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ABSTRACT  

The problem of material uniformity for simple 

elastic bodies is studied and characterized. The body is 

conceived as an n-dimensional C°° manifold possesing an extra 

structure through its constitutive law which is an open map 

2: B -e A B being the body manifold and A the space of 

response functions for the particular physical phenomenon 

considered. The concept of smooth material response is 

reviewed and its relation to smooth uniformity is clarified. 

The former is shown to be preferable due to its less 

restrictive underlying assumption. The continuous group of 

transformations GL(r,IR) of dimension .r 2 is used to construct 

an open neighborhood of a point ny = n(X)6A, X6B and the 

action Ag6GL: 4 -. A is shown to be completely determined by i2 

once the space A is fixed. The concept of tangential 

uniformity is introduced and a direct formulation of material 

uniformity using the Killing vectors of the action of GL at 

S2 X EA is given. It is shown that this can be reduced to a 

condition on the determinant of a certain matrix whose 

entries are determined by the components of the Killing 

vectors and the components of a vector tangent to the curve 

a(c(t)) at the point of interest where c(t): I c IR -. B is a 

smooth curve in B passing through c(0) = X. 
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NOMENCLATURE  

1. General 

Vx for every x 

there exists 

6 included in 

U union 

fl intersection 
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1ff if and only if 

X X Y direct product 

rR real line, set of real nimbers 

rR+ set of positive real numbers 
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det[a. .) determinant of the matrix [a. ] 
13 

T(X) tangent vector space to X at x 

T(X) tangent bundle 
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tensor product 

material isomorphism 

2. English letters 

A set of all possible stress tensors 

A  group action of g 

B the body manifold 



a ,a. 
0 1j 

a ij. .kl scalar functions defined on the body 

b. ., c. 
ij ijkl 

C(t) - a curve with parameter t 

C the set of all configurations of B 

C1, C2 constants 

e the identity element of a group 

e. 1 basis vectors 

E Euclidean space 

exp exponential map 

f response function 

fR response relative to a global reference 

F,F,K, L invertible linear transformations 

G continuous group 

Gx isotropy group at X 

Gx, X X local configuration gradients at a material point X 

G(X) symmetry element at X 

g,h,l elements of a group 
9 

GL(r,IR) the general linear group of dimension r 

I - identity matrix 

- open set on the real line 

- set of integers 

k vector tangent to a curve in the body 

L relaxation map 

Lg left translation 

M a differentiable manifold 



W(x) open neighborhood about the point x 

0 orbit at x 
x 

material isomorphism in a reference configuration 

'1 '2 parts of the body 

Q orthogonal transformation 

r,t,s scalar parameters 

T stress tensor 

T  stress tensor relative to a global reference 

u,v vector fields 

u vector tangent to a curve in the space of response 

functions 

U - open set 

- scalar field defined on the body 

V - open set 

- vector space 

w energy function of a hyperelastic body 

x deformation of the body 

x material point in a reference configuration 

X,Y,Z generators of orthogonal group 

X,Y material points in the body manifold 

x1, y1 coordinate functions 

3. Greek letters 

global configurations of the body 

- generators of one parameter subgroups 

indices 

reference atlas 

(x) 



6 kronecker delta 

,l7 local reference configuration 

A - global reference configuration 

- scalar 

A space of response functions 

(t) one parameter subgroup - 

P(g) matrix representation of g 

Pt parallel transport 

one parameter group of transformations 

o(f,x) response function of a one dimensional body 

global reference 

- empty set 

- curve 

- invariant variety 

curve 

constitutive function 



CHAPTER 1  

INTRODUCTION  

1.1 Objectives  

In this study we shall deal with the question of 

material uniformity in simple elastic and hyperelastic 

materials and the restrictions imposed on the constitutive 

laws describing such bodies. 

1.2 Material Uniformity, Constitutive Laws and Locality:  

An Intuitive Discussion  

A body is called materially uniform if all of its 

body points are of the same material. Clearly, a materially 

uniform body will remain so in all of its configurations. 

In the general theory of Mechanics of Continua, it 

is known that the four fundamental axioms of Mechanics 

[l] 1namely, a) Principle of Conservation of Mass, 

b) Principle of Balance of Momentum, c) Principle of Balance 

of Moment of Momentum, d) Principle of Conservation of 

Energy are not sufficient to make a problem determinate and 

one has to introduce additional equations, called the laws 

of constitution or constitutive equations, for each 

'Numbers in square brackets are listed under References. 

1 
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material. In general, they are functionals of the body 

points, history of deformation, temperature and time. The 

explicit dependence on the material points indicates that 

the body is possibly a non-uniform one; if it is uniform, 

then this dependence is due to the "inhomogeneities" within 

the body itself or else the reference configuration chosen 

is not homogenous. In the latter case one can always refer 

the body to a configuration such that the constitutive 

equation will not depend on the material points. 

When further restrictions are imposed on the body, 

the law of constitution provides us with a purely 

geometrical theory for material inhomogeneities first 

proposed by W. Noll (2,3] and generalized by C.C. Wang [4]. 

These restrictions are: 

a) The body is elastic, i.e. there is no dependence on 

history or time, b) The response of the body is completely 

determined by the geometry of the deformation, i.e. there is 

no dependence on temperature and the theory is purely a 

mechanical one, c) The physical characteristics of the body 

are local in the sense that they pertain to individual 

material points and their immediate neighborhoods, rather 

than the body as a whole. The theory of simple bodies deals 

only with such local characteristics. The concept of a 

simple material was axiomatized by Noll [5] along with 

several other concepts which serve as the foundations of 

rational continuum mechanics today. 
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The term "simple" expresses the assumption that 

deformations whose gradient is •the identity at a given 

material point do not alter the physical response at that 

point with respect to the set of phenomena under 

consideration. To be precise, let the stress in an elastic 

material be given by 

T(X) = f(x(X),X) 

where f is a tensor function of the material point XsB and 

the current global configuration x: B c E - E . Here, B 

denotes the body in a given reference state and E is the 

Euclidean space. The axiom of neighborhood [1] states that 

the motions of material points that are not near the point X 

will not contribute appreciably to T at X. One way of 

formulating this is to rewrite (1.2.1.) as (smooth 

neighborhood) 

T(X) = f(x(X) + (XK _XK ) X, K I + T!(X1 _XK )(X K XK 
1 1 1 1 1 .2 2 

,X) (1.2.2) 
XKK 2 1 X 

where x(X) is expanded at X with coordinates (X 1 ,X 2 ,X 3) and 

ax (X)  
X,K IX = ax  , etc. 

Materials in which the function depends on terms 

of higher order than 1 are called non-simple materials. In a 

way, the range of the neighborhood is brought into play with 

the highest order deformation gradients involved. A further 
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simplification is achieved when we employ the axiom of 

objectivity ([l],p. 157) resulting in the elimina€ion of the 

dependence on x(X) in (1.2.2). 

Now we state that a simple elastic response is 

given by: 

T(X) = f(x, Kt 
X) (1.2.3) 

where the dependences on higher gradients of the deformation 

are dropped. 

Given the response of a material point by (1.2.3) 

we can define a simple uniform body as the body whose 

physical response has the same form at all of its points. 

This was the approach taken by Noll [2] and Wang [4] where 

they have constructed a theory for inhomogeneities in 

materially uniform simple bodies. The connection between 

this theory and the problem of uniformity is discussed next. 

1.3 Homogeneity and Uniformity 

Let X denote a material point in the body manifold 

B where B is not necessarily embedded in E. In Eqn. (1.2.3), 

the dependence on the material point X (or X) may not 

necessarily stem from the non-uniformity of the body. 

Another source for this dependence is the inhomogeneity of 

the body itself. For example consider a cylindrical body 

made by gluing the opposite ends of many thin sheets of the 

same material (Fig.l.la-1.1b). Obviously, this body is 

materially uniform but its response cannot be described by a 
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simple relation like 

T1 (X) = fR(F) 

is the response relative to a global reference) 

Fig. 1.1 

where F E. GL(3). To see this, let us take two points, say A 

and B and imagine we cut out small neighborhoods N(A), P1(B) 

(Fig.l.la). They will look like (Fig.l.2): 

F 

Fig.l.2 

F 
—p T(F'. # T(F) 

Since N(A) and N(B) are not laminated in the same 

direction, they will not respond the same way. However, it 

is possible to "re-orient" one of them to get an identical 

response, say by rotating N(B)—rigidly clockwise so that the 

sheets will point in the same direction. But this body, 

because of its topology does not admit a smooth field of 

such rotations and the response is of the form 

X). Clearly, T(X) can be defined on B locally T(X) = f(x, K  

so that the dependence on X is dropped in this case. Another 
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point is that the above re-orientation maps need not always 

be rotations. They can be the members of the general linear 

group GL(3) when arbitrary pre-stresses are present in a 

body (eg. see Fig.l.lb). To illustrate this "localization" 

process intuitively, consider Fig.l.lb and the sections P-P, 

Q-Q. Divide B into two parts defined by cutting through 

these sections. We have two pieces 

(b) 

Fig. 1.3 

Clearly, each part can be brought to the shape. (c) by a 

smooth deformation (mathematically a homeomorphism). 

The important conclusion in this example is that, 

given a uniform body, it is sometimes possible that its 

parts may admit reference configurations with respect to 

which the response 

T(X) = f(x,KX) can be written free from the dependence on 

V. Only inhomogenous bodies will not admit such parts. Now, 

let 

(c) 

P1 - E P2 -+ 

be two such references for where P1 and P2 are two simply 
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connected parts of B . Then, 

f(F ° di Ix) = f(F o d 9I ) VX€P 1 , VY6P 2, 

FEGL(3) where (d#) = (We also note here that the 
K K O 

reference map 'P manifests itself through its first gradient 

for simple bodies). 

1.3.1 Definition  

A uniform body B is called locally homogeneous 

when its tep arte admit reference configurations with respect 

to which the response function will take the same form. 

