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ABSTRACT

In tﬁis thesis, we studied estimation and hypothesisrtesting
in some generalized discrete probability models.

The family of generalized Poisson distribution (GPD)
characterized by two parameters, was defined by Consul and Jain (1973).
The GPD models have been found useful in many different areas like
queueing theory, branching procesé; genetics and ecology. The family
of GPD models belongs to the class of Lagrangian probability
distributions [Coﬁsul and Shenton, 1973]. The restricted GPD is a
member of the class of modified power series distributions (MPSD),
[Gupta, 1974]. Both the class of lLagrangian probability digtributions
and the class of MPSD also contain the families of the generaiized
negative binomial distribution (GNBD) and the generalized logarithmic
series distribution (GLSD) among many others.

Some properties énd applications of the GPD family and those
of restricted GPD, the GNBD and the GLSD as members of the class of
MPSD are reyiewed in Chapter I.

In Chapter II, we have proved that the GLSD, GNBD and GPD are
unimodal.

We investigated the problem of interval estimation in.the
class of MPSD in Chapter III. Both the cases of small and large
‘samples are éonsidered in setting two—sided 100(1—«)% confidence

bounds for the parameters. By using the critical region for the
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uniformly most powerful test, we have also obtained a uniformly most
accurate one-sided confidence bound.

Chapters 1V and V contain esfimation in small and large
samples for GPD model. Confidence intervals, likelihood intervals as
well as likelihood regions are obtained for the parameters of GPD when
the sample size is small. When the sémple'size is large, expressions
for finding confidence intervals for each of the two parameters when
.one is unknown and when both are unknown are derived. Furthermore, we
have discussed the problem of setting confidence regions for the two
parameters.

From recent research work, meaningful interpretations have
been given to the parameters of GPD when the model is used to describe
a natural phenomenon. Quite often, a user of the model formulates
hypotheses abogt these parameters. Accordingly, Chapter VI is devoted
to tests of hypotheses on the parameters of the GPD. The cases in
which one parameter is unknown and in which both parameters are unknown
are separately considered.

Some estimation problems for the GNBD are discussed in
Chapter VII. In conclusion, we briefly outline some unsolved problems

which need further research work.
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CHAPTER I

INTRODUCTION

1.1 SOME CLASSES OF DISCRETE DISTRIBUTIONé
Let X be a random variable (r.v.) and let F(x) = P(X £ x)
be its distribution function. If F(x) is a step function with only an
enume%able number of steps and if the height of the step at X = xj is
Pj’ then -
P(X = xj) = Pj

and the r.v. X is said to be é discrete r.v. and also if £ P. =1
f | j

then X is said to have a discrete probability distribuﬁion.

A variety of the garthly phenomena dgal with random counts.
Some examples are the number of a particular plant species per quadrant
in an ecological habitat, the number of girls in a family of six in the
city of Calgary, the number of bacteria per colony, the number of
traffic accidents incurred over a period of time.b§ the bus drivers in
a cityjand the number of deaths due to epileptic disease in a city.

Any set of data which conforms with the gbove different types
or some other form of random éounts is adeqqately analysed by using a
discrete probability distribution. However, it is sometimes possible

to consider the problem by using a continuous distribution which is an



approximation but it may not lead to a satisfactory result in all
cases. In faét, one uses approximations, either when an exact method
is not available or when the exact methods are too laborious to use.
In effect, one should fit a continuous data with a continuous
probability distribution and a discrete data with a discrete
probability distribution. When the samples are very large, one may
have to appeal to the central limit theorem in order to apply an
appropriate continuous distribution.

It is very difficult to classify the various types of
discrete distributions. We will not hesitate to state here that there
is no hard and fast rule for this classification. Each author comes up
with one or the other type of classification. The field of discrete
probability distributions is so wide and diversified that it is hard to
provide the definition of classes. Patel, Kapadia and Owen (1976)
considered exponential family, Pearéon;distributions (in contihuous
case) and generalized power series distributions as families of
probability distributions. They also considered among others, the
binomial, the Poisson and the negative binomial distributions as
different classes. On the other hand, Johnson and Kotz (1969)
considered the generalized power series distributions, the systems
defined by difference equations, mixture/compound and ggneralized
distributions and the contagious distributions among others as'major

classes of discrete distributions. Also, they gave a number of



discrete probability distributions which do not fall into any of the
major classes. In this work, we shall follow the latter classification
and refer to a member of a class as a family.

It must be pointed out that sometimes there may exist some
relationships between any two or more members of a class with some
members of another class. We shall now discuss the following four
major classes: the mixture/coﬁpound and generalized distributions, the
generalized power series distributions;, the modified power series
distributions and the Lagrangian érobability distributions. The mohels
we shall bé considering in subsequeﬂt chapters are associated with

these different classes.

1.1.1 THE MIXTURE/COMPOUND AND GENERALIZED DISTRIBUTIONS

When.an applied statistician or a researcperfin any subject
area obtains a set of data,'usually he determines the mean and the
variance of the data and on the basis of the property that the mean is
greater than the variance, the mean equals the variance or the mean is
less than the variance he will tfy the binomial, the Poisson or the
negative binbmial distribution. It was discovered in many situations
that none of these three distributions was the approporiate model for
the data. In view of this, statisticians began to look for other types
of distributions. This had in ﬁo small measure resulted in the
development of various ‘modified"forms of the classical distributions.

The modification is generally in the form of mixing, compounding and



generalization. Further with this modification, statisticians went as
far as‘possible to obtain the discrete analogues of some well known
continuous distributions. Cassie k1962), for example, obtained the
discrete lognorma} distribution by considering the log counts of sample
data as normally distributed. Other forms of such modifications appear
as truncated and modified distributions. The basic motivation was to
obtain an appropriate discrete probability distribution to fit the
observed data.

If j€T where T is any subset of the set of non—negativé

/

integers and if [PJ(XI’XZ""’xn)} represent different cumulative

distribution functions and if wj 2 0 such that

zZ w. =1, then
JjeT J

P(xl,xz,...,xn) = jo wJ Pj(xl,xz,...,xn) (1.1.1)

is also a proper cumulative distribution function. The distribution
1

(1.1.1) is called a mixture of the distributions {Pj(xl’xz""’xn)f‘

If X is a r.v. whose probability mass function is
P(X=x | 0=0) (1.1.2)

for x . in the domain of the distribution and if @ is now regarded as

a new r.v. with its own probability distribution f(8), say, then the



glven probability in (1.1.2) becomes a cond1t10na1 probablllty and one

can obtain the uncondltlonal probability P(X=x) as follows:

jj P(X=x|@=6)f(8)de, if 8 is continuous
(1.1.3)

P(X=x)
. 12 P(X=x|®=6)f(8), if 8 is discrete
8

This is written in a symbolic form as

X A8,
P(X=x) in (1.1.3) is referred to as compound distribution. From the
above definitions of mixture and compounding one caﬁ see that there is
a relationship between the two terms. The term ‘compound’
distributions is usually used.synonymously’with the term ‘mixture’
distributions. ’

Suppose gl(t) and gz(t) apelthe probability genefating

functions of the random variables " X and Y respectively. A new
probability generating function for a different r.v. Z can be easily

formulated as

H(t) = g (g,(t). (1.1.4)

The new r.v. Z is said to be a generalized distribution of the
previous random variable X. In (l.1.4), the distribution of Y is
called the ‘generalizer’. Symbolically, it is denoted

Z=Xv Y.



A good exposition of the relationship between mixture,
compounding and generalization is given by Blischke (1563). Some well
known membérs of this class of discrete distributions are
Poisson-Poisson, Poisson—-Binomial, Neyman Types A, B and C, Thomas and

Polya—Eggenberger.

1.1.2 THE GENERALIZED POﬁER SERIES DISTRIBUTIONS
' Let f(8) be an analytic function of 8 such that

[+~
£(8) = Z a(x) 6%,
x=0
where a(x) 2 0 for all x, then
Ia(x) 8%/£(8); x=0,1,2,..., 8§ > 0
P(X=x) = (1.1.5)
10 ' H otherwise

is a power series distribution (PSD). This class of discrete
distributions was introduced by Kosambi (1949) and Noack (1950)
independently. Patil (1962) considered the domain of the distribution
(1.1.5) to be the set T where T is a subset of the set of non-
negative integgrs. This extended class is referred to as generalized
power series distributions (GPSD).

The class of GPSD has got many interesting properties. The
probability generating function of the distribution (1.1.5) is

g(t) = £(6t)/£(8).



It is observed that the truncated distributions, excluded in the class
of PSD, are inéluded in the class of GPSD. Thus, if a GPSD is

truncated, the truncated distribution is also a GPSD. If each of

n
Xl’ XZ’ cey Xn has a GPSD, then the sum Y = 2 Xi also belongs to the
: 1

same class with series function
{£(8)}".
A lot of work has been done on the GPSD. Some references are
Tweedie and Veevers (1968), Patil {1962) and Khatri (1959) on
properties, Roy and Mitra (1957) on estimation and Patil (1963) on
applications. Some members of the GPSD class are the binomial
distribution, the negative binomial distribution, the Poisson

distribution and the logarithmic series distribution.

1.1.3 THE MODIFIED POWER SERIES DISTRIBUTIONS
A discrete r.v. X 1is said to have a modified power series °
distribution (MPSD), [Gupta, 1974], if its probability function is

given by

P(X=x) =

[acote@y/ee);  xer
1 (1.1.6)

0 H otherwise

where T is a subset of the set of non—negative integers, a(x) 2 0,
¢(@) and f(8) are positive, finite and differentiable functions of @
and f(8) is such that

£(8) = Z a(x) {g(8)}*.
x€T



If g(8) equals 8 or is invertible, (1.1.6) reduces to the GPSD and
if T is the set of noﬁ—negative integers, (1.1.6) becomes the PSD.
It is obvious that the PSD anq the GPéD are special cases of
the MPSD. A truncated MPSD is also an MPSD. Some members of the MPSD
class are the binomial distribution, the negative binomial
distribution, the generalized negative binomial distribution, the
logarithmic series distribution, the generalized logarithmic series
:distribution, the Poisson distribution and the restricted generalized

Poisson distribution.

1.1.4 THE LAGRANGIAN PROBAbILITY DISTRIBUTIONS

The class of Lagrangian probability distributions (LPD) was
introduced inté the statistical literature by Consul and Shenton
(1972). These probability distributions are generated by the well
known Lagrange’s expansion. Before the introduction of this class,
Otter (1948) pointed out the applicability of Lagrange’s expansion to
branching processes in univariate situation. His resglt was later
extended to the multivariate case by Good (1960). However, these
authors seemed not to realize the uséfulness of the lLagrange’s
expansion in generating discrete probability distributions.

Let g(t) and f(t) be two analytic functioné of t which are
successively differentiable and such that g(1l) = f(1) = 1, g(0) # 0,
then under the transformation |

u = t/g(t) ' : (1.1.7)



one can consider f(t) as an implicit function of u, say h(u) and
expand it as a power series in u within its circle of convergence by
Lagrange’s expansion. It can be easily shown that the function h(u) is
a probability generating function in u and gives birth to a new r.v.

X whose probability distribution is given by

x—-1 X
J%sz—i:T {[g(t)] f'(t)}] H x €T
P(X=x) = gt =0 (1.1.8)
£(0) ; x =0 ‘

where T is a subset of the set of non-negative integers. The
probability generating function h(u) of the distribution in (1.1.8)

is given by f(t) = h(u), where t = u-g(t), or by

) ) o ux ax"'l f X ' 1
h(u) = £(t) = £(0) + xil T L—Ttx_ 1[g(t)] f (t)j tzo.

Consul and Shenton (1972) took f(t) and g(t) as
probability gemerating functions defined on non-negative integers such
that g(0) # 0. Consul (198l1) pointed out that one can obtain a true
probability distribution by removing the restriction that f(t) and g(t)
need be probabiiity generating functions. Thus, the class of
Lagrangian probability distributions is widened. Consul further showed

that the class of MPSD is a subclass of the extended class of LPD.
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Some of the members of this class are the generalized
neéative binomial distribution, the generalized Poisson distribution,
the generalized logarithmic series distribution, the Haight
distribution and the Borel-Tanner distribution. Some papers have been
published onm the characteristics of this class. Among them are Consulh
and Shenton (1973) on interesting properties and Pakes and Speed (1977)

on limiting theorems.

1.2 THE GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION.

Jain and Consul (1971) obtained the generalized negative
binomial distribution (GNBD) by using the Lagrange’s expansion. It is
not a generalization of the negative binomial distribution in the sense
of subsection 1.1.1 but it is to be remembered that the distribution
encompasses not only the negative binomial disfribution but also the
binomial distribution among many other distributions as special cases.

Since the GNBD is a member of the class.of LPD and coupled
with the fact that the binomial distribution is a special case, some of
the earlier writers referred to this distribution as the Lagrangian
binomial distribution.

A random variable X is said to have a GNBD if its

probability distribution is given by

Im%? [msz] ¥ (1-9)™FXX,  x=0,L,2,...

P(X:x) = (1.2.1)

10 H otherwise
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where 0<8< 1, m>0and 8=0o0rl1l=<g8=x 8—1. It reduces to the

binomial distribution when B8 =0 and m is an integer and to the

negative binomial distribution when B = 1. For values of g > 1, it

represents many other distributions which are very useful in prbblems

of random walk, ‘Mohanty (1977).
All the moments of this distribution exist if B < 8_1. The
characterization of GNBD by zero regression was considered by Consul

and Gupta (1980).

1.2.1 PROPERTIES OF GNBD

THE GENERATING FUNCTIONS: The probability generating function (p.g.f.)

of the GNB distribution (1.2.1) is given by either

h(u) = £(t;) = (1-8)" (1—et1)’“ (1.2.2)
under the transformation 7
t, = u(1-8)#1 (1—at1)'ﬁ+1, - (1.2.3)
where n >0 and 82 1, or by
h(u) = £(t) = (1-8+8t)" (1.2.4)
under the transformation
' t = u(1-8+t)", , (1.2.5)

when n and B are positive integers.
Though, the two forms of the p.g.f. seem to be different from each

other and makes one wonder as to what has happened to the uniqueness
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property of the probability generating functions, but really both forms
are equ?valenf to each other. If we put
tl = t/(1-8+8t)

in the first form of the p.g.fl, it reduces to the second form of the
p.g.f.. Thus, the two forms are identical. Also, we note that the
p.g.f. is a function of u and not of tl or t as it seems to be.
In view of these remarks, any of the two forms may be used in future.

The moment generating function (m.g.f.) of any r.v. X is

given by

m(T) = E[eTX].

Accordingly, the m.g.f. of the GNB distribution (1.2.1) is given by
replacing u either in (1.2.2) and (1.2.3) or in (1.2.4) and (1.2.5)
by eU. Sometimes t may also be replaced by eT for convenience.
Thus |

m(U) = fel) = (1-8+8eT)"
where

eT = eU(1—8+8eT)B.

Jain and Consul (1971) obtained the first four moments about
the mean by using a recurrence relation. Dyczka (1978) showed that the
GNBD belongs to the PSD class. He obtained the first few moments by

using the recurrence relation among the PSD moments. Ali-Amidi (1978)
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obtained a recurrence relation among the central moments. His

recurrence relation is similar to that of Shoukri (1980).

CONVOLUTION PROPERTY: Let X1 and XZ be two independent random
" variables. If Xl and X2 have GNB distributions with parameters

(ml, B, 8) and (mz? B, 8) respectively, then the sum X, + X2 = X has a

1
_GNB distribution with parameters (m1+m2, B, 8), [Jain and Consul
(1971)]. 1In general, if we have Xl, X2, ceey Xn GNB random variables

with parameters (mi, B8, 8), i =1,2,...,n, then the sample sum

Y=X, +X, + o+ +X

1 2 n
n
has a GNB distribution with parameters| Z m,, B, 8}. If m, =m for
i=1
all i, 1 = 1,2,...,n, then the probability function of Y is given by
nmt+Byl .y m+8y-y
P(Yay) = g [™Y) ¢¥ (1-0 1.2.6
Y=y) = oy | v (1-6)" ( )

RELATED DISTRIBUTIONS: The binomial distribution and the negative
binomial distribution have both been meptioned earlier to be special
cases of the GNBD, given by 8 =0 and B8 = 1 respectively.

The lost games distribution defined by Kemp and Kemp (1968)
and subsequently considered by Gupta and Singh (1982) is a special case
of the GNBD and it is given by B8 =2, m = a together with a shift in

the origin to 0.
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The generalized factorial distribution (or the‘GNB beta
distribution) with parameters k, 8 and A is obtained from the GNB
distribution with parameters (m = A-k+l, B8, 8) through compounding,
Jain and Consul (1971).

The above authors also showed that if X1 and X are

2
independent GNB variates with parameters (ml, B, 8) and (m2 = m-mg,
B8, 8), then the conditional distribution of Xl = x given that
Xl + X2 = z is a generalized negative hypergeometric distribution
(GNHD) with parameters m, m, z and 8.
If m- 0, the zeré—truncated (decapitated) GNB distribution
with parameters (m, B8, 8) tends to the generalized logarithmic;series

distribution with parameters g and 8.

let X be a GNB r.v. with parameters (m, 8, 8), mean u and

’

variance o2, the standardized r.v.

approaches the normal form as m -+ ®. This result was obtained by

Consul and Shenton (1973).

1.2.2 APPLICATIONS OF GNBD
The GNBD has many interesting applications in various fields
of study. Since the binomial and the negative binomial distributions

are two of its special cases, one can easily visualize that the GNBD
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will be applicable to those physical situations which are being
moﬂelied not only by the binomial and negative binomial distributions
but also by many other distributions.

Univariate distributions associated with lLagrange’s expansion
have been considered by Cpnsul and Shenton (1972) and Jain (1975) and
the multivariate cases by Consul and Shenton (1973),.Jain and‘Singh
(1975) and Good (1975). It has been shown that these distributions
arise as the distributions of the number of customers served in a busy
period of a single server queueing system under different conditions.
In particular, suppose m customers are waiting for service in a queue
at a counter when the service is initially started. Suppose further
that customers arrive at the service point in‘batches of gize pB-1, in
accordance with a Poisson process with traffic intensity A. The .
customers are served individually by a single server. The service
times are assumed to be independent and identically distributed random
variables and-have exponential probability distributions with parameter

U. Ser&ice times are independent of the arrival times. If

A

8=m

is the probability of arrival of a batch, then the probability
distribution of the number of customers served before the queue first
vanishes conforms to the GNB distribution (1.2.1).

The GNBD has an important use in chemistry in the reaction
called polymerization where the substance formed are generally

classified into unbranched linear chains and the branched chains. A
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chemist is usually interested in finding the size and weight of the
formed .substance after polymerizatién has taken place. The molecular
sizes and weights distributions can be suitably represented by the GNB
" distributions.

Let X(t) denote the total number of infected anywhere in a
habitat, starting from those initially infected at t and up to the
time of extinction of an epidemic. Kumar (198i) showed that the
Lagrangian probability distributions are useful in the theo;y of
epidemics and that the distribution of the r.v. X(t) belongs to the
family of the GNB distributions.

