
THE UNIVERSITY OF CALGARY

SYNTHESIS OF DIGITAL SIGNAL PROCESSING SYSTEMS

• USING PIPELINED BIT-SERIAL ARITHMETIC

by

Radhakrishna Nagalla

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

November, 1991

© Radhakrishna Nagalla 1991

1+1
National Library
of Canada

Biblio(hèque nationale
du Canada

Canadian Theses Service

Ottawa Canada
KM 0t44

Service des thès canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distilbute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisher per-
mission.

U.' Cmacia

L'auteur a accordé une licence irrevocable et
non exclusive permettant a Ia 8ibliothêque
natidnale du Canada de reproduire, préter,
distiibuer ou vendre des copies de sa these
de quelque maniêre et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve Ia propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autremeat reproduits sans son
autorisation.

ISBFiø-31-7514--j

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, "Synthesis of Digital Signal Processing Systems Using

Pipelined Bit-Serial Arithmetic" submitted by Radhakrishna Nagalla in partial fulfillment of the

requirements for the degree of Master of Science.

Dr. L. E. Turner
Supervisor,
Department of Electrical and
Computer Engineering

Date: (La-u--f\,dLk 21) 1cc(

11

r M: R*- mit
Dient of Electrical and
Computer Engineering

 uc

Dr. M. Fatto
Department of Electrica1rid
Computer Engineering

Dr. G. Birtwistle
Department of Computer Science

ABSTRACT

A technique for the architectural synthesis of pipelined bit-serial digital signal processing

systems is presented. Architectural (high level) synthesis is the transformation of an abstract

behavioral (algorithmic level) specification of a digital system into a register transfer level (RTL)

structure that realizes the specified behavior, while satisfying a set of goals and constraints. The

RTL structure refers to a set of components such as arithmetic units, registers, multiplexers and

their interconnections, as well as the hardware required to control data transfers between them.

Many synthesis tools have been developed for bit-parallel systems, but only a few

synthesis tools have been developed for the high level design of pipelined bit-serial systems. A

synthesis tool called BITSYN (BIT-Serial SYNthesis) has been developed exclusively for bit-

serial digital signal processing systems. The program BITSYN evaluates different resource

sharing strategies (multiplexing) and generates a minimum gate design, a high sample rate

design and a range of designs between these limits. BITSYN accepts as input a behavioral

description in the form of a signal flow graph (SFG) and generates output in the FIRST

language.

The BITSYN tool has been tested using different digital filter signal flow graphs. Digital

filter designs obtained from BITSYN have been implemented using XILINX field programmable

gate arrays.

Hi

ACKNOWLEDGEMENTS

I am grateful to Dr. L. E. Turner for his invaluable guidance and encouragement throughout the

course of this research.

I appreciate the financial support provided by the Alberta Microelectronics Center and the.

Department of Electrical and Computer Engineering which allowed me to undertake the

presented work.

My sincere thanks to Peter Graumman for helping me with the implementation of different

designs in field programmable arrays.

Iv

Dedicated

To

my mother Aruna Kumari

V

TABLE OF CONTENTS

Page No.

Approval page
ABSTRACT
ACKNOWLEDGEMENTS iv

Dedication v
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix

1. INTRODUCTION 1
1.1 Overview of Bit-Serial Systems 2
1.2 Architectural Synthesis 8

1.2.1 Advantages of Architectural Synthesis 11
1.2.2 Existing Synthesis Methods 12

1.3 Scope of Thesis 15

2. BIT-SERIAL SYNTHESIS (BITSYN) 17
2.1 Translation 20

2.1.1 Signal Flow Graph (SF0) Description 20
2.1.2 SFG to DFG Conversion 24
2.1.3 Data Flow Graphs (DFG) 26

2.2 Resource Sharing 30
2.2.1 Resource Sharing Algorithm 32
2.2.2 Concurrent Multiplexing 39

2.3 Scheduling 43
2.31 Forward Scheduling (ASAP) 43
2.3.2 Backward Scheduling (ALAP) 44

2.4 Allocation 48
2.4.1 Delay Reduction 49

2.5 Control Signals 54
2.5.1 Timing Redundancy 56

2.6 Summary 61

3. BITSYN ALGORITHM 62
3.1 BITSYN Algorithm 62
3.2 Design Space 64
3.3 Heuristics 66

vi

4. CONTROL GENERATOR DESIGN 69
4.0 Introduction 69
4.1 FIRST Control Generator 71
4.2 BITSYN Control Generator 73
4.3 Implementation of FIRST Control Generator 74
4.4 Linear Feedback Shift Registers (LFSR) 80
4.5 Finite State Machines (FSM) 83
4.6 LFSR versus FSM 83
4.7 Conclusions 88

5. CASE STUDIES 89
5.1 Fourth order Cascaded Biquad Digital Filter (CasBiq-4) 89
5.2 Second order Wave Digital Filter (Wave-2) 105
5.3 Second order Direct Form Digital Filter (Direct-2) 108
5.4 Fifth order LDI Digital Filter (LDI-5) 109
5.5 Fifth order Wave Digital Filter (Wave-5) 111
5.6 Sine/Cosine Function Generator 113

6. CONCLUSION 117
6.1 Contributions of the Thesis 117
6.2 Suggestions for Further Work 119

REFERENCES 121

APPENDIX A . 125

APPENDIX B 135

vii

LIST OF TABLES

Table No. Title Page No.

2.1 Transformations to modify SFG branch commands 25

5.1 4th order cascaded biquad digital filter - time schedule
after 1st level multiplexing (cwl=10 bits; swl=23 bits) 95

5.2 4th order cascaded biquad digital filter - time schedule
after 2nd level multiplexing (cwl=10 bits; swl=24 bits) 97

5.3 4th order cascaded biquad digital filter - time schedule
after 3rd level multiplexing (cwl=10 bits; swl=23 bits) 100

5.4a 4th order cascaded biquad digital filter optimal solutions 101

5.4b 4th order cascaded biquad digital filter solutions
- heuristics effect 102

5.4c Modified opti mal solutions with swl = 32, and with
owl = 12 for 4th order cascaded biquad digital filter 104

5.5 2nd order wave digital filters designed using BITSYN 107

5.6 2nd order direct-form digital filters designed using BITSYN 109

5.7 5th order bilinear LOt digital filters designed using BITSYN 110

5.8 5th order wave digital filters designed using BITSYN 112

5.9 Sine/cosine function generator designs obtained using BITSYN 116

LIST OF FIGURES

Figure No. Title Page No.

1.1 A generic bit-serial operator [3] 4

1.2 A bit-serial adder [3] 7

1.3 Design process of a digital signal processing system 10

2.la Second order wave digital filter signal flow graph 23

2.lb Second order wave digital filter - BITSYN branch description 23

2.2a Second order wave digital filter - modified SFG description 27

2.2b Second order wave filter data flow graphs (DFG) 27

2.3 Implementation of a typical node in DFG 29

2.4a Illustration of the difference between node pairs
(P,Q) and (Q,P) in the resource sharing process 31

2.4b Illustration of resource sharing process of (P,Q)
when a node 'P' is a child of 'Q' 31

2.5 Resource sharing program structure chart 33

2.6a 2nd order wave digital filter data flow graphs
- multiplexing level = 1 37

2.6b The effect of function push _up_demux on a DFG 37

2.7a 2nd order wave digital filter modified data flow
graphs - multiplexing level = 1 38

2.7b 2nd order wave digital filter modified signal flow
graph - multiplexing level = 1 38

2.8a 2nd order wave digital filter data flow graphs
- multiplexing level = 2 40

Ix

2.8b 2nd order wave digital filter signal flow graph
- multiplexing level = 2

2.9

2.1 Oa

Four different situations where the two pairs
(Si, S2) and (S3, S4) can not be shared concurrently

Forward schedule for the 2nd order wave digital
filter - 1st level multiplexing

• 2.lob Backward schedule for the 2nd order wave digital
filter - 1st level multiplexing

2.1 Oc Final schedule for the 2nd order wave digital filter
- 1st level multiplexing

2.1 la Comparison of parallel and serial delay implementation

2.ilb A typical circulated buffer

2.1 1c Delay minimization at the state circulated buffers.

2.12 2nd order wave digital filter signal flow graph
- after delay allocation

Control signals for multiplexed architectures

Signal flow graph of 2nd order direct form digital filter

2.13

2.14a

2.14b Data flow graphs of 2nd
- no multiplexing

2.14c Data flow graphs of 2nd
- 1st level multiplexing

2.14d Data flow graphs of 2nd
- 2nd level multiplexing

2.14e Data flow graphs of 2nd
- 3rd level multiplexing

order direct form digital filter

order direct form digital filter

order direct form digital filter

order direct form digital filter

3.1 BITSYN design space for 2nd order wave digital filter

40

42

45

47

47

51

51

51

53

55

59

59

59

60

60

65

4.1 Format of control signals for bit-serial networks 70

x

4.2a Schematic diagram of MUX2 76

4.2b Schematic diagram of EXOR 76

4.2c Schematic diagram of CNT1 (1st stage of the counter - LSB stage) 76

4.2d Schematic diagram of CNTN (2nd to Nth stage of the counter) 76

4.2e Schematic diagram of down counter of length L 77

4.3 Schematic diagram of the circuits to generate CYCLES 78

4.4 Schematic diagram of the circuits to generate EVENTs 79

4.5 Circuit that multiplies by h(D) and divides by g(D) 81

4.6 Schematic representation of a finite state machine 84

4.7a A shift register generator with output 1001011.... 86

4.7b Circuit implementation of the shift register
generator given in Fig. 4.7a . 86

5.1 a Signal flow graph of 4th order cascaded biquad digital filter 91

5.lb 4th order cascaded biquad digital filter
- BITSYN branch description 91

5.2a 4th order cascaded biquad digital filter
- modified SFG description 92

5.2b 4th order cascaded biquad digital filter - data flow graphs 92

5.3 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 1 94

5.4 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 2 96

5.5 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 3 99

5.6a Different steps involved in the bit-serial implementation 106

5.6b Block diagram of XILINX demonstration setup 106

xl

5.7 5th order bilinear LDI digital filter signal flow graph 110

5.8 5th order elliptic wave digital filter signal flow graph 112

5.9 Signal flow graph of sine/cosine function generator 114

A.1 Flow diagram of the BITSYN algorithm 126

A.2 Flow diagram of the module analyzeflairs 128

A.3 Flow diagram of the module generate design space 131

xii

Chapter 1

INTRODUCTION

The process of extracting the useful information from a signal and discarding the

extraneous or the process of modifying the contents of the signal is called (loosely) signal

processing [1]. The capability of digital systems to achieve a guaranteed accuracy and

perfect reproducibility of signals, leads to the increased use of digital signal processing

(DSP) over traditional analog signal processing [2]. The advent of very large scale

integrated (VLSI) circuit technology has given a boost to the implementation of powerful

real-time DSP algorithms that previously have been of only theoretical interest [3]. Digital

signal processing systems are usually well suited to VLSI implementation, since they may

have highly parallel algorithmic structure, local connectivity and circuit modularity [4].

A DSP algorithm accepts a new data set every sample period T, where T is the.

reciprocal of the throughput rate (sample rate). Given an input sample and a current state,

the DSP algorithm produces a new state and an output sample. Each state is associated

with certain latency (or delay), which is defined as the time separating the appearance of a

current state value (state output) to the appearance of a corresponding next state value

(state input).

In real-time signal processing systems, sample rate requirements can vary from

relatively low sample rates, as in speech and telecommunications, to high sample rates, as

in radar and in image processing. In general, any signal processing algorithm can be

2

executed in different implementation styles such as bit-parallel, digit serial [5] [6] and bit-

serial. This classification is based on how many signal bits are processed simultaneously.

Bit-parallel systems process all bits of a word or a sample in one clock cycle and are used

for high speed applications. Digit serial systems process more than one bit at a time and

are suitable for medium speed applications [5] [6]. On the other hand, the bit-serial systems

which are typically used for lower speed applications, process one bit at a time [3] [7].

The remainder of this chapter provides an overview of bit-serial systems, architectural

synthesis and existing synthesis methods.

1.1 Overview of Bit-Serial Systems

Bit-serial architectures have been proposed to create high-performance, low cost,

very large scale integrated circuit (VLSI) systems in different digital signal processing (DSP)

applications [3] [7]. Bit-serial systems can be implemented as synchronous or

asynchronous systems. In synchronous systems, the sequence and the time of operations

are controlled by means of system wide clock signals. The functional behavior of a

synchronous system depends on the system clock. The maximum clock rate depends on

the delays in the elements and wires. That is, the clock rate must be greater than the

maximum delay of any path in the system. In asynchronous systems, there is no global

clock signal and the elements are driven by a sequence of operations. In this thesis, only

synchronous bit-serial systems are used.

Bit-serial architectures are different from bit-parallel systems mainly in their

communication and computational strategies. In synchronous bit-serial networks,

3

communication and computation are executed synchronously one bit at a time under the

control of a global bit clock. This serial communication is implemented with single wires

between computing elements (in the data path) and for input and output operations (for inter

chip communication). In contrast, N-bit parallel systems use buses of N wires, where N is

the system word length.

There are inherent advantages due to the use of serial communication such as

(a) the routing of typical bit-serial networks on an integrated circuit chip is much simpler

than the routing of parallel buses. The bit-serial networks also consume less area on an

integrated circuit chip unlike the parallel buses.

(b) Input and output communications can be performed via single pins. Thus the number of

pins required in bit-serial systems can be less than those required in bit parallel systems.

Bit-serial systems can be constructed in hierarchal fashion from the bottom up, by

composing operators into functionally equivalent higher-level operators, starting with the low

level operators such as adders, multipliers etc. [8]. Fig 1.1 [3] shows a generic bit-serial

operator (computing element) or a primitive. An operator performs a signal processing

operation on words of bit-serial data. For example, operators could be add, multiply, delay

or Fast Fourier Transform (FFT). Each operator is associated with a set of control inputs,

on single wires. These control signals indicate the arrival of the least significant bit (LSB)

of a word, or the arrival of the first word of a group of words etc. The control signals are

generated in a module called the control generator.

The bit-serial operators are pipelined at the bit-level so that their internal components

are used at the best possible throughput rate or at the fastest possible bit clock rate.

4

Control Data
Outputs Outputs

Operation

(e.g. +, *

44
II
II
II
II
I I

AAA

op [params]AL A -

+4
I I
II
II

•I I
II
I I

Control Data
Inputs Inputs

Parameter List
(e.g. system word

length, latency)

Fig. 1.1 : A generic bit-serial operator [3]

5

Pipeline operators provide high speeds because their separate stages can operate

concurrently. They are similar to a manufacturing assembly line, where different people

work concurrently on material passing down the line.

Bit-serial data can be represented with most significant bit (MSB)-first or least

significant bit (LSB)-first. Operations such as division and sorting can be performed more

easily with MSB-first data because the results can be obtained earlier than with LSB-first

data. Common DSP operations such as multiply and add are performed LSB-first because

the carry will be propagated from LSB to MSB. A single data format is used to

communicate the data between the operators which is independent of the format used in an

operator. This convention helps to build arbitrary networks as hierarchies of operators and

primitives regardless of a specific data format used in an operator or primitive. The LSB-

first format has been chosen in this thesis to communicate the data and to perform the

operations. Similarly the bit-serial convention is required only at the interfaces of operators.

Internally the operators can adopt signal representations that best suit their operation such

as bit-parallel and digit-serial.

With pipelining, there is a finite computation delay or latency associated with each

operator. This latency is the time difference between the arrival of input data and the

appearance of the output data in synchronous pipelined bit-serial systems. The latency is

defined in terms of the bit-times as a number of bits. The latency of an operator may be a

constant as in the case of serial adder (latency = 1). The latency of an operator may also

be a function of certain parameters such as the coefficient word length (cwl) as in the case

of a serial multiplier.

6

In bit-serial systems, the data is processed bit by bit serially and if necessary the

results from the previous computation are stored and used internally. For example in the

case of bit-serial carry save adder the previously computed and stored carry is added with

the current bits of the two input words as shown in Fig. 1.2 [3]. The control signal required

in the case of the serial adder is a pulse synchronized with the arrival of the least

significant bits of both the inputs (LSB time). The LSB time signal inhibits the carry

resulting from the previous addition.

The hardware required for bit-serial primitives is typically much smaller than bit-

parallel primitives at the expense of the data throughput rate. In general, serial structures

use 1/Nth of the hardware required by parallel structures but take N times the bit-parallel

computation time. Thus, for the same clock rate, the serial and parallel structures will have

the same area-time measure. In practice, the (non-pipelined) parallel system clock should

be much slower due to the potential for long carry propagation delays in add and multiply

operators. These delays are not present in bit-serial systems because of pipelining at the

bit-level. Thus bit-serial systems support a faster clock compared to bit-parallel systems

and in turn offer implementations which are efficient in area-time measure.

The advantages of a bit-serial architecture can be exploited to implement DSP

algorithms in high performance, cost effective VLSI circuits. An integrated circuit design is

composed of a number of tasks such as problem specification, logic design, design for

testability, placement and routing. The different tasks can be performed separately using a

number of design automation tools. A silicon compiler or assembler combines all these

tasks into one step and converts the structural description of a design into a set of mask

7

Bit Clock

sum

B
0. Full

Adder carry
'I.

Latch

4

- -' inhibit carry
A

LSB Control

Fig. 1.2 : A bit-serial adder [3]

A+B

8

geometries, in a single step. The FIRST [3] (Fast Implementation of Real-time Signal

Transforms) silicon compiler is based on a bit-serial architecture proposed by Jackson,

Kaiser, and McDonald [9]. The silicon compiler was built around an architectural

methodology for VLSI bit-serial systems proposed initially by Lyon [8] and later extended by

Denyer, Renshaw [3] and Bergmann [10]. FIRST accepts the input in the form of hardware

description language (see appendix B) at the register transfer level (RTL). A simulator

(SIMFIRST) which accepts the same RTL input is also available [3].

1.2 Architectural Synthesis

To use a silicon compiler such as FIRST (probably more correctly a silicon

assembler), the designer converts a behavioral specification of the system into a structural

level description. For pipelined bit-serial systems, the process of scheduling complicated

recursive DSP algorithms and in turn generating structural level description is tedious and

error prone. It is very difficult for a designer to choose a structural level solution among

many solutions that may be available for the same behavioral specification. Architectural

synthesis, an important front end task to a silicon compiler, allows the designer to select a

RTL solution that realizes the required behavior.

Architectural synthesis or high level synthesis [11] is the transformation of an abstract

behavioral (algorithmic level) specification of a digital system into a register transfer level

(RTL) structure that realizes the specified behavior, while satisfying a set of goals and

constraints. The behavioral description gives the functional mappings from a group of inputs

to a group of outputs and it can be specified in the form of a signal flow graph (SFG) or a

9

neflist. The RTL structure refers to a set of components such as arithmetic units, registers,

multiplexers and their interconnections as well as the hardware required to control data

transfers between them. These structures are represented using a hardware description

language, such as the input description language for the FIRST silicon compiler. One

objective of the, synthesis process is to find a structure that best meets the given

constraints such as

(a) upper bound on the area or package size,

(b) maximum number of pins,

(c) maximum power consumption

(d) minimum system word length .(swl) and

(e) overall delay allowable for completion of the operations

while achieving the goals such as

(a) maximizing the sample rate

(b) minimizing the size or area

(c) minimizing the number of pins and

(d) minimizing the power consumption.

The different steps involved in the design automation process of a DSP system from

algorithm to implementation are shown in Fig. 1.3. Hardware Assembly is the process

where RTL structural information is converted into different end products of the design

process such as process masks used to fabricate full custom and gate array integrated

circuits or a data file which defines the configuration of a programmable gate array.

10

required
system
word length

max
sample
rate

required
coefficient
word length

Behavioral
Description

4 Algorithm

Signal Flow graph
netlist [DIGICAP]

V

 'I.
Architectural
Synthesis user

Hardware description
language, netlist [FIRST]

Semi Custom

Gate Arrays

Hardware
Assembly

Full Custom

ip Field Programmable
Gate Arrays

Fig. 1.3 : Design process of a digital signal
processing system

11

Hardware compilation can be performed using a single tool such as the silicon compiler

FIRST [31, or commercial design automation (DA) tools such as VTI [12], Cadence [13],

XILINX [14], etc. These DA tools accept inputs in the form of different netlists with specific

formats. To use any of the existing DA tools, translator programs which can convert

hardware description language description into specific netlists have to be developed. Once

the design is translated to a specific neflist, the DA tools can be used to generate the data

necessary to produce integrated circuit designs.