From this, it follows that B is globally 

homogeneous when such maps are defined globally, i.e. 

f(Fd'PIx) go (F) 'P : B -, E, V XeB. (eg. P1 or P2 of 

B in Fig.2 are separately, globally homogeneous bodies). 

1.3.2 Remark  

In the light of the discussion above, when 

uniformity properties of B are considered it is seen that 

one should focus attention on local material uniformity 

because of the local structure of B induced by internal 

stresses. That is, the explicit dependence on X has its 

sources at a local level even when B is uniform. Hence, one 

is naturally led to a local investigation in a study of 

non-uniformity. 
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1.3.3 Remark  

One must recognize the limitations of this 

definition of uniformity since it is dependent on the 

assumption of locality as pointed out by Krner [6]. The 

most general definition is, of course, the one given at the 

beginning of section (1.2) but the geometrical structure 

that it imposes on the body is not clear. On the other hand, 

using locality, the geometry is a natural outcome of the 

laws of constitution and many useful results for simple 

materials can be obtained. 

1.4 Geometry of a Simple Body, General Considerations  

1.4.1 Parallelism: An Informal Exposition  

In abstract terms a geometry is defined on a 

manifold when one has the means of comparing vectors at 

different points unambiguously, i.e. in a way free from the 

coordinate system (or sytems) chosen about these points. For 

example, if we have a three dimensional Euclidean manifold, 

a single coordinate chart is sufficient to map this space 

onto our ordinary 3-D world. In particular, we can choose 

this chart to be cartesian and the comparison of vectors is 

trivial. Namely,vectors at different points are parallel if 

their components are the same. For non-Cartesian charts, the 

local bases are different at each point. In order to compare 

vectors at different points, we must first refer them to a 

standard basis, say an orthonormal triad. The process of 

transformation into a standard basis is defined globally on 
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a Euclidean manifold which enables us to define a field of 

vectors parallel to a vector at a fixed point. We call this 

the Euclidean parallelism. When we have a Riemannian 

manifold such global parallelism cannot be found in general 

but it can be defined in a coordinate free way along a 

smooth curve on the manifold. In most simple terms, this is 

equivalent to solving a system of ordinary differential 

equations (first degree) along a curve and the property 

follows from theuniqueness of its solution. It provides one 

with a field of parallel vectors along the chosen curve and 

depends on the metric chosen (since the "coefficients of 

connection" are defined by this metric). This is called the 

Levi-Civita parallelism of vectors [7]. When a general 

connected manifold is considered, there is no means of 

measurement of distances, hence, no metric structure; one 

has no means of defining the connection functions. As a 

remedy, those functions are assigned a' priori with the 

requirement that they satisfy appropriate transformation 

laws when coordinate charts are changed. The connection 

coefficients defined in this way are said to form an affine  

connection on the manifold and one can again construct a 

parallel field of vectors along a given curve with given 

initial conditions [8]. 

In all of the above type of parallelism 

structures, it is seen that the objective is to define a 

field of parallel vectors to a given vector at a point 
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either globally or locally, depending on the type of the 

manifold. This is equivalent to defining a field of 

isomorphisms, called parallel transports which are 

one-to--one mappings of different tangent spaces along a 

given curve. 

The constitutive law of a simple elastic body 

(uniform) determines an affine geometry on B and is 

discussed next. 

1.4.2 The Parallelism Structure on a Uniform Simple  

Body  

Defining a geometry on B is equivalent to specify 

the above parallel transports. Of course, physical distances 

can be measured on B (hence we have a metric) which will 

induce a parallelism; but this type of geometry does not 

bring into play the physical properties of the body. However 

a parallel transport can be defined in a very natural way 

for uniform simple bodies [2] using their constitutive law. 

Let X,Y€U c B; the response functions at X and Y are given 

by f(d,X) and f(d#,Y) where 

U c B -, E. Let N(X) and N(Y) be open neighborhoods of 

X,Y in U. If the body is uniform two local configurations 

i,p of N(X) and N(Y) can be defined such that 

f(Fd?(x ,X) f(FdPIY) (1.4.2.1) 

where : N(X) _, E, 1 : N(Y) -, E, F = dA V -+ V (V is the 

translation space of E), and A is a "local deformation" of E 

(see Chap.2). Let F = dal x(dvIx)' and substitute in 
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Eqn.(l.4.2.l) to get 

f(dIx ,X) = f(dcLl (d 'I )1dPIy ,Y) 

The quantity (d'Ylx)'d/31y is called a "material isomorphism" 

and is a linear map of TB onto TxB. 

Physically, this process is equivalent to cutting 

out a small neighborhood of Y and gluing it back after 

applying a certain deformation to it. This deformation is 

such that the materials at X and Y are indistinguishable 

(with respect to the response f) after the-process is 

completed. (A formal definition is given in Chap.2). The 

maps w(X,Y) = (d 1d1311 when defined smoothly on U c B 

play the role of the parallel transports discussed before. 

The connection induced by is an affine connection and is 

completely determined by the constitutive law of the body. 

The torsion of this connection is shown [2] to characterize 

the material inhomogeneity of B and in general need not 

vanish. 

The question of geometrical structures on B, when 

B is not known to be uniform has not been discussed in 

literature until the recent expositions of H. Cohen - M. 

Epstein [9] and M. Elanowski - M. Epstein [10], where they 

study hyperelastic uniformity. These approaches are given 

briefly in the next chapter after introducing some formal 

definitions that are also necessary to discuss the theory 

given in this thesis. 
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1.5 Suggested Approach to Uniformity  

In the present theory, we consider a wider class 

of simple bodies, namely those which are uniform along a 

curve in an open neighborhood of a point Xe.B. This property 

is referred to as the "directional" or "tangential" 

uniformity. This is a weaker structure than that introduced 

in [9,10] and therefore covers a wider class of bodies. 

The following identifications and assumptions are 

made: 

a) The body B is an n dimensional differentiable 

manifold of class C(p ≥ 1). 

b) The constitutive law is viewed as a mapping a : B -. 4 

(definition 2.2.4) where A is a finite 

dimensional linear vector space. The nature of 4 

depends on the type of physical phenomena under 

consideration. 

C) The general linear group GL(n3) acts as a Lie Group of 

transformations on A. Its action is determined by the 

constitutive law. 

d) B is a crystal body, that is, its isotropy group 

consists of discrete points in GL(3). This is done for 

the sake of simplicity in the mathematical 

manipulations. 

e) B is a smoothly non-uniform body (definition 2.2.19). 

With this set up, it will be shown that the study 

of uniformity can be reduced to the study of the orbits of 
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GL(3) on A in the neighborhood of s2(K) 6 A. 

To summarize, we conclude with a classification of 

simple bodies in an order of decreasing generality: 

Non-uniform 

Tangentially uniform 

Curvewise uniform 

Locally uniform (All uniformities are 

Uniform smooth in the sense 

Inhoinogeneous explained in Chapter 2). 

Locally homogeneous 

Globally homogeneous 

The strongest structure is found in a globally homogeneous 

body. Its behaviour under external effects is easier to 

determine. However, in a physically meaningful situation, 

inhomogeneities in the form of internal stresses or 

non-uniformities due to material property differences exist 

in a body. Therefore, it is natural to seek new forms of the 

equations of motion to take such effects into account. 
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CHAPTER 2  

SOME CONCEPTS IN THE THEORY OF A SIMPLE BODY  

The ideas discussed in chapter 1 are stated here in 

a precise form. The theories for uniform [2,4] and 

non-uniform [9,10] bodies are given with comparisons to the 

present approach. Mathematical concepts are explained when 

they are needed. This chapter also fixes the notation that is 

to be used in the remaining parts of this work. Different 

expositions of this material can be found in 

[2,11,12,13,14,15] addressing to readers with different 

backgrounds. The present discuss.ion is unique, however, due 

to its treatment of the subject from a different point of 

view: the possibility of non-uniformities in the body. 

2.1 The Need for a Consistent Geometrical Model  

When large-scale plastic phenomena are considered, 

such as the plastic flow above the yield stress, it is known 

that a large number of dislocations are involved, of the 

11 12 2 
order of 10 to 10 lines/cm . In such a situation a 

reasonable point of view is to treat the aggregate of 

dislocations. Such a view leads to the theory of continuous' 

distributions of dislocations. This theory was originated by 

Bilby-Bullough and Smith [16] based on the concept of an 



15 

atomistic and crystalline structure of the dislocated 

materials. It is known that if one takes a closed curve in a 

dislocated crystal and maps it on a perfect reference 

crystal, its image would not close under this map. The 

closure failure is known as the Burgers vector of the 

dislocations threading the original curve. It is also known 

that the local Burgers vectors can be defined in terms of a 

second order tensor, called the dislocation density [12, 

p.244). Now, since the line integral on the perfect crystal  

is given in terms of local deformations from the real  

crystal, we obtain a relationship between the dislocation 

density tensor and the local deformations. Motivated by this, 

in [16] it is shown that the torsion tensor of a connection 

on the real crystal and the dislocation density tensor are 

equivalent. This is done by takingHadvantage of the 

crystalline structure of the body and two vectors at 

different points (of the original crystal) are called 

parallel if they correspond to the same number of local 

lattice steps. The curvature of the connection defined by 

this parallelism vanishes and its torsion has the meaning 

mentioned above. 

In the theory of Noll [2], although the end result 

is the same, no crystalline structure is assumed and the 

geometry of the body is determined once a constitutive 

assumption is made. 
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2.2 Theory of Inhomoeneities in Simple Elastic Bodies  

A one-to-one mapping A : W c E -. E is called a 

deformation of class Cr(r ≥ 1) if it is not only of class C' 

but if also the values of its gradient are invertible, i.e. 

dA(x)€.GL(n,rR) for all xW. 