Good (1960, 1965) has-shown that the class of LPD which
contains the family of the GNB diétributions and also the distributions
of the sizes of trees in é branching process are likely to bg important
in tﬁe analysis of ﬁiological data and other areas where a branching
mechanism is involved. In particular, the size distribution of the
whole tree including the original individual is that of the GNB
distribution. This multiplicative process has various applications
especially in the study of population growth, the spreéd of rumours and

the nuclear chain reactions.

1.3 THE GENERALIZED POISSON DISTRIBUTION
let X be a GNB r.v. with parameters (m, 8, p). If p =+ 0,
m-+° and B -+ ® such that mp = 8 and Bp = A, Consul and Jain (1973)

showed that the distribution of X tends to a generaliéed Poisson
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distribution (GPD) with parameters 6 and A. . The probability

function of a GP random variate is’ given by

' I&(G+AX)X_1 e—e—Ax/x!; x=0,1,2,...

P(X=x)=PX(8,A) = 1 (1.3.1)

0 ;s for x > k when A < 0

and zero otherwise where 6 > 0, -8/4 € A <1 and k is that largest
positive integer for which 8 + Ak > 0 when A is negétive. The
variance of the above generalized Poisson distribution is greater than,
7 equal to or less than the mean according as the secondrparameter A is
positive, zero or negative. Both the mean and the varianée tend to
ingrease or decrease 'in §alue as A increases or decreases. Moments
'of all order exist if A < 1. ;

Recentl&, Consul (1986) has shown that the GPD is generated
by two different physical models. He gave a number of axioms for a
steady state point processrwhich produces the generalized Poisson
process.

By using the parémetric transformation A = Y8, the

distribution (1.3.1) reduces to the restricted model

f(1+rx.)x’1 g% o BP0 v 2 0,1,2,...
_P(X=x) = P _(8,8) =

10 : ; for x > k when Y<O0

- (1.3.2)

-3 K4 8_1 and k is defined in

o] =

and zerdsétherwise where 8 > 0, -
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(1.3.1). The case A =0 in (1.3.1) or Y =0 in (1.3.2) corresponds

to the Poisson distribution.

1.3.1 PROPERTIES OF GPD
Consul and Shenton (1972, 1973) obtained a number of
properties of the GPD and have shown that it belongs to the class of

Lagrangian probability distributions.

GENERATING FUNCTIONS: The p.g.f. of the distribution (1.3.1) is given

by

h(u) eG(t—l)

f(t) = (1.3.3)

where

=qu eA(t—l). (1.3.4)

-The m.g.f. is obtained from above by .replacing u by eU. Thus, we

have the m.g.f. as

m(U) eG(t—l)

f(t) =

where
_ U A(t-1)
= e e .

CONVOLUTION PROPERTY: The GPD has been shown to possess the important
convolution property. Thus, the sum of two independent GP random

variates with parameters (el,A) and (BZ,A) is itself a GP random

variate with parameters (81 + 62, A). In general, the sum
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Y=X +X,+ - +X

of n independent GP random variates with paraméters (Gi, A),

. n
i=1,2,...,n is also a GP variate with parameters [2 Bi, A]. In
particular, if all the Bi’s i= l,2,...,ﬁ are equal to 8 we obtain
a GP variate with parameters (nf, A) and its probability function is

given by
P(Y=y) = n8(nd+ay)Y T & 20N /5 (1.3.5)

RELATED DISTRIBUTICNS: When A =0 in (1.3.1) or ¥ =0 in (1.3.2),
these distributions reduce to the Poisson distribution. By putting

P = A—l, 8 = Ad in (1.3.2), we obtain the Borel-Tanner distribution.

Let X be a GP variate with mean u and variance o2,

Consul and Shenton (1973) showed that the standardized variate

= Xu
o
tends to a standard normal form as 6 increases without limit and A
takes a specified value in the interval (0.0, 0.5). These authors also
showed that if 8 -+ ®, A + 1 such that e(l—A§ = C?A, where C is a
constant, then the standardized random variable Z tends to inverse
Gaussian distribution with parameter C.’
Consul (1986) showed that the limiting distribution of a

quasi-binomial distribution based on urn models is the GPD.
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1.3.2 APPLICATIONS OF GPD

- The GPD models have been used to describe natural phenomena
where the parameter of the Poisson distribution is taken to be a linear
function of the number of occurrences. Thus, the conditions of the
ekperiment do not rgmaih consfant in time and the number of events in
any interval is a function of the number of events which have already
taken‘place.

The GPD is used to model the number of customers served in
the busy periods of some queueing systems. If the initial nﬁmber k
of customers is a Poisson r.v. with mean @ per unit service interval
and the subsequent arrivals are also Poiséonian with mean A per unit
service interval, then the probability d?stribution of the number bf
customers served in the first busy period [Consul and Shenton, 1973] is
given by the GPD in (1.3.1).

The GPD model is useful in the theory of branching process.
As a member of the LPD class, it is the distribution of the total
progeny in a Gglton—Watson branching process.

Janardan and Schaeffer (1977) have used the GPD models for
the analysis of chromosomal aberrations in human leukocytes. They
assumed that the number of aberrations per cell follows'a Poisson
distribution with mean rate 86 and the number of aberrations
undergoing healing is random anq also Poissonian with parameter A.

_ According to them, some of the induéed aberrations may not be healed

immediately and may form a queue of aberrations awaiting restitution.
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Therefore, the frequencies of induced aberrations will be modified by
restitution and the probability distribution of the number of
aberrations awaiting restitution is given by the GPD in (1.3.1). Their

statements were strongly supported by the results of fitting the GPD

model (1.3.1) to about 90 different sets of experimental data. They
discovered that the fits by the GPD model were better than any other
known distributions considered in the literaturé. Also, they were able

to give reasonable interpretations to the two parameters 6 and A.

1.4 THE GENERALIZED LOGARITHMIC SERIES DISTRIBUTION

Jain and Gupta (1973) considered a generalization of the
logarithmic series distribution through Lagrange’s expansion and
obtained the probability function of the generalized logarithmic series
distribution (GLSD) as

Pk=x) = 2= [2] 6 (1-0)7*/{-en(1-8)) (1.4.1)

for x=1,2,3,... and zero otherwise where 821 and 0 < 8 < ﬁ—l.
The logarithmic series distribution is a special case of the GLSD and
it is obtained when B8 =1 in (1.4.1).

As a matter of fact, little has been done on this famiiy of
discrete distributions. We now give some properties and applications
of the GLSD model.

The p.g.f. of the distribution (1.4.1) is given by
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h(u)

n

f(t) = en(1-6t)/2n(1-6) (1.4.2)

where
= w(1-0)% 1 (1-er) AL, (1.4.3)

ct
[

From (1.4.2) and (1.4.3), we obtain the m.g.f. as

f(e'T) = 2n(1-8e’)/en(1-8)

where

T

el = eU(1-0)F1 (1-geT) AL,

Gupta (1976) showed that if each Xi’ i=1,2,...,n is a GLS

variate with parameters (6,8), then the distribution of the sample sum

V=X F Xy b+ X

is given by

-1
r Y ' l ~gy+y-17 87 (1-8)PY Y
P(Y=y) = 2L 3 (¥Rt Lk | [Ayty-d] 8(16)
Y k=n-1 SR [ yk-1 ] {-en(1-8)}"

(1.4.4)

where SE is defined as Stirling number of the first kind and it is
given by

n_ [l n

s = [-n—, D (x)k]

x=0

n k

= 24 [d P L I (x—1+1)H . (1.4.5)
1= x=0

Among the related distributions of the GLSD is the GNBD which

is mentioned in section 1.2. Under certain conditions, the GLSD is

generated by the zero—-truncated GNBD.
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CHAPTER II

UNIMODALITY OF GENERALIZED DISCRETE DISTRIBUTIONS

2.1 INTRODUCTION

The property of unimodality plays an important role in
statistical estimation. The problem of density estimation has been
considered by many authors. Notably among them are Robertson (1967),
Prakasa Rao (1969) and Wegman (1970a,k’70b, '72). It has been shown
that the method of maximum likelihood estimation can be used to
estimate a unimodalldensity. This maximum likelihood estimaﬁor has
been shown to Be consistent. Although these results were proved for
the field of continuous distributioﬁs, the maximum likelihood
estimation method can also be used to estimate a discrete probability.
function.

Cryer and Robertson (1975) considered the isotonized estimate
of the probability of extinction of a branching procéss.i'They obtained
the offspring distribution estimate by assuming that the distribution
was unimodal. This estimate was also shown to be consistent.

Barndorff-Nielsen (1976) applied the property of unimodality

to the theory of plausibility inference.
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The property of discrete unimodality can also be of interest
in connection with optimization. This property is very important for
many decomposition problems of probabilistic and statiétical nature as
indicated in the well known book by ﬁedgyessy (1977).

7 A discrete probability distribution {Px} is said to be

unimodal if there exists at least an integer M such that

P 2P for all X

IA
=

(2.1.1)
and

Px+1 < Px for all x 2 M. (2.1.2)

Keilson and Gerber (1971) have defined the strong unimodality of
discrete probability distributions, have proved a number of results on
the strong unimodality of discrete distributions and have shown that
the binomial distribution, the negative binoﬁial distribution and the
Poisson distribution ére all strongly unimodél. A necessary and

1

sufficient condition that the sequence {Pxf be strongly unimodal is

[N

2
P2 / [Px_l PX+1] >1 (2.1.3)

for all values of x.
The GLSD model given by (1.4.1), the GNBD model given by
(1.2.1) and the GPD model given by (1.3.1) do not satisfy the property

(2.1.3). For the GLSD, we have
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2 _3 I(2p) I'(2p) I'(B) I'(36-2)
P, P, 2 I(26-1) I'(26-1) I'(B) I(3B)

2p-1)(2p-1)
36-1) (38-2)

=3¢
=57

which can be easily shown to be a decreasing function of &.

Hence
2
2 p 3 212
Pl P3 pol 2 (38-1)(38-2)
=3
T4
< 1l

For the GNBD, if 0 < m < 8, we have

) |
1 _ on
Py P,  wF2pl

< 1.

For the case of the GPD, it can be easily seen that if & < 24,

p2 ‘
1 _ 282
P, P, 6(6+2A)
_ 28
427

»
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and accordingly the condition (2.1.3) for strong unimodality does not

hold even for x = 2 in the case of GLSD and x = 1 for the GNBD and
the GPD>.

In section (2.3), we shall prove a theorem on the unimodality
of the GLSD.

In sections (2.4) and.(2.5), we shall show that the GNBD and
the GPD belong to the class of discrete self-decomposable distributions
gstudied by Steutel and van Harn (1979) and then prove that they are

unimodal.

2.2 SOME PRELIMINARY RESULTS

We shall state two important results here for ready reference
whenever necessary.
Lagrange’s expansion: Under mild conditions of successive differenti-
ability of the functions ¥(t) and f(t), and when ¥(0) # O,
Whittaker and Watson (1927) have given the Lagrange’s expansion [see
page 133] as

k-1

-
£(t) = £(0) + 1 z {[.g.x_]

M8

[Pk(x)f'(x)]} (2.2.1)

k x=0

where t and 2z are related by

t =z P(t) .
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Steutel and van Harn’s results.

Result 1: A p.g.f. is discrete self—decomposable iff it has the form

(2.2.2)

where € >0 - and G is a p.g.f. with G(0) = 0. Equivalently, f(t)

is discrete self-decomposable iff

1 e
f(t) = exp 71— J R(u) du (2.2.3)
i ]
m -
where R(u) = 2 rs u' with r 2 0 and r is non—-increasing.
i=1
2 -1
Also, S r. (i+l) { ®»
. i
i=1

o
Result 2: Let {Px} be a probability distribution on the non—negative
0 n

integers with p.g.f. G(z) satisfying,

4, log G(z) = R(z) = 2 r zk (2.2.4)
dz %=0 k

. [+
where the r, , k = 0,1,2,... are all non-negative. Then J'P 1 is

xf
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[+ ]

1
Jo

only if in addition r, < 1.

0
unimodal if {rk is non—increasing, and {PX} is non—increasing if and
‘ 0

2.3 UNIMODALITY OF GILSD

THEOREM: The GLSD defined in (1.4.1), is unimodﬁl for all values of &

in 0< 8K ﬁ_l and of B8 2 1 and the mode is at the point x = 1.

PROOF: Since the unimodality of the logarithmic series distribution
(B8=1) is well established [Johnson and Kotz, 1969],:we shall consider
fhe unimodality of GLSD for 8 > 1. Let the mode be at the point x = M.
For the mode‘of the GLSD to be at point M = 1, we must show that

Px+l < Px .for all x=1,2,3,....

Now,
.Px+1 _ Bx  I(Bx+p+l)x! I'(Bx-x+1) 8(1—9)‘8_1
P T B(x+I) " (x+1)! TL(B-1)(x+1)+1l] I (Bx+l)

X [(Bx+p+1) I'(Bx—x+1) 8(1-8)" %

T | TEDGIAT T (2.3.1)

Since 8(1—8)'6—1 is an increasing function of 8 and 0 < 8 < ﬁ_l, we

have
P

xl |, x Mpeeprl) T(oeoxl) . 1y 1 A1
B

P ¢ (x+1)2 TI(B-1) (x+1)+1] T(Bx+1) 1- 3] . (2.3.2)
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When x = 1,

]

2 lresnre L 1]"“1
4 r{26-1) r(p+l) B

h

B

< 1 for all B2 1.

From the above, we observed that Px+1/Px <1 for x=1. We now
consider the ratio in general.

From (2.3.2), we obtain

£ N S [ﬁ;l]""l (Bx+B)! (Bx—x)!
B (Bx)! (Bx+p—x-1)!

_ x 1. [ﬁ—l]"‘l (Bx+B) (Bx+B-1) (Bsc+p—2) - - - (Bx+1)
(ﬁx—x+ﬁ—1)(ﬁx—x+ﬁ—2)-'°(ﬁx—xfl)

r,3—1"/3—1 ﬁ;l [ Bx+p-1i ]

i=1 | Bx—-x+p~-1

o 19B8-1 B-1
_x (B0 A
i=1 ©

X
1+ ﬁx+ﬁ—x—i]

X
" BB

« (p-151 [ ] p-1

1
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x [ﬁ-l]ﬂ—l Bx+1 }‘H

x+1 x+1—x

B

_ox JL (DL
x+1 | B(Bx+1l-x) |

x  Jp(Bx+l)—pr-11F 1
7+ | BB |

< l‘

Therefore, the GLSD is unimodal with its mode at the point M = 1.

2.4 UNIMODALITY OF GNBD
THEOREM: The GNBD, defined in (1.2.1), is unimodal for all values of

m, 8 and B given in section 1.2.

PROOF: Since the unimodality of the binomial distribution and of the
negative binomial distribution is well established [Keilson and Gerber,
1971], we shall consider the unimodality of GNBD for B> 1 only.

The p.g.f. of the GNBD is given by (1.2.2) and (1.2.3) as

G(z) = 2 P(X=x) z" = (1-9)" (1-8t) ™ (2.4.1)
x=0 .
where
t = 2(1-0)%1 (1-at) AL (2.4.2)
Now, ' ‘
a(z) = exp{zn[(l-e)m-(l—at)‘m]}
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exp{mln[(l49) - mln(l—ﬁt)]}

»exp{m[én(l—&) - Zn(l—&t)]1

f
1
= exp{— J ngﬁ du}
t

which is equivalent to (2.2.3) with

mé
R(w) = 5y
w - 0
= 3 e1+1 or.
i=0
Thus r,=m 61+l.
Clearly, r. >0 and also
r. i
il mq -1 21, since 0 <8 < 1.
r i+l 8 ,
i me

That is, r. 3 2 r, for i =1,2,3,..., therefore the ,r;s are
non—increasing and by using Result 1, the GNBD belongs to a
self-decomposable class.

From (2.2.4) and (2.4.1), we obtain

.%E log G(z) = I%gf %;.

(2.4.3)
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In order to obtain (2.4.3), we use the Lagrange’s expansion on

log G(z) = m log(l-8) — m log(l-8t)

by taking f(t) log G(z) and

p(t) = (1-8)71 (1-8¢)7F"L,

Thus, we get

o k k-1
log G(2z) = mlog(l—e)—m[0+ z Z I[gf] (1—9)(p_1)k(1—8t) —Bk+k (-6)1
k=1

kN -stjt -0
© k k-1
- - Z_ (B-1)k | o —BlHk-1
= mlog(l a)+mek.=zl 2 (1-8) 1[d,c] (1-8t)" ;. .
® 2K (B-1)k k-1
= mlog(l-8)+m8 2 k_ (1-9) {(Bk- k+1)(ﬁk—k+2) « (Bk—k+k-1) 8
k=1
® zi{ Bk-k
= mlog(1-8)+m 3 77 6 k (1-9) (Bk-1) (Bk-2) - - - (Bk~k+1)
=1
= mlog(1-8)+ ;Zk 1-)Bkk (Bk1)! 2.4.4
= mlog(l-6)+m 2 ET (1-8) =k (2.4.4)

On differentiating (2.4.4) with respect to z, we have

© k—l

4 Joga(s) = m = gk (1)K k (BR-1)!

=31
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© k
=m 2
k=

k+l 5 o\ (B8-1)(k+l) (Bk+p-1)!
g & (-1 (& D T?

b

& ghtl gy (B-1) (Ier1) E6k+ﬁ—l]

k=0 k

from which one obtains s the coefficient of zk in (2.2.4) as

r o=m 8k+1(1_8)(,8—1)(k+1) [pk+p—l].
k k J
Clearly r,, k = 0,1,2,... are non-negative. We now need to verify

that the rﬂs are non—increasing.

Y _ 8(1-6)""! rigkep) r(pk-k+l)

T KT TR BR) (2.4.5)
: r
When k = 1, ;l = g(1-8)5"L(28-1)
0

- -y

as 0 < 8 < ﬁ-l and as the maximum of 8(1-8)5—1 occurs at 8 = g

By logarithmic differentiation, one can show that the right hand
side of the above is a decreasing function of B and it is less than 1

for all values of 8 > 1.

In general, we consider the ratio given by (2.4.5).
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Now,

k1 [a—l]ﬁ‘l (Bk+B-1)1 (Bk—k)!

w1 P UB)  (AeD)T (Bk+k-I)!

=4 AL (pierp-1) (Ble+B-2) - - - (BlerL) (Bk)
B (Bk+B-k-1) (Bk+8-k-2) - - » (Bk—k+1)

[

281 -1
& 1 [ ]

-1 -1
= Gl P

B G

B k+1-k

) [/swk_ﬂ)—pk—l]""l
BBKT LBk

‘rk
k-1

So <1 forall k=1,2,3,...

-]

[ 1

and it therefore follows that the sequence 1rkI is non-increasing. .
0

Thus, the GNBD is unimodal.
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Now, the value of r, is found ‘to bé

ry = m8(l—8)ﬁ—1.

If rg = mB(l—B)ﬁ—l'< 1, the GNB distribution given by (1.2.1)
is non—increasing and so the mode is at the point x = 0. If
rg = m6(1—8)‘6—1 = 1, the mode is at the dual points x =0 and x =1

as both have the same probability mass.

