THE UNIVERSITY OF CALGARY

Building Process Categories
BY

David A. Spooner

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
July, 1997

© David A. Spooner 1997

L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
385, rue Wellington

Ottawa ON K1A ON4

Canada
Your e Votre reférence

Our file Notre rélérence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-31075-2

Abstract

Categories of interacting processes have become important in the semantics of
concurrency and of programming in general. This thesis develops a method of con-
structing categories of processes upon categories of models with cover systems. As a
2-functor, the construction reduces the task of establishing certain functorial struc-
ture in process categories to checking properties of the model categories and chosen
cover systems.

The techniques are shown to be applicable to asynchrony. One may move from
a synchronous process category to an asynchronous process category by identifving
an appropriately structure monad of delay in the model category. Knowing what
structure is passed on to the asynchronous setting then translates into checking the
interaction between the monad and the relevant structure in the model category.

Finally we consider an approach to programming in process categories based on

categories of circuits.

iii

Acknowledgements

First I would like to thank Graham Birtwistle for sparking my interest in functional
programming and concurrency theory. I would certainly not have entered graduate
studies without his encouragement and support.

[would like to thank my supervisor Robin Cockett for his patience in teaching me
category theory, his technical guidance, and his immense devotion to his students.

Thanks to Tom Fukashima, Rob Kremer, Raja Nagarajan, and Conrad Slind for
many valuable technical discussions over many bowls of phé. Thanks to Uli Hensel
for collaboration and for careful reading of my earlier work. Thanks to my examining
committee for carefully reading a draft of this thesis and providing many valuable
suggestions. Thanks also to Todd Simpson (and everyone else at Push) for overlooking
my absence at work during the preparation of this thesis.

Finally, I would like to thank my family for their support — particularly my
wonderful wife Susan for her love and patience over the years. For my children

Jeffrey and Erik: you can use the computer now.

iv

Contents

1 Introduction

1.1 Background and related work
1.2 Contributions of the thesis
1.3 Organization of the thesis
L4 Notation

2 Process categories

2.1 Model categories
22 Coversystems
2.3 The process construction
2.3.1 The category of processes
2.3.2 Lifting functors and natural transformations
2.3.3 The 2-functor Proc
2.4 Linear process categories
24.1 Compact-closure
242 Biproducts. L L
243 Storage
25 Examples L

2.5.1 Functional processes

&

[V
[$1]

2 Chuspaces

o —
~1 o

(§V]
|

2.5.3 Simultaneous games 16

254 Interleavedgames 19
26 Summary 51
Asynchronous process categories 53
3.1 The Kleisli construction 54
3.2 Stablemonads. 37
3.2.1 Finite limits in Kleisli categories 57
3.2.2 Cover systems upon Kleisli categories 39
3.2.3 Lifting stable functors 62
3.2.4 Lifting cartesian natural transformations 67
3.2.5 2-categorical aspects 69
3.3 Example: Transitionssystems 70
3.3.1 Thedelaymonad 70
3.3.2 Weak bisimulation 72
3.3.3 Reformulating ASProc 75
3.4 Example: Interleavedgames 76
3.5 Example: Simultaneous games 79
3.6 Summary, 30
Equivalence of process categories 83
4.1 Moving between model categories 84
4.1.1 Separating initial states 85
4.1.2 Nondeterministic transition systems 37
4.1.3 Unlabelled transition systems 88
4.2 Behaviormodels 89
4.2.1 Abstract behaviors L L. 89
4.3 Summary 97

vi

5 Implementing synchronous processes

(1]

.1 Copy categories and partial map classifiers

3.2 The category of circuits
5.3 Embedding circuitsin SProc
54 Summary L.

6 Conclusion

6.1 Future research

Bibliography

vii

99
100
103
105
119

121

123

Chapter 1

Introduction

[n the world of functional programming, types provide abstract specifications of pro-
gram behavior. In Standard ML [MTH90], for example, a type can express the fact
that a program inputs a pair of lists and returns a list. In languages base on Martin
Lof’s type theory [Tho9l], types are formulae in intuitionistic logic and so one could
express the fact that a program takes a pair of lists and returns a list which is their
concatenation. In each case. the type system provides the following basic discipline

for constructing systems:

f:A—B g:B—-C
fig: A=C

given programs with compatable output and input types. one can safely “plug them

together” and infer the type of the composite program. This feature is vital when
developing large systems, since one needs the ability to replace components while
maintaining the integrity of the entire system.

In concurrent programming, where computation is achieved through the interac-
tion of a collection of autonomous processes, the situation is less satisfactory since the
main formalisms (notably CCS [Mil89] and CSP [Hoa85]) are untyped. Approaches
to providing type systems (such as sorts in the m-calculus [Mil91]) have focused on

ensuring that the processes which do interact have a consistent view of the kinds of

CHAPTER 1. INTRODUCTION

o

values which can be exchanged at their interface. While this is certainly important, it
is equally important in plugging systems together that each system has the same view

of the interface over time — i.e. that they have agreed on a protocol for interaction.

To realize these ideas Abramsky introduced the notion of an interaction category.
In this setting concurrent systems are viewed as morphisms between typed interfaces,
and the type of an interface is a specification of the allowable interaction over time.
Such a setting would provide the analogue to typed composition in the functional

world, and would facilitate the disciplined construction of concurrent systems.

Abramsky presented interaction categories as a new perspective on the semantics
of computation. rather than as an axiomatic framework, and suggested that the
logic for these settings be drawn from the ideas of linear logic. To support this
new perspective. Abramsky provided a collection of paradigmatic examples: notably

SProc [Abr93] and the game-theoretic categories [AJ94].

This thesis is an investigation of a particular method of constructing interaction
categories: as a span construction on a category of process models. [take the view
that the resulting interaction category (which I call a process category) is best un-
derstood at the level of the underlying model category. From this perspective, I
investigate how to obtain aspects such as asynchrony and linear type structure in a

process category.

1.1 Background and related work

Here we review some of the ideas from concurrency theory which are used explicitly

in the thesis.

1.1. BACKGROUND AND RELATED WORK 3

Models of processes

Traditionally, processes have been given an operational interpretation as algebraic
structures. In CCS [Mil89], for example. process expressions correspond to nonde-
terministic labeled transition systems: these are structures (S. . 7.). where S is
a set of states, : € S is the initial state, ¥ is a set of labels, and § C SxE¥xS is a
transition relation. The idea is that the labels represent the channels over which a
process can communicate. and the transition relation indicates how the state of the

process changes through interaction.

There are a many other models for processes which differ in the aspects of concur-
rent systems which are considered salient. Transition systems are referred to as “in-
terleaving” models since expressing that actions are independent is achieved through
nondeterministic interleaving. In contrast. the so-called “true-concurrency” models
(such as event structures [Win87] and pomsets [Pra86]) give an explicit treatment
of independence. The models based on game theory not only describe the capabil-
ities of the system (the player), but also explicitly represent the capabilities of the
environment (the opponent). Within these genera there are further distinctions:

e The system models, such as transition systems, allow a process to reach the
same state repeatedly through its evolution. while the behavior models, such as
trees and traces, introduce maximal separation in the state space so that each
state determines the history of the process.

o The branching time models, such as nondeterministic transition systems and
synchronization trees, represent internal choice as nondeterminism. In the linear

time models, such as traces and deterministic transition systems, the actions

available at each state determine the state change of the process.

Sassone, Nielsen and Winskel [SNW93] established relationships in the form of
adjunctions amongst many of the standard model categories for concurrency. They

show that the behavior models form coreflective subcategories of the associated sys-

4 CHAPTER 1. INTRODUCTION

tem models, and that the linear-time models are reflective subcategories of the as-
sociated branching-time models. For the models of interleaved concurrency, one has

the following picture:

TT:C > »STree
Tran »— + NTran

where horizontal arrows are reflections and vertical arrows are coreflections. In chap-
ter 4 we show that such relationships between model categories often give rise to
even stronger relationships between the process categories. In fact. each of the model

categories above gives rise to the same process category.

Bisimulation

State-based models of processes naturally admit the expression of many processes
with the same observable behavior. Thus in CCS, process expressions are taken to
denote transition systems modulo bisimulation. Transition systems A and B are

bisimulation equivalent if and only if there is a relation R C S4xSg which satisfies:

(s.8YER A (s,a,t)€ by = 3. (s a,t')eég A (t,t')ER

(s.s') € R A (§,a,t')€ b = 3It.(s,a,t)€bés AN (t,t')ER

A less discerning equivalence is trace equivalence: transition systems A and B are trace
equivalent if and only if traces(A) = traces(B), where traces(A) = {€]3s.(i4,¢.5) €
6%} and

1 e (s,[l,s) s € Sa} U {(s;a::,t)|Fu.(s,a,u) €64 A (u,l,t) € 65}

Of course each of the various models of processes comes equipped with it’s own

notion of behavioral equivalence. Bisimulation in each setting is typically defined in

1.1. BACKGROUND AND RELATED WORK 5

concrete form, and has lacked a uniform description in the associated model catetories.
Joyal, Nielsen and Winskel [JNW93] have proposed that bisimulation be expressed
as a stable system of morphisms (a cover system in the terminology of this thesis.
although they call it a system of open maps by analogy with the topos theoretic
notion) in the model category. The general form is, given cover system .X. that
objects A and B in a model category are X-bisimilar when related by a span
f
A/ \B

of morphisms belonging to X. This provides a unifying view of various notions of
bisimulation across a range of model categories [JNW93].

For the category of nondeterministic transition systems with fixed label set ¥. the
cover system for bisimulation consists of those morphisms which reflect transitions:
each cover morphism f : C — A has the property that for any state s in C and every
transition f(s)——t in A there exists a transition s—s’ in C such that f(s’) = ¢.

To see this. note that a span (f,g) between transition systems 4 and B induces a

bisimulation relation

{(f(s),g9(s)) | s € Sc },

and a bisimulation relation on A and B can be seen as (the states of) a transition
system with the projections to A and B being cover morphisms. There have been
several independent presentations of this particular cover system to describe bisimu-
lation of automata-like structures (for example: Benson [BBS88], Castellani [Cas85],

and Van Bentham [VB84]).

Interaction categories

The key idea in Interaction Categories is: rather than viewing processes as objects in

a model category, one should view processes as morphisms. An interaction category

6 CHAPTER 1. INTRODUCTION

thus has the following general form:
e The objects are interface specifications which express the capabilities and/or
responsibilities of concurrent systems over time.
e The morphisms are processes which conform to their interface specifications.

and composition of morphisms is given by process interaction.

Examples of interaction categories which have become prominent in program-
ming language semantics are the categories of games and strategies [AJ94. AJM94].
These categories have lead to a solution to the long standing problem of “full ab-
straction”, which strives to reconcile the operational and denotational meanings of
higher-order functional programs. Games and strategies also have significance for
concurrent programming: A game is a protocol for interaction between a system and
its environment. dictating the capabilities and responsibilities of each participant: a

strategy 1s a process which is both deterministic and deadlock-free.

The motivating example of an interaction category, however. is the category SProc
of synchronous processes [AGN94]: it’s morphisms are (bisimulation equivalence
classes of) nondeterministic transition systems, and it’s objects are trace specifica-
tions. Distilling the presentation of [AGN94], SProc is the following category:

e The objects A are non-empty and prefix-closed sets Sy € £7 of strings over

alphabet ¥ 4;

e The morphisms p : A — B are synchronization trees over alphabet ¥ x%g
which satisfy traces(p) C S4xSg. The synchronization trees over label set € are
the largest solution to the (non-well-founded) set equation STy = P(XxSTsx)
and provide a canonical representation of transition systems modulo bisimula-
tion [Acz88|.

e Composition of p: A — B and ¢: B — C is given by

pia = {((a,¢), p';¢) | 3b.((a,b),p) €p A ((b.c).q) € q}

1.1. BACKGROUND AND RELATED WORK 7

o Identites are given by 1,4 =/ { ((a,a).14/2) | @ € Sa }, where A/a s {€}|a::

e S, }
Given a process/morphism A — B of SProc. one can view each state as a relation
on E4x¥g: i.e. the set of pairs of actions which the process can exhibit at that state.

Indeed. SProc has been likened to a category of “relations extended in time”.

Concurrent programming

SProc can be seen as providing a specification-level treatment of concurrent systems.
When programming, however. one typically strives to implement systems whose be-
havior can be predicted — one might like to program concurrent systems as “functions
in time”.

One such approach is provided by the bicategories of circuits of Katis, Sabadini

and Walters (see [KSW94] or [Kat96]): the bicategory Circ(Set) has

e objects A are sets

e l-cells A — B are given by pairs (Sy. f : AxS; — SyxB) of state spaces and
transition functions, with composition f:g given (ommiting associativity) by

(S55xS,, fx1;1xg)

o 2-cells f = g : A — B are functions a satisfying f; ax] = 1xa; g, with (vertical)
composition given in Set.
Circuit equivalence is given by trace equivalence, obtained through a morphisms of
bicategories into Span(Set).
A circuit (1-cell) of type A — B is an automata which at each state transforms
inputs in A to outputs in B. Although circuits themselves have extension in time,

their types (being simply alphabets) do not.

8 CHAPTER 1. INTRODUCTION

1.2 Contributions of the thesis

There are two significant contributions conceptually: the first is the view that cat-
egories of processes can be constructed in a uniform fashion upon model categories;
the second clarifies the nature of asynchrony in process categories. In addition there

are several technical results which establish links to other work.

Categories of processes

Certain aspects of the Interaction Category framework remain unsatisfactory, primar-
ily in the formulation of the various examples.

e Examples are presented in concrete form: such presentations have not exposed
the general mechanisms which make each example work and thus do not simplify
the construction of other examples.

e Examples take canonical representations for processes, thus avoiding the issue

of process equivalence.

[have developed the view that process categories are obtained through a span
construction upon a model category and a cover system. This approach has certain
benefits:

e The construction is modular: the basic mechanism of composition as interaction

is given by the construction. and to build a new example one needs only a
model category and a cover system. Whether or not the resulting category is of
“interest” will of course depend on the particular choice of model category and
cover system.

® Process equivalence is treated explicitly as a cover system. This is important

since the state-based formalisms which allow finite expression of processes nec-

essarily admit many expressions of the “same” process.

1.2. CONTRIBUTIONS OF THE THESIS 9

e The construction is 2-functorial, allowing one to reason at the level of the model
category in establishing the structure of a process category. This is useful since
the logic of process categories is not generally well understood.

As evidence of the latter claim, I have shown that the view of processes as relations
is not always appropriate when reasoning about the structure of a process category.
In particular, Abramsky’s category SProc does not provide a model of the linear

exponential type as reported in [AGN94].

Asynchrony in process categories

The use of delay monads is implicit in Robin Milner’s construction of asynchrony in
process calculus [Mil83], and it has been a common belief that monads can be used to
describe asynchrony categorically [AGN94, JNW93]. However, attempts at obtaining
asynchrony as a monad construction upon SProc have been unsuccessful [Gay95].
The approach presented in this thesis takes a monad of delay to introduce asyn-
chrony in the model category, and then performs the process construction upon the
associated Kleisli category. Since the Kleisli construction does not generally preserve
the limits required by the process construction, characterizing the monads which
support the construction of processes represents a significant technical development.
[believe the techniques developed here offer definite benefits to the formulation of
asynchronous process categories:
e Obtaining a well defined notion of composition for asynchronous processes trans-
lates into establishing certain properties of the delay monad.
e It exposes at the level of the synchronous model category the technical difficul-
ties in lifting synchronous structure to an asynchronous setting.
For example. the difficulty in lifting the synchronous structure of SProc to ASProc
[Gay95] can be seen in the current framework as the difficulty in lifting stable func-

torial structure over the monad . + 1 of exceptions.

10 CHAPTER 1. INTRODUCTION

Although not explicit in their presentation, the categories of games and strategies
[AJ94] are inherently asynchronous: at any time a process interacts though at most
one of it’s interfaces. I present monads of delay for state-based formulations of two
models of games: those in which the two players move simultaneously, and those in
which the moves of the two players alternate. Obtaining suitable monads in these
settings has proven to be quite a delicate business, and the final solution suggests
that there are some subtleties hidden in the standard formulation of game-theoretic
categories: specifically, certain states are internal and receive special treatment with
respect to delay.

I conjecture that the process category constructed upon asynchronous interleaved
games provides a basis for obtaining the standard categories of games and strategies
[AJ94]. The process category upon asynchronous simultaneous games, however. does

not appear to have been considered before.

Technical results

[have shown that Abramsky’s category SProc of synchronous processes modulo bisim-
ulation arises as a process category upon all of the standard models of interleaved
concurrency: from transition systems to trees. Furthermore. SProc modulo trace
equivalence is the category of relations on trees. As trees are essentially “sets in
time”, this result sheds new light on the analogy between SProc and “relations in
time”. This work is reported in [CS94].

[have provided a reformulation of Abramsky’s category ASProc of asynchronous
processes as a process category upon the Kleisli category of a delay monad. This
provides a functorial analogue of Milner’s progression from synchrony to asynchrony
in process calculi [Mil83]. As a consequence,. I have shown that the cover systems for
weak bisimulation and trace equivalence arise through a distributive law for the delay

monad. This work appears in [CS95].

1.3. ORGANIZATION OF THE THESIS 11

I have shown that certain subcategories of SProc — both the partial and total
“functions in time” — have an algebraic presentation based on the circuits of Katis.
Sabadini and Walters [KSW94]. This work forms a potential basis for programming

in process categories and is partially reported in [HS96).

1.3 Organization of the thesis

Chapter 2 presents the construction of a process category as a span construction
quotiented by a cover system: the underlying model category expresses the intended
dynamics of processes. and the cover system provides the notion of behavioral equiv-
alence on models. The main technical development is twofold: we examine various
means to obtain cover systems on model categories, and we show that the process
construction is 2-functorial. The latter fact is used to infer the presence of linear
type structure in a process category from related structure in it’s model category. We
illustrate the techniques by constructing categories of synchronous processes upon
models of transition systems and games.

In chapter 3 we present an approach to obtaining asynchrony in a process category:
one takes a monad of delay on a synchronous model category. and then performs
the process construction upon the Kleisli category of the delay monad. As Kleisli
categories do not generally provide suitable model categories, the main technical
development is the characterization of those those monads which support the process
construction. We show how the monad of delay on transition systems can be used to
reconstruct Abramsky’s category ASProc of asynchronous processes. We also consider
how to obtain suitable delay monads for categories of games.

In chapter 4 we show how adjunctions between model categories can induce equiv-
alence of the associated process categories. We also provide a general characterization
of behaviors in a model category: these correspond to coreflective subcategories which

yield the same category of processes as the entire model category. For illustration,

12 CHAPTER 1. INTRODUCTION

we show that a wide range of models of interleaved concurrency give rise to the same
process category — Abramsy’s category SProc of synchronous processes.

Before concluding, chapter 5 shows that categories of circuits can provide a basis
for programming in process categories. Beginning with a simply typed category of
partial circuits. one can extract algebraically categories of circuits which satisfy cer-
tain safety and liveness properties. These circuits categories are shown to embed into

SProc.

1.4 Notation

We write _x_ to indicate the product functor. with the projections py and p, and
diagonal A. The coproduct +_ has injections by and b;, and codiagonal V. We write
(f.g) to indicate the pairing AxB — C of morphisms f : A - C and g : B — C.
and (h|k) as the copairing C — A + B of morphisms h : C — A and k: C — B. The
natural isomorphisms for associativity, symmetry and unit elimination of a monoidal
category are writtena : (AQ B)9C - AQ(B®C),c: AQB —- B® A and
u: T & A — Arespectively. If f is an isomorphism, we write f7 as its inverse.

