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ABSTRACT 

In this thesis, we studied estimation and hypothesis testing 

in some generalized discrete probability models. 

The family of generalized Poisson distribution (GPD) 

characterized by two parameters, was defined by Consul and Jam ( 1973). 

The GPD models have been found useful in many different areas like 

queueing theory, branching process, genetics and ecology. The family 

of GPD models belongs to the class of Lagrangian probability 

distributions [Consul and Shenton, 1973]. The restricted GPD is a 

member of the class of modified power series distributions (MPSD), 

(Gupta, 1974). Both the class of Lagrangian probability distributions 

and the class of MPSD also contain the families of the generalized 

negative binomial distribution (GNBD) and the generalized logarithmic 

series distribution (GLSD) among many others. 

Some properties and applications of the GPD family and those 

of restricted GPD, the GNBD and the GLSD as members of the class of 

MPSD are reviewed in Chapter I. 

In Chapter II, we have proved that the GLSD, GNBD and GPD are 

unimodal. 

We investigated the problem of interval estimation in the 

class of MPSD in Chapter III. Both the cases of small and large 

samples are considered in setting two-sided 1OO(l-u) confidence 

bounds for the parameters. By using the critical region for the 

- 



uniformly most powerful test, we have also obtained a uniformly most 

accurate one-sided confidence bound. 

Chapters IV and V contain estimation in small and large 

samples for GPD model. Confidence intervals, likelihood intervals as 

well as likelihood regions are obtained for the parameters of GPO when 

the sample size is small. When the sample size is large, expressions 

for finding confidence intervals for each of the two parameters when 

-one is unknown and when both are unknown are derived. Furthermore, we 

have discussed the problem of setting confidence regions for the two 

parameters. 

From recent research work, meaningful interpretations have 

been given to the parameters of GPO when the model is used to describe 

a natural phenomenon. Quite often, a user of the model formulates 

hypotheses about these parameters. Accordingly, Chapter VI is devoted 

to tests of hypotheses on the parameters of the GPO. The cases in 

which one parameter is unknown and in which both parameters are unknown 

are separately considered. 

Some estimation problems for the GNBD are discussed in 

Chapter VII. In conclusion, we briefly outline some unsolved problems 

which need further research work. 
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CHAPTER I 

INTRODUCTION 

1.1 SOME CLASSES OF DISCRETE DISTRIBUTIONS 

Let X be a random variable (r.v.) and let F(x) = P(X ≤ x) 

be its distribution function. If F(x) is a step function with only an 

enumerable number of steps and if the height of the step at X = x. is 

P.3 , then 

P(X = x.) = P. 
3 3- 

and the r.v. X is said to be a discrete r.v. and also if Z P. = 1 
j 3 

then X is said to have a discrete probability distribution. 

A variety of the earthly phenomena deal with random counts. 

Some examples are the number of a particular plant species per quadrant 

in an ecological habitat, the number of girls in a family of six in the 

city of Calgary, the number of bacteria per colony, the number of 

traffic accidents incurred over a period of time. by the bus drivers in 

a city and the number of deaths due to epileptic disease in a city. 

Any set of data which conforms with the above different types 

or some other form of random counts is adequately analysed by using a 

discrete probability distribution. However, it is sometimes possible 

to consider the problem by using a continuous distribution which. is an 
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approximation but it may not lead to a satisfactory result in all 

cases. In fact, one uses approximations, either when an exact method 

is not available or when the exact methods are too laborious to use. 

In effect, one should fit a continuous data with a continuous 

probability distribution and a discrete data with a discrete 

probability distribution. When the samples are very large, one may 

have to appeal to the central limit theorem in order to apply an 

appropriate continuous distribution. 

It is very difficult to classify the various types of 

discrete distributions. We will not hesitate to state here that there 

is no hard and fast rule for this classification. Each author comes up 

with one or the other type of classification. The field of discrete 

probability distributions is so wide and diversified that it is hard to 

provide the definition of classes. Patel, Kapadia and Owen ( 1976) 

considered exponential family, Pearson distributions ( in continuous 

case) and generalized power series distributions as families of 

probability distributions. They also considered among others, the 

binomial, the Poisson and the negative binomial distributions as 

different classes. On the other hand, Johnson and Kotz ( 1969) 

considered the generalized power series distributions, the systems 

defined by difference equations, mixture/compound and generalized 

distributions and the contagious distributions among others as major 

classes of discrete distributions. Also, they gave a number of 
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discrete probability distributions which do not fall into any of the 

major classes. In this work, we shall follow the latter classification 

and refer to a member of a class as a family. 

It must be pointed out that sometimes there may exist some 

relationships between any two or more members of a class with some 

members of another class. We shall now discuss the following four 

major classes: the mixture/compound and generalized distributions, the 

generalized power series distributions 1 the modified power series 

distributions and the Lagrangian probability distributions. The models 

we shall be considering in subsequent chapters are associated with 

these different classes. 

1.1.1 THE MIXTURE/COMPOUND AND GENERALIZED DISTRIBUTIONS 

When an applied statistician or a researcher in any subject 

area obtains a set of data, usually he determines the mean and the 

variance of the data and on the basis of the property that the mean is 

greater than the variance, the mean equals the variance or the mean is 

less than the variance he will try the binomial, the Poisson or the 

negative binomial distribution. It was discovered in many situations 

that none of these three distributions was the approporiate model for 

the data. In view of this, statisticians began to look for other types 

of distributions. This had in no small measure resulted in the 

development of various modified' forms of the classical distributions. 

The modification is generally in the form of mixing, compounding and 
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generalization. Further with this modification, statisticians went as 

far as possible to obtain the discrete analogues of some well known 

continuous distributions. Cassie ( 1962), for example, obtained the 

discrete lognormal distribution by considering the log counts of sample 

data as normally distributed. Other forms of such modifications appear 

as truncated and modified distributions. The basic motivation was to 

obtain an appropriate discrete probability distribution to fit the 

observed data. 

If j E T where T is any subset of the set of non-negative 

integers and if (P(x1, x2,.. Xn) } represent different cumulative 

distribution functions and if w. ≥ 0 such that 
J 

Z w. = 1, 
jET ' 

then 

= Z w  
JET 

is also a proper cumulative distribution function. The distribution 

(1.1.1) is called a mixture of the distributions 

If X is a r.v. whose probability mass function is 

P(Xx I 00) 

for x in the domain of the distribution and if 8 is now regarded as 

a new r.v. with its own probability distribution f(8), say, then the 
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given probability in ( 1.1.2) becomes a conditional probability and one 

can obtain the unconditional probability P(Xx) as follows: 

it P(XxJ8O)f(8)dO, if 8 is continuous 
P(X=x) = (1.1.3) 

• 1z P(XxI88)f(8), if 9 is discrete 

This is written in a symbolic form as 

X A S. 

P(Xx) in ( 1.1.3) is referred to as compound distribution. From the 

above definitions of mixture and compounding one can see that there is 

a relationship between the two terms. The term ' compound' 

distributions is usually used synonymously with the term 'mixture' 

distributions. 

Suppose g1(t) and g2(t) are the probability generating 

functions of the random variables X and Y respectively. A new 

probability generating function for a different r.v. Z can be easily 

formulated as 

H(t) = g1(g2(t)). 

The new r.v. Z is said to be a generalized distribution of the 

previous random variable X. In ( 1.1.4), the distribution of Y is 

called the ' generalizer'. Symbolically, it is denoted 

ZXvY. 
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A good exposition of the relationship between mixture, 

compounding and generalization is given by Blischke ( 1963). Some well 

known members of this class of discrete distributions are 

Poisson-Poisson, Poisson-Binomial, Neyman Types A, B and C, Thomas and 

Polya-Eggenberger. 

1.1.2 THE GENERALIZED POWER SERIES DISTRIBUTIONS 

Let f(8) be an analytic function of 8 such that 

f(8) = Z a(x) O, 
x0 

where a(x) ≥ 0 for all x, then 

P(X=x) = 
Ja(x) 8 C/f(8); x = 0,1,2,..., 8 > 0 

to ; otherwise 

(1.1.5) 

is a power series distribution (PSD). This class of discrete 

distributions was introduced by Kosambi (1949) and Noack ( 1950) 

independently. Path ( 1962) considered the domain of the distribution 

(1.1.5) to be the set T where T is a subset of the set of non-

negative integers. This extended class is referred to as generalized 

power series distributions (GPSD). 

The class of GPSD has got many interesting properties. The 

probability generating function of the distribution ( 1.1.5) is 

g(t) = f(8t)/f(8). 
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It is observed that the truncated distributions, excluded in the class 

of PSD, are included in the class of GPSD. Thus, if a GPSD is 

truncated, the truncated distribution is also a GPSD. If each of 

n 
X1, X2, ..., X has a GPSD, then the sum Y = Z X. also belongs to the 

1 1 

same class with series function 

{f(8)}'. 

A lot of work has been done on the GPSD. Some references are 

Tweedie and Veevers ( 1968), Patil ( 1962) and Khatri ( 1959) on 

properties, Roy and Mitra ( 1957) on estimation and Path ( 1963) on 

applications. Some members of the GPSD class are the binomial 

distribution, the negative binomial distribution, the Poisson 

distribution and the logarithmic series distribution. 

1.1.3 THE MODIFIED POWER SERIES DISTRIBUTIONS 

A discrete r.v. X is said to have a modified power series 

distribution (MPSD), [Gupta, 19741, if its probability function is 

given by 

P(Xx) = 
fa(x){9(8)1 x Me); x E T 

TO otherwise 

(1.1.6) 

where T is a subset of the set of non-negative integers, a(x) ? 0, 

g(8) and f(0) are positive, finite and differentiable functions of 8 

and f(8) is such that 

f(8) = Z a(x) {g(8)l x . 

XET 



8 

If g(8) equals 6 or is invertible, ( 1.1.6) reduces to the GPSD and 

if T is the set of non-negative integers, ( 1.1.6) becomes the PSD. 

It is obvious that the PSD and the GPSD are special cases of 

the MPSD. A truncated MPSD is also an MPSD. Some members of the MPSD 

class are the binomial distribution, the negative binomial 

distribution, the generalized negative binomial distribution, the 

logarithmic series distribution, the generalized logarithmic series 

distribution, the Poisson distribution and the restricted generalized 

Poisson distribution. 

1.1.4 THE LAGRANGIAN PROBABILITY DISTRIBUTIONS 

The class of Lagrangian probability distributions (LPD) was 

introduced into the statistical literature by Consul and Shenton 

(1972). These probability distributions are generated by the well 

known Lagrange's expansion. Before the introduction of this class, 

otter ( 1948) pointed out the applicability of Lagrange's expansion to 

branching processes in univariate situation. His result was later 

extended to the multivariate case by Good ( 1960). However, these 

authors seemed not to realize the usefulness of the Lagrange's 

expansion in generating discrete probability distributions. 

Let g(t) and f(t) be two analytic functions of t which are 

successively differentiable and such that g(l) = f(l) = 1, g(0) * 0, 

then under the transformation 

U = t/g(t) (1.1.7) 
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one can consider f(t) as an implicit function of u, say h(u) and 

expand it as a power series in u within its circle of convergence by 

Lagrange's expansion. It can be easily shown that the function h(u) is 

a probability generating function in u and gives birth to a new r.v. 

X whose probability distribution is given by 

Ii lax-1 
jT[atx_l {{g(t)) ' fl(t) }} 

P(X=x) = t=o 
x  T 

x0 

(1.1.8) 

where T is a subset of the set of non-negative integers. The 

probability generating function h(u) of the distribution in ( 1.1.8) 

is given by f(t) = h(u), where t = ug(t), or by 

00 h(u) f(t) x f(0) + Z {[gt}X fl(t) 

x! x 1 r-;;j:-7 
}} x_ 

t=o 

Consul and Shenton ( 1972) took f(t) and g(t) as 

probability generating functions defined on non-negative integers such 

that g(0) # 0. Consul ( 1981) pointed out that one can obtain a true 

probability distribution by removing the restriction that f(t) and g(t) 

need be probability generating functions. Thus, the class of 

Lagrangian probability distributions is widened. Consul further showed 

that the class of MPSD is a subclass of the extended class of LPD. 
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Some of the members of this class are the generalized 

negative binomial distribution, the generalized Poisson distribution, 

the generalized logarithmic series distribution, the Haight 

distribution and the Borel-Tanner distribution. Some papers have been 

published on the characteristics of this class. Among them are Consul 

and Shenton ( 1973) on interesting properties and Pakes and Speed ( 1977) 

on limiting theorems. 

1.2 THE GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION, 

Jain and Consul ( 1971) obtained the generalized negative 

binomial distribution (GNBD) by using the Lagrange's expansion. It is 

not a generalization of the negative binomial distribution in the sense 

of subsection 1.1.1 but it is to be remembered that the distribution 

encompasses not only the negative binomial distribution but also the 

binomial distribution among many other distributions as special cases. 

Since the GNBD is a member of the class of LPD and coupled 

with the fact that the binomial distribution is a special case, some of 

the earlier writers referred to this distribution as the Lagrangian 

binomial distribution. 

A random variable X is said to have a GNBD if its 

probability distribution is given by 

P ( X X fmj+,-O—x [M+Ioxj 9X  (19-  x  

- 10 

X = 0,1,2,... 

otherwise 

(1.2.1) 



where 0 < 9 < 1, m > 0 and /3 = 0 or 1 /3 ≤ 8. It reduces to the 

binomial distribution when /3 0 and m is an integer and to the 

negative binomial distribution when /3 = 1. For values of /3 > 1, it 

represents many other distributions which are very useful in problems 

of random walk, Mohanty ( 1977). 

All the moments of this distribution exist if /3 < 9. The 

characterization of GNBD by zero regression was considered by Consul 

and Gupta ( 1980). 

1.2.1 PROPERTIES OF GNBD 

THE GENERATING FUNCTIONS: The probability generating function (p. g. f. 

of the GNB distribution ( 1.2.1) is given by either 

h(u) = f(t1) = ( 1_9)n ( 1-St1)'1 (1.2.2) 

under the transformation (1-8t 1) (1.2.3) 
t1 = u 

where n > 0 and /3 ≥ 1, or by 

h(u) = 1(t) = (l-9+9t)' (1.2.4) 

under the transformation 

t = u(1-9+8t)', (1.2.5) 

when n and /3 are positive integers. 

Though, the two forms of the p.g.f. seem to be different from each 

other and makes one wonder as to what has happened to the uniqueness 
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property of the probability generating functions, but really both forms 

are equivalent to each other. If we put 

t1 = t/(1-e+et) 

in the first form of the p.g.f., it reduces to the second form of the 

p.g.f.. Thus, the two forms are identical. Also, we note that the 

p.g.f. is a function of u and not of t1 or t as it seems to be. 

In view of these remarks, any of the two forms may be used in future. 

The moment generating function (m. g. f.) of any r • v. X is 

given by 

m(T) = E[eT)]. 

Accordingly, the mg.f. of the GNB distribution ( 1.2.1) is given by 

replacing u either in ( 1.2.2) and ( 1.2.3) or in ( 1.2.4) and ( 1.2.5) 

by eU. Sometimes t may also be replaced by eT for convenience. 

Thus 

m(U) = f( eT) = 

where 

e  = eU(l_ø+OeT) j8. 

Jain and Consul ( 1971) obtained the first four moments about 

the mean by using a recurrence relation. Dyczka ( 1978) showed that the 

GNBD belongs to the PSD class. He obtained the first few moments by 

using the recurrence relation among the PSD moments. Ali-Amidi ( 1978) 
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obtained a recurrence relation among the central moments. His 

recurrence relation is similar to that of Shoukri ( 1980). 

CONVOLUTION PROPERTY: Let X and X2 be two independent random 

variables. If X1 and X have GNB distributions with parameters 

(m1, ,8, 8) and (m2, A. 0) respectively, then the sum X + X2 = X has a 

GNB distribution with parameters (m1+m2, /3, 8), (Jain and Consul 

(1971)]. In general, if we have X1, X2, ..., X GNB random variables 

with parameters (mi, 8, 8), i = 1,2,...,n, then the sample sum 

Y = X1 + X2 + •.. + X 
n 

n 
has a GNB distribution with parameters 2 m1, /3, 8 . If m. = m for 

i=l 

all i, i = l,2,...,n, then the probability function of Y is given by 

P(Yy) = "1" fnm+/3y ey ( 18)IUfl+/3YY 
nm+/3y I y .1 (1.2.6) 

RELATED DISTRIBUTIONS: The binomial distribution and the negative 

binomial distribution have both been mentioned earlier to be special 

cases of the GNBD, given by /3 = 0 and /3 = 1 respectively. 

The lost games distribution defined by Kemp and Kemp ( 1968) 

and subsequently considered by Gupta and Singh ( 1982) is a special case 

of the GNBD and it is given by /3 = 2, m = a together with a shift in 

the origin to 0. 
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The generalized factorial distribution (or the GNB beta 

distribution) with parameters k, /3 and A is obtained from the GNB 

distribution with parameters (m = A-k+l, /3, 8) through compounding, 

Jain and Consul ( 1971). 

The above authors also showed that if X1 and X2 are 

independent GNB variates with parameters (m1, /3, 8) and (m2 = rn-rn1, 

/3, 9), then the conditional distribution of X x given that 

X1 + X2 = z is a generalized negative hypergeometric distribution 

(GNIID) with parameters m, m1, z and /3. 

If m -, 0, the zero-truncated (decapitated) GNB distribution 

with parameters (m, /3, 8) tends to the generalized logarithmic series 

distribution with parameters /3 and 9. 

Let. X be a GNB r.v. with parameters (m, 8 8), mean p and 

variance o2, the standardized r.v. 

approaches the normal form as m -s 00 . This result was obtained by 

Consul and Shenton ( 1973). 

1.2.2 APPLICATIONS OF GNBD 

The GNBD has many interesting applications in various fields 

of study. Since the binomial and the negative binomial distributions 

are two of its special cases, one can easily visualize that the GNBD 
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will be applicable to those physical situatioizs which are being 

modelled not only by the binomial and negative binomial distributions 

but also by many other distributions. 

Univariate distributions associated with Lagrange's expansion 

have been considered by Consul and Shenton ( 1972) and .Jain ( 1975) and 

the multivariate cases by Consul and Shenton ( 1973), Jain and Singh 

(1975) and Good ( 1975). It has been shown that these distributions 

arise as the distributions of the number of customers served in a busy 

period of a single server queueing system under different conditions. 

In particular, suppose m customers are waiting for service in a queue 

at a counter when the service is initially started. Suppose further 

that customers arrive at the service point in batches of size /-1, in 

accordance with a Poisson process with traffic intensity A. The 

customers are served individually by a single server. The service 

times are assumed to be independent and identically distributed random 

variables and have exponential probability distributions with parameter 

M. Service times are independent of the arrival times. If 

A+p 

is the probability of arrival of a batch, then the probability 

distribution of the number of customers served before the queue first 

vanishes conforms to the GNB distribution ( 1.2.1). 

The GNBD has an important use in chemistry in the reaction 

called polymerization where the substance formed are generally 

classified into unbranched linear chains and the branched chains. A 
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chemist is usually interested in finding the size and weight of the 

formed substance after polymerization has taken place. The molecular 

sizes and weights distributions can be suitably represented by the GNB 

distributions. 

Let X(t) denote the total number of infected anywhere in a 

habitat, starting from those initially infected at t and up to the 

time of extinction of an epidemic. Kumar ( 1981) showed that the 

Lagrangian probability distributions are useful in the theory of 

epidemics and that the distribution of the r.v. X(t) belongs to the 

family of the GNB distributions. 