2.4.1 BOUNDS FOR THE MODE OF GNBD
For mB(l—B)ﬁ-l =mY > 1, the mode is at some point x = M

such that
mP-1

w {M<u ’ (2.4.6)

where u is the value of M given by the inequality
M2.B(B-1)P + M[(2fmm+l)P — (m+26-1)] + (m-1)P > 0. (2.4.7)
The ratio of any two consecutive probabilities of the GNBD is given by

Px+l - (m+Bx+4-1) * * » (m+fx+L~x+1) (m+Bx+6—X)¥

Px (m+Bx—1)+ « (m+Bx—x+1) (x+1)

(2.4.8)

Since x = M is the mode, by using (2.1.1) and (2.1.2), the above
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relation gives

TMEL | (mtAMEB-1) - - (mHMHA-MAL) (mbMESM)P (2.4.9)

Pu (m+AM-1) « + + (wtMM+1) (M+1)
and
P
M. (mhAM-1) - - - (mhAM-MER) (it AM-MEL)P
o = T (mi ey M (2.4.10)

From the inequality (2.4.9),

M-1
_ m+AM+A-1-1

M-1 : .
~1Y) m+AM+(8-1) (i+1)

= [m+pM+(B-1)M] P

which gives
mP-1

M D

From the inequality (2.4.10),

1 < mhAM-1 | (mAM-2) - - - (mHAM-ME2) (mbAM-MAL)
M (m+pM-5-1) « + - (m+pM—B-M+2)

which can be expressed as

(m+pM-1) ¥ N (m+pM—B-1) (m+pM-B-2) - - - (m+AM-B-M+2)
M (m+fM-2) (m+AM-3) « - * (m+pM—M+1)

_mt [m+ﬁM—i—ﬁ+1]
=9 m+AM—~i
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n
~
DN
—
=
|
3l
£
[
| SRR )

v

2 - seme)

;- (L) (M-2)
m+AM-M+1

v

_ m+24-1
T mAM-MtL”

Hence, we have

- M(m+28-1)
(m+,BM l)? > m

i.e. | (m+AM-1) (m+(B-1)M+1]¥ > (m+28-1)M. (2.4.11)

The value éf M satisfying this inequality will be an upper bound to
the mode of the distribution (1.2.1). On simplifying the inequality
(2.4.11), we obtain the result in (2.4.7).

If PM+1/PM = 1 and Px+1/Px <1 forall x>M+ 1, the.
GNB distribution has its mode at the two consecutive points x =M and

X = M+1.

Particular cases (i) When B = 0, the bounds of the mode is given by
f(m+l) -~ 1 < M < 8(m+l)

which is the result for the binomial distribution given by Johnson and
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Kotz (1969, page 53).

(ii) When B = 1, the bound in (2.4.6) yields

mé-1 (m-1)8
=7 ‘M<-Tm—

which is the result for the negative binomial distribution.

2.5 UNIMODALITY OF GPD
THEOREM: The GPD is unimodal for all values of 68 > 0 and of A in

0=<A<1.

PROOF: The ratio of any two successive probabilities of the GPD is

Px-,l-l - (8+/\x+/\)X . e—A

- . (2.5.1)
Px (8+Ax)x 1 x+1

It may be noted that Pl/PO = @ e—A which can be £ or 21

depending upon the value of 6, as 0 < A <1 and e_A < 1. The p.g.f.

of the GPD is given by (1.3.3) and (1.3.4) as

G(z) = I P(X=x) 2% = (7D, (2.5.2)
x=0
where
t =zt (2.5.3)
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=t and
P(t) = eA(t—l), wé obtain
t =z e/\(t—l)
} 22X g P akce-DT
—f(O)""z'l—{-'—l-d—E e I
=1 t=0
© k-1
=z SN K g, (2.5.4)
k=1 :
Now,
a(z) = eB(t—l)
= exp{8(t-1)}
1
_ J_ 1~G{u) 1
= exp)— @ J = du
[ J
where G(u) = u.
The above is equivalent to (2.2.2) and therefore, the GPD is a discrete

self-decomposable distribution and

the distribution is unimodal.

From (2.2.4) and (2

d

Py log G(z)

1

Result 2 can be applied to show that

.5.2), we have that

d

-]

Z 8 e

“ACk+1) [AGk+1) 1K K
Zo —Fr
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where r the coefficient of zk

k’

—A(k+1) [A(k+l)]

in (2.2.4) is given by

rk =8 T
We now show that the rk’s are non—increasing. Obviously, rpo
k = 0,1,2,... are non—negative. Now,
e e AMD e) 1K
Tl e M k) e
! k
_ -A [k+l
= Ae [—E—] (2.5.5)
k
= A e A[1 + %]
<A e—A+l
<1

since [1 + ] <e! and 1l + x < et
f
1

v
Hence rkfo

of 8 and A by using result 2.

e P < o\

Wh =6 <1, P
en r, FxJ
Accordingly, the mode will be at  x
points x =0and x =1 if @ e—A

for all x € R.

s non—increasing and so the GPD is unimodal for all values

becomes non—increasing.

0

1.

if e’

< 1 and at the dual
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2.5.1 BOUNDS FOR THE MODE OF GPD

For ¢ e_A

> 1, the mode of the GPD is at some point x = M
such that

(e-eMy P2 <M< u (2.5.6)
where u is the value of M given by the inequality

AZM2 + M[ZAs—(e+2A)e"] + 8% > 0. (2.5.7)

Since M is the mode, we use (2.1.1), (2.1.2) and the relation (2.5.1)

to obtain

Puel _ (gaasa)M 72

= <1 (2.5.8)
Py 1)y eyt
and .
p M-1 —A ,
M _8MA) " e . (2.5.9)

Pu-1 M(a+mMa-a) 2

From the inequality (2.5.8), we have

o) (o)L > &R (armae)™

e+MA+A]M-
FIVA

i.e. (M+1) eA > (8+MA) [

(84MA) [1 + _]

> (84MA) [1 ¢ MA

8 + 2MA.
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The above inequality gives
M (8-et) (P27t (2.5.10)

By using the inequality (2.5.9), we get

—A
(8+§A)e N [1 A

M-2
B éiMA]

_ (M-2)A

> 1 T

_ 8+2A
8+MA°®

Thus
(8+MA)2 > M(8+2A) e,

On simplifying this ineéuality, we obtain (2.5.7) and so the upper

bound of the mode M is given by the inequality (2.5.7).

Particular Case: When A = 0, the bounds for the mode are given by

g -1<M<K8

which is the result for the poisson distribution.
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CHAPTER III

INTERVAL ESTIMATION IN THE CLASS OF
MODIFIED POWER SERIES DISTRIBUTIONS

3.1 INTRODUCTION
A discrete random variable. X is said to have an MPSD if its
probability function is given by (1.1.6). The mean u and variance

0?2 of the distribution (1.1.6) are given by

_ g(8)f'(8) - g(8) du :
u = W’ 02 = 21 (6 'a—e-. (3.1.1)

The problem of point estimation in the MPSD class has been
considered by many reseérchers. Gupta (1975) considered the maximum
likelihood (ML) estimation for the class of MPSD. Kumar and Consul

. (1979) obtained a recurrence relation for the negative moments and used
these results to find the exact amount of bias and the variance of thé |
ML estimators for some members of the MPSD class. Kﬁmar and Consul
(1980) also congidered the minimum variance unbiased estimation for the
MPSD class. The estimation of érobabilities in this class was given by
Gupta and Singh (1982).

The restricted GPD (1.3.2), the GNBD (1.2.1) and the_GLSD

(1.4.1) are three important families of the MPSD class. The particular



values of f(8), g(8), a(x)
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these three families are given in the following table.

TABLE 3.1

and means for the MPSD class which provide

f(8), g(G), a(x) and the mean of some modified power
. series distributions

Distribution £(6) g(8) a(x) U
x-1
GPD e? g e 'o (+x®)” | g(1-pe) L
x!
gy _ayB-1 m m+ﬁx] _apy— L
GNBD (1-8)™ | e(1-8) e [ 8 (1-68)
GLSD —en(1-8) | e(1-e)F 1 | L [5x] 8(1-9)"
Bx x {—2n{1-8)}
Let a random sample Xl’ XZ’ ceey Xn of size n be taken

from the MPSD given in (1.1.6). Its likelihood function is given by

n
in n :
L(8) = igﬁﬂll-- I a(x.). (3.1.2)
(£(a)}" i=1 .

n

The statistic Y =2 Xi is a complete and sufficient statistic for the

parameter 6 and its probability function is also an MPSD which is

given by
P,(8) = b(y) {g(a)} v € R (3.1.3)
{f(G)}
f p 1
where R = 1y | vy = 2 x, it % € TI’ a subset of non—negative integers

and where



—_ 45 —
b(y) = 2 a(x;) a(x,;) +-- alx ),

the summation extending over all order n-tuples (Xl’ Koy +ons xn) of

n
integers X, € T with the condition that 2 X, =¥ is satisfied.

, 3.2 CONFIDENCE INTERVALS FOR @ 1IN SMALL SAMPLES

Since the statistic Y is sufficient for the parameter 8
in'(1.1.6), one can equate the sum of the probabilities of the
distribution of Y on each tail with %ra. Let 82 be the lower 7
bound and Bu be the upper bound of'the 100(1-a)% confidence interval

(C.I.) for 8. Thus, we get the equations

Z b(x) (206" (£(6,)) " = 5 a @2
=y

and

Yy . .
X b(x) {g(6)) (£8 1™ = £ a. (3.2.2)

x=0

One might feel that the above sums may not exactly equal % a as tﬂe
sample sum Y is a discrete variate.r However, for any given value of
y, the expressions on the left hand side of (3.2.1) ;nd (3.2.2) are
continuous functions of 6 and accordingly, there must exist some
values of 8 for which the equations hold exactly. In general, the
values of 82 and Bu will be difficult to get algebraically and one

may have to use an algorithm on a computer to get them numerically.

of coﬁrse, the above results are very general for the MPSD
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class and one has to put specific values of b(x), f(8) and g(8) to get
the C.Is. We shall now apply the above results to the three important

families of the MPSD class.

3.2.1 APPLICATIONS
(i) GENERALIZED POISSON DISTRIBUTION:
The probability distribution of Y for the model (1.3.2) is

given by
P (8,0¢) = n(n+ey)Y L g¥ 8 (0HFY) o, v =0,1,2,... (3.2.3)

By using the above distribution of Y, we‘obtain from (3.2.1) and

(3.2.2) the following equations for finding the lower bound 82 and

upper bound Gu for the parameter 8 in the GPD model (1.3.2).

—82?1k
et S LI S |
z == (3.2.4)
- k! né 2
k=y 2 .
e
and
-8 P.k
1 u |
g n{n+?rk k-1 leu € f _1 o (3.2.5)
- k! né 2 M
=0 e u

The above equations, for known values of &, y, n and ¥, cannot be

solved algebraically. A computer programme will have to be used to
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solve them numerically and to find the values of &8 and Bu as

2
solutions of (3.2.4) and (3.2.5) respectively. Thus, 100(1l-a)%
confidence interval for 8 becomes (ec, eu).

As a particular case when Y = 0 and a sample of size 1 is

taken, we get the results in Johnson and Kotz (1969, page 96) for the

Poisson distribution.

EXAMPLE 3.1

We consider the following data given by Liiders (1934) which
contains the frequencies of the number of deaths in 60 rail and road
fatal accidents. The GPD model fits this data very well. The expected

GPD"frequencies by ML method are also given.

TABLE 3.2

Number of deaths in fatal rail and road accidents

in Saargebiet

Total

Iv
(o]

No. of deaths 0 1 2 3 4 5

Observed frequency 20 17 11 8 2 0 2 60
Expected GPD freq. 19.40118.22111.35(5.9412.84]1.28[0.97| 60.00

x = 1.38333, s? = 2.07090

The method in this subsection is applied to find C.I. for the parameter
6 assuming that the quantity ¥ is known. In real life, it is hard

to know the actual value of ¥ except in some very specific
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cases. Accordingly, to‘illustrate the method we shall use the ML
estimate of ¥ as the known value of ¥. The’ML estimates of 6 and
Y in the GPD model (1.3.2) are 1.128826 and 0.162584 respectively.
Now, by putting ¥ = 0.162984 in equations (3.2.4) and
(3.2.5) and by solving them for « = 0.05 with the help of a computer,

we obtain the 95% C.I. for 8 as (0.90, 1.40).

(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION:
The distribution of the sample sum Y is given by (1.2.6).

By using the distribution of Y in (3.2.1) and (3.2.2), we obtain

k
® IB (1-8 )'6_1l
om (omigk] %% 1
k‘:‘y ‘—nm+/3'k[ k ] (19 ) ™=@ -2 ¢ (3.2.6)
. 2
and
K
f _a 811
Y m (28 [ U A (3.2.7)
k=0 nm+8k k (1_9u)—nm 2

Again, it may not be possible to solve the above two equations
algebraically. One will have to solve them iteratively by using a
computer programme. Thus one obtains thé 100(1-a)% confidence bounds
82 from equation (3.2.6) and Bu ‘from equation (3.2.7).

When B = 0, the above équations correspond to the results in -
Johnson and Kotz (1969, page 58) for the binomial distribution which is
a particular case of the.GNBD. For B = 1, equations (3.2.6) and

(3.2.7) reduce to
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[}
nm+k—-1] _k nm _ 1
z [ k ] 8, (1-6,) =5«
k=y
and

V' (om+k-17 .k m _ 1

= [ k ] oF (1-6 )™ = 1 a
k=0 u u

respectively. These are the corresponding results for the negative

binomial distribution.

(iii) GENERALIZED LOGARITHMIC SERIES DISTRIBUTION:
The distribution of the sample sum is given by (1.4.4). By

applying this distribution to equation (3.2.1) and (3.2.2), we get

12 X ISn—ll IO (1-6 )'B—llx
5 n! 3 (_1)x—k—l k [ﬂ6x+x—1] 1 2 2 f _ 1 « (3.2.8)
x=y * k=n-1 kt xk-1 {—ln(l-ﬁe)}n 2
and
% (s fo_(1-0 210" :
poloy (el k [Pt le—r L. la @29
x=0 * k=n-1 ! k-l {~en(1-8 )}" 2

As in the previous cases, equations (3.2.8) and (3.2.9) are solved
iteratively with the help of a computér programme to obtain 92 and
Bu respectively. The quantities 82 and au are the respective lower
and .upper 100(}—a)% confidence bounds for the parameter 8 in the
GLSﬁ.

When B = 1, equations (3.2.8) and (3.2.9) reduce to
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n, %
P IS, 1 8, 1
x! n 2%
X=y {—ln(l—ez)}
and
n, .x
Y nt. 'Sx' eu 1

=0 ¥ {~en(1-8 )}"

respectively. These are the correspond@ng results for the logarithmic

series distribution which is a particular case of the GLSD.

3.3 CONFIDENCE INTERVALS IN LARGE SAMPLES
When n is large the distribution of the sample sum Y,
which is also a modified power series variate as indicated in (3.1.3),

converges stochastically to a normal distribution with mean ‘”Y and

2
Y

Y are given by

variance oS by the central limit theorem. The mean and variance of

My = nu and o
where u and o? are defined in (3.1.1). Therefore,

- Y-nu _ /nE-u)
g

w ——
Jn o

has a limiting distribution that is normal with mean zero and variance
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unity. We also know that S2, the variance of a random sample of size

n 2? given by

n

§? = (a-1)"F 3 (X,-K)?
. i
i=1
converges stochastically to o?. Hence,
7 = W ; Jn(X-u)
l/ S
. (32/02) 2

has a limiting distribution which is standard normal. Therefore, the
100(1-«)% C.I. for 8 can be obtained by using the above. Thus we

have

= pl_ Jn(X-u) l
l-a = P1 zc(/2 < —s < za/ZI
= Pfi -z S//n < u< X +z S/JH1
1 a/2 “a/2 {

By using the value of u given by (3.1.1) in the above result, we

obtain

l-a = P{i = 2o/ S/ < g@%%;%%%% <Xz, S/JE}. (3.3.1)

Quite often when specific values of g(8) and f(8) are available, it

is possible to solve the inequalities in the above probability for 8
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and to re—express equation (3.3.1) in the form

- pJ 1
l-a = Plsﬂ < 8 < GuI (3.3.2)
where 82 and Bu are the lower and the upper 100(l-«)% confidence
bounds for 8 respectively. When one cannot do this simplification,
one has to get the values of 62 and Gu numerically with the help

of a computer programme.

3.3.1  APPLICATIONS

We now apply the above result to the three important families

of GPD, GNBD and GLSD.

(i) GENERALIZED POISSON DISTRIBUTION:
We substitute the mean of GPD from Table 3.1 in equation

(3.3.1). Thus we have

l1-a P{i -z S/4/n < 8 Tz S/./E1

a/2 1-67 a/2 f
= PI MYl <8< X 2/ /0 1.
11+r(i—za/23/¢5) 1+P(f+za/ZS/Jﬁ)I :

Hence, the 100(1-a)% C.I. for 8 in GPD is
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x—za/zs/Jn ‘ x+za/zs/Jn . (3.3.3)

?

1+r(§—za/zs/JH) 1+?(§+za/28/Jﬁ)

EXAMPLE 3.1 CONTINUED:

We now use the data in example 3.1 to find the approximate
95% C.I. for the paramater 8. The value of ¥ is taken as 0.162984
which is the ML estimate. The mean and variance of the data are given
by 1.38333 and 2.07090 respectively. From (3.3.3), the lower bound for
8 is

x—zd/zs/Jn

1+r(§—za/zs/¢ﬁ)

: 1
1.38333 - 1.96 (2.0709/60) /2

1
1+ 0.162984 [1.38333-1.96(2.0709/60) /2]

_ 1.019197
® 1.166113

= 0.87.
In the same way, the upper bound for 8 is
8 = 1.36.

Hence the approximate 95% C.I. is (0.87, 1.36).
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(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION:

For the GNBD, we apply its mean given in Table 3.1 to

equation (3.3.1). This gives

o3 o~ 6m % =1

l-a = PIX Za/2 S/Jn < m < X + Za/2 S/JnI
- PI a2 <8< X 2ay25 0 1
lm+ﬁ(§—za/28/dﬁ) m+ﬁ(i+za/ZS/Jﬁ)J

Therefore, the 100(1-«)% C.I. for 6 in GNBD is given by

X-2Z _ ,.8/Jn x+z_ ,.8/Jn
7R oz | (3.3.4)
m+ﬁ(x~za/zs/Jn) m’*'p(x+za/25/~/n)

(iii) GENERALIZED LOGARITHMIC SERIES DISTRIBUTION:
We now consider the case of GLSD. By using the value of u

from Table 3.1 in equation (3.3.1), we obtain

-1
- pl3 = . 6(1-88) 3 =1
l~«=PX -2 ,,S//n< == __(X+z_, S/n;.(3.3.5)
1 a/2 (—en(1-8)} /2 f.

It is not an easy task to express (3.3.5) in the form of (3.3.2).