We take x_to have higher binding precedence than +_, both of which have higher
precedence than the composition operator _;_. We also adopt the convention that
binary operators are left-associative, so that A® B®C is interpreted as (AQ B)Q C.

A category with coproducts is ertensive if given the following commuting diagram

X -7 - Y
(1) (2)

v v v

A ‘_Té + A+B ‘——“57;“— B

(1) and (2) are pullbacks if and only if the top row is a pullback. An extensive
category with finite limits is called leztensive. Note that in an extensive category the

coproduct functor is stable (i.e. it preserves pullbacks) and both the injections and

1.4. NOTATION 13

the codiagonal are cartesian (i.e. their naturality squares are pullbacks). Note also

that the injections are monic in an extensive category [Coc93].

14

CHAPTER 1.

INTRODUCTION

Chapter 2

Process categories

This chapter presents the general construction of a process category: one begins with
a category of models of processes. and then forms a span category quotiented by a
cover system. The construction is illustrated using the model category of deterministic
transition systems and the cover system for bisimulation, giving rise to Abramsky’s

category SProc of synchronous processes.

We begin with a brief discussion of model categories presented as sketches. Af-
terwards we give a treatment of cover systems and develop results which are central
to the subsequent development. We then describe the process construction and show
that it may be viewed as a 2-functor. This allows one to establish much of the struc-
ture of a process category at the level of its model category. To illustrate, we show
how one may obtain compact-closure, biproducts and storage in a process category.
We conclude by discussing some examples of processes which arise by varying the

parameters to the process construction.

15

16 CHAPTER 2. PROCESS CATEGORIES
2.1 Model categories

We will generally use the term model category to indicate any category which is
amenable to the process construction of section 2.3. Typically, however, a model
category for processes will be presented as a sketch (see Barr and Wells [BW90] or
Wells [Wel94]).

An example which will be used extensively for illustration is the category of de-
terministic labelled transition systems. These can be built upon any category X with

finite limits:
Example 2.1.1 Tran(X) is the category of models in X of the following sketch:

m o
. :
SxE S w—iem g

Recall that for a sketch S, the model category S(X) has as objects diagrams in X
and as morphisms “natural transformations”. For example, a morphism f : A — B

in Tran(X) corresponds to the following commuting diagram in X:

Py

sszAy kp&‘s,\._h__l
fsxf,:i A/mB/PB&‘ ks . l

SBXZB SB <_l'a_l

When X is the category Set of sets and functions, a transition system consists
of a state set S with distinguished initial state i € S, a label set &, and a partial
function SxT — § specifying the allowable transitions between states. A morphism
f: A — Bis a pair (fs, fc) of functions which preserve initial states (i.e. f(i4) = ig)
and preserve transitions (i.e. (s,a) € P4 implies (fs, fa) € Pg and f(a4(s,a)) =

ag(f(s), f(a))).

2.1. MODEL CATEGORIES 17

Another useful model category is the category of trees [JM95], which may be

constructed upon an arbitrary category X:

Example 2.1.2 Tree(X) is the category of models in X of the following (infinite)
sketch:

[<———fﬂ—504_f!_sl< fy S, - f3

Of course a tree may be viewed as a transition system in which all transitions are
uniquely labelled and all states are reachable by exactly one sequence of transitions:
So are the states directly reachable from the initial state, and f;'(s) are the states
directly reachable from state s € Sq.

We will see later that the process construction requires a model category to have
certain limits and that certain functorial structure in a model category induces re-
lated structure in its process category. For the sketches considered in this thesis.
the associated model categories will have finite limits which are given pointwise. For
example. to form the pullback of morphisms f : A — C and g : B — C in Tran(X)

one forms the pullbacks in X of the respective components of f and ¢

SpXZp, ksxky ~SgxZg_
\\PD kp ;PB o
_t 8
hsxhz ~SD kq l \;SB
h —, sX8x
hs P
m
A PA\ | T + P oc
%a Sa A *Sc

(noting that products preserve pullbacks) and obtains the transition system which is
the object of the pullback as the induced morphisms shown above.
We will also be interested in model categories which have extensive coproducts.

These too will be given pointwise when they exist, as is the case in the category of

18 CHAPTER 2. PROCESS CATEGORIES

trees. One obtains a coproduct of transition systems by coalescing initial states, but
since initial states are reachable the resulting coproduct is not disjoint and thus not

extensive.

2.2 Cover systems

Cover systems are central to the subsequent construction of process categories. This
section examines the basic properties of cover systems and provides various techniques
for constructing cover systems -— in particular, upon the model categories which arise

from sketches.

Definition 2.2.1 A class X of morphisms in a category X is a cover system provided

that: X contains all isomorphisms; X is closed under composition; and for r in X

and f in X, the pullback

erists with = in X.

We say that a cover system X' is left-factor closed if the fact that f:g and g are in
X implies that f is in X. Similarly, X' is right-factor closed if the fact that f;g and
f are in X implies g is in X.

There are many commonly occuring examples of cover systems: The class Z of
isomorphisms in any category is a left-factor closed cover system. In category X
with pullbacks the classes X of all morphisms and M of monics are each left-factor
closed cover systems, while the class R of retractions is a right-factor closed cover
system. In a regular category, the regular epimorphisms form a cover system which

is right-factor closed. If X} and X, are cover systems, the intersection X, N X, is a

2.2. COVER SYSTEMS 19

cover system which is left- (resp. right) factor closed whenever both X; or X, are left-
(resp. right) factor closed.

A fact that plays a rather technical role in the subsequent development is that
any cover system can be closed by adding all of its right factors. thus obtaining a

cover system which is right-factor closed:
pd def {zeX,|3zeX.z;2€ X}
We will say r is a witness that z is in X'| when both z and z: > are in X.

Lemma 2.2.2 X| s a right-factor closed cover system containing X, which inherits

left-factor closure from X .

Proof. Any morphism f in X belongs to X | as witnessed by the identity on the

domain of f:
f

i~

So X| contains X and thus contains all ismorphisms.

To see that X'| is closed to composition, suppose z; and r, are witness respectively

that =, and z; belong to X|:
2 ¥ 22 —¥"

x1 - x2 -
- -
- -
- -

- -

Forming the pullback of z,;z; and z, yields morphisms p and ¢ which (by the cover

system axioms) belong to X.
pI//

20 CHAPTER 2. PROCESS CATEGORIES

So p: r, and p: zy; z1; 22 = q: T7; 22 are in X by composition. and thus p: T 1s a witness
that z;; 22 belongs to X|.
To see that X' | is closed to pullback, suppose z is witness that = is in X' |. and

form the pullback of = along an arbitrary morphism f:
—_—n .
1

X,

and since r,; z; is the pullback of z; = along f we also have z;;z; in X. Thus 2, is in
X\.

Now suppose X is left-factor closed. and let = and f:z belong to .X'| as witnessed
by r and y respectively. To see that f is in X| consider the following diagram:

R A A

’

x'" X x

v v v
. -y e+ f—A—W’ e

We have z’ and z” in X since they are pullbacks of z, and z”; (y; f;z) = y'; f: z; z is in
A& by composition. By left-factor closure of X', we have y’; f’ in X and by composition

y': fie =y 2; fisin X. Thus y'; 2’ is witness that f is in X. m]

Of course if X is already right-factor closed, then X | is simply X.
We note the following result concerning preservation of cover systems by functors,

where we suppose X and Y are categories with cover systems X and respectively:

2.2. COVER SYSTEMS 21

Lemma 2.2.3 If F(X) C Y| then F(X])C Y|.

Proof. Suppose r is witness that r is in X, and that y, and y, are witnesses that

F(r:r) and Fz are in Y| respectively. Forming the pullback of y;, and y,

- - -

e - - - - — -

gives y3 and y4 in V. Then y4; (y1; Fz: Fr) = y3; (y2; Fz); Fr and ya; (yz; Fr) are in
Y by composition. Thus Fris in Y|. a

Some important techniques for obtaining cover systems derive from the following
notion and its associated properties: A commuting square in X is an X -pullback if

the induced morphism to the inscribed pullback is in X.

X
Q

—F -

w \
. .

Clearly. f belongs to X' if and only if the square f;1 = f;1 is an X-pullback.

Lemma 2.2.4 Consider the following commuting diagram in X:

u > .

» -

(1) (2)

1
1

v

i) the outer square is an X -pullback whenever (1) and (2) are X -pullbacks;

i1) (1) is an X-pullback whenever (2) is a pullback and the outer square is an

X -pullback;

N
N

CHAPTER 2. PROCESS CATEGORIES

11) if X is left-factor closed then (1) is an X pullback whenever the outer square
and (2) are X -pullbacks;

w) if (1) is an X-pullback whenever the outer square and (2) are X -pullbacks.
then X is left-factor closed:

v) if the outer square is an X|-pullback and u and v belong to X| then (2) is an
X |-pullback.

Proof. i) Let r and = witness that (1) and (2) are X-pullbacks.
S e
x z
4 4
y .
p r
q
\LZJ] » v
B e e 3

Forming the pullback of r and v, one obtains the pullback inscribed in the entire
square: the induced morphism to this pullback is z;y. As y is a pullback of = it

belongs to X and thus z;y belongs to X also.

ii) The induced morphism to the pullback inscribed in (1) is also the induced

morphism to the pullback inscribed in the outer square.

n‘k

2.2. COVER SYSTEMS 23

iii) Suppose X is left-factor closed and let z and y witness that the outer square

and (2) are X-pullbacks.

Forming the pullback of y along p gives the pullback inscribed in (1). The

induced morphism w then belongs to X since z and z belong to X.

iv) Suppose f;y and y are in X. Using parts (i) and (ii) above. the top left

square of
N SN S
f = =
\4 — v v v
=R —-- -
V- y =
v v v
R T SR

is an AX'-pullback and thus f is in X.

v) Consider the following diagram:

R

18]
A}

As a pullback of v, we have v" in X| and thus z;v’ is in X'| by composition.
Then z;v' = u;z' is in X'| by composition and so z’ is in X' | by right-factor

closure.

24 CHAPTER 2. PROCESS CATEGORIES

The following lemma shows that certain functors induce a cover system in their

domain category.

Lemma 2.2.5 [f F: Y — X takes pullbacks to X -pullbacks then F(X) is a cover

system on Y which inherits left-factor and right-factor closure from X .

Proof. Since functors preserve isomorphisms and composition. the proposed cover
system contains all isomorphisms and is closed to composition. To see stability.
suppose F'f is in A" and that p; f = q; g is a pullback in Y. Then in the diagram

B .
X
4

Fg Ff

2]

\id v

e T

both r and z are in X" and thus Fqis in X as required.
That F?(X) is left-factor (resp. right-factor) closed whenever X is left-factor (resp.
right-factor) closed is a simple consequence of the fact that F preserves composition.

0O

As a simple example. note the stable functor from Tran(X) to X which takes
a transition system to its alphabet: one thus obtains the cover system on Tran(X)
consisting of all morphisms whose label component is an isomorphism.

We turn now to obtaining cover systems upon model categories which arise from
sketches. Let F' and G be functors Y — X, and f any morphism of X. We say
that a natural transformation F = G is X-cartesian for f if the naturality square

associated with f is an X-pullback.

Proposition 2.2.6 The natural transformations F = G which are X-cartesian for
f form a cover system on Func(Y,X); this cover system is lefi-factor closed ff X is

left-factor closed.

2.2. COVER SYSTEMS 25

Proof. The proposed cover system contains natural isomorphisms, as these are carte-
sian. and is closed to composition by part (i) of lemma 2.2.4. To see that it is closed
to pullback, suppose a is X-cartesian for y and that v results from pulling back a

along arbitrary 3:

Y4 .
— Ba
a0y __a.
Py Hy
F
v oy Y 5 Gy
- B

As the front face above is an X'-pullback. the rear face is also by parts (i) and (ii) of
lemma 2.2.4. Thus v is X-cartesian for y.
The result concerning left-factor closure is given directly by parts (iii) and (iv) of

lemma 2.2.4. a

As the category of models of a sketch S is essentially such a functor category, we
can obtain a cover system by choosing an arrow o (or by intersection, any number of

arrows) of S:

Corollary 2.2.7 The class of morphisms of S(X) which are X -cartesian for o form

a cover system; this cover system is left-factor closed iff X is left-factor closed.

In this way one obtains various useful cover systems upon categories of transition

systems. Let X be a cover system on X:

Example 2.2.8 In Tran(X), define 3% to be the class of morphisms which are X -

cartesian for the arrow m;po in the sketch of example 2.1.1.

With respect to transitions, the morphisms of 3% are locally X in the following
sense: if f: A — B is in 3%, then for every state s of A the transitions from s map

via a morphism of X’ to the transitions from f(s). In a regular category, for example,

26 CHAPTER 2. PROCESS CATEGORIES

the morphisms of 3¢ are local epimorphisms: at each state s of A, every transition
from state f(s) in B has at least one corresponding transition from state s in A. The

following is a simple example of such 2 morphism:

3 L £
%’ L t /f t
u

s .~ f(s) . » f(u)
b f(b)

The class of morphisms 3° which “reflect™ transitions have a history of use in de-
scribing bisimulation (see [JNW93]). We will use 3% to give bisimulation of processes
in SProc, but the classes 37 of local isomorphisms and 3™ of local monics will also

be important in the subsequent development.

Cover systems can be similarly obtained in any related category of “transition

systems”. such as the category of trees:

Example 2.2.9 /n Tree(X). define 3% to be the class of morphisms which are X -

cartsian for every arrow f; in the sketch of example 2.1.2.

In Tree(X). due to the initial state, any morphism h of 3% has all of its components
h,‘ in X':

fy

lv\ /%‘\/?¢
B, <

Sk

By «—

I % g

For example, any morphism in 3¢ is an epimorphism and any morphism in 37 is an

isomorphism. Note also that any monic of Tree(X) is componentwise monic in X and

o
-1

2.3. THE PROCESS CONSTRUCTION

thus belongs to IM by left-factor closure:

Ay a<'—‘&
ST

B, =

g

Although trees are unlabelled, one can view a morphism of trees as introducing
labels: given f : A — B, “transitions” a € A; and b € B; have the same label when
fi(a;) = b;. We can thus view the regular epimorphisms as providing a cover system

for trace equivalence of trees.

2.3 The process construction

A process category is built upon a model category through a generalized span con-
struction: span legs are taken from a pair of cover systems, and span equivalence is
dictated by a third cover system on the model category. This construction may be
viewed as a 2-functor, a fact which is useful for establishing the structure of a process

category in terms of the structure of it’s model category.

2.3.1 The category of processes

Let X be a category with cover systems X, and X;. One forms the bicategory

Span*®*1(X) of spans in X as follows:
- the objects (or 0-cells) A are those of X

- the hom-category Span®*1(X)(A, B) has as objects (or l-cells) f: A~ B
those spans (fo. f1) in X

CHAPTER 2. PROCESS CATEGORIES

with fo in Xp and f; in &), and as arrows (or 2-cells) f = g the morphisms =

of X for which the following diagram commutes:

fo Y / I

>
>
=
A\ 4
[~}

& ' &

- the horizontal identity on A4 is given by a span (14.14) of identities in X. and

horizontal composition is given by pullback — i.e. the composite f:; g of l-cells

f:A~ Band g: B~ C below

is the span (ho; fo. h1:g1). and the composite z:;y of 2-cells z : f = f’ and

y:g =g is the induced 2-cell z: f:;9 = f':; ¢’ above.

We will adopt the convention that omitted cover system parameters are implicitly

specified as the class of all morphisms in the base category. Thus. for example,

Span(X) is the standard bicategory of spans in X [Bén67].

Proposition 2.3.1 Span®*(X) is q bicategory.

Proof. Span®?1(X) results from restricting the hom-categories in the standard bi-

category of spans. It is clear that the restricted hom-categories retain the identities

and composition. The fact that cover systems are closed under composition and pull-

back assures that the 1-cell composition also remains well-defined. The fact that cover

systems contain all isomorphisms assures that the isomorphisms for associativitiy and

unit elimination of 1-cell composition are also retained. a

2.3. THE PROCESS CONSTRUCTION 29

Viewing a process as a span allows the process implementation (given by the apex
of the span) to be abstracted from its interfaces (given by the endpoints of the span).

Consider a simple example built upon transition systems

lv.
a

f .8

X N
,/_\ \
i a i b
kg ~—

which translates a sequence of a’s (i.e. f maps both a and b to @) into an alternating
sequence of a’s and b's, and may bee seen as a modulo-2 counter.

Note that a process constructed upon deterministic transition systems can be
nondeterministic due to potential for the span legs to identify distinct transitions in
the interface. For example. the following counter may (or may not) reach a state

where it no longer responds:

&
N V'\
a(i al i]
\AI Cl \/b

We now consider process equivalence. It is shown in Pare [Par90] that from any
bicategory B one can form a category whose objects are the 0-cells of B and whose
arrows are the 1-cells of B under horizontal composition. This is done by quotienting
l-cells by the equivalence relation generated by the 2-cells of B. When the hom-
categories of B have pullbacks this amounts to equating a pair of 1-cells exactly when
they are related by a span of 2-cells.

For any cover system X on X, one obtains a sub-bicategory of Span”¥1(X)

by restricting the 2-cells to lie within X. We denote the resulting sub-bicategory

30 CHAPTER 2. PROCESS CATEGORIES

Spaniot(X).

Lemma 2.3.2 Spanf""r‘(X) is a bicategory whose hom-categories have pullbacks.

Proof. The cover system axioms assure that the restricted hom-categories remain
categories and retain the isomorphims for the associativity and unit elimination of
horizontal composition. The pullback of 2-cells £ : ¢ — f and y : A — f is given by

forming the pullback of morphisms z and y in X:

a

The obtained equivalence. which we will write as ~ y, equates processes f and g

exactly when there exists a span (z,y) of 2-cells in Spanfmx‘(X)

A,\h0)/},B

B~V —E

Such a span will be called an X-bisimulation, and it will be said that the related
processes f and g are A-bisimilar. Note that if X, (resp. X)) is left-factor closed
then X is effectively constrained to lie within X, (resp A;). For example, consider

the bicategory of partial maps.

In this way we obtain the category of processes in X.

Definition 2.3.3 Proc** (X, X) is the category which results from quotienting the
bicategory Spanio** (X).

2.3. THE PROCESS CONSTRUCTION 31

If unspecified, we take &y and X; to be the entire category X and take X' to be
the intersection Xp and X). In a regular category E with regular epimorphisms &.
the process category Proc(E.£) is the category of relations in E. For X a category
with pullbacks, the category of partial maps in X is given by the process category
Proc"(X.T). where M and T are the monics and isomorphisms respectively.

Starting with transition systems upon Set and taking the cover system for equiv-
alence to be the class 3¢ of local epimorphisms. the resulting process category is (as

shown in chapter 4) Abramsky’s category SProc of synchronous processes. Thus.

Definition 2.3.4 For E a regular category. define SProc(E) to be the process cate-

gory
Proc(Tran(E). 3%).

A related process category arises from the model category of trees. and is essen-
tially SProc modulo trace equivalence. We will see in section 2.4 that, with respect

to linear types, SProcr is better structured than SProc.

Definition 2.3.5 For E a regular category. define SProct(E) to be the process cate-

gory
Proc(Tree(E).£) — i.e. the category of relations on the category of trees in E.

It will be useful to know that the process equivalence induced by a cover system

coincides with that induced by its right-closure.
Lemma 2.3.6 Proc™"(X,X) is equivalent to Proc® ¥ (X, X]).