1.2.1 Advantages of Architectural Synthesis

• The use of high-level synthesis tools in the design of large complex systems is

appropriate for the following reasons [11].

(a) Shorter design cycle : Without high level synthesis, the designer converts the

algorithmic level information into a RTL structure manually. Then the RTL structural

information is entered in hierarchical fashion using schematic capture methods or hardware

description languages (HDL). High level synthesis automates the process of generating HDL

output, which results in a shorter design cycle. 'Since much of the cost involved in

producing integrated circuits is in the design development, automating the design process

can lower the cost significantly.

(b) Flexibility : If the specification of a design is changed during the design cycle, changes

at the algorithmic level are easily implemented.

(c) To explore the design space : Synthesis systems can be used to produce a number

of functionally equivalent designs for the same input specifications in a relatively short time.

12

Thus the user may search for an optimum design after considering the different

performance trade-offs of cost, speed, and power consumption.

(d) Fewer errors : If the automated synthesis process can be verified to be correct, then it

will become error-free or correct by construction. This will result in fewer errors and less

debugging time for new chips. The synthesis process also reduces the possibility of human

errors in the design process.

(e) Simplicity of use: High level synthesis tools can aid designers in developing systems

using different unfamiliar design methodologies such as bit-serial or digit-serial.

1.2.2 Existing Synthesis Methods

A number of synthesis tools such as HAL[1 5], SEHWA[1 6], BUD[1 7], MAHA[1 8], and

SPAID[19] have been developed for bit-parallel systems. These systems produce

architectures with a minimum number of functional units for a given throughput rate or

architectures with the highest possible throughput rate for a given number of functional

units. In all the existing synthesis tools, the task of automatically designing a data path from

a behavioral description is usually divided into the four sub tasks : translation, scheduling,

allocation and binding [11] [15]. In the translation process, the algorithmic description is

converted into a graph-based internal representation derived from the data flow. These

graphs are called data flow graphs (DFG). The data flow graph shows the correct order in

which all the functional operations must be completed. All internal dummy variables used in

the behavioral specification are removed in the data flow graphs. Each node in a DFG

represents an operation to be performed by a functional unit.

13

The scheduling operation partitions the DFG into a number of control steps and

assigns each operation to a control step. A control step corresponds to a fundamental

clock cycle in synchronous circuits. The aim of the scheduling is to minimize the number of

control steps, within the limits of the hardware resources. If the design is subjected to a

speed constraint, the scheduling algorithm will try to run a sufficient number of operations in

parallel to meet the speed constraint. Conversely if there is an area constraint, the

scheduler serializes enough operations to meet the size constraint.

Allocation is the assignment of operations to hardware which consists of functional

units, memory elements or registers and data transfer components such as multiplexers and

buses. During allocation, the aim is to minimize the total hardware required to implement

the architecture. The problems of minimizing different types of hardware units are dealt with

individually in most of the synthesis systems, as minimizing them together is too complex.

Scheduling and functional unit allocation are interdependent processes [11]. In the

case of a single functional unit, two operations cannot be scheduled into one control step

unless they can be shared by the same functional unit. The most efficient schedule is

possible only by considering the actual delays associated with the real hardware along with

the interconnect delays. On the other hand, scheduling helps to determine the mutually

exclusive operations (operations which can be done in parallel), which in turn helps to

determine the number of functional units needed and how the required operations are

distributed among them.

A number of approaches have been used by different synthesis systems to solve this

problem. The simplest approach is to set some limit (or no limit) on the number of

14

functional units and schedule the operations among the functional units. This approach is

used in the Facet system [20] and in the Flamel system [21]. A modification of this

approach is to change the limit on the number of functional units after each iteration, based

on the intermediate scheduling results until a satisfactory design has been found. Another

approach is to consider scheduling and resource requirements simultaneously. The MAHA

[18] system allocates operations to the functional units as it schedules. It considers the

operations on the longest path first. When the operations cannot share the existing

functional units, it allocates additional functional units if the cost constraint is not exceeded.

If more resources are not available due to the cost constraint, it increases the number of

control steps and begins the allocation all over. The HAL [22] system schedules the

operations within a timing constraint so as to balance the number of functional units

required in each control step.

The final step in the synthesis of a data path is module binding. In this step, the

synthesis system decides how each component of the datapath is to be implemented. For

binding of the functional units such as multipliers, adders etc., pre-designed gate level

structures can be taken from the hardware library.

Finally the control signals necessary to drive the different signal paths as required by

the schedule, have to be generated. The controller can be synthesized using finite state

machines or microcoded hardware.

There are few tools such as DIGICAP [23] and CATHEDRAL-I [7] available for the

high level design of pipelined bit-serial systems. All these tools generate a single structural

solution where the number of functional operations is equal to the number of the functional

15

units. DIGICAP is a special purpose computer aided design (CAD) tool for the analysis

and implementation of digital filters. DIGICAP can be used to generate a FIRST silicon

compiler neflist from a signal flow graph description. In CATHEDRAL-I, a number of rules

for the synthesis of bit-serial architectures have been formulated based on practical design

experience. These rules are used in a knowledge based CAD environment. In this tool all

constant coefficient multipliers are replaced with canonic signed digit (CSD) equivalents. A

CSD equivalent consists of 2-input adders and power of 2 scalers (shifters). Optimization

programs are used to reduce the number of delays. Another behavioral to structural

translator is developed for bit-serial silicon compiler by Hartley and Jasica [24]. Here linear

programming techniques are used to opti mally insert the required delay units.

In summary, all these programs available for bit-serial systems translate a behavioral

description into a single structural description. Some of these programs uses optimization

techniques to reduce the number of delay units.

Different resource sharing (multiplexing) strategies can be used to generate a number

of multiplexed pipelined bit-serial solutions for the given behavioral specification.

1,3 Scope of Thesis

This thesis is concerned with the development of a new synthesis tool for pipelined

bit-serial DSP systems. A bit-serial synthesis (BITSYN) tool is developed that can generate

a number of design solutions with different hardware costs, sample rates and system word

lengths.

16

Chapter 2 describes the different steps involved in the bit-serial synthesis tool

BITSYN [25]. BITSYN accepts the behavioral input in the form of SFG description. The

details of the SFG description are also given.

Chapter 3 describes the implementation of the overall algorithm for bit-serial synthesis.

The overview of the design space that can be generated by BITSYN is explained. The

heuristics which can be used to speed up the synthesis process are also discussed.

Chapter 4 discusses the design of control generators compatible with the FIRST and

the design of different type of control generators required by BITSYN. In chapter 5, a range

of case studies generated by BITSYN are given. Some of the designs generated by

BITSYN are implemented in XILINX field programmable gate arrays. In chapter 6, the

conclusions and suggestions for future work are presented.

17

Chapter 2

BIT-SERIAL SYNTHESIS (BITSYN)

This chapter discusses a new approach to the synthesis of pipelined bit-serial digital

architectures that implement the algorithms of digital signal processing (DSP) systems.

The class of DSP systems considered here are digital approximations to linear shift-

invariant discrete-time systems [2]. In a broad sense, the methods of realization of the

DSP algorithms can be divided into two classes, recursive and non-recursive [2]. For a

recursive realization, the functional relationship between the input sequence (x(n)) and the

resulting output sequence {y(n)} can be described as

y(n) = F[y(n-1), y(n-2)..... . x(n), x(n-1),

Thus in recursive structures, the present output sample y(n) is a function of weighted past

output samples as well as present and past weighted input samples. That is the recursive

structure contains feedback from its output. For a non-recursive realization, the functional

relationship between the output and the input sequence becomes

y(n) = F[x(n), x(n-1),

In non-recursive structures, the present output sample is a function of only past and present

input samples; that is the structure contains no feedback.

In general, a DSP algorithm can be realized in operator-parallel, multiplexed and

operator-serial implementations [3]. The different realizations are based on the number of

18

functional operators in an implementation. In an operator-parallel implementation, each

functional operation of a DSP algorithm is executed by a separate functional unit or an

operator, resulting in the fastest data throughput rate and large hardware cost. In an

operator-serial and multiplexed implementations, where similar operations are executed by

fewer functional units than the number of operations, a slower data throughput rate and

smaller architecture results. Operators can be implemented in bit-parallel, digit-serial [6] and

bit-serial. The bit-serial synthesis [BITSYN] program [25] has been developed to evaluate a

range of multiplexed and operator-parallel pipelined bit-serial implementations. The

development, implementation and application of BITSYN is discussed in this thesis.

The different properties of bit-serial operators must be known before discussing a

synthesis strategy for bit-serial systems. The typical bit-serial primitive operators are add,

subtract, multiply, multiplexer, right shift and left shift. These primitive operators can be

used to implement the high-level signal processing functions such as the fast Fourier

transform (FF1), a digital filter, etc. The bit-serial multiplier is normally the largest operator

in size. There is typically an order of magnitude or more difference between the size of all

other operators and the bit-serial multiplier. For example, in a particular FIRST [3]

implementation, a bit-serial multiplier with a coefficient word length (cwl) of 4 bits requires

260 gates whereas an adder requires only 30 gates. Hardware can be significantly reduced

by reducing the number of multiplier operators in bit-serial systems.

In bit-serial systems, the system latency is calculated as sum of the latencies of all

the operators on a critical path and is dependent on the system implementation. A critical

path is defined as a path of operators with the largest total latency from a state output or a

19

system input to a state input or system output. In recursive or feedback systems, the

system word length (swi) cannot be less than the system latency calculated from state

output to the corresponding state input. Thus the recursive structure imposes a minimum

bound on the system word length (swl). The sw/is also limited by the application defined

required Swl constraint, which is determined from an analysis of the nonlinear effects of

finite precision arithmetic [23].

The automatic design of a bit-serial system from a functional description is performed

in four different phases which are translation, resource sharing, scheduling and allocation. In

the translation step, the algorithmic description in the form of signal flow graph (SFG) is

converted into data flow graphs (DFG). In resource sharing process, the objective is to

reduce the number of multiplier operators implemented, while meeting the sample rate and

Sw! constraints. The number of multiplier operators will be reduced when the operators

share more than one multiplication operation.

Scheduling takes the latency of each of the operators into account and calculates a

time schedule for all operators. The time schedule gives the times at which each

functional operation takes place in an operator. The system latency for the scheduled

architecture is also determined at this stage. Allocation is the actual mapping of the

operators to specific functional units. The registers and data transfer components such as

multiplexers are also allocated to realize the resource shared DFG. The different steps

involved in the synthesis process will now be described in more detail.

20

2.1 Translation

BITSYN accepts as input a compact, high-level, signal flow graph (SFG) description

which is similar to the SFG description used in DIGICAP [23]. In the translation step,

the SFG description is converted into a more detailed internal graphical representation data

flow graph (DFG). These DFGs are a modified version of the precedence graphs given in

DIGICAP [26]. Each node in the DFG represents a functional operator that performs an

operation. When the SFG is converted into a DFG, all the functional operations are replaced

by the corresponding functional operators. Thus the DFGs represent the operator-parallel

implementation. Any syntax errors in the SFG description will be found and suitable error

messages will be generated at this stage.

2.1.1 Signal Flow Graph (SFG) Description

The SFG description is in the form of branches connecting a set of nodes. The nodes

are represented by alphanumerical variable names and are connected by different types of

branches. The branch types are

(a) delay src dst

defines a unit delay from the output of a source node (src) to a destination

node (dst).

(b) mutt srcl dst src2 f-c cwl -I lat)

defines that an input of the node dst is equal to the product of the outputs of

the source nodes srcl and src2. If src2 is a numerical variable, then it indicates that the

21

multiplication is by a constant coefficient. If src2 is an alphanumerical variable then it

indicates that the multiplication is by a signal. The 'mult' branch type can also be used to

specify shift operations. If src2 is specified as 'shift n' (where n is a +ve or -ye integer)

then it indicates that the multiplication is by constant coefficient and the coefficient value is

2. It also specifies that the multiplication operation should be implemented using bit-shifting

operations.

In addition, the 'mult' branch has two optional specifications, coefficient word length

(cwl) and latency (lat). The cwl option is provided so that multipliers with different 'cwl' can

be used in the same design. The default latency of the multiplier used in a FIRST

implementation is a function of the cwl. The latency is related to cwl as

latency = [+ cwl] +2 where cwl = multiple of 2.

It is possible to design multipliers with reduced latency. The lat option is provided so that

multipliers with different latencies can be used.

(c) input dst type

indicates that the node dst is a signal input. The type specifies the form of the

input required by DIGICAP for analysis purposes [ac, sin, pulse, or file]. BITSYN does not

need the type information.

(d) output src

specifies that the node src is the signal output

22

The output of any node is equal to the sum of all inputs to that node. Subtraction is

implemented by using an appropriate 'mult' branch with its src2 equal to -1. The branch

commands described above are similar to the commands of the DIGICAP [23]. These

commands can be used to specify the structure of any uniform sample rate, one-

dimensional digital filter. The signal flow graph of a second order wave digital filter [27] is

given in Fig. 2.la and the corresponding BITSYN SFG branch description is provided in

Fig. 2.1 b.

A generic branch command has been provided to extend the synthesis capability. Six

different generic commands xOnnn, xl nnn, x2nnn, x3nnn, x4nnn, x5nnn are introduced. All

these commands can be specified with similar . syntax. For example, the xOnnn can be

specified as

(e) xOnnn srcl dst src2 -I/at g gates

This command indicates that the input to the dst node is some generic function

of the outputs of srcl and src2 nodes.

The terms xOnnn, xl nnn, ... x5nnn represent six different user specified operations.

These commands can be used to represent any new DSP operation if the latency, lat of

the operator and the cost of the operator in terms of the number of gates, gates are known.

Note that the function of the generic operator is not needed by BITSYN. These commands

can also be used to perform hierarchal synthesis. For example, a system which consists of

more than one filter can be synthesized in two phases. In the first phase, a single filter is

synthesized from a SFG description implemented using only primitive operations. Once the

filter is designed, the latency and the hardware cost in terms of number of gates will be

23

12 11

u(k)

0

2 5

3
9.

4

y(k)

10

14 13

15

Fig. 2.la : Second order wave digital filter signal flow graph

input 0 ac mult 1 2 c
mult 0 1 e mult 1 3 d
mult 1 4 1.0 mult 2 5 1.0
mult 4 7 1.0 mult 3 6 1.0
mult 7 10 1.0 mult 9 5 1.0
malt 10 15 1.0 mult 8 6 -1.0
malt 10 11 1.0 malt 8 4 1.0
malt 11 12 1.0 malt 9 7 1.0
malt 12 2 a delay 5 8
malt 10 13 1.0 delay 6 9
malt 13 14 1.0 output 15
malt 14 3 b

Fig. 2. lb : Second order wave digital filter
- BITSYN branch description

24

known. In the second phase, the signal flow graph description of the system is specified

using one of the six branch commands, to represent the filter operation. Then the BITSYN

can design the whole system accepting the new SFG description as input.

2.1.2 SFG to DFG Conversion

The SFG description is first converted into a modified SFG net list before being

translated to the DFGs. The nonessential multiplier branches with unity gain, if any, are

removed at this stage. The multiplier branch commands are interpreted and the new nodes

such as adders, subtracters, right shifts and left shifts are introduced appropriately.

The DIGICAP compatible multiplier branches with shift operations such as

mult node _s node shift 2
mult node_s nodex shift -1

are redefined as

MSHIFT node _s node 2
DSHIFT node—s node_x 1

where for example a two bit MSHIFT operation indicates multiplication of the signal by 22

and a one bit DSHIFT operation indicates multiplication by 2.

The two multiplier branches associated with node_x

mult left node nodex left value
mult right node node_x right value

generate an expression of the form

node_x = left—node * left—value + right—node * right—value.

The two multiplier branches will be replaced by the equivalent branch commands as shown

25

in Table 2.1. The equivalent branch commands will represent the arithmetic operations such

as add, subtract and shift operations, explicitly.

Table 2.1 : Transformations to modify SFG branch commands

left—value right—value equivalent branch commands

1 1 add left node nodex right node

1 • 1 mult right node node _xr right value

add left node node_x nodexr

• 1 1 mull left node nodexi left value

add right node node_x node_x_I

mult right node node _x_r right value

sub nodexr node_x left node

mull left node node_x_l left value

sub node_x_I node_x right node

-1 -1 add left node node_x right node *

mult node_x node_x_new -1 *

• ±1 ±1 mult left node nodexl left value

mult right_node node xr righL value

add node—x/ nodex nodexr

* This transformation is possible if and only if the resultant multiplier with negative unity
coefficient can be used in other transformations and no negative unity coefficient
multiplier exist at the transformation process. Otherwise an error will be reported and
the synthesis process will be terminated.

The different rules given in Table 2.1 are used to modify the initial SFG. The

modified SFG net list for the filter in Fig. 2.la is given in Fig. 2.2a. In the modified SFG,

each functional operation is represented by a separate branch command.

26

2.1.3 Data Flow Graphs (DFG)

The-first step in the design of a circuit is to construct graphs derived from the data

flow of the algorithm. These graphs are directed graphs whose vertices or nodes represent

operators or operands. The graphs have directed edges which indicate the direction of flow

of the data. The modified SFG description given in Fig. 2.2a is converted to a DFG as

shown in Fig. 2.2b. Two groups of identical nodes which could be shared in the resource

sharing process are shaded in Fig. 2.2b. The resource sharing process involving the two

groups will be discussed in the next section. The DFGs are built using a tree structure in

which the leaf nodes represent the data inputs and the current states (state outputs) and the

parent nodes at the top of the trees represent the outputs and the next states (state inputs).

In the DFG, the nodes with same names represent a single real instance of the node.

The DFG defines the order in which nodes must be evaluated for correct operation. A node

in the graph (excluding parent and leaf nodes) denotes an arithmetic functional unit or an

operator and it can be evaluated if and only if all its child node values have been previously

computed. A node P is recursively defined as child of another node Q if node P is either

one of the inputs of node Q or is child of one of the inputs of node Q. Similarly, a node 0

is defined as parent to another node P if node P is a child of node Q. For example, it can

be observed from the DFG given in Fig. 2.2b that the output node 7 is child to next state

nodes 5 and 6. So the next state values (nodes 5 and 6) can be obtained only after

evaluating the output value from node 7. For each of the outputs and the state inputs,

separate graphs are constructed. A node in these graphs has always two immediate child

27

input 0 ac add 1 4 8
mult 0 1 e add 2 5 9
mult 7 2r a sub 3 6 8
mult 7 3r b delay 5 8
mult 1 21 c delay 6 9
malt 1 31 d add 4 7 9
add 21 2 2r output 7
add 31 3 3r

Fig. 2.2a : Second order wave digital filter
- modified SFG description

0 e 5_d 1

/
0 e

0
7

5
5

4

C i • a

4 -f- 4

5...d 6_d 7
0 e 5_d

Fig. 2.2b : Second order wave filter data flow graphs (DFG)

28

nodes, but it can be a child to any number of nodes. That is the output of any node can be

used as inputs to different nodes.

The DFG is generated using binary tree structure in BITSYN. A node in the DFG is

implemented as shown in Fig. 2.3. Each node in the DFG is represented by a data

structure called a tree node. The tree node has a number of fields such as name (node

name), type (operation of the node), etc. which are used to store different characteristics of

that node. The ident field gives a distinct identification number. All the nodes in a tree are

numbered from bottom to top. The field child is a string of binary digits in which the

positions of the digit '1' (from left side) represent the identification numbers of all the child

nodes of the tree node. The 'ident' and 'child' fields will be used to find whether a node is

a child of another node. The field latency indicates the latency of the bit-serial operator.

The field level gives the level of multiplexing, if the tree—node is a multiplexer or a

demultiplexer. In other cases, it is used as conditional variable.

The tree_node has three pointer fields left, right and prey which are used to link the

child and parent nodes. The left and right fields are the same as the data structure

tree—node. The prey field is a data structure called tree—link. It has two pointer fields, one

of which (node) is same as the tree—node and the other (next) is equal to tree—link. The

data structure tree—link can be used to specify multiple previous nodes or multiple

immediate parents of a node. Basically the tree—link provides a linked list. The DFGs are

implemented in the form of binary tree structures with the capability of doubly linked lists as

shown in Fig. 2.3. Thus, the DFGs are created such that it is possible to access both

parent and child nodes from any node by moving upwards or downwards.

