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Abstract

Code improvement techniques are used to overcome the inherent inefficiencies

| present in automatic, machine based code, generation. One of these techniques

involves the examination of flow patterns within the program to determine where
such problems are occurring and to derive suitable corrections.

This thesis describes a code improvement system called GO (for Global Op-
timizer which applies the techniques of low analysis to machine executable ob ject
modules. The analysis is performed without benefit of a symbol table, linkage
map or any other form of assistance from the compilation system.

Presented are details of the implementation of the GO control flow and data,
flow analysis subsystems as well as diséussions on how the information gathered

by these procedures may be used to effect improvements in machine generated

code.
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Preface

This thesis describes a code improver called “GO” (for Global Optimizer)
which is currently under development. GO is being implemented in the C pro-
grarﬁming language and is to run on the DEC VAX 11/780* running the UNIX'
operating system. Though it should work with code generated by compilers for
almost any language, the improver is designed to accept code generated from C.

In consideration of these facts, all examples of “real” code (as opposed to
pseudo-code) given in this thesis will be in C or VAX assembler. For the reader
who is unfamiliar with the VAX assembler language, a brief overview is given in
the Appendix (page 102).

The reader is also referred to [20] for a description of the C prograxﬁming

language and to [14] and [25] for more detailed information on the VAX assembly

language.

*DEC and VAX are trademarks of Digital Equipment Corporation
TUNIX is a registered trademark of AT&T Bell Laboratories

x11



Chapter 1

Introduction

Computer Science is a discipliné obsessed with the concept of efficiency. This
"obsession is a holdover from the infancy of the field, when computers were slow,
expensive, unreliable and somewhat limited in their ca.pabﬂities. Under such
constraints é fast (time efficient) and compact (space efficient) program was an

absolute necessity.

In more recent times, computers have improved greatly in all areas. The most
precious commodity in the computing industry is no longer the computer but its

programmer, or more correctly, the programmer’s time.

It was because of this desire to make the most productive use of th.is: re-
source that so-called “high level languages” and their associated compilers were
developed. Much of the time spent when programming in machine or assembler
language is devoted to translating a small number of relatively straight-forward
ideas into the elementary and highly repetitive instructions required by a com-
puter. Such tasks as these are the computer’s forte and automation of them is an_

obvious solution to this problem:.

High-level languages, then, permit the programmer to compose a rough outline
of the solution to a problem and have the computer supply the details of its
implementation. The programmer’s time may therefore be addressed to more

meaningful tasks.
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Machine generated code, unfortunately, is usually of: poor quality. Why is

the quality of malchine produced code so low? How can the process be altered

to achieve better quality? To answer these questions an examination of how
compilers opera,t.e is required.

* As stated above, the purpose of a hi‘gh-level language compiler is to translate a
givén source program into a series of machine instructions. This is conventionally
done in‘two stages. The first phase, lezical analysis, involves the partitioning of
the source into a series of basic expressions. This is follc_)wed by a code generation
phase in which each of the sequences detected in the first step is matched with a
predefined sequence of machine instructions that performs the same computation.
The result is a translation of the original input program into machine executable
code. |

This technique has two desirable traits: it is fast and it is easy to implement.
Unfortunately, it also has a major flaw. Because each input expression is treated
in isblation, the compiler cannot detect and capitalize on trends that are caused

by interactions between segments as a human coder would. The result is poor

code.

To solve this problem it is necessary to introduce a code improvement or opti-
mization phase into the compilation process. ’

Code improvers (optimizers) operate by manipulating a given program to pro-
duce a new program that is equivalent in every respect except that the latter
exhibits more desirable characteristics in some facet of its execution (i.e. the orig-
inal program is translated into a new program that works “better”). There are

' many aspects of a program that may be improved. These include the amount
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of time the program takes in execution, the amount of IMemory space a program
requires and how it interacts with the opere;ting system. The decision on'what
area should be enhanced is up to the programmer and is usually -based on the

environment in which the program is to run.

1.1 Code Improvement: An Overview

1.1.1 Methods of Improving Code

The first question that arises in the design of a code improvement system is
how should it go about performing it’s task? In [3], Aho and Ullman point out that
the greatest source of program enhancement is achieved through the selection of
the appropriate algorithm for the task being undertaken. They give as an example
of this the reduction in the amount of computation required when a quick sort is
ﬁsed in lieu of a bubble sort (O(nlog, n) as compared to O(nz))r. Unfortunately,
this type of code improvement must be done by the programmer as it is beyond
the scope of most automated systems. N

Another important method of improving code—one that may be performed un-
der program control—is the proper allocation and use of CPU registers. Through
careful manipulation of a computation, it is possible to reduqe the number of
memory references by keeping intermediate results in high speed CPU registers.
Since the access time for memory is usually several times slower that that of reg-
isters, the resultant savings in execution time can be great. Memory reference
instructions also tend to be “longer” (require more storage to represent) than
corresponding register reference instructions, thus one-sees a decrease in program

size as well.
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A third source of code improvement is peephole optimization. An early paper
on the subject by McKeeman [24] describes this technique as “... a method which
consists of a local inspection ... to identify and modify inefficient sequences ...”.
In actuality, the term peephole optimization refers to a broad class of heuristics

which all use the tactic of “local inspection”. Some of these are listed here.

. Constant Folding

This entails locating all constant values in a computation and coalescing

them into a single term. For example, given the expression

x+2%3 -1

an application of constant folding would result in

X+ 5

¢ Redundant Instruction Elimination

‘Typically, this involves finding sequences that result in no real change in the

program environment. An example of such a situation is as follows. Given

the source code:

N X
0o
X<
+ +
oy

It is plausible that the following series of machine instructions would be

generated:

movw y,r0 # temp — y
incw 0 # temp — temp + 1
movw r0,x # .« temp
movw x,r0 # temp — z
incw r0 # temp «— temp + 1
movw 10,z # z« temp
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Here, the fourth instruction is redundant as the value of z is already in the

temporary register, thus the instruction may be safely eliminated.

Instruction Upgrading

Often a compiler will use only a small fraction of the instructions in a ma-~ -
chine’s repertoire. Thls is because some instructions are h1gh1y specialized

or their functions span what would be several expressions in the source

program (this is a classic example of the deficiencies of the “standard” com-

piler described previously). Instruction upgrading is the process by which

the code improver attempts to locate sequences of instructions that may be

replaced by a series of more specialized instructions which will execute in

less time or occupy less space. (one instruction sequence is “upgraded” .to

a better one). Consider the following code fragment:

do {

X =x + 1;
} while (x < 10);

Compiled on a VAX, the code generated for this may look something like:

loop: # Top of loop
: # Loop body
incw  x #re—z+1
cmpw  x,$10 # Compare value of z to limit
blt loop  # If not at limit, branch to top of loop

However, the VAX, like many modern computers, has a loop instruction of
the form “add a value to variable, compare result to a second value and
branch if a certain condition is met”. Thus, the entire code fragment given

above could be replaced by:



loop:

acbw $10,$1,x,lo0p # z — z + 1,
# if € < 10 branch to loop

¢ Jump to Jump Elimination
Since statements and sometimes parts of statements are treated separately
in the compiler described above, it is almost certain that the situation W111
arise Where an instruction causes a transfer of control to another control
transfer instruction. All that is involved in the application of this heuristic
is to locate such instances and have the first instruction simply refer to the

final destination, thereby eliminating the intermediate step.

These examples show that the effect of the peephole optimizer is to “blur” the
* sharp boundaries between code segments caused by the conventional code genera-
tion process. This technique does little t;) caﬁitalize on the trends that take place
over more than a few instructions so the improvements are highly localized. To ex-
ploit the trends which take place over larger sections of a program, it is necessary
to use another class of code improvement techniques: global optimizations.
Global optimizers use a data gathering technique known as ﬁow analysis to
determine how a program will behave v&;hen it is run. The flow analysis process
is generally performed in two stages. The first part is the analysis of flow of
céntrol. In this phase, a series of graphs are generated that illustrate how the
various parts of the program interact (i.e. for any given point in the program,
the graphs indicate which points may next gain control). The second step is to

use these graphs to determine how information is processed in the program. This
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involves determining how variables are used or modified and where these uses or

modifications occur. The result of this analysis is a graph of how data flows within

the program.

The control and data flow graphs form one of many different representations
of a program (the original source program and the compiler’s output are two
others). In this form, however, the structure of the program and the interactions
of its components become more evident. The improvement of code is performed by
looking for specific patterns in these graphs and applying some straight forward
transformations. The procedures for performing the various analyses and the
methods for using the results obtained to achieve improvements in code will be

discussed in subsequent chapters.

1.1.2 When to Improve Code

The next decision to be made in the design of a code improver is at what
point in the compilation process the code improvement phase should be done.
The various stages of the compilation process are outlined in Figure 1.1. As

shown, code improvement can be performed at any of three points: .
¢ by manipulating the source code before lexical analysis,

e by altering the intermediate representation of the code as output by the

lexical analyzer,

e by transforming the machine executable program image which is the final

‘ product of the compiler.

Performing code improvement on the input program before submission to the

compiler (i.e. on the source code) has been proposed by Loveman [22] and by



Intermediate Code

Improvement
. Source | Lexical R Code Executable
Program Analysis | Generation Program
Source Code Object Code
Manipulation Improvement

Figure 1.1: Stages of compilation

Standish et al.[27]. Systems using this technique take the programmer’s code and

generate a new source program for input to the compiler.

Both the Loveman and Standish systems use databases of transformation rules.
These rules specify how constructs commonly found in programs may be trans-
lated into code and data structures that are converted into more efficient sequences
of machine instructioﬁs. A simple example of a transformation rule (paraphrased

from [27]) is given in Figure 1.2.

The result of the application of this transformation is the elimination of a

superfluous if statement.

It should be pointed ouﬁ, however, that an experienced programmer (one who
understands the nuances of the target machine and the compiler used) will tend
to apply transformations such as these when first coding the program. Therefore,

code improvement techniques of this form are best used to correct deficiencies in



Provided j < b, a statement of the form:
for (k= a; k<b; k=Fk+ 1)
if (k< 7
perform operation X
else .
perform operation Y
may be translated into:
for (k=w@a; k<j, k=1Fk+ 1)
perform operation X
for ( /*k=j%*; k<b;, k=Fk+ 1)
perform operation Y

Figure 1.2: An example source manipulation translation rule

the coding style of the programmer as they do nothing to enhance the quality of

code produced by the compiler.

Another advocate of manipulation at this level is Rosen[26] who does data flow
analysis on the original source code. Th{s is necessary, Rosen argues, because there
is too much loss of information when going from the source level to that of the
intermediate code. It is intérest'ing to note that these are the same reasons cited

by advocates of intermediate code manipulation over ob ject code manipulation.

Intermediate code manipulation is a much more accepted form of code im-
provement. This entails the rewriting of the intermediate code generated by the
first pass of the compiler using one or more of the methods described previously.

There are a several advantages to improving code at this stage:

o The source program has already been broken up into its constituent parts

and checked for syntactic correctness.
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¢ The information is complete with regard to the program elements under -
9

scrutiny. That is, the intermediate code contains all the information given

in the original source (variable types, form of data and control structures,

etc.), but in a much more convenient form.

e In a well designed compiler, the intermediate code would be in a target
machine independent form. This allows the code improver to be written in

a portable fashion.

There are, unfortunately, two-major problems associated with performing code
improvements at this stage. First, although complete information is available for
the section of the program being compiled, there will be no informat;on about the
rest of the program. This is most evident if the program has been broken up into
many separately compiled modules (as in most large programs) or if extensive use
is made of library routines. Lack of this information can be crippling to a code
improver using flow analysis as the improver must assume a worst case scenario

in such instances (i.e. the missing code modifies all variables and invokes all the
routines in the module being compiled). The second flaw with this technique is
that improvement of the intermediate code does little to improve the quality of
the final output. The code generator will still work with the various sections of

the intermediate code in isolation.

Manipulation of the output from the compiler (the object code) is also a
popular form of code improvement[13]. Not surprisingly, the areas in which this

technique are good are precisely those in which intermediate code improvement
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fails. Those facets in which object code improvement is poor are the ones in which

intermediate code improvement excel:

¢ The machine code must be “disassembled” by the improver and encoded

into an intermediate form for processing.

o The complete program is available to the object code improver, not just a-
single module. However, most of the details about variable types and data

structures have been lost.

o Although some of the major elements of the code improver can be written

in a machine independent way, much of it must be machine specific.

e As this representé the final stage in the generation of the target program,

the improver directly controls the quality of code produced.

1.2 The “GO” Code Improver

1.2.1 Design Issues

A survey of the literature shows that, for the most part, global optimizations
are done on the intermediate representation and peephole optimizations are per-
formed on the object code. There seem to be no “production” systems which
utilize source code manipulations of any‘form. This may be due to in large part
to tradition (code improvement is always done on intermediate or object code)
but a more likely answer is that such transformations are too far removed from
the code generation phase to have a significant effect on code quality.

The timing of the peephole code improvements is primarily because such 6p-

erations as instruction upgrading and jump-to-jump elimination may only be per-
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formed at this stage. The reasons for performing global improvements at the
intermediate code stage (instead of after code generation) are less clear. |

There are two main arguments for doing flow analysis and the subsequent code
improvements between the lexical analyzer and the code generator. First, there
is the view that much relevant information is lost in the code generatmn process
and without this data, it is not possible to build the flow graphs correctly [18]
The second point is closely related: it is not possible to distinguish instructions
from data in the object program. Both of these< objections are unfounded.

The key to understanding this assertion is the realization that the ériginal
source program, the intermediate code and the object code are merely representa.-‘
tions of the same algorxthm Furthermore, each form details the implementation
in prec1sely the same manner as the others (an analogy to this is the relationship
between the numbers 74,9, 1125, 4A16 and the ASCII letter J ). Each form con-
tains the same information as the others but the details of the representation of
this information vary. Given that the information is present, it shouldr be possible
tr) extract it and build the appropriaté flow graphs. |

The point that.it is impossible to differentiate instructions from data is clearly
false as evidenced by the fact the computer must differentiate between the two as
it runs the program. The technique for distinguishing between the two is to apply
a rule that all assembler programmers learn at the beginning of their careers: if
the computer attempts to execute it, it is an instruction.