Good ( 1960, 1965) has shown that the class of LPD which 

contains the family of the GNB distributions and also the distributions 

of the sizes of trees in a branching process are likely to be important 

in the analysis of biological data and other areas where a branching 

mechanism is involved. In particular, the size distribution of the 

whole tree including the original individual is that of the GNB 

distribution. This multiplicative process has various applications 

especially in the study of population growth, the spread of rumours and 

the nuclear chain 'reactions. 

1.3 THE GENERALIZED POISSON DISTRIBUTION 

Let X be a GNB r.v. with parameters (m, /3, p). If p -, 0, 

m -, and 8' -+ Co such that mp = 8 and $p = A, Consul and Jam ( 1973) 

showed that the distribution of X tends to a generalized Poisson 
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distribution (GPD) with parameters 8 and A. The probability 

function of a GP random variate is given by 

fe(O+Ax),l -8-AX e /x! ; x = 0,1,2,... 
P(X=x)=P X (9,A) = 10 ; for x > k when A < 0 

(1.3.1) 

and zero otherwise where 8 > 0, -8/4 S A ≤ 1 and k is that largest 

positive integer for which 8 + Ak > 0 when A is negative. The 

variance of the above generalized Poisson distribution is greater than, 

equal to or less than the mean according as the second parameter A is 

positive, zero or negative. Both the mean and the variance tend to 

increase or decrease 'in value as A increases or decreases. Moments 

of all order exist if A < 1. 

Recently, Consul ( 1986) has shown that the GPDis generated 

by two different physical models. He gave a number of axioms for a 

steady state point process which produces the generalized Poisson 

process. 

By using the parametric transformation A = ?8, the 

distribution ( 1.3.1) reduces to the restricted model 

P(X=x) = P(8,VO) = 

to ; for x > k when < 0 

(1.3.2) 

and zero otherwise where 8 > 0, - < 0-1 and k is defined in 
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(1.3.1). The case A = 0 in ( 1.3.1) or 1° = 0 in ( 1.3.2) corresponds 

to the Poisson distribution. 

1.3.1 PROPERTIES OF GPD 

Consul and Shenton ( 1972, 1973) obtained a number of 

properties of the GPD and have shown that it belongs to the class of 

Lagrangian probability distributions. 

GENERATING FUNCTIONS: The p.g.f. of the distribution ( 1.3.1) is given 

by 

where 

h(u) = f(t) 8(t-1) e (1.3.3) 

t u e t_1). (1.3.4) 

The m.g.f. is obtained from above by replacing u by eU. Thus, we 

have the m.g.f. as 

where 

m(U) = f(t) = e6 (t 1) 

t = t_1) e . 

CONVOLUTION PROPERTY: The GPD has been shown to possess the important 

convolution property. Thus, the sum of two independent GP random 

variates with parameters (81,A) and (92,A) is itself a GP random 

variate with parameters + 82, A). In general, the sum 
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Y=x 1 +2 x +...+ x 

of n independent GP random variates with parameters ( 9., A), 

i 1,2,...,n is also a GP variate with parameters [Z 8., AJ. In 

particular, if all the 8's i = l,2,...,n are equal to 8 we obtain 

a GP variate with parameters (nO, A) and its probability function is 

given by 

P(Y=y) = n8(n8±Ay)' 1 e -n8-Ay /y! (1.3.5) 

RELATED DISTRIBUTIONS: When A = 0 in ( 1.3.1) or ? = 0 in ( 1.3.2), 

these distributions reduce to the Poisson distribution. By putting 

'P = A 1, 9 = A4 in ( 1.3.2), we obtain the Borel-Tanner distribution. 

Let X be a GP variate with mean i and variance a2, 

Consul and Shenton ( 1973) showed that the standardized variate 

a 

tends to a standard normal form as 9 increases without limit and A 

takes a specified value in the interval ( 0.0, 0.5). These authors also 

showed that if 8 -, , A -, 1 such that 8(1-A) C2A, where C is a 

constant, then the standardized random variable Z tends to inverse 

Gaussian distribution with parameter C. 

Consul ( 1986) showed that the limiting distribution of a 

quasi-binomial distribution based on urn models is the GPD. 
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1.3.2 APPLICATIONS OF GPD 

The GPD models have been used to describe natural phenomena 

where the parameter of the Poisson distribution is taken to be a linear 

function of the number of occurrences. Thus, the conditions of the 

experiment do not remain constant in time and the number of events in 

any interval is a function of the number of events which have already 

taken place. 

The GPD is used to model the number of customers served in 

the busy periods of some queueing systems. If the initial number k 

of customers is a Poisson r.v. with mean 8 per unit service interval 

and the subsequent arrivals are also Poissonian with mean A per unit 

service interval, then the probability distribution of the number of 

customers served in the first busy period [Consul and Shenton, 1973] is 

given by the GPD in ( 1.3.1). 

The GPD model is useful in the theory of branching process. 

As a member of the LPD class, it is the distribution of the total 

progeny in a Galton-Watson branching process. 

Janardan and Schaeffer ( 1977) have used the GPD models for 

the analysis of chromosomal aberrations in human leukocytes. They 

assumed that the number of aberrations per cell follows a Poisson 

distribution with mean rate 8 and the number of aberrations 

undergoing healing is random and also Poissonian with parameter A. 

According to them, some of the induced aberrations may not be healed 

immediately and may form a queue of aberrations awaiting restitution. 
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Therefore, the frequencies of induced aberrations will be modified by 

restitution and the probability distribution of the number of 

aberrations awaiting restitution is given by the GPO in ( 1.3.1). Their 

statements were strongly supported by the results of fitting the GPO 

model ( 1.3.1) to about 90 different sets of experimental data. They 

discovered that the fits by the GPO model were better than any other 

known distributions considered in the literature. Also, they were able 

to give reasonable interpretations to the two parameters B and A. 

1.4 THE GENERALIZED LOGARITHMIC SERIES DISTRIBUTION 

Jain and Gupta ( 1973) considered a generalization of the 

logarithmic series distribution through Lagrange's expansion and 

obtained the probability function of the generalized logarithmic series 

distribution (GLSD) as 

- 1 (01 -e (1 8y8X_XP(Xx) - x  /{- n(1-8)} (1.4.1) 

for x = 1,2,3,... and zero otherwise where /3 ? 1 and 0 < 0 < /31• 

The logarithmic series distribution is a special case of the GLSD and 

it is obtained when /3 = 1 in ( 1.4.1). 

As a matter of fact, little has been done on this family of 

discrete distributions. We now give some properties and applications 

of the GLSD model. 

The p.g.f. of the distribution (1.4.1) is given by 



- 22 - 

h(u) = f(t) = n(1-8t)/n(1-8) 

where 

t = u(1-9) 1 (1-Ot) 81 . 

From ( 1.4.2) and (1.4.3), we obtain the m.g.f. as 

f( eT) = n (1_9eT)/ n (1_O) 

where 
T 
e = 

e)/3 1 T -/3+1 1 - (l-8e) 

(1.4.2) 

(1.4.3) 

Gupta ( 1976) showed that if each X, i = 1,2,...,n is a GLS 

variate with parameters ( 9,/3), then the distribution of the sample sum 

Y = X1 + X2 + •.. + X 
n 

is given by 

P(Yy) = n!(_1)Y1l 1k1 [_/3Y+Y_l 0Y(1_6)$YY 

k n-1 y-k-1 I {_ (1_0) } fl 

(1.4.4) 

where S is defined as Stirling number of the first kind and itis 

given by 

= IRT Dr (X)kj 

1 
n! 

dn 
dx 

1k lu ll (x_i+1)1] . (1.4.5) 

= Jx=o 

Among the related distributions of the GLSD is the GNBD which 

is mentioned in section 1.2. Under certain conditions, the GLSD is 

generated by the zero-truncated GNBD. 
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CHAPTER II 

UNIMODALITY OF GENERALIZED DISCRETE DISTRIBUTIONS 

•2. 1 INTRODUCTION 

The property of unimodality plays an important role in 

statistical estimation. The problem of density estimation has been 

considered by many authors. Notably among them are Robertson ( 1967), 

Prakasa Rao ( 1969) and Wegman ( 1970a, ' 70b, ' 72). It has been shown 

that the method of maximum likelihood estimation can be used to 

estimate a unimodal density. This maximum likelihood estimator has 

been shown to be consistent. Although these results were proved for 

the field of continuous distributions, the maximum likelihood 

estimation method can also be used to estimate a discrete probability 

function. 

Cryer and Robertson ( 1975) considered the isotonized estimate 

of the probability of extinction of a branching process. They obtained 

the offspring distribution estimate by assuming that the distribution 

was unimodal. This estimate was also shown to be consistent. 

Barndorff—Nielsen ( 1976) applied the property of unimodality 

to the theory of plausibility inference. 
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The property of discrete unimodality can also be of interest 

in connection with optimization. This property is very important for 

many decomposition problems of probabilistic and statistical nature as 

indicated in the well known book by Medgyessy ( 1977). 

A discrete probability distribution fp I is said to be 

unimodal if there exists at least an integer M such that 

and 

P x ?: x-1 P for all x M (2.1.1) 

P x+l x P for all x M. (2.1.2) 

Keilson and Gerber ( 1971) have defined the strong unimodality of 

discrete probability distributions, have proved a number of results on 

the strong unimodality of discrete distributions and have shown that 

the binomial distribution, the negative binomial distribution and the 

Poisson distribution are all strongly unimodal. A necessary and 

sufficient condition that the sequence frX} be strongly unimodal is 

P2 / P P 
x  x+1 

(2.1.3) 

for all values of x. 

The GLSD model given by ( 1.4.1), the GNBD model given by 

(1.2.1) and the GPD model given by ( 1.3.1) do not satisfy the property 

(2.1.3). For the GLSD, we have 
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P2 
2 3  F(28) 1(248) 1(13) 1(313-2)  

Pi P3 2 1(248-1) 1(2/3-i) 1(13) 1(348) 

- 3 (28-1)(2/3--1)  
(38-l)(3$-2) 

which can be easily shown to be a decreasing function of 8. 

Hence 

P 3  (2/3-l)  

P1 P3 /3-si ' (3$-i)(38-2) 

3 
- 

< 1. 

For the GNBD, if 0 < m < /3, we have 

P2 
1 -  2m  

P0 '2 m+2/3-i 

< 1. 

For the case of the GPD, it can be easily seen that if 8 < 2A, 

- 28 2 

P0 P2 8(9+2A) 

29 
8+2A 

<1 
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and accordingly the condition (2.1.3) for strong unimodality does not 

hold even for x = 2 in the case of GLSD and x = 1 for the GNBD and 

the GPD. 

In section ( 2.3), we shall prove a theorem on the unimodality 

of the GLSD. 

In sections (2.4) and ( 2.5), we shall show that the GNBD and 

the GPD belong to the class of discrete self-decomposable distributions 

studied by Steutel and van Ham ( 1979) and then prove that they are 

unimodal. 

2.2 SOME PRELIMINARY RESULTS 

We shall state two important results here for ready reference 

whenever necessary. 

Lagrange's expansion: Under mild conditions of successive differenti-

ability of the functions 1°(t) and f(t), and when ?(0) * 0, 

Whittaker and Watson ( 1927) have given the Lagrange's expansion [see 

page 133] as 

00 k f [rk(x)1k-1 
f(t) = f(0) + Z 

k=l 
x0 

where t and z are related by 

t = z °( t) 

(2.2.1) 
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Steutel and van Ham's results. 

Result 1: A p.g.f. is discrete self-decomposable iff it has the form 

f(t) = exp {_ oJ 1-0(u) du} (2.2.2) 

where 8 > 0 and 0 is a p.g.f. with 0(0) = 0. Equivalently, f(t) 

is discrete self-decomposable iff 

f(t) = exp R(u) du} (2.2.3) 

where R(u) = Z r1 u1 with r1 ? 0 and r is non-increasing. 

00 1 
Also, Z r. ( i+l) 

1=1 

< 00 . 

00  
Result 2: Let fp be a probability distribution on the non-negative 

integers with p.g.f. 0(z) satisfying, 

CO 

log G(z) = R(z) = Z rk z k 
dz k=0 

00 

(2.2.4) 

where the rk, k = 0,1,2,... are all non-negative. Then P 1 is 
xJ'0 
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unimodal if 1r 1 is non-increasing, and fP is non-increasing if and 
11 

only if in addition r0 1. 

2.3 UNIMODALITY OF GLSD 

THEOREM: The GLSD defined in ( 1.4.1), is uniinodal for all values of 9 

in 0 < 8 < /31 and of /3 ≥ 1 and the mode is at the point x = 1. 

PROOF: Since the unimodality of the logarithmic series distribution 

(/3=1) is well established (Johnson and Kotz, 1969), we shall consider 

the unimodality of GLSD for /3 > 1. Let the mode be at the point x = M. 

For the mode of the GLSD to be at point •M = 1, we must show that 

P x-I-1 < P x •for all x 1,2,3..... 

Now, 

-  /3x  r(/ix-i-/3+l)x! r(/3x-x+l) 8(l_8)'31 

/3(x+l) (x+l)! r[(fl-l)(x+l)+l] f'(/3x+l) 

x r(/3x+/3+l) F(/3x-x+1) (2.3.1) 

Since 8(1_8)11 is an increasing function of 8 and 0 < 8 < /3l we 

have 

x  F(/3x+/3+l) r(,8x-x+l)  1 [1 - l]/3 1 
(x+1)2 r{(/3-l)(x-I-l)+l] F(/3x+l) . (2.3.2) 
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When x = 1, 

1  r(2/3+1) r(/3) 1 (] - 11/31 

1( 2/3- i) r(8+1) I J 

- 1 2/3 ( 2/3-1) 1 

- 4 /3 /3 

/3-1 

/3-i 

< 1 for all /3?1. 

From the above, we observed that P x+i /x P < 1 for x = 1. We now 

consider the ratio in general. 

From ( 2.3.2), we obtain 

x  1 /3_11/31  (/3x+$)! (/ix-x)!  

(x+1) [ j (/3x)! (/3x+/3-x-1)! 

=  x  1 (/3x+$)(/3x+/3-1)(/3x+/3-2) .(/3x+1)  

(x+1) 2 /3 J (/3x-x+/3-1)($x-x+$--2)' (/3x-x+1) 

I /3x+/3-i  
1J3x-x+/3-i 

fi +  x  
/3x+$-x-i 

1/3J I /3x+/3-x-/3+ij 
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- x 1$11 6-1 ax-i-i 1/3_i 

x-i-1 L /3 J L8x+i-xi 

- i+—, I 1 /3(/3x+l-x) if 

- x f/3(/3x+i)-/3x-11 1 
jjr j /3(/3x+1)-/3x if 

< 1. 

Therefore, the GLSD is imimodai with its mode at the point M = 1. 

2.4 UNIMODALITY OF GNBD 

THEOREM: The GNBD, defined in ( 1.2.1), is unimodal for all values of 

M, B and /3 given in section 1.2. 

PROOF: Since the unimodality of the binomial distribution and of the 

negative binomial distribution is well established [Keilson and Gerber, 

1971], we shall consider the unimodaiity of GNBD for /3 > 1 only. 

The p.g.f. of the GNBD is given by ( 1.2.2) and ( 1.2.3) as 

where 

Now, 

G(z) = P(X=x) z = (19)m ((l1-0t), (2.4.1) 
x 0  

0-1 
t = z(l-9 (l-9t)' 1. 

.G(z) = exp{ n [(l_O)m'(l_Ot)m]} 

(2.4.2) 
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= expmn[(1-8) - mn(1_8t)}} 

=exP (m[.n(l8) - 

1 

li - j mO 1 exp1 1-8u du5 

t 

which is equivalent to (2.2.3) with 

- inS 
R(u) l-8u 

i+1 
Thus r. = m8 

1 

Clearly, r ≥ 0 and also 

r1_1 me i 
-1>1 

r2. . me i+1 8 - 

00 
i+l I 

= Z inS u. 
i=0 

since 0 < 8 < 1. 

That is, r. 2:r. for i = 1,2,3,..., therefore the rs are 
:i. 

non-increasing and by using Result 1, the GNBD belongs to a 

self-decomposable class. 

From (2.2.4) and (2.4.1), we obtain 

log G(z) - mU dt 
Ui 1-et E (2.4.3) 



32 - 

In order to obtain (2.4.3), we use the Lagrange's expansion on 

log G(z) = In log(l-8) - in log(1-8t) 

by taking f(t) = log G(z) and 

= (i_8)/31 ( l-9t)'1. 

Thus, we get 

00 (-0)1 __ 

log G(z) = mio(i_8)_mO+ k=l z ] i0tJ .QQ 

00 k (fr4)k J {d k-i (1-Ot ) —18k+k—1 1 
= miog(i-0)+m0 z (19) 1 Jt=o 

k=l 

ook 
mlog(l-0)+m0 Z z (10) 1)k (/3k—k+l)(/3k—k+2)(/3k—k+k—l) 

k=l 

00k 

= mlog(1-0)+m Z 8' --  ( 1...9)/3kk (/3k-l)($k-2) '(/3k-k+l) 

k=i 

00k 
= miog(l-0)+m Z E- 0k (18)/3k_k (/3k-l)!  

k=l (/3k-k)! 

On differentiating ( 2.4.4) with respect to z, we have 

00 Z k-i 
logG(z) m Z k=l (k-i)! 9k (10y8kk (/3k1)!  

- (/3k-k)! 

(2.4.4) 
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00 k k+l (18) (/31)(k+l)  (/3k-I-48-l)!  
= m Z 1T 8  

k=0 

Co 

= ni z z k 8k+i ( 18)($l)(k+l) r kF/31 
k=0  k  

from which one obtains rk, the coefficient of z in ( 2.2.4) as 

(/3 l)(k+1) rk+16_11 
rk = 9k+l (18) -  k j. 

Clearly rk, k = 0,1,2,... are non-negative. We now need to verify 

that the rfs are non-increasing. 

r  - 8(1-8) '8_1 F(/3k+/3) r(/3k-k+l)  

rk_l k F(/3k) F(8k+/3-k) 

(l 8) 1(248l) When k1, r-8 
r0 

[i - 1)48_i [2 - 

(2.4.5) 

as 0 < 8 < and as the maximum of 8(l_8)48 1 occurs at 8 = /31k 

By logarithmic differentiation, one can show that the right hand 

side of the above is a decreasing function of /3 and it is less than 1 

for all values of 48 > 1. 

In general, we consider the ratio given by (2.4.5). 
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Now, 

rk 1 f/3-i 
rki /3k 1/3 

(/3k+/3-1)! (/3k-k)!  
(/3k-l)! (/3k+/3-k-1)! 

1 1/3-fl (/3k+/3-l)(/3k+/3-2)• •( 8k+l)(/3k)  
- Fk  [ J (/3k+/3-k-l)(/3k-i-/3-k-2)• •(/3k-k+1) 

- 1/3_11/31 /3-i V+,B-k-ij 

- 1/3_11/31 
1/3 J 

11 

[i + Akto-k-il 

+  k  
/3k+f3-k-/3+1J 

[ 8k+1  1/3_i 
[j3k+l-kj 

- f/3(/3k+i) -/3k-i11 
- I /3(/3k+1)-/3k J 

< 1. 

rk 
So < 1 for all k = 1,2,3,... 

rkl 

00 

and it therefore follows that the sequence {rk} is non-increasing. 

Thus, the GNBD is unimodal. 
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Now, the value of r0 is found to be 

r0 = me (1-0)A-1 

If r0 = m8(1-8)' 1 < 1, the GNB distribution given by ( 1.2.1) 

is non-increasing and so the mode is at the point x 0. If 

r0 = inO(l-8) 3 = 1, the mode is at the dual points x = 0 and , 

as both have the same probability mass. 