29

next

tree-link node

NULL
tree-link

next

node

N

tree-link

next

node

tree-.node

NULL

prey
name

left

prey

right

name : n7
type : ADD
ident : 9
child : 11100111
latency 1
level yes/no

left right

tree-node tree_node

prey
name

left right

/\ leaf node

NULL NULL

tree-node

tree-link

prey
name

left right

tree-node

tree-node

next

node

tree-node

tree_node

Fig. 2.3 Implementation of a typical node in DFG

NULL

30

2.2 Resource Sharing

The. DFG without any modification provides the data path structure with full operator-

parallelism because each node operation in the DFG will be performed by a separate

functional unit. The resource sharing process is used to generate multiplexed pipelined bit-

serial architectures from the DFG. Whenever a resource or an operator performs two or

more operations, it can be referred as the operator shares the operations. Multiplexers and

demultiplexers must be added to channel the inputs to and the outputs from the resource

whenever a resource shares the operations. ts from the resource. In addition, registers

may be needed to store intermediate outputs. Individual add or subtract operations are not

shared because the gate cost of a single adder or subtracter is not much more than the

gate cost of a multiplexer. Thus the objective is to multiplex the multiplier operators or

generic operators which are larger in size.

The first step in the resource sharing process, is to form a list of pairs of nodes.

Multiplier nodes and some of the generic operators are used to form the list of pairs. The

nodes in each pair should be of similar type and should have the same latency. Two similar

nodes P and Q can produce two different pairs (P, 0) and (Q, P). Fig. 2.4a illustrates the

difference between the two node pairs. In the figure, P and Q represent multipliers that

perform multiplication operations. After the resource sharing process, the two pairs result in

different structures. The difference between the two pairs is the order in which the two

operations take place. The two multiplication operations are performed in 'ON' and 'OFF'

periods of the multiplexing control signal 'cm'. Note that the node whose operation occurs

first, remains in the DFG and the other node is removed from the DFG. That is, the first

31

demux

P

mux

M N Cl 02

(ii) (P, Q) is considered
for resource sharing

C2

Q cm

(i) before resource sharing

cm Q

NM 0201

(iii) (Q, P) is considered
for resource sharing

Fig. 2.4a : Illustration of the difference between node pairs
(P, Q) and (Q, P) in resource sharing process

(i) DFG segment before resource sharing

I

(II) DFG segment after resource sharing
the pair (P, Q)

S

demux

Fig. 2.4b : Illustration of the resource sharing process
of (P, Q) when a node 'P' is a child of 'Q'

32

operator performs both operations in the hardware to be implemented. Thus two different

pairs are formed for each pair of nodes.

The next step is to remove the invalid pairs from the list of pairs of multiplier nodes. If

a node P is a child of node Q then (P, Q) is valid and (Q, P) is invalid. The output from P

is needed to perform the 0's operation. This is illustrated in Fig. 2.4b. But if node P is not

a child of node 0 and node 0 is not a child of node P then both pairs are valid.

Consider a pair of multiplier nodes from the list of pairs of multiplier nodes. All other

nodes (adders, subtracters, etc.) which can be grouped with the multipliers are multiplexed

along with the multiplier nodes. If two identical nodes are connected to the multiplier nodes

through an equal number of identical nodes then they can be grouped with each multiplier.

After the resource sharing process, one multiplier with its group remains in the DFG and

performs the operations of both groups. The multiplexer nodes and demultiplexers are

introduced appropriately. The algorithm processes the data flow graphs, and modifies them

as the resource sharing process continues.

2.2.1 Resource Sharing Algorithm

The resource sharing algorithm is implemented in a BITSYN module called

perform mux. This module takes a pair of multipliers, e.g. (A, B), as input and performs

the multiplexing. The module consists of calls to different functions as shown in Fig. 2.5.

The resource sharing algorithm finds identical nodes which can be grouped with each

multiplier and performs multiplexing.

multiplier pair (P, Q)

((cmpre_üp

best_prey_nodes compare—down)

(matchchildnodes

insert demux
 I

insert_mux)

- - recursive call until no resource sharing or
no match between the nodes

Fig. 2.5 : Resource sharing program structure chart

34

The function Compare down compares the child nodes of (A, B) and if they are

alike, forms pairs of nodes. If the child nodes are not of similar type, the function introduces

the multiplexer nodes. If they are alike, the function calls itself with new pairs as input. The

function calls itself recursively and moves down the tree until further resource sharing is not

possible or the function reaches the leaf nodes.

The function Match—child—nodes forms the pairs among the child nodes of (A, B)

such that the maximum number of nodes can be multiplexed. If both child nodes of 'A' and

'B' are alike, then two pairs can be formed in two different ways. This function takes each

pair as input and recursively finds the number of possible pairs down the tree. Thus this

function helps to take a correct decision in making the pairs.

Insert_mux creates and inserts a multiplexer node into the DFG. The multiplexer

node will have the first node 'A', as the previous (immediate parent) node and a child of 'A'

as the left child node and a child of second node, 'B' as the right child node. These nodes

represent a two to one multiplex operation and are identified with the inverted Y. They are

named as 'xn....' where n denotes the level of multiplexing.

The function Compare—up is similar to the Compare—down except that it compares

the immediate parents of (A, B) and if they are alike, forms pairs of nodes. This function

also uses the Compare—down to compare the child nodes of each new pair other than 'A'

and 'B'. This function calls itself recursively and moves up the tree until further multiplexing

is not possible or the function reaches the top of the tree. If the parent nodes are not of

the same type, there will be no further multiplexing and the demultiplexer nodes are.

introduced.

35

Bestprev nodes forms the pairs among the parent nodes of A and B in such a

way that the maximum number of nodes can be multiplexed. This function takes each pair

as input and finds the number of possible pairs up the tree.

The function insert—demux creates and inserts a demultiplexer (demux) node into the

DFG. The demux nodes are only the conceptual nodes and not the real demultiplex

operators. These nodes are identified with Y. There are two different types of

demultiplexers. The node named 'Ln...' indicate that the connection between child and

parents of this node is valid during ON period of the control signal of the multiplexer. The

nodes named 'Ln..., will have the parents of A as the previous (parent) nodes. Similarly the

node named 'Rn...' indicate that the connection between the child and parents of this node

is valid during OFF period of the control signal. The nodes named 'Rn...' will have the

parents of B as the previous (parent) nodes. Both demultiplexers will have the node A as

their left child and no,right child.

In all the shared pairs, the first nodes will be calculated during the ON period of the

control signal of the multiplexer. The second nodes will be calculated during the OFF

period. Hence, a second node of a shared pair should not be a child to any of the first

nodes of all the shared pairs. Otherwise the first node which depends on the output of the

second node will be calculated incorrectly during the ON period.

The different steps involved in the resource sharing process are explained with the

help of the DFG of the second order wave digital filter shown in Fig. 2.2b. There are five

multiplier nodes in the DFG. They can form sixteen valid pairs of multiplier nodes. For the

pair of multipliers (21, 31) in Fig. 2.2b, the pairs of nodes that can be multiplexed along with

36

(21, 31) are (2, 3) and (2r, 3r). The resultant resource shared DFGs are shown in Fig. 2.6a.

The nodes named 'xl ...' represent two to one multiplexers. The nodes named Lia and Ria

are the conceptual demultiplexers. Thus after the first level of resource sharing, the number

of multiplier operators is reduced from five to three. The resultant DFG can be

implemented after scheduling and allocation steps. The multiplier pair (2r, 3r) could have

provided the same DFGs obtained from (21, 31) after resource sharing. Hence, the pair (2r,

3r) is redundant. Different multiplier pairs provide different structures (hardware solutions)

after resource sharing. The DFG generated for each solution (after the first level

multiplexing) can be subjected to further resource sharing.

Before considering further sharing, the DFGs obtained after the 1st level of

multiplexing are modified. The function named push_up_demux is used to push the demux

nodes to the top of the trees. This modification allows us to group more nodes along with

the multipliers in further resource sharing process. Another purpose of this modification is

to reduce the number of registers required, which will be explained in the allocation step. A

demux node 'Li ..' will be placed at the top of the tree, if and only if the full tree can be

computed during the ON period of the multiplexing cycle. Otherwise a demux node 'RI .. '

will be placed at the top of the tree. A demux node 'Ri ..' should not be a child of a demux

node 'Li ..' at any time. Otherwise, the node U .. ' which depends on the value of the node

'Ri ..' can not be computed correctly. Fig. 2.6b illustrates the effect of push updemux on

a DFG. The modified DFGs of the second order wave digital filter are given in Fig. 2.7a.

The modified DFGs are converted into a new SFG as shown in Fig. 2.7b. The effect of

multiplexing on the SFG can be observed by comparing Fig. 2.la and Fig. 2.7b.

Fig. 2.Ga : 2nd order wave digital filter

37

Ria

2

6d

70

7

5

Llae

2r d

5d

x1e W 70 x1fó)
Demultiplexer
Multiplexer xlaO x1b C d) a b

H H xld
0 e fx1c

8

data flow graphs - multiplexing level = 1 5.....d

R1a

1

Lib

Fig. 2.6b The effect of function push_up --- demux on a DFG

38

Demultiplexer

Multiplexer

Fig. 2.7a : 2nd order wave digital filter
modified data flow graphs - multiplexing level = 1

tt
a

xld

ttdlc
8

•5—d

2

21

5 5d 8

6 6d

7

9

Fig. 2.7b : 2nd order wave digital filter
modified signal flow graph - multiplexing level = 1

4

out

39

There are three multiplier nodes in the DFG obtained after the resource sharing of (21,

31). They can form four valid pairs of nodes which can be used for further resource sharing.

The resource sharing process continues to reach a minimum number of multipliers provided

that the specified constraints (swi, cwl, sample rate) are not violated. For the pair (1, 2r) in

Fig. 2.7a, the sets Si. = (1,4,7) and S2 = {2r,2,5} can be multiplexed in the second level

of multiplexing. The resultant DFGs are shown in Fig. 2.8a and the resultant SFG is given

in Fig. 2.8b. The nodes which could be shared in the third level of multiplexing are shaded

in Fig. 2.8a.

2,2.2 Concurrent Multiplexing

It is also possible to multiplex two or more pairs of multiplier nodes in the same level

of multiplexing. This phenomenon will be called concurrent multiplexing. Two or more pairs

of nodes can be multiplexed simultaneously if they are mutually exclusive. Consider two

pairs of multiplier nodes (P, 0) and (R, 5) for concurrent multiplexing. The two pairs are

selected such that the nodes P, R can perform the operations during the ON period of the

multiplexing cycle and the nodes Q, S can perform the operations during the OFF period.

The two pairs are not mutually exclusive if any of the following four conditions are true

(a) If S is a child of P

(b) If Q is a child of R

(c) If P is a child of R and S is a child of Q

(d) if A is a child of P and Q is a child of S

The above conditions will apply to all the nodes which can be multiplexed along with each

40

L2c

7

xld

9

T
-r
6_d

xle

Fig. 2.8a : 2nd order wave digital filter
data flow graphs - multiplexing level = 2

L=1

0

in

L=2

L2

L=l

L=2

L = level of multiplexing

L
L=1

6

L
Gd

L=1
 6d

-

8

L=2 out

Fig. 2.8b 2nd order wave digital filter
signal flow graph - multiplexing level = 2

xlc

41

multiplier. Assume that Si, S2, S3, S4 are the sets of nodes which can be multiplexed

along with the multiplier nodes P, 0, R, S. Then the condition (a) is modified as

If a node of 'S4' is a child of any node of 'Si' then the two pairs of sets are not

mutually exclusive

and is illustrated in Fig. 2.9(a). Fig. 2.9 shows graphically the four different conditions in

which the pairs of sets are not exclusive and cannot be multiplexed together. Fig. 2.9(c)

illustrates that the two pairs (Si, S2) and (S3, S4) cannot be shared concurrently if a node

of 'Si' is a child of any node of 'S3' and a node of 'S4' is a child of any node of 'S2'.

Once a pair of multiplier nodes is resource shared, all other pairs from the list of pairs are

considered for concurrent multiplexing (CM). The resource sharing algorithm uses all the

four conditions to eliminate the pairs which are not mutually exclusive. All the identical

nodes around each multiplier must be selected such that they do not violate the mutually

exclusive conditions. In the DFGs shown in Fig. 2.2b, the pairs (21, 2r) and (31, 3r) are

mutually exclusive and they can be concurrently multiplexed.

Sometimes the demux nodes 'Ln...' created in the earlier stages of CM, will become

invalid during the later stages of CM. If a demux node 'Ln...' is equal to left child or child

nodes of left child of a multiplexer node 'xn..' then the demux node becomes invalid and it

should be removed from the graph. Whenever a demux node is deleted, its immediate child

node will be connected to its previous nodes. After concurrent multiplexing is completed, all

the invalid demux nodes are removed using the module called rm_demux_nodes.

42

(a)

(c)

(b)

(d)

Fig. 2.9 Four different situations where the two pairs
(Si, S2) and (S3, S4) can not be shared concurrently

43

2.3 Scheduling

Scheduling is the process of determining the time at which each operation occurs. In

order for the circuit to operate correctly, the inputs to each operator should be ready by the

time they are needed. The timing information found through this process is used to

calculate the system latency which is the lower bound on the sw/in recursive structures.

The scheduling process does not change the DFGs. Three different times are computed for

each node during the scheduling process. The three times are 7, the time at which node

inputs are required, Tout, the earliest time at which node outputs are available and

the time at which node outputs are needed. If a node output is connected to many nodes,

there may be more than one Tnee&d time for that node. These times are calculated in two

phases called forward or as soon as possible (ASAP) scheduling and backward or as late

as possible (ALAP) scheduling. The ASAP scheduling calculates the earliest time at which

each operation in the DFG can be executed. The ALAP scheduling calculates the latest

time at which each operation has to be started.

2.3.1 Forward Scheduling (ASAP)

In the forward scheduling, all the times for each operator are calculated in topological

order (bottom to top) by using the precedence relations specified by data dependency. All

the inputs at the bottom of the DFGs are initially assigned to have a Tout at time zero. In

the case of multiplexed structures, the time Tout of all the demultiplexer nodes are initially

set to zero. The times of the demultiplexer nodes will be modified during the scheduling

process. The times are computed by traversing from bottom to top of the graphs such that

44

for each node

= max { T0 (left child), T0 (right child))

Tout =Tin + latency of the operator

Tnee dTout

The demultiplexer (demux) nodes are not the real physical operators. If any closed paths

are created due to the multiplexing, the demux nodes in that paths are used to break the

loop by disconnecting the demux node and its previous node or nodes. The Tnee&d time

calculated at this stage is not equal to the earliest time at which the output of the node-is

needed. The Tfld time will be modified in backward scheduling.

The longest path length can be found after the forward scheduling. The longest path

is equal to the path from a node at the bottom of the DFGs to a node at the top of the

DFGs that has maximum delay. If the node at the bottom of the DFGs is a state output

(current state) and the node at the top of the DFGs is the corresponding state input (next

state), then the longest path is called critical path. The system latency is equal to the

critical path length. The backward scheduling is used to find the actual Tout times at the

bottom of the DFGs. The forward schedule for the second order wave filter after 1st level of

multiplexing is given in Fig. 2.lOa.

2.3.2 Backward Scheduling (ALAP)

During the backward scheduling the times 1, Tout and Tfl,d are updated by

traversing from top to the bottom of the graphs. Each node may have more than one

if that node is a child of more than one node. The times are modified for each node

45

a

xlf

xlb

- T out time of a node = n'

II - latency of an operator = '1'

out

nodeTin Tout Tne ded child nodeTin Tout Tneeded child
nodes nodes

0 0 0 xlf 0 1 1 a,b
xla 0 1 1 0 2r 23 43 43 xlf, 7
e - 0 0 - c 0 0
xlb 0 1 1 e d 0 0
1 1 21 21 xla,xlb xle 0 1 1 c,d
8 - 0 0 - 21 21 41 41 xle, 1
xlc 0 1 1 8 2 43 44 44 2r, 21
4 21 22 22 xlc, 4 5 44 45 45 2, xld
9 - 0 0 - Lia 45 45 45 5
xld 0 1 1 9 5_d 45 45 Lia
7 22 23 23 xld, 4 6 44 45 45 2, xlc
a - 0 0 Ria 45 45 45 6
b 0 0 6_d 45 45 R1a

Fig. 2.l0a : Forward schedule for the 2nd order wave digital filter
- 1st level multiplexing

46

as follows

Tout = minimum { Tneedgdl, Tneeded2, }

T1 = T0 - latency of the operator.

(left child) = Tneed9d (right node) = T1

The second phase of calculations ensures that all the nodes at the bottom of the graphs

have correct T,,ut times with respect to the Tout times at the top of the graphs. All the

demux nodes also will have the proper Tout times. The times in the longest path or paths

do not change during backward scheduling. Such a path or paths represent the critical path

or paths. Now the system latency can be calculated accurately as the maximum of the

difference between Tout times of state inputs to the Tout times of the corresponding state

outputs. In the case of multiplexed structures if closed loops are created, then the system

latency should not be less than the closed loop length. Fig. 2.lOb gives the backward

scheduling for the second order wave filter which is multiplexed at the 1st level. In Fig.

2.lob,

the system latency = maximum {(T0 (6) - T0 (9)) , (T0 (5) - T0 (8)}

= maximum (24, 25) = 25

Since the filter is a recursive structure, the minimum swi is equal to the system latency.

The minimum of the Tout times of state outputs at the bottom of the graphs is called

base time. If base time is not equal to zero, it can be adjusted to zero. The reason for

modifying the timings is discussed in the delay reduction section. All other times will be

modified with respect to the base time. The modified schedule is shown in Fig. 2.lOo. This

procedure is used to reduce the number of delay units required. The negative times indicate

47

nodeTin Tout Tneeded child nodeTin Tout Tfleeded child
nodes nodes

6_d 45 45 Ria b 22 22
Ria 45 45 45 6 a - 22 22
6 44 45 45 2, xlc 7 22 23 23 xld, 4
5_d 45 45 Lia xld 21 22 22,44 9
L1a 45 45 45 5 9 - 21 21
5 44 45 45 2, xld 4 21 22 22 xlc, 1
2 43 44 44 2r,21 xlc 20 21 21,44 8
21 23 43 43 xle, 1 8 - 20 20
xle 22 23 23 c, d 1 1 21 21,23 xla, xlb
d 22 22 xlb 0 1 1 e
c 22 22 e - 0 0 -

2r 23 43 43 xlf, 7 xla 0 1 1 a
xlf 22 23 23 a,b a 0 0 -

Fig. 2.lob : Backward schedule for the 2nd order wave digital filter
- 1st level multiplexing

nodeTin T0 t Tfleeded child nodeTin Tout Tfleeded child
nodes nodes

6_d 25 25 Ria b 2 2
Ria 25 25 25 6 a 2 2
6 24 25 25 2,xlc 7 2 3 3 xld,4
5_d 25 25 Lia xld 1 2 2,24 9
Lia 25 25 25 5 9 - 1 1 -

5 24 25 25 2, xld 4 1 2 2 xlc, 1
2 23 24 24 2r, 21 xlc 0 21 1,24 8
21 3 23 23 xle, 1 8 - 0 0 -

xle 2 3 3 c, d 1 -6 1 1,3 xla, xlb
d 2 2 xlb -5 -6 -6 e
c 2 2 e - -5 -5 -

2r 3 23 23 xlf, 7 xla -5 -6 -6 a
xlf 2 3 3 a, b a -5 -5 -

Fig. 2.l0c : Final schedule for the 2nd order wave digital filter
- 1st level multiplexing

48

that the operations take place at times equal to the absolute value of the negative times,

but one cycle ahead. For example in Fig. 2.l0c, the inputs to the multiplier node '1' are

required at minus 6 (at time 6, one cycle ahead). Then, the output of the node '1' is

available at 26 (latency of the multiplier = 20). Since the swl is equal to 25, the output of

the node is available at time '1' in the current cycle of operation.

2.4 Allocation

The registers or delay units are allocated during this step. All other operators are

allocated by replacing the nodes in DFGs with physical bit-serial operators. In a pipelined

bit-serial system, registers or delay elements are used to synchronize the arrival of the

inputs if there is a mismatch in the timing of the input signals at any operator. If a node

has different Tout and Tfld times then the number of one bit registers needed is equal to

the difference of the two times.

When resources are multiplexed, the results computed in the first half period of the

multiplexing cycle must be stored or delayed until the other results are computed in the

second half period. The conceptual demultiplexers are used for this purpose. The demux

nodes with names 'Ln..' are replaced by an appropriate number of one bit registers. The

demux nodes with names 'Rn..' are ignored because the input signals to these nodes are

valid during the second half period of multiplexing control signal and need no delay

elements. In the case of the n th level demultiplexer, the number of delay elements required

is equal to the number of bit times in the first half period or 21 * swi.