2.2.1 Definition  

A body is a set whose members X,Y,... are called 

material points and which is endowed with a structure defined 

by a class C of mappings 'c : B - B called the configurations  

of 8 (in the space E). The point K(X) is called the place of 

the material point X.B in the configuration '. 

B is a continuous body of class C(p 1 1) if the 

class C of configurations satisfies the following axioms: 

1) Every 1f.0 is one-to-one and K(B) is open in B, 

2) If then A = 1 ° : B) -, '() is a 

deformation of class bp called the deformation of B from the 

configuration ic into the configuration 

3) If 1<GC and A K(B) -. E is a deformation, then 

(A ° 

2.2.2 Definition Manifolds,charts and atlas of a Cp 

Manifold (see [17) for a detailed exposition). 

A (topological) manifold is a Hausdorf topological 

space such that every point has a neighborhood homeomorphic 

to fl'. A chart (U,) of a manifold M is an open set U of M 
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together with homeomorphism : U - V of U onto an open set 

V c R n .The coordinates (x. . . ,x') of the image (X)SIRn f 

the point x.M are called the coordinates of x in the chart 

(U,). An atlas of class C on a manifold M is a set (U, } 

of charts of M such that the domains {U} cover M and the 

homeomorphisms satisfy thefollowing compatibility 

conditions: The maps : (Uafl U) - p(UaflUp) are maps 

of open sets of iR into R of class C. In other words, the 

mapping • -1 is given by n real valued Cp functions of n 

variables: (x i) _, y1 = fi J ' i (X) where (x) and (y) are the 

coordinates of x in (Ua and (U ) respectively. Two 

C atlases are equivalent if their union is again a C' atlas. 

A topological manifold M together with an equivalence class 

of C atlases is a cr' structure on M; we say that M is a Cp 

manifold. From this point of view, it is easily seen that B 

is a Cp manifold with an atlas of the form (B,), that is, it 

can be covered by a single open set and mapped on B 

homeomorphically. 

2.2.3 Definition  

Two global configurations .c,i at X are said to be 

equivalent at X and we write x - i if 

0 d( IsGL(n,IR) Ii(X) = 
9 

where GL(n,IR) is the general linear group of dimension n 

The resulting partition of C into equivalence classes at X is 

a set C whose members Kx, Gxi are called the local 
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configurations at X. Clearly, if Kx G€Cx, then GXKX' GGL 

and for Le.GL, LKx defines a new. local configuration in C by 

LKx = { A 0 x J dA(x) = L, di(X) = Kx 

Now a standart definition of the concept of a 

tangent vector space TM of a manifold M at a point xMwill 

be given. Intuitively, TM generalizes the notion of tangent 

plane to a surface in ff 3. One way of defining tangent vectors 

at x€M is as a triple (x,,v) such that (x,,v) and (x,',v') 

define the same vector if 

v' = d(y ° ')Iv , where v,v'aV holds. 

If x -+ x1 is a chart at x, the vectors of TM that are 

represented by 

( a/x 1 I . . . ,a/ax) 

form a basis for the tangent vector space which is called the 

natural basis. Since T x M and M have the same dimension, a 

chart (U,) at x thus induces an isomorphism of TM onto 

2.2.4 Definition  

Let A be the set of mathematical objects whose 

nature depends on the particular physical phenomena to be 

described. For example, in the theory of elasticity A 

consists of all possible stress tensors, i.e., of all 

symmetric linear transformations of V into V, where V is the 

translation space of E. In theories that include 

non-mechanical effects, A consists of functions or 

functionals whose independent and dependent variables have 
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interpretations as local temperatures, energy or entropy 

densities, heat fluxes, electric or magnetic field strengths, 

polarizations, electric currents, etc. In this work (chapter 

5), A will be assumed to be the set of all possible stress 

tensors for reasons of explicit calculation. 

A continuous body of class C will be called a 

simple  body with respect to A if it is endowed with a 

structure by a function 2 which assigns to each material 

point XaB a mapping 

7k.: C -* A 

The value cZ(G) is the response descriptor of the 

material at X in any configuration i of B such that 

di(X) = Gx. 

2.2.5 Remark  

The function 2 acts as follows 

2: B -. 4 by X 

i.e. it assigns a response function ci to each point XsB. 

In the theory given in Chapter 4, the map ≤2 will be 

assumed to define a C1 function in an open neighborhood N(X) 

of X€B. If ,c is a configuration of B, then the representation 

?- of a defined by ii: U -. A, U c E is also a C1 function. 

We say X and Y are of the same material if their 

response functions are identical. However, since a and 12 Y 

act on different domains (Cx and C, respectively) one first 

should "rewrite" these response functions referred to a 
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common domain. This can be done if an isomorphism of TB and 

TxB is given. 

2.2.6 Definition  

The linear transformation XY TB -. TxB is called 

a material isomorphism from TB onto TxB if 

= cZy(K X ED y) V 

The physical meaning of 9 XY was explained in Chapter 1. 

2.2,7 Definition  

A simple body B is materially uniform if the 

material at any two of its points is the same. 

2.2.8 Definition  

The tensor function K: B - L(TXB,V) is called a 

reference for B and furthermore if 

(x,Y) = K(X) 1K(Y): T1B - TxB y 

is a material isomorphism, then K is called a uniform  

reference for B. 

2.2.9 Remark  

In the generalized theory of Wang [4), the function 

K is defined as locally smooth on B, whereas in Noll's theory 

as given above, K is defined to be globally smooth on B 

leading to a distant parallelism. An example to justify 

Wang's generalization is the Moebius crystal. It is known 
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that there is no global reference K which will map the 

crystalline axes on to the crystalline axes of a rectangular 

rod. In other words, the rod, twisted into a Moebius crystal 

defines a material tangent bundle which is not trivial (see 

remark 2.2.15 ). 

From the general point of view of Wang, instead of 

a global function K on B, we define a reference chart for B 

a i to be a pair (U, K a ), U c B is open in B and K s a smooth 

field of uniform local reference configurations on 

Choosing K = FKa(X) where F.GL(3), it follows from 

definition (2.2.6) and (2.2.8) that 

(FKa( Y )) for X,Y6Ua. 

1a is called a reference neighborhood, Ka a 

reference map. A reference atlas for B is a set 

r = {(Ua Ka), acl} of reference charts such that two charts 

(U, Ka), (U TO) must obey the compatibility -condition: if 

UflU /3 '• /3 and ,then 
a a  

When B possesses a reference atlas 

r, it is called a smooth materially uniform elastic body. 

2.2.10 Remark  

We note that there does not necessarily exist a 

configuration : Ua -. E such that di(1 = Ka(X). Hencá we 

give: 
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2.2.11 Definition  

A simple elastic body B is called locally  

homogeneous if it can be equipped with a reference atlas 

r = {(U, Ka), a.I} with the property that to each aI, there 

corresponds a configuration 

U _# E such that Ka (X) dic for all Xe.0 
a X a 

2.2.12 Definition  

B is homogeneous if it can be equipped with a 

global reference chart (B,K) such that K(X) = dIcI. for some 

i: B - B VXB. 

Noll [2] in his paper, assuming a reference atlas 

of the form F (B,K), defined a distant parallelism using 

the parallel transports (X,Y) = K 1 (X)K(Y). He showed that 

the torsion of the connection induced by these maps 

characterized the inhomogeneity of B and he also proved the 

fact that a connection with a vanishing torsion implies B is 

locally homogeneous. Since the curvature is also zero (due to 

the distant parallelism) it is seen that a flat material 

connection completely characterizes a locally homogeneous 

body in Noil's theory. 

2.2.13 Remark  

The appearance of Lie Groups in Wang's theory and 

in this work have different motivations and they define 

different structures as summarized below: 
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2.2.14 Definition  

A bundle chart (U,) of the fibre bundle T(B), 

the material tangent bundle, is called a material chart if 

the transformations (see {181 for an exposition of fibre 

bundles): 

?(X,Y) a,Y 0 Ta,X x(B) _T1(B) 

are material isomorphisms V X,YeU a . In other words, if 

a = -1 a i K , then (U. , K ) s a reference chart on B. Two 
a  

18 
material charts (U ) (U #) are compatible if 

° T(B) - TX (B) 

is a material isomorphism V Xe.0 a and YU . A material atlas  

is a maximal collection of such pairwise compatible charts. 

The fields CL 
def 

G () = f 1 0 = K 0 ( K' )_l 
a,X p,1 X X 

are smooth and take their values in the isotropy group of Bap 

relative to the material atlas •{(U, aI} (this is so, 

if we recall the compatibility condition for reference charts 

(U, Ku ), (UK18) namely ux(Fh4 (x)) = x(FK'8(X)). Letting 

F = FG(X), we get 

= 

From the last two terms, we observe that G(X) is a member 

of the isotropy group at X and obviously so isG(X)). 

2.2.15 Remark  

In Wang's theory, Lie Groups arise as the structure 

group of the material tangent bundle and correspond to the 
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isotropy group of B at a point relative to a given chart. In 

the present theory (Chapter 4) Lie Groups appear as the 

continuous group of transformations on the space of response 

functions. 

Although most of the definitions that are needed in 

this work are given now, for completeness we briefly discuss 

Wang's approach to material connections. 

If F is a reference atlas for B, the material atlas 

which corresponds to F (the one generated by the maps 

K(X): Tx  -+ fl 3 ) is denoted by (r). The structure 

a,Kgroup is given by the G ap above and the sub-bundle of TB 

whose atlas is taken to be (r) and whose structure group is 

G(P) will be denoted by T(B,F). It is called the material  

tangent bundle of B relative to •F. The associated principal 

bundle of T(B,F) will be denoted by E(B,r) and is called the 

bundle of reference frames, relative to F. 

