shift register length is 

set to 6. The resulting shift register lengths and user selected addressing units are 

given in figure 5.13. 

With this RAM mapping optimization the resulting area requirements are 137 



Table -5.12: ACTEL Area-Time Products for Test FiIters 

I)f*r(-(*rii III--1's and 108 percent FGs. In order to reduce the number of FGs hardware 

-4ddressing Uni ts 
1 

Lengt h - 
I 

i l  i ë i  1 1 1  ~iiic q w r a  t ion presented in section 46.1 wiil be applied. Here ail BL-4TCH 

Number 
r 

1 J-1 M -  31 rt i c i  rtrm wiU be replaceci with the dock enabled Bipflop available within the 

S 1 1.1 S S IOoO architecture. When this mapping is used 58 separate replacements 

iiri- ~)vrlortiic*d II- TRANS and the resulting circuit size is 137 percent DFFs and 96 

~ w r i - w i t  1--(;S. Some reduction in the DFF count is still required before the placement 

aiid root iiig can be attempted. 

111 order to reduce the number of DFFs usecl within the CLBs of the 4005 amther 

mapping presented in section 4.6.0 is used to rnap DFFs to the IO ring. For the filter 

irnplementation O -  12 inputs and 12 outputs ore needed for the filter. This leaves 

a large number (Y6) of 110 pads which may be used as two bit shift registen. The 

I/O mapper optirnization rnapped 81 two bit shift registers to the I/O ring. The 

resulting circuit size is 106 percent DFFS. 96 percent FGs and 98 percent 10s. 

The 84 IO cells used in the 110 ring mapping removed 168 DFFs from the intemal 



circuitry. this is a reduction in internd DFF usage by 168/3S4=13.75 percent. The 

actual reduction in DFF count was only 137 - 106 = 31 percent. The reason for 

t his discrepancy Lies in the reductions which are performed by the SILINS mapping 

tool PPR before placement and routùig. One reduction done here involves removing 

components which do not drive any intemal loads (loadless signais). After this 

mapping operation some DFFs which previously drove no interna1 loads are now 

connected to extenial pins. These elements can not be removed by PPR. To correct 

for this the loadless components can be removed using TRANS. 

When this optirnizattion is enabled the IO mapping and the RAM mapping o p  

erations change. Some loadless DFFs which were previously mapped to RAM im- 

plementat ions have now been removed. The resulting circuit size is now 101 percent 

DFFs. 96 percent 

mapper function. 

This circuit is 

shrink the design 

FGs and 86 percent [Os. Only 54 IO blocks are used by the IO 

stilI slightly larger than what the 400.5 can accommodate. To 

further the FANOUT parameter is changed to 12 from 10. The 

resulting circuit area is now 97 percent DFFs. 96 percent FGs and 84 percent 10s. 

This circuit can now be placed and routed. 

The PPR program terminates indicating that not au DFFs can be placed within 

the circuit. This problem occurs when using the clock enable pin on the 11000 series 

CLB DFF. Both DFFs in the CLB must be driven by the same clock enable signal. 

If this is not possible. one of the two DFFs cannot be used. These lost DFF elements 

caused this design to be too large for the target device. In order to shrinlc the design 

further the FANOUT parameter is increased to 20 The circuit size is 91 percent 

DFFs. 94 percent FGs and 81 percent 10s. This design now f d y  places and routes 



within a single 400JPGl56. 

The overd reductions in internai DFF count for this FIR 6Iter is 3 . 9  percent. At 

the same time the fmction generator count was increased by 13.3 percent. The final 

circuit was implemeoted and tested on a single 4005PG156. The circuit f ~ i o n e d  

correctly at 20 MHz. even with the FANOUT of 20 on some interna1 signals. Since 

the number of bits per input word is 16 the number of samples per cycIe processed 

by this unit is 20 * 106/16 = 1.25 M sarnpIes/second. 

5.5 Digit- Serial Circuits 

The DFIRST language can describe circuits of variable digit-widths. In the follow- 

ing section TRAXS circuit transformations are tested on higher digit-width circuits. 

The a r b i t r q  digi t4dth multiplier circuit from section 3-15 wiil be used to inves- 

tigate the  speedlarea tradeoffs of using higher digit width components. -4s well. 

one digit-serial digital filter will be designed using SNAFU and mapped by TRANS 

to the ACTEL and XILINS technologies to investigate the performance of TRANS 

optirnizations on higher digit width circuits. 