However, one can obtain 82 and Bu by solving the following

equations.
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8Q0-88) - ;.. _s/im (3.3.8)
{-2n(1-8)} a/2
and
M_)—j— = }—{ + z s/J-ﬁ. (3 3 7)
{~en(1-8)} a/2

Equation (3.3.6) and (3.3.7) are solved numerically by using iterative
procedure to yield 92 and 8u respectively.

Consider the left hand side of the above equations and let

R = 8(1-85) "L
{-en(1-8)}
f1-88 1
dR _ (1-88){-#n(1-6)} - 81T-6_ + pen(1-8)]
de (1-88)% {~&n(1-6)}2
_ = 4&n(1-8) - e(i—ep)(l—e)"l
(1-88) {2n(1-8)}?
> 0, ’ . as l1-88<1-8.

Therefore, R is an increasing function of 8. As lim R = 1, the
© 840

lowest value of R is 1. Alsp R+®® when 8 -+ B—l. Thus, the left
hand side of equations (3.3.6) and (3.3.7) can take all vélues from 1

to . Accordingly, the eéuation (3.3.6) will have no solution if

x

s/Jn < 1, will have 8, = 0 if x - Zq /2 s//n =1 and a

T 2472 2
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unique value of 82 when x - zo(/2

exist as a unique value when x + 2z

s/vn > 1. Similarly, 8, will

/2 s/vn > 1.

3.4 UNIFORMLY MOST ACCURATE CONFIDENCE BOUND

We agssume that the function g(8) is a monotone function of
6: This assumption does not create any handicap as all the members of
MPSD class, considered in section 3.1, satisfy this assumption. In
fact, . g(8) is an increasing function of 8 in all the three families
of GPD,‘GNBD and GLSD. hIt can bershdwn that there exists a uniformly

~ most powerful (UMP) level « test for hypotheses of the form

(==}
@
i

80 (known) against

j=o]
=]
]

8. > 8

a 1 0

in the class of MPSD. We obtain a uniformly most accurate (UMA)
confidence bound for the parameter 8 by using the critical region for
the UMP test.

By using Neymén—Pearsdn theorém, C is the best critical

region of size a if

n

Zx, .
ey [g@] T [Eep)”
ey~ 1E@)[ |FE)[
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for (xl, Koy +ovs xn) € C where k is a constant. Thus, on taking

logarithms of the above
i=

Z X o &8 )1 > 1o £ 1
2osizaty} > 1o frab]

Since g(8#) is an increasing function of 8 in all the families

considered we have that

gj f(e /1 8(91)1 X
ZX)lok OIEZB—OTJ-—
and so
n
Y= 5 X:o> K*.
i=1

The critical region C is given by
= {(xl, Koy o xn) HE k*}
where k* is determined from
« =Py > k| m,! (3.4.1)

1 0f

if randomization is ignored. By using the probability function of Y

in (3.1.3), we obtain

« = ;* b(x) Ig(ao)lx If(eo)rn. (3.4.2)
x=ke 41 S N
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Let the value of k* obtained from (3.4.2) be kO‘ When n is small,
ko can be detérmined from equation (3.4.2) by using a computer
programme after the values of b(x), g(eo) and f(BO) are substituted
from Table 3.1. Since randomization is ignored, we choose that

smallest value of k* as k, for which the right hand side of (3.4.2)

0
is < a. However, if n is large, normal approximation can be used to
determine k* from (3.4.1).

The UMP size a test is to reject HO if Y > ko. On

taking its expectation we have

ng(8)£'(8) ,
g'(8)1(8) 6 °

Hence the corresponding 100(1-«)% UMA upper confidence bound for @& is
given by

1-« = Pla < g | (3.4.3)

where Gu is the solution of equation

ng(8)£'(8) _ |

FHOHORMNY (3.4.9)

Sometimes one may not be able to solve equation (3.4.4)
through ordinary algebraic manipulations. In such circumstances,
numerical solutions can be obtained through iteration with the help of

a computer programme.
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3.4.1 APPLICATIONS
We now apply the above procedure to the GPD, GNBD and GLSD

families.

(i) GENERALIZED POISSON DISTRIBUTION:

By using the mean of GPD from Table 3.1 in (3.4.4), we have

Mo
n+1"k0

. Thus, the 100(1-«)X¥ UMA upper confidence bound for the parameter 8 is

which gives 8 =

© (3.4.5)

(ii) GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION:
For the GNBD, we use u in Table 3.1 to obtain from (3.4.4)

the equation

On solving for @ in the above equation, we get
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and so the 100(1-a)% UMA upper confidence bound for the parameter 8

in GNBD is given by

loa = plg < 0 1 (3.4.8)
1° = S

(iii) GENERALIZED LOGARITHMIC SERIES DISTRIBUTION:
In the case of GLSD, the value of u from Table 3.1 is used

in equation (3.4.4) to obtain

ne(l—ap)"l - K
{-2n(1-68)y ~ "0°

The above equation is solved numerically for 8. As shown in section
3.3, the left hand side of the above equation is an increasing function
of 8 and the equation will have a unique solution if n - ko < 0.
Thus, the 100(1-«)¥ UMA upper confidence bound for the parameter €6 in
GLSD is given by (3.4.3) where Ou is the solution of the aboye
equation.

By considering the dual hypotheses problem HO: 8 = 80
against Ha: 8 = 81 < 80, one can obtain a UMA lower confidence bound
for the parameter & in each of the above three families of’the MPSD
class. This can be done by reversing all inequalities in the procedure

for UMA upper confidence bound.
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CHAPTER IV

ESTIMATION IN SMALL SAMPLES
FOR GENERALIZED POISSON DISTRIBUTION

4.1 INTRODUCTION

The GPD model having two parameters 8 and A is given by
(1.3.1). The restricted model is also provided by (1.3.2). Since the
introduction of the GPD model, a large body of literature, mainly on
its interesting properties, point estimators and applications has
developed. [See the work of Charalambides (1974), Gupta (1977), Kumar
and Consul (1980) and Consul and éhoukri (1984, ’85)].

There is no two dimensional sufficient statistics for either
of the two parameters (8,A) in the GPD model (1.3.1) or (8,¥) in the

restricted GPD model (1.3.2). It is only in the model (1.3.2) that the

n
sample sum Y = 2 Xi is a complete and sufficient statistic for the
i=1

parameter 6 when ¥ is assumed known.
We consider the problem of interval estimation of the GPD
model under the following headings:
(i) when one parameter is assumed known
(ii) inference on a single parameter when both parameters are

unknown and
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(iii) inference on both parameters.

When none of the parameters is known, it is not an easy task to obtain
a confidence interval (C.I.) or a confidence region (C.R.) for any or
both of the parameters in a small sample. This problem will be
considered under plausibility inference.

We assume that a random sample Xl, Xz, ceay Xn of size n
is taken from a discrete population with generalized Poisson

distribution. The likelihood function is

n

I P (8,A)
. X,

i=1 i

L(8,A)

n ' x.—1

T [[6+Axi] i /(xi)!] (4.1.1)

= g™ e—n(8+Ax)

for the general model (1.3.1) and

~ — n x.~1
L(6,6p) = g% o mO(1+Px) x [[1+?xi] i /(xi)!] (4.1.2)

i=1
for the restricted model (1.3.2). Through out this chapter, the
parameter space for A in the GPD model (1.3.1) and for P in the GFD
model (1.3.2) will be restricted to (0,1) and (0,8_1) respectively for
the sake of conveniénce. Thus, the negative parts of the domains of A
in (1.3.1) and of ¥ in'(1.3.2) are ignored. We obtain two sided
confidenée intervals and likelihood intervals as well as the likelihood

regions for the parameters of the GPD model.
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4.2 CONFIDENCE INTERVALS FOR A SINGLE PARAMETER
Suppose one of the parameters of the GPD model is known.
Given a small sample, we use 1l-a confidence level in such a way that

the total probabilities on each tail of the GPD model are < «/2.

CONFIDENCE INTERVAL FOR @ OR ¥ IN MODEL (1.3.2):
Suppose that the parameter A in GPD model (1.3.1) is a known multiple
?0 of 6. The parametric transformation in model (1.3.1) yields the

model (1.3.2) with a known parameter ¥ = P To set C.I. for the

n
unknown parameter 6, we make use of the sample sum Y = 2 Xi, which is

0‘

a complete and sufficient statistic for 8. Thié problem is similar to
the one considered in subsection 3.2.1 and will therefore not be
repeated here.

Suppose we want to set C.I. for ¥ when 6 is known to be
80, we use the sample sum distribution given by (3.2.3). The 100(l-«)%
confidence bounds for ¥ can be obtained by solving the following

equations for ¥, and Pu.

L

© _ -8 . (n+P, %)

: nreg*tie O P =za (4.2.1)
xX=y ,

and

y _ -8, (n+?P x)

ZO n(n+?ux)x 1 Og e 0 u /xt = % o. (4.2.2)
x:

It is very hard to get specific values of Pz

(4.2.2) algebraically but the equations can be solved numerically on a

in (4.2.1) and ?u in



computer. We have seen through many examples that these equations give
unique values every time. In general, for a given value of ¥, the sum
of the probabilities in (4.2.1) and (4.2.2) need not add up to % a,
however, for a fixed Y = y, the expressions in (4.2.1) and (4.2.2)
contain continuous functions of P and accordingly exact values of ¥
can be obtained to satisfy these equations. Let PQ and ?u be the

numerical values of ¥ given by equations (4.2.1) and (4.2.2)

respectively. The C.I. for ¥ is given by (?2, Pu).

CONFIDENCE INTERVAL FOR @ OR A 1IN MODEL (1.3.1):

If A is not a function of 8 and it is a known‘quantity in the GPD
model (1.3.1) and we want to find C.I. for the parameter &, we may
still use the above procedure. The main difference will be that the
expressions wiil be slightly more complicated and the C.Is. will bé
generally wider than those obtained from (4.2.1) and (4.2.2) because Y
is not a sufficient statistic for 6 any more. For this case, we

solve the following equations for 82 and eu.

© : ¢ —(n8,+A x) :
z nBQ(nOQ+A0x)X 1 e e /x! = % - ¢ (4.2.3)
x=y ' .
- and
y . —(né +A.x)
z nau(n8u+hox)x 1 e u 0 /xt = % <. (4.2.4)
x=0

The solutions 82 of equation (4.2.3) and ,Gu of equation
(4.2.4) will give the 100(1-0)% C.I. for 8 as (8,, 8, ). .

The previous claim of wider C.I. was verified by simulating a



number of pseudo-random samples, each of size 40, from the GPD models.
Both methods were used to obtain C.Is. for @ énd, in general, the use
of equations (3.2.4) and (3.2.5) gave shorter C.Is. than the formulae
(4.2.3) and (4.2.4). '

When the point ML estimate of 8 is more than 10, we can
obtain a sharper C.I. for 8 by using the property of nofmal
approximation. This property was given by Consul and Shenton (1973)
who showed that the GP variate approaches a normal variate if 8 is

very large. Thus we have that
o Em
o

is approximately normally distributed with mean zero and variance
unity. The approximate 100(1~«)% C.i. for 6 is obtained by assuming
that the sample mean X is normally distributed. We note here that
this assumption of normality does not depend on the sample size n.

_ We now assume tha£ the parameter €6 is known and it is equal
to 80. Then 8 is replaced by 60 in the equations (4.2.3) and

(4.2.4) and A, in (4.2.3) and (4.2.4) is replaced by A. The two

0
equations are solved numerically on a computer to obtain the values of
AQ and Au from (4.2.3) and (4.2.4) respectively. These two values

become the boundaries of 100(1-a)% C.I. for the parameter A.

EXAMPIE 4.1

We consider the data for example 3.1 and for convenience, the
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table is partially reproduced here.

No. of deaths 0 1 21314165

v
(&>}

TOTAL

Observed freq. | 20 | 17 )11 |8 | 2|0 | 2 60

The method in this section is applied to find C.I. for the parameter @
when the parameter A is known. Since it is hard to.know the actual
value of A in a real life data, we shall use the ML‘estimate of A
as the known value Ao of A. The ML estimates of 8 and A in the
GPD model (l.3.1) are 1.128826 and 0.183981 respectively.

Now, by putting AO = 0.183981 in equations (4.2.3) and
(4.2.4) and solving these equations numerically, the 95% C.i. for @
is found to be (0.85, 1.46). The two bounds are Quite close to the
' value 1.129. In the same way, we use equations (4.2.3) and (4.2.4) to
determine the 95% C.I. for A, this yields (0.0, 0.43). From example
3.1, the ML estimates of 8 and P in the model (1.3.2) are 1.128826
and 0.162984 respectively. By putting 60 = 1.128826 in equations
(4.2.1) and (4.2.2) and solving éhem for « = 0.05 with the help of a
computer we obtain the 95% C.I. for ¥ as (0.0, 0.38).

By comparing the C.I. for @ obtained here with the one
obtained in example 3.1, it is easy to note that the C.I. from the GPD
model (1.3.2) is shorter. From this result and our empirical
simulation results, it seems as if an interval based on a sufficient

statistic is shorter than the one without a sufficient statistic.
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4.3 PLAUSIBILITY INFERENCE
Plausibility inference is the use of likelihood functions to
examine the paraﬁeter space and to determine which values of the

parameters are likely (plausible) and which are implausible on the

basis of the given data [See Kalbfleisch, 1979 page:ZO]. It is an
.exact statistical inference since it does not require mathematical
aﬁproximatidh on the basis of large sample size n. By this procedure,
likelihood statements can be made on the parameters of a distribution.
By using the likelihood function in (4.1.1) and with
parameter A known, the likelihood ratio for 80 versus 81, where 60

and 81 are distinct, is
L(GO; A)
= Ltel, A

If 2 > 1, one can say that 60 is a more plausible value of the
parameter 6 than the value 81 since the data are more probable for
8 = 60 than they are for 8 = 81. For instanqe, if & =3, then 90

is thriQe as plausible as 81 in the sense that the data are thrice as
probable if 80 is true than if ai is true.

When both parameters @ and A are unknown, the likelihood

function is standardized with respect to its maximum to obain the

relative likelihood function as

L(8,A)
—xx-
L(8,A)

R(8,A) = (4.3.1)

where 8 and A are the ML estimates of 8 and A respectively.
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Since R(8,A) ranks the plausibilities of the values of # and A
with respect to thérmost plausible values 6 and A, we infer that
0 < R(8,A) £1 for all (8,A) in the parametric space. The likelihood

ratio for (86, Ao) versus (;,X) becomes

L(eo, AO)

R(eo, AO) = ———.

L(8, A)
If R(Go, AO) is small (e.g. R(po, AO) < 0.1), it implies that the
pair (80, AO) provides simultaneously implausible parametric values
and there are other values of (8,A) for which the data are ten times
more probable. If R(OO, Ao) is large (e.g. R(Bo, AO) > 0.6), the pair
(80, AO) provides simultaneously more ﬁlausible parametric values since
(80, AO) gives to the data at least 60% of the maximum probability ~
which is possible under the model.

The set of parameter values for which R(8,A) 2 v is called
a 100v% 1likelihood regién. If one of the parameters is known or
estimated out, the set of values given by R(8,A) 2 v will be called
the likelihood interval (L.I.). ‘

Kalbfleisch (1979) has suggested 50%, 10% and 1% likelihood
integvals (regions). Values inside the 10% L.I. are said to be
*plausible" and values outside this as "implausible". Values inside
the 50% L.I. as "very plausible" and values outside the 1X as "ver&
implausible". The choice of these division points by him is somewhat
arbitrary, though they seem to be intuitively justified. Instead of
coﬁsidering the same values, we would assign slightly different values

which seem to be more logical.
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Let r(8,A) = log R(8,A) where — © < r(8,A) < 0, and
R(8,A) 2 v implies that r(@,A) 2 log v.

We note that 50% likelihood region (v = 0.5) means that using
the available data, any value of (8,A) in the regioﬂ is a reasonable
guess at the values of 8 and A. This does not mean 50% confidence
region for (8,A). However, if the sample size n is large,
approximate probability statement may be attached to the likelihood
region. On the basis of this, we select the division points which
correspond to 100(1l-«)% confidence regions.

For ; large sample

2(8,A) = — 2 log R(6,A) = — 2 r(8,A) (4.3.2)

is appfoximately chi-square digtributed with 2 d.f.. Therefore, the
set of values of (8,A) for which 2(8,A) < x;’z gives an approximate
100(1-a)% confidence regioﬁ for (8,A) where x;’z is the upper percent
point of the chi-square distribution with 2 d.f.

Therefore,

1l 2

2(8,A) < ";,2 iff r(8,A) > - 2 g, 2"

From the above, R(68,A) 2 exp[— % x;’z] = p. For 95% confidence
region, we have v = 0.05 which is equivalent to saying 5% likelihood
?egion. Corresponding to the 99% and 90% confidence regions are the 1%
and 10% likelihood regions. Values inside the 5% likelihood region

will be considered to be "plausible", those outside "implausible".

Also, values outside the 1% likelihood region will be called "very
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implausible”.

If inference is required on only one of the parameters of the
GPD model (1.3.1), we shall be setting likelihood intervals and the
function in (4.3.2) will thus be chi-square distributed with 1 d.f..
Corresponding to the 90%, 95% and 99% confidence intervals are the
25.86%, 14.65% and 3.62% likelihood intervals.

We make use of large sample property in order to select our
division points. We do not impl& that plausibility inference is
applicable to only large samples. Of course; the division points do
not depend on the sample size. It may not be out of place to state
here that the procedure is applicable to sﬁall saméles as well as.large

samples.

4.3.1 PLAUSIBILITY INFERENCE ON ONE PARAMETER

In this subsection, we consider the likelihood interval for a
single parameter when the other parameter is unknown. This unknown
parametef, called a nuisance parameter, will be eliminated. Since we
consider only the model (1.3.1), we apply the °‘method of maximization’
for the elimination of the nuisance parameter.

Suppose the parameter of interest is A. Accordingly, 8
becomes a nuisance paraﬁeter. We eliminate 6 by maximizing R(8,A)
over 8. The value of 8 that will maximize R(8,A) is the same as
that 8 which will maximize L(8,A) with a specified value of A.

By partial logarithmic differentiation of (4.1.1) with
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respect to 8 and equating to zero, we have

_@a
0= 58 2n L{8,A)
=9 nén 8 — [8+Ax]n + g T(x.-1) 2n(8+Axr) - &n(x ')]1
a8 i=1 i i it/ f
n n xi—l
=gt .f 8+Ax. °
i=1 i
Thus
n x.-1 -
i n{(1-8) _ ‘
.f rry vl e 0. (4.3.3)
i=1 i

Let ;(A) denote the value of 8 that satisfies (4.3.3) for any given
value of A. Since the ML estimates of the GPD model (1.3.1) are
unique [See Consul and Shoukri, 1984] the solution ;(A) will be
unique too.

From the above, we get

max R(8,A) = R(8(A), A)

e

R (M), (say).