It is theoretically possible, then, to perform global optimizations on the final
output of a compiler. One of the principle areas of investigation in the design

and implementation of GO is to see if this theory can be put into practice. Us-
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ing only the information ava,ilabk;, to the computer when it executes a program
(the executable binary image of the program itself ) GO will determine what the
control and data flow patterns within the program are. It will then attempt to
“rearrange” the code in order to improve the programs execution characteristics.
(An explanation as to why one would want to perform global optimizations at this
level will be presented in the concluding chapter.)
Another key issue in the design of a code improver is machine independence.
The implementation of a code improver is not a trivial task. It ié therefore useful
| to design the code improver so that it may be easily “ported” to different systems.
Unfortunately, when dealing with programs at the machine code level, complete
machine independence is an impossibility. Nevertheless, by careful partitioning
of the tasks in the code improver, it should be pdssible to isolate most machine

dependencies to a few small modules. This is done in GO.

1.2.2 Implementation of GO

GO is implemented as a series of relatively independent modules as depicted in
Figure 1.3. The first i'our modules, the instruction decoder, the data flow prepro-
cessor, the basic block generator and the call graph generator work in concért to
produce a usable representation of the target program. The basic block and call
graph generators also form the first part of the control flow analysis suBsystem.
The second part of the conti'ol flow analyzer is the interval generation code. The
information gener:ated by control flow analysis and by the-data flow preproces-
sor is used in the data flow analysis subsystem. The actual code improvement is

performed by a series of modules which utilize the information gathered by the
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Machine Ezecutable Image

Instruction
Decoder

Decoded Instruction Stream

Control Flow
Data Flow ¥ Analyzer
Analyzer Basic Block
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Data Flow Call Graph
. Preprocessor Generator
| |
Partial Data Flow Basic Block &
Information Call Graphs
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Generator
|
Interval Graphs

Control Flow Information

v,

vy €
Interval
Analyzer

Data Flow Information

—

Code
Improver

I
Improved C‘ode Graphs

Code
Regenerator

Improved Program

Figure 1.3: Structure of the GO code improver
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various analysis phases to identify inefficiencies. Collectively, these modules form
the code improvement subsystem. Finally, the output of the code improver is
passed to the cleanup module which recodes GO’s 1nterna1 representation of the
program into a new machine executable object image.

To achieve machine independence, most of the operations which require a
knowledge of the machine architecture are isolated in two modules. These are the
instruction decoder and the cleanup module. Machine dependencies are further
reduced by performing the operations in these modules in a table driven manner.
To do this, a table is generated which enumerates each of the target machines
instructions. Each table entry details the basic information about the instruction:
number and type of operands, instruction opcode, type of instl;uction (e.g. test,
branch, arithmetic), and so forth. Each' entry contains sufficient information for

the module to identify and usually completely process the instruction.

1.3 Thesis Overview

The rest c3f this thesis is an in-depth look at the operation of the various
components of the GO system. The discussion starts off in the next chapter with
a description of the control flow analysis code. This is followed by details of the
operation of the data flow analyéer in chapter threé. The techniques for doing the
actu'al code improvement aré outlined in the fourth chapter and the concluding

-

arguments are presented in the final chapter.



Chapter 2

Control Flow Analysis

2.1  Overview of the Control Flow Analyzer

2.1.1 Function

The GO control flow analyzer performs several tasks:

¢ It examines the input program and differentiates the instructions from the

data.

e It identifies the subroutines that make up the program and determines how

the subroutines are organized with respect to each other.

o It determines the basic flow patterns within each subroutine.

' It identifies the loops within each subroutine.

These tasks are performed in two stages. The first three tasks are dealt with in

the first stage and the loop identification is performed in the second stage.

2.1.2 Input

The GO control flow analyzer takes a complete executable program image as

input. For the most part, this is all that is required for a complete flow analysis.

2.1.3 Output

The output of the control flow analyzer can be thought of as a hierarchy of

graphs, each of which details the flow of control at some level of the program. At

16



17

the highest level is the graph of subroutine calls (the call graph). This structure
serves to outline the operation of the program as a whole. Next comes a series
of interval graphs that show where the loops are located in each subroutine. The
highést level (n'* order) interval graph consists of a sinéle node and corresponds
to a complete subroutine (i.e. a node in the call graph). The lowest level (1%t
order) interval graph gives the locations of the innermost loolss of the subroutine.
The lowest level of the hierarchy is the basic block graph. It details the l;asic flow

patterns within each subroutine.

2.2 Separating Instructions and Data Areas

An executable program image contains at least three types of information.
These are a sequence of machine instructions for the computer, data areas which
are manipulated by the computer in the course of interpreting the instructions

and environmental information.

Environmental information comprises information about the context in which
the program is to be run such as memory requirements and program entry point.
This data is usually interpreted by the operating system when loading the pro-
gram. It may not be explicitly present in the program image but must be inferred
from it. For example, if the initial memory allocation is not given explicitly, it
fnay be safely assumed tha;t a region of memory equal in size to the image being .

loaded is required.

If present, the environmental information is usually of a fixed size and in a fixed

location in the program image. Unfortunately, this is not true of the instruction
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and data regions of the program. Furthermore, it is probable that instructions
and data are intermingled throughout the executabk; image.

The first major task required of the control flow analyzer is to differentiate be-
tween the instruction and data regions of the program. To accomplish this, each
instruction in the program must be examined in turn starting with the instruc-
tion at the program entry péint (the location of this instruction is determined
from the environmental information). The effect of this process is to “trace” the
instructions in the program.

By noting regions of the image into which control is transferred and then re-
cursively examining eaéh of these regions, it is possible to determine which regions-
of I;rogram ;:ould possibly be executed. By definition, these are the instruction
regions of the program (if the computer attempts to execute it, it’s an instruction)

and all other areas are data regions

2.3 Call Graph Generation

The process of tracing the instructions within a program will also permit the
identiﬁcationﬁ of the subroutines within it and the structure of the subroutines.

GO relies on two properties of subroutines to assist in the task of identifying them:

L At some point in the program, the subroutine must be invoked via a standard
subroutine invocation sequence. A “standard” call sequence is defined either

by the machine architecture or by language conventions.

2. There are a finite number of paths through the subroutine. Each of these
paths begins at a common entry point and ends with a standard subroutine

termination sequence.
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Algorithm 2.1: GraphSubrCalls

PURPOSE: To generate the subroutine call graph for a program.
INPUT: The address of the start of the main procedure.
- OuTPUT: . The graph of all subroutine calls.

METHOD: Recursive function as outlined in Figure 2.1.

As shall be shown shortly, GO makes active use of the first property to identify
the subroutine entry points and build the call graph. The use of the second prop-

erty, however, results as a side effect of the analyses of the subroutines’ internal

structures.

‘The method GO uses to generate the call graph is outlined in Algorithm 2.1.
Informally, the call graph generator operates as follows. If the subroutine under
scrutiny has been éncountered previously, the call graph node corresponding to
the subroutine is located and returned to the calling routine. Othérwise a new
call graph node is created and added to the call graph. The instruction stream
is then scanned until a subroutine call sequence is encountered (this procedure is
outlined below). At this point the call graph generator invokes itself recursively A
with the address of the called subroutine. The recursive routine repeats the
scanning process, except in this instance, the instruction stream is that of the
new subroutine. When the end of the subroutine is encountered the recursive call
terminates. Upon regaining control the initial instance of the graph generator

creates a link in the call graph from the node representing the subroutine under
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recursive function GraphSubrCalls(integer Addr) : call_graph_node
call_graph.node ThisNode
call_graph_node NextNode
if call graph node for subroutine at Addr ezists then
ThisNode := call graph node for subroutine at Addr
else
ThisNode := new call_graph_node
add ThisNode to the call graph
while not at the end of subroutine do
look for a subroutine call sequence
NextNode := GraphSubrCalls(address of called subroutine)
add graph arc (ThisNode, NextNode) to call graph
endwhile :
endif
return ThisNode
endfunction

Figure 2.1: Function to graph subroutine calls

scrutiny to that of the subroutine that has just been processed. The net output

from this process is a graph detailing the overall structure of the program. A

sample program and its call graph are depicted in Figure 2.2.

2.4 Basic Block Graph Generation

The genera;tion of the basic block graph proceeds in conjunction with the

generation of the call graph. In addition to revealing the fine details of flow

control within each subroutine, this procedure has two important side effects.

First, it performs the instruction/data differentiation and second, it locates the

subroutine call sequences for the call graph generator.



main()
{
subri();
subr2():
subr3();
}
subri()
{
subr4();
subr5();
}
subr2()
{
subr5() ;
}

(b)

subr3()

{
}

subr4()

{
}

subr5()

{

subr3();

subré();

}

subr6 ()

A
B

Figure 2.2: A program (a) and its call graph (b)
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2.4.1 Identifying Basic Blocks

A basic block is a contiguous sequence of instructions in which execution pro-
ceeds linearly from lowest address to highest address and where the instruction
at the lowest address is always the first éxecuted.

In [3], an algorithm is introduced which determines basic blocks in compiler
intermediate code. This is a two stage process. The first stage is the identification
of all leaders. A leader is either the first statement, the target of a “goto” (ie. a
control transfer) statement or the statement immediately following a conditional
goto statement. The second stage is to divide the code into basic blocks which
are delineated by leaders, each section begins with a leader and ends with the
statement just prior to the next leader. When dealing with intermediate code,
these tasks are straightforward. To éccomplish it; one makes a single pass through
the code ﬁoting t.he positions of all goto statements and all instructions with labels
associated. Unforturlately, when dealing with pure binaries as in GO, the problem
becomes more complex. |

The difficulty with binary data is that there are no labels conveniently pointing
out targets of branch instructions. What appears to be a branch instruction may
simply be an instruction’s operand.' As stated previously, GO surmounts this
problem by “traciﬁg” the instructions much the same as the computer would do
when it executes the program. This process is actually quite simple and is outlined
in Algorithm 2.2.

It should be noted that this algorithm does not require knowledge of what
the input to the program will be, nor is the issue of whether the program under

scrutiny will ever terminate a factor. This is because what is being looked for



Algorithm 2.2: FindBBlocks

PURPOSE: To partition an instruction sequence into basic blocks.
INPUT: The address of the instruction at which to start partitioning,
-OUTPUT: The instruction stream is broken up into a series of basic blocks.

METHOD: Recursive procedure as outlined in Figure 2.3.

are potential control transfer points. The question of whether a transfer of con-
trol occurs at any given point actually happens when the program is run is not

important. What is important is that a transfer of control may occur.

' As an example of the operation of this algorithm, consider the code to compute
Ackermann’s function as given in Figures 2.4, 2.5 and 2.6. FindBBlocks would
be invoked with the address of the function ack (00) as its parameter. As no
' instruct.ions have yet been processed, the procedure would create a new basic
block (block 1) aﬁd begin examining instructions. The initial instruction, a test,
does not cause a transfer of control, so it is simply added to the current basic
block. The second instruction is also added to the current basic block. As it is a
branch, it denotes the end of the current block. The instruction is a conditional

transfer, so two recursive calls are made (Figure 2.7a).

In the first recursive call, the address passed is that of the instruction following
the branch (05). As this instruction has never been processed, a second basic block

is created.
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recursive procedure FindBBlocks(integer Addr)
' integer NextAddr
instruction Curlnstr
basic_block CurBBlock

if Addr is in an ezisting block then ‘
if Addr i3 not the first address of that block then

split block containing Addr in two ot Addr

endif
else
CurBBlock := new basic_block
NextAddr := Addr
repeat '
Curlnstr := instruction ot NextAddr
add Curlnstr to CurBBlock
NextAddr := address of nezt instruction
if Curlnstr 2s ¢ branch then
if Curlnstr is conditional then
call FindBBlocks(NextAddr)
endif
call FindBBlocks(branch address)
endif
until Curlnstr s a return instruction V
Curlnstr is @ branch instruction V
NextAddr s in an ezisting block
endif
endprocedure

Figure 2.3: Procedure to find basic blocks




y+1 ifn=0
Ack(n,y) = { Ack(n —1, 1) ify=0
Ack(n — 1, Ack(n,y — 1)) otherwise

Figure 2.4: Simplified Ackermann’s function (from [11))

Processing of this block proceeds normally until the return instruction (address
0A) is encountered. As a return instruction is one of the three conditions which
signal the end of a basic block, the repeat loop terminates and the recursive call

on FindBBlocks subsequently returns.

The third basic block is generated in the second recursive call which starts
processing at the branch target address, 0B (Figure 2.7b). In this instance, pro-
cessing proceeds until the branch at address OE is seen. Again, this is a conditional

branch, so two more recursive calls are made. The first of the second level re-

ack(n, y)
int n;
int y;
{
if (n == 0)
return y + 1;
else if (y == 0)
return ack(n - 1, 1);
else ' “ :
return ack(n - 1, ack(n, y - 1));

Figure 2.5: Implementation of Simplified Ackermann’s function in C
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ack: tstl 4(ap)’ #testn =10
jneq ackl # branch if not
addl3 $1,8(ap),x0 # return value — y +
ret # exit subroutine
acki: tstl 8(ap) #testy =10
jneq ack3 # branch if not
pushl $1 # stack « 1 (2" recursive call param.)
ack2: subl3 $1,4(ap),-(sp) # stack «— n — 1 (1% parameter)
calls $2,ack # recursive call
ret ‘ - # exit subroutine
ack3: subl3 $1,8(ap),~(sp) # stack «— y — 1 (2™ parameter)
pushl 4(ap) # stack «— n (1% parameter)
calls $2,ack # first recursive call
pushl r0 # stack «— ack(n, y — 1) (2" param.)
jbr ack?2 # do second recursive call

Figure 2.6: Ackermann’s function in assembler

cursive calls generates the fourth basic block. It starts processing at address 10
and terminates with the return at address 1E. The other recursive call starts pro-
cessing at address 1F and locates the boundaries of the fifth basic block in the

function (Figure 2.7¢).

Unlike the previous blocks, block five ends with an unconditional branch.
Therefore there is only a single recursive call made. The start address in this
call is 12. In this instance, the first target instruction has already been processed.
Fufthérmore, this instruction is located in the middle of an existing block. In
this situation, no further processing of instructions is performed. Instead, the
basic block containing the target instruction is split into two new basic blocks.