2.2.16 Definition (Wang)  

A material connection on B is a "G" connection on 

E(B,F). A connection is a distribution of horizontal 

subspaces H on E(B,T'), which satisfy the following condition; 

If A(t) is a smooth curve in Uc B, and TE A (o) - TE A (t) 

are the parallel transports along A relative to H, then the 

maps 

G(F) -, G(F) defined by 

= r, 0 r 0 ,, 

- 'cL,A(t) "t 'a,A(0) 
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must be elements of the structure group of E(B,F). Here 

q(r) = {(U ,q 13 ), t€I} is the bundle atlas of E(B,F). 

2.2.17 Conclusion  

As the main conclusion of this section, we state 

that the difference in Noll's and Wang's theories is the 

assumption made on the reference atlas r = {(Ua Ka), xal}. 

Noll assumes this to be of the form F = (B,K), i.e., the 

tensor function K: TB -, is globally smooth leading to 

an integrable connection whose curvature is zero. On the 

other hand, no such global smoothness assumption is made in 

Wang's theory for there are bodies violating it. The common 

assumption of both theories is the smoothness of the 

reference maps K on their domain (globally in [2], locally 

in [4]). This is a physical assumption which requires the 

mechanical response of the particles to vary smoothly over 

the body manifold. In both theories, a flat connection 

characterizes a locally homogeneous body. 

2.2.18 Remark  

In the theory of inhomogeneities, the assumption of 

smoothness (note that smoothness refers to the differential 

characteristics of a map rather than just continuity) is 

necessary to exclude sudden changes in the response of B 

along a given curve, or on an open set in B. In the continuum 

theory of dislocations it has been previously stated that 
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this is equivalent to assume the dislocations are distributed 

continuously within the body. In the theory of uniformity, an 

analogous assumption is going to be made. H. Cohen and 

M. Epstein [9] have defined a body to be smoothly uniform  

along a curve c: I c R -* B if the composition 

K: K  ° c: R - L(TXB, V) (where K is a uniform reference 

along c) is smooth. K, of course, need not be a gradient of 

an embedding of c. This assumption is a restriction of Noll 

and Wang [2,4] smoothness hypothesis along a curve c. It 

requires the smoothness of the uniformity maps along a curve 

c, whose points are of the same material. Clearly, it looses 

its meaning if one desires to construct a theory without 

referring to the uniformity of B. Therefore, we look for a 

different type of smoothness which would make sense even if B 

is not uniform. Hence we give: 

2.2.19 Definition  

A body B is said to enjoy a smooth material  

response along a curve c: I C: IR -' B if 2(Fd1I (t)' c(t)) 

varies smoothly along c(t) for all F6GL(3) and for some 

: B - E of class Cr via c(t) ,-. c(t)) (see remark 2.2:5 

also). Obviously, this definition is not dependent on B being 

uniform along c. It states the assumption that if B is not 

uniform, the material properties along c vary smoothly. It 

therefore , excludes non-uniformities in B due to isolated 

material impurities, abrupt temperature changes, etc. In this 
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definition, it is implicitly assumed that smoothness in the 

sense of Noll/Wang holds if the body happens to be uniform 

along c which can be illustrated as follows: Let B be a 

non-uniform body and £2(G., X) denote its mechanical response. 

In a reference configuration i: B -. E, the values 

c(t)) of the function E2 is smooth in GL(3) by 

definition (2.2.19) above. Now let the tensor field 

L: B - L(TB, V) be such that £2(QL(X),X) 0 (a null response 

field) for any QO c GL such that QQ T I. It will be assumed 

that L is locally smooth. Here we call L a relaxation state  

and it is analogous to the uniform reference field K for 

materially uniform bodies. An intuitive picture can be given 

as 

L 

In the.figure above, the length of the arrows symbolically 

denote material property (which is assumed to vary smoothly 

along c) and their orientation denote the distorsion of the 

material point (which is also assumed to be smooth by stating 

that L is smooth). Now in order to demonstrate that the 

assumption of smooth material response reduces to the 

smoothness hypothesis for uniform bodies, all that is needed 

is to assume that B is uniform along the curve c. It is 

easily seen that if B is uniform, the relaxation maps 1 can 
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be chosen in the form L(c(t)) = Q(c(t))L(c(t)) for some 

smooth field Q: V .-, V along c so that £7(Q(c(t))L(c(t)), c(t)) 

will not depend on the material point c(t) explicitly. That 

is, I(c(t)) is the same as a uniform reference along c(t). 

In the next section, a brief discussion of two 

papers on uniformity is given. Both studies consider , 

uniformity of hyperelastic bodies, but with different 

approaches. In case of [9] a possible extension to elastic 

bodies is given here, where the response is in the form of a 

symmetric second order tensor. 

2.3 Studies on Hyperelastic Uniformity  

2.3.1 Curvewise Smooth Uniformity 191, 

The response of a hyperelastic body is given by a 

scalar function W(KX, X) where K: TxB - V as before. Letting 

W(., X) and a XY = IC 1 (X)K(Y) in definition (2.2.6) we 

get 

W(FKx X) +01 = W(FK Y) + (2.3.1.1) 

as the condition for X and Y to be of the same material. 

and 02 are scalars introduced since the reference energy 

level is arbitrary. If B is uniform, then Eqn. (2.3.1.1) 
A 

holds for all XB, i.e. there must exist a function W such 

that 

W(FKx x) = W(F) + U(X) 

F: V - V, U: B-41R 

Let F = FKX 1, F: TxB - V to get 
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w(, X) = W(K 1) + U(x) (2.3.1.2) 

In [9] it is assumed that the field 

Kx' ° c: I C R -  L(V, TX B) 

is smooth along the curve c on B. Reference [9] then proceed 

to derive a condition on W for B to be uniform along c. We 

outline this when 2 is the stress tensor. From Eqn. (2.3.1.2) 

T(F, X) = T(K 1 (x)) 

If B is uniform along c and K 1 K1(X) ° c, then 

T(F, c(t)) = T(PK 1 (t)) 

Differentiating with respect to t: 

dT ap /dt = aT /a(FKl) 1J d(FK 1)1J/dt 

aT /a(FK)' . F1 . (dIC 1/dt) 

and with respect to F: 

aT /aF" aT /a(FKi)m 11 .. a(FKi)m1/aFiP 

= aT aP, a(FK_ )mn (K C) 

or 

(2.3.1.3) 

aT/aF ip  = aT /a(FKaA  1 ) h1 (K)' (2.3.1.4) 

(symbolically aT/aF = aT/a(FK1) • (Kl)T) 

In order to find a condition on T, we are naturally led to 

eliminate the aT/a(FK 1) terms. 

In (2.3.1.4), K 1 has one free index. Hence, multiplying both 

sides by KT 

T • K = aT/a(FK 1) -, aT abd/a(FK_l)1J 

=aT ap /a Fh/D T) Pj 

substituting 

aT/a(FK 1) in Eqn.(2.3.1.3): 
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dT aA /dt = aT C'A/aF1° KjP F iA (dK1/dt) 

or 

dT ap /dt = aT /aF' (F dK 1/dt K)"° (2.3.1.5) 

Let r dK'/dt • K (In = dP/dt 

P 1 where P c(t) c(t) : V -, T B and the present treatment of the 

stress tensor results in the same meaning for r.) Rewriting 

Eqn. (2.3.1.5) as: 

dT ap /dt = aT /aF'P (Fr) 1 (2.3.1.6) 

the condition for B to be uniform along c is seen to be: 

2.3.1.7 Proposition (Cohen-Epstein)  

A necessary condition for an elastic body B with 

constitutive law T(F, X) to be smoothly uniform along c is 

that the functions lc(t) can be found such that Eqns. 

(2.3.1.6) are satisfied. 

Once r is given, with proper initial conditions on 

a smooth field of uniform reference can be generated. 

It should be noted that if B has a continuous 

isotropy group, say of r-parameters, then 1' is not unique. If 

G  is the isotropy group at X and B is uniform, it can be 

shown that 

K(X) 1GK(X) where G c Si ( volume preserving subgroup 

of CL), and r = dim C ≤ n -1 if dim B = n. By definition, 

T(F, X) = T(FK1(X)G(a1)2, ... ,a)K(X), x) 

or 
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o = dT ap /dak 'a 0 

= aT a/a F' (FK1(X) •aG/aaklO 

where a = (0,0,...,0) and G(a 1 .... a) IOL=o = I. 

Comparing with Eqn. (2.3.1.6) we conclude that 

r 

r c + z K1 k C A (aG/aak) L=o K, {Ak}E.tR 
k=1 C  

also satisfies Eqn. (2.3.1.6) 

In [9J this approach is generalized later for local 

uniformity of hyperelastic bodies in which case, the 

functions 1' appear with three free indices actually defining 

a connection on B. In this instance, the field K is assumed 

to be smooth on an open neighborhood of X and the directional 

derivative in Eqn. (2.3.1.3) is replaced by a gradient at I. 

Since the parallelism defined by r need not be path 

independent (the only restriction on r is that it should 

satisfy Eqn. (2.3.1,6) ), it is concluded that r can be 

called a material connection in the sense of Wang [4], for it 

is required that K(X) be defined on B locally. 

2.3.1.8 Remark  

As can be seen, proposition (2.3.1.7) is the 

statement of an inverse problem and does not give a direct 

condition on the constitutive law itself. However, for a 

one-dimensidnal body, as a special case it does so and in 

Chapter 5 it is used to construct an example for comparison 

purposes with the approach taken in this thesis. 
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2.3.2 A Constitutive Parallelism Structure on 

Hyperelastic Bodies f101  

When B is not known to be uniform, the isomorphisms 

of definition (2.2.6) do not exist. That is, no parallelism 

structure can be defined on B induced by its constitutive 

law. However, a constitutive connection can be defined on a 

certain fibre bundle of which B is the base space. Let W 

denote the hyperelastic response of B, clearly if B is not 

uniform, Eqn. (2.3.1.1) does not hold. 