2.4.1 BOUNDS FOR THE MODE OF GNBD 

For in6(1-O) = m IP > 1, the mode is at some point x = M 

such that 

  < M < u 

where u is the value of M given by the inequality 

(2.4.6) 

M2.48(/3-1)1° + M{(2,6m-m+1)? - (m+2/3-1)} + (M2-1),p > 0. (2.4.7) 

The ratio of any two consecutive probabilities of the GNBD is given by 

Px+l -  (m+/3x+/3-l)' (m+/3x+6-x+l) (m+/3x+/3-x)?  
P (m+,8x-1)• • • (m+/3x-x+1) (x+1) 

(2.4.8) 

Since x = M is the mode, by using (2.1.1) and (2.1.2), the above 
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relation gives 

- (m+M+$-l) (m+48M+8-M+1) (m+/M+/3-M)i° < i( 2.4.9) 
(m+/3M-l) (m+8M-M+l) (M+l) 

and 

PM - (m+/3M-1) (ni+$M-M±2) (m+/3M-M+l)z° > 1 
PM-1 (m+/3M-,8-l) (m+/3M--M+2) M 

Fràm the inequality (2.4.9), 

4+ 1 

which gives 

M-1 [M+AM+A-1-il 
>  m+8M-i 

> (m+f3M+$-l) 
M It-1 [m+ r.i+(-1) (1+1)1 le 
i=l I m+8M+(18-l)i j 

= (m+L3M+(,8-l)M] z° 

M >   

From the inequality ( 2.4.10), 

1 < m+/3M-1 (m+/3M-2) (m+8M-M+2) (m+flM-M+l)  
M (m+/3M-48-l) (m+/3M-fi-M+2) 

which can be expressed as 

(m+/3M-l) 'P  > (m+M-/3-l) (m+flM/32)'•• (m+flMfrM+2)  
M (m+8M-2) (m+/3M-3) • (m+48M-M+l) 

= M-1 [m+/3M-i--8+l  

i=2 m+8M-i 

(2.4.10) 
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M-1 

IT - i=2 • m+M-i 

Hence, we have 

> [1 /3-].  1 
m+/3M-M+ij 

M-2 

> 1 - (9-1) (M-2)  
m+/3M-M+1 

- m+2,8-1  
in+/3M-M+1 

(m+,8M-1)? > M(m+2/3-l)  
ml- (,8-l)M+l 

i.e. (m+8M-l)[ml-(-1 )M+1]'° > (m+2,-1)M. (2.4.11) 

The value of M satisfying this inequality will be an upper bound to 

the mode of the distribution ( 1.2.1). On simplifying the inequality 

(2.4.11), we obtain the result in ( 2.4.7). 

If M+1M = 1 and Ix+l/Fx < 1 for all x > M + 1, the 

GNB distribution has its mode at the two consecutive points x = M and 

x = M+l. 

Particular cases ( 1) When / = 0, the bounds of the mode is given by 

9(m-i-l) - 1 < M < 9(in+l) 

which is the result for the binomial distribution given by Johnson and 
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Kotz ( 1969, page 53). 

(ii) When /3 = 1, the bound in ( 2.4.6) yields 

me-1 (m-l)8 
<M< 1-8 

which is the result for the negative binomial distribution. 

2.5 UNIMODALITY OF GPD 

THEOREM: The GPD is uniinodal for all values of 9 > 0 and of A in 

o s A < I. 

PROOF: The ratio of any two successive probabilities of the GPD is 

- (9+Ax+A)C e -A 

P - x ( 9+Ax)' 1 r 
(2.5.1) 

It may be noted that P1/P0 = 8 eA whi 11 ch can be ≤ or 1 

depending upon the value of , 9, as 0 ≤ A < 1 and eA S 1. The p.g.f. 

of the GPD is given by ( 1.3.3) and ( 1.3.4) as 

where 

40 

G(z) = Z P(Xx) zx = e 
x0 

t = z et_1). 

(2.5.2) 

(2.5.3) 
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By using Lagrange's expansion on ( 2.5.3) with 1(t) = t and 

A(t-l) 
= e , we obtain 

t = z  A(t-1) 

00  
k lid k-i Ak(t-l) 1 
Z 1(0) + F 11tJ 115 

k=l 

co 

-Ak (Ak)kl 2k = Z  Q(z). 

k=1 

Now, 

G(z) = e8(t 1) 

= exp{O(t-1)} 

1 

J1-G(u) dul 
t I 

t=0 

where G(u) = u. 

(2.5.4) 

The above is equivalent to ( 2.2.2) and therefore, the GPD is a discrete 

self-decomposable distribution and Result 2 can be applied to show that 

the distribution is uniinodai. 

From (2.2.4) and (2.5.2), we have that 

log G(z) = 8 _ Q(z) 

00 {A(k+l)]k k 
= Z Be   z 

k=0 
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where rk, the coefficient of z k in (2.2.4) is given by 

-A (k+l) { A (k+l)]k 
rk=Oe k! 

We now show that the rk's are non-increasing. Obviously, rk, 

k = 0,1,2.... are non-negative. Now, 

r 
k _ e  

r k-i e -Ak [ Ak]11/(k-l)! 

A  
-A lk+l 
FF 

k 

(2.5.5) 

since {1+] ' e and i+x<e'  for all xE. 

Hence r  is non-increasing and so the GPD is unimodal for all values 
L '0 

of 6 and A by using result 2. 

Co 

When r0 = e e ≤ i, 1 P Xfo becomes non-increasing. 

Accordingly, the mode will be at ,x = 0 if 6 eA < 1 and at the dual 

-A 
points x0 and x1 if Ge = 1. 
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2.5.1 BOUNDS FOR THE MODE OF GPD 

For 0 e' > 1, the mode of the GPD is at some point x = M 

such that 

(8_eA)(e1\_2A)_l < M < u 

where u is the value of M given by the inequality 

A2M2 + M[2A8-(8+2A)e1'] + 2 > O• 

(2.5.6) 

(2.5.7) 

Since M is the mode, we use (2.1.1), (2.1.2) and the relation ( 2.5.1) 

to obtain 

and 

- (O+MA+A)M e  < i 

'M (M+l)(O+MA)M1 

- (8+MA)M1 e  
> 1. 

M-1 - M(8+MA-A)M2 

From the inequality (2.5.8), we have 

(M+l)(8+MA) M-1 > e -A (8fMA+A)M 

i.e. (M+1) e  > (8+MA)   M 
I 8+MA ] 

= (8-f-MA) 

> (e+MA) 

[1+ O+MA} 

+ MA 
I 8+MA 

= 8 + 2MA. 

(2.5.8) 

(2.5.9) 
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The above inequality gives 

M > ( O_eA)(ek_2A)l. 

By using the inequality ( 2.5.9), we get 

Thus 

(9+MA)e" > A [M-2 i -
M 6+MA] 

(M-2)A  
> - 8+MA 

- 8+2A 
8+MA 

(8+MA) 2 > M(8+2A) e'. 

(2.5.10) 

On simplifying this inequality, we obtain (2.5.7) and so the upper 

bound of the mode M is given by the inequality (2.5.7). 

Particular Case: When A = 0, the bounds for the mode are given by 

9-l<M<8 

which is the result for the poisson distribution. 
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CHAPTER III 

INTERVAL ESTIMATION IN THE CLASS OF 
MODIFIED POWER SERIES DISTRIBUTIONS 

3.1 INTRODUCTION 

A discrete random variable. X is said to have an MPSD if its 

probability function is given by (1.1.6). The mean i and variance 

of the distribution ( 1.1.6) are given by 

p - g, (8)f 
2_ - g(6)  C19p 

91 (8) 
(3.1.1) 

The problem of paint estimation in the MPSD class has been 

considered by many researchers. Gupta ( 1975) considered the maximum 

likelihood (ML) estimation for the class of MPSD. Kumar and Consul 

• ( 1979) obtained a recurrence relation for the negative, moments and used 

these results to find the exact amount of bias and the variance of the 

ML estimators for some members of the MPSD class. Kumar and Consul 

(1980) also considered the minimum variance unbiased estimation for the 

MPSD class. The estimation of probabilities in this class was given by 

Gupta and Singh ( 1982). 

The restricted GPD ( 1.3.2), the GNBD ( 1.2.1) and the GLSD 

(1.4.1) are three important families of the MPSD class. The particular 
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values of f(9), g(9), a(x) and means for the MPSD class which provide 

these three families are given in the following table. 

TABLE 3.1 

f(8), 9(8), a(x) and the mean of some modified power 
series distributions 

Distribution f(9) g(9) a(x) 

GPD 
e 
e 8  -i°9 (l+x?)'1 

9 ( l-?9 ) -1 
X1 

GNBD 
(1_9)m 9(18)/3_i ni 1fl1+/3C1 

x j me ( 1-8,0) 
m+/3x 

GLSD -n(l-9) 8 (l_9) 1 1 1/3x1  
lx J {-tn(l-O)} 

Let a random sample X1, X2, ..., X of size n be taken 

from the MPSD given in ( 1.1.6). Its likelihood function is given by 

n 
Zx. 

{g(9)} 1 fl 
L(9) = if a(x d . (3.1.2) 

i=l 

n 
The statistic Y = Z X is a complete and sufficient statistic for the 

parameter 9 and its probability function is also an MPSD which is 

given by 

P (9) = b(y) {g(9)}Y 
y 

y E (3.1.3) 

where R. = {y I y = Z x1, x1 E T}, a subset of non-negative integers 

and where 
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b(y) = 2 a(x1) a(x2) a(x), 

the summation extending over all order n-tuples (x1, x2, ..., x) of 

integers x. e T with the condition that Z x. = y is satisfied. 

3.2 CONFIDENCE INTERVALS FOR 8 IN SMALL SAMPLES 

Since the statistic Y is sufficient for the parameter 8 

in ( 1.1.6), one can equate the sum of the probabilities of the 

distribution of Y on each tail with i a. Let 8 be the lower 

bound and 9 be the upper bound of the lOO(l-a) confidence interval 

(CI.) for 8. Thus, we get the equations 

and 

00 
b(x) {g(  )}X {f()}-n = a 

y 
Z b(x) {g(9)}X  {f(8 )} n ! a. 
x0 

(3.2.1) 

(3.2.2) 

One might feel that the above sums may not exactly equal ff a as the 

sample sum Y is a discrete variate. However, for any given value of 

y, the expressions on the left hand side of (3.2.1) and (3.2.2) are 

continuous functions of 9 and accordingly, there must exist some 

values of 0 for which the equations hold exactly. In general, the 

values of 8 and 8 will be difficult to get algebraically and one 

may have to use an algorithm on a computer to get them numerically. 

Of course, the above results are very general for the MPSD 
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class and one has to put specific values of b(x), f(8) and g(8) to get 

the C.Is. We shall now apply the above results to the three important 

families of the MPSD class. 

3.2.1 APPLICATIONS 

(1) GENERALIZED POISSON DISTRIBUTION: 

The probability distribution of Y for the model ( 1.3.2) is 

given by 

P(8,8?) = n(n+?y)' 1 8" y = 0,1,2,... (3.2.3) 

By using the above distribution of Y, we obtain from (3.2.1) and 

(3.2.2) the following equations for finding the lower bound 8 and 

upper bound 8 for the parameter 0 in the GPD model ( 1.3.2). 

and 

00 k-i Ole 
-8 1k 

n(n+?k)  1e 1 1 

k=y k! n0 
e Je 

y n(n 

-8 1° k 
I Ui k18e 

-41°k)  lu  
z  k' nO 

k=0 u 
e 

(3.2.4) 

(3.2.5) 

The above equations, for known values of a, y, n and °, cannot be 

solved algebraically. A computer programme will have to be used to 
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solve them numerically and to find the values of 8 and 8 u as 

solutions of (3.2.4) and (3.2.5) respectively. Thus, l0O(l-a) 

confidence interval for 8 becomes (9, 8 U ). 

As a particular case when 1P = 0 and a sample of size 1 is 

taken, we get the results in Johnson and Kotz ( 1969, page 96) for the 

Poisson distribution. 

EXAMPLE 3.1 

We consider the following data given by Liiders ( 1934) which 

contains the frequencies of the number of deaths in 60 rail and road 

fatal accidents. The GPD model fits this data very well. The expected 

GPD frequencies by ML method are also given. 

TABLE 3.2 

Number of deaths in fatal rail and road accidents 

in Saargebiet 

No. of deaths 0 1 2 3 4 5 6 Total 

Observed frequency 20 17 11 8 2 0 2 60 

Expected GPD freq. 19.40 18.22 11.35 5.94 2.84 1.28 0.97 60.00 

= 1.38333, s 2 = 2.07090 

The method in this subsection is applied to find C.I. for the parameter 

8 assuming that the quantity 10 is known. In real life, it is hard 

to know the actual value of 10 except in some very specific 
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cases. Accordingly, to illustrate the method we shall use the ML 

estimate of z° as the known value of ?. The ML estimates of 8 and 

O in the GPD model ( 1.3.2) are 1.128826 and 0.162984 respectively. 

Now, by putting 'P = 0.162984 in equations (3.2.4) and 

(3.2.5) and by solving them for a = 0.05 with the help of a computer, 

we obtain the 95? C.I. for 0 as ( 0.90, 1.40). 

(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION: 

The distribution of the sample sum Y is given by ( 1.2.6). 

By using the distribution of Y in (3.2.1) and (3.2.2), we obtain 

and 

00  run  fnm+/k 1131k 1 

ky nm+8k 1. k j  a 
(3.2.6) 

(1-0 
nni fnm+/3klju u J  

k=O nm+/3k I. k J (1-8 - - a. (3.2.7) 

Again, it may not be possible to solve the above two equations 

algebraically. One will have to solve them iteratively by using a 

computer programme. Thus one obtains the lOO(1-a) confidence bounds 

8 le from equation (3.2.6) and 8 from equation (3.2.7). 

When /3 = 0, the above equations correspond to the results in 

Johnson and Kotz ( 1969, page 58) for the binomial distribution which is 

a particular case of theGNBD. For /3 = 1, equations (3.2.6) and 

(3.2.7) reduce to 
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00 
+k-11 k I nm k j 8 ( 1-8)' = a 

and 

k-01
 fnm+k-l} 9k ( 19 ) fllfl - 1 
k u u - 

a 

respectively. These are the corresponding results for the negative 

binomial distribution. 

(iii). GENERALIZED LOGARITHMIC SERIES DISTRIBUTION: 

The distribution of the sample sum is given by ( 1.4.4). By 

applying this distribution to equation (3.2.1) and (3.2.2), we get 

n-i 

- x-k-1 ISk I 1- x-k-1 J 
x+x-11  /3-it 

(1 

00 
n! ______ 

- z ) 
k! I x=y kn-1 - a (3.2.8) 

y x n-i1 18 (1-9 
(1) X_k_1 18k ' 1-flx+x11 1 u u 5  

-  1 
k! I x-k-1 J x0 x kn-1 {_ n(l_9u)}n a. (3.2.9) 

As in the previous cases, equations ( 3.2.8) and (3.2.9) are solved 

iteratively with the help of a computer programme to obtain 8 and 

° respectively. The quantities 8 and 8 are the respective lower 

and upper 100(1-a)% confidence bounds for the parameter 8 in the 

GLSD. 

When 8 = 1, equations (3.2.8) and (3.2.9) reduce to 



- 50 - 

co nt Isni ex 
x  

X1 x=y-tn(I-8 
- a 

and 

ISI o 
x u  

x0 X. 

respectively. These are the corresponding results for the logarithmic 

series distribution which is a particular case of the GLSD. 

3.3 CONFIDENCE INTERVALS IN LARGE SAMPLES 

When n is large the distribution of the sample sum Y, 

which is also a modified power series variate as indicated in ( 3.1.3), 

converges stochastically to a normal distribution with mean My and 

variance 4 by the central limit theorem. The mean and variance of 

Y are given by 

n 4 = ra2 

where i and a2 are defined in (3.1.1). Therefore, 

w = 
a 

has a limiting distribution that is normal with mean zero and variance 
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unity. We also know that S2, the variance of a random sample of size 

n ≥ 2, given by 

S2 = (n-l) 1 (X-) 2 
i=l 

converges stochastically to a 2 . Hence, 

z=   W -   

(S2/a2)'/2 S 

has a limiting distribution which is standard normal. Therefore, the 

100(1-a)% C.I. for 6 can be obtained by using the above. Thus we 

have 

<   < 
S a/2f 

=P1X-z S//i<p<X+z a a/2 /2 

By using the value of p given by ( 3.1.1) in the above result, we 

obtain 

- g(0)f'(B) - 

<X+z S/in 1-a = - z siI a/2 ,iii < g'(6)f(8) a/2 -}• (3.3. 1) 

Quite often when specific values of g(8) and f(8) are available, it 

is possible to solve the inequalities in the above probability for 8 
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and to re-express equation (3.3.1) in the form 

1-a = Pfe < 8 < (3.3.2) 

where 8 and 8 are the lower and the upper lOO(l--a) confidence 

bounds for 8 respectively. When one cannot do this simplification, 

one has to get the values of 8 and 0u numerically with the help 

of a computer programme. 

3.3.1 APPLICATIONS 

We now apply the above result to the three important families 

of GPD, GNBD and GLSD. 

(1) GENERALIZED POISSON DISTRIBUTION: 

We substitute the mean of GPD from Table 3.1 in equation 

(3.3.1). Thus we have 

- z 1-a = 8 < X+ S/In a/2 810 - z S/.Jfl < 1 a/2 f 

I a/2  < 8< s,.jI +za/2 s/.fi -I I 
11+1°(X-z 1-I-10(-I-z,2S/.Ji)J I. 

Hence, the 100(1--a)% C.I. for 8 in GPD is 
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I -z s/In +z s/./i 1 

'l+°( -z /2s/.J) l-4i0(+z,2s/.Ji)J I a 

(3.3.3) 

EXAMPLE 3.1 CONTINUED: 

We now use the data in example 3.1 to find the approximate 

95% C.I. for the paramater 9. The value of r is taken as 0.162984 

which is the ML estimate. The mean and variance of the data are given 

by 1.38333 and 2.07090 respectively. From (3.3.3), the lower bound for 

B is 

XZ,2 SA/fl 

1+? ( xz /28/*/fl) 

'I 

1.38333 - 1.96 (2.0709/60) /2 

1 + 0.162984 [ 1.38333-1.96(2.0709/60) /2] 

- 1.019197 
1.166113 

= 0.87. 

In the same way, the upper bound for U is 

o = 1.36. 
U 

Hence the approximate 95% C.I. is ( 0.87, 1.36). 
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(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION: 

For the GNBD, we apply its mean given in Table 3.1 to 

equation (3.3.1). This gives 

- - 

1-a - P1X - - z S//n < Om < X + z S/.Ji} 1 a/2 1-9/3 a/2 

= pJ XZa /2S// < e <  +z12S/./i 1 
m+/3(x+Z 12S/.ic)J 

Therefore, the 100(1-a)% C.I. for 8 in GNBD is given by 

XZ,2 5/.Jn + Za /2S /J I. 
(3.3.4) 

(iii) GENERALIZED LOGARITHMIC SERIES DISTRIBUTION: 

We now consider the case of GLSD. By using the value of 

from Table 3.1 in equation (3.3.1), we obtain 

i = Pf - < e(l9/3)  < X + z s/ }.(3.3.5 

{-n(1---8)} a/2 

It is not an easy task to express (3.3.5) in the form of ( 3.3.2). 