5.5.1 Digit-Serial Multipliers 

To examine the speedlarea trade-offs of higher digit width components the DFIRST 

digit-serial multiplier units will be used. The CWL for the multiplier is eight and 

the data wordlength is 18 bits. Different digit-width rnultipliers ranging from W=l 

to W=6 will be used for the test. For the 4 and 5 bit digit widths a data wordlength 

of 20 bits will be used since there must be an integer number of digits per data word. 



Coefficient (8 Bits) 

.1 OUT (18 [20] Bits) 

Data (18 [20] Bits) 
I 
I 

I i l  

Figure 5.6: Multiplier Test Circuit 

Generator I 
The results obtained for these two circuits wiU be weighted by the appropriate factor 

to remove the effect of the altered data wordlength. 

The DFIRST circuit will consist of two parde l  to serial converters. one for the 8 

bit coefIicient and one for the data signal. a digit serial multiplier. a serial to parallel 

converter and a control generator as shown in figure 3.6. 

Converting the DFIRST code for the circuit given in figure 5.6 between the 

different digit width circuits is relative- simple. The first step is to change the dfault 

digit width setting to the desired value using the DIGIT (section 2.3.1) compiler 

directive. This parameter defines the default digit-width for al1 serid signais in the 

DFIRST file. The next step is to change the f i s t  CYCLE (section 3.17) count to 

the appropriate setting. The CYCLE count indicates the number of dock cycles per 

data word and is set to SWL/W. For the sin different digit-width circuits in question 

the CYCLE parameter is set to 18, 9. 6. 5: 1 and 3 for digit-widths of 1 to 6 bits 

I I I 
I 1 

{ A  2 )  ' I A L }  



Table -5.13: Area and Computation Time 
for Different Digit CVidth DFIRST Mdtipliers 

respect ively 

Each of the six multiplier circuits converted to the SILINX 4000 and ACTEL 

technologies. The S I L I N S  designs were implemented on a single 400.5PG156 device 

and the critical paths for aII the circuits were measured by increasing the clock fre- 

Total 
Time(ns) 

3 15.8 
200 
188 

192.3 
1903 
176.5 

Ares 
(CLBs) 

quency unt il the circuits stop ped funct ioning correct 1 .  The delay calculat ion feat ure 

of TR-AKS was used to calculate the critical path iengths for the ACTEL designs. 

Total 
Time(ns) 

489-6 
306.0 
'-244.8 
238 

217-6 
183.6 

1 

Area 
(Ceus) 

91 
133 
184 
394 -- 
264 
304 

Critical 
Path(ns) 

The critical path length rnultiplied by the number of clock cycles required to generate 

the output (CYCLE count) indicates the total time needed for the multiplication. 

Critical 
Path(ns) 

37.2 
34-0 
40.8 
47-6 
54 -4 
61-3 

The cell counts. n i t icd  path lengths and to td  multiplication times for each design 

are given in table 5-13. The times for the 4 and 5 bit digit-width multipliers have 

beea multipliecl by 1Sf30 to normalize these circuits for cornparison purposes. 

Gsing the data from table 5.13 the area-time product for each implementation 

can be computed. The area-time product vs. digit width for DFIRST multipliers 

implemented in SILINS 4000 and ACTEL FPGAs is shown in figure 5.7. A U  .XI' 

1 
3 - 
3 
4 
-5 

- 6 

products are normalized to the bit-serial -4T value for each technolog- 

The .AT product curve shows that the Iow digit-width multipliers have a lower 

17 
2-5 
36 
43 
-50 
-5 S 

17-15 
93 9 

31 -3 
38.3 
47.6 
58.8 



Figure 5.7: Digit-Serial Mult ipiier Area-Time Products 

area-time product than the more parailel designs. -4 digit-width of 2 results in the 

most AT efficient multiplier. For the other digit widths the reduction in the number 

of dock cycles is accompanied by a larger increase in size and critical path length 

resulting in larger AT products. 

5.5.2 Digit-Serial Filters 

To examine the performance of the TRAM circuit trânsforrnations on digit-seriai 

circuits the SNAFU program was used to s ~ t h e s i z e  the ldi.5 digital filters. described 

in section 5.12.  using different digit width architectures. 