49

All the inputs and state outputs are updated once in each sample period. Circulating

buffers are used to store the input and state output data because the data may be required

throughout the period (ON and OFF periods) when the resources are multiplexed. These

buffers will be removed if they are not required. The delays can be reduced in hardware by

combining several delays into one.

2.4.1 Delay Reduction

If a number of delays have to be connected to a single signal, then the delays should

be connected sequentially and not in parallel [24]. The sequential connection requires fewer

delays. This principle is illustrated in Fig. 2.11a where different delays are connected to a

node, x. The total number of delays that need to be connected to any signal is equal to the

maximum required delay.

If an input or a state output has a non-zero Tout time, then that input or state output

can be tapped at an appropriate delay from the circulated buffers without using extra delay

elements. During the backward scheduling, the times are adjusted such that the nodes at

the bottom of the DFGs have non-zero Tout times and all other nodes have the same T0

and Tfld times, If a node has more than one Tnee&d then the minimum of the Tneeded

times is equal to the Tout time. The delay reduction using circulated buffers is illustrated in

Fig. 2.1 1,b.

Another delay reduction is at the state output and state input interface. If a state input

at the top of the DFGs has a 1st level demux node 'Li ..', then the state input signal has to

be delayed by swi before updating the corresponding state output. Thus the delays

50

associated with a state input can be merged with the circulated buffer delays associated

with a state output. For example in Fig. 2.7a, the demux node 'L1a' at the top of the DFG

can be merged with the circulated buffer 'xlc'. For n level multiplexing, the number of

cycles required to update the new states is equal to 2" where the period of each cycle is

equal to Sw!. The function push_up_demux is used to push the demux nodes of 1st level

multiplexing to the top of the tree so that the necessary delays can be merged with the

circulated buffer, delays. This principle is illustrated in Fig. 2.11c. A typical circuit before

merging the delays is given in Fig. 2.11c(i). The following pseudocode describes the rules

for merging the delays with the circulated buffers.

if (m >= swl)
then merging is not necessary because the delay (sv4) will
be part of the delay öm.

else (
if state output is not used during 'OFF' period of the
1st level multiplexing cycle

then merging is possible and the resultant circuit
is as shown in Fig. 2.11c(ii).

else {
if ((m + n) <swl)

then merging is possible and the resultant
circuit is as shown in Fig. 2.11c(iii).

else
no merging is necessary and the 8m will
be part of the delay (sw!).

}
I

In all the circuits in Fig. 2.11c, dO represents the control signal of a level one multiplexer,

c20 represents the control signal of a level two multiplexer and so on. In the Fig. 2.11c, the

control csO is same as csl but delayed by one word time or one SW!. The different types of

control signals and how they are related to Swl are discussed in the next section.

51

(a) total delays = 35

(b) total delays = 21

Fig. 2.11a Comparison of parallel and serial delay implementation

—6(swl-1) -

x(t=O)

n

x(t=1)

x(t=O)

x(t=n)

• Fig. 2.11b A typical circulated
buffer

+

csO = (dO & c20 & cnO)

csO=(clO&c20&... cnO)
csl = (dO' & c20'& . . .cnO')

Sin

Sout(t=n)

Jr

6 (swi)

—8 (swl-1) 4-

4,
Sin(t=m)

Sin

0
u

lx

t

csO

Sin = state input
Sout = state output

Sout(t=n)

H 6 (swl- 1)

Sin

Jr

6 In

4,
Sin(t=m)

4-

-ø

 Sout(t=n)
n

6 (swl-1) 4-

Sin

6m
4,

Sin(t=m)

Fig. 2.11c Delay minimization at the state circulated buffers

52

All the operators except multiplexers, require the control signal COO (LSB time) to

identify the arrival of the new word. The COO should be given as the control input to each

operator at time T,,7. In the example given in Fig. 2.lOb, the cOO is required at times 1, 21,

22, 23, 43, 44. Thus 44 single bit registers are needed to generate cOO signal at different

times. To reduce the number of delays, the times are modified as shown in Fig. 2.lOc. Now

the cOO is required at times 0, 3, 5, 6, 23, 24. Hence, only 24 single bit registers are

needed instead of 44. If the base time (minimum of the Tout times of state outputs) is

greater than half the Swl then the original schedule should be modified with respect to zero

base time.

Each state input should have a clear multiplexer at its output which can be used to

set the state values to zero. The control signal clearO which is synchronized with time 0 is

used to control the multiplexer. The clearO should be given to the clear mux at time T of

the state input. In the example given in Fig. 2.lOb, the clearO is required at time 45. After

modifying the times, the clearO is required at time 25. Whenever clear mux is used, the

minimum Swl is equal to the system latency plus one. Thus in this example the minimum

sw/is equal to 26.

The modified SFG of the second order wave filter after the allocation step is given in

Fig. 2.12. In the example given in Fig. 2.12, the sw/is equal to the minimum swi limit.

After allocation step, the resulting circuit will be defined in the FIRST [3] language.

We have discussed so far, the basic steps involved in the synthesis process of bit-

serial systems. The next step is to find the control signals required for a designed structure.

Control signals are used to control the timing or the flow of bits through a network.

53

0

in

6

Cl I

Fig. 2.12 2nd order wave digital filter
signal flow graph - after delay allocation

out

54

2.5 Control Signals

The.control signal used in most of the bit-serial operators is the LSB time (cOO) and

its delayed versions. The cOO signal is true for the first bit of a word and false for the

remaining period. The time period of cOO is equal to the product of swl and the bit clock

period or is equal to swl in bits. This signal is used to define the arrival of a new word. The

remaining required signals are the control signals to the multiplexers. The multiplexer of

level 1 is controlled by control signal dO. The ON and OFF periods of dO is equal to the

time period of cOO. That is the dO is the same as cOO divided by 2. Similarly the control

signal c20 used for the multiplexer of level 2, is the same as dO divided by 2 or cOO

divided by 4. In general, the control signal cnO used for the multiplexer of level n is the

same as cOO divided by 2.

If n level multiplexing is used to design a circuit, the sample period is equal to the

product of 2" and the period of cOO. Fig. 2.13 illustrates the relation between the system

clock, swl and different control signals. Two special control signals csO and csi are needed

to update the states and the data input once in a sample period. The control signals osO

and csl for 3rd level multiplexing are shown in Fig. 2.13. The control signals will be

generated in a module called control generator. The design of control generator is

discussed in chapter 3.

The control signal scheme discussed above has some disadvantages. If a design

with 5 multipliers can be reduced to a design with 1 multiplier after three levels of

multiplexing, then 8 cycles of cOO are needed to compute one sample. Since the number

of multipliers is reduced from 5 to 1, 5 cycles of cOO may be sufficient to compute one

55

Bit clock

-j 1 cycle

-J

J 8111111111111111111111

cycle = swi * bit clock period
= swi in bits

coo

 F
L

cnO

csO(n3)

csl(n=3)

Fig. 2.13 : Control signals for multiplexed architectures

56

sample. That is some of the 2'. cycles of cOO (where n is multiplexing level) may be

redundant or unused. This timing redundancy can be detected during the resource sharing

process and the timing can be improved by modifying the control signals. The number of

delay units required to replace demultiplexer node 'Ln...' will be changed if there is a timing

redundancy.

2.5.1 Timing Redundancy

When a multiplier node pair is multiplexed in the first level of multiplexing, the two

cycles of cOO are necessary to compute the two multiplier node values. Thus there are no

redundant cycles at the first level of multiplexing. Consider a multiplier pair (P, Q) at the

second level of multiplexing. Assume that the node P is already multiplexed at the 1st level

and the node 0 is not multiplexed. That is the node P is used as two multiplier nodes in

two cycles. Now if P shares the 0 node operation, the node P may perform the Q node

operation in one cycle. In that case, three cycles may be needed instead of four to

compute a sample. The multiplier pair (P, Q) can not be multiplexed always in three cycles

unless P and 0 satisfy some conditions. The conditions for the possible improvement in

the timing will be explained for a general case taking a multiplier pair (M, N).

Let n be the level of multiplexing. Assume that one of the nodes of (M, N) is

multiplexed at the level n-i and the other at the level m (m < n-i). Let 'parent—M' be the

top node of the group of nodes that are multiplexed along with M. Similarly let 'parent—N'

be the top node of the group of nodes that are multiplexed along with N.

57

If node 'M' is not a child of node 'parent N' and node 'N' is not a child of node

'parent—M" then there exists redundant cycles in the control signals. The ON period of the

modified control signal cnO is equal to the period of control signal associated with node M

and the OFF period is equal to the period of control signal associated with node N. If node

M is multiplexed at level n-i and node N is multiplexed at level m then the cnO is equal to

logical one for the period of c(n-1)0 and logical zero for the period of cmO. During allocation

step, the number of delay units required to replace the demultiplexer node 'Ln..' is equal to

the period of cmO in bits.

If node M is multiplexed at level m and node N is multiplexed at level n-i then the

cnO is equal to logical one for the period of cmO and logical zero for the period of c(n-1)O.

During allocation step, the number of delay units required to replace the demultiplexer node

'Ln..' is equal to the period of c(n-1)0 in bits. In both cases the period of cnO is same and

is less than (2 * swl).

The following condition is true only if node 'M' is multiplexed at level 'm' and node 'N'

is multiplexed at level 'n-l'

If node M is a child of the node 'parent N' and
node N is not a child of node 'parent M' {

if there exists a multiplexer of level n-i or less
between node M and 'parent _N'

then there exists redundant cycles.
else

there exists no redundant cycles.
I

If there is no multiplexer of level n-i or less, it indicates that the node M output is used for

the whole time period at n-i multiplexing .level. Hence there are no redundant cycles. If

58

node M is a child to the left child of the multiplexer, then the number of delay units required

to replace the demultipleer is equal to period of cmO in bits. But if the node M is a child

to the right child of the multiplexer, then the number of delay units required to replace the

demultiplexer is equal to the period of c(n-1)0 in bits.

If node M is a not a child of node 'parent N' and node N is a child of node

'parent—M' then there exists no redundant cycles.

The occurrence of redundant cycles (timing redundancy) can be explained through an

example. Consider the 2nd order direct form digital filter whose SFG and data flow graphs

are given in Fig. 2.14a and Fig. 2.14b. This filter exhibits timing redundancy at the 3rd level

multiplexing.

Fig. 2.14c gives the DFGs after first level of multiplexing. Here, the multiplier pairs (5r,

1r) and (51, 61) are multiplexed concurrently. The control signal dO is represented as cyclic

sequence '10'. The sequence '10' means logical one and logical zero each for one period of

'swl' in bits.

Fig. 2.14d shows the DFGs after 2nd level of multiplexing where the multiplier pair (5r,

51) is multiplexed. There are no redundant cycles because both the multiplier nodes 5r and

51 are multiplexed at 1st level. Thus there is no redundant cycles at the 2nd level. Fig.

2.14e shows the DFGs after 3rd level of multiplexing where the multiplier pair (5r, 6r) is

multiplexed. There exists timing redundancy. The multiplier nodes 5r and 6r are not a child

of one another. Thus there exists three redundant cycles. All the control signals 'ci 0', 'c20'

and 'c30' are given as five digit cyclic sequences. Thus in this example an initial design

with 5 multipliers has been converted to a design with 1 multiplier in 5 cycles.

59

Y(k)

Fig. 2.14a : Signal flow graph of 2nd order direct form digital filter

bi b2

3d

1_d I 3_d

31

Fig. 2.14b : Data flow graphs of 2nd order direct form digital filter
- no multiplexing

bi al 4 0

Number of delay units required to
replace Lia = swi.

7_o

Rib

7

6± Th5

51 X X 6

xlcA a2

4

3d

xia

3

control signal dO = "10"

node 51 -- multiplexed at 1st level
node 5r -- multiplexed at 1st level
node 6r -- not multiplexed.

Fig. 2.14c Data flow graphs of 2nd order direct form digital filter
- 1st level multiplexing

4 0

60

x

xle

xlc

4

xig

0

id 7_o

Ria Y Rib

5_L. 7

6

5
L2a

5 5r xlc

4

xlb

xid b2 blal

Number of delay units required to
replace L2a = 2 * swi.

5

control signal dO = ".10" + "10"
= "1010"

control signal c20 - ttj11 + "00"
= "1100"

node 5r -- multiplexed at 2nd level
node 6r -- not multiplexed

Fig. 2.14d : Data flow graphs of 2nd order direct form digital filter
- 2nd level multiplexing

5

Mb

control signal dO =
= "10100"

control signal c20 =
- "11000"

control signal c20 =
= "11110"

Number of delay units required to
replace Ma, L3b, Lbc = swl

Fig. 2.14e : Data flow graphs of 2nd order direct form digital filter
- 3rd level multiplexing

61

The control signals are represented as finite cyclic sequences when timing redundancy

exists. These signals can be generated using a finite state machine (FSM) or linear

feedback shift registers (LFSR). Both of these methods are discussed in detail in chapter 4.

2.6 Summary

The basic synthesis steps such as translation, resource sharing, scheduling, and

allocation discussed above generate a design solution for a given high level behavioral

specification. During the translation step, the given behavioral input in the form of a SFG is

converted into an internal graphical representation called data flow graphs (DFG). The

DFGs are implemented using binary tree structures in such away that any node in the

DFGs can be accessed from any other node by traversing upwards or downwards. The

resource sharing process multiplexes the multiplier nodes because the bit-serial multiplier is

normally the largest operator in size. If possible, two or more pairs of multiplier nodes are

multiplexed concurrently in the same level of multiplexing. The resultant DFGs are

scheduled in two different phases. The minimum swl is calculated from the scheduled

DFGs. The delay registers are allocated appropriately. Once the delay allocation step is

finished, the DFGs with appropriate control signals represent a circuit which can implement

the given behavioral specification. A number of design solutions can be obtained for the

same behavioral specification by choosing different multiplier pairs and their order of

multiplexing in the resource sharing step. The BITSYN algorithm based on the exhaustive

search of the solutions is explained in the following chapter.

62

Chapter 3

BITSYN ALGORITHM

This chapter describes the implementation of the bit-serial synthesis (BITSYN)

algorithm. It gives an overview of the design space and the heuristics used to speed up

the synthesis process. The BITSYN algorithm evaluates different resource sharing

(multiplexing) strategies and generates a minimum gate design, a high sample rate design

and a number of designs between these. limits. The algorithm exhaustively searches the

possible designs that would result due to the multiplexing. BITSYN accepts a signal flow

graph (SFG) behavioral description as input and generates the designs in the FIRST [3]

netlist format.

3.1 BITSYN Algorithm

The BITSYN algorithm incorporates the major synthesis steps such as translation,

resource sharing, scheduling and allocation discussed in chapter 2 to generate multiplexed

designs. The implementation of the BITSYN algorithm is outlined as follows

1. Read the SFG description and the input specifications (e.g : system word length and

coefficient word length)

2. Build the precedence graphs or DFGs. (next state and output calculations)

3. Prepare a list of the possible pairs of multiplier nodes. Set the multiplexing level to 1.

63

4. For each multiplier node pair {

4a. Perform the resource sharing operation. That is, find two groups of nodes which

create similar patterns around each multiplier and introduce multiplexers and

conceptual demultiplexers into the DFG. Remove the nodes from the DFGs whose

operations are shared.

4b. Schedule the resultant DFG's and allocate the registers. Analyze the design

structure and find the design characteristics such as number of equivalent gates,

system word length (swl) and normalized sample frequency.

(a) The number of gates is equal to the sum of the gates for each and every
operator needed to implement the design in a gate array process.

(b) swl = maximum of [system latency, required swl}

(c) If there are no redundant cycles among 2" (where n is multiplexing level)
cycles of cOO (LSB time) then normalized sample frequency = l/(2fl * swi)

If some of the 2" (where n is multiplexing level) cycles of cOO are redundant
then normalized sample frequency = 1/(period of cnO in bits * swl)

4c. Store the design. Modify the list of node pairs by removing the pairs containing the

shared nodes.

4d. If the list of multiplier node pairs is not empty then increment the level of

multiplexing, go to step 4 and repeat the recursive procedure.

"1

5. Display the designs graphically. Select a design that satisfies the user requirements and

generate the design in the FIRST language.

The implementation of the BITSYN algorithm is discussed in detail in appendix A.

64

3.2 Design Space

BITSYN generates pipelined bit-serial designs in a three dimensional space. The three

dimensions are normalized sample frequency (nsf), gate count and the system latency. The •

normalized sample frequency is defined as the ratio of the sample frequency to the system

bit clock frequency. The system latency is the lower bound on the swi in recursive

structures . In non recursive structures, feedback paths may be created due to multiplexing.

In such a case, the system latency is the lower bound on the Sw!. A large memory space is

needed to save the designs in FIRST neist format. Instead to save memory, all the

required transformations, that is the multiplier pairs, the order of multiplexing, and the

design characteristics are saved. The FIRST netlist of a selected design can be regenerated

when required.

It is not necessary to save all the designs generated by BITSYN. If two designs have

the same nsf and system latency, then the solution with fewer gates is saved. If they have

the same sample frequency and different system latencies then both the solutions are

saved. Thus a smaller set of designs are saved such that each design at a particular nsf

has minimum number of gates. A solution is useful (optimal) if there is no other solution at

a higher sample frequency having fewer gates. This is illustrated using the design space of

the second order wave digital filter (SFG is given in Fig. 2.la) in Fig. 3.1. All the solutions

in the design space may not be useful (optimal).

If the required Swl of a design is greater than the system latency, then extra delay

units are inserted in all the closed loop paths of the design. Since a minimum gate design

is saved for each system latency, a design with any required Swl can be generated from

Number of LSI equivalent gates

5000 -

U

4500 -

4000 -

3500 -

3000 -

2500 -

2000

x

>(
x

>(o

x

0

>(
Optimal solutions

• 5 multiplier solution
IJ 4 multiplier solution
A 3 multiplier solution

2 multiplier solution
o 1 multiplier solution

Non-optimal solutions
x

0

I I I I

0.01 0.02 0.03 0.04 0.05

Normalized sample frequency

Fig. 3.1 BITSYN design space for 2nd order wave digital filter

66

the saved designs by inserting necessary delay units. Thus the user can change the swi at

the end of the synthesis process by recomputing the minimum gate designs with the new

required sw!. The recomputed designs will be same as if the designs had been generated

by synthesizing with the new Sw!. If the cwl specification is changed, the recomputed

minimum gate designs may not be same as the designs that can be generated by

synthesizing with the new cwL But it has been observed in a number of examples (given in

chapter 5) that the recomputed designs are same or close to the synthesized designs.

3.3 Heuristics

BITSYN produces a huge number of designs at different levels of multiplexing. The

total number of design solutions increases exponentially with the number of multiplier nodes.

Let in be the number of multiplier nodes in the initial DFGs. There will be m*(m1) pairs

that can produce multiplexed designs at the first level (assuming that all pairs are valid).

Each of the resultant designs can produce p*(p..1) pairs where p is the number of multiplier

nodes in the multiplexed design. Thus each of the designs at the first level can produce

p*(p..1) designs or multiplexing paths at the second level (assuming all the pairs are valid).

This process continues until the designs with a fewest number of multiplier nodes are

achieved.

Five heuristic rules are used to reduce the number of design solutions and reduce the

computation time. These heuristic rules prune the multiplexing paths which are not likely to

produce the useful solutions. The heuristics have been tested using a number of design

examples (given in chapter 5). It has been found that they can considerably reduce the

67

computation time without much distorting the useful solutions. It is observed in most of the

examples, that the majority of the reduction in gate count will take place at the first few

levels of multiplexing due to concurrent multiplexing and fewer delay units. The following

five heuristic rules were implemented to speed up the synthesis process.

(1) If a design at any multiplexing level has a lesser number of gates than the design

at a higher level of multiplexing, then the multiplexing paths from that higher level

multiplexed design are pruned.

(2) If the nsf of any design is less than the minimum nsf, or the gate count of any

design is more than the maximum gate count, then the multiplexing at the higher levels will

not be performed. This heuristic rule requires the user to specify the maximum gate count

and the minimum sample frequency with the intended clock frequency. The minimum nsf

will be calculated from the given clock and sample frequencies. If the user does not specify

the maximum gate count, the gate count of the operator-parallel design (without

multiplexing) is considered as the default maximum gate count.

(3) Assume that pairs (A, B) and (C, D) are part of concurrent multiplexing. In some

cases the order of multiplexing may cause minor differences in the group of nodes that are

multiplexed around the multiplier nodes. But in general, the order in which the pairs are

multiplexed does not effect the resultant DFGs. In the exhaustive search, both the

multiplexed designs ((A, B), (C, D)} and ((C, D), (A, B)) are considered. This heuristic

rule considers only that design whichever appears first in the search path.