The first contains all of the .instruction from the start of the original block to the
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00
03

05
0A
0B
OE
10
12
17
1E
1F
24

27
2E
30

ack:

ackl:
ack2:

ack3:

tstl
jneq

addl3
ret
tstl.
jneq
pushl
subl3

calls

ret

subl3
pushl
calls

‘pushl
- jbr

4(ap)
ack

$1,8(ap),r0 m

8(ap)

ack3

$1-
$1,4(ap),-(sp)
$2,ack

$1,8(ap) ,~(sp)
4(ap)

$2,ack

r0

ack2

m indicates the position of
Curlnstr for the N*® recursive in-

> Block 1

o¢ stance of FindBBlocks. N is 0 for

p the base level instance.

» Unprocessed

J

Current state: Processing of block 1 complete; processing of block 2 about to commence.

(2

Figure 2.7: Partitioning Ackermann’s function into basic blocks

... continued on page 28
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00
03

05
oA

OB
OE
10
12
17
1E
iF
24
27
2E
30

ack:

ackil:

ack2:

ack3:

tstl
jneq

addl3
ret

tstl
jneq
pushl
subl3
calls
ret
subl3
pushl
calls
pushl
jbxr

4(ap)
ackl @

$1,8(ap),r0

8(ap) m

ack3

$1
$1,4(ap),-(sp)
$2,ack

$1,8(ap) ,~(sp)
4(ap)

$2,ack

r0

ack2

indicates the position of
 Block 1 Curlnstr fo'r the Nth recprs'ive in-
stance of FindBBlocks. N is 0 for
the base level instance.

¥ Block 2

> Unprocessed

7/

Current state: Processing of blocks 1 & 2 completed; processing of block 3 about to

commence.

(b)

Figure 2.7 continued

... continued on page 29




00
03

08
oA

OB
. OE

10
12
17
- 1E

iF
24

ack:

acki:

ack2:

ack3:

27

2E
30

tstl

jneq

addl3
ret

tstl:
jneq

pushl

subl3
calls

rot

subl3
pushl
calls
pushl
jbr

4(ap)

ackl @

$1,8(ap),x0

8(ap)
ack3 @

$1
$1,4(ap),-(sp)
$2,ack

$1,8(ap),-(sp)
4(ap)

$2,ack

r0

ack2 @

» Block 1

» Block 3

» Block 4

cp Block 5

J

> Block 2 -

indicates the position of
Curlnstr for the N*® recursive in-
stance of FindBBlocks. N is 0 for
the base level instance.

Current state: Processing of blocks 1 through 5 completed; 3™ level recursive call w1th
address 12 about to be made.

Figure 2.7 continued

()

... continued on page 30
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00
03

05
oA

OB
OE

10

12
17
iE

iF
24
L 27
2E
30

ack:

acki:

ack2:

ack3:

tstl
jneq

addls
ret

tstl
jneq

pushi

subl3 -

calls
ret

subl3
pushl
calls
pushl
jbr

4(ap)
ackl @

'$1,8(ap5,r0

8(ap)
ack3 m

$1

$1,4(ap),~-(sp) @
$2,ack

$1,8(ap),-(sp)
4(ap)

$2,ack -

r0

ack2 g

. ¢ New block 4

J

indicates the position of
\ Block 1 Curlnstr fo'r the Nth recurs:ive in-
stance of FindBBlocks. N is 0 for
the base level instance.

» Block 2

?» Block 3

> Original block 4

» Block 6

* Block 5

Current state: All blocks processed; stack unwind about to start with termination of 3t4
recursive call.

(d)

Figure 2.7 continued
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instruction preceding the target instruction. The second new block contains the

remaining instructions (Figure 2.74d).

At this point there are four instances of FindBBlocks active:

1. the original call, generating block 1 with NextAddr set to 05,
2. the call which generated block 3 with NextAddr set to 10,
3. the call which generated block 5 with NextAddr set to 32,

4. the current call, which has created block 6 by splitting block 4.

The current instance returns immediately after having split up block 4, as no fu.r-
ther processing is required. When this happens, the third instance is reactivated.
In this case, Curlnstr is a branch instruction, which causes the repeat loop to
terminate and control to be passed back to the second instance of FindBBlocks.
This instance also terminates immediately as the instruction just processed was
another branch. The original invocation of FindBBlocks is now the only one
active. It too has just processed a branéh instruction and terminates.

The entire program has now been scanned and all of its component basic blocks

have been identified.

2.4.2 Graphing the Basic Blocks

Each recursive call of FindBBlocks corresponds to an arc in the basic block
flow graph. The reader may wish to compare the description of the execution of
‘FindBBlocks given previously with the flow éraph for Ackermann’s function given
in Figure 2.8. The generation of the basic block flow graph requires some simple

changes to FindBBlocks as outlined in Algorithm 2.3.
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Figure 2.8: Flow graph for Ackermann’s function

Algorithm 2.3: GraphBBlocks

PURPOSE: To generate a flow graph of basic blocks in a subroutine.
INPUT: The address of the instruction at which to start partitioning.
OuTPUT: A flow graph of the basic blocks in the subroutine.

METHOD:  The procedure of Algorithm 2.2 is changed to a function. The return
~ value of the function is the basic block it generates (NextBBlock).
After every recursive call a graph arc is added between the basic

block ;:qrrently being processed (CurrentBBlock) and NextBBlock.
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2.5 Call Graphs Revisited

As stated earlier, one of the side effects of the process of graphing the ba-
sic blocks was the detection of subroutine call sequences. Because of this, the
call graph_generation procedure and the basic block graph generation procedure

effectively form a pair of coroutines.

The operation of these coroutines is as follows. First, GraphSubrCalls is in-
voked with the address of the program’s entry point, which is considered to be
the start bof the ﬁ;st subroutine. GraphSubrCalls then invokes GraphBBlocks: with
the entry point vaiue. Processing of the subroutine proceeds as outlined in the
previous section. If a subroutine call sequence is encountered during processing,
GraphSubrCalls is invoked recursively with fthe;address of the new subroutine. In
turn, GraphSubrCalls invokes a recursive instance of GraphBBlocks and so on.
Processing of the program as a whole is complete when the initial instance of

GraphSubrCalls regains control.

2.6 Loop Identification

The second phase of control flow analysis in GO'is t1.1e identiﬁcatiﬂon of the
loops within individual subroutines. Loop identification is the most important
endeavour of' control flow analysis as it forms the basis for the subséquent dz;ta
flow analysis. It also locates local “hot spots” in the program which is of great

use in the application of actual code improvement heuristics.
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<O o—0y0-

_ Figure 2.9: Cycles which do not form loops

2.6.1 What is a Loop?

The first task in identifying loops ié to define exactly what a loop is. One might _
be tempted to'define a loop as simply a cycle in the flow graph of a subroutine.
Unfortunately, this definition is weak as it does not take into consideration the
proper nesting of loops. For example, consider the flow graph iﬁ Figure 2.9. There
are two cycles within the flow graph; the first is defined by the path 1-2-3-1 and
the second by the path 2-3-4-2. Neither can be called a lorop however due to the
fact that the two overlap. |

A better model of a loop is given with the interval as defined by Cocke and
Allen [4,9] which is a refinement of the use of dominators in the detection of loops

as outlined by Lowry and Medlock [23].

An interval is a portion of a flow graph having the following properties:
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1. It is strongly conmnected. That is, there exists a path from every node to

every other node.

2. There exists at least one node which is on all paths through the flow graph.
Furthermore, this node will be visited before any other node in each iteration
of the loop. This node is said to dominate all other nodes in the loop and

is termed the head node of the interval or interval header.

3. It is mazimal—no other interval for the same flow graph contains it as a

* subset.

A corollary to the second property is that entry to the loop is only via the inter-
val header. This precludes the invalid nesting of loops resulting from the cycle
definition.

Hecht [17] gives the following formal definition of an interval:

The interval with header h, denoted I(h) is the subset of [a flow graph
with entry node s] constructed as follows:

I(h) := {R}
while 3 a node m such that m ¢ I(h) Am # sA all arcs
entering m leave nodes in I(h) do

I(h) = I(h) U {m}
endwhile
In [4], Allen gives an algorithm for the partitioning of a flow graph into inter-
vals. This algorithm is reﬁned and codified by Hecht. Algorithm 2.4 is based on
Hecht’s procedure.
The algorithm opérates by performing a series of breadth first traversals of the
flow graph. Each traversal is anchored at a header node. As the first header is

defined to be the flow graph entry point node, the ordering of visits is the same
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Algorithm 2.4: FindIntervals (based on the algorithm in [17])

PURPOSE:

InPUT:

OuUTPUT:

METHOD:

To partition a flow graph into intervals.
A flow graph.
A list of intervals.

The procedure is given in Figure 2.10. ICurrent, IPending and Head-
ers are lists of graph nodes which represent the current interval, the
unprocessed nodes of the current interval and the list of po"cential
headers, respectively. Count[z] is the number of arcs flowing into
graph node x which have not yet been accounted for. Reach[a:] is
the header node fdr the interval containiﬁg z.

Note: Hecht specifies that the nodes in IPending and Headers be'
processed in a first-in-first-out basis. There seems to be no rea-
son for doing this with IPending. Processing Headers in this order,
though, results in a breadth first traversal of the graph as opposed

to a depth.ﬁrst traversal achieved with last-in-first-out.
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as the execution order. Once all arcs into a node have been followed, it is added
to the current interval. The only case in which all arcs are not followed during
the processing of a given interval, is when a back arc (i.e. one originating from a
node occurring later in the executfon order) is present. A back arc to any node
save the header in an interval is not possible, so the node must be the header
of another interval. Processing terminates when a traversal has been performed

from each header.

2.6.2 Interval Ordering

,A fundamental property of the interval partitioning algorithm is that it per-
forms a partial topological sort on the nodes contained in each interval. That is,

no node is placed in the interval list until all of its predecessors have been placed

procedure FindIntervals(graph G with n nodes and with start node s)
list ICurrent
list IPending
list Headers
integer Count[l..n]
graph_node Reach[1..n]

foreach node n in G do
Count(n] := number of arcs entering n
Reach[n] := undefined

endforeach

Reachls] := s

Headers := { s }

Figure 2.10: Procedure to locate intervals in a flow graph

... continued on page 38
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while Headers # § do
select a node H from Headers
Headers := Headers — { H }
IPending := { H }
while IPending # 0 do
~ select a node H from IPending
Headers := IPending — { H }
foreach arc (X,Y) in G do
Count[Y] := Count[Y] — 1
if Reach[Y] = undefined then
Reach[Y] := H
if Count[Y] = 0 then
IPending := IPending + { Y }
ICurrent := ICurrent + { Y }
- elseif Y ¢ Headers then
Headers := Headers + { Y }
endif
elseif Reach[Y] = H A Count[Y] = 0 then
IPending := IPending + { Y }
ICurrent := ICurrent + { Y }
if Y € Headers then
Headers := Headers — { Y }
endif
endif
endforeach
endwhile _
add ICurrent to list of intervals
endwhile
endprocedure

Figure 2.10 continued
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Algorithm 2.5: GraphlIntervals

PURPOSE: To generate a graph of intervals from a list of intervals.
INPUT: A flow graph and a list of intervals contained in it.
OUTPUT: An interval flow graph.

METHOD: A function as given in Figure 2.11.

in the list. The only exception is a heacier node which may have back arcs enter-
ing it. In this case, the back arcs are ignored (the header is treated as if it only
had a single inflowing arc which originates outside of the interval). This sequence
is known as the interval ordering. As shall be shown in the next chapter, this

property becomes useful in the analysis of data flow.

2.6.3 Interval Graphs

Using the information in the original flow graph and obtained via FindInter-
vals, it is possible to generate an interval graph. This structure details how the
inner most loops of th;a su_broﬁtine are'organized. The procedure for generating
these graphs is given in Algorithm 2.5. Basically, all that is done is to generate
a new graph node for each interval. The arcs flowing out of this node are the
collection of arcs flowing out of the originai flow graph nodes which ;:ombrise the

interval.
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function Graphlntervals(graph Gy, list £) : graph
graph G, '
foreach interval I in £ do
if 3 a node in G; for I then’
Xy = the node in G, representing I

else .
Xi = new graph_node
add X1 to g1

endif

foreach node X, contained in I do
foreach arc (Xo, Yo) in Gy do
J := the interval in L containing Yo
if J # 1 then
if 3 a node in Gy for J then
Y, := the node in G, representing J
else
Y, := new graph_node
add Y; to G4
endif
add an arc (X3, Yy) to G
endif :
endforeach
endforeach
endforeach
return G,
endprocedure

Figure 2.11: Procedure to graph intervals
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2.6.4 Nested Loops

The result of the application of FindIntervals and GraphlIntervals to the ba-
sic block flow graph is termed the first order interval graph. Nested loops are
found by generating higher order flow graphs (Figure 2.12), that is by applying
FindIntervals to a previously generated interval graph.

Repeated applications of FindInterval will eventually result in one of two stable
graphs (i.e. applying FindInterval to the graph results in the same graph). The
first is a graph consisting of a single node that corresponds to the entire subroutine.
In this instance, the original graph is termed reducible. The second is a graph
similar to that depicted in Figure 2.13. If this situation arises, the flow graph is
called irreducible.

The distinction between reducible and irreducible flow graphs is important
because the presence of an irreducible graph makes subsequent data flow analysis
using the interval graphs difficult. Fortunately it is possible to transform an
irreducible graph to a reducible graph via the technique of node splitting.

Studies [21] have shown, however, that irreducible graphs occur very infre-
quently in “real life” programs. Furthermore, there are indications that the flow
graphs of all programs conforming to “structured programming” techniques are
reducible. In light of this, GO does not at:,tempt to handle programs whose flow

graphs are irreducible.

2.7 Problems with the Control Flow Analyzer

The control flow analyzer as described is capable of processing almost all “real”

programs.. However, there is one class of programs which it is definitely not able
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Figure 2.13: An irreducible flow graph

to handle. These are the programs which make use of jump tables or other similar
coding techniques.