Thus the relative likelihood function is given as

. (4.3.4)

Rm(A) = [ﬁv—- I |-

8 PO 2 ~1
9<A)]“ nl6()-8+(A-1)x] | ] [O(A)+Axi]x1
8 i=1 | o+Ax,

Hence,
rm(A) = &n Rm(A)
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- n[zn i("—)] - (E(A)—S)—(,\—X);]

e
n 8(A)+Axi
+ 2 (xi—'l) n | ——————}. (4.3.5)
i=1 8+/\xi

For each specified value of A, we solve equation (4.3.3) iteratively
by the help of a computer programme to obtain a numerical value of
;éh) which is subsequently used in (4.3.5). The value of rm(A) is
computed by anothér computer programme. Thus? we plot numerous values
of .rm(A) and trace the graph of the function in (4.3.5). This graph
of rm(A) for A € (0,1) will be used to determine the L.I.. The
IOOu% L.I. is the set of points for which rm(h) > 19g v. The L.I.
bounds are obtained by finding the two pbinté of intersection of the

graph of the function (4.3.5) and the straight line
rm(A) = log v.

The graph of —rm(A) is U-shaped or concave up.

A similar result can be obtained for the L.I. for the
parameter 8. In this case, we maximize R(6,A) over A. The value
of A that will maximize R(6,A) is the same as that A which will
maximize L(8,A) with a specified value of @#. By partial logarithmic
differentiation of (4.1.1) with respect to A and equating to zero we
obtain

_a
0 = 33 &n L(8,A)
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1t
. IQ!
st Sy

n
_ = _ _ N
nend - (8+AX)n + .51 [(xi 1)en(8+Ax, ) zn(xi.)]I

H

|
=}
e
+
™M

which gives

53 —————-nx = 0. (4.3.6)

Suppose A(8) is the value of A that satisfies (4.3.6) for any given
value of 8. Then

max R(8,A) R(6, X(e))

H

Rm(e).

R (8) = [g]n _~[8-6+(A(8)-N)X]n

8+A(8)x, x;~1
R . (4.3.7)
8 1

6+Ax.
i

nNes

i
By taking the logarithm of the above relation, it yields

r_(8) = n[zn[i] — (8-8) - (X(a)—X)E]
8

(4.3.8)

—_
8+/\xi

n 8+/\(8)xi
+ 2 (x,-1) 4n .
. i
i=1

To compute the values of rm(a) in (4.3.8), we first obtain A(8)
from equation (4.3.6). For each specified value of & and with the
help of a computer programme, we solve equation (4.3.6) iteratively to

obtain the value of A(8). On substituting A(8) into (4.3.8) and by
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using another computer programme, we obtain thé values of rm(a).
These values are subsequently used to trace the graph of the function
in (4.3.8). The graph of —rm(e) .is U-shaped and this will be used to

obtain the L.I. for the parameter 8.

EXAMPIE 4.2
The following data is on the distribution of sow bugs

(Trachelipus rathkei) under boards taken from Janardan'et. al. (1979).

TABLE 4.1

The distribution of sow bugs (Trachelipus rathkei)

No. per board o | 1| 2] 3 |a |56 ]|mo

Observed freq. 28 28 14 11 8 13 | 9
Expected GPD freq.|28.77|23.70}17.36}12.58|9.21{11.97]9.24

No. per board 10-12 | 2 13 | Total

Observed freq. 5 6 122
Expected GPD freq. 4.38 | 4.79 | 122.00

x = 3.29508, s? = 15.05270

The ML estimation method was used to fit the GPD model to the observed
data. It was found that the GPD model fitted the data very well.
The ML estimates of 8 and A ére 1.444620 -and 0.561583

regpectively. We apply the data in Table 4.1 to equation (4.3.3) to



- 75 —

obtain

_ 28, 14 22 24
0=-5 *emn " oiax © oo dn

L4 . 10 . 18 . 21
6+bA = 6¥6A  6+TA  @+8BA

£ 24 2T 20 12

§30A T §FI0A | GFIIA T §+13A

26 14 32 122(1-8)

toriax Terma T t )

(4.3.9)

Equation (4.3.9) is used to obtain 6(A) for each specified value of

A. In the same manner, by substituting the data into (4.3.5), we get

I RN TVE P o !
r (A) = 12212n[m] (8(A)-1.4446) - (1-.5616) (3.2951) |
8(A)

- [ ;(A) + 2A
28 in[m] + 14 2n .m‘ o0, 3 ]

+ 22 Qn[%ﬂ + 24 en 17;4'('%%(%51'67
¢ e ) + 10 ol oy
+ 18 4n :1.551223;7- TS J + 21 Zn: ‘;(")’” 5

+ 24 en :m;(")é 2 + 27 zn:'.;(") + o ]

C8(A) + 11A 8(A) + 13A ]
+ 20 &0\ T T B 6'1‘67] + 12 &n [W 6713(.5616).
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8(A) + 14A

+ 26 Zn[m] + 14 'zn[%%ﬁw]

+ 32 z"[l.;ut)a;{ 45T ]

% Qn[l‘i(ﬁ%] - 122(8(A)+A-3.2951]

+14 &n g%%;gﬁ +22 &n :;f")”": + 24 on :;f")“"“‘]

+ 44 23005 1 10 a[SANEN) . 1 a20TA)

+21 &n g%%;gg + 24 on :3f)\)+9,\: ‘27 on :E(,‘\)+1o,\]

+ 20 £n :"7‘6'2'27‘;(,.\”1“] + 12 Zn[W;('.\)*'laA] + 26 ‘“["‘9“3676‘;(?)“%

+ 14 2n F;(")+15"] + 32 ln[g(")+l7’\]. (4.3.10)
[ 79.8686 . ~10.9918

We used the expression in (4.3.10) to draw the graph of —rm(A). For

each value of A, we first calculated 8(A) from equation (4.3.9).

All these were done on the computer for this example. The graph was
used to obtain the 25.85% , 14.65% and 3.62% likelihood intervals for
the parameter A. For the case of 14.65% L.I. we obtained the interval
‘(0.47, 0.66). 7

In the same way, we applied the data to equation (4.3.6) and
expression (4.3.8). The equation yielded the value of ;(8) which was

subsequently used in the expression (4.3.8). The graph of the
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resulting expression was used to obtain the L.Is. for the parameter 8.
We obtained the interval (1.24, 1.75) as the 14.65% L.I. for the
parameter 6 when A 1is eliminated.

The U-shaped graphs of —rm(A) and —rm(a) are shown in
Figure 4.1 and Figure 4.2 respectively. Values of A in the interval
(0.47, 0.66) are said to be plausible as well as those values of 8 in
tﬁe interval (1.24, 1.75). By considering the data in Table 4.1 as a
large sample, these intervals will correspond to approximate 95%

confidence intervals.
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FIGURE 4.1

3.62, 14.65 and 25.85% likelihood intervals for A
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FIGURE 4.2

3.62, 14.65 and 25.85% likelihood intervals for #
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4.3.2 INFERENCE ON BOTH PARAMETERS
To determine the likelihood regions for both parameters of
the GPD model (1.3.1), we use the function R(8,A) given by (4.3.1).

By taking the logarithm of this function, we obtain

r(8,A) = n[zn[g-] - (9—3) - 2(/\—3)]
8
n 8+AX.
+ 2 (x71) en[ﬁc—i}. (4.3.11)
i=1 8+/\xi

The function r(8,A) is a bivariate function of @ and A.
Accordingly, contours can be drawn for each specifi§ value of r(8,A).
We compute the values of the function in (4.3.11) and use these to draw
the contour lines corresponding to

r(8,A) = log v

in the (68,A) plane for different values of wv. Points inside the
v—-contour line form the 100v% likelihood region for the parameter &

and A.

EXAMPLE 4.2 CONTINUED

The data in Table 4.1 was used to set likelihood region for
the two parameters 6 and A.
By applying the data to the expression in (4.3.11), we get the

following.
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8
1.4446

r(8,A) = 94 zn[ ] ~ 122[8 + A — 3.2051]

+ 14 en zeggs + 22 en ,}}%’}ﬁ + 24 zn[%f'l‘-ﬁ

4442:;1%233 + 10 en[z"—"g% + 18 eng%

[ ] [ 8+9A ] . [ 8+10A)
+ 21 &n|grgag| + 24 &n|g=aag) * 27 28\ o608

+ 20 en 222 +12!Zn§2;-3fg% +262nt;7+%,§%

8-+15A 8+17A ] . (4.3.12)

+ 14 Zn.§7§§§§. + 32 ““_Iﬁ?ﬁﬁiﬁ
Values of the expression r(8,A) in (4.3.12) were computed and these
values were used to obtain the 10%, 5% and 1% likelihood regions.
These are given in Figure 4.3. -

Every one of the three contours in Figure 4.3 is roughly
elliptical in form with its mgjor.axis towards the increasing values of
8 and A. It seems that there is a greater variation in the values of
8 than in the values of A. Values of (8,A) within the 5% likelihood
confour are plausible and values outside this line are implausible.
Also, values of (8,A) inside the 1% likelihood contour are very
plausible. The 10%, 5% and 1% likelihood regions compare very well
with the corresponding 90%, 95% and 99% confidence regions for the same

example.
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FIGURE 4.3

;!é : : 1, 5 AND 10 PERCENT LIKELIHOOD REGIONS
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CHAPTER V

ESTIMATION IN LARGE SAMPLES
FOR GENERALIZED POISSON DISTRIBUTION

5.1 INTRODUCTION

In the previous chapter, we considered the problem of
estimation in small samples for the GPD model. In the present chapter
we shall exemine the same problem but in large samples.

We shall first derive some large sample properties of the
maximum likelihood estimates (mle), the conditional maximum likelihood
estimates, the likelihood ratio statistic and the conditional likelihood
ratio statistic. As in Chapter IV, we assume that a random sample of
size n is taken from a GPD model. Further, we assume that the
parameter space for A and ¥ in GPD models (1.3.1) and (1.3.2) are

restricted to (0,1) and (O, 8_1) respectively.

5.2 LARGE SAMPLE PROPERTIES OF MLE AND LIKELIHOOD RATIO STATISTIC
Suppose the parameter 8 is fixed at 80 in the GPD model
(1.3.1). The likelihood function of a random sample of size n is

given by (4.1.1) with 8 replaced by 8. Denote L(8y, A) by L(A).



Now,

n n
&n L(A) = ncnoo —Bon -A iil xi+i§1 [(xi—l)in(60+Axi)—£n(xi!)]. (56.2.1)

On differentiating (5.2.1) w.r.t. A, we obtain

‘ .(x.-1)
#2nL(A) 1 nox (%
————= =HA) = - 2 x. + I ———— (56.2.2)
aaA j=1 1 =1 80+/\xi
and
2
2 n x%(x.-1)
g ..z I (5.2.3)
dé i=1 (80+Axi)
The mle A of A is obtained by solving equation
_ H(A) = 0
n x, (x,-1) 'n
i.e. S —=- X, = 0. (5.2.4)
i=1 00+/\xi i=}1

2
Since 2 2nL(A) _ gggA)
a2

decreasing function of A and hence it can have at most one solution.

is less than zero, the function H(A) is a

n ‘xi(xi—l) n
But H(O) = 2 T—- - 2 Xi
i=1 0 i=1

i

n (eo)“l[s2 + % - R(O1)].
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Also,

<—no

Provided H(0) > 0, i.e. if 82 + x% > §(Bo+l), there exists a unique

solution A which satisfies (5.2.4).

n X.{X.-1) n
g[22aL)] =E[z. A E x.]
aa . 1 1

since the Xi‘s are i.i.d. random variables. By using the probability

function (1.3.1), we obtain

8
EX = =3

x-1
E[x(x_l)] B} ; x(x-1) 0 (80+I\X) —80—/\x

e
[]
-0 90+Ax 0 x!

® (8 0+1\x)""2 ~8,,-Ax
= 2 80 (x—2)! e

x=2
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® (80+2A+Ax)x ~8,-2A-Ax
=2 8 —xr ¢
=0 *
% : (eo+2A+Ax)x"1 -8 ,-2A-Ax
=8, Z [8,+2A+Ax] - e .
) N, o x!
x=0
_ f Al
= 80 I1 + =2
_ %
- IA
Hence, )
8
genL(A)] _ 0 _ 1
_ g% Py
=3~ TEAf
. ’ d2nL(A)] _
1nrec E[—FA——] "'00 (5‘2.5)
Also, we let
2
Iz(A) - E[_ & QDL(A)]
A?
n X;(Xi—l)
= 2 B|l———-y] > 0. (5.2.6)
i=1 (eo+axi)2

THEOREM 5.1. The mle A is asymptotically normally distributed with

variance [Iz(A)]_l. If AO is the true parameter value of A, the
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expression (A—Ao) I(AO) converges in distribution to the standard

normal -form.

PROOF':
Let 2&2&&&2 ~ be written as 9£E££ﬁl.
JgA _ adA

A=A
By Taylor’s theorem, Qﬂg%iﬁl can be expanded about the point AO and
written in the form

oenn(a) _ 2nAg) o ) orenna®) 5.2.7)
gA aaA 0 te

aa?

where A* is a value between Ao and A and thus IA*—Af < IAO—AI.

By using (5.2.2) and (6.2.3), we obtain from (5.2.7)

n n xi(xi—l) n n xi(xi-l)
-2 %x. 4+ 2 — ==z X.+Z-G-—W—

i=1- *  i=1 @ +Ax i=1 ' i=1 “0"%*i

0

n x;(xi—l)
- 3 | . (56.2.8)

+ (A=A R
i=1 (80+A xi)

0’

By equation (5.2.4), the left hand side of (5.2.8) vanishes.

Accordingly,
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~ n  x3(x.~-1) n n x.(x.-1)
(A=rg) |- 2 —— = - I— Iox; + 3 EEIX£§"1‘ (5.2.9)
i=1 (845+A x,)? i=1 i=1 %o*Ao%; |

From (5.2.9), we obtain

(. n n xi(xi—l)
R "iflxi+.§1 Ty /T(Ag)
(A=Ay) I(A)) = === 27 = —.  (5.2.10)
0 0 "
['n xi(x.—l)

1
———— /[-1%3(A,)]
i=1 (80+A*xi)2} ' 0

But the mle A is consistent. That is, A converges in probability to
Ao.
Therefore, as n - ®

2 - 2 -
1 n xi(xi 1) 1 n xi(xi 1)

=z ~—— P, 5 I = (5.2.11)
i=1 (80+Axi) R ) (80+A0xi) -
Now,
20, _
10%nL() _ _ 1 X; (%;71)
n 2 n ._ 2
3A i=1 (8,+Ax,)

is the mean of n i.i.d. random variables. By the strong law of large
- numbers ‘
1 g%enL(A)

R P

will converge to its mean with probability 1. Thus, from (5.2.11), we

obtain
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n xi(xi—l)
lim P} 5 ——— =

2 -
o Xi(Xi 1) 1
o 2 .
o] 11—1 (80+AXi) i

————fl=1. (5.2.12)
1 [(85+AgX,) I

i MB

~

Since A converges in probability to Ao and A* lies between A

and AO’ we must have that A* — AO in probability.

Hence, from (5.2.12) we get

I n x;(xi—l) n x;(xi—l)

lim PJ 2 —_— Z E|———jL =1
. L 2

n-#o 11-1 (80+A Xi) i=1 (80+A0Xi) I

which is the same as

X3(X.-1)
i ; - Iz(A0)1= 1. . (5.2.13)

I
lim P = -
X‘.) I

'l 1i=1 (60+).

Because of (5.2.13), the denominator of the right hand expression in
(6.2.10) converges to 1 with probability 1.
. The quantity in the numerator of the right hand expression in

(6.2.10) is

n n xi(xi—l)
HA) = =% x, + % mi-,
00 a1 b im otAo¥i

According to the results (5.2.5) and (5.2.6) the quantity H(Ao) has
mean zero and variance IZ(AO).' By applying the central limit theorem

to H(A /I(Ao), we obtain a standard normal variate. Since the

0

denominator of the right hand expression in (5.2.10) converges to 1

with .probability 1, the whole right hand side expression converges to
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standard normal. Therefore, the left hand quantity in (5.2.10) is
asymptotically standard normal.

Hence A 1is asymptotically normal with mean Ao and variance

[IZ(AO)]—I. This completes the proof of theorem 5.1.

REMARK: If the parameter A is initially fixed at Ag» the mle 6 of
8 can be similarly shown to be asymptotically normally distributed with

mean 8, and variance [Iz(eo)]“1 where

ey = E[ azan(e,,\o)]
362 .

COROLLAY 5.1: The conditional maximum likelihood estimate ¥ from the

GPD model (1.3.2) is asymptotically normally distributed with variance
-1 R
2 . -
[IC(P)] . If PO is the true value of ¥, then (P ?O) Ic(Po)

converges in distribution to standard normal.
The proof of the above corollary follows from the proof of
Theorem 5.1. If L(P) is the conditional likelihood function, then

12(¥) = E[— ifEEES!l] > 0.
Cc 0?2

By differentiating (5.2.3) one more time, we obtain

3 n 2x3(x.-1)
g°enL(A) . 5 TiE 7 (5.2.14)
ard- i=1 (80+Axi)3



_gl_

But

3 —
3%enL(A) s 2x; (%;-1)

3 CLs 3
aa i=1 (80+Axi)

n 2x.
5 —= = h(x), (say). (5.2.15)

i=l A3

IA

From above, E[h(X)] and var{h(X)] are finite.

THEOREM 5.2.. If A = AO is the true value of the parameter A, the

likelihood ratio statistic £(A is such that -24n Q(AO) converges

0
in distribution to a chi-square distributed random variable with 1

d.f. as n -+ %,

PROOF':
The likelihood ratio is given by
L(Ao)

2()‘):*
0" 1A
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n

: —AOin n xi—l
e ) (80+/\O xi)

i=1

A N

-A in n A

e 'g 7(60+A Xi)
i=1

x.—-1
i

~ n Xi_‘l
B (A—AO)in n [80+A0 xi]
= e /4 B .

i=1 I8

(56.2.186)

0+A xi

From the above, we get
| ~2¢n 2(Ay) = -2&n L(Ay) + 2en L(A).

We use the Taylor’s theorem to expand -24n Q(AO)' about A.

Thus, we obtain

—24n &(A;) = -24n L(A) + (AO—X) gx [-2¢n L(M)],3

(AO“X)Z §2 n

(A ‘;)3 3
0 g
+ e e [=282n L(A)],_, ¥
3! aA? A=A
+ 28n L{A)
_ A #2nL(A) PTNY azan(X)
= z(AO A) —n (Ao A)? ——re

A2

A 3 X
-1 (agnyp L)
IA?
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~

where A* lies between A and AO. By using (5.2.4), the first term

on the right hand side vanishes and we have

~ 2 N ~ 3 * :
~2en £(Ay) = = (Ag-A)? ¢7enL(A) _ 3 (AA)? 67 &nL(A )
A2 A’
2 N R
By expanding Q—ngﬁél about the true value AO again, we obtain
A
~ 2
o2enL(a) _ 9 eL(Ag) A a*enL(A*%)
= I
a2 A2 7%

where A** lies between A and Ao.