(4) This heuristic prunes the multiplexing paths by comparing each new design with

the minimum gate designs generated (saved) until that time. If the nsf of a new design is

68

less than the nsf of a saved design and the gate count of the new design is greater than

the gate count of the saved design by a certain user specified amount then the further

multiplexing will not performed. Even though a design may not appear to be a useful one

at some level of multiplexing (at some nsa, it may produce a useful solution at further

levels of multiplexing (at smaller nsfs). It has been observed in a number of design

examples (given in chapter 5) that if a design is costlier than a saved design by 10%, it is

not likely to produce a useful solution. Thus the default user specified amount is set to 10%

of a saved design.

(5) This heuristic prunes the multiplexing paths by comparing two designs at

consecutive levels of multiplexing. The design at a higher level of multiplexing is slower

than a design at a lower level of multiplexing. If the ratio of the reduction in gate count to

the reduction In nsf between the two designs is less than user specified ratio then further

multiplexing will not be performed. The default user specified ratio is set to a 10% reduction

in gates and to a 50% reduction in nsf. It has been observed in a number of design

examples (given in chapter 5) that a reasonable default user specified ratio considerably

reduces the computation time and without much distorting the useful solutions.

All the five heuristics may not be necessary if a design space is small. Different

heuristics can be used for designs of different sizes. Thus the heuristics are implemented

in five levels. The first level implements only the first heuristic, the second level implements

first two heuristic rules and so on. Finally the fifth level implements all the heuristics. The

effect of heuristics on the design space and the synthesis time in different examples is

given in chapter 5.

69

Chapter 4

CONTROL GENERATOR DESIGN

4.0 Introduction

This chapter describes the generation of control signals needed in a bit-serial

network [3]. The bit-serial control signals are used to control the timing or the flow of data

through a network. At the lowest level, a fundamental synchronous bit clock called cycle 0

(CO) controls the flow of all the data in a system at the bit level. In all the bit-serial

operators, the outputs from the operators are latched with this control signal. All the input

and output signals to the bit-serial chip are also synchronized with this bit clock.

Various other control signals are needed along with CO as shown in Fig. 4.1. The

control signal Cl is needed to define the start of a new data word on all of nodes. This

control signal, which is called the least significant bit time (LSB time), is true for the first or

the least significant bit (LSB) of a word. At the next level, the control signal C2 which is

also called as WORD 0 time is true during the first word of each frame. Depending upon

the complexity of a system, levels of control may be required above this, for example C3

which is true during the first frame of a group of frames, etc.

The control signal Cl is used to terminate the current operation and initiate a new one

in all the arithmetic operators. For example, the bit serial adder, as shown in Fig. 1.2,

processes successive pairs of input bits through a full adder stage, latches the sum as an

Bit clock:
Co

Cycles:
Cl

First bit (of word)

C2

First word (of frame)

C3

Events:
Er2
Event input

E2
(Event associated with C2)

Fig. 4.1 : Format of control signals for bit-serial networks

71

output and feeds back the carry for combination with the next pair of input bits (more

significant bits). The control signal Cl is used to prevent any carry resulting from the

preceding addition from interfering with the next data word. The higher level control signals

C2, C3 are normally used for synchronization and multiplexing.

In the bit-serial design methodology given by Denyer and Renshaw [3] the control

signals are generated in a module called the control generator. The control generator

module is defined by the FIRST [3] silicon compiler. The FIRST control generator

generates all the required control signals. The FIRST control generator does not produce

all types of control signals required in the designs generated by BITSYN. The BITSYN

control generator is used to generate the signals which cannot be generated from the

FIRST control generator. This chapter describes the implementation of FIRST and BITSYN

control generator modules.

4.1 FIRST Control Generator

The control generator generates the bit-serial control signals Cl, C2, C3, ... which are

true for only the first period of the bit-clock or the previous control signal and repeats after

an integer number of durations of the bit clock or the previous control signal. All of these

control signals are called cycles as they repeat with a particular pattern.

Another type of control signals called events are required to control occasional or

once only operations such as loading or clearing memory. The events are similar to cycles

in principle, except that they do not repeat. Although events are not cyclic, they are

72

synchronous. These occur in response to an external event request to the control generator.

Each event specified will be associated with a cycle. The following two different event

signals are used in bit-serial networks.

EVENT [0] : The event signal is true for the next occurrence of the ON period of its

associated cycle.

EVENT [1] : The event signal is true for the next occurrence of one full period of its

associated cycle.

A program was developed to design a control generator which could deliver different

types of control signals according to the input specification. A sample FIRST control

generator specification is given below:

CONTROLGENERATOR (Er2, Er3..... -> Cl, C2, E2, C3, E3,
CYCLE[8]
CYCLE[3]
EVENT[O]
CYCLE[2]
EVENT[1]
CYCLE[2]

ENDCONTROLGENERATOR

In the above specification, Er2, Er3 represent the event external inputs, Cl, C2, C3

represent the cycle outputs and El, E3 represent the event outputs which are associated

with Cl, C3. Fig. 4.1 gives the control signals Cl, C2, C3 and El generated according to

the above specification.

73

4.2 BITSYN Control Generator

When a system is synthesized using BITSYN, it requires a set of signals to control

the multiplexers in addition to master bit clock, CO and LSB time signal, Cl. The LSB time

signal, Cl is needed in most of the bit-serial operators. For BITSYN, the LSB time signal

Cl is named cOO. The signal cOO has the time period equal to the system word length (swl)

times the bit clock period. BITSYN uses the cOO as the basic cycle of operation. The

control signals to the multiplexers of levels 1, 2, 3, ... are named as dO, c20, c30.....

The BITSYN control generator uses the FIRST control generator to produce the cOO.

The remaining control signals can be generated by the FIRST control generator when a

synthesized design uses all the 2m cycles (m is the multiplexing level). The dO, c20, c30,

signals are same as the C2, C3, C4, ... of length 2 produced from FIRST control

generator. The control generator specification for a system with 3 levels of multiplexing and

swi of 32 is as follows.

CONTROLGENERATOR (-> cOO, dO, c20, c30)
CYCLE[32]
CYCLE[2]
CYCLE[2]
CYCLE[2]

EN000NTROLGENERATOR

For the above specification, the control signals are same as the following cyclic finite

sequence of digits (0 or 1 of time period equal to sw.

dO = '10101010' c20 = '11001100' c30 = '11110000'

BITSYN requires the additional control signals such as csO = '10000000' and csl =

'00000001' to get an input sample, to update state values and to output the data at

74

appropriate times. The BITSYN control generator generates csO and csl using ci 0, c20,....

as inputs to a combinational logic unit. The signals csO and csl are generated as csO =

AND(clO,.c20.....) and csl = NOR(clO, c20,) These signals are latched with the bit

clock.

It can be observed from the sequences generated in the FIRST control generator that

the ON and OFF periods of cnO are equal to 2_1 times swi or 211 cycles (cOO). In some

design examples where a few cycles are redundant (timing redundancy was explained in

Chapter 2), the ON and OFF periods may not necessarily be same for control signals c20,

c30, ..., cm0. In the above example, when the OFF period of c20 is equal to one swi

instead of two times the swi, the cyclic finite sequences are modified as follows

dO = '101101' c20 = '110110' c30 = '111000'

This type of control signals can not be produced by the FIRST control generator. Different

cyclic finite sequences may be required depending upon where the timing is redundant. The

cyclic finite sequences can be generated using two methods (a) linear feedback shift

registers or linear sequential circuits and (b) finite state machines.

4.3 Implementation of FIRST Control Generator

The basic cells selected to implement the control generator are NAND, NOR, NOT,

and 0 flipflop with asynchronous clear input. These cells are selected because they will be

available in any design libraries such as gate array, standard cell etc. and in any

technology such as NMOS, CMOS, etc.

75

The FIRST control generator can be realized using a set of synchronous counters.

Each counter is used to generate a cycle signal pulse for every given number of pulses of

the fundamental clock or the previous cycle. The events can be generated after detecting

an event input, with the help of the circuits used to generate Cl, C2 etc.

The first step is to design a synchronous counter which will count L number of states

where L is the length of the cycle. A down counter of length L is implemented as shown in

Fig. 4.2. In all the figures, load n = 1 means the counter in level n is in zero state and

loadb n is an inverted signal of Load n.

A down counter is needed for each cycle to be generated. The fundamental bit clock

master clock) is used as the clock to the counter which generates Cl. To generate 02,

CS,... the previous cycle output (Cl, C2.....) is used as the clock to the counter. The

circuit to generate the Cl is shown in Fig. 4.3a and the circuit to generate all other cycles

is same and is shown in Fig. 4.3b. The extra circuitry used in Fig. 4.3b is needed to

synchronize all the cycle signals.

The circuit to generate EVENT[1], which occurs for one full period of the cycle, is

given in Fig. 4.4a. Here the first D flipflop detects the external event input Er n whenever it

occurs using the master clock. The remaining circuit is used to create the event output in

synchronous with the cycle after the external input is detected. A similar circuit to generate

EVENT[O] which occurs for only ON period of the cycle is given in Fig. 4Ab.

All the cycles and events are delayed by 1 latch delay with respect to master clock.

76

Fig. 4.2a : Schematic diagram Fig. 4.2b : Schematic diagram
of EXOR of MUX2

out

MUX2
D Q
DFF

LD LDb Clock Clear

Fig. 4.2c Schematic diagram of CNT1
(1st stage of the counter -- LSB stage)

In2b

ml

In2 ml
EXOR

out out

MUX2
D Q
DFF

Q

LD LDb Clock Clear

Fig. 4.2d : Schematic diagram of CNTN
(2nd to Nth stage of the counter)

(L-1) 0 (L-i) 1

Clear

In Q

CNT1

ml Q
In2b
> CNTN

I

ml Q
In2b
> CNTN

Qo
—Q1 ml Q

In2b
CNTN

Cik or Cn-1
LDn

LDb n

Qo Qi Q2

Qo
LDn= Load Qi1 IN, Load Loadbn

LDb n = Loadb n
N-1

Fig. 4.2e Schematic diagram of down counter of length L

78

Cik Clear

Loadb 1
Loadb 2

Loadb n

Load n
D Q

DFF

Cl

(a) 1st cycle

*L = Load 1 * Load 2 * * Load n-i

*Lb = Load 1 * Load 2 * * Load n-i

*L *Lb

Clk or Cn-i Clear

1 •out

MUX21
D Q

>DFF

Cik Clear

(b) 2nd to nth cycle

Fig. 4.3 : Schematic diagram of the circuits to generate CYCLEs

79

*Lb = Load 1 * Load 2 * Load n

*L = Load 1 * Load 2 * Load n

Em

Cik

Clear

D Q

>DFF

*L *Lb

I I D Q
out— _).DFF

MUX21

Cik Clear

(a) Event type 1 -- True for one full period of the cycle

E[1J

*L = Load 1 * Load 2 * * Load n-i * Loadb n

*Lb = Load 1 * Load 2 * * Load n-i * Load n

Ern L

Cik

Clear

D Q

> DFF out

MUX21

D Q

> DFF

Cik Clear

*L *Lb

E[O]I I
out

MUX21

(b) Event type 0 -- True for only the ON period of the cycle

Fig. 4.4 : Schematic diagram of the circuits to generate EVENTs

80

4.4 Linear Feedback Shift Registers (LFSR)

It is. known that shift registers with feedback and/or feed forward connections can be

used to multiply and divide polynomials over the binary number field [28] [29]. The circuit

that simultaneously multiplies by h(D) and divides by g(D) is shown in Fig. 4.5 [29]. The

output b(D) is given by

b(D) - h(D) a(D)
- g(D)

where

h(D) = ± h1 Di
1=0

g(D) = ± g1 Dl + 1
1=1

and the input sequence

a(D) = a1 DI
1=0

In the Fig. 4.5, the boxes represent unit delays or registers, circles labeled with subscripted

coefficients represent a connection if the coefficient is a 1 and no connection if the

coefficient is a 0. The circles with a "+" inside represent modulo-2 adders or Exclusive-OR

gates.

The circuit that can produce a desired cyclic finite sequence can be synthesized if the

transfer function of that circuit is known. If the impulse response of the linear sequential

circuit is given, then the transfer function can be determined. By analogy to conventional

linear circuit, the impulse response of a linear sequential circuit is defined as the sequence

Input

3

h(D)
b(D) = a(D)

g(D)

Fig. 4.5 : Circuit that multiplies by h(D) and divides by g(D)

82

produced by the input sequence 1 0 0 0 0 [28] (All registers are assumed to contain

zeros initially). The linear sequential circuit whose impulse response is periodic with period

'r', and whose first period is

b0 b1 b2 br_2 br_i

can be synthesized by setting the coefficients in Fig. 4.5 as

h1=b1 and g1=0 for i=Otor-1; g=1 and hr=0

The resultant transfer function

b0 + b1 V + b2 V2 + + b_1 D' -1

1 + D'

The above transfer function if implemented as it is, would require 'r' unit delays. If the

numerator and denominator have a common factor, then the transfer function can be

simplified and it will have the same impulse response, but will require the minimum number

of register units. If the length of the sequence is 'r', then the number of register units can

vary from 'm' to 'r' where 2m1 and it purely depends on the impulse response.

A similar method is used to find a feedback shift register which can synthesize a

given desired sequence. In fact the method synthesizes a circuit whose impulse response

is same as the desired sequence and then omits the input to the circuit and initializes the

register units appropriately. The initial conditions of registers should be set to match what

the input circuit would insert if a 1 is applied. Thus the initial conditions of the registers will

be equal to h0h1h2 .

83

4.5 Finite State Machines (FSM)

A synchronous sequen tial machine whose past histories can affect their future

behavior in only a finite number of ways can be called as finite state machine [30]. A state

machine consisting of a finite number of memory devices and combinational logic is

represented schematically in Fig. 4.6. The signal value at the output of the memory devices

is referred to as the state variable s,. The combination of 'm' state variables

(Si, S2, ' 5m } represent the present state of the machine. The 'm' state variables can

give 2m different combinations and thus the set of n = 2m m-tuples constitutes the entire

set of states of the machine. The circuit in Fig. 4.6 has a finite number 'k' of input terminals

and has a finite number 'I' of output terminals.

The external inputs x1, x2....., Xk and the values of the state variables s1, S2....., Sm

are given to the combinational logic circuit which in turn produces the outputs, Z1, z2....., z1

and the the next state variables S1, S2..... , Sm. The relation among the input, present

state, output and next state is normally described by a state diagram or a state table. The

synthesis of finite state machine involves different steps such as state minimization, state

assignment, and implementation of combinational logic using gates, or random access

memory. The FSM with no external inputs can be used to synthesize cyclic finite

sequences and may be used as part of BITSYN control generator.

4.6 LFSR versus FSM

If a cyclic finite sequence of length 'r' has to be designed, the FSM implementation

requires 'm' (2m_1 ≤ r ≤ 2m) memory devices where as LFSR implementation requires the

84

Si

Combinational
Logic

Izl

 pz 2

S 2

1

ii

sm

2
2

A

Memory devices

In

clock

Fig. 4.6 Schematic representation of a
finite state machine

85

number of memory devices which vary from 'm' to Y. The number of registers. necessary in

an LFSR. implementation depends mainly on the characteristics of the sequence. In an

LFSR implementation, the required sequence is generated by the proper initialization of the

registers in combination with the usage of modulo-2 adders in feedback path. In FSM

implementation, the sequence will be generated with the help of the combinational logic and

the state variables. In general, if the registers are not considered, the LFSR implementation

requires less hardware than the FSM implementation. But the LFSR may require more

registers than the FSM, and the difference in the number of registers will increase as the

length of the sequence increases.

Example 4.1 : The LFSR circuit whose response is periodic with period 7 and whose

first period is 1001011 , has as its transfer function

35 6 2

1+D7 1+D2+D3

The shift register generator for the above example is as shown in Fig. 4.7 and it can be

implemented using 3 registers, one EX-OR and two OR gates. Thus the number of LSI

equivalent gates required for the above implementation is equal to 23 [31].

The sequence is also implemented using FSM. The finite state machine compiler, PEG

(PLA equation generator) [32], is used to translate the high level language description of

a state machine into logic equations needed to implement the state machine design.

The logic equations were implemented manually using basic two input gates and it was

found that the number of LSI equivalent gates required for the above example is 43.

86

1 0 1
output

clock

Fig. 4.7a A shift register generator with
output 1001011

clear
(active high)

*D Q
FF

D Q-i
FF 4
clear

D Q
FF

output
0 No

Fig. 4.7b : Circuit implementation of the shift register
generator given in Fig. 4.7a

87

In the above example, even if the transfer function couldn't have been simplified, the

LFSR circuit requires 7 registers connected as ring counter out of which 4 registers are

initialized to 1. This implementation requires 43 LSI [31] equivalent gates. Thus LFSR can

be used to generate cyclic finite sequences. But as the length of the sequence increases,

FSM implementation will be cheaper than the LFSR implementation.

In general, more than one finite sequence is required for the control signals in a bit-

serial deign synthesized by BITSYN. The LFSR design requires separate circuits to

generate different sequences and thus requires more registers and gates. The FSM design

requires the same number of registers but uses more gates to generate additional outputs.

Thus the FSM design may be cheaper than the LFSR design when a larger number of

control signals are required. The following example takes the cyclic sequences which are

used as control signals in practical digital filter circuits designed by BITSYN.

Example 4.2 : Generate the three control signals C1O with cyclic sequence of 'O1',

C20 with cyclic sequence of '110' and c30 with cyclic sequence of '111000'.

The transfer function for Gb,

H1(D)—
1+D2 1+D

-

.1+D3 1+D+D2

for c20,

1+D 1

1+D3 1+D+D2

and for c30,

1

1+D6 1+D+D3+D4

88

The LFSR implementation of C10 uses 17 LSI equivalent gates (2 registers, 2 OR

gates and one EX-OR). The LFSR for C20 requires 16 LSI equivalent gates (2

registers, 1 OR gates and one EX-OR) and for c30 requires 31 LSI equivalent gates (4

registers, 1 OR gate and 2 EX-OR gates). Thus LFSR implementation uses 64 LSI

equivalent gates.

In the case of the FSM, the state variables remains the same for all three sequences

and thus require 3 registers. The combinational, logic after the manual minimization

requires 26 equivalent gates. Thus the FSM implementation uses 44 equivalent gates.

47 Conclusions

The LFSR design can be used to generate a single finite sequence. To generate

multiple sequences, the FSM will be cheaper in hardware than the LFSR circuit. Thus it can

be concluded that when the FIRST control generator cannot generate the required signals,

they can be generated by synthesizing a FSM. Regarding the design process, synthesis of

a LFSR circuit is much simpler than a FSM circuit. The synthesis process of LFSR can be

easily automated and can be easily adapted into BITSYN program. The synthesis of an

optimized FSM is not simple but it can be performed using existing tools such as PEG [32]

and logic synthesis tool ESPRESSO [33]. The number of LSI [31] gates required for LFSR

implementation can be calculated very easily. The BITSYN package takes LFSR

implementation into account to compute over all gate count. The difference in gates

between LFSR and FSM implementations is negligible when compared to the over all gate

count of a design.

89

Chapter 5

CASE STUDIES

This chapter presents six DSP filter case studies generated using the BITSYN tool. A

variety of practical digital filters are designed using BITSYN. BITSYN supports a set of bit-

serial primitives necessary to design digital filters. Generic bit-serial operators are also

supported so that BITSYN can synthesize DSP algorithms other than digital filtering

algorithms. The case studies presented illustrate the synthesis of recursive digital filters

such as biquadratic and wave filters and a non-recursive structure such as a sine/cosine

generator. In all the design examples, the gate count (hardware cost) for each design is

calculated using the LSI [31] equivalent gates of the FIRST [3] primitives. LSI logic defines

"one gate equivalent as equal to two P-channel and two N-channel transistors or enough

transistors to create either a two-input NAND gate or a two-input NOR gate" [31]. BITSYN

has been implemented in the C programming language. For each design example, the time

required to obtain the designs is given in Cpu seconds with the BITSYN program running on

a SUN SPARC 1+ computer.