Proof. Any X-bisimulation is an X' |-bisimulation since X C X |. Conversely, sup-

pose there is an A'|-bisimulation given by 2-cells z; and =5
/ ;\
'iz,, /

32 CHAPTER 2. PROCESS CATEGORIES

Let r, and z, be the morphisms of X which witness the fact that z; and =, are in

X |. Pulling back z, and z; gives morphisms y, and y; in X

and thus an X’-bisimulation given by y;:z,: 2, and ys; z3; 25. a

2.3.2 Lifting functors and natural transformations

Once a category of processes is obtained, one would like to know what structure is
present. Often the structure of a process category can be seen to arise directly from
structure in its model category. For example, a functor F : X — Y between model
categories induces a functor Proc(F’)

- Fhy P Fn,
A B Fa’ * FB

between the associated process categories under the following conditions:

Lemma 2.3.7 Proc(F) : Proc®™ " (X.X) — Proc® (Y, Y) is a functor provided
that :
(1) F(&) C Yo and F(X,) C N
(2) if z is a 2-cell in Spany>™ (X) then F(z) € Y|,
(3) if ki f = k; g is a pullback in X with f € X, and g € X, then F(h); F(f) =
F(k); F(g) is an Y| -pullback in Y.

Proof. Condition 1 ensures that Proc(F) produces morphisms in Proc? (Y,).

Condition 2 ensures that Proc(F) preserves equality, since every X-bismimulation

2.3. THE PROCESS CONSTRUCTION 33

will be taken to a Y|-bisimulation. Proc(F') will certainly preserve identities since F’

is a functor. Finally, consider the composition of processes f and g in Proc® ¥ (X, X)

Condition 3 (and 1) ensure that Proc(F)(f;g) is V|-bisimilar (via the induced mor-

phism z)
M
Ff, - T . —_Fg
to the composition of Proc(F)(f) and Proc(F)(g): a

For most of the process categories we will consider, the morphisms taken as span
legs are unrestricted. In such cases we write F : (X, X) — (Y,)) to indicate that
Proc(F’) is a functor Proc(X, X') — Proc(Y,Y), and note the following simplification

of lemma 2.3.7.

Corollary 2.3.8 F : (X, X) — (Y.)) provided F(X) C Y| and F takes pullbacks
in X to Y] -pullbacks in'Y.

Equivalently, the functors which lift in the simple case are those which preserve

cover pullbacks.

Lemma 2.3.9 F takes X-pullbacks to Y-pullbacks if and only if F(X) C Y and F
takes pullbacks to Y-pullbacks.

Proof. Suppose F takes X-pullbacks to }-pullbacks. Pullbacks are X -pullbacks and
thus taken to Y-pullbacks. Furthermore, the X-pullback z;1 = z;1 is taken to the

34 CHAPTER 2. PROCESS CATEGORIES

Y-pullback Fzr:1l = Fz;l.s0 Fre).
Conversely. suppose h: f = k; g is an X-pullback and that z € X is the induced mor-
phism to the inscribed pullback p: f = ¢:¢. Since F takes pullbacks to Y-pullbacks.

the induced morphism y

. ‘\y !
e Fy s e

Y

Fg

to the pullback inscribed in F(p); F(f) = F(q); F(g)isin Y. Then Fz;y. the unique
morphism to the pullback inscribed in F(h); F(f) = F(k); F(g).is in V as required.
a

We note another special case when the cover systems for span legs are left-factor

closed and the cover system for equivalence is their intersection:

Lemma 2.3.10 Let Y, and Y, be left-factor closed. If F(Xo) C Yo, F(X,) C Y, and
F(X) C Yo Ny then Proc(F) is a functor Proc™ (X X)) — Proc?(Y).

Proof. Suppose ro; fi = ri; go is a pullback with ro and go in X and r; and f; in X;.

Then the induced morphism in the following diagram

1s in Y N W by left-factor closure. a

2.3. THE PROCESS CONSTRUCTION 35

We now ask when a natural transformation a: F = G : X — Y induces a natural
transformation Proc(c) between lifted functors Proc® ¥ (X, X') — Proc®1(Y,)):

- FA o,

FA GA

Lemma 2.3.11 Proc(a) is a natural transformation Proc(F) = Proc(G) whenever

(1) a belongs componentwise to Y,

(2) a is Y|-cartesian for the morphisms of Xy.

Proof. A naturality square Proc(F)(f); Proc(a) = Proc(a); Proc(G)(f) appears as

follows in Y:

FAs— = —— FA —% .G
' 4 h 4
Ffo Gfy

y v m——
FP e _ _ eGP
= T FP — " Up
Ffy Gf;
A 4] v
FB < = -~ FB o, - GB

To commute in the process category Proc®(Y,)) it is sufficient that induced

morphism y belongs to V|. =)
We note again a special case for left-factor closure:

Lemma 2.3.12 [f Y is left-factor closed, then o : F = G is YV-cartesian whenever
ag tsin) for all A in X.

Proof. Consider the naturality square associated with any y : 4 — B:

FA —%4 . GA
Z -
(. R
Fy . Gy
v, v

FB ——q;— GB

36 CHAPTER 2. PROCESS CATEGORIES

The arrow opposite ap in the pullback square is in J and thus the induced arrow =

is in Y by left-factor closure. a

The following proves useful for identifying functorial structure which lies in the

domain of the process construction.

Lemma 2.3.13 Let 6: F = G : X — Y be V|-cartesian and pointwise in Y|.
(1) If F: (X.X) — (Y.)) then G : (X.X) — (Y, D).
(2) Ifa: F= H and 3: H = K are Y|-cartesian and a: 3 = o;~. then ~ is
Y| -cartesian.

Proof. Note that if the top face of the following diagram is an }'|-pullback

»FA - ——p FC
FP — ——+=FB ~
¢ ¢
¢ iy ¢ !
v »GA-———zGC
GP — - -—+GB

then. since op and 04 are in V|, the bottom face is also a Y |-pullback by lemma

2.2.4. Part (2) follows directly from the same lemma. a

2.3.3 The 2-functor Proc

We can thus view the process construction as a 2-functor, with domain the 2-category
PModel of process models given by
- 0-cells - tuples (X, X, Xp, A1), where X is a category with cover systems X, X;
and X,

- l-cells - functors F : X — Y which satisfy lemma 2.3.7,

- 2-cells - natural transformations a : F = G which satisfy lemma 2.3.11.

Proposition 2.3.14 Proc : PModel — Cat is a 2-functor which preserves prod-

ucts.

2.4. LINEAR PROCESS CATEGORIES 37

Proof. It is clear that Proc preserves composition of 1-cells (i.e. Proc(F);; Proc(G) is
Proc(F';; G)) and vertical composition of 2-cells (i.e. Proc(a); Proc(8) is Proc(a; 3)).
To see that horizontal composition of 2-cells is preserved, suppose « : F = F’ and

3:G = G'. Then

Proc(a:;3) = Proc(8:G'a)
= Proc(3): Proc(G'a)
= Proc(B); Proc(G')(Proc(a))
= Proc(a):: Proc(3)

as required.
It is easily seen that Span(X)x Span(Y) is equal to Span(XxY). giving preservation

of products. 0O

2.4 Linear process categories

One of the tenets of this approach to constructing process categories is that functorial
structure on a process category can be predicted from related structure in its model
category. Here we consider how this approach may be used in obtaining a categorical
model of Linear Logic [Gir87] — i.e. a linear category. Specifically, we consider how to

obtain compact-closure, biproducts and storage in a process category such as SProc.

2.4.1 Compact-closure

A x-autonomous category [Bar79] provides a model of the multiplicative constructs of
linear logic [Bar91, See89]. A compact-closed category is a *-autonomous category in
which the tensor and cotensor coincide. In this case the complementation morphisms

T: T — A® A" allow a form of feedback, so that processes may be connected in

38 CHAPTER 2. PROCESS CATEGORIES

cycles. For example, given a process f : A — A one can form the “closed loop”
T fLity T —» T

In a process category which is self-dual, compact-closure can arise from the prod-
uct in its model category. Products in any category preserve pullbacks and also
preserve any cover system since the following squares

axC —fXL spxc BxC — B _+Bxp
- . . ;

Poj Po Py P
v v v v
A———5—B C 5 *D

are always pullbacks. Furthermore, the natural isomorphisms for associativity, sym-
metry and unit elimination are cartesian. Thus the product and the associated natural
transformations in a model category always induce (via the 2-functor Proc) a sym-
metric tensor on the process category - although there it is not generally a product.

Given a covariant involution _* in a model category X. one obtains a contravariant
involution (f.g) — (g*, f*) on the process category Proc(X,X). If the involution
on X is such that (AtxB!)* = AxB, then Proc(X.X) is a weakly distributive
category with the weak distribution é given by associativity [CS92]. To further obtain
a compact closed category is sufficient to have, for each A, a span 74

FA
l/\L‘

AxAL

and a morphism z of X" for which:

‘/IFAXA(\-/\

I'x
IxXA AXALxA 1xyt AXFAL
~ ;

Ax(A+xA) IXI™ Axi

2.4. LINEAR PROCESS CATEGORIES 39

Note that the above diagram is simply a bisimulation witnessing the process equation

c=1Q1467;Q1:IQA - AQI

Proposition 2.4.1 If X has finite products then Proc(X.X) is compact-closed for

any cover system X .

Proof. Take -* on X to be the identity, F'A to be A and v to be the diagonal A.

Noting that the following

A
A > AXA
] |
Al 1xA
v v
AXA —xxT > AXAXA —3—> AX(AXA)
is a pullback, the cover morphism z is given by the unit elimination isomorphism

u:lxA — A. a

For example, both the category Span(X) of spans and the category Rel(E) of
relations are compact-closed for finitely complete X and regular E. Furthermore,

both SProc(X) and SProcz(X) are compact-closed for finitely complete X.

2.4.2 Biproducts

Biproducts (i.e. products which are simultaneously coproducts) can be used to model
the additive constructs of linear logic. As shown by Abramsky, biproducts allow the
implementation of nondeterministic choice in SProc: given processes f,g: A — B, the
composite process A; f@g; V : A — B behaves either as f or as g nondeterministically.

Lindner [Lin76] observed that the span category of any lextensive category has
biproducts: since the coproduct functor is stable and the associated natural transfor-
mations are cartesian, the span category has finite coproducts which are simultane-

ously products since the span category is self dual. To obtain biproducts in a process

40 CHAPTER 2. PROCESS CATEGORIES

category it is then sufficient that coproducts in the model category preserve the cover

system.

Proposition 2.4.2 For leztensive category X with cover system X, the process cat-

egory Proc(X. X') has finite biproducts provided coproducts in X preserve X .

As discussed in section 2.1 the category Tran(X) of transition systems does not
have extensive coproducts due to the fact that the initial state is (nontrivially) reach-
able. However, we can obtain an extensive coproduct in a related category of transi-

tion systems which have their initial state separate from the rest of the state space:

Example 2.4.3 STran(X) is the category of models in X of the following sketch
ypo \{0‘ }/P \
z S SxZ S

The cover system 3% in this model category is the class of morphisms which are
cartesian for both m® and m;po. Since the extensive coproducts (given component-

wise) in STran(X) will preserve 3% whenever coproducts in X preserve X,

Example 2.4.4 Proc(STran(X),3%) has biproducts whenever coproducts in X pre-

serve X. N

Proof. To see that coproducts in STran(X) preserve X, it is enough to note that
coproducts in X preserve X-pullbacks since they preserve both pullbacks and X-

morphisms. m]

Since coproducts in a regular category E preserve regular epimorphisms one always

has biproducts in SProc(E).

2.4. LINEAR PROCESS CATEGORIES 41

2.4.3 Storage

The exponential type (or storage) of linear logic can be modelled in a *-autonomous
category by a comonad !'A together with a commutative comonoid on 'A [Bar91.
See89]. This structure allows one to view processes as resources which can be repli-
cated (through contraction !4 —!A®!A) or discarded (through weakening !4 — T).
Storage is also necessary to encode the lambda calculus in linear logic. so that one
may combine both functional and concurrent programming in the same framework.
A common method of obtaining the exponential type is to use the Fock construc-
tion [Bar91. BPG94]: in a compact-closed category with finite biproducts. define
de f

'A = Toe, ©F A, where @7 A is the n-th symmetric tensor power of A obtained by

coequalizing the group S, of permutations on ®"A
*ﬁ,_C,_L.,,_. . L_» n
8 g I @ ®"A

In the category Rel of sets and relations, for example, these permutations and their co-
equalizers are given directly (i.e. as trivial spans) by the corresponding permutations

and coequalizers on the product in Set:

O, -
— 9 e M(A)

An

Given any r : @A — B in Rel which satisfies Vo € S,. o;r = r. the mediating
morphism ®7A — B is given by ¢°r. Thus !(_) in Rel is given by the underlying
multiset monad M(A) = E,¢c,Mn(A) on Set: the functor !(.) takes a relation (fo, f1)
to the relation (M fo, M f1).

Storage in SProc

Unfortunately the Fock construction fails in SProc, contrary to suggestions in [AGN94].
To see why, let A and B be the trace specifications generated by the regular expres-
sions (a1]|az)” and " respectively. Forming the coequalizer ¢ : AxA — M,(A) of

42 CHAPTER 2. PROCESS CATEGORIES

the identity and symmetry morphisms in the category of traces gives the obvious

candidate for the coequalizer in SProc: the process

¢ Ligal((ar,a2). (a1, a2)) = ((a1, a2). {lar, az})]

using the notation of [AGN94]. The process r : A@ A — B given by the transition
system

(a a)b -) r"ialla_lz'_bt, Y
paz

]

(az,a,}.b\ -

® ——
(a;,a,),B e

satisfies ¢;r = r. However, the composite process ¢;q° r is not bisimilar (or even
trace equivalent) to r since the trace ((ai,a;).b)((a2,a,),b) is admitted only by the
former.

[n fact. !(_) fails to preserve composition in SProc and is thus not a functor.
Consider the specifications A = (a;|a2)” and B = (b;|b;)" and the process f: A — B

given by the transition system

o —..arbi__ °
a,.bl R
i

az,bz -~ . e

‘ab,
The processes ! f;!f° and !(f; f°) are not bisimilar as only the former can deadlock
after exhibiting the action ({|a1, a2]}, {la1, a2[})-

The above failing corresponds to the fact that the multiset functor is not an
3¢-stable functor on the model category for SProc. It does not, however, refute the

possibility that !(_) is a functor under a more generous equivalence. As we will see, !(_)

becomes a functor if we quotient SProc by trace equivalence rather than bisimulation.

Storage via multisets

Since a process category Proc(X, X) is self dual, any monad there is simultaneously

a comonad and any monoid is simultaneously a comonoid. An obvious approach to

2.4. LINEAR PROCESS CATEGORIES 43
obtaining an interpretation of !(_) in a process category is thus to lift a monad with
a commutative monoid structure through the process construction.

In the category Set. both the list functor L and the multiset functor M have such

structure. Furthermore, these structures are also related by a natural transformation

q,
A—Dl oy a o flatten A j—nil oy aeappend A
A lnj > MA < flatten MMA 1 empty > MA :union MAXxMA

(given by the sum ¥,¢,qn of coequalizers of S, — recalling that L(A)défsneu(x")A)
which is pointwise a regular epimorphism and is also £-cartesian. Since L is a stable
functor and its associated natural transformations are cartesian, by lemma 2.3.13, M
is an &-stable functor and its associated natural transformations are £-cartesian. Thus
the monad and monoid structure on multisets lifts through the process construction
to the category of relations. In addition, the isomorphisms M AxM B — M(A+B)
and 1 — M0 in Set induce the isomorphisms '4A®!B —!(AxB) and T —!1 in Rel

required to make !(_) a model of the linear exponential type.

In the category of trees, any functor F' : X — Y induces a functor Tree(F) :

Tree(X) — Tree(Y) defined pointwise

FAO 4—Faﬂ— FAI <£l—
FfQi Ff¢

FBy+——FB, ...

Fb, Fb,

and any natural transformation o : £ = G : X — Y induces a natural transformation

44 CHAPTER 2. PROCESS CATEGORIES

Tree(a) : Tree(F) = Tree(G) given by the family {(a.,,@4,,...) | A € Tree(Y)}:

o /.
Faq FA, ;FB,
| |
FA, — b, pB, “Fby |
v °‘a,,:' v s
N GayGA, L +GB,
v v
GAO/ ~GB, “Gb,
G, 0

The topos Tree(Set) [JM95] in this way inherits the relationship between the list
and multiset monads from Set. making Tree(M) and its associated structure &-
cartesian. The isomorphisms 1 — Tree(M)(0) and Tree(M)(A)x Tree(M)(B) —
Tree(M)(A+B) are also inherited and thus the process category Proc(Tree(Set), £) —
i.e. the category of relations on trees or alternatively SProc modulo trace equivalence

— provides a model] of the linear exponential type.

Proposition 2.4.5 SProcr is a linear category.

Note that the multiset functor exists in any locos in which each object can be
totally ordered [Coc90]. so this construction may be performed in a more general

setting.

2.5 Examples

In this section we discuss some process categories which result by varying the param-
eters to the process construction. First, by choosing appropriate cover systems for
process legs, we construct processes upon transition systems which are deterministic

and (in a certain sense) live. We then consider the two models of games.

2.5. EXAMPLES 45

2.5.1 Functional processes

Consider a span in Tran(X) whose left leg belongs to the cover system 3" of local
monics.
P
X / \B

Since f is in 3™, every transition from a state f(s) in A has at most one corresponding
transition from state s in P. One may view the interaction at interface A as input
which determines the state change of the process and thus the output at interface B.
With this in mind, we define the category of deterministic synchronous processes as

follows

DSProc(X) & Proc®(Tran(X),3R)

where 3 are the local retractions. Note that the cover system for equivalence is
actually forced to be the local isomorphisms 3%: since 3IM is left-factor closed all
2-cells in Spa.naM(Tran(X), 3%) must belong to the intersection of 3% and 3™, which
is 37.

One might wish for a more relaxed definition of determinism in which state change
is determined by presenting actions at both interfaces simultaneously. It is easily seen,
however, that this property is not preserved by process composition [Mil89].

Consider now the effect of requiring that spans take their left leg from the the
cover system 37 of local isomorphisms: every transition from a state f(s) in A has
exactly on corresponding transition from state s in P. Such a process is not only
deterministic, but implements it’s interface completely: it can halt only at those
states where the interface specifies no available actions. Thus we define the category

of functional synchronous processes:
d_e! 3z T
FSProc(X) = Proc™ (Tran(X),3")

We will see later that this process category is essentially the category of trees in

46 CHAPTER 2. PROCESS CATEGORIES

X. and that the former category is essentially the category of partial maps on trees.

2.5.2 Chu spaces

The category of Chu spaces (or Chu(Set.2)) advocated by Pratt [Pra95] has as objects
A relations Ry € E4xS4, and as arrows A — B pairs (f: E4 — Eg,g: Sg — S4)
of functions satisfying the condition (e.g(s)) € R, if and only if (f(e).s) € Rg.
Composition and identities are given componentwise in Set.

The stated condition on morphisms is equivalently expressed by requiring the

following pullback:
B ER

| ;
/EAXSB

Consequently. the category of Chu spaces may be presented as a process category

upon the category of models given by the sketch:
li
X

The cover system for left legs is given by the morphisms which are cartesian for r and

ExS

have their E-component an isomorphism, while the cover system for right legs are the
morphisms which are cartesian for r and have their S-component an isomorphism.

The cover system for equivalence is then forced to be the isomorphisms.

2.5.3 Simultaneous games

Consider the form of 2-player game in which both players move simultaneously. Such
games can be modelled as transition systems which are labelled by pairs taken from

two independent alphabets.