However, one can obtain 8 and 8 by solving the following 

equations. 
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and 

8(l_88) 1 
- x - z s/./ 

{-n(l-8)) 

 - 
  - x+z a/2 ss//..,,//nn.. 

(3.3.6) 

(3.3.7) 

Equation ( 3.3.6) and ( 3.3.7) are solved numerically by using iterative 

procedure to yield 8 le and 8u respectively. 

Consider the left hand side of the above equations and let 

R - 8(l8/3Y1  

51-0/3 
dR = (1-88){-n(l--9)} - 811-8 +  

dO (l_048)2 {-en(le))2 

(l_88) 2 { n (l_8)} 2 

> 0, as 1 - 8i3 < 1 - 8. 

Therefore, R is an increasing function of 8. As urn R = 1, the 
8-iO 

lowest value of R is 1. Also R -* 00 when 8 -, j11. Thus, the left 

hand side of equations (3.3.6) and (3.3.7) can take all values from 1 

to 00. Accordingly, the equation ( 3.3.6) will have no solution if 

x - z s/.Ji<l, will have 8O if x - z s/.Jil and  
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unique value of 8 when x - s/.Jn > 1. Similarly, 0 will 

exist as a unique value when x + z 12 s/./ > 1. 

3.4 UNIFORMLY MOST ACCURATE CONFIDENCE BOUND 

We assume that the function g(8) is a monotone function of 

0. This assumption does not create any handicap as all the members of 

MPSD class, considered in section 3.1, satisfy this assumption. In 

fact, g(9) is an increasing function of 8 in all the three families 

of GPD, GNBD and GLSD. It can be shown that there exists a uniformly 

most powerful (lIMP) level a test for hypotheses of the form 

0 = 00 (known) against 

II: 8-B > 8 
a 1 0 

in the class of MPSD. We obtain a uniformly most accurate (UMA) 

confidence bound for the parameter 0 by using the critical region for 

the lIMP test. 

By using Neyman-Pearson theorem, C is the best critical 

region of size a if 

L(81) - J(81) Jf(eo)ln 
L(0 0) (00)J •t°lJ > k 
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for (x1, x2, ..., x) E C where k is a constant. Thus, on taking 

logarithms of the above 

_____ iii 
Z X..1Ojg(9)J > lo [f(8)j f 

1 
i=1 

Since g(8) is an increasing function of 0 in all the families 

considered we have that 

I 1f(01)11 _____ 

Z X. > lo 1=1 1 k[f(o)j / lo 1g(e)f = 

and so 

n 
Y = Z X.> k. 

1=1 1 

- The critical region C is given by 

...,x) : Y>k*} 
n 

where k* is determined from 

a = PJY > k* I H0} (3.4.1) 

if randomization is ignored. By using the probability function of Y 

in (3.1.3), we obtain 

00 
a b(x) {g(90)})C {f(80)} 

,k +1 
(3.4.2) 
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Let the value of k* obtained from (3.4.2) be k 0'When n is small, 

k0 can be determined from equation (3.4.2) by using a computer 

programme after the values of b(x), g(80) and f(80) are substituted 

from Table 3.1. Since randomization is ignored, we choose that 

smallest value of k* as k0 for which the right hand side of (3.4.2) 

is a. However, if n is large, normal approximation can be used to 

determine k* from (3.4.1). 

The UMP size a test is to reject H0 if Y > k0. On 

taking its expectation we have 

ng(9)f'(0) > 
g' (8)f(8) k0 

Hence the corresponding 100(1-a) liMit upper confidence bound for 8 is 

given by 

1-a P8 8 
uf 

where 8 u is the solution of equation 

ng(0)f'(8) - k 
g'(e)f(e) - 0. 

(3.4.3) 

(3.4.4) 

Sometimes one may not be able to solve equation (3.4.4) 

through ordinary algebraic manipulations. In such circumstances, 

numerical solutions can be obtained through iteration with the help of 

a computer programme. 
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3.4.1 APPLICATIONS 

We now apply the above procedure to the GPD, GNBD and GLSD 

families. 

(i) GENERALIZED POISSON DISTRIBUTION: 

By using the mean of GPD from Table 3.1 in ( 3.4.4), we have 

____ 1 

1-9? - 1tQ 

k0 
which gives 9 = 

n+?k0 

Thus, the lOO(l-a)% UMA upper confidence bound for the parameter 9 is 

l-a=P{O< 1c 
- 

(3.4.5) 

(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION: 

For the GNBD, we use ,i in Table 3.1 to obtain from (3.4.4) 

the equation 

nmO 
l-88 k0. 

On solving for 8 in the above equation, we get 

8   
- nm+$k0 
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and so the 100(1-a)% UMA upper confidence bound for the parameter 8 

in GNBD is given by 

l-a - P{8<  k- - nm+/3k05 (3.4.6) 

(iii) GENERALIZED LOGARITHMIC SERIES DISTRIBUTION: 

In the case of GLSD, the value of p from Table 3.1 is used 

in equation (3.4.4) to obtain 

no (1-80 -  

{-Ln(l-8)} - Ic0. 

The above equation is solved numerically for 8. As shown in section 

3.3, the left hand side of the above equation is an increasing function 

of 8 and the equation will have a unique solution if n - k  < 0. 

Thus, the lO0(l-a)% UMA upper confidence bound for the parameter 8 in 

GLSD is given by (3.4.3) where 8 is the solution of the above 

equation. 

By considering the dual hypotheses problem H0: 9 

against H. 8 = l < 80, one can obtain a liMit lower confidence bound 

for the parameter 8 in each of the above three families of the MPSD 

class. This can be done by reversing all inequalities in the procedure 

for liMit upper confidence bound. 
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CHAPTER IV 

ESTIMATION IN SMALL SAMPLES 
FOR GENERALIZED POISSON DISTRIBUTION 

4.1 INTRODUCTION 

The GPO model having two parameters 9 and A is given by 

(1.3.1). The restricted model is also provided by ( 1.3.2). Since the 

introduction of the GPD model, a large body of literature, mainly on 

its interesting properties, point estimators and applications has 

developed. [See the work of Charalambides ( 1974), Gupta ( 1977), Kumar 

and Consul ( 1980) and Consul and Shoukri ( 1984, ' 85)]. 

There is no two dimensional sufficient statistics for either 

of the two parameters (8,A) in the GPD model ( 1.3.1) or ( 9,i°) in the 

restricted GPO model ( 1.3.2). It is only in the model ( 1.3.2) that the 

n 
sample sum Y = Z X is a complete and sufficient statistic for the 

i=l 

parameter 9 when ? is assumed known. 

We consider the problem of interval estimation of the GPO 

model under the following headings: 

(i) when one parameter is assumed known 

(ii) inference on a single parameter when both parameters are 

unknown and 
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(iii) inference on both parameters. 

When none of the parameters is known, it is not an easy task to obtain 

a confidence interval (C.I.) or a confidence region (C.R.) for any or 

both of the parameters in a small sample. This problem will be 

considered under plausibility inference. 

We assume that a random sample X1, X2, ••• Xn of size n 

is taken from a discrete population with generalized Poisson 

distribution. The likelihood function is 

n 
L(0,A) = fl P x. (0,A) 

i=l 1 

'C -1 
e -n(0+A) ii [[o+ 1] 1(x1)!]  9  

i=l 

for the general model ( 1.3.1) and 

n 
e L(0,8') = e nx -n8(l+Y'x) if  1 /(x.1 )!] (4.1.2) •1 [(i+rxij 

1=1 

for the restricted model ( 1.3.2). Through out this chapter, the 

parameter space for A in the GPD model ( 1.3.1) and for 1" in the GPD 

model ( 1.3.2) will be restricted to ( 0,1) and (0, 8_i) respectively for 

the sake of convenience. Thus, the negative parts of the domains of A 

in ( 1.3.1) and of ? in ( 1.3.2) are ignored. We obtain two sided 

confidence intervals and likelihood intervals as well as the likelihood 

regions for the parameters of the GPO model. 
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4.2 CONFIDENCE INTERVALS FOR A SINGLE PARAMETER 

Suppose one of the parameters of the GPD model is known. 

Given a small sample, we use 1-a confidence level in such a way that 

the total probabilities on each tail of the GPO model are a/2. 

CONFIDENCE INTERVAL FOR 8 OR 1' IN MODEL (1.3.2): 

Suppose that the parameter A in GPO model ( 1.3.1) is a known multiple 

of 8. The parametric transformation in model ( 1.3.1) yields the 

model ( 1.3.2) with a known parameter V = ?. To set C.I. for the 

unknown parameter 8, we make use of the sample sum Y = Z X, which is 

a complete and sufficient statistic for 8. This problem is similar to 

the one considered in subsection 3.2.1 and will therefore not be 

repeated here. 

Suppose we want to set C.I. for r when 8 is known to be 

80, we use the sample sum distribution given by (3.2.3). The l0O(1-u) 

confidence bounds for r can be obtained by solving the following 

equations for 1' and 10 
U 

-9 (n+? x) 
X-1 X. 0 e 1 

Z n(n+1°x) 86 e = ff  a (4.2.1) 
x=y 

and 

X-1 Z n(n+V x) -e (n+V x) e 0 U a. (4.2.2) 
xO 

It is very hard to get specific values of 10 in (4.2.1) and in 

(4.2.2) algebraically but the equations can be solved numerically on a 
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computer. We have seen through many examples that these equations give 

unique values every time. In general, for a given value of i°, the sum 

of the probabilities in (4.2.1) and (4.2.2) need not add up to a, 

however, for a fixed Y = y, the expressions in (4.2.1) and (4.2.2) 

contain continuous functions of ? and accordingly exact values of 'P  

can be obtained to satisfy these equations. Let r and r be the 

numerical values of 'P given by equations (4.2.1) and (4.2.2) 

respectively. The C.I. for 'P is given by ('Pe, ?). 

CONFIDENCE INTERVAL FOR 8 OR A IN MODEL ( 1.3.1): 

If A is not a function of 8 and it is a known quantity in the GPO 

model (1.3.1) and we want to find C.I. for the parameter 8, we may 

still use the above procedure. The main difference will be that the 

expressions will be slightly more complicated and the C Is. will be 

generally wider than those obtained from (4.2.1) and (4.2.2) because Y 

is not a sufficient statistic for 8 any more. For this case, we 

solve the following equations for 8 and 

and 

(n8e+Aox) 
Z n8e (no e+AOx) Cl e /x! 
xy 

1 
(4.2.3) 

y -(nO +A x) 
1 

Z no (no -I-A x)' 1 u   e /x! = a. (4.2.4) 
x0 u u  

The solutions 8 of equation (4.2.3) and 0 of equation 

(4.2.4) will give the lOO(1-a)% C.I. for B as °' On). 

The previous claim of wider C.I. was verified by simulating a 
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number of pseudo-random samples, each of size 40, from the GPD models. 

Both methods were used to obtain C.Is. for 8 and, in general, the use 

of equations (3.2.4) and ( 3.2.5) gave shorter C.Is. than the formulae 

(4.2.3) and (4.2.4). 

When the point ML estimate of 8 is more than 10, we can 

obtain a sharper C.I. for 8 by using the property of normal 

approximation. This property was given by Consul and Shenton ( 1973) 

who showed that the GP variate approaches a normal variate if 8 is 

very large. Thus we have that 

a 

is approximately normally distributed with mean zero and variance 

unity. The approximate 100(1--a)% C.I. for 8 is obtained by assuming 

that the sample mean X is normally distributed. We note here that 

this assumption of normality does not depend on the sample size n. 

We now assume that the parameter 8 is known and it is equal 

to 8. Then 8 is replaced by 80 in the equations (4.2.3) and 

(4.2.4) and A0 in (4.2.3) and (4.2.4) is replaced by A. The two 

equations are solved numerically on a computer to obtain the values of 

and A from (4.2.3) and (4.2.4) respectively. These two values 

become the boundaries of 100(l-a)% C.I. for the parameter A. 

EXAMPLE 4.1 

We consider the data for example 3.1 and for convenience, the 
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table is partially reproduced here. 

No. of deaths 0 1 2 3 4 5 ≥ 6 TOTAL 

Observed freq. 20 17 11 8 2 0 2 60 

The method in this section is applied to find C.I. for the parameter 9 

when the parameter A is known. Since it is hard to know the actual 

value of A in a real life data, we shall use the ML estimate of A 

as the known value A0 of A. The ML estimates of 9 and A in the 

GPD model ( 1.3.1) are 1.128826 and 0.183981 respectively. 

Now, by putting A0 = 0.183981 in equations (4.2.3) and 

(4.2.4) and solving these equations numerically, the 95% C.I. for 9 

is found to be (0.85, 1.46). ' The two bounds are quite close to the 

value 1.129. In the same way, we use equations (4.2.3) and (4.2.4) to 

determine the 95% C.I. for A, this yields (0.0, 0.43). From example 

3.1, the ML estimates of 9 and 1° in the model ( 1.3.2) are 1.128826 

and 0.162984 respectively. By putting 8 = 1.128826 in equations 

(4.2.1) and (4.2.2) and solving them for a = 0.05 with the help of a 

computer we obtain the 95% C.I. for IP as ( 0.0, 0.38). 

By comparing the C.I. for 9 obtained here with the one 

obtained in example 3.1, it is easy to note that the C.I. from the GPD 

model ( 1.3.2) is shorter. From this result and our empirical 

simulation results, it seems as if an interval based on a sufficient 

statistic is shorter than the one without a sufficient statistic. 
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4.3 PLAUSIBILITY INFERENCE 

Plausibility inference is the use of likelihood functions to 

examine the parameter space and to determine which values of the 

parameters are likely (plausible) and which are implausible on the 

basis of the given data [See Kalbfleisch, 1979 page 20]. It is an 

exact statistical inference since it does not require mathematical 

approximation on the basis of large sample size n. By this procedure, 

likelihood statements can be made on the parameters of a distribution. 

By using the likelihood function in (4.1.1) and with 

parameter A known, the likelihood ratio for 00 versus 01, where 80 

and 81 are distinct, is 

L(80, A) 

If L > 1, one can say that 8 0 is a more plausible value of the 

parameter 8 than the value 81 since the data are more probable for 

8 = 8 than they are for 8 = 81. For instance, if 1 3, then 80 

is thrice as plausible as 8l in the sense that the data are thrice as 

probable if 80 is true than if 8 is true. 

When both parameters 8 and A are unknown, the likelihood 

function is standardized with respect to its maximum to obain the 

relative likelihood function as 

H 8 - L(8,A) (,A) 
L(8 , A) 

(4.3.1) 

where 6 and A are the ML estimates of 8 and A respectively. 
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Since R(8,A) ranks the plausibilities of the values of 9 and A 

with respect to the most plausible values 0 and A, we infer that 

0 S R(8,A) ≤ 1 for all (8,A) in the parametric space. The likelihood 

ratio for °' A0) versus (9,A) becomes 

R - L(00, A0) 
(60, A0)  

L(8, A) 

If R(80, A0) is small (e.g. R(00, A0) ≤ 0.1), it implies that the 

pair (9, A0) provides simultaneously implausible parametric values 

and there are other values of (8,A) for which the data are ten times 

more probable. If R(80, A0) is large (e.g. R(90, A0) ≥ 0.6), the pair 

(80 ' A0) provides simultaneously more plausible parametric values since 

A0) gives to the data at least 60* of the maximum probability' 

which is possible under the model. 

The set of parameter values for which R(8,A) ≥ i' is called 

a lOOzi* likelihood region. If one of the parameters is known or 

estimated out, the set of values given by R(8,A) ri will be called 

the likelihood interval (L.I.). 

Kalbfleisch ( 1979) has suggested 50%, 10% and 1% likelihood 

intervals (regions). Values inside the 10* L.I. are said to be 

"plausible" and values outside this as "implausible". Values inside 

the 50% L.I. as "very plausible" and values outside the 1% as "very 

implausible". The choice of these division points by him is somewhat 

arbitrary, though they seem to be intuitively justified. Instead of 

considering the same values, we would assign slightly different values 

which seem to be more logical. 
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Let r(8,A) = log R(8,A) where - Co < r(8,A) ≤ 0, and 

R(8,A) ≥: i..' implies that r(8,A) ≥: log v. 

We note that 50% likelihood region (ii = 0.5) means that using 

the available data, any value of (8,A) in the region is a reasonable 

guess at the values of 8 and A. This does not mean 50% confidence 

region for (8,A). However, if the sample size n is large, 

approximate probability statement may be attached to the likelihood 

region. On the basis of this, we select the division points which 

correspond to l0O(l-u)% confidence regions. 

For a large sample 

(8,A) = - 2 log R(8,A) = - 2 r(8,A) (4.3.2) 

is approximately chi-square distributed with 2 d.f.. Therefore, the 

set of values of ( 8,A) for which (9,A) gives an approximate 

lOO(l-u)% confidence region for ( 8,A) where Xc,2 is the upper percent 

point of the chi-square distribution with 2 d.f. 

Therefore, 

L(8,A) :S iff r(8, A) > - 
a,2 - ;Ka,2 

From the above, R(8,A) ?t exp[_ 2 2 } = U. For 95% confidence 

region, we have v = 0.05 which is equivalent to saying 5% likelihood 

region. Corresponding to the 99% and 90% confidence regions are the 1% 

and 10% likelihood regions. Values inside the 5% likelihood region 

will be considered to be "plausible", those outside "implausible". 

Also, values outside the 1% likelihood region will be called "very 
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implausible". 

If inference is required on only one of the parameters of the 

GPD model ( 1.3.1), we shall be setting likelihood intervals and the 

function in (4.3.2) will thus be chi-square distributed with 1 d.f.. 

Corresponding to the 90%, 95% and 99% confidence intervals are the 

25.85%, 14.65% and 3.62% likelihood intervals. 

We make use of large sample property in order to select our 

division points. We do not imply that plausibility inference is 

applicable to only large samples. Of course', the division points do 

not depend on the sample size. It may not be out of place to state 

here that the procedure is applicable to small samples as well as large 

samples. 

4.3.1 PLAUSIBILITY INFERENCE ON ONE PARAMETER 

In this subsection, we consider the likelihood interval for a 

single parameter when the other parameter is unknown. This unknown 

parameter, called a nuisance parameter, will be eliminated. Since we 

consider only the model (1.3.1), we apply the 'method of maximization' 

for the elimination of the nuisance parameter. 

Suppose the parameter of interest is A. Accordingly, 8 

becomes a nuisance parameter. We eliminate 8 by maximizing R(8,A) 

over 8; The value of 8 that will maximize R(O,A) is the same as 

that 8 which will maximize L(8,A) with a specified value of A. 

By partial logarithmic differentiation of (4.1.1) with 



- 71 - 

respect to 8 and equating to zero, we have 

0 = Ln L(8,A) 
ae-

Thus 

n 
= 1nLn 8 - [8+A ]n + Z [(x. -1) th(8+Ax. 

1 i=1 1 1 

n x.-1 
n 1 

= - n + •Z 8-1-Ax.' 
i=1 1 

n xl + n(1-8) - 

84-Ax. 8• 0. 

i1 1 

- en(x 01 1 

(4.3.3) 

Let 8(A) denote the value of 8 that satisfies (4.3.3) for any given 

value of A. Since the ML estimates of the GPD model ( 1.3.1) are 

unique [See Consul and Shoukri, 1984] the solution 8(A) will be 

unique too. 

From the above, we get 

max R(8,A) = R(8(A), A) 
8 

= Rm (A) (say). 