5.1 Fourth order Cascaded Biquad Digital Filter (CasBiq-4)

A low pass filter whose transfer function is given by

g (z2 - 2a1z + 1) (z2 +2z + 1)

H(Z) = (z2 - 2b1z + b2) (z2 - 2b3z + b4)

90

is implemented using two cascaded biquadratic sections. The signal flow graph (SFG) of

the filter is given in Fig. 5.la and its BITSYN branch description is given in Fig. 5.lb. A

multiplication of a signal by 2 is implemented by adding the signal to itself in the SFG, as

the FIRST silicon compiler supports only fractional coefficient multipliers. The multiplication

of a signal by 2 can also be implemented using left shift operation. After the SFG is read

by BITSYN, it will be modified as shown in Fig. 5.2a. All the multiplier branch commands in

the SFG netlist are interpreted and converted into the equivalent commands using add,

subtract or shift operations. The modified SFG neflist can be represented in the form of

data flow graphs (DFG). There are four state inputs and one output in this example. Five

DFGs are created for each state input and each output as shown in Fig. 5.2b. Two nodes

with the same name represent a single instance in the figure. All five DFGs use the same

data base.

The DFGs without any modification represent an operator-parallel design solution

where separate multipliers are used for each multiplier operation. The DFGs are scheduled

and the delays are allocated. The gate count and the normalized sample frequency (nsf) will

be found. The next step is to form a list of multiplier node pairs. The six multiplier nodes

in this example generates 30 different node pairs. Since the multipliers are independent of

each other, each pair can produce a valid multiplexed design and more than one pair can

be multiplexed at the same level (concurrent multiplexing).

A design at the 3rd level of multiplexing is chosen to explain the flow of the BITSYN

algorithm. This design uses concurrent multiplexing (CM). The groups of nodes that are

multiplexed at the first level are shaded in Fig. 5.2b. The three multiplier pairs (5ax, 5az),

91

u(k)

0

Fig. 5. la Signal flow graph of 4th order cascaded biquad
digital filter

input 0 ac mult 7 8 1.0
mult 0 1 g mult 5a 8 1.0
mult 5 1 1.0 mult 8 9 1.0
mult 1 2 1.0 delay 9 3a

delay 2 3 delay 3a 4a
delay 3 4 mult 3a 5ax b3
mult 3 5x bi mult Sax 5ay 1.0
mult 5x 5y 1.0 mult 5ax 5ay 1.0
mult 5x 5y 1.0 mult 5ay 5a 1.0
mult 5y 5 1.0 mult 4a 5az b4
mult 4 5z b2 mult 5az 5a -1.0
mult 5z 5 -1.0 mult 3a 6ax 1.0
mult 3 6x al mult 3a 6ax 1.0.
mult 6x 6z 1.0 mult 6ax Ga 1.0
mult 6x 6z 1.0 mult 4a 6a 1.0
mult 6z 6 -1.0 mult 6a 10 1.0
mult 4 6 1.0 mult 2a 10 1.0
mult 6 7 1.0 mult 10 11 -1.0
mult 2 7 1.0 output 11

Fig. 5. lb : 4th order cascaded biquad digital filter
- BITSYN branch description

92

input 0 ac add 6 7 1

mult 0 ir g add 7 8 5a
add 5 1 ir delay 8 3a

delay 1 3 delay 3a 4a

delay 3 4 mult 3a 5ax b3

malt 3 5x bi add Sax 5ay 5ax
add 5x 5y 5x sub 5ay 5a 5az
sub 5y 5 5z mult 4a 5az b4

malt 4 5z b2 add 3a 6ax 3a

malt 3 6x al add 6ax 6a 4a
add 6x 6z 6x add 6a 7a 8

sub 4 6 6z output 7a

Fig. 5.2a : 4th order cascaded biquad digital filter
- modified SFG description

3a

8d

3_d 3a_d

31 3a1
8

3a_d

3d

3 bi 3_d

1-d

4

Fig. 5.2b : 4th order cascaded biquad digital filter
- data flow graphs

4a b4

iT
3a_d

93

(5x, 1r) and (6x, 5z) are multiplexed concurrently. An adder pair (5y, 1) is multiplexed along

with the pair (5x, ir). The resultant DFGs after first level of multiplexing are shown in Fig.

5.3. The DFGs will then be scheduled and the delays will be allocated.

Each demultiplexer with a name 'Li . ..' is replaced with a number of delay units equal

to swi. The demultiplexer nodes with names 'Ri ...' are removed. The delays units are not

inserted into the DFGs, instead the number of delay units required at the output of any

node can be represented by the appropriate Tn dd time. The demultiplexer node with

name 'Li ...' is removed and the Tnee fqd time of its child node will be modified appropriately.

The time schedule for all the operators after the scheduling and allocation steps is given in

Table 5.1. In the table, the Tneodod values identified with *ii are due to the first level

demultiplexers 'Li ...' The control signal dO which can be represented by a cyclic sequence

"10" is used to control the multiplexers 'xi ...'. The coefficient word length (cwl) of all the

multipliers has been set to 10 bits. The minimum swi required for the design is equal to

23. The total gate cost of the design in terms of LSI equivalent gates and the nsf of the

design can then be found.

The design at the first level of multiplexing contains 3 multipliers. It can be seen from

Fig. 5.3 that the three multipliers are independent of each other. Therefore six different valid

multiplier pairs are available for multiplexing at level 2. The multiplier pair (5x, 6x) is used

at the second level of multiplexing. The resultant DFGs are shown in Fig. 5.4 and the time

schedule for all the operators after scheduling and allocation steps is given in Table 5.2.

The times due to the 2nd level demultiplexers 'L2...' are identified with "#". The minimum

94

3_d 3a_d

31 3a

1d

Fig. 5.3 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 1

95

Table 5.1 : 4th order cascaded biquad digital filter - time schedule after 1st level multiplexing (cwl = 10 bits;
swl = 23 bits)

Node Child nodes

3,4,0 0 0
xib 0 1 1,2,22 3,3
xla 0 1 1 4,4
xlc 1 2 2 xla,xib
al, b2 1 1 -

Ad 1 2 2 al, b2
6x 2 19 19, 43' xlc, Ad
6z 20 (43) 21 21 6x', 6x'
6 21 22 22. xla
xlm 0 1 2 0,0
xle 2 3 3 xlb,xlm
bl,g 2 2
xlf 2 3 3 bi,g
5x 3 20 20, 21 xie, xlf
5 19, 42 20 20 6x, 5y'
xlg 20 21 21 5x,5
5y 21 22 22, 42' xlg, 5
7 22 23 23 6,5y
3a 2 2,3
xlh 2 3 4,22 3a, 3a
4a - 0 0,3 -

xli 0 1 4,23 4a, 4a
xlj 4 5 5 xli, xlh
b3, b4 4 4
xlk 4 5 5 b3, b4
5ax 5 22 22, 44' xlj, xlk
Say 21 (44) 22 22 5ax', 5ax'
5a 22 23 23 5ay, 5ax
8 23 24 24 7,5a
8_d 24 24 8
1_d 22 22 5y
3d 1 1 xlb
3a _d 4 4 xlh
6ax 22 23 23 xlh, xih
6a 23 24 24 6ax,xli
7a 24 25 25 6a,8
7a_o 25 25 7a

* due to 1st level demultiplexer 'Li...'

96

6

7a_o

Rib

R2a

7

3_d 3a_d

31 3al

b2

xij

xih

3a

T ITI
8_d3atd

4a

Fig. 5.4 : 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 2

97

Table 5.2 : 4th order cascaded biquad digital filter - me schedule after 2nd level multiplexing (cwl = 10 bits;
swl = 24 bits

Node Child nodes

3,4,0 0 0
xlb 0 1 1,23 3,3
xlm 0 1 1 0,0
xle 1 2 2 xlb,xlm
xla 0 1 1,22 4,4
xlc 1 2 2 xla, xlb
x2a 2 3 3 xlc, xle
bl,g 1 1
xlf 1 2 2 bl,g
al, b2 1 1 -

Ad 1 2 2 al, b2
x2b 2 3 3 xlf,xld
5x 3 20 20, 45', 69', 70# x2a, x2b
5 20 (44') 21 21 5y', 5x
xlg 21 (69') 22 22 5, 5x'
5y 22 (70#) 23 23, 44' xlg, 5x#
1_d 23 23 - 5y
6z 21(45') 22 22 5x', 5x
6 22 23 23 6z,xla
7 23 24 24 6,5y
3a 2 2,4 -

xlh 2 3 5,23 3a, 3a
4a - 0 0,4 -

xli 0 1 1,5,24 4a, 4a
xlj 5 6 6 xlh,xli
b3, b4 - 5 5
xlk 5 6 6 W, b4
5ax 6 23 23, 46' xlk, xlj
Say 22 (46#) 23 23 5ax , 5ax
5a 23 24 24 5ay, 5ax
8 24 25 25 7,5a
8_d 25 25 8
3d 1 1 xlb
fa 5 5 xlh
6ax 23 24 24 xlh,xlh
6a 24 25 25 xli,6ax
7a 25 26 26 6a,8
7a_o 25 25 7a

* due to 1st level demultiplexer nodes 'Li...'
due to 2nd level dernulplexer nodes 'L2...'

98

Swl of the design is found to be 24. Here each demultiplexer node with a name 'L2...' will

be substituted with a number of delay units equal to 2 * Sw!. The control signals dO (cyclic

sequence = "1 010") and c20 (cyclic sequence = "1100") are used to control the

multiplexers of first and second level respectively.

The design at the 2nd level of multiplexing contains 2 multipliers. Thus there will be

two multiplier pairs that can be multiplexed at the third level. The multiplier pair (5x, 5ax)

gives a design at the third level of multiplexing. The multiplier node 5x is multiplexed twice

to perform four multiplication operations. The multiplier node 5ax is multiplexed once to

perform two multiplication operations. Because both multipliers are independent of each

other, there exists a timing redundancy. That is only six out of eight cycles of cOO are

required to perform all the multiplication operations and the remaining two cycles are

redundant. Since the second node of the pair is 5ax, the OFF period of c3O is equal to 2

cycles and ON period is equal to 4 cycles. The control signals dO (cyclic sequence =

"101010"), c20 (cyclic sequence = "110000") and c30 (cyclic sequence = "111100") are

used to control the multiplexers of 1st, 2nd and 3rd level multiplexers respectively.

The new DFGs are given in Fig. 5.5 and the time schedule for all the operators after

scheduling and allocation steps is given in Table 5.3. The times due to the 3rd level

demultiplexers are identified with "@". Here each demultiplexer node with name 'L3...' will

be substituted with a number of delay units equal to 2 * Sw!. The number -of delay units is

equal to 2 times the sw/instead of 4 times the s1, because of the two redundant cycles.

The gate count of this design is found to be 2762 and its nsf will be equal to 0.00725.

99

7a .o

Rib

R2a

R3a

7

3d 3a_d

31 3a

Fig. 5.5 : 4th order cascaded biquad digital filter
- data flow graphs with multiplexing level = 3

Ric

R2b

R3b

5y

100

Table 5.3 : 4th order cascaded biqUad digital filter - time schedule after 3rd level multiplexing (cwi = 10 bits;
swl = 23 bits)

Node Till TO W Child nodes

3,4,0 0 0
x1 b' 0 1 1,22 3,3
Am 0 1 1 0,0
xie 1 2 2 xib,xim
xia 0 1 1,20 4,4
xic 1 2 2 xia,xib
x2a 2 3 3 xic, xie
3a 1 1
xih 1 2 2, 21, 22 3a, 3a
4a 0 0,1
xii 0 1 2,22 4a, 4a
xij 2 3 3 xii, xlh
x3a 3 4 4 x2a, xlj
bl,g 1 1 -

xit 1 2 2 bl,g
al, b2 1 1 -

xld 1 2 2 al, b2
x2b 2 3 3 xlf, xld
b3, b4 2 2
xlk 2 3 3 b3, b4
x3b 3 4 4 x2b,xik
5x 4 21 21, 4.3°, 46', 88''°, 93, 94@# x3a, x3b
5 0(23',46®) 1 1 5y°, 5x@
xlg 1 (93®#) 2 2 5, 5x
5y 2 (94®#) 3 3, 21, 22, 23° xlg, 5x
id 3 3 5y
3 1 1 xlh
6z 19 (88@) 20 20 5x@°, 5x@
6 20 21 21 xla,6z
7 21 22 22 6,5y
5ay 20 (43°) 21 21 5x°, 5x
5a 21 22 22 5ay, 5x
8 22 23 23 7,5a
8_d 23 23 8
3i 2 2 xih
6a_x 21 22 22 xih,xih
6a 22 23 23 6ax,xli
7a 23 24 24 6a,8
7a_o 24. 24 - 7a

* due to 1st level demultiplexer nodes 'Li...'
due to 2nd level demultiplexer nodes 'L2...'
@ due to 3rd level demultiplexer nodes 'L3...'

101

All the three designs at different multiplexing levels are possible by selecting the pair

(5ax, 5az) initially at the 1st level of multiplexing. There are many pairs other than (5x, 1r)

and (6x, 5z) that can be multiplexed concurrently with (5ax, 5az). Similarly there are 29

different pairs with which the multiplexing can be .started at the 1st level. The BITSYN

algorithm searches for all possible solutions in order to get a minimal set of designs for

different sample frequencies. From this set of designs, opti mal solutions are selected such

that a solution at lower sample frequency is cheaper in gate count than the solution at

higher sample frequency. Table 5.4a. gives the optimal solutions obtained for the 4th order

cascaded biquadratic digital filter (CasBiq-4) digital filter. Here the SWi of all the designs is

equal to the respective minimum Swl or system latency. The coefficient word length of all

the multipliers is equal to 10 bits.

Table 5.4a : 4th order cascaded biquad digital filter optimal solutions

Design
No.

Level of
multipl-
exing

No. of
multi-
pliers

System Gate
latency count
(bits)

Normalized
sample

frequency

Sample
frequency
(KHz)*

1

2

3

4

5

6

7

0 6

1 3

1 3

2 2

2 2

3 1

3 1

21

22

23

22

23

23

23

5017

3620

3420

3265

3025

2762

2746

0.04762 952.4

0.02273 454.5

0.02174 434.8

0.01136 227.3

0.01087 217.4

0.00725 144.9

0.00543 108.7

swl = system latency = minimum swi;
* bit clock frequency = 20 MHz;
cpu seconds on SPARC 1 + = 561.93;
Total number of solutions searched = 11520 (no heuristics);

cwl = 10 bits

102

The BITSYN program evaluated 11520 different design solutions before obtaining the

seven opti mal designs given in Table 5.4a. The search space is large due to the exhaustive

search process. A number of heuristics conditions can be used to cut down the search

space and in turn the computation time. The heuristics are implemented in five different

levels which are defined in chapter 3. The effect of the different heuristics on the search

space and the computation time for the CasBiq-4 digital filter is given in Table 5.4b.

Table 5.4b : 4th order cascaded biquad digital filter solutions : heuristics effect

Heuristic No. of Search change in the optimal
level# solutions time solutions (refer to the

searched (cpu seconds) solutions in Table 5.4a)

0 11520 561.93 no heuristics are used

1 11520 561.93 no change in optimal solutions

2 11163 548.15 no change in optimal solutions

3 4016 192.99 no change in optimal solutions

4 3170 129.65 no change in optimal solutions

4 2777 84.92 The gate count of the 7th design
(pl =5%)* in Table 5.4a is changed.

The new gate count = 2777 (increase of 31 gates).

5 2880 115.00 no change in optimal solutions

5 1208 37.55 The gate counts of 6th and 7th designs

(p2=5%)* in Table 5.4a are changed. The new gate count

for the 6th design = 2781 (increase of 19 gates)

and for the 7th design = 2751 (increase of 5 gates).

The heuristic levels are defined in chapter 3.

* "p1" and "p2" are the percentage limits used in 4th and 5th heuristics.

103

It was found (Table 5.4b) for this CasBiq-4 filter that the heuristics at the first, second

and third levels do not change the optimal solutions. It can be seen that the first two

heuristics do not improve the search time in this example. The exhaustive search finds the

designs with minimum number of multipliers even though the designs are costly in terms of

gates. The first two heuristics are mainly used to prune the search paths leading to the

costlier solutions. It was found that the first two conditions do not affect the opti mal

solutions. In this example, each design is less costlier after multiplexing than the design

from which it is derived. Thus the first two heuristics are ineffective. The second heuristic

reduces the search time considerably. This heuristic removes the redundant search paths

during the concurrent multiplexing. The 4th and 5th heuristics also give optimal or near

opti mal solutions with a considerable reduction in the search time.

BITSYN saves a set of minimal gate designs at different normalized sample

frequencies. If the initial specifications such as the user specified Swl or cwl are changed,

the minimal set of designs can be re-computed with the new specifications. It has been

observed that the re-evaluated designs will be opti mal or near optima l solutions. Table 5.4c

gives the designs for the CasBiq-4 filter with different Swl and cwl. The optimal designs with

10 bit cwl and with Swl equal to the system latency is already given in table 54a.

The minimal set of saved designs are recomputed to get new designs with the

required SW! of 32 bits. The SFG is resynthesized with user specied swi of 32 bits. It has

been found that both methods result in same optimal solutions. Similarly the recomputed

designs with the cwl equal to 12 bits have been found to be the same as the synthesized

designs..

104

Table 5.4c Modified optimal solutions with swl = 32, and with cwl = 12 for 4th order
cascaded biquad digital filter.

Design Level of No. of System Gate Normalized Sample
No. multipl- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 0 6 21 5247 0.03125 625.00

2 1 3 24 4030 0.01563 312.50

3 2 2 23 3680 0.00781 156.25

4 3 1 26 3387 0.00521 104.17

5 3 1 26 3351 0.00391 78.13

1 0 6 24 5887 0.04167 833.33

2 1 3 25 4160 0.02000 400.00

3 1 3 26 3915 0.01923 384.62

4 2 2 25 3705 0.01000 200.00

5 2 2 26 3420 0.00962 192.31

6 3 1 26 3072 0.00641 128.21

7 3 1 26 3050 0.00481 96.15

swl = 32 and cwl = 10;
@@ cwl = 12 and swl = minimum swl = system latency;
* bit clock frequency = 20 MHz;

Thus BITSYN allows the user to change the specifications at the end of the synthesis

process. The graphics interface allows the user to compare different designs and to select a

design. Once the user has chosen a design, the design is synthesized using the saved

design data such as the multiplier pairs and the order of multiplexing. After scheduling and

data allocation, the FIRST language output is created. The filter design whose DFGs and

the time schedule are given in Fig. 5.5 and Table 5.3 is generated in the FIRST language.

The resulting FIRST language output is given in appendix B.

105

Once the design is generated in the FIRST language, it can be simulated using the

simulator .SIMFIRST [3]. The netlist translator developed at the Department of Electrical

and Computer Engineering, University of Calgary is used to assemble the FIRST language

description into the netlist format suitable for field programmable gate array (FPGA), XILINX

[14]. The different steps involved in a bit-serial implementation from FIRST code are

illustrated in Fig 5.6a. The netlist translator is used to convert FIRST code into a XILINX

netlist. The XILINX demonstration setup shown in Fig. 5.6b is used to implement the

design. The CasBiq-4 design was successfully implemented and tested in a XILINX FPGA.

5.2 Second order Wave Digital Filter (Wave-2)

A variety of designs generated using BITSYN for the second order wave digital filter

(signal flow graph in Fig. 2.la) have been tabulated in Table 5.5. The cwl has been set to

12 bits (signed) and various values for the swi have been selected. Note that there is a

significant reduction in the gate count for the designs where two or fewer multipliers are

used. The designs are generated initially without specifying a particular swi. These designs

marked with "m" have Swl equal to the system latency because the filter structure is

recursive. The 6th design in the table is not optimal for sw! of 25 bits, because the 5th

design is cheaper and has higher sample frequency. The 6th design is part of minimal set

of designs that was saved in the design space.

Next the designs are generated with a user specified Sw! of 32 bits. The designs can

be generated using two different methods. In the first method, the previously calculated

minimum set of designs are recomputed with the new Sw! specification. These designs are

106

Parameterized
Bit Serial
Parts Library

Add/Subtract
Multiply
Serial/Parallel
Parallel/Serial
Multiplex
Shift
Control Generator

New Library
Elements

- Logsim Netlist Code

-

Logsim
Technology Library

Logsim Interactive
Simulator

A *

Enhanced FIRST Code (EFC)

Field Programmable
Gate aray

XILINX ACTEL

1
Hardware
Prototype

Enhanced SIMFIRST
Event Driven
Bit Serial Simulator

SILOS
Gate Level
Simulation

Gate array
Silvarlisco
VHDL

* Enhanced FIRST 'Code
- New parts : parameterized
P/S & S/P. Logic functions
Control Generator

A FIRST - Pipelined bit-serial
Silicon Compiler
Denyer/Renshaw 1985

Fig. 5.6a : Different steps involved in the bit-serial implementation

Analog

input
A/D

XILINX 3090

12

L
Configuration

ROM

BIT SERIAL

DESIGN

P/S s/P

Control Generator

CLOCK

Analog
D/A

output

Fig. 5.6b : Block diagram of XILINX demonstration setup

107

identified with ttc". In the second method the SFG is resynthesized with the new

specifications. The designs obtained in the second method are identified with "s".