2.5. EXAMPLES 47

Example 2.5.1 For X a category with finite limits, define SGame(X) to be the cat-
egory of models in X of the following sketch:

‘y\'}vs*_j_‘
| pA
z S A

Here the morphisms (s*,n%) : P* — SxT and (s*,n%) : PA — SxA\ indicate the
permissible actions for player and opponent respectively. P represents the collection
of all permissible pairs of actions by player and opponent, and ¢ determines how each
pair of independent actions effects the state of the game. Note that such games are
effectively transition systems with states S, labels ¥xA, and permission set P.

Consider as cover systems for span construction the classes of morphisms £y and
L, which are cartesian for the arrows s~ and s* respectively. A process

P
A/ \KB

constructed in this manner has the property that at any state s in P, each ¥-move
permissible at state fs in A has a unique corresponding ¥-move permitted at s
and each A-move permissible at state gs in B has a unique corresponding A-move
permitted at s. Together with the condition of independence in P, such processes are
deterministic and deadlock-free: the presentation of inputs at each interface (viz. T4
and Ag) determines a unique evolution of the process which produces outputs at each
interface (viz. A4 and ¥g). The cover system for process equivalence is forced to be
the local isomorphisms 3. which is the intersection of £o and £;. Note that in this
process category, the X-strategies for any game A are exactly the morphisms A — [
(where I is game which is final in the model category SGame), while the A-strategies

are just the processes [— A.

48 CHAPTER 2. PROCESS CATEGORIES

By weaking the cover systems for span construction to be only R-cartesian for
m¥; po and m*; py respectively, one maintains freedom from deadlock while allowing
processes to be nondeterministic. In this case one can use the cover system 3% to

obtain bisimulation as process equivalence.

Concerning the structure of this process category, note that there is a covariant
involution _* on the model category which switches the roles of the two players:
ie. P® +— PAand PA — PE. The product in the model category provides a
symmetric tensor _® - on the process category which is equal to the induced cotensor
Ao B % (A* ® B*)*. One then wonders whether or not the process category is
compact-closed using the technique of section 2.4.1. The complementation process
I — A3 A* must translate an input pair (A, o) to the output pair (o.A): an obvious

candidate for the apex of this process

/FA \Lt
1 AxAL

is a relabelling of A in which the ¥-moves become £ 4 ® A4 and the A-moves become
A4 @ 4, with both permission sets given by the permission set of the transition
system A. The existence of a morphism FA — 1 requires that A be progressive in
that there are transitions from every state. The condition of independence on F A,
however, requires that it provide transitions for all pairings of permissible moves, thus

precluding the commuting requirements of the complementation process.

Another disappointing note is that these process categories do not have biproducts
since the coproduct injections do not belong to the cover systems chosen for span

construction.

2.5. EXAMPLES 49

2.5.4 Interleaved games

Consider the form of 2-player game in which either player may initiate play. but
afterwards the moves of each player alternate. Such games have become popular
recently in the area of programming language semantics [AJM94].

For X a category with finite limits:

Example 2.5.2 Game(X) is the category of models in X of the following sketch:

Thus we view a game as a transition system which has been “pulled apart™: the
0-tagged components corresponding to the player side and the 1-tagged components
corresponding to the opponent side.

There is an involution _* on the model category which switches the roles of player
and opponent. and taking £ to be the class of morphisms which are cartesian for s°

we obtain the process category
Strat(X) S ProcC'CL(Game(X))

of games and synchronous strategies. Like the process category of section 2.5.3, the
morphisms of Strat(X) can be seen as deterministic and deadlock-free processes.
The process category Strat(X) admits the standard game theoretic tensor. The
game A @ B allows games A and B to be played concurrently by interleaving: the
player who moves first can do so in either component; afterwards the opponent may

move in either component, while the player must move in the component where the

50 CHAPTER 2. PROCESS CATEGORIES

opponent moved previously. The functor _& _ is given by the following operation on

the model category Game(X),

K, x1+1 xKg+HPIxS}+S) xP9)
!+(s}\’xl+l‘>y \1 <G x kx| <@x 1] 1xig>>
| lHSIXSISIXSD EHE9 BeESIxSlemo
o <>
<! x1[1xg>;b, ~_ 7 <six1Ixsl>
PixS+S) <P}

where the labelling components are potp1 + (potp1); (ka+ks | A a+Ag) and po+po; AL +

Ag. and the initial player transitions of each game are extracted as follows:

L

z a IxX ix1 »SxX

The unit for the tensor is given by the final object in Game(X). Note that although
- @ - is an associative bifunctor on the model category Game(X), it is not a tensor
since the unit elimination morphism is not an isomorphism — it is. however, a cover
morphism strong enough to make it an isomorphism in the process category (see
section 4.1).

The tensor - @ - and involution _* give a cotensor & in the standard way. and

these two tensors are linked by a linear distribution.

Claim 2.5.3 For X a lestensive category, Strat(X) is linearly distributive.

Although it has a similar flavor, Strat(Set) is not the category of games and
strategies of Abramsky and Jagadeesan [AJ94]. In particular, implementing the com-

plementation process I — A @ A* necessary for *-autonomy requires asynchrony.

2.6. SUMMARY 31

2.6 Summary

We have presented the construction of a process category as a category of generalized
relations: given a category of models of processes and a cover system for behavioral
equivalence. a category of processes is formed as a span category quotiented by the
cover system. Choosing additional cover systems to restrict the model morphisms
used to construct spans provides a means of imposing on processes conditions which
are preserved by composition: specifically. we have seen examples of the construction
of deterministic and/or deadlock-free processes.

We have observed that much of the structure of a process category can be seen to
arise from related structure in a model category, and that the construction is indeed a
2-functor. Thus the task of establishing functorial properties upon process categories
is largely the task of demonstrating that the underlying structure lies in the domain of
the 2-functor. We have seen how this applies to establishing the presence of linear type
structure in a process category. but it is also useful for inferring relationships between
process categories. In chapter 4 we show how adjunctions between various categories

of transition systems induce equivalence of the associated process categories.

3]

£

CHAPTER 2. PROCESS CATEGORIES

Chapter 3

Asynchronous process categories

Consider a process which translates a sequence of atomic values at one interface into

a sequence of complex data structures the other interface:

A ——1 deserializer Complex(A)

Such a process must delay producing an output until the appropriate number of inputs
has been received, and is thus asynchronous.

This chapter presents an approach to building categories of asynchronous pro-
cesses: one begins with a model category for synchronous processes and a monad
which adds delay to the models; the process construction is then performed upon the
Kleisli category of the delay monad. This approach, which stems naturally from the
desire to calculate at the level of the model category, raises several technical questions.
When does a Kleisli category have enough limits to support the process construction?
How does one obtain a cover system which “ignores” delay? When is the functorial
structure of the synchronous process category preserved in the asynchronous setting?

We begin with a review of the Kleisli construction and the conditions under which
the structure of the underlying category can be lifted to a Kleisli category. We

then isolate a class of monads whose Kleisli categories have finite limits, and develop

53

54 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

conditions under which these Kleisli categories inherit the cover-stable structure of the
underlying category. The lifting of stable functors provides an important technique
for obtaining cover systems on Kleisli categories.

To illustrate these techniques. we show how the delay monad on transition systems
admits the construction of a category of asynchronous processes modulo weak bisim-
ulation. We also consider asynchrony in the context of games, both simultaneous and

interleaved, where the notion of delay is more intricate.

3.1 The Kleisli construction

Recall that a monad on a category X consists of a functor T : X — X together with
natural transformations 7 : /d = T and g : TT = T — the unit and multiplication

— satisfying the following equations:

TA I

m = nr 1 1

» a v v
A ~p—>TA <—p— T2A TPA —— -~ TA

A standard example is the monad of exceptions: if X is a category with finite
coproducts and X is an object of X, then (. + X, by, a; 1+V) is a monad.

Given a monad (7.7, x) on X, one forms the Kleisli category X1 with the same
objects as X, but with morphisms A — B given by the morphisms A — TB of X.
The identity :d4 in X7 is given by 5.4, while the composition of morphisms f : A — B
and g : B — C in X7 is given by f;Tg;p in X.

There is an adjunction (n,¢) : Fr 4 Ur : X — X associated with the Kleisli
construction: the free functor Fr takes f : A — B in X to f;5, the underlying
functor Ur takes g: A — B in X1 to Tg; p, and the counit € at A is given by idr 4
in X.

Suppose that (T, 7, 1) and (S, ¢,) are monads on categories X and Y respectively.

3.1. THE KLEISLI CONSTRUCTION 55

IfG:X — Yisafunctor and A : GT = SG is a natural transformation. the operation
G which takes a morphism f: A - TB of X to the morphism Gf; X : GA — SGB

in Y is a functor X7 — Y if and only if

GTTA ——SGTA —SA+S5GA
(?/ \. G“l lv
GTA—5—>SGA GTA oy —»SGA

commutes for all A in X. Such a A is called a distribution for G over T and S.

For X a category with coproducts, the canonical isomorphism 7+ : A+X+}V —
A+Y+X is a distribution for the functor _+Y over the monad _+X. In a distributive
category [Coc93], a distribution for the functor _xY over the monad _+X is given by
the morphism d; 1xp; : (A+X)xY — AxY + X. In each case the distribution for the

functor _2 Y (i.e. the tensor strength) induces a distribution for the functor . _ as

follows:
TA;TTB ------------------------ +T(A®B)
T(A@TB)—>T(TB®A) 'I“(B@A)—"["’(A@B)

Note that distributions compose: if A : GT = SG and « : HS = RH are
distributions, then H\;x : HGT = RHG is a distribution. For example, one obtains
a distribution 7+1; 7 : A+X+X+Y — A+Y+Y+X for the functor .+Y+Y over the
monad _-+X.

A special case of a distribution is when the “target” monad is the identity: for T

a monad on X and G : X — Y, a natural transformation a : GT = G for which
GTTA —%—»GTA —%&—»GA

AR !

GTA—g—*GA GTA & »GA

56 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

is called a T-action for G.

If G and H are functors X — Y with distributions A and « respectively, a natural
transformation « : G = H induces a natural transformation & : Gy = H, given
componentwise by a4;tm4 in Y if and only if ;& = A; Sa. In this case we will say
that a respects the distributions A and «.

For example. the diagonal A in a distributive category lifts over the monad _+X

. but the projections do not. In addition,

Example 3.1.1 [n a category with coproducts, the injections and codiagonal lift over

the monad _+X. as do the unit and multiplication of _+X :

b,
A+X — 22— A4X+Y A+XHAHX) —L» A+X A+X+Y+Y —E+ A+X+Y
<{ l‘ ex; l+V1 ': +1 ;11 b
A+X —bOTl' A+Y+X A+A+X Vi A+X A+Y+Y+X T‘ﬁ' A+Y+X

The Kleisli construction on a 2-category X can be seen as a 2-functor into X: the
domain is the 2-category Dist(X) whose 0-cells are monads 7" in X, l-cells T — S
are given by distributions A : GT = SG of X, and 2-cells A\ = « are given by natural
transformations a : G = H of X which respect the distributions. There is a related
2-category of arrows Lift(X) whose O-cells are again monads in X, 1-cells T — S are
“liftings”, or pairs (G, G') such that Fr; G’ = G; Fs, and 2-cells are “pillows”. or pairs

(a, @) such that Fr;;a' = a;; Fs.

Theorem 3.1.2 Dist(X) is isomorphic to Lift(X).

The proof appears in [Mul94a] and is based on the fact that the 1-cells of Lift(X)

correspond exactly to distributions.

Ut
~1

3.2. STABLE MONADS

3.2 Stable monads

Here we isolate a class of monads (stable monads) whose Kleisli categories have pull-
backs, and develop conditions under which stable functors and cartesian natural trans-
formations can be lifted over these monads. The latter conditions are refinements on

the conditions for lifting fuctors and natural transformations over arbitrary monads.

3.2.1 Finite limits in Kleisli categories

By focusing on monads which already behave well with respect to pullbacks, we
provide necessary and sufficient conditions to secure pullbacks in the Kleisli category.

Let X be a category with pullbacks. A monad (T, 7, u) on X is called a club when
T is stable and n and p are cartesian [Kel92]. We say that a club is a stable monad

when its Kleisli category has pullbacks.

Proposition 3.2.1 A club (T,n,p) is a stable monad if and only if there ezists a
stable functor P : X — X and cartesian natural transformations o and 3: P = TT

which make
TPA e L» S A —R . T2A

B
v
T3A B
1
v v
T?A ——— ———q—————=TA

a pullback in X.

Proof. Suppose that X7 has pullbacks. Note that the counit €4 of the Kleisli ad-
junction is taken by Ur to g4 in X. So if Xt has pullbacks, the pullback of €4 along
itself is taken by Ut to the diagram above. It is not difficult to show that P is a

stable functor and that « and 3 are cartesian natural transformations.

58 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Conversely, if P, a and 3 are as stated then a pullback of f and g in X7 is given
by a pullback of Ur f and Urg in X which lies in the image of Ur: forming the limit
(z.y) of diagram (T'g, 3. a.T f) makes

Z Ixo o eqp— o1
o ?f If
v v
Ty PC —T0 e -t o pc
8
v 7,2 \
2B — &= TiC W
B B
v v A
T8 ——pg—*TC — — ———p————-——=TC

a pullback in X (as T is stable and g is cartesian), and thus (z,y) is a pullback of f

and g in X7. a

A fundamental example of a stable monad is the monad _+.X. Here the additional
structure required by propoosition 3.2.1 is given by the functor T3 and the natural
transformations T’y and 7; Ty respectively, where 7 is the isomorphism A+ X + Y —
A+Y + X. We will refer to monads whose stable structure is given in this way as

exception monads.

Example 3.2.2 For a lertensive category X, the monad +X is a stable monad for
any X.

Proof. The required pullback is constructed in the following diagram, where (to save

3.2. STABLE MONADS 39

space) we write the coproduct of objects as juxtaposition:

AXOCX a+l+] - AOXX AtV4itl, sxxy —a,. AX(Xx) —1tI+Y _, aAxx

a a = =

v Y
AXXOXX) —— LY+ o axyxx) — — LIV o axy

™+l
a a a
v v \/
Aoxoxxy — VD gy —IHUIEV) L g xx)
v
AXXXX 1) J+a!
A(XXXX)
I+(t+1) (2) =
a+l+1 v
A(XXXX)
l+a
4 v
AXX)XX —d—e A(XXNXX) —2 o A(XX(XX)) Y e AXX)
1+V+1+1
A4 1+V+1 1+(V+1)
AXXX
a _ v v
a | AXIXX) — d—e A(X(XX)) 14V
AXOX)
1+1+V 1+(1+V)
1+1+V
v v v v
AXX ———=— AXX —-q--» A(XX) - v —— - — = AX

(1) and (2) are easily shown to commute and are thus pullbacks as opposing sides are

isomorphisms. a

Given pullbacks, one secures all finite limits with the addition of a final object. It

is easily seen that
Proposition 3.2.3 Z is final in Xt if and only if TZ is final in X.

For lextensive X, the Kleisli category X 4, has finite limits since 0+1 is isomorphic

to 1.

3.2.2 Cover systems upon Kleisli categories

A stable monad T on X is called a cover-stable monad on (X, X), or simply an X-
stable monad, provided T preserves X. Note that the functor of a stable monad

always reflects a cover system.

60 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Lemma 3.2.4 If (T.n,p) is a club a category X with a cover system X, then the
functor T reflects X .

Proof. Since 7 is cartesian, the naturality square f;n = n; T f is a pullback and so f

belongs to X whenever T f belongs to X. a

Let (T.n.u) be an X'-stable monad on category X. The class of morphisms Fr(X)
in X7 is a cover system on X provided the isomorphisms of Xt are just the isomor-

phisms of X lifted.
Proposition 3.2.5 IfIx, = Fr(Ix) then Fr(X) is a cover system on Xr.

Proof. Xr is closed under composition as Fr is a functor. To see that Xr is closed
to pulling back along arbitrary morphisms. suppose z is in X and f is a morphism of

X7. The following pullback in X corresponds to a pullback g; Frz = Fry; f in Xr:
L Tg . __p .

Ty T2x Tx
v v v
BN 5 2 | S
y is in X as T preserves and reflects X, and thus Fry is in X7r. a

Note that this cover system does not generally inherit left-factor closure from X.
Of course F7(X) can always be made into a cover system by adding the additional
isomorphisms of X7 and closing under composition and pullback. In either case. we

will call the obtained cover system X7.

Lemma 3.2.6 Ix, = Fr(Ix) whenever n is monic and the following is a pullback

for all A in X:
A—N w714 0 o2y
= I
\ 4
A n - TA

3.2. STABLE MONADS 61

Proof. Suppose f is an isomorphism with inverse g in X7. Then f;Tg;p = nin X

and as 7 is cartesian there is a map h such that f = Fr(h):

- n Tg
- h-,,] 8s "‘n”"
= - n X
: v
. - .

Similarly, there exists k£ such that ¢ = Fr(k). Furthermore, A;k =1 and k:h = 1 as

n (i.e. the coproduct injection) is monic. a

The exception monad _ + X (and thus the derived monads of delay on transition

systems) have the abovementioned property.

Example 3.2.7 [n a lestensive category, Ix ,, = F.x(Z) whenever the coproduct

functor preserves the cover system X .

Proof. Coproduct injections are monic in a lextensive category. and the pullback

diagram of lemma 3.2.6 appears below:

AP a+x b0 o A+X+X

= o a
b v
 — 20 e AH(X+X)
= 1+V
v
A By - A+X

Another way in which a Kleisli category inherits a cover system from its underlying

category is through a stable monad action, which we will now investigate.

62 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

3.2.3 Lifting stable functors

Suppose now that T and S are cover-stable monads on (X, X) and (Y.)) respectively.

and that G : (X.X) — (Y.)) is a cover-stable functor.

Proposition 3.2.8 If A : GT = SG is a Y-cartesian natural transformation. then
Gy : (X1.&T) = (Y71.Y1) is a cover-stable functor if and only if A is a distribution

for G and
GPra — G0 Loy A L soTA

G]J.A SA
v v
G124 PsGA —Y0 o 52G4
A Vi

v v

SGTA s " S2GA
s a Y-double pullback for all A in X.

Here we use the term double-pullback to indicate the limit of the diagram
which. of course. may be formed by a combination of pullbacks.

Proof. (=) The pullback of €, along itself is taken by the composite UsG\ to the
following Y-pullback:

SGPm —3CHo-o 5124 —Sh v 2GTA — V- —+ SGTA

SGu, A SA
\4 SV v v
SGT?A SPsGA 70— §3GA Y $2GA
SA Sv,; o
v \4
§$26TA —A v $364 v
v v
v \ 1 4

v

SGTA Ry N S$2GA \ SGA

3.2. STABLE MONADS 63

Since S reflects cover-pullbacks, the diagram in question is a Y-double pullback.