The inal;ility to handle these prograrhs arises because the control flow analyzer
cannot determine the target address of a control transfer insi;rliction which is
computed at run time. This problem is also present in conventional s'ystems;
however, in those cases, it is not as cripplirig.a problem as there is no need to
separate the instructions from data.

There are a numbex: of ways in which to sirmount this problem. These are

detailed in chapter 5.



Chapter 3

Data Flow Analysis

3.1 Overview of the Data Flow Analyzer

3.1.1 Function

If one thinks of GO’s control flow analyzer a tool for generating a “road map”
of a program, then its data flow analyzer may be thought of as a tool for studying
the traffic patterns alor.1g each road. That is, it details how information is moved
and used in a program. Thefe are two principle forms of “traffic” which are of

interest in this form of flow analysis: variables and expfessions.

.In GO, any operation which effects the state of the program is considered to
be an expression. This state is embodied in the program’s variables. To clarify,
if a program is thought of as passing through a series of stages during the course
of execution, then the program’s variables indicate which is the current stage and

its expression cause the program to move from one stage to the next.

It should be noted that theé definitions given abo;re are subtly different from
those normally used. nIn GO, not only are the instructions for a,rithmeti'c and
logical éperations considered expressions, but so are control transfer instructions.
Also i.mplied is the fact the the machine’s program counter and condition codes l
are considered to be variables (however, GO does not attempt data flow ana.lyéis

on the program counter for obvious reasons). .

44
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Close inspecfion of the variables used in a program will reveal where they
are defined (assigned new values) and where t:,hey are referenced. Application of
data flow analysis techniques to this information yields the “scopes” of both the
definitions and references. That is, for each _deﬁnition of a variable, flow analysis
will show where all possible uses of the result of that definition occur. Likewiée;
analysis will show which definitions are likely to be in force when a given refe;rence
to a variable occurs.

Using the information gained about variables it is possible to ascertain a num-

ber of interesting facts about the expressions in a program:

e what expressions are computed,
o where each instance of a given expression is computed,

e what the scope of each coniputation of an expression is (i.e. at which points

the result of an instance is no longer valid),

e where the instance of a given expression is redundant (i.e. where the scopes

of different instances of the same expression. overlap)

3.1.2 Input

As stated in the previous chapter, the output of the control flow analyzer
forms the basis for the operation of the the data ﬂowlanalyzer. Pure control
flow information, though, is insufficient. In order to work, the data flow analyzer
needs information about the operations carried out at the very lowest level, that

is, within each basic block.
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This information is generated during a “preprocess” phase that runs in con-
junction with the basic block generator portion of the control flow analyzer. The

operation of this module is outlined below.

3.1.3 Output .

The output of the data flow analyzer can be thought of as a series of anno-
tations to each basic block of the control flow graphs. These annotations are in
the form of a series of sets. Each set enumerates the possible solutions to a given

data flow problem.

For example, one set may indicate which variables will have been modified
within its associated basic block when control leaves that block. Another set may
indicate which expressions are guaranteed t‘o have been computed when control
enters a block (that is, the expression has been computed and is valid along each

path leading into the block).

3.2 The Data Flow Preprocessor

The main task of the data flow preprocessor is to encode the internal structure
of a basic block into a fo;m usable during the actual data flow analysis. This
entails three separate operations. The ﬁfst is the identification of the variables
which occur in the block. Second is the identiﬁcatic;n of the block’s component‘
expressions. Finally, there 1s the task of locating and encoding the specializéd

information required for data flow analysis.
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3.2.1 Identification of Variables

There are a number of variable types which have fundamentally different uses.
The principle task of variable identification is to determine the type of each vari-
able and to create a unique descriptor for it, based on the type. In mére con-
ventional systems this information would be available from the compiler symbol
table. However, as GO deals with executable program images alone, it must reéort

to inspection of the program code to determine this information.

Classes of Variables

GO distinguishes between four classes of variables. These are global variablés,
local variables, argument (procedu;e parameter) variables and temporary vari-
ables. The main distinguishiﬁg factors between the various classes is the method
by which they are addressed and their scope.

The prirr;ary feature of' global variables is that they may be referenced from
any point in the program. References to these ;rariables are through their absolute
memory addresses, as displacements off of the prograr counter or through a base
register. Regardless of the method of addressing them théir locations are static
i:hroughout the execution of the program. It ‘should be noted that the definition of
a global variable does not imply that it is referenced throughout a program, merely
that the possibility exists for this to be doﬁe. Therefore, a variable declared to I;e
“static” in a C procedure, although generally considered to be a local varié,ble, is
treated as a giobal vériable in GO.

The local variables are the converse of the global variables. Access to this -

class is restricted to the procedure in which they are defined. Variables of this
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sort logically exist only during the execution of their defining procedure and each
instance of this procedure has a unique copy of its set of local variableé. In general,
local variables are allocated in a special pool (usgally the stack) for each instance

of a procedure and access to these variables is via a frame pointer.

Argument variables are similar to local variables and on some machines are
addressed through the frame pointer. For example, on the PDP-11, arguments are
transmitted via the stack which also serves as the storage area for local variables.
The local variables are addresses with negative displacements relative to the frame
pointer. Arguments have positive displacements. On other machines, like the

'VAX-11, a special register, the argument pointer, is maintain'ed but is used in
precisely the same manner as the frame pointer.

The last class of variables, the temporaries, are not normally considered vari-
ables. As implied by the name, temporary variables have a very restricted scope.
They usually do not span more than a few basic blocks and most are only valid

for the portion of a single block.

The most obvious temporary variables are the machines general purpose reg-
isters. For the most part, these are used to store intermediate results from calcu-
lations. On machines with a limited register set the stacic may be used for storage
of intermediate results. The stack can therefore be thought of as a sequence of

temporary variables as well.

Categories of Variables

GO recognizes two categories of variables: normal and pointers. A normal

variable is one which contains a binary value. Whether this value represents an
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integer, a floating point number or a character is irrelevant. As far as GO (and
for that matter the computer) is concerned it is simply a stream of binary digits.
Pointer variables contain the addresses of other variables. They can undergo the
same operations as normal variables (addition, subtraction, etc.) but at some

point the computer will attempt to use the value in the pointer as the address of

another variable in memory.

One may think it naive to recognize only two types of variables, given the host
. of types which are usually supported by high level languages. This is not the
case. There are no types in a high level language which can not be expressed in
terms of either a normal or pointer variables. For example, an array is simply a
series of normal variables. When referenced, a pointer is created to reference the
first element. This pointer is then manipulated by addition of the array index to
refer to the target element. The target is then referenced indirectly through the

modified pointer.

3.2.2 Identification of Expressions

The second major task of the preprocessor is to identify the expressions within
each basic block. This is not done directly however; it is a side effect of the
conversion of the target program into an internally usable form. This internal

representation is a reflection of the overall structure of the basic block.

From a control flow standpoint, a basic block is simply a sequence of instruc-
tions which is executed in a strictly linear fashion having no real internal structure.

The data flow view is somewhat more complex.
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Sequential execution of the instructions in a basic block does not preclude the

existence of a number of parallel computations. This concept is illustrated in the

following code fragment:

addl3 b,c,a
movl s,q
subl3 $5,x,z
divl?2 t,q
movl y,r0
shl r0,1
mull?2 rb,z
mull?2 d,a

7 #a—b+c

#qges
#ze—z-—5
#q e qft

# temp «—y

# temp — temp * 2
# z — zxtemp

#a—dxa

Casual inspection would seem to indicate that there are six individual expres-

sions calculated in a serial fashion: (note that the fifth expression is carried out

in three stages with the intermediate results kept in a temporary variable)

Q N N Q

b+c
8
)
q/t
z %2y
axd

However, after a simple Vrearrangement of the instructions (which does not

effect the results of the computations), it can be seen that there are really three

independent calculations proceeding in parallel:

a =

s

A =

b+cxd

s/t
(z—5)*2y
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3.2.3 Representation of Basic Blocks

The internal representation of blocks used in GO is derived from those of
Allen[7] and Aho and Ullman[3]. A primary feature of the data structure used is
that it attempts to record as much information about the relationships between
the various components as possible (for example, whether a given expression oc-
curs elsewhere in a basic block or where the operands of an expression where last
set) The representation is based on five tables: the global, local and argument
variable tables and the global and local expression tables. Separation of the vari-
ables into three tables is made necessary by the different mechanisms used to
identify them.

The global variable table contains descriptions of each global variable identified
during the preprocess stage. The table index for a ‘given variable is the absolute
address of the variable in the target address space.

. Unlike the global variable table, there are local and argument variable tables
associated with each call graph node. This reflects the traﬁsient néfure of these
classes of variables. The index for each of these variables is its offset from either
the frame pointer or aréument pointer, as éppropriate.

The global expression table records all of the instruction/operand combina-
tions which occur in the program. Each descriptor in the table contains a descrip-
tion of ﬁhe instruction in terms of its function (bra;lch, data manipulation, null
operation, etc.) and its operands (number, size of each, whether a given operand
is read or written, etc.). Paired with e'ach operand description is a pointer to thé
déscription of the actual variable which resides in one of the variable rtables. How-

ever, if the variable is a f,emporary, a flag is set to indicate this and the pointer
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is treated as a numeric identifier for the temporary. The scope of a temporary is
the subroutine in which it occurs, so temporary variable identifiers are reused be-
tween subroutines. Constant values are also treated as a special case in the glob.al
expression table. The presence of a constant is noted via a flag in the table. The

value of the constant is simply stored in place of the variable pointer.

Entries in the global expression table are clustered in groups. All the ex-
pressions within a group have identical instruction descriptors. Furthermore all
“input” operands for the éxpressions in a group are the same. However, each
expression in the group has a different “result” operand. This organization facili-
‘tates easy expression matching when performing common expression elimination

(this will be covered in chapter 4).

The global expression table enumerates all the Basic expressions which occur
in a program, however, it does not give an indication as to where each instruction
occurs. This is the function of the local expression tables. There is a local
expression table associated with each basic block in a program. It contains a
descriptor for eéch expression occurring in the block. The ordering of descriptors

is that of the occurrence of the expressions they describe in the basic block.

Each local expression descriptor contains a pointer to the occurrence of the
particular instruction/operands coﬁlbination in the global expreséion table for the
instruction it describes. II:l addition to this, ’.chere is a pointer corresponding to
each operand which indicates which previous instruction in the block which most
. recently modified that operand (Figure 3.1). If no previous instruction in the

basic block modified the operand, the pointer is nil.
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Local Expression
Table

/b Expression Descriptor

Operand Descriptor

Operand Descriptor

Y

Operand Descriptor

Expression Descriptor

Operand Descriptor

Operand Descriptor

Expression Descriptor

Operand Descriptor

/_\__/

. Global Expression
Table

Instruction Descriptor

Variable Descriptor

Variable Descriptor

Instruction Descriptor

Variable Descriptor

Variable Descriptor

Instruction Descriptor

/’\__/

Figure 3.1: Orgahization of local and global expression tables
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3.2.4 TUsed and Defined Sets

The preprocessor uses two sets, USED and DEFINED to pass the facts it has
learned about the variables in a basic block to the maiﬁ data ﬂov;r analyzer. USED
details which variables are referenced in each basic block whereas DEFINED shows
which variables are set (assigned new values). The possibility exists that a vari-
able may be both used and defined within the same basic block. This pre.sents a
problem as the main data flow analyzer treats basic blocks as monolithic units.
It is therefore necessary for the preprocessor to “filter” out this seemingly con-
tradictory information. For example, a number of different situations exist in the

following code fragment.

addl3 a,b,c #c—a+bd

addl3  c,d,b #bec+d
All four variables are referenced and variables b and c are assigned new values.
The data flow preprocessor would mark both b and ¢ as being members of the
DEFINED set, however, it would place only variables a, b and d in the USED set.
This reflects the fact that the use ;)f a variable is only of concérn backwards along
thé control flow paths., thus the use of c is obscured by its definition. Variable b,
however, is used before being set therefore its use is upwardly ezposed (visible to

previous blocks).

3.2.5 Computed and Obsolete Sets

Two additional sets, COMPUTED and OBSOLETE are defined with respect
to expressions as are USED and DEFINED with respect to variables. If an ex-

pression is evaluated during the course of execution of a basic block, it is placed
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in the COMPUTED set. If one of the terms in an expression is redefined (ie. a
c;)mponent variable is assigned a new value or a subexpression re-evaluated) then
it is placed in the OBSOLETE set.

As with iva,ria,bles, the preprocessor must act as a filter for the main data
flow analyzer. In this case the situations to be eliminated are those in which an

expression is computed and subsequently made obsolete within the same basic

block.

3.3 Intraprocedural Data Flow Analysis

The task of the main data flow analysis code is the investigation of flow pat-
terns within each subroutine. Once the basic infrastructure has been constructed
by the data flow preprocessor and the control flow analysis code, it is possible
to begin this phase of analysis. The operation of the main data flow analyzer is
straightforward. It propagates the information gained by the preprocessor over
the graphs generatéd by the control flow analyzer with a view towards solving a
number of predefined data flow problems. |

There are many possible data flow problems which may be investigated. How-
ever, many are rather specialized (i.e. the information they yield is not useful in
a wide range of optimizations). This renders them too expensive to be uged. In
light of this, the GO data flow analyzer solves only the four most basic data flow
problems[17,é9]. All four problems are similar, making implementation simple.

Ullman[29] notes that each of these problems may be likened to a system of
rsimul_taneous linear equations and that they may be solved through techniques

similar to Gaussian Elimination. The similarity arises because each basic block in -
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the subroutine under scrutiny contributes a single equation to the overall prob-
lem. The equation relates a single unknow‘n, the solution to the problem, to the
solutions of its neighbouring blocks. There are N equations for N blocks with
N unknowns which is a solvable system of equations. The general form of the
equation is: |

Xi=((Va€ A, F(X.)) - R)UG,
Where
o Ais the set of basic blocks “adjacent” to block i. Depending on the problem

these could be either block i’s predecessors (those blocks from which i may

gain control) or it successors (those blocks to which ¢ may pass control). .

e F(X) is determined by the data flow problem under investigation. It is

either the union of ali sets X or the intersection of those sets.
o X, is the set of solutions to the problem at block 7.
° ‘Xa is the solution to the problem in the adjaéent block a.
® R, is the subset of solutions which are removed vby the operations in block a.