Table 5.5 : 2nd order wave digital filters designed using BITSYN

Design Level of No. of System Gate Normalized Sample
No. multipl- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 m 0 5 25 4632 0.0400 800.0
1 c s 0 5 25 4977 0.0313 625.0

2 m 1 4 25 4075 0.0200 400.0
2 c 1 4 25 4355 0.0156 312.5

3 m 1 3 26 3485 0.0192 384.6
3 c s 1 3 26 3990 0.0156 312.5

4 m 2 2 24 2715 0.0104 208.3
4 C s 2 2 24 3185 0.0078 156.3

5 m 3 1 25 2444 0.0050 100.0
5 c 3 1 25 2924 0.0039 78.1

6 m 3 1 28 2458 0.0045 89.3
6 c s 3 1 28 2658 0.0039 78.1

m swl = system latency = minimum swl; cwl = 12 bits;
c swl = 32; the designs are recomputed;

swl = 32; the designs are resynthesized;
* bit clock frequency = 20 MHz;
cpu seconds on SPARC 1+ = 5.78 (no heuristics);
Total number of solutions searched = 226 (no heuristics);

Note that when the Swl is changed to 32 bits, the previously non-optimal design (6th

design in the table) becomes a useful solution and the previously optimal design (5th design

in the table) becomes redundant. The reason is the 6th design has a minimum Sw! of 28

bits where as the 5th design has 25 bits minimum Sw!. To achieve a 32 bit swl, a number

of delay units equal to the difference of swl and minimum swl, must be inserted in all the

108

closed loop signal paths of the designs. Thus the 6th design requires less delay units than

the 5th design. The 2nd design becomes redundant when the swi is changed to 32 bits.

Note that the 2nd and the 5th designs do not appear during the resynthesis process. This

demonstrates that recomputation of designs may not give all the solutions when the Swl

specification is decreased.

5.3 Second order Direct Form Digital Filter (Direct-2)

In table 5.6 the design of a second order biquadratic direct form digital filter (signal

flow graph in Fig 2.14a) has been evaluated using BITSYN. This filter has a 12 bit (signed)

cwl and the SW! IS determined by the critical path latency or system latency. Note that this

filter can be used to implement the same biquadratic transfer function as the Wave-2 digital

filter. For level 0 multiplexing, this direct form design requires fewer gates and has a slightly

higher sample frequency as compared to Wave-2 digital filter (due to the lower critical path

latency). For multiplexing level three (one multiplier) the wave filter design requires

somewhat fewer gates.

Even though both filters have the same number of multiplication operations, the

number of solutions searched (with no heuristics) is equal to 968 in the case of Direct-2 as

compared to 226 in the case of Wave-2. The size of the search space is dependent an the

connectivity between the different multipliers. In the case of Direct-2 digital filter, the

multipliers are independent of each other and there exists a larger number of search paths

for concurrent multiplexing. It can be observed that the sample frequencies of the 5th and

6th designs are approximately one fifth the sample frequency of the five multiplier solution.

109

That is, these designs with a single multiplier perform five multiplication operations in 5

cycles to .obtain an output sample. Since the designs are multiplexed at the 3rd level,

maximum eight (2', n = 3) cycles can be used to compute an output sample. Thus there

exists timing redundancy with three redundant cycles in these designs. Similarly it can be

observed that the 7th and 8th solutions need all eight cycles to compute an output sample.

Table 5.6 Second order direct-form digital filters designed using BITSYN

Design Level of No. of System Gate Normalized Sample
No. multipi- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 0 5 23 4352 0.0435 869.6

2 1 3 24 3320 0.0208 416.7

3 2 2 23 2955 0.0109 217.4

4 2 2 24 2740 0.0104 208:3

5 3 1 25 2356 0.0080 160.0

6 3 1 26 2311 0.0769 153.8

7 3 1 25 2301 0.0500 100.0

8 3 1 26 2291 0.0048 962

swi = system latency = minimum swl; cwl = 12 bits;
* bit clock frequency = 20 MHz;
cpu seconds on SPARC 1+ = 23.91 (no heuristics);
Total number of solutions searched = 968 (no heuristics);

5.4 Fifth order LDI Digital filter (LDI-5)

The BITSYN program has been used to analyze designs of a fifth order Bilinear LDI

(elliptic) low pass digital filter [26]. The signal flow graph of the LDI-5 digital filter is shown

in Fig. 5.7. Designs generated for this low sensitivity ladder filter structure using BITSYN

110

0.5 + + -1 -4- -1 4- 1 Vout

mplo

Fig. 5.7 5th order bilinear LDI digital filter signal flow graph

Table 5.7 5th order bilinear LDI digital filers designed using BITSYN

Design Level of No. of System Gate Normalized Sample
No. multipl- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 0 9 68 12043 0.01476 294.12

2 1 6 48 9290 0.01042 20833
3 1 6 49 9060 0.01020 204.08

4 2 5 26 6876 0.00962 192.31

5 2 5 27 6496 0.00926 185.19

6 3 3 26 6064 0.00481 96.15

7 3 3 27 5539 0.00463 92.59

8 4 2 28 5958 0.00223 44.64

swl = system latency = minimum swl; cwl = 12 bits
* bit clock frequency = 20 MHz;
Cpu seconds on SPARC 1+ = 4964 (heuristics at the 2nd level);
Total number of solutions searched = 82987 (heuristics at the 2nd level);

111

are given in Table 5.7. Note that in this particular filter architecture the implementation

which requires the fewest gates is the one in which three multipliers are used. For designs

with fewer than three multipliers, the cost of the extra registers required to delay signals is

larger than the savings in the gate count due to the sharing of multiplier operators. The

design without any multiplexing has a system latency equal to 68. Since the structure is

recursive in nature, the swI can not be less than 68. In general such a large system word

length is not necessary. Thus there is an advantage to multiplex the multipliers in this

recursive structure.

The multiplexing strategy reduces the critical path length and in turn the system

latency. Thus the designs with considerable reduction in their hardware cost can be

achieved without comparable reduction in their sample frequencies. The 5th design in the

table is such a design. The hardware cost of this design is reduced by 46% as compared

to that of 9 multiplier design where as the sample frequency is reduced only by 37% as

compared to the 9 multiplier design. The 2nd level heuristics are used to obtain the

designs. As the level of the heuristics increases, some of the designs are no longer

optimal. The exhaustive search can not performed in a reasonable amount of time for this

design which is more than 2 days of cpu time.

5.5 Fifth order Wave Digital Filter (Wave-5)

• The BITSYN program has also been used to evaluate designs for a fifth order wave

digital low pass (elliptical) filter (Wave-5) which has been studied extensively in high

level synthesis [19] [34]. The signal flow graph of the Wave-5 filter is shown in Fig. 5.8. In

112

18

2

38

39

Y43

Fig. 5.8 : 5th order elliptic wave digital filter signal flow graph

Table 5.8 : 5th order wave digital filers designed using BITSYN

Design Level of No. of System Gate Normalized Sample
No. multipl- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 0 8 71 11563 0.01408 281.69

2 1 7 50 10930 0.01000 200.00

3 1 6 51 10690 0.00980 196.08

4 2 5 52 9935 0.00962 192.31
5 2 5 28 8411 0.00893 178.57

6 2 4 30 6986 0.00833 166.67
7 3 2 29 5883. 0.00446 89.29
8 3 2 28 5763 0.00431 8621

9 4 1 31 7386 0.00201 40.32

swi = system latency = minimum swl; cwl = 12 bits
* bit clock frequency = 20 MHz;
cpu seconds on SPARC 1+ = 291.39 (heuristics at the 2nd level);
Total number of solutions searched = 1985 (heuristics at the 2nd level);

113

Table 5.8 the design alternatives for this filter are provided. This filter implements the same

class of transfer functions as the 5th order LDI filter. Note that the smallest design is larger

than that of the LDI but has similar swi and sample rate specifications. The designs are

synthesized using the heuristics at the 2nd level. Even though this structure has 8

multipliers the number of designs searched are 1985. This is due to the fact that most of

the multipliers are interdependent.

5.6 Sine! Cosine Function Generator

• A number of recursive digital filter implementations have been evaluated and

contrasted using BITSYN. A sine/cosine function generator is designed using BITSYN. It

does not have any states unlike digital filters.

The sine and cosine functions can be expressed in terms of trigonometric series as

x2 x4
sin(x)1 2! 41 81

X3 x7+x9

The first four terms in each series are used to implement an approximation to the sine and

cosine functions. The corresponding SFG is shown in Fig. 5.9. There are eight constant

coefficient (fractional coefficient) multipliers and eight signal coefficient multipliers. In this

example the coefficient word length of the signal coefficient multipliers will determine the

dynamic range instead of the system word length. The coefficient multiplier pairs can not be

multiplexed concurrently because the multipliers are dependent on each other.

Constant
Input

+

sin(x)

Fig. 5.9 : Signal flow graph of sine/cosine function generator

115

If the number of multipliers are small, the designs can be obtained in a reasonable

amount of time. The different heuristic conditions discussed in chapter 3 perform well, when

the-number of multiplier pairs that can be multiplexed concurrently are small. The heuristics

use the gate count and sample frequency information to prune the multiplexing paths. In this

example, the constant coefficient multipliers (eight in number) are independent of each other

and form 56 multiplier pairs which can be multiplexed concurrently at the first level. The

constant coefficient multipliers can be reduced to four multipliers in 40320 (56*30*12*2)

ways at the first level of multiplexing. The heuristics do not perform well if the large number

of designs have similar gate counts and sample frequencies.

One way of reducing search space is to select manually a very few (one or two)

multiplier pairs at the first one or two levels of multiplexing. The BITSYN program can then

be used perform the multiplexing at the higher levels. Fortunately this problem of large

search space occurs with the simple structures such as FIR filter and this example, where

the user can group the multipliers and specify the multiplexing pairs easily as compared to

complicated recursive structures. This manual intervention is avoided by implementing a

similar concept in the program itself. Thus a special pruning (heuristic) is introduced for

simple structures such as FIR filters where the multipliers are independent. Here the

concurrent multiplexing will start always with a pair instead of starting with all the pairs.

The position of the multipliers in the tree structure is used to select the pair. The multiplier

nodes at bottom most levels of the tree are multiplexed first. The reason is that the

multiplier pair does not interfere with any other multipliers. This type of pruning is used at

all levels:

116

This special heuristic is also tested with FIR fitters This heuristic generate designs

with fewer gates but does not give a range of optimal solutions. Table 5.9 gives the

different designs obtained by BITSYN. The design with the fewest gates contains only 2

multipliers and the design is obtained at the 3rd level of multiplexing. The number of gates

in the fewest gate design are 3641, where as the operator-parallel design consume 16782

equivalent gates. Since the original SFG is a non-recursive structure, the Swi of an

operator-parallel design is not limited by the system latency. All other designs have a

minimum Swi limit which is equal the system latency or the length of the closed loops

inside the design.

Table 5.9 : Sine/ cosine function generator designs obtained using BITSYN

Design Level of No. of System Gate Normalized Sample
No. multipl- multi- latency count sample frequency

exing pliers (bits) frequency (KHz)*

1 0 16 1 16782 1 20000/required swl

2 1 11 18; 11065 0.02277 555.56

3 1 10 34 10440 0.01471 294.12

4 2 8 34 8815 0.00735 147.01

5 3 6 19 7321 0.00657 131.00

6 3 2 37 3641 0.00338 67.567

swl = system latency = minimum swl;
cwl of signal coefficient multipliers = 16 bits; default cwl = 10;
* bit clock frequency = 20 MHz;
cpu seconds on SPARC 1+ = 19.20
Total number of solutions searched = 148 (special pruning and 2nd level heuristics);

117

Chapter 6

CONCLUSION

The goal of this thesis has been the development of an architectural synthesis tool for

the design of pipelined bit-serial digital signal processing (DSP) systems. A synthesis tool

named BITSYN (BIT-Serial SYNthesis) has been developed. The BITSYN tool evaluates the

resource sharing strategies (multiplexing) and generates a variety of pipelined bit-serial DSP

systems. The objective of the synthesis process is to find a bit-serial structure that best

meets the constraints of clock rate, area or size, and system word length while achieving

goals such as maximizing the sample rate and minimizing the size.

The following sections summarize the contributions presented in this thesis and

discuss possible areas for further research.

6.1 Contributions of the Thesis

A very few high level design tools for the bit-serial systems have been reported in the

literature [7] [24]. These design tools translate a behavioral description into a single bit-

serial design structure and some of these tools use optimization techniques to reduce the

number of delay units required in bit-serial designs. In contrast, BITSYN employs a

resource sharing or multiplexing strategy and generates different pipelined bit-serial designs

in a three dimensional design space. This design space includes the size (gate count),

sample rate and minimum system latency (minimum sw. BITSYN relieves the designer of

118

the involved and tedious process of scheduling complicated recursive DSP algorithms for

pipelined bit-serial implementations. BITSYN accepts as input a compact, high level, signal

flow graph (SFG) description which is similar to the SFG description used, in DIGICAP [23]

and generates output in the FIRST [3] language.

The major steps involved in the synthesis process are discussed in chapter 2. In

BITSYN, the behavioral input is represented in the form of data flow graphs (DFG). The

resource sharing process is used to perform multiplexing. The resource sharing algorithm

modifies the DFGs by inserting multiplexer and demultiplexer nodes. The resource sharing

process starts with multiplier pairs and reduces the number of multipliers as the process

continues. The concept of concurrent multiplexing is introduced. During concurrent

multiplexing, two or more multiplier node pairs can be shared. The scheduling and delay

allocation strategies are developed in such a way that the number of the delay units

required is minimized.

Chapter 3 discusses the implementation of the BITSYN algorithm. The algorithm is

based on the exhaustive search of all possible multiplexed designs. The total number of

search solutions is based on the number of multiplier nodes and not the total number of

nodes in the DFGs. As the total number of search solutions increases exponentially with the

number of multiplier nodes, five different heuristics have been proposed to obtain optimal or

near optimal designs within a reasonable time.

Chapter 4 describes the design of a FIRST control generator and the generation of the

different control signals required by the systems produced using BITSYN. The control

signals can be generated using finite state machines (FSM) or linear feedback shift

119

registers (LFSR). After comparing both 'methods, it was found that a FSM circuit is cheaper

than a LFSR circuit while designing a LFSR circuit is much simpler than designing of a

FSM.

Digital filter designs have been evaluated and contrasted in chapter 5. The different

features of the BITSYN algorithm are discussed using the design examples. Designs

obtained from BITSYN have been implemented using XILlNX [14] field programmable gate

arrays. BITSYN allows the designer to choose different designs with a variety of different

hardware costs, sample rates and system word lengths.

6.2 Suggestions for Further Work

BITSYN has been developed for digital filter applications and it is compatible with the

filter analysis program DIGICAP [23]. A selective set of functional operators containing two

or less inputs and one output, are supported by BITSYN. Generic operators also containing

two or less inputs and one output are introduced such that they can simulate any new

functional operator. If a functional operator has more than one output, it can be indirectly

used in BITSYN. That is, a functional operator with 'm' outputs will be represented in the

SFG by 'm' different generic operators each containing one output and the same inputs.

After the design is synthesized, all 'm' operators with same data inputs and control inputs

can be merged into one operator in the FIRST language output. The problem with this

indirect method is that those 'm' operators should not be multiplexed. When a functional

operator has more than two inputs the BITSYN does not support that functional operator at

all. In future, the synthesis program should support multi-output and multi-input functional

120

operators so that it can be used in a wide area of DSP applications.

The.BITSYN algorithm is based on an exhaustive search. As the number of multipliers

increases the search space and search time increases exponentially. The heuristics

suggested in chapter 3 can be used to reduce the search space and time to some extent.

The search time is also depend on the connectivity between different multipliers. If they are

all independent, then the search time increases since the number of combinations for

concurrent multiplexing increases. Optimization techniques, such as simulated annealing,

should be considered in future to reduce the search time. Simulated annealing may be

useful If the user want to find a near-optimal design which meets certain constraints such

as gate count and sample frequency.

121

REFERENCES,

[1] James V. Candy, Signal Processing : The Model-Based Approach, Reading, New

York: McGraw-Hill Inc., 1986.

[2] L.R. Rablner and Bernard Gold, Theory and Applications of Digital Signal

Processing, Reading, Englewood Cliffs, NJ: Prentice-Hall, 1975.

[3] P. Denyer and D. Renshaw, VLSI Signal Processing : A Bit-Serial Approach,

Reading, Massachusetts: Addison-Wesley, 1985.

[4] L.B. Jackson, Digital Filters and Signal Processing, Külwer publishers, 1989.

[5] R. Hartley and P. Corbett, "Digit-Serial Processing Techniques," IEEE Trans. on

Circuits and Systems, Vol. 37, June 1990.

[6] Keshab K. Parhi, "A Sytematic Approach for Design of Digit-Serial Signal

Processing Architectures," IEEE Trans. on Circuits and Systems, Vol. 38, no. 4,

April 1991.

Rajeev Jain and et al, "Custom Design of a VLSI PCM-FDM Transmultiplexer from

System Specifications to Circuit Layout Using a Computer-Aided Design System,"

IEEE Journal of Solid-State Circuits, Vol. 21, no. 1, pp. 73-85, February 1986.

[8] R.F. Lyon, "A Bit-Serial VLSI Architectural Methodology for Signal Processing,"

International Conference on VLSI, VLSI 81, Academic Press, 1981.

122

[9] L.B. Jackson, J.F. Kaiser, and H.S. McDonald, "An Approach to the Implementation

of Digital Filters," IEEE Trans. on Audio and Electroacoustics, Vol. vol. AU-1 6, no.

3, pp. 413-421, 1968.

[10] N.W. Bergmann, "A Case Study of the FIRST Silicon Compiler," 3rd Ca/tech

Conference on VLSI, pp. 41340, Computer Science Press, 1983.

[11] M. McFarland, A. C. Parker, and R. Camposano, "Tutorial on High-Level

Synthesis," 25th AMIIEEE Design Automation Conference, pp. 330-336, 1988.

[12] VT! tools : Refernce manuals, VLSI Technology, Inc., 1989.

[13] Cadence tools : Reference manuals, Cadence Design Systems, Inc., 1989.

[14] The programmable Gate Array data book, XILINX, Inc., 1989.

[15] P. Paulin, J. Knight, and E. Gyrczyc, "HAL: A Multi-Paradigm Approach to

Automate Data Path Synthesis," Proc. 23rd Design Automation Conference, pp.

263-270, 1986.

[16] N. Park and A. Parker, "SEHWA : A Software Package for Synthesis of Pipelines

from Behavioral Specifications," IEEE Trans. on Computer-Aided Design, Vol. 7,

pp. 356-370, March 1988.

[17] M.McFarland, "Using Bottom Up Design Techniques in Synthesis of Digital

Hardware from Abstract Behavioral Descriptions," Proc. 23rd Design Automation

Conference, pp. 474-480, 1986.

[18] A. Parker, J.Pizarro, and M. Mlinar, "MAHA : A Program for Data Path Synthesis,"

Proc. 23rd Design Automation Conference, pp. 461-466, 1986.

123

[19] B. S. Haroun and M. I. Elmasry, "Architectural Synthesis for DSP Silicon

Compilers," IEEE Trans. on Computer-Aided Design, Vol. 8, pp. 431-447, April

1989.

[20] C. Tseng and D.P. Siewiorek, "Automated Synthesis of Data Paths in Digital

Systems," IEEE Trans. on Computer-Aided Design, Vol. 5, no. 3, pp. 379-395,

July 1986.

[21] H. Trickey, "Flamel: A High-Level Hardware Compiler," IEEE Trans. on Computer-

Aided Design, Vol. 6, no. 2, pp. 259-269, March 1987.

[22] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling in Automatic Data Path

Synthesis," 24th ACM/IEEE Design Automation Conference, pp. 195-202, 1987.

[23] b E. Turner , D. A. Graham, and P. B. Denyer, "The Analysis and implementation

of Digital Filters using Special Purpose CAD Tool," IEEE Trans. on Education, Vol.

32, pp. 287-297, August 1989.

[24] Richard I. Hartley and Jeffrey R. Jasica, "Behavioral to Structural Translation in a

Bit-Serial Silicon Compiler," IEEE Trans. on Computer-Aided Design, Vol. 7, no. 8,

pp. 877-886, August 1988.

[25] A. Nagalla and L.E. Turner, "Pipelined BIT-serial SYNthesis of Digital Filtering

Algorithms," International Conference on VLSI, VLSI 91, Edinburgh, August 1991.