Thus the relative likelihood function is given as 

1% 

- 18(A)___1'1 e- n[8(A)-8+(A-A)] n 18(A)+Ax Xl 
__ I_________ 

i II i... 

m 1 8 i=1t 9+Ax. J 
1 -

Hence, 

r(A) = Ln 11(A) 

(4.3.4) 
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= n [en fO(A)l  ____ - (8(A)-e)-(A-A)] 

lecj 

n 8(A)-I-1Ax. 
+ Z (x.-l)n 1 • 

1=1 1 8-4-Ax. 
(4.3.5) 

For each specified value of A, we solve equation (4.33) iteratively 

by the help of a computer programme to obtain a numerical value of 

8(A) which is subsequently used in (4.3.5). The value of r(A) is 

compütêd by another computer programme. Thus, we plot numerous values 

of r(A) and trace the graph of the function in (4.3.5). This graph 

of rm(A) for A E (0,1) will be used to determine the L.I.. The 

100v% L.I. is the set of points for which rm(A) ? log i.'. The L.I. 

bounds are obtained by finding the two points of intersection of the 

graph of the function (4.3.5) and the straight line 

r(A) = log u. 

The graph of rm(A) is U-shaped or concave up. 

A similar result can be obtained for the L.I. for the 

parameter 8. In this case, we maximize R(8,A) over A. The value 

of A that will maximize R(8,A) is the same as that A which will 

maximize L(8,A) with a specified value of 8. By partial logarithmic 

differentiation of (4.1.1) with respect to A and equating to zero we 

obtain 

0 = In L(8,A) 
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n 
= {nnø - (8+Ax)n + Z [(xi-l)4n(8+Axi)-1n(xi !)J } 

i=l 

which gives 

- 1 1 
n x.(x.-l) 

= - nx + ! 
6-3-Ax i . =1 1 

n x.(x.-l) 
1 1  -

8-1-Ax nx 0. (4.3.6) . 
i=l 1 

Suppose A(8) is the value of A that satisfies (4.3.6) for any given 

value of 8. Then 

Hence, 

max R(O,A) = R(8, A(8)) 
A 

= 

n 9+A(9)x I ii 8 '' -[8-O+(A(8)-A)xjn ________ 

R(8)I,1 e ' jr 
L.oJ i=l I. 8-3-Ax. J 

1 

By taking the logarithm of the above relation, it yields 

r(8) = flFLflfJ - (8-8) - (A(8)_A)x] 

I ioJ 

n 8+A(8)x. 
+ Z (x i-1) In ,. 1 

1=1 1 9+Ax. J, 

(4.3.7) 

(4.3.8) 

To compute the values of rm(8) in (4.3.8), we first obtain A(8) 

from equation (4.3.6). For each specified value of 8 and with the 

help of a computer programme, we solve equation (4.3.6) iteratively to 

obtain the value of A(8). On substituting A(8) into (4.3.8) and by 
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using another computer programme, we obtain the values of rm(8). 

These values are subsequently used to trace the graph of the function 

in (4.3.8). The graph of rm(0) is U-shaped and this will be used to 

obtain the L.I. for the parameter 8. 

EXAMPLE 4.2 

The following data is on the distribution of sow bugs 

(Trachelipus rathkei) under boards taken from Janardan et. al. ( 1979). 

TABLE 4.1 

The distribution of sow bugs (Trachelipus rathkei) 

No. per board 0 1 2 3 4 5-6 7-9 

Observed freq. 28 28 14 11 8 13 9 

Expected GPO freq. 28.77 23.70 17.36 12.58 9.21 11.97 9.24 

No. per board 10-12 13 Total 

Observed freq. 5 6 122 

Expected GPD freq. 4.38 4.79 122.00 

x = 3.29508, s2 = 15.05270 

The ML estimation method was used to fit the GPD model to the observed 

data. It was found that the GPD model fitted the data very well. 

The ML estimates of 9 and A are 1.444620 and 0.561583 

respectively. We apply the data in Table 4.1 to equation (4.3.3) to 
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obtain 

o__ 28 + 14 + 22 + 24 
- 8+2A 9+3A 8+4A 

+ 44 + 10 + 18 + 21 
o+5A 8+6A 8+7A -8+81i 

+ 24 + 27 +  20  + 12 
8+9A 8+1OA 6+11A 8+13A 

+  26 + 14 + 32 + 122(1-8)  
8+14A 8+15A 9+17A 8 

(4.3.9) 

Equation (4.3.9) is used to obtain 8(A) for each specified value of 

A. In the same manner, by substituting the data into (4.3.5), we get 

r(A) l22{en[18 6J (8(A)-1.4446) - (A-.5616)(3.2951)} 

- 28 in11.4446) 8(A)   + 14 en( 8(A) + 2A 1.4446+2(.56 6)) 

+ 22 in11.4446+3(.5616)) 8(A) + 3A   + 24 8(A) + 4A  11.4446+4(.5616)) 

+ 44 1 9(A) + 5A  ' 10 11.4446+6(.5616)) 8(A) + 'GAl. 4446+5 (. 5616)J +  

+ 18 in  9(A) + 7A  + 21 €n11.4446+8(.5616)) 
8(A)+ 8A  

11.4446+7(.5616)]  

+ 24 8(A) + 9A  1 9(A) + 10A  1 
1.4446-4-9(.5616)J + 27 11'.4446+10(.5616)) 

+ 20 in  8(A) + hA  + 12 8(A) + 13/i  1 
11.4446+11(.5616)) 11.4446+13(.5616)) 
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+ 26 In I 9(A) + 14A  1 + 14n[ 8(A) + 15i\  1 
1.4446+14(.5616)J 1.44116+15(.5616)) 

+ 32 Ln[ 8(A) + 17A  
l.4446+17(.5616)J1 

- 4 [ 8(A)1 - 

- 1.4146J - 1228(A)-4-A-3.2951] 

+ 14 in   + 22 In 13.1294 
8(A)+3A1 + 19(A)+4A1 

12.5678 1  24 n13 6910 J 

9(A)+6A1 16. 3758 
9(A)+7A1 

+ [ ( A  ] + 10 [4 8142 + 18  J 

10(A)+8A1 24 16.4990 8(A)+9A l fo(A)+l0A1 
+ 21 fri159374  j +  + 27 7.0606 J 

1 J 8(A)+11A1 12 n{Ol3Al (8(A)+14A) 
1 + 20 n  7.6222 + 8.7454 + 26 en[ 9.3070 J 

fe(A)+l5A1 + 32 [O(A)+17A1 
• 14 9.8686 J 10.9918j (4.3.10) 

We used the expression in (4.3.10) to draw the graph of rm(A). For 

each value of A, we first calculated 8(A) from equation (4.3.9). 

All these were done on the computer for this example. The graph was 

used to obtain the 25.85 , l4.65 and 3.62 likelihood intervals for 

the parameter A. For the case of 14.65% L. I. we obtained the interval 

(0.47, 0.66). 

In the same way, we applied the data to equation (4.3.6) and 

expression (4.3.8). The equation yielded the value of A(8) which was 

subsequently used in the expression (4.3.8). The graph of the 
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resulting expression was used to obtain the L.Is. for the parameter 9. 

We obtained the interval(1.24, 1.75) as the 14.65% L.I. for the 

parameter 9 when A is eliminated. 

The U-shaped graphs of -r(A) and -r(8) are shown in 

Figure 4.1 and Figure 4.2 respectively. Values of A in the interval 

(0.47, 0.66) are said to be plausible as well as those values of 9 in 

the interval ( 1.24, 1.75). By considering the data in Table 4.1 as a 

large sample, these intervals will correspond to approximate 95% 

confidence intervals. 
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FIGURE 4.1 
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FIGURE 4.2 

3.62, 14.65 and 25.85 likelihood intervals for 8 
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4.3.2 INFERENCE ON BOTH PARAMETERS 

To determine the likelihood regions for both parameters of 

the GPD model ( 1.3.1), we use the function R(8,A) given by (4.3.1). 

By taking the logarithm of this function, we obtain 

r(8,A) = n[n(X81-  (8-8) - (A_A)L  

n 8+Ax. 
+ Z 

1=1 I. 84-Ax. 
(4.3.11) 

The function r(8,A) is a bivariate function of 8 and A. 

Accordingly, contours can be drawn for each specific value of r(8,A). 

We compute the values of the function in (4.3.11) and use these to draw 

the contour lines corresponding to 

r(8,A) = log i.' 

in the (8,A) plane for different values of i.'. Points inside the 

L'-contour line form the 100L'* likelihood region for the parameter 8 

and A. 

EXAMPLE 4.2 CONTINUED 

The data in Table 41 was used to set likelihood region for 

the two parameters 8 and A. 

By applying the data to the expression in (4.3.11), we get the 

following. 
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r(8,A) = 94 In 11 .44461 - 122[8 + A - 3.2951] 

+ 14 

+44 

+ 21 

+ 20 

+ 14 

in I 9+2A 

I 9+5Ain  1 
t.4.2526J + 

O+8A  
15.9374) 

€n 

In 9+11A  
7.6222 

I 9+15A 
ent.98686 

+ 22 In 13.12941   + 24 in 

10 n{42} + 18 

r 9+9A 1 
* 24 Ln[6 4990J + 27 

18.74541 9+13A+ 12 n + 26 

I 8+17A  1 
+ 32 in 110.9918J 

9+4A  
3.6910 

15.37581 
O+7A  

n 

In I6+10A 
L.7.o6o6 

I 9+14A en  19•3070  

(4.3.12) 

Values of the expression r(9,A) in (4.3.12) were computed and these 

values were used to obtain the 10%, 5% and 1% likelihood regions. 

These are given in Figure 4.3. 

Every one of the three contours in Figure 4.3 is roughly 

elliptical in form with its major axis towards the increasing values of 

9 and A. It seems that there is a greater variation in the values of 

9 than in the values of A. Values of ( 8,A) within the 5% likelihood 

contour are plausible and values outside this line are implausible. 

Also, values of (8,A) inside the 1% likelihood contour are very 

plausible. The 10%, 5% and 1% likelihood regions compare very well 

with the corresponding 90%, 95% and 99% confidence regions for the same 

example. 
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FIGURE 4.3 

1 • S AND 10 PERCENT LIKELIHOOD REGIONS 
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CHAPTER V 

ESTIMATION IN LARGE SAMPLES 
FOR GENERALIZED POISSON DISTRIBUTION 

5.1 INTRODUCTION 

In the previous chapter, we considered the problem of 

estimation in small samples for the GPD model. In the present chapter 

we shall examine the same problem but in large samples. 

We shall first derive some large sample properties of the 

maximum likelihood estimates (mie), the conditional maximum likelihood 

estimates, the likelihood ratio statistic and the conditional likelihood 

ratio statistic. As in Chapter IV, we assume that a random sample of 

size n is taken from a GPD model. Further, we assume that the 

parameter space for A and 1° in GPD models (1.3.1) and ( 1.3.2) are 

restricted to (0,1) and (0, 8_i) respectively. 

5.2 LARGE SAMPLE PROPERTIES OF MLE AND LIKELIHOOD RATIO STATISTIC 

Suppose the parameter 8 is fixed at 80 in the GPD model 

(1.3.1). The likelihood function of a random sample of size n is 

given by (4.1.1) with 0 replaced by 8. Denote L(80, A) by L(A). 
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Now, 

en L(A) = nLn80 -80n -A Z x.+Z I (x i-I).en(O 0 +Ax i )-In(x i (5.2.1) 

On differentiating (5.2.1) w.r.t. A, we obtain 

and 

n n x(x_1) 

CA cYLnL(A) - M(A) - + Z 1 2 8 4-Ax. 
i=1 1=]. 0 1 

C2enL(A) n x(x.-l) 11  --z 
OA  1=1 (8 0 4-Ax.)2 

1 

The mie A of A is obtained by solving equation 

11(A) = 0 

n x.(x.-l) n 
i.e. Z 1 - Z x.0. 

1=1 8 0 4-Ax. 1 i=l 1 

Since 
C2 nL(A) = C11(A) 

CA2 CA 

(5.2.2) 

(5.2.4) 

is less than zero, the function 11(A) is a 

decreasing function of A and hence it can have at most one solution. 

But 
ii x.(x.-l) n 

H(0)= Z   - z x. 
i=l 0 1=1 

= n (80) 1[ 2 + 2 - (eo+1)]. 
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Also, 

n x.(x.-l) n 
H(l)= 1 1  - Z x. 

8+x i 
i i=l 0  i=l 

< - n. 

Provided H(0) > 0, i.e. if S2 + 2 > x(80+l), there exists a unique 

solution A which satisfies (5.2.4). 

Er1aLnL(A)  I. CA 

n X. 1 (X -1) n 
1 - 

-E £ (8 0 i=l +/tX.) - X i=l i 

n f  (X-l)1 
= Z El  •4-X I - E X 
i=llI. 0 iJ iJ 

X(X-I)1 
= n {E{  90-FAX j - E 

since the X.'s are i.i.d. random variables. By using the probability 

function ( 1.3.1), we obtain 

80 
EX - 

and 

E[ d1)] = 00 x(X-I) (O0+Ax)'1 -80-Ax 
8+AX 8 +Ax 80 x! e 
0 x0 0 

00 (80+Ax)' 2 —80—Ax 
=z8   

x=2 0 (x-2)! e 
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CO (80+2A+Ax)' -80-2A---Ax 
=z8   
x x! 0  

(80+2A+Ax)' 1 -80-2A-Ax 
= 8 0 Z [80+2A+Ax]   e 

x0 

= 8o l + A 1 IxJ 

80 

Hence, 

.1°0 
CA J =n1_EX} 

100 801 
= 

i.e. 

Also, we let 

fCnL(A)1 - 0 
CA I 

J2 (A) = E[_ C2thL(A)] 

CA2 

ro 
(• > 0. 

-]) 1Z IE 1 Ii=l 0+AX.)2J 

(5.2.5) 

(5.2.6) 

THEOR4 5.1. The mle A is asymptotically normally distributed with 

variance [12(A)] l. If A0 is the true parameter value of A, the 
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expression (A-A0) 1(A0) converges in distribution to the standard 

normal 'form. 

PROOF: 

OnL(A)j CnL(A)  
Let CA  be written as CA 

By Taylor's theorem, YnL(A)  can be expanded about the point A0 and 
OA 

written in the form 

nL(A) CA = OnL(A0)   CA + (A-An) nL(A) 

v àA2 
(5.2.7) 

where A* is a value between A0 and A and thus IA*_AI JA 0-Al. 

By using (5.2.2) and (5,2.3), we obtain from (5.2.7) 

n n x. 1 (x. 1 -l) n n x.(x.-l) 
1 1  

-z x.+ Z =- z x. -f- Z 
1 i 1 8+Ax. 

=l 8 +Ax. i1 il 0 0 

ft. f n x(x.-l) 1 
z  1 1  I 
i=l (80+A*xi)2J (5.2.8) 

By equation (5.2.4), the left hand side of (5.2.8) vanishes. 

Accordingly, 
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 x(x.-1) 0) [i1 (804A*x) 
I n 

(A-A 

From (5.2.9), we obtain 

f n n x. 1 (x. 1-1)1 
2 x 1 . + 8+Ax i. (5.2.9) 

= i=l 0 O i j f lj=l 

' n x.11i(x.-1)lIi 8 +A x /1(A0) 

(A-A0) 1(A0) -  =l 0 0 i J  
n x2(xI -l) 1 

I  
+A*x )2j /[-I2(A0)J 

0 i 

(5.2.10) 

But the mle A is consistent. That is, A converges in probability to 

A0. 

Therefore, as n -. 

Now, 

1 n x(x.-1) 1 n x1 (x.-l) 
p 1  

i=1 (80+Ax1)2 i=l (80+A0x.) 2 

x? (x n 
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I n X2(X -1) r X2(X -1) •' l 
urn pjz - Z E[ Ii = 1. (5.2.12) 
n-°° 'll (9 +AX.) 2 i1 (9 +lt X )211 

0 1 0 0 i Jj 

Since A converges in probability to A0 and A* lies between. A 

and AO, we must have that A* i A in probability. 

Hence, from (5.2. 12) we get 

I n X(X.-1) n I X2(X -1) 
iirnpJz 1 1 i i  

11=1 (9 0 i +A*X )2 i=1 (80 0 i +A X )2. 1 

j 

which is the same as 

I n X(X.-1) 
urn pJz  1 1  = I2(A0)l= 1. 

11=1 (00+A *X )2 
i  

(5.2.13) 

Because of (5.2.13), the denominator of the right hand expression in 

(5.2.10) converges to 1 with probability 1. 

The quantity in the numerator of the right hand expression in 

(5.2.10) is 

n n x.(x.-l) 
H(A0) Z x + 

1=1 i]. 0 01 

According to the results (5.2.5) and (5.2.6) the quantity H(A0) has 

mean zero and variance 12(A0). By applying the central limit theorem 

to H(A0)/I(A0), we obtain a standard normal variate. Since the 

denominator of the right hand expression in (5.2.10) converges to 1 

with probability 1, the whole right hand side expression converges to 
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standard normal. Therefore, the left hand quantity in (5.2.10) is 

asymptotically standard normal. 

Hence A is asymptotically normal with mean A0 and variance 

[I2(A0 )] 1. This completes the proof of theorem 5.1. 

REMARK: If the parameter A is initially fixed at A0, the nile 9 of 

8 can be similarly shown to be asymptotically normally distributed with 

mean 90 and variance [ 12(90)1_i where 

12(9) = E 
- 02 nL(9,A0) 

08 2 

COROLLAY 5.1: The conditional maximum likelihood estimate ' from the 

GPD model ( 1.3.2) is asymptotically normally distributed with variance 

if is the true value of Y', then (12Y?o) I(°) 

converges in distribution to standard normal. 

The proof of the above corollary follows from the proof of 

Theorem 5.1. If L(i°) is the conditional likelihood function, then 

12 (r) = E1- 0enL00) 

I 
C 2 > 0. 

By differentiating (5.2.3) one more time, we obtain 
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But 

n 2x3(x -1) 
Ia3 nL(A)I - z 1 -  

OA  i=1 (80+Ax.) 3 

n x. 
= Z 1  2(x.-1) 

1=1 8 +Ax. 1 
0 1 

n f Ax. 2(x -1) 
= 1 1  

i1 80 1 +Ax. A3 

n 2x. 
Z I = h(x), (say). (5.2.15) 
i=1 A3 

From above, E[h(X)j and var[h(X)J are finite. 

THEOREM 5.2. If A = A0 is the true value of the parameter A, the 

likelihood ratio statistic (A0) is such that -2Ln L(A0) converges 

in distribution to a chi-square distributed random variable with 1 

d.f. as n.c0 . 

PROOF: 

The likelihood ratio is given by 

L(A0) 
(A0) = _____ 

L(A) 
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n 
-A 0 1 Zx. n x.-1 
e if (9 0 0 +1 A X.) 

i=l 

-AZx. n ,.. x.-1 
e 1 (60+Ax. 1) 1 

i=L  

1% fl x.-1 
(A-A0)Zx. n 90+A0 x 

1 

=e if 
i=l B +A x. 

0 1 

From. the above, we get 

-2Ln L(A0) -2Ln L(A0) + 2n L(A). 

We use the Taylor's theorem to expand -2th A0) about A. 