However, for a fixed F , Eqn. (2.3.1.1) holds for 

some _Kx and K i.e., 

W(F x) = W(F K(F) Y) + C2 - 

where we have assumed that the range of the functions W(., X) 

and W(., 1) have a non-empty intersection. The maps K X and 

depend on F. Now let F = FXKX ' (F) to get 

W(Fx, x) = W(Fx (X,Y,F), Y) + C2 C1 

where 

(X,Y,F) = K(F) K(F) 

Fix K = K and we have 
0 

W(FX (x,x,F), K) + U(x) = W(FX 

or 

W(F K(X, F), X) + U(x) = W(F K(K 0, KO) 

For a fixed X, the right hand side is only a function of F 

and we get: 

W(FK(X,F), X) = W(F) + U(x) 

replacing F by F and K by K, for some function W whose range 

contains the range of W. In .(101 it is assumed that the above 
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"reference" maps K: B x GL - L(TB, V) are smooth on B x GL. 

Then it follows that a smooth vector field K'(X,F) {e.} can 

be defined as the horizontal frame for T(XH)(B x GL) if 

{e.}V is fixed. The vertical frame is a constant frame {e. 

e.} of L(V,V) for a fixed basis of V. Thus, a vector field on 

B x GL is a parallel field if and only if its vertical part 

is constant since the horizontal part is parallel by 

definition. This is called an L(V)-trivial parallelism 

structure. 

It is proved in theorem 1 of (10] that an L(V) 

trivial parallelism structure on B x GL and a parallelism 

structure on B generate each other if the torsion operator of 

the above constitutive connection on T(B x GL) vanishes. In 

other words, if the torsion is zero, a constitutive 

parallelism is guaranteed, and this implies B is uniform 

(since it would require the isomorphisms K(X,F) be 

independent of F). 

2.4 Conclusion  

The motivation for the study of the geometry of a 

simple body is discussed, the definitions in the analysis of 

response of a non-uniform body have been given. The theories 

of inhomogeneities in a simple body are reviewed and 

compared; the concept of smooth uniformity is explained. The 

role played by Lie Groups in Wang's theory and the present 

one is explained and distinguished. The assumption of smooth 



34 

material response is introduced. Finally, two existing 

theories on the response of a non-uniform hyperelastic body 

are discussed and one of them has been extended to elastic 

bodies. 
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CHAPTER 3  

CONTINUOUS GROUPS OF TRANSFORMATIONS  

The objective of this chapter is to summarize the 

basic definitions, notations and results of the mathematical 

theory of a Lie Group and its one-parameter subgroups that 

will be used in later chapters. Complete and systematic 

treatment of the subjects discussed here can be found in the 

references cited. 

Section 3.1- 3.2 are devoted to the topological 

groups and continuous groups of transformations where the 

underlying axioms are stated in a precise form. 

Lie Groups and finite dimensional Lie Groups of 

transformations are discussed in section 3.3, the concepts of 

the integral curve and the flow of a vector field, a local 

one-parameter subgroup as generated by a vector field are 

given. 

Attention is focused on the local structure of a 

group of transformations in section 3.4 by means of studying 

the properties of its one-parameter subgroups. The notion of 

a Killing vector field on a manifold is given and its 

relation to the generators of the one-parameter subgroups of 

G is explained. In general, references [17,21,22,23] are 

suggested for analytical and topological terminology. 

3.1 General Considerations  

The original ideas related to transformation groups 
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and their infinitesimal generators were introduced by Sophus 

Lie and are given also in [19]. Lie's motivation was to 

determine all r-term transformation groups of an 

n-dimensional manifold and classify them. 

Explicitly, a family of transformations 

f1(x3; al,...ar), 

where x denotes the transformed point and a1 the parameters, 

forms a transformation group if the composition of two 

transformations of the family is a transformation of the 

family, i.e. when from the equations 

1 r 
xf(x, a,...,a) 

= f(, bl,...,br) 

there follows 

1 r 
xf(x, c 

where c1 are functions of the a's and b's alone. 

A topological group or a continuous group has two 

distinct kinds of structure on it. It has a topological  

structure and it also has an algebraic structure. 

Algebraically, it is a group; it therefore obeys the axioms 

of a group [20]. Topologically, it is a manifold [21]. The 

algebraic and topological properties are combined by the 

following continuity requirement: 

Let g, g s G and 9 sG denote the inverse of g. 

Then the maps 

g.g.4gg and g - g 

are continuous. Graphically this is illustrated in Figure 3.1 
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The significance of the above continuity requirement is that 

the product of any group element near g with any group 

element near g is a group element near gg. Similarly, if g is 

a group element near g, then ()1 is a group element near 

g . The end result of these two assumptions is a rich 

structure - the theory of Lie Groups, studied extensively in 

literature. 

Figure 3.1 

3.2 Topological Groups  

Before studying the local structure of G near e, 

the general properties of topological groups will be 

summarized here. For a detailed study, reference [22] is 

recommended. 

3.2.1 Definition  

A topological group or a continuous group consists 

of: 

1. An underlying r-dimensional manifold G, 

2. An operation 0 mapping each pair of points (g,h) in the 
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manifold into another point 1 in the manifold, 

3. In terms of coordinate systems around the points 1,g,h we 

write 

lP = 

eM 

The functions 

• gI'; hil . . . ,hr) 

•,gr; (g1)',..., 

: (g, h) -. 1 = g • h 

P: g • g-

- r (g ) ); p = 

must be continuous. The group multiplication properties may 

be transcribed into conditions on ': 

1. Closure 

ly = "(g,h), l,g,h 6 C 

2. Associativity 

J4(l,(g,h)) M(#1,g),h) 

3. Identity : There exists e4G such that 

g' 

4. Inverse : For each g6G, there exists g 16G such that 

(g,g 1) = e' = 

3.2.2 Definition  

A continuous group of transformations consists of: 

a) An underlying topological space Gr, which is an r 

dimensional manifold, together with a binary mapping : 

: G x C - G 

b) A geometric space M which is an n-dimensional manifold, 

and a mapping f: G x M - M which obey: 



39 

Postulate (a'): G, 0 obey the postulates of a topological 

group. 

Postulate (b'): The function 

i 11 r 1 n 
y f (g ,...,g ; x ,...,x ) 

is continuous and in addition has the properties: 

1. Closure; gaG, xaM -, (gx)sM 

i 11 r 1 n 
i.e. y f (g ,...,g ; x ,...,x )EM 

2. Associativity: g(hx) (g.h)x 

i.e. f'(g;f(h,x)) = f1 ((g,h);x) 

3. Identity: ex = x 

i.e. f1 (e;x) = x1 

4. Inverse: g 1 (gx) = g(g 1x) = (g.g 1 )x x 

i.e. f1(g1;f(g,x)) = f'(g;f(g',x)) = f1((g,g_l);x) = x 

Now the main definition is stated: 

3.2.3 Definition:  

A Lie Group is the connected component of a 

continuous group in which the composition function 0 is 

analytical on its domain of definition. 

i.e. the group operations 

into 
G x G -, G (g,h) -. g.h 

and G-4G g-g 1 

are C°° maps and 0 can be expanded in power series. (Lie 

Groups of transformations are defined in an analagous 

nanner). 
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3.3 Lie Groups and Lie Groups of Transformations  

A) Lie Groups  

In this, part, the necessary background on 

transformation groups is given. The proofs of the 

propositions can be found in any standart text and will not 

be repeated here [see 18,21,22,23]. 

3.3.1 Proposition  

The (real) general linear group of degree n 

GL(n,R) = a6M(n,rR) det(a) 0 0} 

which is the group of all non-singular nxn-matrices is a Lie 

group under matrix multiplication. 

3.3.2 Remark  

It should be noted that only the local structure of 

G near e is relevant to this study, i.e. constructing the 

elements of G near e, the identity element, will be 

sufficient. Analogously, when we examine the action of G on a 

manifold M as a transformation group at xM, we shall only be 

interested in constructing an open neighborhood instead of 

the whole orbit (definition (3.3.17)) of G at x. 

Let M be a differentiable manifold of dimension n 

with points x,y,.. .eM, let a: I c R -. M be a curve such that 

the tangent to the curve o at x = o(t) is the vector v(x), 

where v is a vector field on M. 
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3.3.3 Definition  

The map 

a: I - M 

is called an integral curve of the vector field v if it 

satisfies 

do(t) = 

dt 
v(c(t)). 

3.3.4 Theorem  

If v is a C vector field on M, then for every xe.M, 

there exists an integral curve of v, t ,-+ o(t,x) such that 

1. c.(t,x) is defined for t belonging to some interval I(x)c1R 

containing t = 0 and is of class C r.I.l there, 

2. a(0,x) = x for every xe.M, 

3. Uniqueness: Given x6M, there is only one C1 integral curve 

of v defined on an interval properly containing 1(x) and 

passsing through x. 

The property of uniqueness allows us to state: 

3.3.5 Theorem  

If t,s, ti-s el(x) then 

a(t,a(s,x)) = c(t+s,x) 

(compare definition 3.2.2, (2) associativity) 

3.3.6 Definition  

The mapping a: (x,t) -' a(t,x) is called the flow of 

Co i 00 
v. If M and v are C, the flow s C . 
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3.3.7 Definition  

A local transformation of M at x is defined on 
0 

N(x) c M for tsl(x) and is given by 

c(t, .) x - a(t,x). 

3.3.8 Remark  

For a to be a global transformation of M, one 

should normally require M to be compact, which then assures 

i=k 
I = n 1(x 1) 0 

i=l 

such that 

i=k 
M = U N(x 1) 

i=l 
and xaM (k is finite since M is 

compact) 

In other words, I is never empty when M is compact since it 

is then given by the intersection of finitely many intervals. 

It will be assumed that M is compact. 

3.3.9 Remark  

Theorem 3.3.5 implies the relation 

for the maps Also, it follows from the above that for 

5 = -t, Ct_i = O _t . 

3.3.10 Definition 

The set of mappings a is called a one parameter  
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local pseudo group and if M is compact it is called a one 

parameter local group .When I IR, then one is said to have a 

one parameter group. 