(<) If h: f = k;g is an Xr-pullback then as Ur preserves and T reflects cover

pullbacks the following is an X-double pullback:

z - ——hB e TA
If
: Pic Mo pic
Ky
v v

TB - g~ T2C

Let y be the induced V-map the double pullback (p. ¢q) inscribed in the following:

Gz -——— -Gh . GoTA — A _+506A
GTf SGf
v 4
Gk e —S . gpc A . scTC
Gl.ll SA
M GT; ' v Y
GTB ——& - Gr2C PsGC —-->0—e 22GC
A A Vi

v v

v
SGB *gcg" SGTC ——Sx—’ S2GC

Then Sy is the induced V-map to the pullback inscribed in the following:

sGz ———- - SGh____ SGT. —~A§'{\p S2GA —Y— = SGA
Sy T _
2 e S°Gf SGf
sp M '
SGk — S2GTC — Y—-—+ SGTC
Sq s SA
v 5\, v v
SGTB SPGC —=70—w ©3GC —Y——+ §2GC
SA Sv;
\A 4 SZG& \j
$2GB —>-8 » 2gTC —FA—+ $3G6C v
v v v
v v \ v
SGB ——SGg—’ SGTC -ST—’ S2GC v > SGC

64 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Note that p: Gaf = ¢q; Gag is a pullback in Ys: as the following equations hold in Y.
Gh:X=y;p=y:e:Sp:v
Gk; A=y q=y;;Sq:v

the image of h: f = k; g under G, is a YVs-pullback. a

We say that a natural transformation A satisfying proposition 3.2.8 is a cover-stable

distribution. The following shows that cover-stable distributions may be composed:

Lemma 3.2.9 [f E\ : (XT.XT) — (Ys.ys) and G‘ : (Yg,yS) d (ZR, ZR) are

cover-stable functors, then GFg\. is a cover-stable functor (X1, Xr) — (Zg, ZR).

Proof. The required diagram is as follows:

Gy . Gh .. x ..
GFu, GSA RGA
M _..Gv " T
GA Gv, Rx
v v v
- . GsA T gy
K K G,
v \j v
RGN T T TR T v

a

The following lemma is usefui for deciding whether or not a distribution involving
exception monads is cover stable. In the following lemma, let S and T be stable
monads whose additional structure (c.f. proposition 3.2.1) arises from isomorphisms

t:T? = T? and s : S% => S? respectively.
Lemma 3.2.10 If A is a distribution for G over the monads T and S such that

GT2PA —2—»sGTA —SA g
|

Gul (1) v
v v
GTA x —SGA

3.2. STABLE MONADS 65

is a pullback, then X is cover-stable if and only if

GT’A Gt »GTA A »SGT2A
ﬁ S
' v
Al 2) S2GTA
| .
v

v

is a Y-pullback.

Proof. Since (1) is a pullback, the Y-double pullback of proposition 3.2.8 must be

constructed as follows:

GTA Gt .Gra “ 7~/; SGTA
\ * sgTa SO
GTw SA|
S v SA
S?GTA
v \ !
GT?A S
: < ZL v v
- soTA - SA esigTA - SAegiGA o »SIGA g, ~SGA
NS g
4 Sv
v5/SG“ v
» Q2
SGTA 5 >S:GA

a
For example, in the Kleisli category of the monad _+X, the functor _+Y is stable:

Example 3.2.11 For leztensive category C, the tensorial strength T+ is a stable
distribution for +Y over +X. Consequently T+1; 7 is a stable distribution of 4Y+Y
over _+X.

Proof. Concerning the diagrams of lemma 3.2.10, (1) commutes by coherence for
symmetric monoidal categories, and both (1) and (2) are pullbacks since 7 is an

isomorphism. a

66 CHAPTER 3. ASYNCHRONOQOUS PROCESS CATEGORIES

Unfortunately, most other examples of distributions over _+.X are not cover stable:
Both the product and coproduct functors have diagram (1) of lemma 3.2.10 a pullback,

but (2) is neither a pullback nor an R-pullback since the inscribed pullback is “larger”.

Stable actions

As a source of functors from a Kleisli category to it's underlying category. actions are
of interest in obtaining cover systems.
With T a stable monad on X and G a cover-stable functor X — (Y.)), we note

the following specialization of proposition 3.2.8:

Corollary 3.2.12 Ifa : GT = G is a T-action for G, then G, is functor X7 —

(Y.)) if and only if
GPA — o oG4 8 . GTa

G,y
v
GT?A 0
a
v v
GTA — — - g~ = GA

is a Y-pullback for all A in X:

An obvious example of a stable T-action for any stable monad T is the monad
multiplication: p lifts the functor T to the underlying functor Ur.

An example relevant to obtaining a cover system for weak bisimulation is given
in Set by the monad of lists (_*, inj : /d = _*, flatten : >~ = _*) and the natural
transformation 8 : (_+)" = -

(A+1)* _ﬂl@_,A..

S~ atten
~
~

S

A.

which removes from a list elements of X.

3.2. STABLE MONADS 67

Example 3.2.13 In Set, §: (. + 1)* = (_)" is a stable action.

Proof. The square required to be a pullback is as follows:

(A+I+1+1)* = (Axl+1+1) D" L aipiry 00 (avnye

(u+i)*
v
(A+1+1)" 3]
a
v v
(A+1)* ——— g - e At

[t is easily seen to commute as each route simply strips the three distinct exceptions
from each element of A+1+1+1. To see that it is a pullback, let & be the map to the
pullback @ of 4 and 4. Define k : Q — A+1+1+1 as follows:

KO.0) = 0
k(x:€, [)) = *1 k(8])
k(x:0. azm) = #: k(€. a:m)
([, #::m) = g :: k(nil, m)
k(a:l. «:m) = %53 k(a:f. m)
k(€. %:m) = =3 k(€, m)
ka:€ azm) = a:k(€, m)

where we write [] as the empty list and a::¢ as the result of adding element a € A4 to

list £ € A*. An induction on the structure of Q shows that k is the inverse of A. O

3.2.4 Lifting cartesian natural transformations

Suppose that G and H are cover-stable functors (X,&) — (Y,)) with cover-stable

distributions A and x over cover-stable monads T and S respectively:

68 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Proposition 3.2.14 [fa: G = H then a : Gy = H, if and only if

GTA — %14 . [TA

XA KA
v v
SG. —‘gaA—’ SHA

is a Y-pullback for all A.

Proof. (=) The naturality square of o associated with €4 in Ygs is taken by Us to

the following Y-pullback:
SGTA —Sh—e 264 —V——+ SGA

Sox (*) S Sa
v

v

v
SHTA —-gc—-» S2HA ~— -y~ SHA

As v is cartesian, (™) is a V-pullback and thus the required square is a Y-pullback as
S reflects Y-pullbacks.
(<) Let y be the YV-map induced to the pullback (p, q) inscribed in:
GA - Gh—-eGrp A+ 5GB
o 04 Sa

v v v

HA -~ gp—> HTB ————» SHB

Then Sy serves as the map induced to the pullback inscribed in the following,

SGA —SGh—. sGTB — Sh_¢ 5268 —Y--» SGB

Sy B T
a8
So Sq — S Soa

T a v \

SHA - —sgp—* SHTB — -g;c—* S2HB —v—* SHB

which implies & is Ys-cartesian. a

For example, the unit and multiplication of the monad _4Y" in the Kleisli category
of _+X are cartesian natural transformations — the two relevant diagrams of example

3.1.1 are pullbacks since the distributions are isomorphisms.

3.2. STABLE MONADS 69

3.2.5 2-categorical aspects

Technically, the Kleisli construction does not exist in the 2-category Cov: although
the functors F7 and Ur are stable and the unit 7 is cartesian, the counit ¢ is not
cartesian. For € to be cartesian would require the image under Uz of a naturality
square €4; f = FU f:¢p

ra—TL wpp — T g

m m

\ v

TA -~ qp— =T ——p— —~TB

to be a pullback. which fails by proposition 3.2.1. However, the construction of Kleisli
categories with cover systems can be characterized by an analogue of theorem 3.1.2.

Let CSDist(X) be the subcategory of Dist(X) whose 0-cells are cover-stable mon-
ads, 1-cells are cover-stable distributions and 2-cells respect the distributions in the

sense of proposition 3.2.14.
Proposition 3.2.15 CSDist(X) is a 2-category.

Proof. It is sufficient to note that composition of the 1-cells is well-defined by lemma

3.2.9. a

Let CSLift(X) be the subcategory of Lift(X) whose 0-cells are those monads which
are cover-stable, 1-cells are liftings whose components are cover-stable., and 2-cells
are pillows whose components are cover-cartesian. We can now state the analogue of
theorem 3.1.2 which characterizes the construction of asynchronous model categories

presented in this section.
Theorem 3.2.16 CSDist(X) is isomorphic to CSLift(X).

Proof. Any cover-stable lifting corresponds to a distribution, and thus the result is

immediate from propositions 3.2.8 and 3.2.14. O

70 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

3.3 Example: Transitions systems

We now consider how the techniques of the previous section are used to reconstruct
Abramsky’s category ASProc of asynchronous processes modulo weak bisimulation
[AGN94]. The construction can be seen as a functorial analogue to Milner's construc-

tion of asynchrony in process calculi [Mil83].

3.3.1 The delay monad

The delay monad on transition systems adds a new label (say *) and an idle transition

on that label at every state:

a t'/*

/‘a\st D » *k/\s
A N

S

The new label * is interpreted as “do nothing”. We can now write a process which.

for example. translates a sequence of numbers into a sequence of points as a span

numG “ . ::Dpoint

in the Kleisli category of the delay monad. Note that the labels chosen in the vertex

indicate that each action has a visible effect at one interface only.
The delay monad exists in the category of transition systems upon any lextensive

category X.

Definition 3.3.1 The delay monad D on Tran(X) has the following effect on a tran-

3.3. EXAMPLE: TRANSITIONS SYSTEMS !

sition system A:

R+S

R r+l *
r » o » <al 1))
» 4 —D . SxZ+S LN
Sx3 S - S

»
Sx(Z+1)

The monad structure is given componentwise by the identity monad and the
exception monad: the unit n? injects a transition system A into the non-idling portion
of DA, and the multiplication u? collapses the two distinct idle actions of DD A into

the single idle action of DA.
Proposition 3.3.2 (D,nP, u?) is a stable monad on Tran(X).

Proof. It is easily shown that D is a functor and that 7 and g are morphisms. The
requirements for being a stable monad are then given by its construction componen-

twise in terms of the identity and exception monads. a

Consequently the Kleisli category Tran(X)p has pullbacks. To see the effect of
span composition here, let (P, f, g) and (Q, h, k) be composable spans in Tran(Set)p .
Proposition 3.2.1 says that the apex of the composite span is the following transition
system:

{(P.9)22(p,¢) | =0 € P A q—5q' € Q A g(a) = h(b)}
U {(p.q)==(P',q) | p—>p' € P}
U {(p.9)"5(p.¢') | 4-2+¢ € Q)
which is as one would expect for the composition of asynchronous processes (ala CCS

[Mil89]): the components can either evolve together through visible communication,

or can evolve independently through internal actions.

72 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

3.3.2 Weak bisimulation

In the interest of obtaining a cover system which ignores delay, consider the path
. . . . def ..
construction on transition systems: for object A in Tran(Set) define Path(A) =/ (z €

S, Uicu), where

R = {(s.[].s)|s€S}
R* = {(s,a=€.t)|Fu. (s,a,u) €ER A (u.l.t) ER'}

The transition system Path(A) has the same states as A, but its label set is £% and

its transitions correspond to all finite sequences of transitions in A.

Proposition 3.3.3 Path is a stable functor on Tran(Set).

Proof. Path(A) is a deterministic transition system as all R; are deterministic and
involve distinct labels. The effect of Path on maps is given componentwise by the
identity and list monads. and a simple induction on the structure of the labels shows
this is well-defined.

To see that Path is stable, first recall the operations zip and unzip which translate

between lists of pairs and pairs of lists:

zip(a::ly, b::€) = (a.b) :: zip(€,,¢,)

unzip({]) = (0.0
unzip((a,b) ::) = (a::pg(unzip(?)), b::p;(unzip(¢)))

3.3. EXAMPLE: TRANSITIONS SYSTEMS 73

Now let P be the pullback of f and g and consider the induced map 4 to the pullback

of Path(f) and Path(g):
MP —— MR o pp

h‘Q X
Mn’ : Mf
n
v, v
MB — —— g = MC

Define A’ : Q — Path(P) to have the identity effect on states and the following effect
on labels: (I.m) s zip({.m). An induction on the structure of the labels of Q shows
h' is well-defined. To see that A’ is the inverse of & it is sufficient to consider the label
component, and note that unzip; zip is the identity on (AxB)* and that zip: unzip is

the identity on the subset {(¢,m) | length(€) = length(m)} of A*xB~. a

The action 8 : (- +1)® = _" of example 3.2.13 induces an action Path(D(.)) =
Path(_) for the path functor over the delay monad, which has the identity effect on
states and the effect of 8 on labels. For convenience we will refer to the induced action

also as 4.
Example 3.3.4 0 : Path(D(.)) = Path is a stable action.

Proof. An induction on the structure of the labels of Path(DA) shows that 8 is a
morphism of transition systems: suppose (s,¢,t) € Path(DA):

i) If ¢ =[] then s = ¢, 6(¢) = [] and (s, 8(¢).t) € Path(A) by definition.

ii) If € = a::m then there exists u € S, such that (s,a,u) € DA and (u,m.t) €
Path(DA). Then either a € L4, so that §(¢) = a::0(m), or a = * in which
case u = s and §(¢) = §(m). In either case, (u,8(m),t) € Path(A) by inductive
hypothesis and so (s,8({),t) € Path(A) as required.

The fact that 8 is a stable distribution is given by it’s construction componentwise

from the identity and the action §: (. +1)* = = o

74 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

This gives a stable functor Pathy : Tran(Set)p — Tran(Set) which is used to
obtain a cover system for weak bisimulation. For 3¢ the local epimorphisms in
Tran(Set), define

3 < Path;'(3)

To see how this cover system corresponds to weak bisimulation equivalence of
asynchronous processes. note that any span A ~+ B is equivalently specified as a
map P — AxB of Tranp. Two such spans f : P — AxB and g : Q — AxB are
weakly bisimilar in the presence of a symmetric relation S on the states of P and @
for which (p.q) € S and p—l—»p' € Path(P) implies that there exists ¢’ and m such
that g——¢’ € Path(Q) and g(8(m)) = f(8(¢)).

Proposition 3.3.5 Two spans A ~+ B are 35-bisimilar if and only if they are weakly

bisimilar.

Proof. The implication is easy. To see the converse, suppose S is a weak bisimulation
of the spans. Form a transition system R whose states are {(p.q) € S| f(p) = g(q)},
labels are {(z.y)| f(z) = g(y)} and transitions are {(p,q)ﬂ(p', ¢) | p—=—p' Aqg—¢'}.
Note that R is a subobject of the pullback of f and g which may ignore unreachable

states. [t is straightforward to show that the projections from R are 35-maps. a

Note that the formulation of weak bisimulation in this setting corresponds very
closely to the first definition given by Milner in [Mil83] rather than the description
(given there as proposition 8.4) which has now become standard [Mil89].

For an alternative cover system, recall that the regular epimorphisms £ in the
category of trees are a cover system for trace equivalence. By post-composing the
stable functor Unfold : Tran(Set) — Tree(Set) (the right adjoint) to the functor

Pathy, one obtains a cover system for weak trace equivalence:

Tw = (Paths; Unfold)™ (€)

=]
(&3]

3.3. EXAMPLE: TRANSITIONS SYSTEMS

3.3.3 Reformulating ASProc

We thus obtain a categories of asynchronous processes modulo both weak bisimulation

and weak trace equivalence upon the Kleisli category of the delay monad:

ASProc %Y Proc(Tran(Set)p. 3%)
ASProcr df Proc(Tran(Set)p, Tw)

Concerning the structure of these process categories, note that adding delay to

the initial transition system yields the final trannsition system:

O+1

=,

1 x(0+1) | e————1

This is true in any lextensive category X, and thus by proposition 3.2.3:
Proposition 3.3.6 Tran(X)p has finite limits.

Thus both ASProc and ASProcr are compact-closed. Note. however. that the
product in the Kleisli category is not the result of lifting the product from the category
of transition systems: given transition systems A and B in Tran(Set)p. their product

1s given by the transition system

{(s,)=2(s, t') | s—os', 1"}
U {(s,t)Z5(s", t) | s—=s'})

U {(s,t)=5(s,t) | t—1'}

which allows transitions by both components simultaneously as well as independent
transitions by either component.

Unfortunately, ASProc does not have biproducts. This can be seen by the fact
that coproducts in Tran(Set)p are not stable, which in turn is due to the fact that

coproducts in Set_,; are not stable.

76 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Finally. note that Paths induces a faithful functor Proc(Pathg) : ASProc —
SProc between process categories. Furthermore, since Pathy preserves finite limits,

Proc(Pathg) preserves the tensor product.

3.4 Example: Interleaved games

Consider the model category Game (example 2.5.2) of games which interleave the
actions of player and opponent. One obtains a notion of delay in the following way:
add a new action "™’ to each alphabet, add a copy of every state to the opposite state

space. and add idle transitions between the original states and their duplicates:

There is a problem. however. if the states introduced by delay have the same status

as the original states: in essence. the monad
(S°. §') — (84St S%Sh)

on XxX with unit (8o, b,) and multiplication (V, V) is not stable. Consequently the
suggested monad does not admit the construction of a process category.
The problem is overcome by distinguishing certain states of a game as being

external. We thus modify the sketch of example 2.5.2 as follows:

Definition 3.4.1 EGame(X) is the category of models in X of the sketch:

2y / \PE\O\\ -

-1
-~1

3.4. EXAMPLE: INTERLEAVED GAMES

The delay monad D on EGame(X) is then defined as follows:

PO+E!
s°+ ~ <t°|el>;b0
EOQ 04! :‘;/%,.El
SO+ E! 2041 T+l SI+E0
1 l(;bov l[_‘_!I / ‘il;}l
<tl]e®>:b, ~/sl+1
PI+EC

The monad adds idling only to external states, and the states introduced by the
monad are themselves non-external. Like the delay monad on transition systems, the

unit and multiplication are given componentwise by the identity and _ + X.
Proposition 3.4.2 The Kleisli category EGame(X)p has pullbacks.

Proof. It is easily shown that D is a functor and that n and g are morphisms. The

requirements of being a stable monad are then given componentwise. Q

To obtain cover systems for span construction we use the underlying functor to
lift the cover systems from the synchronous model category. First let £y be the class
of morphisms in EGame(X) which are cartesian for both s® and €°. and let £, the
morphisms cartesian for s' and e'. As our category of “asynchronous” strategies we

take the full subcategory of
Procug(‘:")'vg(c‘)(EGame(X))

whose objects have only external states. Thus the non-external (or internal) states
are explicitly used only in the implementation of processes.
To develop intuition for the behavior of these processes, consider a process A — B

seen as a span in Game(Set):

e

TA B

78 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Suppose that s is a player state in P and that fs is external in A. Since U f reflects
external states, s must also be external. Furthermore, the fact that U/ f uniquely
reflects player transitions means not only that s admits in P all transitions permitted
at fs in A, but that s admits no transition in P corresponding to the idle transition
from fs in DA — that idle transition is uniquely covered by the idle transition from
s in DP. Of course the external opponent states of P stand in the same relation to

the opponent states of B.

Now consider the effect of performing a transition from player state s in P which

has a visible (non-idling) effect in A.

fs ft gs

If the transition z is visible in B then ¢ is an external opponent state at which P
awaits input in B. Otherwise, z corresponds to idling in DB and (since g preserves
external states) ¢ is a non-external state which (since Ug uniquely reflects opponent

transitions in DB) admits a unique transition y

fs ft gs .

corresponding to the idle-back transition from gs in DB. Continuing this line of
reasoning another step: If the transition y is visible in A then u is an external player

state at which P awaits input in B. Otherwise, y corresponds to idling in DA and u

3.5. EXAMPLE: SIMULTANEOUS GAMES 79

is a non-external state which admits a unique transition z

s u v
. gs/_k‘
fs ft - —

corresponding to the idle-back transition from fu in DA. The behavior of these
processes should now be apparent: When in an external state, a process is reacting
to the environment at the covered interface and thus cannot move until it receives
input. Once a process initiates idling (as output at the non-covered interface), its
evolution is determined to either perform internal actions “forever” or to eventually
reach an external state.