The filter was synthesized using digit widths ranging from W=l to W=6. The 

original data wordlength for this filter was 18 bits but for the W=l and W=J füters 

the intemal wordlength %vas changed to 20 in order to maintain an integer number 



Table .5.11: ACTEL Ares Before and .Mer TRANS Optimizations 
for Different Digit Width LDI Filters 

DW 
1 
3 - 
3 
4 
*5 
6 

of digits in each rvord. The i m p S e  response for each of the different digit-width 

designs was simulated using DSIM and were found to function correct- Each of 

these designs  vas then translated to the logsirn format for a gate level simulation. 

During this process the redundant hardware remover (F.42TOCT=IO) and the hard- 

ware mapper to the ACTEL library were enabled. Each of the fdters were found 

to function correctly and gave identical impulse responses to the impulse responses 

generated by DSIM. 

5.5.3 Optimization Performance 

Before 
1434 
1784 
2136 
2523 
2865 
3182 

Each of the filters were mapped to the ACTEL technology using the hardware mapper 

and the Redundant Hardware Remover with a FANOUT Lmit of 10. The percentage 

reduction in circuit size is given in table -5.14 and the percentage reductions in critical 

paths is given in table 5.15. 

The performance of the hardware mapper increases both in t e m s  of circuit area 

and circuit critical path as the digit width increases. The hardware mapper has the 

greatest impact on the logic elements within the design and a Iesser impact on the 

DFFs in a design. Since the ratio of logic to pipelining elements increases with digit 

-Mer 
760 
887 
1066 
1'2.31 
1356 
1466 

Percent Reduction 
-27.0 
-50-3 
50.1 
51 -6 
-32.4 
-53.9 



DW 1 Before(ns) 1 . . . e r (n s )  1 Percent Reduction 1 

Table -5.1-5: ACTEL Crit ical Pat hs Before and .Mer TRt\NS Optimizat ions 
for Different Digit Width LDI Fiiters 

11-id c I I  t l ir cflect of the hardware mapping operation dso increases wit h increasing 

digit w i t 1 1  11. 

L I  I I  t Iw effectiveness of the RAM rnapping operation on higher digit-width 

( - i n - i i i l  - I l i t .  ris filters were converted to the XILINS 4000 series technology- One 

1 \ 1 l iriiil~[)iiig control parameter which becomes increasingingl- important as the 

I I  iiicreases is the LENGTH (section 4-71 parameter. This parameter dic- 

iiiiiiinium length of contiguous shift registers which wil1 be converted to 

~Icitient.ations. This parameter is normally set to 6. which results in all 

sliifi rtyisic-t- cliains of 7 DFFs or more being converted to RAM. This tvorks weil 

for Ilil-n-rial circuits which make use of long shift register chains but not as weU for 

Liiglier digit n-idth circuits. 

C'onsicler the implementation of an 1s bit word deIay implemented in karious 

different digit widths as s h o m  in figure 5.8. The bit-serial word del- is a single 18 

bit shift register. the W=2 implementation is two 9 bit shift registers and the W=6 

implementation is six three bit shift registers. So the word delay implernentation 

results in W N/W long shift registers. The longest delay t-y-pically used in SNAFU 

circuits is one word delay [Joh92]. This means that the LENGTH parameter must be 



Figure 5.8: Wbrd Delay Implementation for Digit Widths 1 to 6 

decreased as the digit widt h increases. The percentage improvement for each circuit 

over the unoptimized circuit in terms of CLBs is given in table 5.16. Also presented 

is the n u b e r  of DFFs/FG which were implemented in each case. 

As the LENGTH parameter decreases the DFF utilization decreases and the FG 

utilization increases. this is expected since more DFFs are being mapped to RAM. 

However the efficiency of the mapping operation decreases as LENGTH decreases. 

A SILINS serial RAM element has four address lines. one data input and one data 

output. that is up to 16 bits deep and only one bit wide. Ifoniy a three deep RAM is 

required a full 16 bit RAM must be inciuded in the final implementation. with only 

three elements of the RAM actuaily being used. The fact that RAM blocks corne in 



[ DW 1 Area Reduction 1 DFFs/FG 1 

Table 5-16: Ares Reductions and RAM Efficiency for 
Different Digit Width LDI Fïlters 

16 bit chu& results in the Loss of efficiency for short shift register chains. 