® G, is the.subset of solutions to the problem generated in block a.

3.3.1 Available Expressions

An expression is said to be available at a given point in a f)rogram, if it has
been computed at some time along each of the paths which arrive at that point.
Furthermore, none of the component variables of the expression may have been
modified since the expression was computed.

As an example, consider the flow graph fragment in Figure 3.2. Of interest is
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@ AVAIL = 2 +y, s 4+ ¢

Figure 3.2: Illustration of the available expressions problem

the set of available expressions at block 5. The first expression z + y is computed
in block 1. From this block to block 5 are two paths:‘1—2-4-5 and 1-3-5. Neither
¢, nor y is redefined in any of the blocks along either path. Therefore, z + y is |
said to be available at block 5.

The expression a + b, is also computed in block 1. However, in this case, the
variable a is redefined in block 2. Since the expression is only valid on one of the
paths entering block 5, it is not considered available.

A similar situation is presented with the expression s+%. Although in this case
the expression is reevaluated in block 4. There is a valid instance <.)f the expression
in force on entry to block 5 along either path. Here again, the expression is.
considered éva.ilable.

There are three elements to the solution of the available expressions problem:

1. The problem concerns itself with equations, so the solution involves the

COMPUTED and OBSOLETE sets defined by the preprocessor.
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Figure 3.3: Illustration of the live variables problem

2. Information is propagated in the direction of control flow.. Thus the data
flow equation for this problem must operate over the set of predecessors of

the block being processed.

3. For an expression to be considered available, it must have been computed
along every path to the block. Therefore the set of solutions must be based

on the intersection of the sets of its adjacent blocks.

The equation for solving the available expressions problem is:
AVAIL; = (( ﬂ AVAIL,) — OBSOLETE,) U COMPUTED,
pEP

where P is the set of ﬁredecessor blocks to .

3.3.2 Live Variables

Variables are said to be “alive” at a given point in a program if there is a
references between that point and the next redefinition of the variable. Consider
the siceletal flow graphin Fnig“ure 3.3. In the entry block three variables are set: z, y
and z. Variable « is used in both blocks which can potentially gain control after the

entry block. In both cases, z is used before being assigned a new value. Variable y

appears in‘only one of the subsequent blocks, however, it too is referenced before
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being set. Both variables z and y are considered live on exit from the entry block.

Variable z, however, is in both cases redefined before it is used. It is therefore

considered “dead”.

The parameters for this problem are:

1. The sets USED and DEFINED are used as this problem is associated with

variables.

2. The flow of information is backwards (against the flow of control) as the
issue is the disposition of variables after the current block. Thus, the data

flow equation operates over the successors to the current block.

3. The fuqction relating all information from the successor block is set union as

a use of the variable in any successor is sufficient for it to be considered live.

The corresponding equation is
LIVE; = (( |J LIVE,) — DEFINED;) U USED;
Ss€S

where S is the set of successor blocks.

3.3.3 Very Busy Expressions

If an expression is computed in a given block and is subsequently used on all
paths originating from that block, it is considered a very busy expression. An
illustration of this problem is given in Figure 3.4. The object of the exercise here
is to determine the set of very busy expression at the exit points of node 1. The
expression z + y is computed along two of the paths leaving node 1, specifically

in nodes 2 and 4. However, the expression is not computed in node 3 or any path
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@ a+b
s+t

Figure 3.4: Illustration of the very busy expressions problem

leading away from node 3. Therefore, z + y is not a very busy expression with
respect to 1. The other expression, a + b is computed in nodes 2 and 5, but not
in either of 3 or 4. There exist paths from both of these nodes to node 5, thus an
exposed use of the expression is visible along all paths leading awéy from nodeﬂ 1
and the expression is considered very busy. A similar situation is presented with
the expression s+-¢. However, in this case, the redefinition of the variable ¢ masks
the occurrence of s+t along the 1-3-5 path. For this reason, the expression is not

very busy with respect to node 1.

The parameters of the equation for this problem are:

1. This is an expression problem so it operates on the COMPUTED and OB-
SOLETE sets.

2. The problem relates conditions in the current block to those in its successors.

3. By definition, the solution to the problem is a function of the intersection

of the solutions to neighbouring blocks.
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REACH==z+y

Figure 3.5: Illustration of the reaching definitions problem

which yield the following equation:

VBUSY; = ([ VBUSY,) — OBSOLETE,) U COMPUTED,
s€S

where S is once again the set of successor blocks to i.

3.3.4 Reaching Definitions

The reaching definitions problem gives the “scope” of each expression. It is
similar to the available expressions problem in that it rgives the history of an
expression on entry to the block in question. It differs in that an operation that
occurs on any incoming path is of interest as opposed to availa.blé expression in
which only operations which occur on all paths are of interest.

An example reaching definitions problem is given in Figure 3.5. Of interest in
this example are the definitions that reach the nodes 4 and 7. There is only one
path leading into node 4. Along this path are computed two expressions: ':v—i-y and

u+w. The former is transmitted through node 3 unscathed. The latter, however,
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is made obsolete by the setting of variable . The set of definitions feaching node
4 therefore contains the si,ngle expression z +y. Two paths lead into node 7: 1-3-
5-7 and 2-6-7. Along the latter path are computed two expressions. An element
of one of the expressions is redefined, though, so only one of them, a 4 b reaches
node 7. The 1-3-5-7 path gives the most complex situation. Once again, the one
of the expressions computed in node 1 is masked by a redefinition of one of its
terms in node 3. The same expression is ;‘ecgmputed in node 5 and is thereby
made available at 7. The set of definitions reaching node 7 then comprises three
expressions: ¢ +y, u +w and a + b.

The elements involved in the solution of this problem are:

1. The solution to the problem involves the use of the COMPUTED and OB-
SOLETE sets.

2. Of interest are the set of expressions which may have been computed at
entry to the block, therefore the data flow equation must operate over the

predecessor blocks.

3. Definitions tend to accumulate. That is, the solution to the problem for
any given block will be based on the union of the sets of solutions of its

predecessors.

The equation used to solve this particular data flow problem is:

REACH; = (| REACH,) - OBSOLETE,) U COMPUTED,
 pEP

where P is the set of predecessor blocks.
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3.3.5 Solving the Data Flow Equations

Solution of the various data ﬁowia,nalysis problems is achieved by propagating
the data flow information around the control flow graph. The extent of propaga-

tion of information is controlled by the various data flow equations.

~ The process would be trivial if control flow in a program were strictly linear.
The solution for the entry block would simply be the values determined by the
preprocessor. Solutions for subsequent blocks would be derived by applying the

data flow equations. Unfortunately, programs are rarely this simple.

rThe existence of loops in programs opens up the possibility of “feed back”
from blocks which have yet to be processed. This is a classic “chicken and egg”
problem: the data flow information for subsequent blocks cannot be determined
without first knowing the data flow information for the current block, however,
this information cannot be determined without solvi.ng the data flow equations

for the subsequent blocks.

Earlier on, it was stated that techniques similar to Gaussian elimination could
be used to solve the data flow problems. The simplestr of these (the Round-Robin
techniéue) is to first maké some minor assumptions about the solutions for each
block based upon the information derived by the preprocessor (i.e. assume that
each blocks operates in isolation, thus the solution for each block is the information
derived by the preprocessor). Each block is then visited in a round robin fashion.
At each visit, the data flow equations are compui:ed. The processing terminates
when there has been no change in the solution for any block ‘during one complete

pass.
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The major problem with this fechnique is that the solutions to some of the
blocks will stabilize before others, therefore reprocessing them is an unnecessary
expense. A variant on this method (the Worklist technique) surmounts this dif-
ficulty by keeping lists of blocks whose solutions are still in tra,nsition.r Neither

technique, however, is very cost effective in terms of processing time.

In GO, the solution of the data flow analysis problems is achieved through a less
expénsive, though more complex technique known as interval analysis(6,9,12,17,29)

which uses the interval graphs generated by the control flow analyzer.

The interval analysis technique (Algorithm 3.1) operates in two phases. In the
first phase, data flow information is from the basic block graph (which may be
thought of as the 0% order interval graph) through each higher order interval flow
graph until the highest order flow graph is reached. The second phase reverses
‘the process and propagates information from the highest order graph back down

to the basic block graph.

This technique worksp due to the nature of intervals. All paths in an inter-
val involve the interval header, by definition of an interval. This means that if
one could obtain ‘a. solution to the data flow equations for the header node, the
solutions for the other nodes in each interval may be solved for easily by a single

application of the data flow equations.

There are two sources of data flow information entering the interval header.
Both must be consulted before generating a solution. The first source is from
within the interval, through the back arcs to the header. This information is

- obtained in the first phase of interval analysis. The second source is from prede-
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Algorithm 3.1: AnalyzeDataFlow

PURPOSE: Perform data flow analysis using intervals

INPUT: A derived series (Go, G1, G2, . .. , Gn) a basic block graph, G is the first
order interval graph, G, of flow graphs. Where ¢, 1s is the second
order interval graph, etc. The c;utput of the data flow preprocessor.
The set O containing the set of solutions arriving from outside the
subroutine. (In G.O, this set is always empty.) .

OUTPUT: A data flow solution set for each basic block node.

-METHOD: The first pass of interval analysis is outlined in Figure 3.6. The
second pass is given in Figure 3.7. The driving procedure for both

passes is given in Figure 3.8.

cessors to the header which lie outside of the interval. The propagation of this

information is handled in the second phase of interval analysis.

There is one problem associated with performing interval analysis as outlined
above. Within an interval, there may be a number of different control flow paths.
It is unlikely that the set of generatgd deﬁnitioﬁs, G and the set of removed defini-
tions, R, would be the same along each path. At the level of the interval, however,
the existence of these different paths is masked. An assumption made in the pre-
sentation of data flow equations was that data flow information is associated with
graph nodes. How then are the different generated and refnoved sets for each path

through the interval be transmitted to the higher order graphs?
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procedure IntervalAnalysisl(graph G,,G, — 1)
if G, # Go then
foreach arc 7 in G,, do }
Locate corresponding arc j in G,y
which ezits interval header node h

R; =R]
G; = (X» —R;)UG]
endforeach
foreach arc i exiting the header node do
R =Ry
Gi=G;
endforeach

foreach ezit arc i of node N in G, processed in interval order do
foreach arc j entering node N do

Ri=R!FR;
Gi=G FG;
endforeach
R{=R{-R
Gi=(Gi-R)UG
endforeach

/* X is an estimate at the solution to the data flow problem
at the interval header node h */
Xn=0
foreach back arc ¢ in the interval with header h do
XKn=Xp FG!
endforeach
endprocedure

Figure 3.6: Procedure to perform the first pass of interval analysis .
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procedure IntervalAnalysis2(graph G,, Gn41)
foreach node Ny in G,1; do
/* Node h is the header node in G,
for the interval represented by node Ny */
Xp =Xy F Xn,
endforeach
foreach node Ny in G,yq do
foreach arc ¢ eziting the header node h do
/* X¢ is the intermediate data flow solution at arc i */
X¢ =(Xh—-R,;)UG,' :
endforeach
/* Note: In the following loop, “forward” problems (available
ezpressions and reaching definitions) handled by processing nodes in
interval order. For “backwards” problems (very busy ezpressions and
live variables) the notes are visited in reverse interval order */
foreach node Ny in the interval represented by N; do
Xy, =0
foreach arc p entering node N; do
X=X F X5
endforeach
foreach arc s eziting node j do
Xe=(X; —R,)UG,
endforeach
endforeach
endforeach
endprocedure

Figure 3.7: Procedure to perform the second pass of interval analysis
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procedure IntervalAnalysis(graph Go, Gy, G, . . ., Gr)
Interval Analysis1(Go, nil)
foreach graph G;, i =1,2,...,n—1 do
IntervalAnalysis1(G;, Gi—1)
endforeach
There is a single node in G,. For this node, X = O
foreach graph G;, i=n—-1,n-2,...,1 do
IntervalAnalysis2(G;, Giy1)
endforeach
endprocedure

. Figure 3.8: Driver routine for interval analysis

The solution to this problem is to associate the two sets with the graph arcs
exiting each interval instead of the interval node itself. This works because the set
of control paths associated with each exit arc would all produce the same answers

to the data flow problems. .

Each arc in an interval graph at level N corresponds to an arc in the interval
graph at level N — 1. Therefore, the solution to both arcs is the same. The only
problematic situation occurs between the first level interval graph and the basic
block graph. If the basic block graph is treated as the 0'® level interval graph, all
that need to be done is to find a mapping of solutions associated with basic block

graphs nodes to their exit arcs. This is trivial.

By definition, all exit arcs from a basic block graph node must have the same
solutions to the data flow problems. Therefore, each exit arc from a basic block

'1s associated with the solution for the basic block."
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Algorithm 3.2: GenerateUDChain

PURPOSE: Determine the use-definition chain for a given use of a variable

InpPUT: A basic block flow graph with data flow annotations, the descriptor
for the variable for which the chain is to be generated and a pointer

to local expression table entry in which the use appears
OUTPUT: A use-definition chain’

METHOD: Procedure as outlined in Figure 3.9.

3.3.6 Use-Definition and Definition-Use chains

There are a number of useful pieces of information that may be derived from

the various data flow sets. Chief among these are use-definition and definition-use

chains[6].

A use-definition chain rela,tes‘ each instance of a variable to the specific in-
stances of the expressions which defined them. That is it relates a point in the
basic block graph where a specific variable is used to the points in the graph where
it could have been set. The use-definition chain for a variable is determined by
examining the REACH, AVAIL and DEFINED sets. The procedure is given in
Algorithm 3.2.

The converse of a use-definition chain is the definition-use chain. In this struc-
ture, the location of a given expression is related to the locations of the uses of this

variable it defines. This structure is found by examination of the REACH7 LIVE
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procedure GenerateUDChain(graph G, vardesc V, localexpr &)
if &.OperandDesc[V] # nil then
add &.OperandDesc[V] to the use-definition chain
else
foreach & € REACH of block containing & do
if £, defines V then .
foreach path P entering block containing & do
Locate the node N' on P in which & ¢ AVAIL
then locate the definition of V in node N and
add it to the use-definition chain
endforeach
endif
endforeach
endif
endprocedure

Figure 3.9: Procedure to generate a use-definition chain

and USED sets. The procedure is similar to that used to determine use-definition

chains.