Thus, we obtain 

-2n (A0) = -2n L(A) + (A0-A) L  [-2Ln L(A)]CA A 

(A0-A) 2 c2 
+ [-2n L(A)] 

2! CA  A 

(A 0-A) 3 

+ 3! 0A3 [-2Ln L(A)] A ... A* 

+ 2en L(A) 

" ãnL(A) C2 nL(A) 
= - 2(A0-A) ãÃ - (A0-A)2  CA  

(5.2.16) 

- (A0-A)3 ãLnL(A)  

CA3 
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where A* lies between A and A0. By using (5.2.4), the first term 

on the right hand side vanishes and we have 

1 -2n (A0) - (A0_)2 C2 nL(A) - (A0-A)3 CnL(A)  

CA CA3 

By expanding 
C2 nL(A)  

CA2 
about the true value A0 again, we obtain 

C2nL(A) - O2enL(A0) 
+ A )   

a3LnL(A**) 

CA 2 CA2 CA3 

** 
where A lies between A and A0. 

Now, 

-2n (A0) = - (A0-A) 2 
JO2 nL(A0) ,.. O3LnL(A**)l 
•1 CA2  + (A-A0)  CA3 J 

- (A 0-A)3 a3nL(A*) 

6A  

J C2€nL(A) C3LnL(A**) 
= (A-A0)2 1 CA2 + (A0-A)  CA3 

1 C3nL(A*)l 
3(A0A)  6A  J 

J OnL(A0) [I2(A0)J' 
= (A-A0)2 I2(A0)  CA2 

+ (A 0-A) (12(A0)] -1 r 
3 nL(A**) - 1 a3LnL(A*)11 
CA3 6A  if 
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From (5.2.12), we obtain 

limP   
fa2enL(A I 

) 2 (A) } = 1 --- 
n-,°' 

and so 
- à2 nL(A0) 
  [I2(A)]' 

àA2 

to 1 with probability 1. 

converges 

But A i A0 in probability, so we have that A* and 

A in probability as well. By using (5.2.15), 

3 nL(A*) 
  [I2(A)] 1 

ft. 

is bounded 

with probability 1 for large n. Since A A0 in probability, we 

have that 

(A0- A) (12(A 0)1 -1 
[c3LnL(A**) 1 aenL(A)  

àA3 àA3 I 
in probability as n co. 

Hence, -2Ln (A0) converges to the distribution of the random variable 

(A-A0)2 J2 (AO ). From Theorem 5.1, (A-A0) 1(A0) has an asymptotic 

standard normal distribution. Therefore, 

(A-A0)2 I2(A0) 

is a chi-square distributed random variable with 1 d.f.. Thus 

r 
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-2n (A0) has an asymptotic chi-square distribution with 1 d.f.. 

COROLLARY 5.2: The conditional likelihood ratio statistic is 

such that -2n 4 c00o has an approximate chi-square distribution with 1 

d. f.. 

The proof of this corollary follows from the proof of theorem 

5.2 and will not be given here. 

5.3 CONFIDENCE INTERVALS FOR A SINGLE PARAMETER 

The mean and variance of the CPU model ( 1.3.1) are given by 

mean = 8(1-A)' and var = 9(i-A)3. 

The corresponding values for the GPD model ( 1.3.2) are O(l-9)_1 and 

By using the central limit theorem as in section 3.3,, the 

distribution of the sample sum Y, which is a GP variate, converges 

stochastically to that of normal distribution. By following the 

explanation in section 3.3, 

z -   
S 

has a limiting distribution which is normal with mean zero and variance 

unity. 
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5.3.1 ESTIMATION FOR 8 OR A IN GPD MODEL ( 1.3.1): 

When the parameter 8 is known and fixed at 80, the 

approximate 100(1-a)% C.I. for A can be obtained as follows: 

.Ji(X-p) < Za/2} 1-a=P{_z < 
a/2 S 

=Pj'X - z S/.1<M<X+z s/.ñ } 
a/2 

=P{X-z S//<-2-- + _} <Xz S/In 
a/2 i-A a/2 

  <A<l-_ oo 
1 -z s,'ji X+z 

a/2 a 

Thus, the approximate 100(1-a)% C.I. for the parameter A, when 0 is 

known to be equal to 80, is 

8 8o 
0  , 1-   

XZ/25/Ifl X+ Z/2S/Ifl 

(5.3.1) 

In a similar way, we assume that A is known to be A0. The 

standardized normal tables can be used to get z a/2 and then the 

approximate 100(1-a)% C.I. for 8 can be obtained as follows: 

-aP1X-z 2S/Ii<l°A<X+z s/.ñ} a/2 
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Pf ( 1-A ) { - z s/.ii] < 8 < (1-A0) [ + z S/4]}. 
j 0 0 a/2 

Hence, the C.I. for the parameter 8 becomes 

[ (1-A0) Ix - z s/.J1 (1) [ + z a /2 s/.Ji]}. (5.3.2) 

5.3.2 ESTIMATION FOR ? IN RESTRICTED GPD MODEL ( 1.3.2): 

The case of parameter 8 was considered in section 3.3 and 

will not be repeated here. Suppose 8 is known to be 8, the 

approximate 100(l-a)% C.I. for IP can be obtained from 

- 

+ z S/./n 1-a = - 2 S/•/ 8o X < 1?8O < a/2 -} 
1 a/2 

=Pf 8-1 -  [X - z S/./J 1 < ? < - + 2 /2 cx/2 

Thus, the approximate C.I. for the parameter ? is 

18 0  - (x - z g/•/)l , 8 - (x + z a/2 s/./) 1} . (5.3.3) 

5.4 CONFIDENCE INTERVALS WHEN BOTH PARAMETERS ARE UNKNOWN 

Since both parameters are unknown, the parameter which is not 
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of interest becomes a nuisance parameter and will have to be eliminated 

before inference can be made on the parameter of real interest. Among 

various methods of parameter elimination, we consider the methods of 

'maximization of likelihood' and of ' conditioning of likelihood'. 

5.4.1 METHOD OF MAXiMIZATION 

The likelihood function of the GPD model ( 1.3.1) is given by 
A 

(4.1.1). If 8 and A are the ML estimates of 8 and A 

respectively, the likelihood ratio function becomes 

L(8,A) 
£ ..-  

L(81A) 

- n x.-1 
8 e 8-I-A x . 1 
n -n(8+Ax) ., i 

3. 
1 /(x.)!] 

i=l 
1% 

6 
'n -n(6+Ax) A X. -1 

[(8+A 1 e IT x 1.) /(x. )!] 
i=l 

11n efl188 A)x] 8+Ax I i 
if d  

18] i=l [x8+Axlij 
(5.4.1) 

Suppose the parameter of interest is 8. By following 

the technique in section 4.3 of chapter IV under the method of 

maximization, the maximum likelihood ratio function is given by 

m (8) = e(8, A(8)) 



- 99 - 

', -1 
[,Ojn [O+A(8)xil 

-n[9-8+(A(8) -A)] IT ,. (5.4.2) 8 in   -e  

X . 

8-f-A x. 
1 

According to Theorem 5.2 when the sample size n is large, for a 

specified value 8 80, the statistic 

T(80) = --2Ln 

is approximately distributed as a chi-square random variable with 

degree of freedom. Now, 

T m (8) = - 2n1en J - (9-8) - x(A(8)_A)] 

n 9+A(8)x. 
- 2 Z (x -1) 1 n ... ,  • (5.4.3) 

i=l 1 8-f-Ax. 
1 

The graph of T(0) against 8 is concave up ( i.e. U-shaped). To set 

100(l-a)% C.I. for 8, we find two values and of 8 at which 

the straight line 

T(8) = 

intersects the graph of the function T(8) in (5.4.3). It may be 

noted that while drawing the graph of (5.4.3), the value of A(9) will 

have to be computed first from equation (4.3.6) for each value of 8. 
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The values 8 and 0 are respectively the lower and upper confidence 

bounds for 8 and denotes the upper percent point of the 
aj 

chi-square distribution with 1 d.f.. 

Since the domain of the parameter 8 is unbounded on the 

right hand side, the tracing of the graph of the function in (5.4.3) by 

the computer is somewhat tricky. Whenever the GPD model is used to 

describe a natural phenomenon it has been observed that the values of 8 

generally lie below 15.0. Thus, T(8) can, in general, be drawn for 

values of 8 20.0. 

An advantage of the method of maximization is that the 

parameters 0 and A can be easily interchanged in the elimination 

procedure. 

To set C.I. for the parameter A, the above procedure is 

repeated with the roles of A and 8 interchanged. In this case, we 

obtain 

le (A) = e(8(A), A) 
in 

X.  
n '8 (A e i 

- ro(A)1' -{8(A)-8+(A-A)Jn IT I .. -I, 
1 8 i1j8+Ax. J 

1 

where 8(A), the solution of equation (4.3.3), is the value of 0 that 

maximizes L(8,lt) with a specified value of A. 

An analogue of relation (5.4.3) becomes 
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T (A) = - 2n 
m 

18(A)1 - 

I , (8(A)-8) - (A-A)] 
8 J 1  

n I ii O(A)+Ax.1 
- 2 Z (x.-1) LnI . (5.4.5) 

1=1 1 1 8+Ax. J 
1 

So, the approximate 100(1-a)X C.I. for A is obtained from the 

intersection of the graph of Tm(A) in (5.4.5) with the line 

T(A) = 

5.4.2 METHOD OF CONDITIONING 

This method of nuisance parameter elimination is applicable if 

a sufficient statistic can be found for the nuisance parameter. Since 

Y = ! X. is a sufficient statistic for 8 in the GPD model ( 1.3.2), the 

likelihood function can be factorized as follows: 

L(8,9Y') = L1(?) P(8 8?) 

where P(O 8?) is given by (3.2.3). Hence, 

L (?) L(8,OY')  
1 - Py(88?) 
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x-1 
e ° " °  

i=1 ii 

Y! . n [(1+°x) x-1 1 1 
- H  ! 

n(n+1°y)3' 1 1=1 x 1 i .1 
(5.4.5) 

By logarithmic differentiation of (5.4.6) with respect to ° and by 

equating to zero, we have 

Therefore, 

0 = d In 

= - (y-l) n(n+°y) 
T?- I IF) 

+ z (x 1) n(1+!'x.) - Ln(x !) 
11 

n x. (x.-1) 
- --'+ ' . 1 1 

i 
- n+y . 1-fPx. 

1 1 

n x.(k. -1) - - 

1 1. _ x(nx-l) - o 
1+x. — i - =1 1 1+?x 

1 
I 

(5.4.7) 

We have not been able to prove the uniqueness of the solution r that 

satisfies (5.4.7). However, by using the moment estimate of 10 in the 

GPO model ( 1.3.2) as the initial value of ?, the iterative procedure to 

solve (5.4.7) takes very few steps (about 5 steps) before convergence. 
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We consider the conditional likelihood function in (5.4.6) and 

form the conditional likelihood ratio function 

(to ) - _____ 

n x-1 
y!  if [(I + °x.) /x.!l 

n(niPy)Y 1 i=1 1 1 J 
n x.-1 

Y ff  1 

1=1 1 

rj + 1 i °x x1-1 
i if 

1=1 [1 + 
1 

(5.4.8) 

By using Corollary 5.2, -2 x the logarithm of conditional likelihood 

ratio statistic has an approximate chi-square distribution with 1 d.f. 

when the sample size n is large. Therefore, for a specified value 

=0 and for a large sample, the statistic 

T(r0) = - 2Zn 

is approximately chi-square distributed with 1 d.f.. Hence, 

= _2{(n_l) 11 +  + Z (x 11 (5.4.9) 
+ x 

j .-l) eni , f 
+ 1=1 ii+.jJ 1 1 

1 

is similar to T(8) in (5.4.3) and so (5.4.9) is used in the same way 

as Tm(8) to obtain the approximate 100(1--a)% C.I. for the parameter ?. 
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Since the above method requires the presence of a sufficient 

statistic for the nuisance. parameter, it can only be used to eliminate 

O in the GPO model ( 1.3.2). A number of GPO pseudo-random samples of 

sizes 200, 500 and 1,000 were generated, the methods of conditioning and 

of maximization were applied to eliminate 8 in the model ( 1.3.2) and 

C.Is. for 'P were obtained from these samples. It was observed that 

there is not much difference in C.Is. obtained by the two methods. This 

was due to the fact that the sample size was large. A notable 

difference was observed for corresponding analyses in small samples. 

EXAMPLE 51 

The data in the following table is the distribution obtained 

from Skellam ( 1952) of the number of plants of "Plantago major" present 

in quadrants of area 100 sq-cm laid down in grassland. 

TABLE 5.1 

The distribution of plants (Plantago major) 

Plants per quadrant 0 1 2 3 4 5 

Observed frequency 

Expected GPO freq. 

235 

233.08 

81 

87.26 

43 

38.50 

18 

18.78 

9 

9.78 

6 

5.32 

Plants per quadrant 6 7 8 9 Total 

Observed frequency, 4 3 0 1 400 

Expected GPO freq. 2.99 1.72 1.01 1.56 400.00 

= 0.8525, a 2 = 1.9807 
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We used the ML estimation method to fit the GPO model to this data and 

found that the observations are described very well by the GPD model. 

The ML estimates of the parameters 9 and A in the GPD model ( 1.3.1) 

are 0.540090 and 0.366463 respectively. 

The method of maximization is used in order to set C.I. for 

each of the parameters 9 and A in the GPO model ( 1.3.1). 

We use the data in Table 5.1 in equation (4.3.6) to obtain 

- 2(43) 6(18) + 12(9) + 20(6) 
- 8+2A + 9+3A 8+4A 9+5A 

+ 30(4) 42(3) 72 
9+6A + 8+7A + —0+9A 400(.8525) 

- 86 + 108 + 108 + 120 
- 9+2A 9+3A 8+4A e+5A 

120 126 72 
+ -8 +_r + 8+7A + 8+9A - 341. 

(5.4.10) 

Equation (5.4.10) is used for finding A(8) for each value of 8. 

In the same way, we substitute the data into (5.4.3) to get 

T(8) = - 800{en[ 501} - 8 + .5401 - .8525(A(8) - .3665)} 

- 2{_235 en[.5:oi] + 43 8+2A(8)  

+36n[ 8+3A(8)  l+27n1.5401+4(.3665)] 8+4A(8)  1 
.5401-i-3(.3665)J  
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+24Ln{ 8+5A(8)  l+20n1.5401+6(.3665))°6"(°)  1 .5401-i-5(.3665)J  

+18n[ + 

8+7A(e)  1 
• .5401+7(.3665)J  

I 8+9A(9)  II 
8 en 15401+9(3665)JJ. 

- 330 en[ 501] + 800[9 + .8525 A(9) - .8525] 

- 1.2731 J 1.6396 ] 2 143 18 + 2A(8)1 + 36 £n[° + 3A(8)  

fO + 4A(8)1 + 24 en [° + 5A(9)1 
+ 27 n1 2.0061 J 2.3726 j 

18 + 6A(8)1 • 18 [8 + 7A(8)  
+ 20 n1 2.7391 J 3.1056 1 

I.e + 9A(8)  if 
+ 8 en 13.8386 . 

By using the same data in equation (4.3.3), we obtain 

- 165 43 + 36 + 27 + 24 
0  + 8+2A 8+31i 8+41t —8 Pr 

(5.4.11) 

20 18 8 
+ 8+6A • 8+7A + 9+9A - 400. (5.4.12) 

Equation (5.4.12) is used for finding 8(A) for each value of A. In 

the same manner, by substituting the data into (5.4.5) we obtain 

T(A) = - 330 Ln{° 1J + 800 [9(A) + .8525A - .8525] 
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- 243 In Io(A) + 2A1 + 36 [8(A) + 3A1 
t 1.2731 J 1.6396 J 

16(A) + 4A1 
+ 27 n1  2.0061 J + 

18(A) + 7A1 
+ 18 n1 3.1056 .1 + 

24 18(A) + 5A  
In 

8 f 3.8386 i9(A) + 9A11 
i 

18(A) + 6A1 
+ 20 n1 2.7391 J 

(5.4.13) 

We use the expression in (5.4.11) to draw the graph of T(8). 

For Peach value of 8, we first obtain A(8) from equation (5.4.10). 

Both equation (5.4.10) and the expression (5.4.11) are evaluated by the 

use of a computer programme. By doing these, we obtain the 95% C.I. for 

the parameter 8 as (0.46, 0.63). Similarly, we use the graph of the 

function of A in (5.4.13) to obtain the 95% C.I. for A. For each 

specified value of A, we use equation (5.4.12) to obtain 9(A) which 

is subsequently used to evaluate the expression (5.4.13). These values 

are used to draw the U-shaped graph and the 95% C.I. for A is found to 

be (0.29, 0.45). The graphs of the functions of 8 and A are shown 

in Figure 5.1 and Figure 5.2 respectively. The graphs also indicate the 

90% and 99% C.Is. 
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FIGURE 5.1 

90, 95 and 99 confidence intervals for 8 
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FIGURE 5.2 

90, 95 and 99% confidence intervals for A 
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The method of conditioning is also used in order to obtain 

C.I. for ? in the GPD model ( 1.3.2). 

We substitute the data in equation (5.4.7) to get 

0 - 2(43) + 6(18) + 12(9) + 20(6) 
1+2? 1+3? 1+4? 1+5? 

+ 30(4) + 42(3) +  72 - .8525(340)  
1+6? 1+7? 1+9? 1+.8525? 

- 86 + 108 + 108 + 120 +  120 
1+2? 1+3? 1+4? 1+5? 1+6? 

+ 126 + 72 -  289.85  
1+7? 1+9? 1+.8525?' 

Also, when we substitute the data into (5.4.9), we obtain 

(5.4.14) 

5832  1 ri +2?  1 
T (?) = - 680 (1+:as2o?J - 2{43 "12.3682J C 

fi +4? 14.4205J i +5?  1 
+ 36 n[ 3J + 27 en13 7364  + 24 In 

(1 .+7P7) 1 
+ 20 In 11.1+046) + 18 5788 

11.+919911 
+ 8 ent71561. (5.4.15) 

By solving equation (5.4.14), we obtain the ML estimate of 7' as 

0.684148. This value is subsequently used to obtain (5.4.15). The 

expression in (5.4.15) is used to draw the U-shaped graph. All of these 

were done on the computer. The 95? C.I. for 7' is found from the graph 



to be approximately (0.50, 0.91). This interval does not appear to be 

as short as those obtained for 8 and A. Both the 90 and 99% C. I. 

for 'z° are given as well in Figure 5.3. 
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FIGURE 5.3 

90, 95 and 99 confidence intervals for 'P 
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5.5 CONFIDENCE REGIONS 

For uniparameter distributions, Bartlett ( 1953a) obtained 

approximate C.Is. for the parameter by assuming that the derivative of 

the log-likelihood function with respect to the parameter is 

approximately normally distributed with mean zero and known variance 

when the sample size n is large. Subsequently, Bartlett ( 1953b) 

extended the principle to multiparameter distributions and applied it to 

a distribution with two parameters 81 and By using large sample 

approximation, be considered the partial derivatives of the 

log-likelihood function with respect to these parameters to be normally 

distributed with zero means and known covariance-matrix. These were 

used to obtain an approximate chi-square expression from which the 

confidence regions can be determined. 

We shall apply Bartlett's results to the GPD model ( 1.3.1). 

By taking the partial logarithmic derivatives of the likelihood function 

in (4.1.1), we have 

ànL(8, A)  
68 

n 
- {nn8 - [nB + A Z x I 

iJ 

+ I (x i-1) Ln(8+Ax.) - 

n x.-1 
n :i. 