Now,
~  [6%anL(A,) ~ XX
—22n Q(Ao) = — (AO_A)Z I 0 + (A_Ao) OainL(A )1
1 o2 ax
_1 Gy & enL(A%)
3o gA®
2
= (X—A )2 I 9 an(AO) + (A _X) daan(A**)
0 1 GAz 0 0A3
1 ~ genr (a5
= = (Apg—A) s
3 ‘Y a3
~ d22nL(A,) _
R
A -1 [0*enn (A" 1 62enrn(a%)7]
+ (Ag=A) [TR(AD] T [t = o =2
° 0 [ aa® 5an ]



From (5.2.12), we obtain

62enL(A,)
lim PI 0 .- 12(/\0)1 =1
N0 1 a2 f
d2enL(Ay) -1
and so - [Iz(AO)] converges

25

to 1 with probability 1.

But A —» AO in probability, so we have that A* —_— AO and

A* —— A, in probability as well. By using (5.2.15),

%
3
_ Pel(ah)

. (Ao)]—l is bounded
GA

A

with probability 1 for large n. Since A —_ Ao in probability, we

have that

A -1 [@enL(A™) 1 6eni(a*
(Ag=A) [T2(Ag)] [__.__n__;____l -1 5 )]
: gA aA

in probability as n — @,
Hence, -22n Q(AO) converges to the distribution of the random variable
(A—A0)2 Iz(Ao). From Theorem 5.1, (A-A;) I(A;) has an asymptotic
standard normal distribution. Therefore, . :
A_. 2 2
(A-Ag)? T2(Ay)

is a chi-square distributed random variable with 1 d.f.. Thus
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—24n Q(AO) has an asymptotic chi-square distribution with 1 d.f..

COROLLARY 5.2: The conditional‘likelihood ratio statistic zc(ro) is
such that -24n QC(PO) has an approximate chi-square distribution with 1
d.f..

The proof of this corollary foilows from the proof of theorem

5.2 and will not be given here.

5.3 CONFIDENCE INTERVALS FOR A SINGLE PARAMETER

The mean and variance of the GPD model (1.3.1) are given by
o -1 _ -3
mean = 8(1-A) and var = 8(1-A) *.

The corresponding values for the GPD model (1.3.2) are 8(1—8?)-1 and
8(1-0¢) 5.

By using the central limit theorem as in section 3.3, the
distribution of the sample sum Y, which is a GP variate, converges
stochastically to that of normal distribution. By following the

explanation in section 3.3,
- Jﬁ(i—#)
7 = —s

has a limiting distribution which is normal with mean zero and variance

unity.
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5.3.1 ESTIMATION FOR 6 OR A IN GPD MODEL (1.3.1):
When the parameter 6 is known and fixed at 80, the

approximate 100(1-a)% C.I. for A can be obtained as follows:

_ ol J/n (X-u) 1
l-a = Pl z':‘/2 < —g < za/2[

P{X =~ Zy/g S/ﬁi < u<X+ 2,2 S/./H}

- pl3 - skf<a0 <X + s/da)
= PX -z, 8/V0 < Zy2 S/
8. 6
=P{l—:———0—-—_:<}\<1—_—0—-——_-_}.
X—za/ZS/Jn X+za/28/Jn

Thus, the approximate 100(1l-«)% C.I. for the parameter A, when 8 is

known to be equal to 80, is

8 ‘ e
-_-—-L—-: s 1 - -_—-——-9——_ . (5.3.1)
x—za/zs/Jh x+za/2s/Jn

1 -

In a similar way, ﬁe assume that A is known to be AO. The
standardized normal tables can be used to get zcx/2 and then the
approximate 100(1-a)% C.I. for 8 can be obtained as follows:

1-a = P{)’( = 2,/ S/4A € foa <X +3z,, S/./E}
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= pl1-a

' (X - 2o /2 8//a] < 8 < (1-Ay) (X +rzq[/2 SNE]}-

0
Hence, the C.I. for the parameter @ becomes

[(1—A0) [% = 2,5 S/MA] 4 (1-Ag) (% + 2, s/Jﬁ]]. (5.3.2)

5.3.2 ESTIMATION FOR ¥ IN RESTRICTED GPD MODEL (1.3.2):
The case of parameter 8 was considered in section 3.3 and
will not be repeated here. Suppose 8 is known to be 80, the

approximate 100(1l-«)% C.I. for ¥ can be obtained from

pl¥ - S/Ja < DS s/n)
T Zay2 178, Za/2 f

1]

1-a

P{Bal - (% -z, s//al Tt <P < gt - (X 4 202 S/JH]—I}.

Thus, the approximate C.I. for the parameter ¥ is

1

(65" - G- zyp s 65 - Gv oz, T (58.9)

5.4 CONFIDENCE INTERVALS WHEN BOTH PARAMETERS ARE UNENOWN

Since both parameters are unknown, the parameter which is not
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of interest becomes a nuisance parameter and will have to be eliminated
before inference can be made on the parameter of real interest. Among
various methods of parameter elimination, we consider the methods of

‘maximization of likelihood’ and of ‘conditioning of likelihood’.

5.4.1 METHOD OF MAXIMIZATION
The likelihood function of the GPD model (1.3.1) is given by
(4.1.1). If 8 and A are the ML estimates of 6 and A

respectively, the likelihood ratio function becomes

e(a,n) = L&A
L(8,7)
n —n(8+A§) n xi_ll
8 e I [(8+A x.) /(x.)!]
; i=1 t t
- ~ s n .~ A~ X.—1
g2 &8+ b B )y T )]
. 1 1
i=1
~ A - X."l
i [g]“ ale-a+(A-nx] D [8+'\xi] A
;] i=1 8+/\xi

Suppose the parameter of interest is 6. By following
the technique in section 4.3 of chapter IV under the method of

maximization, the maximum likelihood ratio function is given by

2 (8) = £(8, A(8))



- 99 -

A~ A N x.—1
[y @ [_ﬁ__"“‘“’”‘i] YL a2

8 i=1 8+A x.
i

According to Theorem 5.2 when the sample size n is large, for a

specified value 6 = 80, the statistic

Tm(eo) = —2&n Qm(ﬂo)

is approximately distributed as a chi-square random variable with 1

degree of freedom. Now,

T (8) = - 2n[zn [2] - (9—3) - E(X(e)—X)]

6
n 8+/\(8)xi
-2 Z (xi—l) n | —x—m——|. (5.4.3)
i=1 8+/\xi

The graph of Tm(e) against 8 1is concave up (i.e. U-shaped). To set

100(1-a)% C.I. for 8, we find two values 8, and 8u of @ at which

2
the straight line

_ o2
Tm(a) = Xa,1

intersects the graph of the function Tm(a) in (56.4.3). 1t may be
noted that while drawing the graph of (5.4.3), the value of A(8) will

have to be computed first from equation (4.3.6) for each value of 8.
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The values 82 and Ou are respectively the lower and upper confidence
bounds for 6 and x;’l denotes the upper percent point of the
chi-square distribution with 1 d.f.. 7

Since the domain of the parameter 6 is unbounded on the
right hand side, the tracing of the graph of the function in (5.4.3) by
~ the computer is somewhat tricky. Whenever the GPD model is used to
describe a natural phenomenon it has been observed that the values of 6
generally lie below 15.0. Thus, Tm(e) can, in general, be drawn for
values of 8 < 20.0.

An advantage of the method of maximization is that the
parameters & and A can Be easily interchanged in the elimin;tion
procedure.

To set C.I. for the parameter A, the above procedure is

repeated with the roles of A and 6 interchanged. In this case, we

obtain
& (M) = 2(8(A), A)
‘~ ~ A ~ ~ Xi—l
) [9(/\)]“ [8()-8+%(A-)]n 3 [“"’*""i] (5.4.4)
8 i=l | 8+Ax, '

where 8(A), the solution of equation (4.3.3), is the value of & that
maximizes L(8,A) with a specified value of A.

An analogue of relation (5.4.3) becomes
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~

T (A) = - zn[zn [Qéél] - (;(A)—g) - E(A—X)]
n ;(A)+Ax.
-2 2 (X.—l) zn[ﬁ—x—-—l]. (5.4.5)
i=1 6+Ax,

So, the approximaté 100(1-a)% C.I. for A is obtained from the

intersection of the graph of Tm(A) in (5.4.5) with the line

- L2
Im(h) = xa,l'

5.4.2 METHOD OF CONDITIONING
This method of nuisance parameter elimination is applicable if

a sufficient statistic can be found for the nuisance parameter. Since

n
Y=2 Xi is a sufficient statistic for 8 in the GPD model (1.3.2), the

likelihood function can be factorized as follows:
L(8,6¥) = Ll(?) Py(e, 8y)

where Py(e, 8¥Y) is given by (3.2.3). Hence,

_ L(8,8P)
Ll(?) - Pyts,arj
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x.~1

i /xi!]

. |
g¥ o 8(ntPy) 4 [(1+r x.)
i=1 *

n(n+py)Y L g7 o B(nHPY) ) p

, n (1 +9¢x.)
=3 1

n(n+¥’y)y—1 i=1 xi!

o (56.4.6)

By logarithmic differentiation of (5.4.6) with respect to ¥Y and by

equating to zero, we have

[
1
~
=
k=
~
)
~—

_d_ Izn[%'_!_] - (y-1) 2n(n+Py)

dr |
3 1
£z [(xi—l) en(Leex,) - Qn(xi!)]I
~1
n+Py =1 1+!°xi
Therefore,
n x,(x.-1) =
Lol Coxmel) L, (5.4.7)
i=1 i 1+Px

We have not been able to prove the uniqueness of the solution ¥ that
satisfies (56.4.7). However, by using the moment estimate of P inéthe
GPD model (1.3.2) as the initial value of P, the iterative procedure to

solve (5.4.7) takes very few steps (about 5 steps) before convergence.
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We consider the conditional likelihood function in (5.4.6) and

form the conditional likelihood ratio function

L, (P)
QC(?) = ——
L, (¥)
n x.—-1
y! H [(1 +ex.) /x.!]
n(n-H"y)y i=1 1
v! n A xl—l
"—'T"—_'. 1]
n(atpy)’ ! =1 [(1 TR ]
1 + ?x nx-1 n 1 + Px. Xl—l
= [ ] n [--fz-l] (5.4.8)
1+ Px i=1 |1 + ?xi

By using Corollary 5.2, -2 x the logarithm of conditional likelihood
ratio statistic has an approximate chi-square distribution with 1 d.f.
when the sample size n is large. Therefore, for a specified value

Y = P, and for a large sample, the statistic

0

T (P - 2¢n ZC(P

o) = 0

is approximately chi-square distributed with ‘1 d.f.. Hence,

- 1+ Px,
T (P) = -zf(n§—1) zn[l * ’f] + 2 (x.-1) 2n --fx-]l (5.4.9)
¢ 1 1+¥e  i=1 * 0 l1+ Px, I

is similar to Tm(B) in (5.4.3) and so (5.4.9) is used in the same way

~

as Tm(B) to obtain the approximate‘IOO(l—u)% C.I. for the parameter P.
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Since the above method requires the presence of a sufficienf
statistic for the nuisance parameter, it can only be used\to eliminate
8 in the GPDAmodél (1.3.2). A number of GPD pseudo-random samples of
sizes 200, 500 and 1,000 were generatéd, the methods of conditioning and
of maximization were applied to eliminate 8 in the model (1.3.2) and
C.Is. for ¥ were obta;ned from these samples. It was observed that
there is not much difference in C.Is. obtained by the two methods. This
was due to the fact that the sample size wa; large. A notable

difference was observed for corresponding analyses in small samples.

EXAMPIE 5.1
The data in the following table is the distribution obtained
from Skellam (1952) of the number of plants of "Plantago major" present

in quadrants of area 100 sq—cm laid down in grassland.

| TABLE 5.1
The distribution of plants (Plantago major)

Plants per quadrant 0 1 2 3 4 5
Obéerved frequency 235 81 43 18 g 6
Expected GPD freq. 233.08 | 87.26 | 38.50 | 18.78 | 9.78 | 5.32
Plants per quadrant| 6 7 8 g Total
Observed frequency 4 3 0 1 400
Expected GPD freq. 2.99 | 1.72 | 1.01 | 1.56 | 400.00

x = 0.8525, s? = 1.9807
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We used the ML estimation method to fit the GPD model to this data and
found that the observations are described very well by the GPD model.
The ML estimates of the parameters 8 and A in the GPD‘model (1.3.1)
are 0.540090 and 0.366463 respectively.

The method of maximization is used in order to set C.I. for
each of the parameters € and A in the GPD model (1.3.1).

We use the data in Table 5.1 in equation (4.3.6) to obtain

_ 2(43) , 6(18) +'12(9) + 20(6)

0 = 8+2A 8+3A 0+aA 8+5A

30(4) , 42(3) , T2 _ 440(.8525)

teer T era e

86 108 108 120

= 572x T o73x T o7axn T eEaA

120 126 72
+ 5167 T A + g o 341. (5.4.10)

Equation (5.4.10) is used for finding A(8) for each value of 8.
In the same way, we‘substitute the data into (5.4.3) to get
6

T (8) = - 800{““[?5361} ~ 8 + .5401 — .8525(A(8) — .3665)}

- z{—235 ln[TS%UI] + 43 2“[73%6;?§%%%%§57]

8 + 3A(8) ] [ 8 + 4A(8) ]
+ 36 2”[15161¥§TT§§§37 + 27 20|15 T447. 36657
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+ 24 en[jm—r%] + 20 Qn['s—taib%]
+ 18 zn[73%5§;;%§%%§gy] * 8l¢“[78%6%¥§%%%%§37]}
- ~ 330 gn[.5201] + 800[8 + .8525 A(8) ~ .B525]
RPN LES YOI PPN RS T0))
+ 27 Qn[gi?agé%gl] + 24 an[gi;ﬁgéégl]
+ 20 Qn[_e_zi:ﬁsé_gf_).] + 18 zn[%f—i%-ééi)]
v 5 el TegX(e)]}‘ (5.4.11)
By using the same data in equation (4.3.3), we obtain
0= 125 + eigA * aigA * ;EZA * eigA
+.20 4 18 8 _ 400, (5.4.12)

8+6A 8+TA 6+9A
Equation (5.4.12) is used for finding 6(A) for each value of A. 1In

the same manner, by substituting the data into (5.4.5) we obtain

8(A)
.5401

T_(A) = - 330 zn[ ] + 800 [8(A) + .B525A - .8525]
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- 2{43 cn[§§¢%7§TZé] + 38 Qn[;(?% + BA]

8(A) + 4A] 8(A) + 5 8(A) + BA
* 2T &nl—oeT ) * %4 ‘n[iii?ﬁﬁi‘i + 20 Qn[ﬁ??ﬁﬁﬁf‘]

(6 (A) + TA]

31056 ) * 8 “n[

+ 18 &n % 8366

8(A) + QA]}. (5.4.13)

We use the expression in (5.4.11) to draw the graph of gm(a).
For -each value of 8, we first obtain ;(6) from equation (5.4.10).
Both equation (5.4.10) and the expression (5.4.11) are evaluated by the
use of a computer programme. By doing these, we obtain the 95% C.I. for
the parameter 8 as (0.46, 0.63). Similarly, we use the graph of the
function of A in (5.4.13) to obtain the 95% C.I. for A. For each
specified value of A, we use equation (5.4.12) to obtain ;(A) which
is subsequently used to evaluate the expression (5.4.13). These values
are used to draw the U-shaped graph and the 95% C.I. for A is fougd tq
be (0.29, 0.45). The graphs of the functions of 8 and A are shown
in Figure 5.1 and Figure 5.2 respectively. The graphs also indicate the

90% and 99% C.Is.
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FIGURE 5.1

90, 95 and 99% confidence intervals for &
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FIGURE 5.2

90, 95 and 99% confidence intervals for A
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LAMBDA AXIS
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The method of conditioning is also used in order to obtain
C.I. for ¥ in the GPD model (1.3.2).

We substitute the data in equation (5.4.7) to get

2(43) L 8(18) . 12(9) . 20(6)
1+2¥ 1+3P 1+4¥ 1+5P

o
1]

+ 30(4) + 42(3) + 12 _ .8525(340)
1+6¥P 1+7¢ 1+GP 1+.8525P

_ 86 + 108 + 108 + 120 . 120
1+2¢ 1+3P 1+4¥ 1+5¥ 1+6¥

126 72 289.85
* 1577 T TeoF ~ T+ B525F° (5.4.14)

- Also, when we substitute the data into (5.4.9), we obtain

T_(P) = - 680 en[i%%] - 2{43 zn[%-.-;g—g-z-]

+ 36 4n [—-—-—é gg‘;g + 27 2n [; ;‘;‘6’4] + 24 &n [41——-22’55]
+ 20 zn[%-{ggg] + 18 Qn[é—;%gv
+ 8 on[7-736s }. o (5.4.15)

By solving eguatioh (5.4.14), we obtain the ML estimate of P as
0.684148. This value is subsequently used to obtain (5.4.15). The
expression in (5.4.15) is used to draw the U-shaped graph. All of these

were done on the computer. The 953 C.I. for ¥ is found from the graph
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to be approximately (0.50, 0.91). This interval does not appear to be
as short as those obtained for 8 and A. Both the 90% and 99% C.I.

for ¥ are given as well in Figure 5.3.
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FIGURE 5.3
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5.5 CONFIDENCE REGIONS

For uniparameter distributions, Bartlett (1953a) obtained
approximate C.Is. for the parameter by assuming that the derivative of
the log-likelihood function with respect to the parameter is
approximately normally distributed with mean zero and known variance
when the sample size n is large. Subsequently, Bartlett (1953b)
extended the principle to multiparameter distributions and applied it to
a distribution with two parameters 81 and 82. By using large sample
approximation, he considered the partial derivatives of the
log-likelihood function with respect to these parameters to be normally
distributed with zero means and known covaridnce-matrix. These were
used to obtain an approximate chi—square expression from which the
confidence regions can be determ?ned.

We shall apply Bartlett’s results to the GPD model (1.3.1).

By taking the partial‘logarithmic derivatives of the likelihood function

- in (4.1.1), we have

JenL(8,A) _ d_
—&g 38

n
Inzne - [n8:+ AZ x.]
1 i

n
- — oy 1
+ .E [(xi 1) zn(8+Axi) Qn(xi!)]I
i=1
n n xi—l
=g 2t 2 g
i=1 i



9*2nL(8,A) _ _

62

d%enL(8,A)

gAge

genL(8,A)

gA

and

322nL(8,A)

IAZ .

- 114 -

n x.—1
LI S
82  i=1 (8+Axi)2

n xi(xi—l)
= - F e———
i=1 (8+Axi)2

n n xl(x —1)_
8+Ax.
i

= - 2 x1 + X
i=1 i=1

2

n x5(x.-1)
= - Z L‘
i=1 (8+Axi)2

(56.5.1)

(6.5.2)

(6.5.3)

On taking the expectations of (5.5.1), (5.5.2) and (5.5.3) and using the

.principle that each r.v.

has a GPD model (1.3.1), we obtain,

2
1, = E[_ ] an(e,A)]
362
n X.-1
gy [+ 1
i=l |82 (e+axi)2

n  (8+A)2X. +A2x (x -1)

EZ

i=1

]
‘™MD

i=1

82(8+AXi)2

) o] s

X(X—l)
(8+AX)2

ol
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Now,
L x-3
E[ X ]= 5 8(8+Ax) e—8~Ax

(+axy>  x=1 X!