3.4 Interprocedural Data Flow Analysis

The techniques discussed thus far in this chapter will yield a fairly complete
description of the data flow patterns within each subroutine of a program. Sub-
routines, however, do not operate in complete isolation from each other. It is

necessary to also perform some analysis of the data flow between procedures [5].

Interprocedural data flow analysis can be performed using the same techniques
as intraprocedural analysis. All that is required is the substitution of the call graph

for the basic block graph.
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For the most pa.rt; call graphs are far simpler in structure than basic block
graphs. Loops in call graphs exist only in the presence of recursive subroutin.es
and these occur infrequently. In light of this fact, using interval analysis to obtain
interprocedural flow information is a waste of effort. More appropriate techniques
would be the round robin or worklist methods which were briefly mentioned ear-
lier.

11:1 GO, only a rudimentary interprocedural analysis is performed. .Its sole
purpose is to determine which variables are referenced or defined in a subroutine.
There 'a,re USED and DEFINED sets associated with each call graph node to

record this information. The technique used is as follows.

Before data flow analysis commences, the basic block and interval graphs
for each subroutine are modified. The modification entails the addition of two
“dummy” basic block or interval nodes. The first node is added prior to the entry
node for the graph in question. The dummy node for each interval graph maps
to the dummy node of the immediately inferior graph. The second node is a
dummy exitr node. Links are added between each real exit node in the graph and
the dummy. Like the dummy entry node, each dummy exit node in the interval
graphs is mapped to the equivalent node in the inferior graph. The USED, DE-
FINED, COMPUTED and OBSOLETE sets for all the dummy nodes are initially
émpty.

A topological sort is then performed on the call graph. Each node in the
call graph is processed in reverse topological order. When a node is visitgd an
intraprocedural data flow analysis is performed on the subroutine. The USED

set for the call gréph 'node is the LIVE set of the dummy entry node for the
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subroutine with all local, argument and temporary variables removed. Likewise,
the DEFINED set is the REACH set belonging to the dummy exit node with only
the global variables preserved. :

In order to make use of the interprocedural information, the basic block graphs
for each subroutine undergoes_a “fixup” procedure prior to commencement of the
intraprocedural analysis. This is required because side effects may result when
a subroutine call occurs. Specifically, global variables which may on the surface
appear to be untouched may be referenced or redefined in the subroutine. If the
intraprocedural analyzer does not know of these, erroneous data flow results will
definitely arise.

The fixup procedure involves scanning each basic block node for subroutine
calls. If a call is found, the DEFINED and USED sets of the biock in which
it occurs are mergéd with the corresponding sets of the called subroutine (i.e. a
set unién is performéd). in addition, the local expression table for the block is
searched for operand pointefs which span the subroutine call. If any of these links
are for variables in the called routines DEFINED set, the links are broken (i.e.

the operand pointer is set to nil).



Chapter 4

Heuristics for Code Improvement

4.1 Overview

Control and data flow analysis provide GO with a vast amount of information
about a program. Raw information, though, is of limited use. Ideally there would
be a simlz;le, algorithmic method of processing this raw data and producing an
optimal variant of the program. Unfortunately, no such technique exists that can
be guaranteed to run in a finite amount of time. Instead GO resorts to heuristic
programming techniques. Basically, all that is done is to search the the flow rgraphs
of the input program for predetermined patterns which can be manipulated in a

systematic way in order to produce better code.

For the most part none of these patterns, or the manipulations performed on
them, is complex. Nor does any transformation result in a massive improvement
' in program performance. However, they do occur with great frequency. Thus the

cumulative effect may be quite pronounced.

Code improvement, then, is achieved through brute force rather than elegance

of design or subtlety of implementation.

4.1.1 Constraints on the Application of Heuristics

A cardinal rule in code improvement is that an alteration may affect the man-

ner in which results are obtained bﬁt not the results themselves. There are a
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number of facets to this rule which Kennedy[19] summarizes as three constraints

on the optimization process:

1. The functional equivalence constraint
The optimized sequence must generate the same output as the original pro-
gram for all legal input data. Output for illegal input data is not so con-

strained (the program still fails, but for a different reason).

2. Legal data set constraint
The set of legal inputs to the optimized program must be the same as, or a
superset of, that of the unoptimized program; the new program may handle

additional classes of input but it must not handle fewer classes.

3. Safety Constraint
The code resulting from optimization should not generate errors which the
original code did not generate. That is, if a computation was valid under
the old program, it must be valid after optimization. However, the reverse
need not be true. Also permissible is a change in the timing of errors. That
is, an error may occur at a different stage in the execution that it would
have in the unimproved program. Furthermore, a great deal of flexibility is
available in the appli;ation of this constraint. For example, at the discretion
of the programmer, it may be acceptable to sacrifice some loss in precision

of floating point calculations when an optimization is applied.

All of the heuristics presented below conform to these guidelines.
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4.2 Performing Code Improvement

In most code improvement systems each optimization heuristic is implemented
as a separate entity. This is not true ofl GO. One of the major goa;ls in its design
was the use of a modular programming discipiine in order to reduce the redundan-
cies in the code. The implementation of ﬁhe code improvement heuristics reflects
this goal.

GO'’s repertoire of optimization heuristics have two common traits. First,
the information required to implement each optimization is gi&en directly in the
~ the results of the control and data flow anélysis phases. . Second, the heuristics
are for the most part machiner independent. They operate primarily through
manipulation of the flow graphs rather than recoding of the prégram.

The flow graph manipulations required to implement the various heuristics
are few in number. The most rudimentary is the creation of new basic blocks.
All that 1s entailed for this is the addition of a basic block skeleton in front of
an existing block. The new block takes from the existing block all of the latter’s |
inflowing forwa;‘d graph arcs. A single new arc is then added between the two
blocks. Any back arcs are retained by the original block. The new hode becomes
a component of the interval which contains its predecessor.

A related manipulation is the splitting of a basic block. When this is done,
the local expression table is divided at a specified instruction. The first norde
gains the first part of the table and all incoming arcs (back arcs included). The
second node consists of the rest of the local expression table and retains all of the
outflowing arcs of the original. Both nodes are members of the same interval that

contained the original node.
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Some heuristics réquire the ability to “create” new expressions. Actually, the
process is not so much a matter of creating a totally new expression as making
minor modification to an existing one. To do this a copy of an entry in the global
expression table is made. One of the operands is then altered to suit the needs
of the };euristic. If the altered operand is the one which receives the result of the
expression’s calculation its new value is usually a fresh temporary variable. For
example, a “move value to local variable” instruction may be changed into “move

value to temporary variable”.

A manipulation which is used in close conjunction with the previous one is the
" allocation of new temporary variables. During processing of a program, GO acts as
if an infinite supply of temporary lvariables are available for use. A new temporary
may be allocated from this pool at will. The actual assignment of temporaries to

memory locations and régisters is performed by the code regeneration part of the A

improver,

Another important manipulation is the insertion of expressions into basic
blocks. To do this a reference to an entry in the global expression table is pro-
vided. A reference to the destination block ié also supplied. A new entry that
refers to the given global expression is added to the block’s local expression table.
The appropriate operand pointers are then generated to link the new expression
into the existing basic block structure. Finally, the data flow information for the
basic block graph must be updated. Each path leading away from the modified 7
block is traversed. As each node is visited, the various data flow sets are updated
as appropriate (e.g. the expression will be added to the node’s AVAIL set). The

traversal of each path terminates when an exit node is reached, when a redefini-
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tion of one of the expression’s components is found in the visited block or when

the expression is found to already be in the node’s AVAIL set.

The final important flow graph transformation is the removal of expressions
from blocks. All that is needed to accomplish this is to remove the appropriate
entry from the local expression table an-d update and references to it from other
expressions in the block. An expression is never removed unless it is unused, that
is, the result it produces is never referenced in subsequent expressions. There is
no need update the graph’s data flow information as any information relating to

the expression will be'ignored anyway.

4.3 The Heuristics

The catalogue of possible optimizations is constrained only by one’s imagina-
tion. However, many heuristics have limited applicability and so are not suitable
for a general purpose code improvement system. A number of heuristics, though,
are almost universally applicable. These heuristics are well covered in the litera-
ture [3,7,8].

GO ac.tﬁally has very few code improvement heuristics. This reflects the fact
that the code improver is a research tool rather than a production system. The
heuristics were chosen in order to show that code improvement is possible under

the constraints put forth in the design of the improver.

The heuristics are detailed below. The order of presentation reflects the order

in which the heuristics are applied. This order is crucial to the proper operation

of the system.
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4.3.1 Inline Subroutine Expansion

One of the most expensive operations in terms of both machine cycles and
- storage is the subroutine call/entry/exit sequence. Because of this, it would seem
prudent to limit the number of subroutine calls in a program. Unfortunately, good
programming technique dictates the use of many subroutines. Here then, lies an
excellent opportunity to affect code improvement[10,15).

What is called for is an optimization heuristic that will convert hierarchies of
many small subrouti;les into, ideally, one large routine. This procedure is known
as inline subroutine ezpansion. As the name implies, this heuristic involves the
“textual” replacement of a subroutine call with the body of the actual subroutine,

thus eliminating the expensive subroutine overhead.
Anatomy of a subroutine call

The invocation of a standard subroutine can be thought of as progressing

through five discrete stages. In order of execution, these are:

1. Call set up
In this stage, the calling procedure arranges for any parameters to be passed
to the subroutine. It also records the address to which the subroutine is to

return control upon termination. Finally, it does the actual transfer of

control to the subroutine.

- 2. Subroutine entry
Here, the called subroutine saves any registers which it uses (except, of
course, any which are used to transmit information to the calling routine)

and any other elements of machine state which it modifies. It also performs
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any initialization functions required for the normal operation of the sub-
routine. This includes such functions as creating a stack frame, allocating

space for local variables and setting up dynamic and static links.

3. Subroutine body

At this point, the actual execution of the subroutine proceeds.

4. Subroutine exit
This phase is primarily concerned with undoing the effects of the second
stage: local variables storage is released and the saved machine state is
restored. If the subroutine is a function typé (i.e. it sends information
back to the caller) the return value is placed into a standard location for
the calling routine (usually one of the general purpose registers). Finally,

control is passed back to the address recorded in the first stage.

5. Call cleanup
After regaining control from the called subroutine, the caller releases any
storage it allocated for passing of parameters and retrieves any information

passed back from the subroutine,

Except for the third stage, all of this processing is directed at maintenance of the
machine’s operating environment rather than towards the solution of a problem.
The goal behind this particular optimization is the elimination of as many of these

" nonproductive sequences as possible.
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Selecting subroutines to expand in line

The first stage in performing the optimization is the selection of the subrou-
tines which are to be expanded. A subroutine is suitable for inline expansion if

either of the following criteria is met.

e The subroutine is only invoked at one point.

o The “cost” of the subroutine body is less than that of the subroutine invo-

cation sequence given above.

'The concept of cost in the second case is a nebulous one. The cost of a, sequence

of code is entirely dependent on the situation in which the sequence is computed.

For example, if a program were close to the maximum size the computer could

handle and the code sequence would cause the program to exceed this li‘mit,'then
_the cost of the segment would be considered unacceptably high.

In general, the cost of a code sequence is determined by the goals of the
optimizer. For example, if speed enhancement is the objective, a small increase
is ir)rogram size in exchange for a large reduction in execution time would bel
acceptable. What constitutes a small decrease in size or a large reduction in time
is determined by the programmer in accordance with his needs.

All other thiﬁgs being equal though, the relative costs of two sequences of
code may be determined by comparing like characteristics of the sequences. To
meet the second criteria for inline expansion then, the subroutine body would
have to take up less space and execute in less time than the associate subroutine
invocation sequence.

The procedure for expanding subroutines inline is given in Algorithm 4.1.
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Algorithm 4.1: InlineSubrExpansion

PURPOSE: Procedure to expand subroutine calls inline

INPUT: The call graph, the basic block graph and a pointer to the instaﬁce

of a subroutine call to be expanded

OuTPUT: Modified basic block and call graphs with the suBroutine éxpanded
inline '

METHOD: The procedure is as follows.

1. A duplicate copy of call graph node for the subroutine and all
its associated data structures (local and argument tables, basic
block graph, etc.) is made. All modifications to the subroutine

are made to this copy, thus any other calls to the routine will

not be affected.

2. The subroutine’s local variable table is adjusted. This entails
adding the size of the caller’s stack frame to the offsets of each

entry in the local variable table.

3. The subroutine’s local variable table is merged with the calling
routine’s local variable table and the calling routine’s stack

frame is enlarged by the size of the subroutine’s stack frame.

4. A mapping of procedure argument variables to the actual pa-

rameters in the calling routine is established.

... continued on page 82




Algorithm 4.1: InlineSubrExpansion (continued)

5. Each instance of a procedure argument variable in the subrou-
tine’s basic block graph is replaced with the actual parameter.
Once all of the procedure argument variables have been pro-

cessed in this manner, the argument variable table is discarded.

6. The names of the temporary variables in the subroutine are

made unique with respect to the caller’s temporaries.

7. The basic block which invokes the subroutine i.s split in two
at the subroutine call. The subroutine invocation code in the
caller and the entry/exit code in the called routine aré dis-
carded. If the calling routine performs a stack clean up after
the subrqutine returns, the clean up code is also discarded. Any
code in the called subroutine which is used to return a value
to the caller and the corresponding code to retrieve the value
in the caller is retained. However, this code is probably redun-
dant and will be eliminated during subsequent manipulation of

the program.

8. The basic block graphs for the two routines is then merged. A
single graph arc is added from the first part of the new;vly Vspl‘it
block to the entry node of the called subroutine basic block
graph. Graph arcs are also added bet\;veen each exit in the

called subroutines graph and the second new block.
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4.3.2 Invariant Computations in Loops

A well known maxim of computer science is the 80/20 rule: eighty percent of
the time is spent executing 20 percent of the code. This is merely an observation
that most useful work in a program is done in loops. The code which exists outside
of any loop is generally involved in loop maintenance: setting up for entry to the
loop and cleaning up after exit. Also contained in these sections are the various
operations involved with maintenance of the program as a whole (i.e. variable
initialization, subroutine entry and términation, etc.). As most “real work” is
done inside loops, the greatest improvement in code quality would be realized by
optimizing the code within loops[16].