. 9+Ax.' 
i=l 
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and 

-1 
02LnL(8,A) - n n x 

09 2 92 1=1 (9+Ax.) 2 

. (x .-1) 02enL(8,A) n x 1 - - 1  

OACO - i1 (9+Ax )2' 
i 

n n x(x-1) 
0nL(9,A) = - X. + . .  z 

8+Ax 
i=1 1=1 i 

n x(x.-1) 
02 nL(9,A) - - i. 1  

0A 2. 1=1 ( 9-f-Ax. 1 )2 

(5.5.1) 

(5.5.2) 

(5.5.3) 

On taking the expectations of (5.5.1), (5.5.2) and (5.53) and using the 

principle that each r.v. X has a GPD model ( 1.3.1), we obtain, 

E 
- C2 nL(9,A)  

09 2 X. r 
=E! iL  1  

i1 [82 (9+AX i )2] 

n (8+A )2X 1 .-f-A2X. 1 (X. 1-1) 

i=1 82(84-AX. 1 )2 

= j 2 E I X + 2 E 1(8+AX) 
X(X-l) 

i=18L(9+AX)2 



Now, 

E1 x 1 - 8(8+Ax)' 3 -8-Ax 
x=1 (x-1)! 

= ; 8(8+A+Ax)C2 
X! 

x0 

CO = ; 8[9+A+Ax_Ax].(O+MAx)C2 e8C 
8+A 

xO 

8 00 (8+A+Ax)' 1 -8-A-Ax 
X! 

e 
x0 

8A 00 (O+2A-4-Ax)x -1 -8-2A-Ax 
X! e 

xO 

- 8 - 8A 

(8-4-A)2 (8+A)(8+2A)' 

Also, 

Hence, 

E[X((8+AX X 1) _ 8(8+Ax)C3 81C 

)2J1 x=2 (x-2)! e 

CO 8(8+2A+Ax)' 1 -8-2A-Ax 
Z e 
x0 

8 
8+2A 

(5.5.4) 
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1Al2 1 e ii 118--Al2 [ 8  - 8A  

Ill = X 118J (O+A)2 (8-f-A)(8+2A)J • 1J L02 Ji 
1=1 

n 
- fl A _ 
- l• 'W+-2AJ 

1=1 

- n[9(I-A)+2A3 (5.5.5) 
8(8-I-2A) 

112 = E[_ à2nL(8A)} 
àM8 

1  I 
[x(x1 -j)j 

=E Z 
i=1 (e+Ax1)2j 

= Z E[X 1) 1 
i=1 (8+AX)2] 

ne 
9+2A 

by using the result in (5.5.4). 

Also,, 

122 = E[_ C2nL(8,A)} 

0A2 

n X1 1(X.-l) 
=EZ 

1=1 (8+AX. 1 )2 

n 
= Z i=l [X2 

(8+AX) 2J 

(5.5.6) 
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where 

q
X

00 8(8+Ax)''3 -8-Ax 
  - 2 
(8+AX) 21 x=2 (x-2)! 

00 (9+2A+Ax)' 82'' = 2 8(x+2) 
x! e 

x0 

CO (8+2A+Ax)' 1 -8-2A-Ax 
- 8+2A 2 x(8+2A)  XI e 

x0 

28 00 (6+2A+Ax )xT 1 -8-2A-Ax 
+ 8+2A 2 (8+2A)  x! e 

x0 

- 8 9+2A 20 
- 8+2A 1-A + 8+2A 

(1-A)(8+2A)' 

Hence, 

r  8(8+2)  
122 = (1-A)(8+2A) 

i=1 

-  nO(8+2)  
(1-A) (8+2A)' 

From (5.5.5), (5.5.6) and (5.5.7) we have 

Also, 

i _ I2 22 121111 = 2n8  = A. 
(1-A)[9(1-A)+2A]  

112/Ill - 8(l-A)+2A 

82 

(5.5.7) 

(5.5.8) 
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When the sample size n is large, the first partial derivatives 

OnL(8,A) and OnL(O,A)  
06 àÃ 

of the log-likelihood function are normally distributed with zero means 

and known covariance-matrix. 

Following the procedure suggested by Bartlett ( 1953b), the 

approximate chi-square expression for the confidence region (C.R.) is 

T 1anL(9,A)I + [UnL(O,A) - 112 06OnL(8,A)12  47A 1 11 06 /A 08  

where A is defined in (5.5.8). 

By substituting the values of the partial derivatives and of 1 11 and 

112 in the above, we obtain 

CnL(8,A) - 112 CnL(8,A)  
06 

n x.(x.-1) 
= - • • 1 1 2 [n(1_6) n x -1 1 

nx + Z 9+Ax I 8+itx. - 8-9A+2A 6 
i=l i=l ij 

= x.-1 1 1 - - On(l-8)  
-nx 

[Xi  -  i 8-8A+2AJ 9+Ax. 6-8A+2A 
i=1 1 

n Ixi (8+2A)_9(8+Ax1)](x_l) - 6(18)  
= I 
i=l (0+Ax1)(9-9A+2A) - - 8-Oit+2A 
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n x. (x.-1) 
-  8+2A 1 1 + nG(9-x) - 

8-OM-2A 8+Ax. 8-OA+2A - 

nx 
i=l 1 

and therefore, 

T(8,A) = T = 8(8+2A)  [n(I-8) 12 I n(8-OA+2A) 8 + z 9+Ax 1=1 ij 

+ (1-A)(8-GA+2A) I 8+2A  n x.(x.-l) 2 1 1  + n8(8-x)  
2n9 I8-OA+2A . 8+Ax. 8-OA+2A -  nx 

-  8(8+2A)  jln(1-O) + n x 1 .-1 
12 

n(8-BA+2A) ii. . 1=1 9+Ax. 
1 

1-A A 1 1 n x.(x.-l) 2A) 21 

+ 2(6+2A) [[i + il 1 
8+Ax. - n; - A + + PO] 

(5.5.9) 

The values of 8 and A for which the function T(8,A) in (5.5.9) 

remains less than the critical value of chi-square distribution 

with 2 d. f., define an approximate C. R. contour. Thus, the set of 

values of 8 and A for which 

T(8,A) < 'a,2 (5.5.10) 

form an approximate 100(1-u)X C.R. In actual practice, we find values 

of T(8,A) satisfying (5.5.10). These values are used to obtain a 

contour map of T(8,A) in the (8,A) plane. This will be called the 
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100(l-a)% contour line. Points inside the obtained contour line are 

said to lie within the 100(1--a)% C.R. 

EXAMPLE 5.1 CONTINUED 

The data in Table 5.1 is used to set C.R. for the parameters 

9 and A. By using the data in expression (5.5.9), we get 

-  O(9+2A)  11165 + 43 36 27 
T(9,A) 400(8-9M-2A) .LT 9+2A + 9+3A + 9+4A 

24 20 18 8 
+ 6+5A + 0+6A + 8+ + 8+9A - 400 7A  

32 

+  1-A fO+2A 1 86 + 108 + 108 
2(8+2A) 1 8 LO+2A 9+3A 9+4A 

+ 120 + 120 126 + 72 
8+5A 8+6A 9+7A 9+9A 

- 340 (28-OA+2A) + 40O8] 
8 1. 

(5.5.11) 

A computer programme was written to find the values of the expression 

T(9,A) in (5.5.11) and these were used to obtain the contour lines for 

the 90%, 95% and 99% C.Rs. These are provided in Figure 5.4. 
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FIGURE 5.4 

THE 90 95 AND 99 PERCENT CONFIDENCE REGIONS 
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We notice that the 95% C.R. contour provides the 95% C.Is. 

for the parameters B and A as (0.44, 0.66) and ( 0.28, 0.48) 

respectively. The 95% C.Is. for each of the parameters B and A 

obtained in section 5.4 lie within the 95% C.R. for both parameters. 

The shapes of the C.Rs. are almost elliptical, which indicate the 

closeness of the anlaysed data to a normal distribution. 
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CHAPTER VI 

SOME TESTS OF HYPOTHESES FOR GENERALIZED 
POISSON DISTRIBUTION 

6.1 INTRODUCTION 

Drawing inferences about the unknown parameters of a 

population by using the information contained in an observed sample 

data is an important problem in statistics. Usually, these inferences 

appear in either of two forms, as estimates of the respective 

parameters or as tests of hypotheses about their values. In this 

chapter, we are concerned with the latter. 

The probability mass of the generalized Poisson distribution 

and its restricted form are given by ( 1.3.1) and ( 1.3.2) respectively. 

The GPD model possesses the twin properties of over-

dispersion and under-dispersion which make it to be a very good 

descriptive model in the fields of biology, ecology and many other 

areas. The under-dispersion is indicated by a negative value of the 

shape parameter A in ( 1.3.1) while the over-dispersion is described 

by a positive value of A. Tests of hypotheses can be applied to 

determine if there is over-dispersion or under-dispersion in a 

population. This will correspond to testing whether A > 0 or A < 0 in 

the GPD model ( 1.3.1). 
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Janardan and Schaeffer ( 1977) used the distribution ( 1.3.1) 

to model the number of aberrations awaiting restitution in human 

leukocytes. The parameter 8 measures the rate of change while the 

parameter A is related to the equilibrium constant. One may be 

interested in testing hypothesis about the magnitude of the rate of 

change, whether this is less than or greater than a specified quantity. 

This is an important area in which the tests of hypotheses are 

applicable. 

Fazal (1977) considered the test A = 0 against A # 0 in 

the GPO model ( 1.3.1). This test was used to determine if a GPD model 

(1.3.1) should be used in place of a Poisson distribution model to fit 

a given data. Fazal based his test on the class of c(a) tests 

proposed by Neyman. We shall now discuss a number of tests for the GPO 

model. 

Through out sections two to six of this chapter, we assume 

that a random sample K1, X2, •• Xn of size n is taken from a 

population with GP distribution. 

6.2 UNIFORMLY MOST POWERFUL TEST 

We assume that the random sample belongs to the restricted 

GPO model ( 1.3.2) where 10 is known. A uniformly most powerful (lIMP) 

test for the parameter B can be constructed by using the following 

result by Lehmann (1959, page 70). 

Lelnaann's Result: Let Q be a real parameter, and let the random 
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variable X has a probability density (with respect to some measure 

given by 

p0 (x) = C(8) eQ(G)T( h(x), (6.2.1) 

where Q(8) is a strictly monotone function of 8. If Q(9) is an 

increasing function, then there exists a TiM? test 4(x) for testing 

H : 8 :58 against H : 8 > 8 
0 0 a 0 

which is given by 
11 

(x) = 

1° 

T(x) > C 

T(x) = C 

T(x) < C 

(6.2.2) 

where the boundary C of the critical region and the quantity i are 

determined by 

E{4(X) I 00] = a. 

For the GPO model ( 1.3.2), the random variable X is discrete and A is 

the counting measure, therefore the left hand side of (6.2.1) can be 

replaced by P X°' 8?) to obtain 

P ( 8, 81°) = e e -8 x[n8-8?] ( l+?x)Cl/x !, 

where C(8) = e 8, Q(8) = In8 - 8?, T(x) = x and h(x) = (1 + ?x)Xh/x !. 

When a random sample of size n is taken, we have 

I X.  

-nO Y[LnO-91°] = e e x.!i I 
I  I 

1=1 1 1 j 

(6.2.3) 
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where Y = Z X. and X = (X1, X2, ..., Xn)• It is well known by the 

convolution theorem that the random variable Y has a GPD with 

probability function ( 3.2.3) 

On comparing (6.2.3) with (6.2.1), it is easy to note that 

Q(8) = InO - 8? 

is a strictly increasing function of 8 as Q'(8) > 0. Hence the UMP 

test 4(x) for testing the null hypothesis H0: 8 ≤ 80 against the 

alternative hypothesis Ha: 8 > 80 exists and is given by 

11 , Y>c 

4(x) = 1i, Y=c 

to, 

(6.2.4) 

where C and i are determined from 

a = P(Y > CH0) + v P(Y = C1 0). (6.2.5) 

The last term in (6.2.5) is only of interest if one is interested in 

randomization which will yield exact significance level a. Quite 

often, the statisticians ignore this term in order to avoid 

randomization and choose that value of C which gives a slightly lower 

probability value than a. In this way, the power of the test under 

the null hypothesis is being reduced. 

If the last term in (6.2.5) is ignored,' then C will be 

determined from 
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00 -9 (n+°y) 
Z n(n+?y)1 ej e /y! S a. 

y=c+l 
(6.2.6) 

To determine the value of C numerically, a simple computer programme 

can be written to 

a. This method 

small because the 

summation becomes 

find C which will yield the largest probability 

gives excellent results when the sample size n is 

summation becomes easy. For large values of n the 

pretty difficult even for the computer due to 

approximation errors. 

Situations do arise in which n is large. It is well known 

by the central limit theorem that for large values of n the sample 

sum Y is approximately normally distributed with mean np and 

variance nc 2 where 

p = 1. and 0 2 

Accordingly, the standardized variable 

Z = Y - 
ng 

an 

is approximately standard normal. With this assumption, and by 

ignoring the last term in (6.2.5), the quantity C can be determined as 

follows: 

a = P{Y > CIH0} 

P{Z > [C-n90(l--?90)-1 1/./1n90(l-?90) 3]} 

= PZ > z cc } 
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where z a is determined from the areas under the normal curve. Thus, 

C = n80(l-?80) + z./Tn00 (l-°00) 3 ]. (6.2.7) 

The UHF size a test is to reject H0 if Y > C. 

For testing the hypothesis H0: 8 ≥ 00 against Ha: 0 < 801 

a similar UHF test can be easily formulated. The only change will be 

that C will be replaced by C' and all the inequalities will be 

reversed. 

6.3 AN APPROXIMATE TEST FOR ? OR A 

To carry out tests of hypotheses about the parameter A when 

0 = 80 is known and large, we assume that A = A0 is positive and 

that it is ≤ 0.5 in the GPO model ( 1.3.1). As indicated in section 

4.2 and in the reference therein, the standardized variate 

=  

a 

tends to standard normal form as 8 increases without limit. For the 

GPO model ( 1.3.1), the mean p and variance a2 of the random 

variable X are given in section 5.3 with 8 replaced by 8. From 

one of the earlier papers on GPD, {Consul and Jam, 1973], the GPO 

model ( 1.3.1) is almost symmetrical in shape as the normal distribution 

for values of 8 as high as 8.0 and 0 < A ≤ 0.5. Therefore, a test 

for H0: A = A0 ≤ 0.5 against Ha: A > A0 can be based on normal 

approximation. It is interesting to note that this approximation does 

not depend on whether the sample size n is large or not. 
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Suppose a random sample of size n is taken. The test is 

based on the statistic 

n 
X = n 1 Z X.. (6.3.1) 

i=1 

The critical region for rejecting H0 is X > C where C is 

determined from 

a = P{X > C I H0} 

> /(C-i) H 
1 05 

=Pfz > ./ [c-80(l-A0) ']/./190 (1-A0) 3} H0} 

Thus, by finding the value of za from the standard normal table, the 

value of C is given by 

C = 8o(1o)1 + Z (6.3.2) 

A similar test can be carried out for the parameter ?' in 

the GPB model ( 1.3.2) if it is known that ? = IP 0 is positive and that 

lee 0 ≤ 0.5. In this case, the standardized variate 

z_x - ' 
a 

has an approximate normal distribution, where ii and a2 are given in 

section 5.3 with 8 replaced by 8. 

,A test for H 0 0 : '1° ≤ 7' against H a : 7' > r 0 is based on the statistic 



130 - 

X. By following the earlier procedure, the value of the boundary C 

is given by 

C = 0o(l_7 o9o)_l + z./T80(l_1t 080) 3/n]. (6.3.3) 

One can easily formulate a two-sided test for testing a 

simple hypothesis. One will be testing H0: 10.=  against Ha: 'i° * 

The critical region for rejecting H0 is X-pj > C-y where C is 

determined from 

a = P{IX-pl > C-p I H0} 

which is equivalent to 

aP{- p>C - p I H0} 

  .,(C-p) •1. 
1 a a Of 

= P{Z > Z,2 }. 

The value of z a/2 from the standard normal table will be used to 

obtain the value of C. On substituting the values of p and a, we 

get 

l_ 0o8o) 1 + z a/2 /To o(17'o8o)-3 /flj. (6.3.4) 

6.4 LIKELIHOOD RATIO TESTS FOR 9 OR A IN LARGE SAMPLES 

We consider the composite hypotheses 

H0: 9 = 0' A unknown 

against (6.4.1) 
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H: a 98 0,A unknown. 

The likelihood function of the GPD model ( 1.3.1) is given by (4.1.1). 

Consul and Shoukri ( 1984) have shown that the ML estimates 9 and A 

of 8 and A in the model ( 1.3.1) are unique and that they are 

obtained by solving equations 

n x.(x.-l) - 

1 1 ,5-nx0 

i=1 

and 

(6.4.2) 

(6.4.3) 

Let the ML estimate of A when 8 is fixed at 8 0 be denoted by 

A(9 0). This estimate is used to obtain the likelihood ratio, when H0 

is true as 

- L[90, A(80 )] 

L(9,A) 

(6.4.4) 

which satisfies 0 S t 1. Large values of R imply 110 is 

reasonably acceptable since L is the maximum likelihood under H0 as 

a fraction of its largest possible value. The critical region will be 

of the form 

a 

where c is determined from 

c 

f() M. = a 
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if f() is the density of 9. 

It is almost impossible to find the exact distribution of 

in some cases. As proved earlier in Chapter V, the statistic -2 log 

is an approximate chi-square random variable with , l df. when the 

sample size n is large. Thus, test of hypotheses in ( 6.4.1) can be 

carried out by using a chi-square random variable as the test 

statistic. 

We now find the unconditional maximum L(8,A) of the likeli-

hood function and the conditional maximum L(80, A(90)) of the likeli-

hood function where 8 and A are the ML estimates obtained from 

equations (6.4.2) and (6.4.3). The ML estimate A(80) is obtained, 

through iterative procedure, from equation (4.3.6) with 8 replaced by 

80. 

By substituting the values of the likelihood functions in 

(6.4.4), one obtains 

n x.-1  - [no 0+A(80)Zx1] 1. 

8 0 e [{80+(90)x1} /xj!} 
i=l 

.. 

-[nO+AZx1] n i x -1 
8 e if [F8+,̂J 

i=1 

x-1 
I80l' n[8-80+(A-A(80))] n 180+A(80)x.1 ] 

e if I I Le J i=l I. 8-I-Ax. J 
1 
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Finding the exact distribution of the statistic 4 does not appear to 

be an easy task. Since the sample size n is large, the random 

variable -2 log 9 is approximately chi-square distributed with 1 

d.f. Hence the likelihood ratio test (LRT) statistic P is given by 

T = - 2 log 

= - 21ln 1oS{} 
B 

F8n[8 - 80 + (A_A(80))] 

180+A(80)x±ljl 
+ Z (x.-1) 1o{ ,.. ill . (6.4.5) 

i=1 84-Ax . 
i 

We reject the null hypothesis at significance level a if the 

calculated T in (6.4.5) from a random sample of size n is such that 

P > , 
a,l 

where ,(2 1 is the upper 100(1-a) percent point of chi-square 

distribution with 1 d.f.. 

When the test of hypothesis is about the parameter A, we 

modify (6.4.4) such that 8 0 is replaced by 8(A0) and A(80) is 

replaced by' A0 where 8(A0) is the ML estimate of B in the GPD 

model ( 1.3.1) when the parameter A is fixed at A0. 

Therefore, we have 

L(8(A0), A0) 

- L(B,A) 
(6.4.6) 
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The ML estimate 8(A0) in the conditional maximum L(8(A0), A 0 ) of 

the likelihood function is obtained through iteration from equation 

(4.3.3) with A replaced by A0. By using the values of the 

likelihood functions in (6.4.6), we obtain 

- X.  