[26] L. E. Turner and B. K. Ramesh, "Low Sensitivity Digital LDI Ladder Filters with

Elliptic Magnitude Response," IEEE Trans. on Circuits and Systems, Vol. 33, pp.

697-706, July 1986.

124

[27] K. Meerkotter and W. Wegener, "A New Second-Order Digital Filter without

Parasitic Oscillations," Arch. Elektronik & Ubertragungstech., Vol. 29, pp. 312-314,

1975.

[28] Wesley W. Peterson and E.J. Weldon, Jr, Error-Correcting Codes, MIT Press Inc.,

1961.

[29] Rodger E. Ziemer and Roger L. Peterson, Digital Communications and Spread

Spectrum Systems, Reading, New York: Macmillan Inc., 1985.

[30] Zvi Kohavi, Switching and Finite Automata Theory, Reading, New York: McGraw-Hill

Inc., 1978.

[31] Databook and Design Manual - HCMOS Macrocell Manual, LSI Logic Corporation,

1986.

[32] G. Hamachi, Peg Tutorial, VLSI Tools, University of California, Berkeley, 1984.

[33] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984:

[34] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, "Percolation based Synthesis," 27th

ACM/IEEE Design Automation Conference, pp. 444-449, 1990.

[35] M. R. Smith and L. E. Turner, EPLOT graphical interface language, Dept. of ECE,

University of Calgary, Sept, 1988.

125

APPENDIX A

IMPLEMENTATION OF THE BITSYN ALGORITHM

This appendix discusses the implementation of the BITSYN algorithm in detail. The

BITSYN algorithm has been implemented in a C language program running on a Sun

SPARC CPU.

Fig. A.1 gives a flow diagram of the BITSYN algorithm. BITSYN starts by reading the

input specifications such as coefficient word length (cwl) of a multiplier and user specified

system word length (swl). These specifications are optional inputs. If cwl is not specified

the default cwl is equal to 4. The constraints such as maximum number of gates and the

minimum sample frequency can be specified optionally. They can be used to limit the range

of the exhaustive search. The technology to implement the design is also specified here.

The module read_SFG_input is used to read the signal flow graph (SFG) description.

If there are any syntax errors in SFG nethst, this module reports the errors to the user. The

translation from the SFG netlist to the data flow graphs (DFG) is carried out by the module

make_DFG. Once the DFGs are created in the form of binary structures, the parameters

such as ident and child of each node are updated.

The module form multfiairs is used to form a list of pairs of the multiplier nodes or

the generic nodes that are large in size. These pairs will be used in resource sharing

process. If there are m similar type of multiplier nodes, the number of pairs is equal to

m*(m1).

126

S

(input specifications)

(display_design_statistics)

(read_SFG_input)

(make_DFG)

(form_mulLpaii)

enerate_design_spac

V

(graphics—interface

(make—FIRST _code) change—specifications

Fig. A.1 : Flow diagram of the BITSYN algorithm

127

The module generate_design_space uses all three steps such as resource sharing,

scheduling and allocation and generates a number of designs with different sample

frequencies. An operator-parallel solution without any multiplexing is generated using

scheduling and allocation steps. Then all the designs are displayed using

graphical interface. The functions of the modules generate_design space and

graph/ca/interface are explained in the following sections. The first step in

generate _design _space is to analyze each multiplier pair using the module analyze_pairs.

A.1 Analyze multiplier pairs.

The flow diagram illustrating the function of analyze_pairs is given in Fig. A.2. This

module identifies all the invalid pairs. A pair becomes invalid in two different situations. If

the second node is a child of the first node in a pair, then the pair is considered as invalid.

If the algorithm is in the middle of concurrent multiplexing (CM) and a pair does not meet

the conditions for CM, then the pair is treated as invalid. The principle of the concurrent

multiplexing is explained in chapter 2. If a pair is a valid one, resource sharing

(multiplexing) explained in chapter 2 is performed using the module called make_mux. The

resource sharing process modifies the DFGs. If a pair can be concurrently multiplexed

(multiplexed at the same level) with any other pair, then that pair will be considered as part

of concurrent multiplexing (CM). If the pair is valid and is part of CM, no processing is

performed after multiplexing.

If a pair is valid and not part of CM, then the multiplexed DFGs can be scheduled

using scheduling module. This step consists of both forward scheduling and backward

128

S
 J

(select first pair)

(select next pair

yes

yes

is concurren yes
multiplexing possible'

(

(

C

no

scheduling)

allocation

find_statistics

(recover _old_DFG

)

)

set the pair as part of
,concurrent multiplexing

Fig. A.2 Flow diagram of the module analyze_pairs

129

scheduling. The system latency will be obtained at the end of this step. In recursive or feed

back structures, the system word length will be equal to the maximum of the user specified

swl and the system latency. After the swl is decided, the allocation module replaces the

nodes with equivalent functional operators and introduces delay units in appropriate places.

The scheduling and allocation steps are explained in chapter 2.

The next step is to find the design characteristics using the module find _stads tics.

Here, the number of different types of operators such as multipliers, adders, registers, will

be counted. The user specifies the number of equivalent gates required to implement each

operator in different technologies of interest. BITSYN uses the LSI [32] logic gate array

technology and the XILINX [14] programmable gate array technology.

The total number of equivalent gates (gate count) is calculated as the sum of the

gates for each and every operator needed to implement the design in a particular

technology of interest. If there are no redundant cycles among 2" (where n is the

multiplexing level) cycles of COO (LSB time) then the normalized sample frequency (nsf) for

the design is equal to 11(2" * swl). But, if some oLthe 2" cycles of cOO are redundant then

the nsf is equal to 1/(period of cnO in bits * swl). The sample frequency of a design can be

found by multiplying the nsf with the bit clock frequency. Thus the size and the speed of ,a

design is found in this step. The design characteristics such as gate count, normalized

sample frequency and the number of different types of operators are stored as the

parameters of the multiplier pair.

The original DFG should be recovered to analyze another pair. This is done using

module recover old DFG. Before multiplexing, a copy of the DFGs is stored at each level.

130

The recover old DFG removes all the multiplexers and demultiplexers that are inserted

during the resource sharing process and recovers the old DFGs. Thus a pair is analyzed

and is classified as an invalid pair or as a pair that is part'of CM or as a pair that can

produce a multiplexed design with a given characteristics.

A.2 Generation of design space

The flow diagram illustrating the algorithm of generate design space module is given

in Fig. A.3. This module performs multiplexing at different levels. The first module

anaiyze_pairs is used to characterize the multiplier pairs. Then the pairs are sorted in

ascending order of their gate count. All the invalid pairs are placed at the end of the list.

The pairs which are part of CM are placed at the beginning of the list. This sorting is useful

when heuristics are used to cut down the search space. The invalid pairs are kept at the

end of the list so that they can be ignored.

The synthesis steps used here are similar to the ones used in module anaJyze_pairs.

A pair will be multiplexed using the module make_mux. here the multiplexers and the

demultiplexers are introduced into the DFGs.

If a pair is not a member of CM, or if a pair is the last member of CM (no further

CM), then the design along with its characteristics is saved using the module

save_design staUstics. The design does not have to be analyzed again. The designs are

saved in three dimensional space. The three dimensions are normalized sample frequency

(nsf), gate count and the system latency. The function of save_design_statistics is explained

in the design space section of chapter 3. After saving the design, multiplexing at the next

131

(analyze-pairs)

(sort-pairs)
(select first pair)

select next pair)

(save_design_statistics)

1
(increment mux level)

(form new mult pairs

(set old mux level

(recover _old_DFG

recursive loop

Fig. A.3 : Flow diagram of the module generate_design_space

-01

132

level is considered by a recursive call to the generate design space. Before the recursive

call, the level of multiplexing is incremented.

Once a pair is multiplexed, the second node of that pair does no longer exist in

DFGs. So all other pairs containing that second node as a member will become invalid for

future multiplexing. The module form new mu/f pairs is used to create a new set of pairs

before the recursive call.

If a pair is part of CM, there may be more than one other pair that can be shared

along with that pair. So there may be more than one design that can be generated with

each pair at the same level of multiplexing. All the possible designs can be generated by

calling generate_design_space, but without incrementing the level of multiplexing. Suppose

a new pair is multiplexed concurrently in the recursive call. If this new pair is again part of

CM, it indicates that there is at least one more pair which can be shared along with the first

two pairs. The recursive call is used again to multiplex at the same level. If the new pair is

not part of CM, it indicates that concurrent multiplexing is over. The characteristics of the

resultant design will be calculated in analyze_pairs. After saving the design, the recursive

call is used to find designs at the higher levels of multiplexing.

Once the algorithm is returned from the recursive call, the old DFGs are recovered.

The level of multiplexing is set to the old value. The next valid pair is used to produce new

designs. The recursive call is continued until all the pairs in the list are invalid. Thus the

recursive module generate_design space generates all the possible designs at different

levels of multiplexing.

133

A.3 Graphical interface

An interactive graphics interface is developed using the EPLOT graphics library [35].

The graphics interface module will be used after generating the designs as shown in Fig.

A.1. All the designs will be displayed in X-Y plot where the X coordinate represents the

normalized sample frequency and the Y coordinate represents the number of LSI equivalent

gates (gate count). A selective portion of the graph can be observed in full scale by using

the zoom facility. This tool can be used to observe all the characteristics of a particular

design using the module display_design_statistics.

Two other modules make—first code and change_specifications can be used in the

graphics environment. The module make_first_code generates FIRST [3] language output

of a selected design. The second module charvje_specifications recomputes all the designs

if the input specifications are changed. If the program is being used in alphanumerical

terminal then the two modules can be used interactively in non graphics environment.

A.3.1 Display design statistics

The module display _design statistics is used to display different characteristics of a

design such as the number of multipliers, the gate count, the normalized sample frequency,

swi, minimum Swl or system latency. in a tabular form. It also compares all the

characteristics of two recently selected designs using histograms. All the designs are

selected by the mouse. After comparing the characteristics of different designs the user

can select a design and can generate the design in the form of the FIRST language.

134

A.3.2 Make FIRST code

The. module make first code is used to generate the FIRST language output of a

design. Once a design is selected from the design space, the major steps in the synthesis

process are used. The make_mux module performs the resource sharing at different levels

using the multiplier pairs associated with the design. After multiplexing, the resultant

multiplexed design is scheduled using the module scheduling. The appropriate delays are

allocated in the DFGs using the module allocation. The module make _first _node generates

the equivalent circuit of the resultant DFGs in the form of FIRST language. Once the design

in FIRST language is generated, it can be tested using the SIMFIRST [3] simulator.

A.33 Change specifications

The module change specifications is used to modify the specifications such as swi

and cwl of the designs in the design space. All the designs will go through the procedure

similar to the one involved in the make_first_code except the generation of the FIRST code.

The effect of changing the specifications on the design space is shown in different design

examples given in chapter 5.

135

Appendix B

A MULTIPLEXED 4th ORDER CASCADED BIQUAD DIGITAL FILTER

This section contains a multiplexed design of a 4th order cascaded biquad digital filter

in the form of FIRST [3] hardware description language. The,, signal flow graph of the filter is

given in Fig. 5.la. The BITSYN program is used to generate the multiplexed design with

three levels of multiplexing. In the following FIRST code, the statements which starts with 'I'

are comments. This filter has six multiplication operations. The design given here has one

multiplier which performs all six multiplication operations in six cycles. The FIRST control

generator can not be used to generate the required control signals. Either finite state

machine or linear feedback shift registers (LFSR) can be used to generate the required

control signals. The gate count given here includes the gate cost of the LFSR based control

generator. The necessary information required to design the LFSR based control generator

is provided as comments. The design is generated in the form of a high-level .bit-serial

operator, FILTER as given below.

136

FIRST code of the 4th order cascaded biquad digital filter

I cwl: 10; Sw!: 23; min Sw!: 23
I add: 11; mult: 1; mux: 21; dshift: 0; mshift: 0; delay: 282
/ signal delay: 230; c_delay: 30; ci delay: 22
I Total gates in LSI :2762 Normalized sample frequency : 0.00724638

I OPERATOR FILTER created by BITSYN

OPERATOR FILTER [] (cOO, dO, c20, c30, clearO, csO)
nO dO, mOdO, ml-00, m2d0, m3d0, m4d0, m5d0 -> n7a0

• I minimum system word length = 23
I system word length =23
I coefficient word length = 10
I multiplier latency = 17
!add 11
1 multiply 1
I multiplex 21
I bitdelay 282

/ n7a_o output at time 140 (or at time 25 in 6' cycle of period[=233)
I nOdO input at time 0
I multiplier coeff. mO_dO (= bi) input time = 0, internal delay = 1
I multiplier coeff. mi_dO (= g) input time = 0, internal delay = 1
/ multiplier coeff. m2dO (= al) input time = 0, internal delay = 1
I multiplier coeff. m3-_d0 (= b2) input time = 0, internal delay = 1
I multiplier coeff. m4_d0 (= b3) input time = 0, internal delay = 2
I multiplier coeff. m5_d0 (= b4) input time = 0, internal delay = 2

SIGNAL n6axd22, n6a d23, n6z d20, n6 d21, n5 dl, nx14d2,
n5y_d3, n5y_d21, n5y_d22, n5y_d23, n7 d22, n5ay_d21,
nxl8dl, nxl8 wd, nxl2 d2, nxl5 d2, nx20d3,
nx10d3, nx30 d4, m0-d-1, midi, nxl3 d2, m2dl,
m3dl, nxl6d2, nx2l d3, m4d2, m5d2, nxlld3,
nx31d4, n5x d21, n5x d43, n5x d46, n5xd67,
n5xd88, n5x d93, n5x d94, n5a_d22, n8 d23, n7ad24,
n3 d0, nxl7 dl, nxl7 d22, nxl7 wd, n4 d0, nxllOdl,
nxllOd2O, nxllO wd, n3a dl, nxll3 d2, nxl 13d21,
nx113d22, nxllfwd, n4a dO, nxll4 dl, nxll4d2,
nx114d22, nxll4wd

137

CONTROL c02, c04, c019, c020, c021 5x, c022, c023, cli, c12,
c22, c33, cIear22, cs0l

ADD [1,0,0,0] (c021 5x) nxll3 d21, nxll3 d21, GND -> n6ax d22, NC
ADD [1,0,0,0] (c022) n6ax d22, nxll4 d22, GND -> n6a d23, NC
ADD [1,0,0,0] (019) n5x d88, n5x d88, GND -> n6z d20, NC
SUBTRACT [1,0,0,0] (c020) nxll0 d20, n6z d20, GND -> n6 d21, NC
SUBTRACT [1,0,0,0] (COO) n5y_d23, n5x _d46, GND -> n5dl, NC
MULTIPLEX [1,0,0] (cli) n5-dl, n5x d93 -> nx14d2
ADD [1,0,0,0] (c02) nxl4 d2, n5x d94, GND -> n5y_d3, NC
BITDELAY [18] n5y_d3 -> n5y_d21
BITDELAY [1] n5y_d21 -> n5y_d22
BITDELAY [1] n5y d22 -> n5y_d23
ADD [1,0,0,0] (c021 5x) n6 d21, n5y d21, GND -> n7 d22, NC
ADD [1,0,0,0] (c020) n5x d43, n5x d43, GND -> n5ay_d21, NC
MULTIPLEX [1,0,0] (csO) nxl8 wd, no do -> nxl8dl
BITDELAY (22] nxl8_dl -> nxl8_wd
MULTIPLEX [1,0,0] (cli) nx18 dl, nxl7 dl -> nx12d2
MULTIPLEX [1,0,0] (cli) nxll0 dl, nxl7_dl -> nx15d2
MULTIPLEX [1,0,0] (c22) nxl5 d2, nxl2 d2 -> nx20d3
MULTIPLEX [1,0,0] (02) nxll4 d2, nxll3_d2 -> nx10d3
MULTIPLEX [1,0,0] (c33) nxl 0d3, nx20 d3 -> nx30d4
BITDELAY [1] mOdO-> mOdi
BITDELAY [1] ml do -> midi
MULTIPLEX [1,0,0] (cli) midi, mO_di -> nx13d2
BITDELAY [1] m2 do -> m2 dl
BITDELAY [1] m3 do -> m3d1
MULTIPLEX [1,0,0] (cli) m3dl, m2 dl -> nx16d2
MULTIPLEX [1,0,0] (c22) nxi6 d2, nxl3 d2 -> nx21d3
BITDELAY [2] m4 do m4 (T2
BITDELAY [2] m5d0 -> m5d2
MULTIPLEX [1,0,0] (c12) m5-Q, m4 d2 -> nxlld3
MULTIPLEX [1,0,0] (c33) nxll d3, nx21 d3 -> nx31d4
MULTIPLY [1,10,0,0] (c04->c0215x) nx30 d4,nx3l d4 -> n5x d21, NC
BITDELAY [22] n5x d21 -> n5x d43
BITDELAY [3] n5x d43 -> n5x &6
BITDELAY [21] n5x d46 -> n5x- d67
BITDELAY [21] n5x d67 -> n5x d88
BITDELAY [5] n5x d88 -> n5x d93
BITDELAY [1] n5x-c[93 -> n5x__d94
SUBTRACT [1,0,0,0] (c021_5x) n5ay_d21,n5x_d21,GND -> n5a d22, NC
ADD [1,0,0,0] (c022) n7 d22, n5a d22, GND -> n8 d23, NC
ADD [1,0,0,0] (c023) n6a_d23, n8 d23, GND -> n7a_d24, NC

138

MULTIPLEX [1,0,0] (cso) nxl7 wd, n3 d0 -> nxl7dl
BITDELAY [21] nxl7 dl -> nx17d22
BITDELAY [1] nxl7 d22 -> nxl7wd
MULTIPLEX [1,0,0] (cso) nxll0 wd, n4 d0 -> nxllodl
BITDELAY [19] nxll0 dl -> nxllod2o
BITDELAY [3] nxll0 d20 -> nxll0wd
MULTIPLEX [1,0,0] (cs0l) nxll3 wd, n3a dl -> nxll3d2
BITDELAY [19] nxl 13d2 -> nxl 13d21
BITDELAY [1] nxll3 d21 -> nx113d22
BITDELAY [2] nxl 13d22 -> nxl 13—wd
MULTIPLEX [1,0,0] (cso) nxl 14 wd, n4a dO -> nxl 14d1
BITDELAY [1] nxll4 dl -> nxll4d2
BITDELAY [20] nxl 14d2 -> nxl 14d22
BITDELAY [1] nxll4 d22 -> nxll4wd

I DELAY and OUTPUT branches
MULTIPLEX [1,0,0] (csol) GND, n7a_d24 -> n7a0
MULTIPLEX [1,0,0] (c1ear22) n5y d22, GND -> n3d0
MULTIPLEX [1,0,0] (clear22) nxl7 d22, GND -> n4 d0
MULTIPLEX [1,0,0] (clearO) n8 d23, GND -> n3adl
MULTIPLEX [1,0,0] (clear22) nil 13d22, GND -> n4a_d0

CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY
CBITDELAY

[2] (cOO -> c02)
[2] (c02 -> c04)
[15] (c04->c019).
[1] (c019 -> c020)
[1] (c021 5x -> c022)
[1] (c022 -> c023)
[1](cl0->cll
[1] (cli -> c12)
[2] (c20 -> c22)
[3] (c30 -> c33)
[22] (clearO -> clear22)
[1] (cs0 -> csOl

/ LFSR control ganerator (cOO is the clock to LFSRs)
/ Numerator - defines the initial states of flip flops
I Denominator - defines the the tap off/feed back paths

and the position of EX-ORs
I dO = "101010' (numerator -^01^ denominator - "101"
!c20 = ^110000' (numerator - "000011" denominator - "1000001"
/ c30 = "111100' (numerator - "0011" denominator - "10101"
1 csO = "100000' (numerator - "000001" denominator - "1000001"

139

I control signal cOO is used = 2 times
I control signal c02 is used = 5 times
I control signal c04 is used = 3 times
I control signal c019 is used = 3 times
I control signal c020 is used = 3 times
I control signal c021 5x is used = 6 times
I control signal c022_ is used = 4 times
1 control signal c023 is used = 2 times
/ control signal dO is used = 1 times
I control signal cli is used = 6 times
I control signal 02 is used = 2 times
I control signal c20 is used = 1 times
/ control signal c22 is used = 2 times
I control signal 00 is used = 1 times
! control signal c33 is used = 2 times
I control signal clearO is used = 2 times
I control signal c1ear22 is used = 3 times
/ control signal csO is used = 5 times
/ control signal csO_1 is used = 2 times

END