It is the converse of the preceding arguments that 

we are interested here: 

3.3.11 Theorem  

Any one parameter local group {o} of 

transformations o: x - o(t,x) can be generated by a vector 

field v defined uniquely by the equation 

V(X) = do- (t,x)I - 

dt 

(The proof, is attained by showing 
d(o(t,x)) 

dt 
v(o(t,x))). 

3.3.12 Corollary  

Let V(x) be the Lie algebra of all vector fields on 

M at x. If u,v€V(x), then the one parameter group of local 

transformations o ,u , a t,v generated by u,v are identical if 

u = v, i.e., there is a one to one correspondence between 

V(x) and the set of all one parameter local groups of 

transformations at x. 

The members of V'(x) will be called the 

infinitesimal generators (of the one parameter subgroups). 

Now the finite dimensional group of transformations  

will be discussed. 
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B) Lie Transformation Groups  

3.3.13 Definition  

The set {C g} g.G is a Lie group of transformations 

if the mapping 

a: G x M - M by (g,x) -, a(g,x) 

is differentiable and if the set of transformations 

{c g : M - M; O g (X) = o(g,x)} together with the composition 

mapping follow the group property: 

° gh = °g °h and a e is the identity 

transformation. It follows that a -1 = a g -1 
g •  

(3.2.3), (1), (4)). 

(see definition 

The map a is said to define an action of g on M. 

3.3.14 Definition  

G is said to act effectively, if ag (x) = x, V xM 

implies that g = e; G acts without fixed point (or freely) if 

the stronger condition holds: If ag (x) = x for some xe.M, then 

g = e. 

G acts transitively on M if for every xE.M and yaM, 

there exists a gaG such that Cg (X) Y. 

3.3.15 Proposition  

The set 

G x g o o = {g€Ga (x ) = x } 
0 

is a subgroup of G. 
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3.3.16 Definition  

The subgroup G is called the isotropy subgroup of 
0 

G at x €M. 
0 

3.3.17 Definition  

The set of points of M that can be reached by 

applying elements of G to a single point xaM is called the 

orbit of G at x 0 ; symbolically: 

G x o g o {o (x ) gaG) x 0 c M. 
- 

0 

3.3.18 Remark  

In this study, only the structure of orbits at XcM generated 

by an open neighborhood W(e) c G of e is of interest. 

3.3.19 Remark  

If G x M for at least one x 6M, ,then G acts 
0 0 

transitively on M. Conversely: G acts transitively on every 

orbit. 

3.4 One Parameter Groups and the Local Structure of G  

3.4.1 Definition  

A one parameter subgroup of a Lie group G is 

differentiable curve 

g: R -, G by t -, g(t) 

such that 

g(t)g(s) = g(t+s) and g(0) = e 

The concepts developed for the group {c} apply to the group 
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3.4.2 Remark  

The curve generated by the transformations 

t€IR} operating on x is the image of the one parameter 

subgroup {g(t); t6IR} by a where 

a(g(t)) = a(g(t),x) = Cg(t)(X) 

Graphically, 

M 

Figure 3.2 

Note that a x g(t) : G -, M whereas a : M -. M and 

a: G x M - M. The representation is going to be used 

and once g(t) is specified as the one parameter subgroup 

t - g(t), the curves Og(t)(X) and a(g(t),x) become identical. 

3.4.3 Definition  

The vector field which generates the group of 

transformations {cg(t); tfR} is called a Killing vector field 

on M relative to the group G. 
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3.4.4 Remark  

The Killing vector fields play an important role in 

the concept of directional uniformity. It will be seen that 

the value of this vector field at x6M determines the nature 

of the material (associated with the corresponding curve in 

B), M being the space of response functions, denoted by A in 

Chapter 2. 

3.4.5 Proposition  

The integral curve going through x of the Killing 

vector field v satisfies the equations: 

do((t)) 

dt 
= v(a x (g(t)), c(e) = x 

This simply states that c((t)) is an integral curve of v 

and all the previous properties for integral curves on M 

naturally apply to 

3.4.6 Remark  

By the uniqueness theorem 3.3.4(3), the action of a 

given one parameter subgroup of G on M can be described by 

only one Killing vector field v. 

3.4.7 Definition  

The set of vector fields invariant under the left 

(right) translations are called the left (right) invariant 

vector fields on G, where a left translation is given by 

Lg : G -, G via Lg (h) = g.h (similarly Rg (h) = h-g). Thus, if v 

satisfies dL gV(h) = V(L gh) = v(g.h) V g,h6G, it is left 
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invariant. 

3.4.8 Theorem  

There is a one to one correspondence between the 

set of left invariant vector fields and Te(G) the tangent 

space of G at the identity. 

3.4.9 Theorem  

The one parameter subgroups of G are the integral 

curves passing through the origin e of the left (right) 

invariant vector fields. 

3.4.10 CorollarY  

It follows that for each I6TG there is a unique 

solution g(t) of 

- dg(t) 
dL g (t)1 - obeying g(t)g(s) = g(t+s). 

dt 

3.4.11 Remark  

Denoting the Killing vector field which generates 

dg(t) 
{C g (t) I = tR } by 

dt t=0 

we have: 

1 da g(t )(X) - da(g(t)) 
V =   I   = do (e)1 

dt t=0 dt X 

where 

do : T G -+ T M is a vector space isomorphism V xM if G acts 
x e x 

transitively and freely on M. 
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3.4.12 Remark  

For G with a discrete isotropy group (as it acts on 

M; definition 3.3.16), it is possible to find an open 

neighborhood of e€G such that dc(e) is an isomorphism. 

3.4.13 Proposition  

1. For a finite dimensional group U, the one parameter 

subgroups fill in a neighborhood of the identity, 

2. Every element of a connected group G can be constructed 

by multiplication of elements in an arbitrary neighborhood 

N(e) (this is a direct consequence. of U being continuous 

group: let g6G be a finite operator not in W(e). Select any 

curve joining g and e and points on this curve, say g., i = 

O,l,2, .... o) g0 = e such that g. (e). Examining 

Figure 3.1 shows that this selection is always possible. Then 

g = g00 • ... . (g g') (g 1 e). 

Thus, g is the product of operators - or elements - in N(e)). 

So one has the following fundamental result: 

3.4.14 Theorem  

The necessary and sufficient condition for a tensor 

field on M to be invariant under {a g ;gE.G} is that it is 

invariant under °g(t) g(t)6N(e)}. The proof is easy since 

it has already been shown that U can be constructed by the 

points in N(e). 
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3.4.15 Remark  

Theorem 3.4.14 is used when constructing the 

invariant variety of M under G, simply by considering the 

Killing vector fields of the one parameter subgroups of G. 

3.4.16 Definition  

The map TeG -, G given by t' ,-+ exp(ti) where t6lR, 

'YaTG is called the exponential mapping and is onto g 11 (t). It 

is defined by the following operation: 

exp: T e G -, G by exp(i) = g(l) 

It can be shown that 

exp(t'i)exp(si) = g(t)g(s) = g,(t+s) = exp(t+s) 

which justifies the name "exponential mapping". 

3.4.17 Remark  

For a finite dimensional vector space V and 

G = GL(V), the Lie algebra (GL(V)) constitutes a set of 

rg-linear endomorphisms of V. Let X6V(GL(V)), { 1 (t)} the 

corresponding one parameter subgroup. It can be shown that in 

this case 

00 

tx = 1 (tX)''. 
exp(tX) = x(t) = e n0 TiiT 
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CHAPTER 4  

TANGENTIAL MATERIAL UNIFORMITY  

4.1 Motivation and General Considerations  

The assumption of smooth material response  

introduced in definition (2.2.19), enables one to construct a 

theory for the characterization of material uniformity, 

regardless of the body being uniform or not. Based on this 

assumption, the image of a smooth curve c(t) in B is again a 

smooth curve in A under the mapping (remark 2.2.5) 

≤: B .- .4 via c(t) 

i.e. the curve a c(t) is smooth in the space of response 

functions. On the other hand, the material isomorphisms (if 

they exist) are members of the group GL when referred to a 

reference configuration. That is, let : B - E be an 

embedding of B, be the representation of 

a(X,Y) TB TxB in i. Clearly, 

= d1 I a(X,Y) 0 di- 11-Y 

and since " is an embedding, a a vector space isomorphism, 

then Px (Y)sGL. 

?4y)  ,tawrlY 

It is possible to construct a connected neighborhood of fz x6A 

if we let P vary continuously in s2 x(Ix), PGL, where P 

takes values in W(I), a neighborhood of the identity element 
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of GL. This defines the local action of GL at the 

neighborhood generated this way is an open set in the orbit 

of GL at 12 X ,This open set includes all possible forms of 

response, that are "close" to a and even now one can 

intuitively conclude that if B is uniform locally at X, it is 

possible to find an open set W C A such that £2(U) c W where U 

is an open neighborhood of XeB. The set W is generated by the 

action of N(I) at rz. (See Figure 4.1). 

SL cL 

Figure 4.1 

W = {P64 I p = cg (q), gGN(I), q = 

However, when B is not uniform at X, it is clear 

that no such W completely containing the image of U under 2 

will exist. 

In proposition 3.4.13 it has been stated that the 

one parameter subgroups fill in a neighborhood of the 

identity element e of G. Therefore, by theorem 3.3.11, the 

local action is completely determined by the generators of 

these subgroups. On the other hand, it is known that when G 

acts transitively on A, there is a one to one correspondence 

between these generators and the Killing vectors induced by 

the group action. We recall that Killing vectors at a point 
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p,1 are the tangents to the curves at p which are the images 

of one parameter subgroups under the group action. To 

illustrate this we refer to Figure 4.2. 

r) yo 

Figure 4.2 

The map dc(e): T e G -, TA is a vector space 

isomorphism if and only if G acts freely on the orbit O.(See 

remark 3.4.11). 