18(A0)1 n[8-8(A0)+(A-A0)] 1800'i' 
ni I 

1' 0, J 1=1 I. 9+Ax. J 
1 

As in the previous case, -2 log Z is approximately chi-square 

distributed with 1 d.f. 

6.5 CONDITIONAL LIKELIHOOD RATIO TEST 

The conditional likelihood ratio test is applicable to tests 

about the parameter ° in the GPO model ( 1.3.2) when the sample size 

n is large. The likelihood function of the GPD model ( 1.3.2) is given 

by (4.1.2). We shall now formulate a procedure for testing the 

composite hypotheses 

H0: r = , 9 unknown 

against 

Ha  : I°* ro ll 8 unknown. 

Since Y is a sufficient statistic for the nuisance parameter 8, one 

can easily eliminate the parameter 8 by dividing the likelihood 
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function by the probability function of Y as in subsection 5.4.2. 

From (54.6), the conditional likelihood function C(r) is given by 

x.-1 
) r(]+o, :i.. ]. 

Y!  I x! I 

n(n-1i°y) 1 il I i J 

We define the conditional likelihood ratio function as 

c 
- C(?) 

- C() 

(6.5.1) 

(6.5.2) 

where 'i° is that value of ? which maximizes (6.5. 1) and it is the 

root of equation (5.4.7). Although it appears as if equation (5.4.7) 

will have multiple roots, but from each of several examples we have 

worked on, the iterative procedures used to solve (5.4.7) have yielded 

a single solution in very few steps. 

When H0 is true, the conditional likelihood ratio (6.5.2) 

gives 

1+x x.-1 fi+ j n I Oil 
c =I l • 10 0 if I I i=l Ii + ?x. I 

I I 

It is interesting to note that this quantity behaves very much like the 

likelihood ratio 4. We have that 0 1. By Corollary 5.2 of 

Chapter V, the conditional likelihood ratio test (CLRT) statistic 

- 2 log 9 is approximately chi-square distributed with 1 d.f.. By 

applying this result, the test statistic 
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T - 2log C C 

2(n l) log I1'C  I 
1 x I + r 

n 
+ Z (x.-1) 

i=1 

x. 
log 0 1 

1 + ?x. 
1 

(6.5.3) 

is distributed approximately as a chi-square random variable with 1 

d.f. To teat the composite hypothesis H0 against the composite 

alternative 11a' the value of T is computed from (6.5.3) by using 

the observations from a random sample of size n and H0 is rejected If 

T > 2 
c cx,1 

where x2 1, as defined in section 6.4, will be obtained from the 

chi-square distribution table. 

6.6 POWERS OF THE TESTS 

We consider the procedures discussed in sections two through 

five and give the powers of the different tests for a specified value 

of the parameter under the alternative hypothesis. 

For the IJMP test in ( 6.2.4), the power of the test under 

when randomization is ignored is 

71 = l-/3 = P{Y > C I H } a 
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00 -9 ( n+'y) 
= 2 n(n+°y) 1 6 e 1 /y! 
y=C+1 

(6.6.1) 

where 9 l is the specified value of 9 under the alternative 

hypothesis and C is determined from (6.2.6). 

For the approximate normal test in section 6.3, the power is 

given by 

71 = 1-f3 = P{ > C I H}. (6.6.2) 

In this case, C is determined from either (6.3.2) or (6.3.3) 

depending on whether the parameter we are testing for is A or ?. 

The test statistic T in (6.4.5) is, in general, a 

non-central chi-square random variable with 1 d.f. and non-centrality 

parameter 

where 

= Var(9) 

Var(0) = E1- à2LnL(9,A)] 
(782 

[See Kendall and Stuart, 1977 page 247]. 

It has been shown in Chapter V for the GPD model ( 1.3.1) that 

n[8(1-A)+2A]  
Var(8) = 111(9) - 9(9-I-2A) 

(6.6.3) 

Under the null hypothesis, where 9 = 90 and .' 0 the test 

statistic T is a central chi-square random variable. Under Ha the 
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alternative hypothesis, v is as given in ( 6.6.3) with 0 replaced 

by its specified value under Ha• Therefore, the power of the LRT is 

= l-/3 = d 2 (l,i'1). (6.6.4) 

But a non-central chi-square ,(2(, LI ]) can be approximated by an 

equivalent central chi-square distributed random variable. By 

following the procedure in Kendall and Stuart ( 1977, page 245), (6.6.4) 

can be approximated to give an approximate power for the LRT as 

CO 

where b = (l+111)(1±2LI1) 1 , and , 2(r) is a central chi-square 

b 
I (6.6.5) 

variate with r df. and 

n{0 1(1-A(8 1) )+2A(8 1) 1 
LI1 = (01_oo)2  - 

01(0 1+21(8 1fl 

(6.6.6) 

In ( 6.6.6), 8 l is the value of 9 specified under the alternative 

hypothesis and A(8 1) is the ML estimate of A in the GPD model 

(1.3.1) when the value of 8 is taken to be 8l The ML estimate 

A(8 1) is the solution of equation (4.3.6) when 8 is replaced by 81. 



- 139 - 

The procedure to obtain the power of the CLRT is similar to-

the above method and will not be given here. 

6.7 SEQUENTIAL PROBABILITY RATIO TEST 

The Neyman-Pearson theory considers the problem of 

constructing a most powerful test at a given sample size and 

significance level so as to keep both types of errors within a very 

reasonable limit. The choice of a and /3 (type I and II errors), 

remain somewhat arbitrary. A disadvantage of this approach is its 

failure to relate the choice of sample size and significance level 

(type I error) to the economic background. 

A corrective approach to the above type of economic problem 

was introduced by Wald ( 1950). However, we shall not delve into the 

economic prospect of this elegant approach, we shall briefly outline 

how sequential probability ratio test (SPIlT) can be applied to test 

hypotheses about the parameter of the restricted GP distribution. 

The SPIlT procedure achieves optimal economy in the required 

sample size in any problem. A rigorous mathematical proof has been 

given to this fact by Lehmann ( 1959). The SPRT, developed by Wald 

(1945, ' 47) will be applied to testing a null hypothesis against 

one-sided alternatives. Its application to two-sided alternatives is 

more complicated and will not be dealtwith here. 

Consider the hypothesis 
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H0: 8 = 80 against 

Ha: 8 = 81 °l > (6.7.1) 

Let X1, X2, X3, ... be a sequence of independent random variables from 

the GPD given in ( 1.3.2) and suppose the value of the parameter r is 

fixed. First, weobtain a sequential test for the hypotheses in 

(6.7.1). Subsequently, we shall obtain approximate expressions for the 

operating characteristic (OC) function and the average sample number 

(ASN) function of the SPRT. 

Let A and B, B < A, be two given numbers. A SPHT for the 

test in ( 6.7.1) is defined as follows: 

Observe {X}, i = 1,2,3, ... successively, and at stage N ≥ 1 

(1) reject H0 if L(x) ? A 

(ii) accept H0 if L(x) ≤ B 

(iii) continue by observing XN+l if B < L(x) < A where 

IN P(81, ' 1)•••pxN(°l 08l) 

) (80 , 'Poo) 1'0N P(80, O8 ... •P xN 0 

L(81, o8l) 

L(80, 

N 
Zx. -8 1 (N+?Zx.) N 

1/x!] 
1 11 

l e i=l [ 1+ i 

N 

Zx. -8ü(N+?Zx) [(l+?xi)ci_l e ,(xi !)I 
O0 1=1 
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N 
Xx. N 

= 1 ei°0°1)80 
811  

(6.7.2) 

Thus, we continue to sample as long as 

log B < log L(x) < log A (6.7.3) 

and accept H0 or Ha according as 

or 

log L(x) ≤ log B 

log L(x) log A. 

By using (6.7.2) in ( 6.7.3), we get 

N 
Xx 

J 191 0(8o 8i)1 
log B < log, 1[r  e j •e < log A 

N(81 80)1 N 18 ?(80 01)1 r N(81-00) 
i.e. log 1B e Z x..lo{! e j < log [A e j. 

1 
i1 

(6.7.4) 

But 0 < 80 r< 81 r< l so that 'P< O-  Also, 

I 
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1 

80 

8 0 J [Go ] - +[ç1] 2 + 1 i i1 + 

81 fl 0 
>ci'c 

= 1. 

Therefore, 

-ii 

01 °-° 1)1 
1og-e > 0. 

0 

.1 
J 

(6.7.5) 

Because of (6.7.5), the inequalities in (6.7.4) can be written as 

log 1B e N(8 1_00)] < N log(A x <  e °1°0 
? ] 

1 8 

Irol 

0 (8loge 0-81) 1=1 1o[! 80 e j 
(6.7.6) 

From Wald's analysis, the constants A and B can be approximated by 

A ( 1-/3)/a 

B.  (6.7.7) 

where a and /3 are the probabilities of the first and second types 

of error, respectively. Also, the SPRT terminates with probability 

one. By using (6.7.6), we conclude that the SPRT in (6.7.1), with 
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N 
error probabilities a and /3, is given by the statistic Z X. and 

that the two boundaries are 

log B + N(8 1-80) 

lo[} + o(8o_8i) 

below and 

u 

log A + N(8 1-80) 

= io[!} + r(eo_oi) 

above, where A and B are given by (6.7.7). 

6.7.1 OPERATING CHARACTERISTIC FUNCTION 

Denote by L(8) the probability that the sequential process 

will terminate by accepting the null hypothesis 110 when 8 is the 

true value of the parameter. Thus, L(8) is the OC function. We are 

interested in finding an approximate value for L(8) by neglecting the 

excess of L(x) over the boundaries A and B when the process is 

terminated. By following Wald's argument, L(8) can be approximated 

by 

A h1 
L(8)  

A - B 

111 

a— ) - 1'j 

(6.7.8) 
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where the function h = h(0) * 0 is obtained from 

1PPx 

(8 l, 

x0 (s o ' 'Pe o)j 'x' re) = 1. 

Thus, 

hx -(81---90)(1+x)h (1+'x)'1 x -0(1+°x) 
e 8 .e Z 

x0 X. 

;   
(1..p,)Xl 8 h 

= x0 x! [6[] Ix e_[881_O0)(l 
By comparing the above sunnnation with 

; P (8, '8) = 1, 
x0 x 

is easy to see that 
9 h 

= 0 (81-80)h. 

(6.7.9) 

(6.7.10) 

Solving for h = h(0) in (6.7.9) is equivalent to solving for h in 

(6.7.10). Thus, we get 

(9 1-00)h 

8 = (6.7.11) 

We now need to solve for h in (6.7. 10) and these values of h will be 

subsequently used in (6.7.11) and (6.7.8) to obtain the points 

(8, L(8)) which are used to draw the OC function. However, the task of 
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finding h = h(8) in ( 6.7.10) does not appear to be an easy one. This 

problem' is overcome by the fact that when any h is chosen arbitrarily 

the point (8, L(8)), computed from (6.7.11) and (6.7.8), will lie on 

the OC function. By considering many values of h which lead to large 

number of points (8, L(8)), one can draw the OC function. 

From (6.7.11) and (6.7.8), the points in the following 

Table 6.1 are easy to obtain. 

TABLE 6.1 

Some points on the OC function 

h 8 L(8) 

1 
80 

1-a 

-1 81 

0 1 

- 

 -  
i-co 0 

0 
°iT°o Ln[(l-/3)/a} 

n81- n80, n[(l-/3)(1-a)/cx/3] 

2920 
(1-$+a)(l-a) 2 

'8 1+80 l--a-/+2a18 

282 
(l-+a) '02 

_____ 

°io l-a-18+2a/3 

By using these seven points, a rough OC function which is given in 

Figure 6.1 can be obtained. 
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FIGURE 6.1 
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6.7.2 AVERAGE SAMPLE NUMBER FUNCTION 

From Wald's fundamental identity, it is known that the 

approximate formula for the average sample number function is 

where 

L(9) log B + (1-L(9)) log A 
E9(N)  E9 (Z) 

(9 , 

Z = log P x l  
P x (80 '. 1080), 

(6.7.12) 

In subsection 6.7.1, the approximate formula for L(9) has been given. 

We note here that E9 (N), the expected value of N (the number of 

observations required by the SPIlT) when 9 is the true value of the 

parameter is a function of 9. For the GPD model ( 1.3.2), we have 

9 X (89)(1+°X) 
E9 (Z) = E9 lo {{!J e 

= log [.!}. Eo(X) - (ei-eo)[l + i E9 (xfl 

8 °i} 81-Ba  

= 1-!9 104- - l-V8 

Hence, 
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L(9) log B + (1-L(9))log A 

E9(N)  [001' q1 
1-?o log 

  log[I'I +  1[/3/(la)] '  iog[.!} 
= [( l/3)/aJ'_[/3/(l_a)]h 

i9 io[] - _____ 
1-9 

(6.7.13) 

Since it' is not easy to find the values of h as indicated in 

subsection 6.7.1, we consider a large number of values for li which are 

chosen arbitrarily. By substituting these values of h into (6.7.11) 

and (6.7.13) we obtain the points (9, E9(N)) which are used to draw the 

MN function. 

The following three points are e as 

0 80 

y to obtain for the ASN 

function. When 8 = O, L(80) 1-a and 

- (1-a) log{J 

E8 (N)  io °4] 

When 9 9] L(81) = /3 and 

+ a 1og{} 
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When 0=0, L(0) = 1 and 

log {_L] 
E0 (N) 

=   

The work in this section can also be carried out for a 

composite hypothesis H0: 0 S 8 0 against an alternative hypothesis 

Ha: 0 > oo. This is done by reducing the composite hypotheses to 

simple hypotheses of the form (6.7.1). 
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CHAPTER VII 

ESTIMATION FOR GENERALIZED NEGATIVE 
BINOMIAL DISTRIBUTION 

7.1 PROBLEMS INVOLVED 

The GNB distribution in ( 1.2.1) is a three-parameter 

distribution. Jain and Consul ( 1971) applied the method of moments to 

estimate all the three parameters of the distribution. Cliaralambides 

(1974) considered a left truncated GNB distribution, truncated at point 

r, r 1 and obtained the minimum variance unbiased estimators of 

functions of 0 both for the cases when r is known and when r is 

unknown. The work of Kumar and Consul ( 1980) has been referenced in 

Chapter III. 

The method of ML estimation was proposed as a general method 

of estimation by Fisher ( 1912). Later on, rigorous proofs of the 

asymptotic properties of the ML estimators were given in the works of 

Cramer ( 1946), Huzurbazar ( 1948) and Chanda ( 1954). Among the 

desirable properties of an estimator are 

(i) consistency 

(ii) efficiency and 

(iii) unbiasedness. 

One of the problems of an ML estimator is that it fails to satisfy some 
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of the above desirable properties. Neyinan and Scott ( 1948) and Kraft 

and LeCam ( 1956) have pointed out situations where the ML estimator is 

inefficient and not consistent. Their examples involve sampling from 

associated populations, that is, distinct but related populations. 

Thus, if we have a situation in which observations do not come from 

only the GNB population but also from a distinct but related 

population, we may end up with ML estimators which fail to satisfy some 

of the desirable properties. 

When we have a uniparameter distribution, solving of 

likelihood equation may not be all that difficult. For two parameters, 

there may be problems if one (or all) of the likelihood equations is 

(or are) not well behaved. In general, as the number of parameters 

increases, the problems of solving the likelihood equations become more 

difficult. Therefore, obtaining the ML estimators in closed forms may 

prove to be a formidable task. This is in fact a problem in the ML 

estimation of the parameters in the GNBD. The expression in the 

likelihood equation looks horrible and cannot be easily evaluated. 

Another problem in the ML estimation of the parameters m, 8 and /3 

is that the parameters 8 and /3 depend on one another on the 

boundary. This makes differentiation with respect to O or /3 very 

difficult when both are unknown. 

After getting the likelihood equations, some of which are ill-

conditioned, one cannot talk about the existence of unique solutions. 

This has been a problem in the field of estimation of parameters in 

statistics. Consul and Shoukri ( 1984) proved a particular theorem for 
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the existence of unique admissible ML estimators for the parameters of 

the GPO given in ( 1.3.1). Such a proof has not been given for the 

existence of unique ML estimators for the parameters of the GNB 

distribution. 

Given a set of ML estimators, it will be of interest to know 

how well these estimators perform among other estimators from other 

methods. This can be measured by comparing their biases and relative 

efficiencies. The relative efficiency E is computed from 

E = [( generalized variance) ( information determinant)] 1 

To compute the generalized variance, one needs the variances and 

covariances of the estimators. In this case of GNB distribution, it is 

very difficult to get the exact value of the generalized variance. 

Therefore, one has to take recourse to the asymptotic value. 

Shoukri ( 1980) considered the simultaneous estimation of the 

parameters m and 9 (with / known) by using the methods of moments 

and maximum likelihood estimation. He obtained the asymptotic biases, 

variances and covariance of the two sets of estimators by appealing to 

the method proposed by Shenton and Wallington (1962) for the negative 

binomial distribution. Shoukri's work involved very complicated 

expressions and the results obtained were more or less messy. If the 

expressions obtained for the estimation of two parameters are so messy, 

one begins to wonder as to how the expressions for the case of three 

parameters will look like. 

Shoukri ( 1980) further obtained the relative asymptotic 
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efficiencies of the ML and moment estimators of in and 8. The 

relative efficiencies were based on the first order biases, variances 

and covariance of these estimators. As a matter of fact, it is somehow 

difficult to give a reliable conclusion from any result based on first 

order approximations without any information on the behaviour of second 

order terms of biases, variances and covariance. This is the main 

reason why it is difficult to determine the subregion of the parameter 

space in which one estimator is superior to the other. 

By examining the tables of relative efficiency of moment 

estimators with maximum likelihood estimators, it is noticed that the 

moment estimators are good when in is very small, say 1.0, 8 is near 

0.05 and /3 < 10.0. Thus, the moment estimators are good in a very 

small region of the parameter space if one is to rely on the results 

from first order approximations only. 

The information determinant in the formula for finding the 

relative efficiency is not easy to obtain for the GNB distribution. An 

indication of this was given by Shenton ( 1949), who stated that the 

chief difficulty in computing the efficiencies in multiparameter 

distributions appeared to be the evaluation of the information 

determinant. 

There is not much problem encountered in solving the 

equations that result from the moment method. The moment estimators 

are inefficient and biased. To evaluate the exact variances and 
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covariances as well as the biases is a task that no one has attempted. 

7.2 SOME UNSOLVED PROBLEMS 

The following are some unsolved problems which require 

further research work in the estimation of the GNB distribution. 

1. The existence of unique and admissible maximum likelihood 

estimators for m and 8, when /3 is assumed known, is 

still an open question. 

2. The asymptotic biases, variances and covariance of the above 

ML estimators up to the second order are yet to be obtained. 

The same problem exists for the moment estimators. If these 

can be obtained, they will lead to a better assessment of the 

efficiencies of these estimators over the whole parameter 

space. 

3. No work has been done on using the ML estimation method for 

estimating the three parameters simultaneously. This, 

however, may not be unconnected with the fact that the 

parameters 8 and /3 are dependent on the boundary. 

Accordingly, the differentiation of the likelihood function 

with respect to 8 or /3 becomes very difficult. The 

question of their uniqueness, biases, variances and 

covariances also remains open. - 

4. In view of the fact that the. ML estimators have not been 



- 155 - 

proved to be unique and that the moment estimators seemed to 

be good in a small region of the parameter space, other 

methods of estimation are worth considering. These other 

methods which may be applied to the simultaneous estimation 

of the three parameters are: 

the method of the first two moments and the observed 

proportion of ' zeroes' and 

the method of the first two moments and ratio of tone 

and frequencies. 
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