Note that the identity processes are still “synchronous wires”, which are the iden-
tites in the category of synchronous strategies of section 2.5.4. Furthermore. the cover
systems for span construction (being left-factor closed) prevent us from obtaining a
cover system for equivalence which ignores any significant amount of idling. We can,
however. construct a functor into ASProc which is a lifting over the respective mon-
ads of the underlying functor from games to transition systems. Quotienting by this
functor turns the “asynchronous wires” (the result of breaking the synchrony in the
identity processes) into idempotents. [conjecture that the result of splitting these
idempotents is Abramsky and Jagadeesan’s category of games and strategies [AJ94],

although not restricted to the winning strategies.

3.5 Example: Simultaneous games

Consider the games of example 2.5.1, in which both players move simultaneously. If
each player has the ability to delay, then to maintain independence the delay monad

must account for the possibility that one player specifies an action while the other

80 CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

delays. In such cases the lone action must be encoded in the state space, since state
change is not determined until both actions are given. The delay monad must then

have the following effect on a transition:

*

el

o.* (5,0) * 'l

oA /
s /’N[D > *'*(/_\s __G:A_>'t/\'*
N \ 4~
A0 (s.A) /0'*
!_/\'*'*

Although the proof is incomplete, this operation appears to be a stable monad.
[t is necessarily more complicated than the delay monad on interleaved games, but
shares certain similarities: one must add to the model category additional structure
in the form of external states. Also. the cover systems for span construction are again
lifted through the underlying functor of the monad and have the effect of restricting
to processes which are deterministic and deadlock-free (although they may progress

adinfinitum with no visible effect).

3.6 Summary

This chapter presents an approach to adding asynchrony in the construction of process
categories: specifically, one uses as a model category the Kleisli category of a suitable
delay monad. As Kleisli categories do not generally have pullbacks, the isolation of
a class of monads which admit the construction of processes constitutes the main
technical result of the chapter.

To illustrate the approach, we have used the monad of delay on transition systems
to reconstruct Abramsky’s category ASProc of asynchronous processes modulo weak
bisimulation. Here the cover system for weak bisimulation is given by an action for

the delay monad — a description which bares close resemblance to Milner’s first

3.6. SUMMARY 81

definition of weak bisimulation in [Mil83]. We have also demonstated a delay monad
on the category of games and have suggested that the resulting process category
forms a basis from which to obtain Abramsky and Jagadeesan’s category of games
and strategies.

Note that although the delay monad exists in SProc, one does not obtain ASProc
as a Kleisli construction upon SProc. This avenue is explored in Simon Gay’s thesis
[Gay95], where it is shown that the tensor (for parallel composition) in SProc does

not have a natural distribution over the delay monad.

82

CHAPTER 3. ASYNCHRONOUS PROCESS CATEGORIES

Chapter 4

Equivalence of process categories

[n this chapter we show how adjunctions between model categories can induce equiv-
alence of the associated process categories. This provides a degree of freedom when
working with a process category, as one form of model may lend itself more readily
to a certain task (e.g. the treatment of biproducts in section 2.4.2).

In [SNW93], relationships are established between many standard models of con-
currency: the linear-time models (e.g. traces and deterministic transition systems)
are shown to be reflective subcategories of the corresponding branching-time models
(e.g. synchronization trees and nondeterministic transition systems); the behavior
models (e.g. traces and synchronization trees) form coreflective subcategories of the
corresponding system models (e.g. transition systems). For the models of interleaved

concurrency one has the following square of adjunctions,

Trace » +STree

Tran » -+ NTran

where horizontal arrows are reflections and vertical arrows are coreflections. We show

that these relationships pass through the process construction and in fact become

83

84 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

adjoint equivalences: with respect to bisimulation, each of these model categories
give rise to the process category SProc.

We develop a general notion of behavior object in a model category. and show
that when a model category has enough behaviors it is sufficient to consider only the

behavior objects when constructing a process category.

4.1 Moving between model categories

I[n some cases, adjunctions between model categories induce equivalences between the
associated process categories. The key observation is that certain cover morphisms

in a model category become isomorphisms in its process category.

Lemma 4.1.1 For X a left-factor closed cover system on X: if f: A — B isin X
then the process (1, f) : A~ B is an isomorphism in Proc(X, X).

Proof. Since f € X. the following diagram is a bisimulation demonstrating that

(f,1); (1, f) is the identity on B.

Note in the diagram below that the induced morphism z is in X by left-factor closure:

the diagram is thus a bisimulation equating (1, f); (f,1) with the identity on A.

4.1. MOVING BETWEEN MODEL CATEGORIES 85

So (1. f) is an isomorphism with inverse (f.1). m]

Consequently, a natural transformation in a model category whose components
belong to a left-factor closed cover system becomes a natural isomorphism in a process
category quotiented by any more generous equivalence. Let Proc(a) : Proc(F) =

Proc(G) : Proc®® (X, X) — Proc®* (Y,).

Corollary 4.1.2 If)' is a left-factor closed cover system such that }' C Y and « is

componentwise in)', then Proc(a) is a natural isomorphism.

For example. as 37 is always contained in 3%. an adjunction between categories
of “transition systems” whose unit and counit are componentwise 3 will give an

equivalence on the associated process categories.

4.1.1 Separating initial states

The model category of transition systems with separated initial state was introduced
in section 2.4.2 to demonstrate a process category with biproducts. Here we show its
process category coincides with that for ordinary deterministic transition systems.
For lextensive category X, there is an adjunction F© 4 G between the model
categories Tran(X) and STran(X) which we will now define. Given an object B in
STran(X) we obtain an object F'B of Tran(X) by adding the initial state to the rest

of the state space:
P+PO
m+m0 4
p SXZ+IXE (o] a9):by

(S+71)xZ S+17 ‘—bn— 1

Conversely, given an object A of Tran(X) we can extract the initial transitions and

86 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

thereby form an object GA of STran(X):

mo PO
IxX -« T X ao
ix} _a P
v — — T
sxz« ™ g

In STran(X), GF B differs from B in that it contains an unreachable copy of the
initial state. and thus the unit n injects B into GFB. In Tran(X). FGA differs from
Ain that it has a new initial state which is bisimilar to the old (still reachable) initial

state, so the counit €4 collapses the new initial state onto the original

Proposition 4.1.3 Proc(STran(X).3%) is equivalent to Proc(Tran(X),3¥) when-

ever coproducts in X preserve X .

Proof. F and G are easily seen to be functors, and are stable componentwise. So
to be 3¥-stable it is sufficient to preserve 3%. Concerning F, note that the arrow
required to be X-cartesian in F'B is the sum (m°% pg) + (m;po). To see G preserves
3%, recall that the arrows required to be X-cartesian in GA are m; py and m°; py: the
former is given and the latter is the pullback of m; py along 1.

Noting that the initial transitions of F'B are extracted as

IXE +—=— — IxE ~—m0__ po

b,;x1! by b, af
v v v

(S+I)XZ <—— SXT+IxX < 0~ P+PO “alo®y T S

the unit ng is given by:

IXE «M— p0 —— O p g e O P ——M & Sx3

= = by by bo

\ \ A\ v A\
IXZ +—(pg— PO To0B, T S+/ *m; P+PO —og™ (S+I)XZ

This morphism belongs to 37 since it is the identity on initial transitions and &y is

cartesian.

4.1. MOVING BETWEEN MODEL CATEGORIES 87

The counit is as follows

(1 iyxt I xy (i

\4"

SXZ < - P o> S -

This morphism is in 37 also as coproducts are stable and V is cartesian.
Thus the adjunction lies in the domain of Proc and becomes an equivalence of the

associated process categories. a

Although the move from transition systems to transition systems with separated
initial states made it easier to obtain biproducts, it actually had no effect on the

resulting process category.

4.1.2 Nondeterministic transition systems

Consider the category of NTran(X) of nondeterministic transition systems given by
the following sketch:

P
m o

-

SXE Sl

These transition systems differ from their deterministic counterparts only in that
there may be many transitions with the same source state and label (viz. m is not
monic).
A nondeterministic transition system A gives rise to a deterministic transition
system F'A by adding state information to the labels:
mpel) o

A

SxP S‘—f—l

Note that (f,1) is always monic, and F preserves 3% since (m;po,1);p0 = m;po.

Although this functor is not an adjoint to the inclusion functor I : Tran(X) —

88 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

NTran(X), the morphism
sxp ——SmPel) _ p o |
Ix(m;p;}

v v
SXE g P —gr———= S~

-
-
~

serves both as a natural transformation /FA = A and FIB = B. Furthermore. it is

pointwise in 37 (as it has identity effect on states and transitions) and consequently:
Proposition 4.1.4 Proc(NTran(X),3%) is equivalent to Proc(Tran(X). 3%)

This result suggests that accounting explicitly for nondeterminism in a model
category is not necessary when constructing a process category.

Note we have not actually used the categories of deterministic and nondetermin-
istic transition systems described by [SNW93]: the latter are Kleisli categories of
appropriately defined delay monads upon Tran(Set) and (a slight modification of)

NTran(Set). respectively.

4.1.3 Unlabelled transition systems

One obtains an equivalent process category beginning even with unlabelled transition

systems. Define UTran(X) to be the category of models in X of the following sketch:

P

S

[n this case there is an adjunction Tran(X) 4 UTran(X): the right adjoint discards

S

labels, and the left adjoint uses the permission set to introduce labels. The unit is
the identity and the counit at object A is the label component of A (viz. m;p; in the

sketch Tran) — both belonging to 3%.

Proposition 4.1.5 Proc(UTran(X),3%) is equivalent to Proc(Tran(X), 3%).

4.2. BEHAVIOR MODELS 89

This suggest that explicitly labelling of transitions in a model category has no

effect on the resulting process category.

4.2 Behavior models

Here we provide an abstract notion of behavior and show that, for an appropriate
cover system. it is sufficient to consider the category of behaviors when building a
process category. We further link the existence of such subcategories of behaviors to

the existence of inductive datatypes in span categories.

4.2.1 Abstract behaviors

Let X be a left-factor closed cover system on C:

Definition 4.2.1 An object Z of C is an X -behavior if given anyr : A — B in X,
every f : Z — B factors uniquely through r:
A«

x . Z
be o J

Intuitively, an AX'-behavior cannot distinguish objects which are X-equivalent.
Note that any AX'-morphism z : Z; — Z; between X-behaviors is an isomorphism: z

has a left inverse z’
Z,e

which (by left-factor closure) belongs to X'. Similarly z’ has a left-inverse and is thus
an isomorphism.
If Z is an X-behavior and Z — A an X-morphism then we regard Z as an X’-

behavior of A. By left-factor closure and the preceeding observation we see that all

90 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

X-behaviors for a given object are isomorphic:

Zl‘.
X 7 Z,
Y. x
A~ 7
A category C is said to have enough X-behaviors if for every object A there is an

X-behavior TA and a morphisme:TA — A in X.

Proposition 4.2.2 [f C has enough X-behaviors then T is a coreflective subcategory

with counit e.

Proof. The couniversal diagram is an instance of the defining property of X'-behavior:

Ag—F8——1TA

f
1z

where [is the inclusion functor. a

For any left-factor closed cover system covX in C, if C has enough X-behaviors
then. taking the equivalence to be any cover system containing X, the process cate-
gories constructed either of C or the full coreflective subcategory C” coincide. Writing

VT for the restriction of Y to CT:

Proposition 4.2.3 If X C Y and T(Y) C Y then Proc(C,)) is equivalent to
Proc(CT,yT).

Proof. T is Y-stable since it is stable (it is a right adjoint) and preserves J. As the
counit ¢ is pointwise A it is (by lemma 2.3.12) X-cartesian and thus Y-cartesian. The
coreflection is thus preserved by the process construction and (by proposition 4.1.2)

becomes an equivalence. =]

4.2. BEHAVIOR MODELS 91

Any coreflective subcategory T of C determines a cover system for which T gives
enough behaviors: the class 77 (Z) (the morphisms of C taken by T to isomorphisms)
is a left-factor closed cover system and, as T is an idempotent comonad [BWS5], the

counit € belongs to T*(Z). In fact.

Proposition 4.2.4 I[f X C T(T) is left-factor closed and contains € then:
i) C has enough X -behaviors:
i) TYI) = X|.

Proof. 1) Let f: TA — B and let z : C — B belong to X. Since Tz and e
are isomorphims, there is a morphism f’ : TA — C given by e7,; Tf: Tz ¢c

which (by naturality) satisfies f';z = f.

¢ ———& . C
A\ d
Tx x
\
B ,————-§¢g B8 _
I T
7 TTA g TA

If g also satisfies f = g;x then g = €7,; Tg;ec = e74; T f: Tz ec as required.

i) If fisin T(T) then f isin X| since €; f = Tf;eis in .X. Conversely, let z
be witness that f is in X|. Then Tz and Tz:Tf are isomorphisms and thus

T f is an isomorphism.

Behaviors of transition systems

A locos C is a lextensive category with list construction (see [Coc90]): i.e. there is

an endofunctor L and natural transformations nil : | — LA and cons : LAxA — LA

92 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

with the property that given any f: 1 — C and g : CxA — C there exists a unique

morphism foldy , such that

LAXA cons——e [f o —mil_
Joldy x fold, 5
v L2
cxA ———g— -+C"*

We say that a locos C has span list construction if given any f : 1 — C and g :

C ® A — C in Span(C) there exists r such that

[AQA ——cons o ja o nil
r®drl r f
A\ v N
C®A 4 -C

commutes in Span(C) and, furthermore. givenq: LA — C and « : cons ;; ¢ = q®1 g
there exists a unique 3 : ¢ = r such that a; (8 ®1;;¢) = cons;; 3.
Let C be a locos with span list construction. Each transition system A in C then

induces the following structure in C:

LZAXZA -—= LZAXZA > COMNS __, LZA - il]
4 4 'y 4
(DSX1 ®p (01N =
STAXEA «'an—w PTA -— v—va_ITf — STA - *I’TA o= 1
ggx/f Ep Eg iy
4 v v .
SaXZy «—p- — Py o Sa

We define the transition system TA — the behavior machine of A — and the mor-
phisms ¢4 : TA — A and wy : TA — LA of transition systems as indicated (LA
denotes the free transition system on the alphabet of A).

For a deterministic transition system in Set, the behavior machine is the Hoare
language [Hoa85] generated by A: i.e. Sru is the nonempty and prefix-closed set of
strings

{ar-..an|3s1,. .80 i2hs1— ... s,),

4.2. BEHAVIOR MODELS 93

and T A admits a transition s——sa iff sa € Sr4. For a nondeterministic transition
system. T A is the synchronization tree generated by A: i.e. the corresponding (iso-
similar) transition system in which every state is reachable from the initial state by
exactly one sequence of n > 0 transitions. It is clear that synchronization trees differ
from traces only in that the former do not identify states with strings. Although
for different morphisms. it is shown in [SNW93] that the category of traces (resp.
synchronization trees) is a coreflective subcategory of deterministic (resp. nondeter-

ministic) transition systems.

Taking Trace(C) and STree(C) to be the full subcategories of behavior machines

in Tran(C) and NTran(C) respectively,

Proposition 4.2.5 Trace(C) is a coreflective subcategory of Tran(C), and STree(C)
is a coreflective subcategory of NTran(C).

Proof. For any morphism f : TB — A of transition systems. one has in C the

following structure:

LE,XZy - —= - [T,x¥, — cOnS _, Lz,

Lixf ' ‘f

LEgxTp «a—- = ——— LEpxTp - CONS . [T,
A I Y A

wx/ . @

SrpxZg f—ﬂm““ Prg — %18 .5,

~ . u

fxi : f f

v a v A

which is a 2-cell u : cons;; (wg; Lf, f) = (wexl; Lf xf, fxf):;;(ma,as) in Span(C).

By the universal property of span list construction, there exists 4 : Syrg — St 4 such

94 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

that:
LEXEy o LI XE, ——— — —» [,
Y (eiLpHxf ‘« v ‘Y oL
STBXZB - PTB - STB
wx/ .y - ®
x 2y h
. »
. fxi s W f . f
STaXZy -— Pry - ~—— St
EXI LY 4 « T € 4 1 4
Sszﬂ - —— PA bl SA

where the morphisms labelled u; and u, are the 2-cells Ax1 ;; (m4.a4) and cons:: h
respectively. This gives a morphism A : TB — T A of transition systems satisfying
hies = f.

If k£ is such that k;e4 = f then once more by the universal property of span list

construction we have the following commuting diagram in C:

LXAXZA -— LZAXZA _— > LZA
‘Y (wiLf)xf ‘“©r Y wiLf
SrpxZge— -~ - P~ . Stg

wx/ -
w
R v
- »
. kx1 . . k . ¢
R T —
= a«a 7 =(w = a
STszA o e o PTA ————— e — STA

Consequently, k gives a 2-cell satisfying u: kx1;:;;(ma4,as) = cons;; k which forces

k=h. a

Now, what is the cover system for which traces/synchronization trees are the
behaviors of transition systems? First note that the cover systems 3% on behaviors
are simply restrictions of the corresponding cover systems on transition systems. Then

for any cover system X on C,

Lemma 4.2.6 The behavior functors T preserve 3%

4.2. BEHAVIOR MODELS 95

Proof. Any morphism f : A — B of transition systems gives the following structure

in C:

Sa 20 STaxZy «—— " —— Py
Sra = Pa SrgxZg +— IR Py~
\ o v T v
P Sy SwxEs «—WA—"T P,
Sg +—p;5 SpxZg - ———mz—— Pg = ’F

By lemma 2.2.4, if the bottom is an X-pullback then the top will be an X-pullback

also. a

The 3%-morphisms (i.e. the local isomorphisms) of behavior machines are isomor-
phisms of states, but not necessarily isomorphims of labels. The (fibration) functor
6 which takes a transition system to its labels, is stable and thus allows one to re-
strict the 37-morphisms of transition systems to those whose label components are

isomorphisms:

Proposition 4.2.7 Tran(C) and NTran(C) have 3% N 87(Z)-behaviors given by the
categories Trace(C) and STree(C) respectively.

Proof. It is enough to see that for f: A — B in 3T N 6(Z), any behavior machine

of A is a behavior machine of B:

STAXZ - 'ETL,‘ PTA \ar"—~b STA

exlt B £
v v v
SAXZ 4—*—*‘—%—'** PA aA - SA
% -y /
SBXZ ‘_"_WB‘ — PB op — SB
assuming for simplicity that £4 = g = T. a

As 3% is contained in 3% for any X,

96 CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

Proposition 4.2.8 For the cover systems 3%, the process categories constructed upon

each of the following are equivalent: Tran(C), NTran(C), Trace(C) and STree(C).

In fact. one can construct an equivalent process category upon an even simpler
model category. To see this, note that an equivalent presentation of synchronization
trees is as labelled trees [Pav95]: i.e. STree(X) is the category of models in X of the

following sketch:

Similarly. the category of traces is obtained from the same sketch by requiring the
labelling arrows); to be monic. As in the category Tree(X) of trees in X. the cover
system 3% consists of the morphisms f : A — B which are X-cartesian for all Sy

Tree(C) is a coreflective subcategory of both STree(C) and Trace(X): the functor
U which forgets the labelling is right adjoint to the (inclusion) functor

Poc———qu»— (a4 - Poﬂ——”PIGf

be b,
zie mPi Ziempi

which uniquely labels each transition. The counit is the identity on “states”. and on

labels is the copairing of the labellings of the original synchronization tree:

P; < = P;
k‘ 'bi
Iismli ‘€ mP‘

Considering the composite coreflections between transition systems and trees, the

functors preserve 3% and the counits are in 37. Thus,

Proposition 4.2.9 Tree(C) gives 3*-behaviors for Tran(C) and NTran(C).