‘The most obvious loop optimization is to locate invariant computations and
move them out of the loop. An invariant computation is one which will result in

the same value on each iteration of the loop. For example, the following code:

for (a = 0; a < 10; a++)
r (b=0; b< 10; b++)
cC=2a*x3+b;
would likely be compiled into:
movl $0,a #a—0
loopl: movl $0,b #b—0
loop2: mull3 $3,a,c #c—3xa
addl2 b,c #ce—c+b
acbl" $10,%1,b, loop2
H#b—b+1; sz< 10, branch
acbl $10,$1,a,lo00p2

#a—a+1l;ifa< 10, branch

The third instruction in this case is invariant with respect to the second loop

and may be moved out of it. The procedure for performing this optimization is
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Algorithm 4.2: InvariantCodeMotion

PURPOSE: To perform loop invariant code motion.

INPUT: A series of interval graphs and the corresponding basic block graph.

OuTPUT: The basic block graph is modified so that all invariant computations'

are moved out of loops.

METHOD: Procedure as outlined in Figure 4.1,

given in Algorithm 4.2. When this algorithm is applied to the above example, the

following code sequence results:

- movl $0,a #a~—0
loopl: movl $0,b #b+—0

. mull3 $3,a,c  # added instruction
loop2: mull3 $3,a,c #c—3xa

addl2 b,c #ce—c+b
acbl $10,$1,b,lo0p2

#b—b+1;ifb<10, branch
acbl $10,$1,a,lo0p2

#a—a+1;1fa<10, branch

A new instance of the multiply instruction has been placed before the body of
the second loop. However, the original instance is not removed. The new instance
renders the old one redundant, though, so it will be removed by the common

expression elimination heuristic.

4.3.3. Code Hoisting

There are instances in which a given expression is computed along all paths

leading away from a given basic block. This situation is indicated by the presence
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procedure InvariantCodeMotion(graph G;, G, Gs, ..., Gn)
foreach G;,i=1,2,3,.. ndo
foreach interval T in G; do
foreach block B in T do .
/¥ Intially, all expressions in B are unmarked */
foreach ezpression € in B do 7
Ezamine the use-definition chain for each
variable in €. If no definition of the
variable occurs in a block which is in T,
then mark E.
endforeach
endforeach
if any exzpression was marked then
Create a new block B in front of the header node of I.
Add an instance of each marked expression to B
endif
endforeach
endforeach
- endprocedure

- Figure 4.1: Procedure to perform invariant code motion

of the expression on the VBUSY set of the block. In such cases, an optimization
that may be applied is to have one instance of the expression in the given block and
make the result available along each exit path. This is known as code hoisting. The
procedure for code hoisting is given in Algorithm 4.3. As in the case of the loop
invariant expression heuristic, the net effect of this algorithm is the introduction
of a new instance of a given expression which will render the subsequent instances
redundant. However, there is a subtle feature of this algorithm which should be

noted. The feature is illustrated in Figure 4.2.
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Algorithm 4.3: CodeHoist

PURPOSE: To perform code hoisting.
INPUT: A basic block graph with VBUSY data flow annotations.

OuTPUT: The basic block graph modified in accordance to the code hoisting

heuristic.

-

METHOD: Each basic block in the graph is examined. If any expressions are
designated as very busy With'resp"ect to that block, a copy of the

expression is inserted at the end of the block.

VBUSY = s+ ¢
VBUSY =z +y, s +¢ ‘Q VBUSY = s +1
a:+y 1
s+1 +t s+

Figure 4.2: Illustration of problems in code hoisting
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In this situatiog we have the expression z + y present in nodes 3 and 4 and
the expression s + ¢ present in nodes 3, 4 and 5. As a result, a:‘ + vy is considered
very busy with respect to node 1 and s + ¢ is very busy with respect to noaes
0, 1 and 2. Thus, after application of the code hoisting procedure, z + y .Will be
duplicated in node 1. Careful inspection reveals that moving this expression from
nodes 3 and 4 to node 1 as would seem to be indicated is unsafe as the expression
would not be computed should control pass through node 2. This, however, is not
the case. The common expression elimination heuristic, which is resﬁonsible for
eliminating redundant expressions will recognize that an unsafe conditions exists
and will not attempt to use the expression in node 1 to eliminate those in nodes
3 and 4. The net result is that the new expression in node 1 will be unreferenced '
and thus be eliminated in later processing,.

A second subtlety exists with expression s +¢. As th'is expression is very Busy
with respect to all three higher level nodes, it will be duplicated in all three. In
this case, the duplicates in nodes 1 and 2 will be, in turn, found to be redundant
with respect to the instance in node 0. Thus the expression will Be correctly

hoisted two levels to node 0 and all other instances will be eliminated.

4.3.4 Common Expression Elimination

All of the heuristics discussed thus far have invoived the insertion of code into
various points in basic block graphs. In the last two heuristics, the result was
to deliberately introduce redﬁndancies. There is a high probability that the first
heuristic, inline subroutine expansion, would also have introduced redundancies.

It is the task of the common expression elimination heuristic to set the stage
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for the removal of these redundancies[1,2,12,28]. (Note: in most systems, the
heuristic for common expression elimination does the actual removal of code.
In GO, the heuristic merely changes the flow graphs so that later instances of
common expressions are unreferenced. It is left up to the dead expression heuristic
(discussed later) to actually remove expressions.)

The preceding heuristics, however, are not the only source of redundant ex-

pressions. Consider the following program fragment:

a=b+c *x dq;
b=a+b+ c;
c=a+c* d;
d=a+c* d;

The code generated would likely be:

- mull3 d,c,x0 #temp+«—cx*d
addl3 b,r0,a #a+ b+temp
addl3 ¢,a,r0 #temp —a+c
addl3 d4,r0,b #b—d+temp
mull3 d,c,x0 #temp —cxd
addl3 a,r0,c #c—a+temp
mull3 d,c,r0 #temp —cxd
addl3 a,r0,d #d—a-+temp

7 Here an obvious optimization would be to reuse the value computed for the
subexpression c * d. This is the function of common expression elimination.
There are two variants of the common expression problem. The first deals
with the elimination of redundancies within basic blocks and the second with
elimination between basic blocks. The former is applicable in the above example.
The procedure for common expression elimination within a basic block is out-

lined in Algorithm 4.4. The procedure for performing this optimization between
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Algorithm 4.4: CommonExprElim

PURPOSE: To eliminate common expressions within a basic block.

INPUT:

OvuTPUT:

METHOD:

A basic blpck.

The block is modified so that any redundant computation is left

unreferenced.

1. Locate the common expressions is the block under scrutiny.

(Call the first instance E; and the second E,;) Common expres-

sions have the following characteristics:

(a) They belong to the same group in the global expression
table.

(b) None of the input operands are redefined between the oc-
currence of E; and E,. This can be determined by exam-

ining the result operands of the interving instructions.

. If the result operand of E; is redefined before the occurrence

‘of Eq, create a new expression (E,) based on E;. The result

operand of E, is a fresh temporary. E, is inserted into the
basic block immediately after expression E; . Each expression
on E;’s definition-use chain is then modiﬁed to reference E,, in-
stead. Thus, E,’s definition-use chain becomes E,’s definition-

use chain. Ey’s chain is then set to empty.

. Each expression in E,’s definition-use chain is then modified to

reference E; (or E, if it was created).
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blocks is identical except that common expressions are identified by examining

the AVAIL set.

When this procedure is applied to the above example, the resultant would be:

(T is a fresh temporary variable).

mull3 d,c,r0 # temp «—cxd
mull3 d,c,T # added instruction
addl3 b,r0,a #a—b+temp
addl3 b,T,a # added instruction
addl3 c,a,r0 #temp—a+c
addl3 d,r0,b #be—d+temp
mull3 d,c,r0 #temp —cxd
addl3 a,r0,c #ce—a+temp
mull3 a,T,c # added instruction
mull3 d,c,r0 #temp —cxd
addl3 a,r0,d #d—a+temp

As each of the added instructions masks the result of the instruction it is
intended to replace, the result of the old expression is unreferenced and will be

removed by the dead variable/expression heuristic.

4.3.5 Dead Variable/Dead Expression Elimination

The final code improvement heuristic performed is the elimination of useless
expressions and variables. The primary sources of these are the other improvement
heuristics. This heuristic can therefore be thought of as the final cleanup phase
of the code improver. |

Dead variables and expressions also occur “naturally” in unoptimized code.
This is caused by the fact that subroutines often proceed through “stages” of
execution. Each stage usually coniprises a single loop or a series of nested loops.

In each stage, two types of information are generated: that which will be used in
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“subsequent stages and “support” information which is used to actually implement
the loops and carry out the necessary computations. The usefulness of the latter

type ends with the termination of the stage it is associated with and may be safely

discarded.

A variable is considered dead at the end of a block if no use is made of it
between that point and the next definition of the variable. To determine whether
a varia;ble is alive or dead, one simply has to consult the LIVE set for the block.
The presence of the variable in this set indicates that a subsequent use of the

variable does occur and it should be left untouched.

The possibility exists that a variable will be dead on exit from a block, but
still be alive between the exit point and its last definition within the block. To
determine if this is the case, the local expression table is searched in reverse order
~ until the definition of the variable or a reference to it is encountered. If a reference
is encountered, no further processing is required at this stage. If no reference is
found, then the variable is truly dead and the dead expression heuristic may be

applied.

If the variable is indeed dead, then so is the expression that defines it. This is
known to be true because if a later instance of the expression occurs before one
of the expression components has been redefined, common expression elimination
would have removed the later evaluation in favour of the current one. As this
situation does not exist, there is no need to retain that particular instance of the

expression, so it is removed from the local expression table.



4.4 Improvements During Recoding

Once the code improver has completed execution, all that remains is to recode
the flow graphs into machine instructions. Strictly speaking, this is a minor utility
task—GQ’s main objective has already been accomplished. However, there are a
few code improvements that occur as a side effect of the recoding process.

The simplest of these is jump-to-jump elimination. As stated in the first chap-
ter, this is normally considered a peephole optimization. However, one finds that
it also fits nicely into the realm of control flow analysis. To perform this opti-
mization, the recoding procedure need only watch out for basic blocks containing
only an unconditional control transfer instruction. By definition, such constructs
represent redundant jumps. To eliminate the branch, all that needs to be done is
to replace the branch target address of the original transfer instruction with that
of the redundant instruction.

Another major “free” optimization is the optimal use of local and tempbrary
variables. The code improver is very generous in the alloca,ti-on of temporary vari-
ables. It is not feasible to allocate real storage for each temporary. To circumvent
this problem, the recoder generates a “map” of when a given variable contains
valid information. It then attempts to “overlay” the various maps in order to find
the Best possible fit. In this way, it locates sets of variables whose valid periods are
mutually exclusive. Such variables may be coalesced into single variable that is

in use almost all of the time. The result is the best use of variable space possible.



Chapter 5

Summary

5.1 Incidental Points

The preceding chapters have discussed in broad terms the various mechanisms
used to do code improvement in the GO system as well as descriptions of the
overall implementation. There are some details of the implementation, however,

that have not been addressed. These are discussed here.

5.1.1 Treatment of Pointers

A major problem in data flow analysis is the éxistence of aliases. Aliases exist
if there are two variables which reference the same memory location. The problem
with this situation is that a definition of one variable will result in a definition of
both, however, this fact is not apparent to the data, ﬂoW analyzer.

In GO, aliases manifest themselves in the form of pointer variables. GO cannot
know if two pointers reference the same memory location or if a pointer references
a given variable. An indirect reference through a pointer, then, could result in a
hidden definition of or reference to some other variable.

- Given this set of circumstances GO treats the pointef as though it references
all variables. If a memory location is defined indirectly ‘through a pointer, the
resﬁlt GO assumes that all variables in the program may have been set. If an
indirect reference to a location is encountered, all variables are assumed to have

been referenced.
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This mechanism, of course, severely limits the usefulness of the data flow

analysis process. A possible remedy to this problem is given below.

5.1.2 Treatment of Calls to the Operating System

A similar problem arises with calls to the operating system. How does one
determine the side effects they cause? In GO, this is done by handling system
calls as a special case of the general subroutine call mechanism. When GO is
started, it builds.a. series of “dummy” call graph nodes, one for each operating
system service. As the operations carried out in a system call are rigidly defined,
it is possible to supply ea}ch system call node with complete data flow information.

Thus it is possible to account for the effect of each system call.

5.2 Evaluation

Unfortunately, at the time of writing the GO code improver was still under-
going development so a number of key questions regarding performance must go

unanswered. However, a number of qualitative observations may be made:

e In its current form, GO is strictly an experimental tool. Its deficiencies
would render it useless in any production environment as it can only handle

the simplest of programs.

o The emphasis in the design of GO is simplicity and generality. The im-
plementation of GO stresses modularity of code. Each module is made as
general as possible so as to allow its use in a number of capacities. This

was accomplished by making use of “canned” utility functions and data
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structures. The penalty for this is increased memory usage and execution

time.

o Another major design decision was to attempt to incorporate as much ma-
chine independence as possible. This was accomplished by using a table
-driven instruction decoder and defining a set of machine independent “basic
operations” which were implemented as small machim;, dependent routines.
An unexpected result of this ;:lecision was a restriction on the number ar.ld
type of optimizations which could be performed. This is primarily because
without knowledge of what each instruction in a block actually does, all

code improvement must be done through simple pattern matching.

- & The design decision that makes the greatest impact, however, is the decision
7 to'attempt to directly optimize machine executable code. It effects almost
every facet of the system. The merits of this decision will be discussed later.
Regardless of any difficulties this decision caused, though, the basic philoé-
ophy is sound: flow analysis of a executable program using no supplemental

information from the code generation system is feasible.

5.3 DPossible Extensions’to GO

As noted aBove in an attempt to make GO relatively machine independent,
the ability to perform a number of optimizations was lost. This is due to the fact
that GO cannot interpret what each instruction does, and thereby discover its
 effect, exéept in the most general terms. '

The most obvious method of enabling GO t6 “understand” the exﬁressions

it sees is to code some knowledge of the target machine instruction set into the’
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code improvement heuristics. Unfortunately this would make the system almost
completely machine specific. An elegant alternative technique exists which would
preserve some measure of machine independence by sacrificing efficiency.