_ 8(8+A+AK) S 2 -
- x! €
x=0

8-A-Ax

8[8+A+Ax—hx].(6+A+Ax)x—2 ~8-A—Ax
oA X7 €

_ 8 (8+a+ax)* L o~8-A—Ax
g+A x= x!

_ A

3 (8+2A+ax)¥ 1 -8-2A-Ax
5A

x!
x=0

8 _ . 8A
ey (G (@FZA)”

Also,
. ® x—-3
E[X(X—l) ] = 3 8(8+ﬁx)

—8—-Ax
2 X ! e
(8+AX) x=2

_ ; g(8+2Aax) L —6-2a-Ax
- x! e
x=0

= 5o ' (5.5.4)

Hence,
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i T .;1 (&) [(ei,\)z - wem] * B )

_ n[8(1-A)+2A]
8(8+2A)

(5.5.5)

' _ o[ 8%2nL(8,A)
I12 = E[ GAGE

1}
=
™M

n 'Xi(Xi—l)]

i=1 _(8+AXi)2

- 3 E'X(X—l)]
i=l | (8+AX)?

- D6 _ (5.5.6)

by using the result in (5.5.4).
Also,

_ d%2nL(8,A)
92 = BIm———
A3

e
. ; Xi(Xi 1
i=1 (e+,\xi)z

n
- E[xz(x—l)]
i=l [(8+AX)?
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where

X
(0+AX)2]  x=z <)

2/v_ ® x-3 .,
E[X (X l)] _ 8(6+Ax) e 6-AX

[+
Z 8(x+2

x!
x=0

8 Z x(8+2A) (

) (8+2A+Ax)* 71 8-2A-Ax

8v28 _Z,

28

0
+ rrC Y Z  (8+2A

x!
x=0

-8 .8+2x 26
8+2A 1~A 8+2A

_ 8(8+2)
- (I-AY(8+2A)"

Hence,

T g(e+2)

Lo = 2 TTAy(a+em)
i=1

_  n6(8+2)
T (1-AY(8+2A)°

From (5.5.5), (5.5.6) and (5.5.7) we have

2né

oo = Bg/T11 = TEAYTa(I=Ry2A] =

Also,

82

L2/ = sty

A‘

g+2A+ax) ¥ 1 o~82A-Ax
X'

) (8+2A+Ax) ¥ 1 --2A-Mx

(56.5.7)

(5.5.8)
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When the sample size n 1is large, the first paftial derivatives

aenL{8,A) d2nL(8,A)
58 and 7

of the log-likelihood function are normally distributed with zero means
and known covariance-matrix.
Following the procedure suggested by Bartlett (1953b), the

approximate chi-square expression for the confidence region (C.R.) is

T =

94nL(8,A) 2/1 + [9enL(8,7) _ 112 aen1(s, ) 2/A
ae 11 dgA I as
11
where A is defined in (5.5.8).
By substituting the values of the partial derivatives and of I11 and
I in the above, we obtain

12

GenL(68,A) _ I12 genL(8,A)

agA I11 ae
= - nx + fg e S n{1-6) , ; fi:i—
.o 8+AX, 8—8A+2A 8 .. 8+Ax,
i=1 i i=1 i
. 3 [ 82 ] %1 _  en(1-8)
= X, — - DX — st
sop Ui 7 8-OAF2R] BAK §-8AT2A

n [xi(6+2A)—8(8+Axi)](xi—l) — en(1-6)
(6+A%_) (8-8A+2A) T X T 58ATZA
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_ 8422 e , né(e-x) _ -
§-0A+2A ., TEFAx_ | B-8AT2A

=1

and therefore,

6(6+20) |n-¢) . B X371
8,0 =T = cgarony |~ 5+ .2, 5w
i=1 i
—_ — 2
, (=A)(8-8A+24) | 6+2) ¢ x; (%5-1) . me(8-x) _ -
ong §-0AV2A ) T8vAX, B—BAT2A

- 2
_8(8+2A) I n(1-8) , g x;-1
" n(8-0A+2A) ‘l 8 izl 9+'\xi

.(x.-1) 2
1-A Ay o x1<x1 - 2A 1
= [[He_] P i feea s B i

(6.5.9)

The values of 8 and A for which the function T(8,A) in (5.5.9)

remains less than x; 2 the critical value of chi-square distribution
. H

with 2 d.f., define an approximate C.R. contour. Thus, the set of

values of 8 and A for which
2
T(8,A) < xa’z (56.5.10)

form an approximate 100(1-«)% C.R.. In actual practice, we find values
of T(8,A) satisfying (5.5.10). These values are used to obtain a

contour map of T(8,A) in the (6,A) plane. This will be called the
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100(1-a)% contour line. Points inside the obtained contour line are

said to lie within the 100(1-a)% C.R.

EXAMPLE 5.1 CONTINUED

The data in Table 5.1 is used to set C.R. for the parameters
8 and A. By using thé data in expression (5.5.9), we get
8(6+2A7) f 165 43 36 27

T(8:A) = 100(=oar2Ay || 0 ' 552A * 3R T GedA

24 20 18 . 8 2
§¥5A © GT6A T §FIA T §FOA 400]

+

. 8+2A [ 86, 108 . 108
2(8+2A) ] 8+2A  8+3A  B8+4A
L 120 120 . 126 72 ]

8+5A ' 8+6A = 8+TA  6+9A

- 2
— 340 Sgﬂ_ﬂgigﬁl + 4009] }. (6.5.11)
A computer programme was written to find the values of the expression

T(8,A) in (5.5.11) and these were used to obtain the contour lines for

the 90%, 956% and 99% C.Rs. These are provided in Figure 5.4.7
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FIGURE 5.4

THE 90, 85 AND 88 PERCENT CONFIDENCE REGIONS
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We notice that the 95% C.R. contour provides the 95% C.Is.
for the parameters 8 and A as (0.44, 0.66) énd (0:28, 0.48)
respectively. The 95% C.Is. for each of the parameters 8 and A
obtained in section 5.4 lie within the 95% C.R. for both parameters.
The shapes of the C.Rs. are almost elliptical, which indicate the

closeness of the anlaysed data to a normal distriﬁution.
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CHAPTER VI

SOME TESTS OF HYPOTHESES FOR GENERALIZED
POISSON DISTRIBUTION

6.1 INTRODUCTION

Drawing inferences about the unknown parameters of a
population by using the information contained in an observed sample
data is an important problem in statistics. Usually, these inferences
appear in either of two forms, as estimates of the respective
parameters or as tests of hypotheses about their values. In this
chapter, we are concerned with the latter.

The probability mass of the generalized Poisson distribution
and its restricted form are given by (1.3.1) and (1.3.2) respectively.

The GPD model possesses the twin properties of over—
dispersion and under-dispersion which make it to be a very good

descriptive model in the fields of biology, ecology and many other |

areas. The under-dispersion is indicated by a negative wvalue of the
shape parsmeter A in (1.3.1) while the over~dispersion is described
by a positive value of A. Tests of hypotheses can be applied to
determine if there is over—dispersion or under-dispersion in a
population. This will correspond to testing whether A > 0 or A < 0 in

the GPD model (1.3.1).
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Janardan andVSchaeffer (1977) used the distribution (1.3.1)
to model the number of aberrations awaiting festitution in human
leukocytes. The parameter 8 measures the rate of change while the
parameter A is related to the equilibrium constant. One may be
interested in testing hypothesis about the magnitude of the rate of
change, whether this is less than or greater than a specified quantity.
This is an important area in which the tests of hypotheses are
applicable.

Fazal (1977) considered the test A = 0 against A # 0 in
the GPD model (1.3.1). This test was used to determine if akéPD model
(1.3.1) should be used in place of a Poisson distribution model to fit
a given data. Fazal based his test on the class of c(a) tests
proposed by Neyman. We shall now discuss a number of tests for the GPD
model.

Through out sections two to six of this chapter, we assume
that a random sample Xl, Xz, ceay kn ofrsize n is taken from a

population with GP distribution.

6.2 UNIFORMLY MOST POWERFUL TEST

We assume that the random sample belongs to the restricted
GPD model (1.3.2) where ¥ is known. A uniformly most powerful (UMP)
test for the parameter 8 can be constructed by using the following
result by Lehmann (1959, page 70).

-

Lehmann’s Result: et Q be a real parameter, and let the random
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variable X has a probability density (with respect to some measure 7))
given by

pg(x) = C(8) AT 1y, (6.2.1)

where Q(8) is a strictly monotone function of 8. If Q(8) is an
increasing function, then there exists a UMP test ¢(x) for testing
Ny < 3 .
HO. 8 < 80 against Ha‘ 8 > 60

which is given by

1 ’ T(X) > C
¢(x) = 37, T(x) = C (6.2.2)
10 , T(x) < C

where the boundary C of the critical region and the quantity «+ are

determined by
E[¢(X) | 90] -«

For the GPD model (1.3.2), the random variable X is discrete and u is
the counting measure, therefore the left hand side of (6.2.1) can be

replaced by PX(B, 8P) to obtain
P_(8, 6F) = o 0 X[E8=6P] () 0¥ 1 0,

where C(8) = e—e, Q(8) = 2n6 - 8P, T(x) = x and h(x) = (1 + ?x)x—l/x!.

When a random sample of size n is taken, we have

xi-l
n |( 1+)°xi)
I |—— (6.2.3)

. x.!
i=1 i
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n
where Y = X Xi and X = (Xl, XZ’ ey Xn). It is well known by the
convolution theorem that the random variable Y has a GPD with
probability function (3.2.3)

On comparing (6.2.3) with (6.2.1), it is easy to note that

Q(8) = e¢n8 - 8P

is a strictly increasing function of & as Q'(8) > 0. Hence the UMP

test ¢(x) for testing the null hypothesis H,: @& < 8, against the

0 0
alternative hypothesis Ha: é > 80 exists and is given by
1, Y>¢
o(x) = 37 , Y = (6.2.4)
10 , Y<¢C
where C and + are determined from
a = P(Y > CIHO) + v P(Y = ClHO). (6.2.5)

The last term in (6.2.5) is only of interest if one is interested in
randomization which will yield exact significance level a. Quité
often, the statisticians ignore this term in order to aveoid
randomization and choose that value of C which gives é slightly lower
probability value than a. In this way, the power of the test under
the null hypothesis is being reduced.

If the last term in (6.2.5) is ignoredf then C will be

determined from
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3 n(ney)V L oy e_eo(n+PY)/yz < a. (6.2.6)
y=C+1

To determine the value of C numerically, a simble computer programme
can be written to find C which will yield the largest probability-
. £ a. This method gives excellent results when the sample size n is
small because the summation becomes easy. For large values of n :the
summation becomes pretty difficult even for the computer due to
approximation errors.

Situations do arise in which n is.large. It is well known
by the central limif theorem that for large values of n the sample
sum Y is approximately normélly distributed with mean nu and

variance no? where

U= 8(1—6?)_1- and o2 = 8(1—8?)_3.

Aécordingly, the standardized variable

7 = Y —_?u

o/n

is approximately standard normal. With this assumption, and by
ignoring the last term in (6.2.5), the quantity C can be determined as

follows:

a = P{Y > ClHy}
-3

P{Z > [c—nao(l—reo)‘ll/JTneo(l—?ao) 1}

P{Z > zd}
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where z_ is determined from the areas under the normal curve. Thus,

-1

C = ng (1-r8,) = + zd./Tneo(l—?eo)“g]. (6.2.7)

The UMP size « test is to reject HO if Y > C.

For testing the hypothesis HO: 8 2 80 against Ha: 8 < 80,
a similar UMP test can be easily formulated. The only change will be
that C will be replaced by C' and all the inequalities will be

reversed.

6.3 AN APPROXIMATE TEST FOR ¥ OR A

To carry out tests of hypotheses about the parameter A when

0
that it is < 0.5 in the GPD model (1.3.1). As indicated in section

8 =8 is known and large, we assume that A = Ao is positive and

4.2 and in the reference therein, the standardized variate

_X—-u
o)

tends to standa;d normal form as 8 increases without limit. For the

2  of the random

GPD model (1.3.1), the mean u and variance o
variable X are given in section 5.3 with 8 replaced by 60. From
one of the earlier papers on GPD, [Consul and Jain, 1973], the GPD
model (1;3.1) is almost symmetrical in shape as the normal distribution
for values of 8 as high as 8.0 and 0 < A £ 0.5. Therefore, a test
for Hy: A = Ag < 0.5 against Ha£ A > Ay can be based on normal

approkximation. It is interesting to note that this approximation does

not depend on whether the sample size n is large or not.
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Suppose a random sample of size n is taken. The test is

based on the statistic

X=n z X.. (6.3.1)

The critical region for rejecting Ho ijs X > C where C is

determined from

a=P{X>C| Hy)

_ of/n(X=p) | J/n(C-u) 1
P > RS | Hy

= PS
- oS = ro_p (1-a Y1 _x y3 1
=PZ)> [C-84(1-Ag) "1/4T8,(1-Ag) "1 | Hog
_ o 1
= PIZ > Za[‘

‘Thus, by finding the value of z, from the standard normal table, the

value of C 1is given by

_ !
C = 8,(1-A,)

_3 ;
+z, JT[ao(l—Ao) ]/n}. (6.3.2)
A similar test can be carried out for the parameter ¥ in
the GPD model (1.3.2) if it is known that P = ?0 is positiverand that

?80 < 0.5. 1In this case, the standardized variate

z=X_4
(+]

has an approximate normal distribution, where u and o?

are given in
section 5.3 with @ replaced by 80.

A test for HO: P < ?0 against Ha: P> Po is based on the statistic
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X. By following the earlier procedure, the value of the boundary C
is given by

-1

C = 0,(1-P8,) " + 2 T8, (1-¢(8) " /n]. (6.3.3)

0
One can easily formulate a two-sided test for testing a

simple hypothesis. One will be testing HO: P = PO against Ha: Y # PO.

The critical region for rejecting Ho is Ii-ul > C-u where C is

determined from

a = P{|¥~u| > C-u | Hy}

which is equivalent to

% a=PX-p>C-ulH
_ pJn(E-u) | Jn(C-u) 1
- Pl a > g I HOI
= pP{Z > za/z}.

The value of za/Z from the standard normal table will be used to
obtain the value of C. On substituting the values of u and o, we

get

e (1p g 31
C = 8,(1-P,8

0+ 2 Jrao(l-roeo)'3/n]. (6.3.4)

6.4 LIKELIHOOD RATIO TESTS FOR 6 OR A 1IN LARGE SAMPLES
We consider the composite hypotheses

HO: g = 80,

against (6.4.1)

A unknown
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Ha: 8 # 8 A unknown.

0,

The likelihood function of the GPD model (1.3.1) is given by (4.1.1).
Consul and Shoukri (1984) have shown that the ML estimates 6 and A
of 8 and AA in the model (1.3.1) are unique and that they are
obtained by solving equations

n xi(xi—l)

z — T DX = 0 (6.4.2)

i=1l x+(xi—x)h

and

8 = %(1-2). (6.4.3)

Let the ML estimate of A when 8 is fixed at 80 be denoted by
X(Go). This estimate is used to obtain the likelihood ratio, when H0
is true as N

_1[e,, Mey)]

L = - (6.4.4)
L(8,A)

which satisfies 0 < 2 < 1. Large values of £ imply HO is

reasonably acceptable since 2 is the maximum likelihood under Hb

a fraction of its largest possible value. The critical region will be
of the form

as’

L £c
o
where Sy is determined from
c
(o
J f(2) d2 = a

0
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if f(2) is the density of &.

It is almost impossible to find the exact distribution of &£
in some cases. As proved earlier in Chapter V, the statistic -2 log £
is an approximate chi-square random variable with 1 d.f. when the
sample size n is large. Thus, test of hypotheses in (6.4.1) can be
carried out by using a chi—square random variable as the test
statistic.
| We now find the unconditional maximum L(S,X) of the likeli-
hood function and the conditional maximum L(BO, ;(80)) of the likeli-~
hood function where 3 and ; are the ML estimates obtained from
equations (6.4.2) and (6.4.3). The ML estimate' X(qo) is obtained,
through iterative procedure, from equation (4.3.6) with 8 replaced by
80. 7

By substituting Fhe values of the likelihood functions in

(6.4.4), one obtains

' ~ n
—[n80+A(80)2xi] n

~ i
80 e izl[[80+A(80)xi] /xi!]

x.-1

A A

An —[n8+Ain] n [[A-A ]xi—l ‘ ]

8 e I 8+Ax. /x.!
i=1 t *
n N - v Xi—1
_ 80} n[8—80+x(A—A(80))] n [80+A(60)xi]
- = e ” —_—RRT—— .
6 i=1 8+/\xi
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Finding the exact distribution of the statistic 4 does not appear to
be an easy task. Since the sample size n is large, the random
variable -2 log 2 is approximately chi—square distributed with 1

d.f. Hence the likelihood ratio test (LRT) statistic T is given by

T=-2 log £

N S o N P
= - Zln log[;—] + n[G - 80 +~x(A—A(80))
8,.+A(8,)x.
v 3 (x;-1) 1og[-9x-x-9-fi}1. (6.4.5)
i=1 8+Axi I

We reject the null hypothesis at significance level a 1if the
calculated T in (6.4.5) from a random sample of size n is such that
2
T xcx,l

where x; 1 is the upper 100(l—«a) percent point of chi-square

2
distribution with 1 d.f..

When the test of hypothesis is about the parameter A, we
is

0 is replaced by B(Ao) and A(BO)

replaced by AO where B(Ao) is the ML estimate of @ in the GPD

modify (6.4.4) such that &

model (1.3.1) when the parameter A is fixed at Ao.
Therefore, we have
_ L), Ag)

L(8,A)

£ . (6.4.6)

1
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The ML estimate. B(Ao) in the conditional maximum L(B(AO), AO) of
the likelihood function is obtained through iteration from equation
(4.3.3) with A replaced by AO. By ﬁsing the values of the

likelihood functions in (6.4.6), we obtain

~ A~ PN ~ x.—-1
8(A )" n[8-8(A)+x(A-A.)] n [8(A)+Ax.1 !
_ 0 0 0 0 071
21— ——— e ) /4 ——R—
8 i=1 8+/\xi

As in the previous case, -2 log 21 is approximately chi-square

distributed with 1 d.f.

'6.5 CONDITIONAL LIKELIHOOD RATIO TEST

The conditional likelihood ratio tesf is applicable to tests
about the parameter ¥ in the GPD model (1.3;2) when the sample size
n is large. The likelihood function of the GPD model (1.3.2) is given
by (4.1.2). We shall now formulate a procedure fof testing the

composite hypotheses

Ho: P = ?0 , 8 unknown
against

H: Pv#+°Y,, 8 unknown.
a 0

Since Y is a sufficient statistic for the nuisance parameter @&, one

can easily eliminate the parameter @ by‘dividing the likelihood
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function by the probability function of Y as in subsection 5.4.2.