As the digit width increases the percentage reductions in DFF utilization de- 

creases. This occurs because as the digit width increases fewer DFFs are found to be 

suit able for RAM reduction. As. weli the efficiency of the R.4M reduction in terms 

of the number DFFs/FG also decreases as the digit width increases. This occurs 

because the more of the RAMs being used are of the shorter lengths as the digit 

midth increases. until at W=6 almost all of the RAMs are three bits long. As a 

result the net effect of the RAM reduction optimization decreases in effectiveness as 

LV ~ncreases. 

Filter Performance 

In this section the different digit-width LDI filters will be compared in terms of area 

and time in order to determine the relationship between digit width and overaLi filter 

performance. 

The area of ACTEL digit-serial LDI filters is given in table 5.17. Here all values 

are normalized to the bit-serial settings. As the digit widt h increases the size of the 

circuit implementation also increases. A W=2 filter is less than double the size of 

a bit-serial filter. This is expected since some DFIRST operators such as registers 



1-1 
Table Xi:  ACTEL Area for Different Digit Width LDI Filtea 

- - - - - - - - - 

Table .5.lS: Efficiency data for Test LDI Fiiter 

D V 

1 
3 - 

and format converters do not grow lineariy in size with digit width but may remain 

constant in size regardless of digit width. 

Cr ~ O C ~ S  

S -5 
45 

The critical path length of these digitd filters is shown in figure 5-18. The 

path length does increase lineariy with digit width but o d y  after W=3. before this 

ACTEL 
Critical Path(ns) 

30.2 
3 1 2  

point the delay curve is relatively flat. The reason for this lies in the t-ype of fiIters 

ACTEL 
Total Time(ns) 

2567 
1404 

generated by SNAFU. This synthesis tool makes use of zero delay multiplexors in 

front of al1 shared components, if the depth of these multiplexors is too large then 

the t hese elements form the critical pat h. In the case of bit-serial circuits this results 

in critical paths which are longer than e-xpected for this architecture. The depth of 

t hese multiplexor elements is relatively constant regardless of digit-width. At W =3 

the ca- pat hs within the adder elements becomes longer t han the multiplexor dela'. 



Table .5.l9: Final AT  Products for Different Digit Width LDI Filters 

The number of dock cycles required between input samples for each of the s k  

filters is given in table -5.18. Here the W=2 filter requires approximately half the 

number of clock cycles as the bit-serial filter. However the higher digit width Mters 

do not divide the number of clock cycles required by W as  might be e-xpected. The 

reason for this lies in the latency of the digit-serial DFIRST multipliers. 

Digit-serial DFIRST multipliers (W- > L) have a l a t e n -  of the CWL+l while 

bit-serial multipliers have a latency of SXCWL/2 +1 so after W=2 no further im- 

provements are possible in the latency of DFIRST serial multipliers. What does 

decrease with increasing W is the number of clock cycles required to completely 

multiply or add two nurnbers together which is K/W. Ifeach multiplier did not have 

any wait cycles then one new output wodd be generated every N/W clock cycles. 

but if this is not possible then the multiplier must wait for the next inputs to be vaiid 

before starting the ne* operation. Since the multipliers can not be fdly utilized. 

the number of clock cycles does not decrease Linearly with W. 

With the circuit area. circuit critical path and the number of clock cycles per 

sample known. the final AT products for these filters can be computed as shown in 

table -5.19. Again al1 .4T products are normalized to the bit-serial values for both 

technologies. The most AT efficient design is the W=2 digit-serial design. 



Three fixed coefficient IIR Nters, a fifth order bilinear LDI filter. a seventh order 

LVUX digital Hter and a third order 'NZ' filter generated using NOISEGEN were 

designed using using BITSYN. S WAFU and DIGIF'ARSE. The BITSk'N and SNAFU 

spthesis programs generate resource sharing solutions tvhile DIGIPARSE uses CSD 

multiplier coefficients and no resource sharing. SNAFV can generate arbitra- digit 

width solutions while the other methods are bit-serial O -  The impulse response 

for ail nine s ~ t  hesized solut ions was obtained using DSIM and the results matched 

the high level simulations of each filter generated using DIGICAP. 

The nine test flters were mapped to the ACTEL technolog-- using the TRANS 

Iogic rnapping optirnization. The resulting reductions in circuit area ranged from 44- 

-50 percent. and critical path length reductions from 40 to -50 percent. The impulse 

response for the ACTEL implementation was generated using the gate level simulator 

logsim and were found to match the RTL DSIM simulations. 