It is clear that in order to be able to perform 

explicit calculations, the precise form of the action of G 

must be known. This is accomplished once the constitutive law 

and a representation in a function space is given. In this 

study, it will be assumed that this is a finite dimensional 

vector space (for illustrations, see Chapter 5). 

Obviously, all the points on an orbit of G at 

are the response functions belonging to the same material but 

they are different in form. It is also obvious that the image 

of a curve c in B under f2 need not lie on this orbit nor be 

tangent to it at the point of interest. If it completely lies 

on the orbit, it will be said that B is tangentially uniform 

at 12 along c. A possible method of formulating this, is then 

checking to see if the tangent of the curve a c(t) at 12 (0) is 
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in the linear span of the Killing vectors (of the action of G 

at ü (0) ). These ideas are now going to be put in a precise 

form. 

4.2 The Constitutive Law as a Map and its Properties  

For a uniform body, it will be assumed that the map 

£2: B -+ A is open relative to the orbits of G in A, i.e. it 

carries open sets in B to relatively open sets in 4 in the 

usual topologies of B and A (The image of an open set U(X)6B 

under a may not be open in 4, however, if U(X) happens to be 

a materially uniform set, it will be open relative to the set 

G the orbit of G at 

4.2.1 Proposition  

The linear group GL(r,IR) of dimension r2 acts on A 

as a Lie Group of transformations, i.e. the operation 

og : A - A, g6GL is differentiable. 

(In what follows, GL(r,R) will be denoted by G'). 

The action of G  on A is completely determined by 

£2 as follows: 

ag(c2(X)(F)) = c(i2x(F)) = £2x(FL). 

Here, L is the matrix representation of the operator g as it 

acts on A. 
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4.2.2 Proposition  

The group action cg : A -. A is transitive on a 

subset U of A if U = Gr . = 0, p€U. 

Proof: If q,r4U, then q = gp and rhp for some g, hG 1'. Since 

P = g 1q, it follows that r = hg - 1q. Obviously hgl€Gr. 

Therefore the group action is transitive on U since q,r are 

arbitrary points of U. 

4.2.3 Definition  

r 
U C r i A is called an orbit of G at p f U = G •p. 

4.2.4 Proposition  

Let V c B be an open neighborhood of the material 

point X and U be the orbit at u(X)eA Then B is locally 

uniform at X if and only if the set 

U' = fcz(Y) Y6V } 

is open in A relative to U. 

Proof: Let Y€V, then (Y)6U. So, 

(Y)(F) = ag (rz(X)(F)) z(FL) for some g6Gr 

with representation L€GL, i.e. c2(F) = £2x(FL). It follows 

from the definition (2.2.6) and (2.2.7) that Y€B is of the 

same material as X. Thus, V is a uniform neighborhood of X. 

Conversely, if B is uniform in the open set V, then 

cz,(FP)€U VYsV and for some PeGL. Hence, the proof is 

complete. 

(see diagram for illustration) 
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Figure 4.3 

In general, however, B is not uniform even locally 

at K. The concept of tangential uniformity is introduced 

next. 

4.3 Tangential Uniformity and its Characterization  

The fact that U c U may not hold for bodies which 

are not locally uniform, motivates the question of "tangency" 

of the submanifold U to U at the point of interest, say c5,. 

Here, U = O and U = L2(V) (see proposition (4.2.4)). 
x 

Let : I c R - B be a curve in B passing through X 

and let 

do where •(0) X. 
dt t=O 

Thus, k defines the direction of (t) at X. 

4.3.1 Definition  

B is called tangentially uniform at X in the 

direction of k if 

dcz{: TxB -, T(v)A is such that th2(k) 6T(x)U. 

4.3.2 Remark  

Assuming B is uniform in the direction of k, it is 

worthwhile to examine its consequences. From the above 
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definition, di(k) = u is the vector in T () A tangent to 

the submanifold U, which is the orbit of G at Therefore, 

G is transitive on U and for any p,qe.U, a g€G such that 

= o(i). The particular group action is a material 

isomorphism, i.e. if czx, 12U, then = S2 Y  P,FEGL. 

Therefore, any two points in U are materially isomorphic by 

construction. Now, if Y is a point on •(t) in a neighborhood 

X (remark 2.2.5) then u(Y) lies in a neighborhood of c2(X) on 
I' 

the curve rz(.(t)) with direction dfzlx(k). The map 

restricted to #(t) is one-to-one in a neighborhood 

V6(X) = {Vj H-YH < .) c V, i.e. if Y # X then 

dFI (Y - X) and therefore 2(Y) o £2(X) by virtue 

of the mean value theorem in 

Here , V and dcZI: V - T A are the images and 
x 

representations of X, YB and di2lx respectively, in a local 

reference configuration. 

To illustrate this situation, the following diagram 

will be useful: 

Figure 4.4 

The action of a neighborhood of eE,Gr can be 
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represented by the action of its one parameter subgroups 

(proposition (3.4.13)) completely. From remark (3.4.11), we 

define the corresponding Killing vector space at paU c A. For 

transitive action of G  it has already been stated that this 

correspondence is a vector space isomorphism. 

4.3.3 Proposition  

The dimension of the orbit U is the same as the 

dimension of Gr. 

Proof: The dimension of the isotropy group at any body point 

is zero by assumption for B is a crystalline body (see Chp.1, 

sec.1.5 , assumption (d) and remark 4.3.5). Therefore G' 

acts transitively and freely on U, so the map T e G r - o, TU is a 

vector space isomorphism. From the inverse function theorem, 

then there exists a map W(e) - N(p) which is one-to-one and 

onto U, its range being an open set N(p). Thus the dimension 

of G  and U are equal. We also note that all 

a. a. 
V 1 .T U such that v 1 = (dc (e))a,, a.e. T 

p p 1 1 e 

are linearly independent (i = 1,2,...,r). As a consequence we 

have: 

4.3.4 Theorem  

B is uniform at X in the direction given by the 

vector k if 

di(k) = c.v., {c.}e.R, v.eTU i 

Also, if the above holds for any ksT 1B for some 

(c.}, then B is locally uniform at X. 
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4.3.5 Remark  

If B is assumed to be a crystal body, then its 

isotropy group will consist of only finitely many discrete 

points in Gr. Therefore, one can always choose an open set W 

of G  about e to exclude any of these points. The action of W 

at pail is then such that the generators i of the one 

1. 

parameter groups at e and the Killing vectors v 1 at p are in 

one -to-one correspondence. This implies that c.v 1 = 0 if 

and only if {c} = 0, i = l,2, ... ,r, i.e. v 1 form a set of 

linearly independent vectors. On the other hand, if the 

action of G  is such that it possesses an m-parameter 

continuous subgroup of transformations as the isotropy group, 

I 

then only r-m+l of the v 1 's are independent. 

The following is a property of transformation 

groups. 

4.3.6 Proposition  

Let f: G  X A define the action of G  on 4 • In 

coordinates 

= f'(q',... ,qfl; a1,...,ar) pq4fl 

Then 

i  V  - af'(q;a) 
) -   

aa 
a 

where a = (a 1, .... a r )€Gr and a 

a0 

a = 

i l,...,n 

0 corresponds to the 

identity element e of G  (the coordinate chart on G about e 

can always be selected such that a = (0 .....,0) where a is the 
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image of e in this chart). v  are the r-independent 

infinitesimal generators of the action of G r at q. 

4.3.7 Proposition  

The matrix 

1 

This is obvious since 

has a rank of r. 

is an nxr matrix and 

we have r linearly independent column vectors as entries. 

4.3.8 Proposition  

The vector u at pE.4 belong to T p U (U being the 

orbit of G' at p) if the augmented matrix 

u'] given by 

af 1 ... af 1 

aa aa aa 2 r 

I 
afn . . af' 

is of rank r. 

where 

Ir 

p. 

F' 

u 

A 

U 

1 

n 

I' 

The proof is as follows: If uE.TU then u = c v a a 

V a   
af 

= , c6JR. 
da 
a 

i Then the (r+l) th column of the above matr ix s expressible in 

terms of the remaining r columns. A basic property of 
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matrices then implies that the augmented matrix must be of 

rank r. 

4.3.9 Remark  

The map f is identified by the map 2: B -, A and the 

components of f' are replaced by a1 in proposition (4.3.8). 

The simplest example for this, is when a is the scalar 

potential of a hyperelastic body and a polynomial 

representation is possible, such as in 

£2 X o (F) = a + a ij ..F ij ijkl ii..+ a F.F ki + ... where the 

action, 

Ag (ax(F)) = £2x(FL) is given by 

a..-a..L 
kj 

13 13 

a l. jkl ijkl 
- a Lmj nj L , etc. Now if 

- da1 (X + tk) I 
u = cia (k), i.e. u1 dt x 

then for B to be tangertia1ly uniform in the direction of k 

at X, all (r+l) minors of the above matrix must vanish. 

The preceding results can also -be reformulated in a 

concise form as follows: 

4.4 A Geometric Approach  

4.4.1 Definition  

Let f: Mn -, IR be a C°° function on M. f is said to 

be invariant under the action of G  on M' if 

f(x) = f(cgx) V g.Gr. 

In particular, f is invariant under the transformations 
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generated by every vector v which is a generator of the 

action of Gr on Mn. Since 

f(x') = f(x' + v 1t) = f( x i) + af vi  

ax i 

Then, 

v3 af  = 0 - v(f) = 0 

ax 3 

if we identify a/ax 3 as the canonical basis of v at x. 