From (5.4.6), the conditional likelihood function C(P) is given by

xi—l
- n (1+?xi)
c(P) = I . (6.5.1)
a(ntey)Y T i=1 X!
‘We define the conditional likelihood ratio function as
e = S8 (6.5.2)

RN T¢ 2

where ; is that value of P which maximizes (6.5.1) and it is the
poot of equation (5.4.7). Although it appears as if equation (5.4.7)
will have multiple roots, but from each of several examples we have
worked on, the iterative procedures used to solve (5.4.7) have yielded

a single solution in very few steps.

When HO is true, the conditional likelihood ratio (6.5.2)
gives
~_ ynx-1 x.-1
1+ ¥k n 1+ ?oxi i
e = |—— I |—
1+ ?ox i=l ]1 + ?xi

It is interesting to note that this quantity behaves very much like the
likelihood ratio £. We have that 0 < zc < 1. By Corollary 5.2 of
Chapter V, the conditional likelihood ratio test (CLRT) statistic

- 2 log Qc is approximately chi-square distributed with 1 d.f.. By .

applying this result, the test statistic
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Tc = - 2 log Qc
= - ZI(n x - 1) log l_i_ffz
1 .1 + ?Ox
n (1 +‘*P0xi 1
+ X (xi—l) log |———ap—— (6.5.3)
i=1 1+ ?xi I
L

is distributed approximately as a chi-square random variable with 1
d.f. To test the composite hypothesis H0 against the composite
alternative Ha’ the value of Tc is computed from (6.5.3) by using
the obser%ations from a random sample of size n and HO is rejected if

2
Tc > xa,l

where x; 10 as defined in section 6.4, will be obtained from the
’ = -

- chi—square distribution table.

6.6 POWERS OF THE TESTS

We consider the procedures discussed in sections two through:
five and give the powers of the different tests for a specified value
of the parameter under the alternative hypothesisf

For the UMP-test in (6.2.4), the power of the test under Ha,

when randomization is ignored is

w=1-8=P(Y>C|H)
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.3 n(n+py)Y L 67 emsl(n+?y)/ys (6.6.1)
y=C+1
where 81 is the specified value of 8 under the alternative
hypothesis and C is determined from (6.2.6).
For the approximate normal test in section 6.3, the power is
given by |

x=1-8=PX>C | H}. (6.6.2)

In this case, C is determined from either (6.3.2) or (6.3.3)
depending on whether the parameter we are testing for is A or ¥P.
The test statistic T in (6.4.5) is, in general, a

non-central chi-square random variable with 1 d.f. and non-centrality

parameter
vy = (e—eo)2 Var(8) (6.6.3)
" where
A 2
Var(8) = E[— ?_M]’
g62

[See Kendall and Stuart, 1977 page 247].

It has been shown in Chapter V for the GPD model (1.3.}) that

n[8(1-A)+2A]
.8(8+2A) :

Var(8) = 1,,(8) =

Under the null hypothesis, where 8 = 80 and vy = 0 the test

statistic T is a central chi-square random variable. Under Ha, the
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alternative hypothesis, v, is as given in (6.6.3) with 6 replaced

by its specified value under Ha' Therefore, the power of the LRT is

w=1-8 = I d xz(l,ul). (6.6.4)

But a non—central chi-square x2(1, ul) can be approximated by an
equivalent central chi-square distributed random variable. By
following the procedure in Kendall and Stuart (1977, page 245), (6.6.4)

can be approximated to give an approximate power for the LRT as

-]
v2
e J d x2 [1 + T?%;'] (6.6.5)
b

where b = (1+u]_)(1+2vl)—1 x; 1 and x%(r) is a centralﬁchi—square
?

variate with r d.f. and

n[al(l—X(sl))+zX(al)]

81(61+2A(81))

. (6.6.6)

- —q )2
vy = (81 80)

In (6.6.6), 81 is the value of 8 specified under the alternative

hypothesis and A(#@ is the ML estimate of A in the GPD model

1)

(1.3.1) when the value of @ is taken to be @ The ML estimate

1
A(Ol) is the solution of equation (4.3.6) when @ is replaced by 81.
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The procedure to obtain the power of the CLRT is similar to-

the above method and will not be given here.

6.7 SEQUENTIAL PROBABILITY RATIO TEST

The Neyman—Pearson theory considers the problem of
constructing a most powerful test at a given sample size and
significance level so as to keep both types of errors within a very
reasonable limit. The choice of a and B8 (type I and II errors),
remain somewhat arbitrary. A disadvantage of this approach is its
failure to relate the choice of sample size and significance level
(type 1 errorj to the economic background.

A corrective approach to the above type of economic problem
was introduced by Wald (1950). However, we shall not delve into the
economic prospect of this elegant approach, we shall briefly outline
how sequential probability ratio tést (SPRT) can be applied to test
hypotheses about tﬁe Qarameter of the restricted GP distribution.

The SPRT procedure achieves optimal economy in the required
sample gize in any problem. ‘A rigorous mathematical proof has been
given to this fact by Lehmann (1959). The SPRT, developed by Wald
(1945, ’47) will be applied to testing a null hypothesis against
one-sided alternatives. Its application to two—-sided alternatives is
moré complicated and will not be dealt.with here.

Consider the hypothesis
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i

[

..

=]

1]

against

(al‘> ao). (6.7.1)

Let Xl’ Xz, X3, ... be a sequence of independent random variables from

the GPD given in (1.3.2) and suppose the value of the parameter ¥

fixed.

is

First, we obtain a sequential test for the hypotheses in

(6.7.1). Subsequently, we shall obfain approximate expressions for the

operating’characteristic (0C) function
(ASN) function of the SPRT.
Let A and B,

test in (6.7.1) is defined as follows:

B < A, be two given numbers.

and the average sample number

A SPRT for the

Observe {Xi}’ i=1,2,3, ... successively, and at stage N 21

(1)

(ii) accept Ho if L(x)

reject H0 if Lix) 2
<

(iii) continue by observing

A
B

XN+1 if B < L(x) < A where

Py lecel, ?el)-o--Pchsl, ¥6,)
L) = po = 6., PO
Pon Py (8gr ¥8g) =" °Py (84, ¥B)
1 N
L(8,, ¥8;)
- LZeo, ?305
N N
Zx —81(N+?in) N xi—l
B, - e I [(1+?x.) /(x.!)]
P 1 1
- i=1l
=N N
Zx —80(N+?in) N xi—l
8y e I [(1+?xi) /(xi!)]

i=1l
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N
in N
8 (N+P2x_.) (8,~8)
- [Fl] e e T17 (6.7.2)
0
Thus, we continue to sample as long as
log B < log L(x) < log A (6.7.3)
and accept Ho or Ha according as
log L(x) £ log B
or log L(x) 2 log A.
By using (6.7.2) in (6.7.3), we get
N
zxi
8. v(8.,-8,)] N(§8,.-8.)
log B < logI 51 e 0 "1 e 01 1 < log A
1% . [
N(8,-8,) N 8 v(8,.-6.) N(8.,-8.)
i.e. log[B e 170 ] < 2 x.°log 1 e 01 < log[A e 170 ].
. i ]
i=1 [0
(6.7.4)
But 0 <8, P <8 P<1 sothat P < ail. Also,
]
0
e, |]— -1
8, P(8,-8;) 8 1[91 ]
-é—e —-—8—3
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8
> El e
0
8 8 ¢} 2 (] 3
o[ 0 1 (8 1 [%0 1
= 1l + -1} + -1 + -1 +
a1 [31]2[91}3{3‘1] |
> 1 Il + %0 - 11
N 9.,
ol T
= 1.
Therefore,
8, ¥(8,-8.)
1og[§l e 01 ] > 0. (6.7.5)
0

Because of (6.7.5), the ingqualities in (6.7.4) can be written as

O] gfae 0]

log|B e
5. Pe—oT < .2 % 5. ¥(g g (6:7-6
1 071 i=1 1 01
log|— e logj— e
8o 8%

From Wald’s analysis, the constants A and B can be approximated by

A= (1-8)/a
B.= 8/(l-«) (6.7.7)

where a and B are the probabilities of the first and second types
of error, respectively. Also, the SPRT terminates with probability

one. By using (6.7.8), we conclude that the SPRT in (6.7.1), with
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N
error probabilities a and B, is given by the statistic 2 Xi and

that the two boundaries are
log B f N(Bl—eo)

8
log[i(!)'-] + P(6,-8;)

below and

log A + N(Bl-eo)

8 .
log{-e—(l;] + P(eo_el),

above, where A and B are given‘by (6.7.7).

6.7.1 OPERATING CHARACTERISTIC FUNCTION

| Denote by L(8) the probability that the sequential process
will terminate by accepting the null’hypothesis H0 when € is the
true value of the parameter. Thus, L(6) is the O0C function. We are
interested in finding an approximate value for L(8) by neglecting the
excess of L(x) over the boundaries A and ‘B when the process is

terminated. By Tollowing Wald’s argument, L{(8) can be approximated

by
h
A -1
I‘(")“‘F——E
A" -B

h
-1

1-4
= [_“_] : (6.7.8)

B - (2]
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where the function h = h(8) # 0 is obtained from

h
® [Px(el’ ?81)

z P _(8, v8) = 1.
P 180, Pﬂoi} x( » ¥6) 1

x=0 %X
Thus,

- .
© {61] e—(Bl—OO)(1+Px)h (l+?x)x—1

x —8(1+Px)
5 = e

]

(Lpry [e[gl]h]x e—[8+(81—80)h](1+?x)

- -
Z []
x! 80

x=0

(6.7.9)

By comparing the above summation with

®

s P (8, ¥8) =1,
X

x=0

it is easy to see that
' h

e - N
e[gl] = 8 + (8,-6,)h. ' (6.7.10)
0

Solving for h = h(8) in (6.7.9) is equivalent to solving for h in
(6.7.10). Thus, we get

~ (Bl—Oo)h

a - .
h
81/80 -1

(6.7.11)

We now need to solve for h in (6.7.10) and these values of h will be
subsequently used in (6.7.11) and (6.7.8) to obtain the points

(8, L(8)) which are used to draw the OC function. However, the task of
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finding h = h(8) in (6.7.10) does not appéar to be an easy one. This
problem is ;vercome by the fact that when any h is chosen arbitrarily
the point (8, L(8)), computed from (6.7.11) and (6.7.8), will lie on
the OC function. By considering many values of h which lead to large
number of points (8, L(8)), one can draw the OC function.

From (6.7.11) and (6.7.8), the points in the following

Table 6.1 are easy to obtain.

TABIE 6.1

Some points on the OC function

h 8 L(8)
1 60 l~a
-1 8, B
+ 0 0 1
-— 00 + 0
. 8178 en[(1-8) /a]
Zng,-2nb Z2n[(1-8) (1—a)/aB]
) 264 L (1) (1)
.51;36 1~a—p+2a8
2
_, 263 (1-p+a) f°
191+80 1-a—B+2a8

By using these seven points, a rough OC function which is given in

Figure 6.1 can be obtained.
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FIGURE 6.1

Operating Characteristic Function
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6.7.2 AVERAGE SAMPLE NUMBER FUNCTION
From Wald’s fundamental identity, it is known that the

approximate formula for the average sample mumber function is

oy o L(8) log B + (1-1(6)) log A
Eg(N) @) (6.7.12)

. P (8,, ¥8.)
where Z = log 55151——;§l7.
x 0" 0

In subsection 6.7.1, the approximate formula for L(8) has been given.
We note here that EB(N)’ the expected value of N (the number of
observations required by the SPRT) when 6 is the true value of the

parameter is a function of 8. For the GPD model (1.3.2), we have

'81 X —(81
EB(Z)__ EG log 7| e

—60)(l+?X)]
. 0

fl

.
1og[§% Eg(X) - (8;-8,)[1 + P Eg(X)]

I | S
v °% §,| ~ ¥

_Hence,
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L(8) log B + (1- L(B))log A

Eg(N) = 5
8 1.1 - 8,78
1—vg 9% g,/ " T8

h h
[(1-p)/a1™1 4 (8], 1-(8/ (1) Log[12E
_ L) /™= [/ (1-0) 1" [1'“] [(1-8) /o) =[5/ (1) 1™ [“]
o]
1-¥8 80 e )
(6.7.13)

Since it is not easy to find the valuesrof h as indicated in
subsectioﬁ 6.7.1, we congider a large number of values for h which are
chosen arbitrarily. By substituting these values of h into (6.7.11)
and (6.7.13) we obtain the points (8, EB(N)) which are used to draw the
ASN function.

The following three points are easy to obtain for the ASN’

function. When @ = 80, L(Bo) l-« and

(1-a) log[ ] +a log[la ]
Eg (M) = —3 ]
0 0 log{_l] 5178
T-¥e, 8|5,| ~ T-¥9,

When 8 = 6., L(8

B log[l—g-a] + (1-8) los[%é]

1 1og[81} 8,-8¢
] [ =N
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When 6 = 0, L(8) =1 and

o )

1«
E (N) = 2,
0 60 81

The work in this section can also be carried out for a
composite hypothesis HO: 8 < 80 against an alternative hypothesis
Ha: 8 > 8,. This is done by reducing the composite hypotheses to

0
simple hypotheses of the form (6.7.1).
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CHAPTER VII

ESTIMATION FOR GENERALIZED NEGATIVE
BINOMIAL DISTRIBUTION

7.1 PROBLEMS INVOLVED

The GNB distribution in (1.2.1) is a three—parameter
distribution. Jain and Consul (1971j applied the method of moments to
. estimate all the three parameters of the distribution. Charalambides
(1974) considered a left truncated GNB distribution, truncated at point
r, r 21 and obtained the minimum variance unbiased estimators of
functions of 8 both for the cases when r is known and when r is
unknown. The work of Kumar and Consul (1980) has been referenced in
Chapter III.

The method of ML estimation was pfoposed as a general method
of estimation by Fisher (1812). Later on, rigorous proofs of the
asymptotic properties of the ML estimators were given in the works of
Cramer (1946), Huzurbazar (1948) and Chanda (1954). Among the
desirable propertieé of an estimator are

(i) consistency
(ii) efficiency and
(iii) unbiasedness.

One of the problems of an ML estimator is that it fails to satisfy some
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of the above desirable properties. Neyman and Scott (1948) and Kraft
and LeCam (1956) have pointed out situations where the ML estimator is
inefficient and not consistent. Theirtexamples involve sampling from
associated pop&lations, that is, distinct but related populations.
Thus, if we have a situation in which observations do not come from
only the GNB population but also from a distinct but related
population, we may end up with ML estimators which fail to satisfy some
of the desirable properties.

When we have a uniparameter distribution, solving of
likelihood equation may not be all that difficult. For two parameters,
there may be problems if one (or all) of the likelihood equations is
(or are) not well behaved. In general, as the number of parameters
increases, the problems of solving the likelihood equations become more
difficult. Therefore, obtaining the ML estimators in closed forms may
prove to be a formidable task. This is in fact a problem in the ML
estimation of the parameters in the GNBD. The expression in the
likelihood equation looks horrible and cannot be easily evaluated.
Another problem in the ML estimation of the parameters m; 8 and §
is that the parameters 6 and B depend oﬁ one another on the
bounda;y. This makes differentiation with respect to '@ or B8 very
difficult when both are unknown. |

After getting the likelihood equations, some of;which are ill-
conditioned, one cannot talk about the existence of unique solutionms.
This has been a problem in the field of estimation of parameters in‘

statistics. Consul and Shoukri (1984) proved a pgrticular theorem for
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the existeﬁce of unique admissible ML estimators fop the parameters of
the GPD given in (1.3.1). Such a proof has not been given for the
existence of unique ML estimators for the parameters of the GNB
distribution.

Given a set of ML estimators, it willrbe of interest to know
how well these estimators perform among other estimatﬁrs from other
methods. This can be measured by comparing their biases and relative

efficiencies. The relative efficiency E is computed from

E = [(generalized variance) {information determinant)]_l.

To compute the generalized variance, one needs the variances and
covariances of the estimators. In this case of GNB distribution, it is .
very difficult to get the exact value of the generalized variance.
Therefore, one has to take.recourse to the asymptotic value.

Shoukri (1980) considered the simultaneous estimation of the
parameters m and 8 (with £ known) by using the methods of moments
and maximum likelihood estimation. He obtained the asymptotic biases,
variances and covariance of the two sets of estimators by appealing to
the method proposea by Shenton and Wallington (1962) -for the negative
binomial distribution.w Shoukri’s work involved very complicated
expressions and the results obtained were morenor less messy. If the
expressions obtained for the estimation of two parameters are so messy,
one begins to wonder as to how the expressions for the case of three
parameters will look like.

Shoukri (1980) further obtained the relative asymptotic
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efficiencies of the ML and moment estimators of m and 8. The 7
relative efficiencies were based on the first order biases, variances
and covariance of these estimators. As a matter of fact, it is somehow
difficult to give a reliable conclusion from any result based on first
order approximations without any information on the behaviour of second
order terms of biases, variances and covariance. This is the main
reason why it is difficult to determine the subregion of the parameter
space in which one estimator is superior to the other.

By examining the tables of relative efficiency of moment
estimators with maximum likelihood estimators, it is noticed that the
moment estimators are good when m is very small, say 1.0, & is near
0.05 and B < 10.0. Thus, the moment estimatérs are good in a very
small region of the parameter space if one is to rely on the results
from fifst order approximations only.

The information determinant in the formula for finding the
relative efficiency ié not easy to obtain for the GNB‘distribution. An
indication of this was given by Shenton (1949), who stated that the
chief difficulty in computing the efficiencies in multiparameter
distributions appeared to be the evaluation of the information
determinant.

There is not much problem encountered in solving the
equations that result from the moment method. The moment estimators

are inefficient and biased. To evaluate the exact variances and
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covariances as well as the biases is a task tﬁat no one has attempted.

7.2

further

SOME UNSOLVED PROBLEMS

The following are some unsolved problems which require

research work in the estimation of the GNB distribution.

The existence of unique and admissible maximum likelihood
estimators for m ‘and 8, when B is assumed known, is
still an open question.

The asymptotic biases, variances and covariance of the above
ML estimators up to the second order are yet to be obtained.
The same problem exists for the mpment estimators. If these
can be obtained, they will lead to a bettér assessment of the
efficiéncies of these estimators over the whole parameter

space.

No work has been done on using the ML estimation method for

estimating the three parameters simultaneously. This,

"“however, may not be unconnected with the fact that the

parameters 8 and B are depéndent on the boundary.
Accordingly, the differentiation of the likelihood function
with respect to 8 or B becomes very difficult. The
question of their uniqueness, biases, variances and
covariances also remains open.

In view of the fact that the ML estimators have not been
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proved to be unique and that the moment estimators seemed to
be good in a small region of the parameter space, other
methods of estimation are worth considering. These other

methods which may be applied to the simultaneous estimation

of the three parameters are:

(1) the method of the first two moments and the observed
proportion of ‘zeroes’ and
(ii) the method of the first two moments and ratio of ‘one’

and ‘zero’ frequencies.
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