This technique involves supplementing GO’s instruction description tables
(which are used to properly decode the input program) with descriptions of how
each instruction operates. One way in which this could be done would be to
supply a simple stack machine description of each instruction. This information
would be used by a stack machine emulator which operates as pa;rt of the data
flow preprocessor.

The major benefit resulting from this mechanism is the ability to completely
determine the values of computations involving constanté. This permits the re-
moval of some of the more severe restrictions placed on the system due to the
presence of pointers. To understand how this is possible requires some consider-

ation of the manner in which pointers are used.

In general, pointers have two uses. The first use is as a position marker. This
may be done expiicitly by the prograinmer to implement complex data structures
such as linked lists or implicitly as with array aﬁd string references. The second
use is to introduce generality into code. By using a pointer, it is possible to merge
two or more sections of code Which do the same computations, but on different sets
of data. A classic example of this is a “pass by referencé” procedure parameter.

In either of these cases, the contents of the pointer is a 'val'u,é that 1s determineg
at compile time. The number of applications in which the value of a pointer could
be legitimately obtained from an external source is very limited. Furthermore,

all computations involving pointers deal invariably with constants. However, this
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might not alwa}ys be readily apparent. For examplé, if an array bounds is z;ead
in from an external source, good programming technique dictates that a range
check be performed before attempting to use it. The range check values must be
constants. Thus they implicitly define the values which may be accepted as the

index.

In the discussion of control flow analysis, it was pointed out that a mamjor
flaw in the control flow analysis procedure GO employs is its inability to handle
computed control transfer addresses. Using this stack machine system and capi-
talizing on the above observations, the solution to this problem becomes trivial.
One need only use the techniques for propagation of constants to determine what
the possibie values of any given pointer are at any time during the execution of a
program. This technique is equally applicable to pointers to variables. Thus it is
possible to circumvent the problems with aliases that were outlined earlier in this

chapter.

5.4 Concluding Remarks

The need for code improvement systems and research into such systems is
obvious. That this should bew accomplished via flow analysis of machine executable
object modules is less obvious. There are, however, valid reasons for doing it in
this manner. To understand these reasons, one must consider the history of éhe
computing industry. |

The information processing sciences and related disciplines atre relatively new

with respect to the more established areas of study. It has only been in the
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past decade, however, that any really fundamental change has been made in the
industry. | |

At one time, everytiﬁng associated with computers was big: they were expen-
sive, large and slow. Support in terms of software for computers came principally
from two sources, the manufacturer and the system support staff. If any third
party software support was to be found, the software was written in either assem-
bler or in a primitive high level language for which the manufacturer supplied the
development system. As the language compilers and optimizers ‘were supplied by
one party, it was possible to devise intricate optimizers which were an integral

part of the overall system.

The computer industry of today is a vastly diﬁ'érent. The advent of microelec-
tronics and inexpensive “personal” computers has given rise to a situation where
systems produced by different manufacturers have essentially the same design.
The emphasis has passed from hardware manufacturer supplied software to third
‘party support. For any given system, it is possible to find any number of com-
pilers by different software manufacturers. Unfortunately, in such a case as this,
there are only two sets of standards to which the compiler has to adhere: the
standards for the input language and those. of the machine on which the program
has to run. And even the former n'eed not be strictly adhered to. It is highly
unlikely that the intermediate representations of programs generated by any two
third party compilers is the same. Furthermore, as it is now profitable to market
software systems alone (as opposed to producing software as an incentive to the
selling of hardware as was the case in the past) it is not in the best inte1_'ests

of the compiler writer to reveal the details of his implementation. This includes
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iﬁformation about the intermediate code, symbol té,ble and liﬁkage information.
An individual writing a code improvement system, then, has very little to work
with.

There is only one common denominator With respect at all the compiler sys-
tems available. That is the architecture of the machine for which all the systems |
must produce code. In other words, the final executable image is the only form
of the program for which there is guaranteed to be information available.

It is for this reasén that investigation of the direct optimizati.on of machine

executable code, as in GO, is a necessary and inevitable endeavour.
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Appendix

An Overview of VAX Architecture

The VAX series of computers comprise a range of machines of varying power
which are generally classed as “supermini” computers. All of the machines in the

series share the same instruction set.

A.1 Principal Architectural Features

A.1.1 Instruction Set

The VAX is described as a complex instruction set computer (CISC) with a;
32 bit architecture. In addition to the basic arithmetic/logical, test and branch
instructionfs, it has a number of specialized instructions for high level language
support (loop implementation, string manipulation and array handling), operat-
ing system support (queue manipulation) and scientific calculations (polynomial
evaluation). The instructions take from zero to six operands and all of the arith-
metic operations have two operand (z = z + y) and three operand (z =y +2)
forms. The arithmetic operations are also orthogonal with respect to the integer
and floating point data types (i.e. any arithmetic operation can be performed on

any numeric data type).

A.1.2 Data Types

The basic data types supported are integers, packed decimal strings, character

strings and floating point numbers. The principle sizes of 1integers are byte (8
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bits), word (16 bits) and long word (32 bits).w 'The main floating point data types
are F-floating (single precision — 32 bits: 1 bit sign, 23 bits mantissa and 8 bits
excess-128 exponent) and D-floating (double precision — 64 bits: 1 bit sign, 55 bits
mantissa and 8 bits excess-128 exponent). Both floating point formats represent
the mantissa as a normalized binary fraction (i.e. high order bit is always a one)
with the high order bit not stored. The effective size of the mantissa is therefore

increased by one bit (24 bits for F floating, 64 bits for D floating).

A.2 Programming Features

A.2.1 The Stack -

A principle feature of the VAX architecture is the stack. The stack is a last-
in first-out data structure which is used for transmission of arguments between
subroutines, for subroutine linkage and for temporary storage. The ste;ck “grows
downwards”. That is, new elements are placed on the stack at memory addresses
which are less than older members. The machine maintains a stack pointer (see
below) which indicates the location of the most recently “pushed” value. Under
the UNIX operating system, the stack is allocated at the highest point in the

user’s address space and is automatically extended as more items are place in it.

A.2.2 Regiéters

The VAX has 17 CPU registers which are of interrest to most programmers.
'The processor status word (PSW) is a 16 bit register which controls the operation
of the CPU and records various aspects of CPU state (e.g. if an arithmetic overflow

condition exists). The remaining 16 registers are known as the “general purpose”
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registers and are all 32 bits wide. They are general purpose in that that the
instruction set is orthogonal with respect to their use as opposed to true generality
of use. The first twelve registers (R0 t!hrough R11) can be termed “all purpose”
registers. They are available for any function desired by the programmer, however,
some of the specialized instructions (especially those which manipulate strings)
alter one or more of the first six registers (RO through R5) indiscriminately. The

other four registers have the following functions assigned to them by the hardware:

Argument Pointer (AP or R12)
"The specialized procedure call instructions use this register to point to the

list of arguments being transmitted to a subroutine. It is automatically

saved on procedure entry and restored on exit.

Frame Pointer (FP or R13)
This register is set up on procedure entry to show the lo<':ation on the stack
of the local (automatic) variables and other data structures which are unique
to a particular instance of a procedure. Like the argument pointer, it is also

preserved across procedure calls and is maintained by the procedure call and
return instructions.

Stack Pointer (SP or R14)

The SP points to the last item placed on the machine stack.

Program Counter (PC or R15)
- The program counter points to the next instruction memory which is to
be executed (during instruction processing, it points to the next byte in

memory of the current instruction).
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A.2.3 Addressing Modes*

One of most appealing aspects of the VAX architecture is its rather elegant
set of addressing modes. The addressing modes are, for the most part, orthogonal
with respect to all instructions and all of the general purpose registers. That is,
any address mode may be used for any operand of any instruction (with certain \
obvious limitations; for example, it is not possible to use any of the “constant-
contained-in-instruction-stream” modes to specify an operand which is to be writ-

ten). The addressing modes are summarized below.

Literal/Immediate
The operand is a-constant value which is specified in the instruction stream.
In the case of a literal, the constant is a small value which is éncoded in
the addressing mode specification itself. Immediate values are kept in the
memory locations following the inst’ruction. (Immediate mode is actually

a shorthand notation for autoincrement mode used with the PC.) Syntax:

$constant

Register

The operand is contained in register n. Syntax: Rn

Register Deferred

The address of the operand is contained in register n. Syntax: (Rn)

*Note: The syntax for the various addressing modes used is that of the standard VAX/UNIX
assembler (see [25]) and not the ones used by the manufacturer as given in [14].
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Autodecrement

The value of register n is decremented by the size of the operand (1 for byte,

2 for word, etc.) and the value is then used as the address of the operand.

Syntax: -(Rn)

Autoincrement

The operand’s address is contained in register n. After accessing the

operahd, the value of the register is incremented by the size of the operand.

Syntax: (Rn)+

Autoincrement Deferred

The same as autoincrement, except that the register contains the address of

the address of the operand (two levels of indirection). Syntax: *(Rn)+

Byte/Word/Longword Displacement
The a(idress of the operand is the value of the sum of the (byte, word
or longword sized) displacement and the contents of register n. Syntax:
X‘disp(Rn) where X is ‘B’ for byte displacements, ‘W’ for word displacements

or ‘L’ for longword displacements.

Byte/Word/Longword Displacement Deferred
The same as the regular displacement médes, except .that the value of the

sum is the address of the address of the operand. Syntax: *X*disp(Rn)
Absolute

Address is the absolute address in memory of the operand. This is actually a

shorthand notation for autoincrement deferred mode with the PC. Syntax:

*$address
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Byte/Word /Longword Relative
The instruction stream contains the offset of Address from the current PC

value. This is a shorthand notation for the regular displacement modes used

with the PC. Syntax: X¢disp

Byte/Word/Longword Relative Deferred
The same as the regular relative modes except that an addit.ional level of

indirection is imposed. This is a shorthand notation for the deferred dis-

placement modes with the PC. Syntax: *X* disp

A.2.4 Machine Instructions

Listed below are most the VAX instructions which may be found in the ex-
amples in this thesis. A complete list of VAX instructions can be found in [14].

Details on features unique to the VAX/UNIX assembler can be found in (285].

MOVE
The move instruction transfers a the value one operand to another operand.
There are several variants of the move instruction, one for each data type.
The mnemonic for the move instruction mov with a single character suffix
to specify operand type. Examples: movb x,y means “move a byte sized
value from z to y and movw $1,a means “move the constant value 1 to the

variable a”.

PUSH LONG WORD

The push long word operand moves the value of its single operand onto

the stack. This instruction is typically used to move constant values and
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the contents of simple variables onto the stack as a prelude to subroutine
invocation. The mnemonic for this instruction is pushl. Examples: pushl
$123 means place the value 123 onto the stack and pushl xyz means place
the value of variable zyz on the stack. Note: this operation may also be

performed using a move instruction: movl r0,-(sp).

ADD
There are a number of variants of the add (perform two’s complement addi-
tion) instructfon. The two principle forms are add two operand and add
three operand. The two operand instruction adds the value of its first
‘opera,nd to the value of its second operand, leaving the result in the second
operand. The three operand variant leaves the result in its third operand.
For both of these forms, there are variants for each type of operand. The
mnemonic for the add instruction is add with an additional character in-
dicating type of operand and either a “2” or a “3” to indicate number of
operands. Exampleé: addl2 a,r0 means add the value of a to the value in
register zero and leave the result there and addl13 $2,x,y means add the

constant value 2 to z with the result placed in y.

SUBTRACT
The subtract operation has the same set of variants as add instruction. The

. mnemonic for subtract is sub with the appropriate affixes. Examples: subl3

s,t,u and subl?2 (r0) ,abc.

INCREMENT

This instruction simply adds the constant one to its single operand, leaving
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the result there. It has the same variants with respect to type as the other
arithmetic/logical instruction. The mnemonic is inc with the appropriate

suffix for type. Example: incw r9.

DECREMENT

The same as the increment instruction, except the constant one is sub-

tracted. Mnemonic: dec with suffix. Example: decb -(r6).

TEST

~

The value of the single operand is compared to zero and the machine condi-
tion code set appropriately. No other action is performed. The instruction

has variants for all data types. Mnemonic: tst with type suffix. Example:

tstw r5.

COMPARE
"The values of the two operands are compared to each other. The condition
codes are set as appropriate with no other action taken. There are vari-

ants for each data type. Mnemonic: cmp with type suffix. Example: cmp

$43,foo.

JUMP IF NOT EQUAL
This instruction causes a conditional branch (based on the current condition
code settings) to the target address specified by the operand if thei result of
the last arithmetic operation or corﬁparison was non-zero (not equal). Unlike
the operands for most other instructions, the operand is always a program

counter relative displacement. Mnemonic: 3 neql.g Example: jneql label.
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JUMP IF EQUAL

The same as the jneql instruction excépt that the branch conditions are

reversed. Mnemonic: jeql.

UNCONDITIONAL BRANCH
This instruction always causes a transfer of control to the target address
specified by its operand. The same restrictions with regard to operands

exist with this instruction as with the other branch instructions. Mnemonic:

jbr.

Note: The branch instructions detailed above are actually pseudo instruc-
tions to the UNIX assembler. There are actually a number of variants of each
instruction with differing branch displacement sizes. The assembler chooses

the correct displacement size based upon distance to the target address.

CALL PROCEDURE WITH STACK ARGUMENTS
A st‘andard VAX procedure call is initiated. This entails the construction
of a new stack frame, the saving of registers and the set up of the argument
pointer. The arguments for the subroutine are placed on the stack prior to
execution of this instruction. Two operands are supplied. The first is the
number of arguments which are to be transmitted. The second operand is

the address of the target subroutine. Mnemonic: calls. Example: calls

$2,subr.

RETURN FROM PROCEDURE

This instruction terminates a procedure call which was initiated by a calls

instruction. The calling routines registers are automatically restored and
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current stack frame is discarded. All elements of saved machine state are
also restored. In addition, the space on the stack taken up by the procedure
parameters is automatically recovered. This instruction takes no operands,

all necessary information is retrieved from the stack frame. Mnemonic: ret.