Using the redundant hardware removal operat ion ( FANOUT= IO) and the Iogic 

mapper total area reductions for the -4CTEL circuits ranged from 4S to 58 percent 

and total critical path reductions ranged from 36 to 57 percent. 

The nine IIR filters were mapped to the SILINX 4000 series technology using 

TR-4NS. the RAM optimization and the redundant hardware opt imization wit h a 

F.4NOL.T of 10. The addressing units docated to each problem were customized 

to each application using the ADRUNIT TRANS parameter to obtoin the smaiiest 

circuit area. The overall reductions in SILINS circuit orea ranged from 33 to 52 

percent for the nine test filters. The DFF/FG RAM mapping tradeoff figure ranged 



from 3.25 to 7.8 DFFs/FG for these filters. 

The area-time circuit eEciency parameter for each of the nine ILR flters was 

calculated. It was found that the DIGIP.4RSE solutions required the smdes t  circuit 

area. the smdlest number of clock cycles and had the shortest critical path lengt h 

for the three test IIR flters. 

fixed coefficient 61 tap bit-serial FR3 filter was designed using FIRGEN. which 

implements ail coefficients usùig SHIFTMULTs. The Data wordlength for this filter 

is 16 bits and the CWL is 12 bits- and no more than three coefficient bits are set 

in each coefficient. NOMAD was used to generate the fixed precision coefficients for 

the FIR filter. 

The 61 TAP FIR filter was mapped to the SILlNX 4000 technology and imple- 

mented on a single 4005PG1.36 device. The TRANS optimizations used included 

RAM mapping. redundant hardware rernoval (F'.\NOUT 'O)? BLATCH mapping to 

dock enabled DFF elements and 1/0 ring mapping (54 I/O pins). The overall re- 

duction in circuit area was 78.9 percent. The final FPG.4 resoource utiiization rvas 91 

percent DFFs, 94 percent FGs and 81 percent [OB$. The FIR filter operated cor- 

rectly at  a 20 MHz bit clock rate. resulting in a sampling rate of 1.25 MSamples/s. 

Six diKerent digit width solutions. rasging fiom W=l to W=6. for the fifth order 

LDI digital filter were synthesized using SNAFU. Each of these circuits was mapped 

to the ACTEL technology using the the TRANS hardware mapping optimization 

and the redundant hardware removd operation (FANOUT=10). Each of these six 

circuits rvas simulated using logsim and found to function correctly. The most .Yï 

efficient digit width was found to be W=2. 



Chapter 6 

Summary and Discussion 

In t his t hesis a set of CAD tools for implementing bit-seriai and digit-serial digital sig- 

nal processing systems has been presented. The entry language for rhese CAD tools is 

t lir r q i s t r r  t ransfer level hardware description langauge DFLRST. The DFIRST lm- 

y~asc* i' i i rd to describe the intercomection and timing of Iaoguage primitives such 

a. i i i i i l t  piit-r-. right shifters and adden. The DSbI  event driven sirnulator is used 

1 0  - i ~ i r i i l i t i <  IIFIRST circuits. DSI'iI performs h i t e  precision simulations and serial 

+ i ~ r ~ i i l  t i i i i i i i r  alignrnent verification on DFIRST circuits. The TR..\NS gate compiler 

i3 I I - # -  l t C D  (-oi iwrt DFIRST circuits to  technology specific gate level irnplenientat ions. 

- I - i i < *  lir-i o p r a t  ion perfonned by TR-WS is to convert DFIRST primitive elenients 

1 O pt*iii*ric* ga t e level implementations containing oulp simple gates and D-type flip- 

I i q  1 ~ + b i i ~ ( - i l r  3. A series of optirnizations such as redundant hardware renioial. RAM 

t i i i t p p i  irg fur sliift registers and hardware mapping to technotop specific Iiardware 

eleiiirtit s are iised to reduce final circuit implementation area. 

O t lier Ili t-serial or digit-serial research efforts include PARS IFA L [HCgO]. C AT HE- 

D R A L  [GMSG] which has become part of a commercial tool available from Mentor 

Graphics Corporation. and work by ILI< Parhi [ParSI]. The DFIRST language is a n  

extension of the FIRST (DR851 hardware descript ion language. Addit ions to FIRST 

implemented by DFIRST include full digit-serial support. additional components 

such as p a r d e l  to serial and serial to parde l  converters. and extended irnplementa- 

tions of serial rnultipliers. 