4.3. SUMMARY 97

4.3 Summary

We have demonstrated that the process construction admits a degree of freedom in
the choice of a model category. This provides an important link between the state-
based formalisms which facilitate finite presentation of processes and the tree-based
formalisms which more readily disclose the structure of a process category.
Concerning Abramsky’s category of synchronous processes, we can make the fol-

lowing summary:

Theorem 4.3.1 With respect to the cover system 3° for bisimulation. the process
categories constructed upon each of the following model categories are equivalent to
SProc:

- Tran(Set), of deterministic transition systems;

- NTran(Set), of nondeterministic transition systems;
- UTran(Set), of unlabelled transition systems:

- Trace(Set). of trace specifications:

- STree(Set), of synchronization trees:

- Tree(Set), of trees.

This result suggests that common distinctions such as “linear vs. branching™ and
“system vs. behavior” between model categories do not persist to the level of process
categories. It shows that the only significant feature of a model category for SProc is
“extension in time”.

As a final remark: since the cover system for trace equivalence in the category of
trees is given by the regular epimorphisms, we can now see that trace equivalence is

given in each of the other model categories via the stable functor into trees.

98

CHAPTER 4. EQUIVALENCE OF PROCESS CATEGORIES

Chapter 5

Implementing synchronous

processes

This chapter can be seen as providing a basis for programming in SProc — specifically,
in the subcategories of deterministic and functional processes presented in section
2.5.1.

We begin with a category of circuits, whose objects are alphabets (sets of symbols)
and whose morphisms are automata over these alphabets with the ability to halt on
“unacceptable” inputs. Such automata consist of a state space S with a chosen initial
state, input and output alphabets A and B, and a function AxS — (SxB) + 1.

The category of circuits is a copy category [Coc95]. and the general structure
therein provides notions of safety and liveness for circuits. A category of circuits which
meet safety specifications is obtained by splitting the propositional idempotents, and
is shown to be equivalent to the category of DSProc of deterministic processes. By
extracting the strict morphisms of this category one obtains the category FSProc of
functional processes.

As the functional processes are the “maps” of SProc modulo trace equivalence,

the category of circuits provides a natural setting for process implementation: one

99

100 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

expresses both circuits and specifications as elements of coalgebraic datatypes. and
then establishes safety and liveness properties by proving equations involving these

coalgebras — i.e. by demonstrating bisimulations.

In the remainder of this chapter. we review the relevant results from the theory
of copy categories. present the construction of circuits. and finally demonstrate the

correspondence between circuits and synchronous processes.

5.1 Copy categories and partial map classifiers

A copy category is a category with a symmetric tensor (. T) and a natural comulti-

plication A\ satisfying the following equations:

A—D—sA0A —ARL . A®a0A

SN

ARA ——F—+A®A A®A B > A®AR®A)
T A®B
T®T —=———+T®T A®A®(B®B) —s—+ARBR(A®B)

Note that a cartesian category, that is a category with finite products, is a copy

category in which the tensor unit is the final object.

A copy functor is a functor F between copy categories which is comonoidal: i.e.

there exist natural transformations og : F(A® B) - FAQ FBandor : FT — T

5.1. COPY CATEGORIES AND PARTIAL MAP CLASSIFIERS 101

such that

F(A®B)—% +» FAQ®FB F(A®B®C) —I» F(A®B)®FC) —SR1 A @ FB®FC

T

FB®FA) —5—+FB®FA FA®(B®C)—g—+FAGF(B®C)—gs—FA®FB®FC)

FT®A)—S=2 o pp

BN N b

F(A®A) ——g—*>FA®FA FT®FA «—g——T®FA

Similarly, a copy transformation is a natural transformation a : F = G between copy

functors which is comonoidal: i.e.

FT —&%—GT F(A®B)——%—+G(A®B)
T FA®FB WGA@GB

Of course copy categories. copy functors and copy transformations form a 2-category
Copy. and in this 2-category lives the embedding of circuits into processes.
The techniques for expressing safety of circuits are based upon the following ob-

servation. Any morphism r : A — T in a copy category induces an idempotent as

foliows:
A----- S ---»a
ABA ——=T—>T®A

Here r is called a copy proposition, and e, is called a copy idempotent. If e, is the
identity on A then z is the counit for A, and is denoted !4. Counits are unique if they
exist. and a copy category in which every object has a counit is said to be strict.
Given a copy category C, one forms a strict copy category PSplit(C) by splitting
the copy idempotents. Explicitly, PSplit(C) is the category whose objects are the

102 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

copy propositions r of C, and whose morphisms £ — y are those morphisms f :
dom(z) — dom(y) of C for which f = e,; f:e,. The counit for an object z of
PSplit(C) is given by the morphism z. The construction PSplit is a 2-functor upon
Copy.

The method of isolating circuits which are live is based on the following notion: a
morphism f : A — B of a strict copy category is called a strict map when '; = f:'g.
If one discards all but the strict maps, the tensor unit becomes the final object and
the copy tensor becomes the product. This technique of extracting the strict maps of
PSplit(C) to obtain a cartesian category is called copy completing C and the resulting

category is denoted CProp(C).

To obtain a full embedding of circuits into processes, we must use special monics
when constructing transition systems. Given a cover system S of monics in a category
X. a partial map classifier for S consists of a function H on the objects of X together
with a family n4 : A — HA of maps belonging to S with the property that for any

S-partial map (s, f) there exists a unique morphism (s, f)* in X for which

is a pullback. Mulry [Mul94b] has shown that a partial map classifier is a monoidal
monad. with H(f) given by (7, f)* and the monad multiplication given by (1,).
We shall use H to denote a partial map classifier consisting of monad H and classified
system of monics My,.

We say that a partial map classifier H on a copy category C is separable when

the copy transformation A belongs to My,. The connection between copy categories

and partial map classification is explored in depth by Cockett [Coc95].

5.2. THE CATEGORY OF CIRCUITS 103

5.2 The category of circuits

In this section we review the circuit construction developed by Hensel and Spooner
[HS96], and note the properties relevant to the subsequent sections. The circuit cate-
gory described here differs from that of Katis, Sabadini and Walters [KSW94] in two
ways: the addition of initial states turns the 2-cell structure into a meaningful behav-
loral equivalence, and parameterizing the construction by a monad gives flexibility in
the resulting notion of circuit.

Let X be a copy category, and (H.7,p) a copy monad on X:
Definition 5.2.1 The bicategory of circuits in X is given by the following data:
- O-cells A are objects of X

~l-cells f: A — Barepairs(i: T =S, f:A®S — H(S® B)), where the
identity idy is the pair (id: T > T.c: AQ T — T ® A) and the composition
of f: A— B and g: B — C has initial state {i;,ig) : T — S; 3 S, and state

transformation
X TP T30 » H(S;®S,8C)
a- 'l F‘
(A®S)®S, H2(S8S,8C)
f® ll tga-l
H(S;®B)®S, HY(S;® (S, 8C))

o deo

- 2-cells f = g are morphisms h: Sy — S, of for which

T A®S; 1Rh »A®S,
/ fl %
St —5—S; H(S;®B) — gy H(Si®B)

104 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES
with identities and composition in X.

Taking X to be Set and H to be the monad _ + 1 of exceptions vield circuits
which are partial in that certain inputs (depending on the circuit state) may cause
the circuit to halt without producing an output. In this setting a composite circuit
halts when either of its components halt.

The presence of initial states has the effect that 2-cells are bisimulations. and
bisimulation in each hom-category is just the equivalence relation induced by the

2-cells. In this way one obtains the category of partial circuits: !

Definition 5.2.2 Circ(X, H) is the category obtained by quotienting the bicategory
of circuits by all 2-cells.

The copy tensor @ in X induces a tensor in the circuit category which corresponds
to the parallel combination of circuits. Given circuits f: A — B and g : C — D, the

circuit f @ g is as follows:

(ABC)B(S¢®S,)- -~ ==~ == - m e oo »H(S¢®S,®(B®D))

| [

(A®S)®(C ®Sg) T%’ H(S;®B)®H(S,®D) —+H(S;2B® (S, ®D))

The natural transformations associated with the copy structure of X also lift to

the circuit category. For example, the copy transformation becomes the following

circuit:
A®T-~=-=====~= » HTR(A®A))

!If one formulates the bicategory of circuits without initial states, each hom-category has an initial
object — the circuit with an empty state space — and so the category obtained by quotienting is

trivial.

5.3. EMBEDDING CIRCUITS IN SPROC 105

The associativity, symmetry and unit elimination maps lift in the same way. The
counits for each object (if they exist) also lift in this way, but naturality is not

preserved (viz. when the tensor is a product in X). Consequently,

Proposition 5.2.3 If X is a strict copy category and H is a copy monad, then
Circ(X. H) is a strict copy category.

Consider now the copy propositions £ : A — T in Circ(X, H). These may be seen
as languages — i.e. L. is the prefix-closed set of finite and infinite strings over A for
which the circuit £ does not halt. The induced idempotent e, : A — A is the circuit
which allows the strings of £ to pass through, but halts on strings outside of £,.
For a circuit f : A — B to satisfy the equation f = e,; f; ey, means that f aborts on
sequences outside £, and does not produce as output strings outside £, — i.e. the
behavior of f is within the bounds of the specifications z and y. Thus we refer to the

category of proposition idempotents as the category of safe circuits:
SafeCirc(X., H) & PSplit(Circ(X. H))

Consider further the strict maps of this category: those f : £ — y which satisfy
the equation f:y = z in Circ(X. H). Such circuits cannot halt when provided strings
in £, and furthermore translate those strings to strings in £,. As this property
is a form of liveness, we refer to the resulting category of copy propositions as the

category of safe and live circuits:

LiveCirc(X, H)) CProp(Circ(X, H))

5.3 Embedding circuits in SProc

This section relates the categories of circuits described above with the subcategories
of SProc presented in section 2.5.1. We begin by embedding the category of simply-

typed circuits into the category DSProc of deterministic processes. Through splitting

106 CHAPTER 5. IMPLEMENTING SYNCHRONOQUS PROCESSES

propositional idempotents, this embedding lifts to an equivalence of the categories of
safe circuits and of deterministic processes. Finally, taking the strict morphisms in
this setting is shown to yield the category FSProc of functional processes.

There is an obvious translation of partial circuits into synchronous processes with
trivial types. as we will describe shortly. For this functor to be full and faithful.
however, requires a tight correspondance between the monad which specifies partiality
of circuits and the class of monics which specify the permission sets of the transition
systems underlying the process construction.

Let H be a separable partial map classifier on X with the property that the

category of classified arrows has pullbacks:

Definition 5.3.1 Define Tran(X, H) to be the full subcategory of Tran(X) whose

objects A have their permission component m, in My.

We will embed the category of H-partial circuits into the category of deterministic

processes constructed upon H-classified transition systems:

Definition 5.3.2 Let DSProc(X, H) be the process category upon Tran(X.H) with
left legs given by the local monics AM¥# and equivalence given by the local isomorphisms

3.

Given a circuit f: A — B of Circ(X. H), we can take the associated partial map

(m.a) in X

1;] o »SxB
mi L

v v
AxS 3 H(SxB)

and form the apex of a span in Tran(X, H) with endpoints the “chaotic” transition

5.3. EMBEDDING CIRCUITS IN SPROC 107

systems upon A and B respectively:

o —— -5 - 4 e]
4 [y A
4 oL T !
Axl =Xl pAxs+——m __p . GIXI___,.p_c.py
> v | 4 4
T '(m,a) Ixn’ Ix]
AXSX(SxB)
. SxB
= [Ixm’ e =
v --wxd
AXSXB ¢
v
sw . » BXS
v v /,/F—X’L/ 1{' v
Ax] = 05T — AXBXS T -* Bx1

We will use FO(A)Ff‘—(-f)FI(f)Ff—(»f)FO(A) to name the components of the above span,

and F' as the translation of circuits to spans.

Proposition 5.3.3 F : Circ(X, H) — DSProc(X, H) is a functor.

Proof. The diagram above shows that (FL(f)Fgr(f)) forms a span in Tran(X). To
represent a process of DSProc(X, H) we must have mp, s in Mg and Fi(f) in IM.

First note that for any z. (1,z) is in My since

A—SLh)__ | axB
' hx1
\ 4 v
B—% BxB

is a pullback and A is in Myg. Thus (m,a; 7');sw = (1,a;7'); mxl;sw is in Mg.

108 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

Then Fi(f) is seen to belong to IM as follows:

Axl —Ixr AXS «——m ____ p
{m,om”)

A 4
- - ™ AxSxB

To show that F preserves equality. we suppose h: f — g: A — B is a 2-cell of
Circ and show that it induces an 37 2-cell F(f) — F(g) of DSProc. Forming the

partial maps of f and g induces hp : Py — P, in X such that

m
Pf —— ! — AXSf

B Ixhg
— . m e
af P Pg 2 f » AXSg
v o v
SxB e H(SXB) g
hoxlI o o - Y
S SeXB — - — = H(S;xB)

commutes. making & a morphism F(f) — F(g) in Tran. As n is cartesian the top

face above is a pullback, and thus & is seen to belong to 37 as follows:

AxSfxB — AxBxSf

(mou’) » . -
P a
Pf hv‘—«’"}_—A — AXSf e — T - —— Sf
hp Ixhg hg
v v v
Pg *——mr——A> AxSx ‘*‘*—ﬁ‘r—'-*'> Sg

That h: F(f) — F(g) is a 2-cell in DSProc is verified componentwise by 1;7 = 7
and 1; 7’ = 7’ for the labels, and hg; 's, =!s, for the states.
To show that F’ preserves identities, we suppose A in Circ and produce an 37 2-cell

1p(4) = F(1a) of DSProc. Recall that 1, in Circ is given by ¢;n : Ax1 — H(1xA).

5.3. EMBEDDING CIRCUITS IN SPROC 109

The morphism Fo(A) — Fy(1,4) in Tran is then given as follows:

et AX] = e Ax]
- AxA
= = AXIxX(AX]) - e AXAX(IX]) AxI
y A Ixc Ixx Ixni .
> AXAxI

v v [N
! - Ax/ *_(ITC:Y’ Axlx(le) —'th‘r’ AXIxA TTSW

It belongs to 3 as the permission and state components are isomorphisms, and is

easily checked to be a 2-cell.

To show that F' preserves composition, we suppose f: A - Band g: B — C in

Circ and produce an 3T 2-cell k : F(f); F(g) = F(f:g).

FoA)* CFHC)

110 CHAPTER 5. IMPLEMENTING SYNCHRONOQUS PROCESSES

First we construct the partial map corresponding to f;g:

P — - ./ S PxS, ;Tfi, AXSXS, — A —w AX(SXS,)
- = al
' mex | v
Pfog S b AxSIXSg
apx/ xi
v v
9 (I) SXBxS, nx/ e H(SpB)XS,
= Tl
\ v
SXBXS, - 1 - H(SpxBXS,)
a Ha
! Ixm M '
Sfog il SR Sfx(Bng) H(Sfx(Bng))
axoy Ixg H(Ixg)
v v v
SX(SxC) — XN SxH(S,xC) H(SpxH(SgxC))
= ™ HR
v v v
SpX(SexC) - Lo o H(SX(S,XC)) H(Spx(S,%C))
al Ha! Ha!
v v’ v
SxSxC - M, H(SxSxC) - A H2(SxS,xC)
= H
v v
SXSXC - — S e e H(S§pxS,xC)

Now construct the pullback (Z, z, y) componentwise: the state component is (SyxS,, 7, 7');

the label component is (AxBxC, w, 7'x1); and the permission component appears be-

5.3. EMBEDDING CIRCUITS IN SPROC

low.
Pfg ar > PIXSE = > Pfxsg I | S Pf
a o<t opct %
SfxBng —_— = . SfxBng —— . SfxB
qﬂ sw =
\J v
a SxSexB ___RXL __, SxB
v v E nt'x/ Ixl
v
Sfog ~ Ixmg . Sfx(Bng) > BX(SIXSS) S‘xB _’14’?(1___4> IxB
8
' T Ixmt’ c c
v v L B 4 v
Pg '——47”2———> Bng —_—— BXSS — I T Bxl]

111

The transition system Z is given by the unique morphisms mz and az such that

mz.TeXTs = zp;mry and m.;ysxXys = ypimry, and az:zs = zp:ary and aziys =

Ypiapg:
Sf L Sl K I Sfog e R . Ss
[e s 4
i SR Ix(o,m)
osTe - SxPy o, T
(2) 4 T~ .
qg - I _—
q T
Pf -« K ____ Pfog :— I/ S Pfg ——wqg—;b Sﬂ(Pg _ n‘rig Pg
4 '(qﬁqg)
PxS X(SpxPy) (3) (mg. o)
(mfaf:n:') (mfaf.—n')xlx(l X0’}
v v
AXSXBXS X(SgXC) — — RXIXL o BXS X(5,%C)
swx[xm'
\ v
AXSxB AXBxS§xS xC | Ixw’
A AXBXSpXS, T re mxIxIx]
BxSxS xC
a axi PR axIxl
w v AXBX(SxS,)xC N s BxS,xC
T AXBX(SpXS,) Ry I XX T d
. W sw
Y » 4 XK v v
AXBXSs « T AXBXCX(SpxS,) T —» BXCxS,

Note that (2) is (1); 7. As a map into a product, we verify (3) componentwise:

i.e.

112 CHAPTER 5. IMPLEMENTING SYNCHRONOQOUS PROCESSES

Pp—— % _SxP, T _.P, _mgat) | BXS,X(S,xC)
(@pag) u Ixm
v - a
PXS x(SpxP,) — K-e PXS, Spx(BxS,)
4
(mgayx 2 el a
(MmOt)X I X(1X0) v a me 4
AxSfx(SfxB)xS,f %Y SfxBng
v T’
AXSXBXS X(S,XC) Ixn'x/
v
<1
') Ixl AXSXBxS, , Tx
T Ix A I 8 — Xl o o
BXS X(SeXC) ——m e T T e BXS,
and (3); #’ commute:
Pp 5. — = SxP R Amgag) | BXSX(S,%C)
X
(a5 q‘), ‘ I,
Pfogx(Sfog)
a
(mpagmyx] X(1xogm') SpX(SxC) o, T’
\j
AxSfxBngx(ngC)
X
w'xIx/
v a a4y
Bngx(ngC) T —— ngC

5.3. EMBEDDING CIRCUITS IN SPROC 113

The map h : Z — F(f:g) is then given as follows:

Sﬁ‘sg e — e = — Sfxsg
f 3 'y
Ixxm alx
SUSXC) —— = e SX(S,XC)
qg;lxa; ‘qg;lxag
Pfx T . P/g
(qfqg)' '(Qﬁqg)
PxSeX(SpxPg) e e = > PXS X(SXP,)
(mﬁaf)xlx(lxag)' 'mfxlx(lxag)
AXSX(SXB)XS X(SX(SXC)) —— - RxIxI AXSXS X(Spx(SgxC))
IxX®'xIxw” - Ixm’
M - axa!
AXSXBXS X(S,xC) _nxIxl , AXSxSX(§,xC)
\J
swxIxm’ Ixm’ AX(SXS)X(SpxSexC)
v v
AXBXSXS ,xC o RxIxIxd AXSxS XC
. Ixzw’
axl eaxl
v S v
AXBX(SxS,)xC _ . mxIx! AX(SxS§)xC
sw sw
v v
AXBXCX(SXS,) —— . . oo EXIXL . e AXCX(SpXS,)

It is an 3T-morphism as the state and permission components are isomorphisms. and

is easily seen to be a 2-cell F(f); F(g) — F(f:9). a

The functor F' encoding circuits as processes also preserves the copy structure of

circuits, and thus lies in the domain of the 2-functor PSplit.
Proposition 5.3.4 F : Circ(X, H) — DSProc(X, H) is a copy functor.