Bit-serid and digit-serial circuits are not commonly used in industry applications 

due to a shortage of effective C.4D tools to aid in the rapid conversion of ideas to 

implementations. a longer Iearning curve as compared to parallel designs due to serial 

timing alignment complications. and a perception that serial processing systems must 

have a low throughput rate. One of the objectives of this research was to address 

t hese t hree concerns. The DFIRST language. DSIM simulator and T M N S  compiler 

form an effective C AD environment for the irnplernentation of many signal processing 

applications. 

Serid processing circuits are ideal for low throughput applications where there 

is ample time between input samples to complete the necessaq processing. Ln this 

environment the s m d  operator size and simple routing requirernents of serial designs 

can be e-xploited to create srnail efFicient solutions. For higher throughput applica- 

tions. bit-serial or digit-serial circuits are not necessarily slow. Consider the 61 tap 

FIR filter implemented in this thesis. Only 16 clock cycles are required between 

input samples resulting in a throughput rate of 1-25 M samples per second. Since 

bit-serial processing ehen t s  require a small circuit area. many separate elements 

can be used in parallel to complete the overail task. Therefore. serial architectures. 

implement serial data word. parallel operation execution. while pardlel architecu- 

t u e s  implement paraIlel data word. seriai operation execution. If a large number of 

processing elements can be used as pardel processors then bit-serial or digit serial 

archituctures c m  be used to obtain relatively high throughput rates. 

The VHDL [AG931 and Verilog (Pd961 behavioural hardware description lan- 

guages are often used to describe. simulate and implement digital signd processing 

systems. Both of t hese laquages use 'if then elset constructs. arithmetic operations. 



and conditional operations to describe the behaviour of a digital circuit. Each of 

these operations are perfomed on parailel data signds of virtudy any signal width. 

However these behaviourai languages are not well suited to bit-seriai or digit-serial 

circuit description. A bit-serial signal is communicated on ody a single wire. so alI 

operations within VHDL or Verilog must take place on this single wire. The benefits 

of high level constmcts are lost somewhat. since an add becomes ody- a single f d  

adder and a multiply becomes a single 'and' gate. As weil. the notion of a data 

word is lost within these langauges. The full data word is broken down into several 

different signals separated by DFF eiements. Under these conditions it is difficult to 

perform word Ievel simulations and bit-serial timing alignment verificat ion. 

6.1 Future Work 

The ultimate CAD design tool would convert a design specification. including timing 

constraints and available implementation technology details. into an optimal circuit 

implementation. The design specification must be entered in minimal time. the run 

time for the CAD tools must aiso be minimal and the created design must meet al1 

timing specifications and occupy the smallest possible area in the technology used. 

In every regard present day automated design tools can be improved. Attain- 

able improvements to the tool set discussed in this thesis include design entry 

(DFIRST) and validation (DSIM) improvements which will expand the capabilities 

of the present system. The synthesis operation of converting the RTL description to 

a technology dependent design can be improved to support a greater variety of com- 

ponents and generate smaller more efficient hardware implementations for esist ing 



components. Findy the set of optimizations used within TRWS can be extended 

to increase final solution quaLity. -4 set of possible irnprovements for the present 

CAD tools is presented in the foUoming sections. 

6.1.1 Design Entry and Validation 

There are s eved  short comings in the DFIRST language and the DSIM simulator 

which can be addressed. The most critical is that DFIRST and DSIM support 

mixed-mode circuits ivhich combine digi t-serial operations and gate level operat ions. 

Currently gate level operations occur on serial data rvords not on individual bits 

or digits within the ivord. True gate level simulation within the serial frame-work 

would remove the need for extemal gate level hardware to be designed using other 

gate level tools. This rvould significantly shorten design cycles for circuits containing 

a wide range of different hardware elements. 

Another feature which could be added is multi-rate data support- Here different 

data rate circuits. as result from interpolation or decimation operations. can be 

described in a single file and simultaneously simulated. Supporting different data 

wordlengths within a singie design instead of limiting the entire design to a single 

serial data word length could aiso be added. 

The next generation of the DFIRST description language could be made corn- 

pletely behavioural. In this language generic operations such as "' for multiply and 

'+' for addition would replace the instantiation of specific primitives. The contest 

of each behavioural operation wodd be defined by the type (pasdel  or serial) and 

data width of the 110 signals on each operation. -4 '=' sign wodd senre as a format 

conversion operation. Another benefit of this type of behavioural language would be 



that the serial control signals would not have to defined by the user. The compiler 

would derive the control structures as required. As weIi. the description of bit-serial. 

digit-serial or pa rde l  architectures would appear the same. the ody difierence be- 

ing the signal declarations for internd signds. The optimal form for this language 

would be similar to commoniy used hardware description languages such as VHDL 

and Vërilog with the o d y  major ciifference being the inclusion of support for serial 

signals. 

6.1.2 Synthesis 

Presently several of the primitives within the DFIRST language such as SRIFT- 

hIGLTs. and MGLTESes are available only for the bit-serial data format. These 

elements can be extendecl to include d l  digit-widths. As well. several other primi- 

tives such as Dividers. Conditionds. and Square root operators can be made anilable 

in any digit width to increase the flexibility of the DFIRST language. Other more 

compler operations such as sine. cosine. and FFTs can also be added to the language. 

These more complex operators may require severd parameters to f d y  describe the 

desired operator but their inclusion would significantIy shorten design times for cir- 

cuits requiring t hese funct ions. Memory interface component s for extemal S RAM or 

DRAM components would also be useW. 

Presently only one arbitraxy digit-width multiplier structure has been used to 

implement t hese elements. This operator uses the non-redundant coefficient recod- 

ing in order to reduce multiplier size and shorten multiplier latency. Other recoding 

schemes should be investigated to improve the quatity of arbitrary digit width mul- 

tiplier primitives. Modified-booth recoding is commonly used in pa rde l  multipiiers 



and dl lead to improved multiplier performance. particularly for higher digit widths. 

Support of fidl pardel operators can also be added to increase the Bexibility of the 

DFlRST language. 

6.1.3 Optimization 

The d e  based mapping m e n t l y  used by TRAWS is effective for serial circuits 

designed wit h DFLRST since the structures generated are regular and contain mostly 

multiplexors. blatches and adders. If DFEST is e-upanded to  include true gate level 

parts. and full paxauel operation the mapper must be improved to accommodate 

these more cornplex circuits. -4 hill climbing optimizer such as simulated annealing 

may be used in conjunction with the hardware mapper to obtain a smaller circuit. 

Ln addition the critical path information specïfying input loads and output delay 

times should be Linked with mapper so that the critical path can be shortened at the 

espense of hardware size or the critical path length can be made longer to allow for 

a smaller circuit. The path and area constraints must be user controlled. Re-timing 

which moves register elements fortvard and backward within the circuit ma? also be 

included to increase the effectiveness of the hardwae mapper- 

The RAM mapper can be improved SC that an optimal addressing unit allocation 

is automaticaily generated by TRANS. Currently TRAM allocates a sub-optimal 

addressing unit scheme which must be fine tuned by a knowledgeable user to obtain 

the best result. As well. the range of addressing schernes can be increased to accom- 

modate multiple addressing units per contiguous shift register chain. Present ly each 

shift register chah is controlled by a single addressing unit. Simulated ameding 

may also be employed here to generate a more optimal solution. 



Another featw which may be added is an automatic signal buffering option 

which automaticdy adjusts d l  interna1 driving points so that no node is over Ioaded. 

resulting in long delays for signal transitions on this node. This operation should 

be tied in with critical path delay estimates to be  sure that the critical path of the 

circuit is as short as possible. 
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Appendix A 

61 Tap FIR Filter Coefficients 

61 Tap Filter fked point coefficients. 1-1 bit CSD values. The coefficients are centered 

a hout t lie center top (C[030] ) to gaurantee linear phase operation. 

CCOOOJ = 9 

CCOOl] = -4 

C[OO2] = -18 

CC0033 = 5 

C CO041 = 16 

CCOOS] = -2 

C [006] = -5 

C[OO7] = -2 

C[008] = -19 

C[OO9] = 6 

CC010I = 40 

CC0111 = -9 

CC0121 = -39 

CC0131 = 6 

C [O141 = 14 

cCoi5l = O 

CC0161 = 38 