Proof. F preserves the tensor structure as Fyp(1) = 1 and there is a natural isomor-
phism F(A® B) - FA® FB in Tran corresponding to the exchange map. To see
the latter suppose f: A — B and g : C — D in Circ, and construct the partial map

114 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

of f @ g as follows:

PP, __ mxmy AXSX(CXSg) — €% o AXCX(SXS,)

= ex
v v
PyxP, — . mxm, = AXSX(CXS,)
XL, 'fxg
v
SXBX(SxD) - XN . H(SXC)XH(S,xD)
= T
v \
SpBX(SxD) — = H(SxBX(S,xD))
ex Hex
v v
SpxSgx(BxD) —- T - H(Sfogx(BxD))
The required isomorphism in Tran is then:
Sfog —— e —— = e Sfxsg
4 A
T
SpxSx(BxD) TXTT
ex
SXBX(§XD) — = e SXBX(S5,xD)
4 A
oxag X,
Pfxpg e e — e e e R — - e PfoE
(mpxme, apxongy (mpxotsmoxaL,)
v v
AxS,x(Cng)x(SfxBx(ngD)) —— . ex - AxS,x(SfxB)x(Cngx(ngD))
exxex IxXx(Ixx’)
v v
AxCx(Sfog)x(Sfogx(BxD)) AxSfxBx(CngxD)
Ixm’ SWXSW
v v
AXCX(SXS,)X(BXD) AXBXSpx(CxDxS,)
sw ex
v v
AXCX(BXD)X(SpxSg) - - ax]—— AXBX(CXD)X(SpxS,)

5.3. EMBEDDING CIRCUITS IN SPROC 115

The fact that the encoding of circuits as processes is an embedding relies on the

use of a separable partial map classifier.
Proposition 5.3.5 F : Cire(X. H) — DSProc(X, H) is full and faithful.

Proof. To show F is faithful, it is sufficient to show that for every 37 2-cell e :
(h.k) — F(f) of DSProc, there is a circuit f’ and 2-cell f' — f with F(f’) = (h. k).
Note that ex = (hs.ks) : E¢ — AxB, and thus we have the following morphism of

partial maps:

 me o Pc (aamemik)
m . — EcXSc N
SC : -0 SCXB
;n:' 2 hxlI €p
AXSc (1)
€s .\ v esxl
Ixes impogm e By
M o AXBXSp <~ - Olf o
Sf - 0 n </ Mf‘ SfXB
.44 Yo 2
AXS,

Here we see that (1): 7 commutes since e is a morphism of Tran, and (1): 7’ commutes

as follows:
PC T s ““*mc—'"“‘ e ZCXSC -k _. zc
€p ey Xeg e
> {mgoem) M vk
Pf - *AL(AL — - AXSfXB iJW -~ AXBXSf - X . AxB
"Olf' IR, E A NS AR
SfxB 7 RN

The fact that e € 37 implies that m.: hx1 is a pullback of my along ep and thus an
element of M. Taking f’ to be the associated circuit, we have es : f* — f in Circ.

Finally, we have the following morphism C — F;(f’) of Tran

ZCXSC 3\ - me —_ — PC _. B . > SC

\,\ //"
= R -~ Me

ezx }

T ZexS
v (hx‘{,/u/,k/)// C C % v v

AXBXSc <sw— AXScXB o s agmamhymy - Fe —ug = Sc

116 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

which is easily seen to be an 3% 2-cell F(f') — (k, k).
To show F is full, we suppose (f,g) : FA — F B in DSProc and construct a circuit
h:A — Band an 37 2-cell (f,g) — F(h) in DSProc. First note that as f € IM, (2)

below is an 3M-pullback and thus mc: fgx1 belongs to M.

Sc 2 T A LeXSc - e . p c
T AXSc « fexd
! (2)
Ix/!
4 v v
1l - 3 - AX] —— = Axl

Let A : A — B be the circuit associated with the partial map (mc; fex1. lac, mc; 7; gs)).
The required 3% 2-cell of DSProc is then given by the following morphism C — F(k)

of Tran:

IexSc - Tic Pc ---—0C. . eS¢

(foepx! (fpx1.m:g5) = =
v a v \4

AXBXSc sw AXScxB eI (Gamemggmy P (uamanipym S
a

We now show that the embedding of circuits into deterministic processes lifts via
the idempotent completion to an equivalence between the categories of safe circuits
and deterministic processes. The reason is that copy idempotents of Circ(X, H) are
taken by the functor to split idempotents in DSProc(X, H).

We begin by noting a general class of idempotents in process categories, followed

by a specific class of idempotents in SProc.

Lemma 5.3.6 If f : C — A isin CoNCy and 1; f = 1; f is an E-pullback, then
(f.f): A~ A is a split idempotent in Proc(X, £,Co,C1).

Of course any monic f satisfies this property. Furthermore, if £ contains all

retractions then any f will work since the projections from the pullback of f and f

5.3. EMBEDDING CIRCUITS IN SPROC 117

serve as £ 2-cells (f, f):(f.f) — (f.f). In the category of transition systems. the

local monics also have this property.
Lemma 5.3.7 In Tran(X), if f € 3M then 1: f = 1; f is an 3T -pullback.

Proof. Forming the pullback of f along itself we have the following situation:

A
_ R _
= ! =

s . Q. 9 4

A -4
foaga f

The fact that h; ¢ = 1 induces w in the diagram below which makes (m,;); hs = w; y

a pullback.
PA mJ;n - J/‘ SA
=A o _
hp hg
y w N mo,; T’ Y
P, - _____ O™
e, g
Z 'S v . - }
qr ; s
X
v o, v
Pa - N 7% A

Since g belongs to 3™, = is monic and thus the top square is a pullback as required.
q g q

a

Consequently. any process (f, f) is a split idempotent in DSProc(X, H).
Returning to the embedding of circuits, we note that the copy propositions of

Circ(X, H) correspond exactly to the objects of Tran(X, H):

P, — L. M. S,
m, n
v v

We define Goo(z) to be the transition systems associated with z : A — 1 of Circ, and

Gi(z) = (1a,'s) : Go(z) — Fy(A) the obvious morphism of Tran.

118 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

Lemma 5.3.8 Forz : A — 1 of Circ(X, H), (G1(z),G1(z)) = F(ez) : F(A) — F(A)
in FSProc(X. H).

Proof. We exhibit an 37 2-cell A : (Gy1(z).Gi(x)) — F(e;). First construct the

partial map of e;:

p LM . px(AxS) —OXT_o 54— = = 5xA
m mx! nx! n
v v v v

AXS ——gx—> AXSX(AXS) —xxg—> GSXA ——;—+ G(SxA)

The 3T-morphism A : Go(z) — Fi(e;) of Tran is then as follows:

AXS - —— m. Rl < e .
AxT (1.7

v

a v \4
AXAXS < 5w - AXSXA *‘(r—n.—(ogm:n);n S P {cmmy "~ SXA >~ S

[tis a 2-cell as A;7w =14 = A: 7’ and ls;!s =!s. Note that G;(z) belongs to 3™ as

Fr(ez) isin 3M and A is in 3%. m|

Thus PSplit(F') is a full and faithful functor SafeCirc(X, H) — DSProc(X. H).
Furthermore, every object A of DSProc(X. H) is isomorphic to PSplit(F)(e.), where
r: ¥4 — 1 is its classifying circuit, since the spans (Gi(z),14) : F(£4) — 4 and

(la,Gi(z)) : A — F(X,4) are a splitting of F(e;). Thus:

Proposition 5.3.9 PSplit(F') : SafeCirc(X, H) — DSProc(X, H) is an equivalence

of categories.

As DSProc is a strict copy category, we can ask what are the strict morphisms.

Define
FSProc(X, H) & Proc(Tran(X, H), 3%, 3%)

i.e. the subcategory of DSProc(X, H) whose processes have their left leg a local

isomorphism.

5.4. SUMMARY 119

Proposition 5.3.10 The strict morphisms of DSProc(X, H) are FSProc(X. H).

Proof. Note that the counit of an object A is given by the process (14.'4): A — 1.
If e is in 37 then any process (e, f) : A — B is strict, as 1 is final in Tran(X. H):

’~

Conversely. if (f.g) : A — B is strict in FSProc then we have the following commuting

diagram with e and e’ in 3%:

A
- 4 /
= ¢ .
Al s
e’ v B !
f v
Thus (f,g) in the form (e,€e’; g) : A — B belongs to FSProc(X, H). O

5.4 Summary

We have shown that a category of partial circuits embeds into the subcategory of
SProc whose objects are simply alphabets. One obtains a category of safe circuits
by splitting the propositional idempotents: this category is (up to equivalence) the
category of deterministic processes of section 2.5.1. We thus have the following state-

ment:

Theorem 5.4.1 The following are equivalent:
- SafeCirc(Set), the category of safe circuits;

- DSProc(Set), the category of deterministic synchronous processes;

- Par(Tree(Set)), the category of partial maps upon trees.

120 CHAPTER 5. IMPLEMENTING SYNCHRONOUS PROCESSES

Within the category of safe circuits, one can equationally isolate those which
satisfy a certain liveness property. This category of live circuits is the category of

functional processes of section 2.5.1. In summary,

Theorem 5.4.2 The following are equivalent:

- FSProc(Set), the category of functional synchronous processes:
- LiveCirc(Set), the category of live circuits;

- Tree(Set), the category of trees:

These results provide a basis for programming processes in SProc: One begins
by writing simply-typed circuits as elements of a coalgebraic datatvpe. More refined
safety types are then introduced as certain (idempotent) circuits. Finally, justifying
the assignment of safety and liveness types amounts to verifying (via bisimulation)

equations involving the circuit and its (proposed) type.

Chapter 6

Conclusion

This thesis has developed a general construction of process categories through a span
construction upon a model category and a cover system.

I have shown that Abramsky’s category SProc of synchronous processes arises as
a process category upon all of the standard models of interleaved concurrency: from
transition systems to trees. The fact that SProc is a process category upon trees
gives directly the view. suggested in [AGN94], of SProc as a name-free approach to
concurrency.

The fact that SProc is built upon trees also suggests a simple variation: in the
category of trees, the cover system for trace equivalence is given by the regular epi-
morphisms. Thus one obtains the category SProcr of synchronous processes modulo
trace equivalence as the category of relations on trees. Since trees are essentially
“sets in time”, this suggests the proper interpretation of “relations in time” is actu-
ally SProcr.

It was a general feeling that linear logic was the appropriate logic for interaction
and process categories. Indeed, Abramsky’s original presentations of interaction cat-
egories were through the type structure of linear logic. It is becoming clear, however,

that (aside from games and strategies) few examples of interaction categories actu-

121

122 CHAPTER 6. CONCLUSION

ally provide a full model of linear logic. For example to obtain storage in SProc one
must throw away the fine distinctions provided by bisimulation and move to trace
equivalence. In the asynchronous setting , ASProc, the situation is even worse as
even the additives are lost. One must conclude that the appropriate levels of logic
for describing these phenomena has still to be settled and will only become apparent
as more examples surface.

One aspect of interaction categories which has not been given explicit attention
here is that of specification structures. The idea there is that one has a chain of faithful
functors: at the bottom sits a compact-closed process category with a rudimentary
type structure. and each successive level represents a refinement of the type structure
which places stronger demands on the processes included in the category. One obtains
a similar effect in the current setting by adding structure to the model category and

using cover systems in the span construction to constrain the behavior of processes.

6.1 Future research

Some work remains to be done in the state-based formulation of asynchronous games
of sections 3.4 and 3.3. Although [have provided a monads of delay which yield
appropriate notions of asynchronous process, the equivalence on processes is still
sensitive to delay. Left-factor closure of the span system forces the choice of cover
system for equivalence, and thus an appropriate equivalence must be obtained by
other means (e.g. a functor into ASProc).
For the interleaving games, the following steps remain in the reconstruction of the
game-theoretic category of [AJ94]:
¢ A complete proof that the category of synchronous strategies is linearly distribu-
tive. This is made difficult by the extra accounting inherent in the state-based
formulation of games.

o The fact that the obtained tensors preserve the span systems is enough to

6.1. FUTURE RESEARCH 123

transmit the linear distributive structure to the asynchronous process category.
e A functor into ASProc (given via the techniques of chapter 3) will vield an
equivalence on processes which ignores delay, but the identity processes are still
synchronous.
e Completing the idempotents which correspond to forcing asynchrony in the
identity processes will then yield a *-autonomous category.
[believe that the game-theoretic categories provide the most promise as a founda-
tion for concurrent programming. Consequently, the construction of circuit categories

for games is an area which deserves further attention.

124

CHAPTER 6. CONCLUSION

Bibliography

[Abr93)]

[Acz88]

[AGN94]

[AJ94]

[ATMO4]

[Bar79]

[Bar91]

Samson Abramsky. Interaction categories (extended abstract). In Theory

and Formal Methods Workshop. Springer Verlag, 1993.
Peter Aczel. Non-well-founded sets. CLSI Lecture Notes. 14, 1988.

Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. Interaction
categories and the foundation of typed concurrent programming. In M.Broy,
editor, Deductive Program Design: Proceedings of the 1994 Marktober-
dorf Summer School, NATO ASI Series F: Computer and System Sciences.

Springer Verlag, 1994.

Samson Abramsky and Radha Jagadeesan. Games and full completeness
for multiplicative linear logic. Journal of Symbolic Logic, 59(2):543-574,

1994.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Games
and full abstraction for pcf. Lecture Notes in Computer Science, 789:1-15,

1994. Proceedings of TACS ’94.

Michael Barr. *-autonomous categories, volume 752 of Lecture Notes in

Mathematics. Springer Verlag, 1979.

Michael Barr. *-autonomous categories and linear logic. Mathematical

Structures in Computer Science, 1:159-178, 1991.

125

126

[BBS88]

[Bén67]

[BPGY4]

[BWSS5]

[BW90]

[Cas85]

[Coc90]

[Coc93]

[Coc95]

[CS92]

[CS94]

BIBLIOGRAPHY

D.B. Benson and O. Ben-Shachar. Bisimulation of automata. Information

and Computation, 79:60-83, 1988.

J. Bénabou. Introduction to bicategories. Lecture Notes in Mathematics.

40:1-77, 1967.

Richard Blute, Prakash Panangaden, and R. A. G. Seely. Fock space: A
model of linear exponential types. Manuscript, revised version of MFPS [X

paper, 1994.

Michael Barr and Charles Wells. Toposes, Triples and Theories. volume
278 of Grundlehren der mathematischen Wissenschaften. Springer Verlag,

1985.

Michael Barr and Charles Wells. Category Theory for Computing Science.
Prentice Hall, 1990.

[. Castellani. Bisimulation and abstraction homomorphisms. In Proceedings

of CAAP '85. Springer Verlag, 1985. Lecture Notes in Computer Science.

J.R.B. Cockett. List-arithmetic open categories: Locoi. Journal of Pure

and Applied Algebra, 66:1-29, 1990.

J.R.B. Cockett. Introduction to distributive categories. Mathematical

Structures in Computer Science, 3:277-307, 1993.
J.R.B. Cockett. Copy categories. Submitted for publication, 1995.

J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. London
Mathematical Society Lecture Notes, 177:45-65, 1992.

J.R.B. Cockett and David Spooner. Sproc categorically. Lecture Notes in
Computer Science, 836:146-159, 1994. Proceedings of Concur '94.

BIBLIOGRAPHY 127

[CS95]

[Gay95]

[Gir87]
[Hoa85]

[HS96]

[JM95)]

[JNWO3]

[Kat96|

[Kel92]

[KSW94]

[LinT76]

J.R.B. Cockett and David Spooner. Categories for synchrony and asyn-

chrony. Electronic Notes in Theoretical Computer Science. 1:495-520., 1995.

Simon J. Gay. Linear Types for Communicating Processes. PhD thesis.

London University, Imperial College. 1995.
J.Y. Girard. Linear logic. Theoretical Computer Science. 50:1-102. 1987.
C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall. 1985.

Ulrich Hensel and David A. Spooner. A view on implementing processes:
categories of circuits. In ADT ’95, Lecture Notes in Computer Science.

Springer Verlag, 1996.

Andre Joyal and I. Moerdijk. Algebraic Set Theory, volume 220 of London
Mathematical Society Lecture Note Series. Cambridge University Press,

1995.

Andre Joyal. Mogens Nielsen, and Glynn Winskel. Bisimulation and open

maps. In Logic in Computer Science. IEEE, 1993.

P. Katis. Categories and bicategories of processes. PhD thesis, The Uni-

versity of Sydney. 1996.

G.M. Kelly. On clubs and data-type constructors. In Applications of Cat-

egories in Computer Science. Cambridge University Press. 1992.

P. Katis, N. Sabadini, and R.F.C Walters. The bicategory of circuits.
In C. Barry Jay, editor, The Australian Theory Seminar, pages 89-108,
Sydney, 1994. University of Technology.

H. Lindner. A remark on mackey-functors. Manuscripta Mathematica,

18:273-278, 1976.

128

[Mil83]

[Mil89]

[Mil91]

[MTH90]

[Mul94a]

[Mul94b]

[Par90]

[Pav95]

[Pra36]

[Pra95]

BIBLIOGRAPHY

Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25:267-310, 1983.
Robin Milner. Communication and Concurrency. Prentice Hall. 1989.

Robin Milner. The polyadic w-calculus: A tutorial. LFCS Report Series
ECS-LFCS-91-180, LFCS, Department of Computer Science, University of
Edinburgh, 1991.

Robin Milner, Mads Tofte. and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

Phillip S. Mulry. Lifting theorems for kleisli categories. In Mathematical
Foundations of Programming Semantics, volume 802 of Lecture Notes in

Computer Science. Springer Verlag, 1994.

Phillip S. Mulry. Partial map classifiers and partial cartesian closed cate-

gories. Theoretical Computer Science, 136(1):109-123. 1994.

Robert Paré. Simply connected limits. Canadian Journal of Mathematics,

XLII(4):731-746, 1990.

Dusko Pavlovi¢. Convenient categories of processes and simulations 1: mod-

ulo strong bisimilarity. January 1995.

V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel

Programming, 15(1):33-71, February 1986.

V.R. Pratt. Chu spaces and their interpretation as concurrent objects.
In J. van Leeuwen, editor, Computer Science Today: Recent Trends and
Developments, volume 1000 of Lecture Notes in Computer Science, pages

392-405. Springer-Verlag, 1995.

BIBLIOGRAPHY 129

[See89]

[SNW93]

[Tho91]

[VB84]

[Wel94]

[Win87]

R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.
In J. Gray and A. Scedrov, editors, Categories in Computer Science and
Logic, volume 92 of Contemporary Mathematics, pages 371-382. American

Mathematical Society, 1989.

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. A classification
of models for concurrency. Lecture Notes in Computer Science. 715:82-96.

1993. Proceedings of Concur 93.

Simon Thompson. Type Theory and Functional Programming. International

Computer Science Series. Addison-Wesley, 1991.

J. Van Bentham. Correspondence theory. In Gabbay and Guenther, editors,
Handbook of Philosophical Logic II. Reidel, 1984.

Charles Wells. Sketches: Outline with references. Available by ftp from

ftp.cwru.edu as math/wells/sketch.ps, February 1994.

Glynn Winskel. Event Structures, volume 255 of Lecture Notes in Computer

Science. Springer Verlag, 1987.

IMAGE EVALUATION
TEST TARGET (QA-3)

16

28

14

150mm

71
© 1993, Applied Image. Inc.. All Rights Reserved

1.25