Now let us construct the invariant variety under G'. The 

coordinates of x1 after an infinitesimal transformation 

become 

= + (X; a) A 
aa 

a = l, ... ,r, i = 

where Aa are constants. Now in the equations given above we 

have an (nxr) system of equations in r unknowns. Solving for 

the a in the first r equations (it can be uniquely solved 

since rank r  r ) in terms of x and substituting in the 

remaining (n-r) equations we obtain 

'P(x; x) = 0, p =l,...,n-r 

defining the invariant variety at x. It follows that 

V (1' ) = 0 for a = 1,...,r 
a p 

P = 1,. ..,n-r 

Hence we have: 

4.4.2 Proposition  

If defines the equations of an invariant variety 

at s2,y , then B is uniform in the direction k if dcz(k) = u is 
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such that 

u( ) = 0 p 1,...,n-r. 

4.4.3 Remark  

Invariance under a neighbourhood of e.G is 

sufficient for the variety to be invariant under G (theorem 

(3.4.14)). 

As an example consider the generators of the 

orthogonal group 

X = z a/ay y a/az, Y = -z a/ax + x 8/az and 

Z = y a/8x - xa/ay. 

Then, 

x = x - sz + ty 

yy+rz - tx (4.4.4) 

z = z - ry + sx 

define an arbitrary infinitesimal transformation 

x x + rX + sY + tZ where x = (x,y,z) and x = (x,y,z) 

Solving for s, r in Eqs. (4.4.4) 

S = r ty - a tx+b 

z z 

where a = x -x and b = y - y. Substituting in z ,we get 

xx + y + z = x2+ y2+ z2 , the equation of the invariant 

variety at x with x, y, z as variables. That is t'(x;x) = xx + 

- -  yy + zz - x 2 —y 2 - z 2 = 0 is the set on which the orthogonal 

group acts transitively (here, the independent variables are 

x,y,z defining the orbit at the point (x,y,z)). Since 't 

defines the orbit, it is expected that X() = Y() =Z(P)=O. 
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X() = z ao  

ôy I(x,y,z) 

30 
- y— zy-yz=O 

aF (x,y,z) 

Similarly, Y(#) = Z(#) =0. Clearly, (cLX + 3Y + iZ)(i') = 0 

for any set {c, p, }fR. This is what we mean in proposition 

(4.4.2) where the orbit # is identified with a surface in 4 

whose points represent the same constitutive function 

differing only within a material isomorphism (the surface in 

A is generated by the group GL ). 
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CHAPTER 5  

EXAMPLES  

In this chapter examples are given for those 

constitutive laws, where the response functions admit a 

representation in a vector space of finite dimension. 

5.1 Example 1  

First we consider a one dimensional body and derive 

the condition of uniformity for its constitutive law. 

Unfortunately, this derivation cannot be extended for bodies 

of finite dimension to obtain a condition of similar nature 

as in the one dimensional case. 

Let c(f, x) denote te response of B. If B is 

uniform then, 

o(f, x) = c(f p 1 (x)) v fR (5.1.1) 

where 

p: B - L(TB, IR) 

is a smooth function on B. Clearly, p has the meaning of a 

uniform reference in the sense that 

Now 

-1 
p : R -.TB and 
x x 

o(fp(x), x) = a(fp(y), y) 

ac, 

of 

V x,yB. 
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I' 

- = —fr 
ax az 

where r = p 1 and z = fp 1. 

Eliminating from the above, we get: 

a a rf —   = 

of 

r (x) Oa/ax I 
r(x) - 

f ac 

so that we have 

( 
a x 

fa  

Equation (5.1.2) is a condition on a(f,x) for B to be a 

uniform body. 

In order to find the conditions imposed on a by the 

present theory, we will assume that c(f,x) has a polynomial 

representation of the form 

of 

= 0 (5.1.2) ) f 

a(f,x) = 'a 0 (x)  + a1 (x)f + .. + a(x)fnl 

Now, if B is uniform, then eqn.(5.l.3) must satisfy 

eqn. (5. 1. 2): 

(cXf (faf.) (O f + fO f f )O> = 0 (5.1.4) 

where 

1 
a = a.f x i 

i-i 
a x 1 ia.f 

,f  

Of = (j+l)a. 1f' 

da. 
where i,j . 1 O,1,...,n and . = 1 . Substituting 

dx 

(5.1.3) 
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eqn.(5.1.5) in eqn (5.1.4), we get: 

i(i+1) a.1 fl+J (J+1)2 j = 0 

i,j = 0,l,...,n. Here, the summation convention on the 

indices i and j have been assumed. Let a = i + j and evaluate 

the above for like coefficients f' +' by setting a = 0,1,.., 

for example, 

0 i = j = 0 -. a1 = 0 - a(x) = constant 

c. = 1 i = 1, j = 0 - 1a1 - 1a1 + 4aa 9 = 0 

i = 0, j = 1 0 

is identically satisfied. 

= 2 

or 

cL = 3 

or 

-, -9A a 3 - 4 1a2 - a2 a1 + 2a 1 a2 o 

In general, we have 

0. + 22 a1 = 0 

a 2 a 1 - 

a a 
2a, a, = 0 - 1 2 

- 

1 2 

3 a +2 a 2 + 3 3 1 a - 16a' a4 o 

- 4a 2 a2 - a 3 a 1 = 0 

-6a 1 a3 + 2 3 

a(x) = constant and 

a a 
= 0 - 1 1 3 etc. 

a a  1 a_ 2 - - n 

1 2 n 

for eqn.(5.1.3) to represent a uniform one-dimensional body. 

Thus o(f,x) must be of the form 

2 nn 
c(f,x) a0 + a1 (x)f + c2a1 (x) f' + . .. + cnai(x) f 

= a + a1 (x)[f + c2a1 (x)f 2 + ... + ca1(x)nlfnj. 
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5.1.6 Remark  

Clearly, the uniform referencep(x) is given by 

p(x) =a1(x) 

and 

a(fp(x), x) = a0 + f + f2 + • + fn = o(f) 

is independent of x. 

Now let us find the conditions imposed on (f,x) by 

the present theory. For the sake of completeness, the 

necessary mathematical and physical identifications will be 

made for this example only. Generalizations to higher 

dimensional bodies are obvious and omitted.in the other 

examples. 

Let M be a linear vector space and Nn+lC M a finite 

dimensional subspace, to be identified with the space of 

polynomials of degree n. Clearly, the response function 

a(f,x) is represented by the (n+l) component vector 

(a (x), a1 (x), . . . ,a (x)). The action of the Lie Group of 

transformations as defined in Chapter 4 is such that it will 

have the same dimension as the body itself. That is, the 

action is defined by (for a general body where n > 1 ) 

Ag (C , (F X) = a(fp() K) 

where p: G -, GL(n) is a linear representation of G, a IK is 

a(Fod tc, X), F: .V - V, p(g): V - V. (Recalling from Chapter 4 

that p(g(t)) = dI((t)) 0 (c(t), c(0)) 0 dK1l(c(o)) 

i.e., the representation of the material isomorphisms on a 
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curve c, in the chart : UcB -, E). Since dK is a 

diffeomorphism, V and TB V XB have the same dimension. This 

implies 

dim(v) = diiu(B). Since 

dim Range p(g) = dim V = dim Domain (p(g)), 

we have the basic result that p(G) GL is the Lie Group of 

Transformations having the same dimension as B. 

For the one dimensional body symbolically, 

p(G 1 )) = + - O}, that is, the set of positive scalars 

which is a group under ordinary multiplication. The identity 

element is unity and inverse of aE.{(R - FR{O}) is simply 1/a. 

Clearly, dim Te(p(G')) = 1 and it is seen that 

Ag(t)(C(fX)) = a(fp(g(t)), x) 

is a curve in N , which is also the invariant variety under 

the action of [R + -{O} at c(f,x). 

5.1.7 Remark  

Only for a one dimensional body the orbit of G  in 

N' takes the form of a curve. In general, the orbits define 

hypersurfaces in N1 . 

Also, note that p: I C FR -' G1 by t -, g(t) is a 

curve in G1 whose image under p is the group of 

transformations p(g(t)) under consideration. For one 

dimensional cases, different parametrizations of G1 lead to 

the same result but for higher dimensional bodies, one 

distinguishes between g.: I c FR -, Gr,i = 1,2,...,r 
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representing r one parameter subgroups of Gr. 

Now let 

c: I a R -, .'c(B) 

(again for dim B = 1, different parametrizations of c will 

lead to the same result) be a curve given by the identity map 

t -p t where x is a configuration of B, in this case a map 

into R. The image of the map 0 defined by 

B -. N 

takes the form (c(t)) = a(f, c(t)) on the curve c(t). 

Clearly, '(c(0)) = a(f,x 0 ), x0 = c(0). Denote 

a(f,x) = 'c <(f) 6N and 

consider the curves 

cc (t)(f) '' and a(fp(g(t)) = 'P. 

According to the criterion, for B to be 

tangentially uniform, the tangent vectors of the curves (t) 

and p(t) (with a slight abuse of notation) must point in the 

same direction at the point °(o)' i.e. 

TE [c C (t))I = A .4 [a (fp(g(t)))] It=0' 

where A€IR. Using the polynomial representation of a, the 

above can also be written as 

d [(a(t), a1(t) ,... ,a(t))]tü 

{(a(x), a1 (x 0 )p(g(t)),...,a (x )p(g(t))fl}0 
n 0 

- p ((0),...,(0)) = 

A (p(g(t))) (0,a (x ),2a2 0 (x)...na(x)) 
It=0 10  

= p(0, a1 (x), 2a2 (x),.. ., na n (x)) 

which leads to the obvious restrictions on a.(x): 
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a  = constant 

- a 

i- 2 

a 
n 

na 
n 

(5.1.8) 

These restrictions on a.(x) are valid at all x€B although the 

computation is made at x0. The reason is that we were able to 

factor out the term 

d 
(p(g(t))) 

dt 

For dim B > 1, dim C > 1 and the tangent vector to the curve 

?(t) = T(Fp(g(t)), X) can only be expressed as a linear 

combination of the generators of the orbit at Tx(F)• In 

general this varies from point to point in N n (i.e. the 

linear dependence is different at different points). 

Finally, we note that Eqn. (5.1.8) defines the same 

restrictions on a1 (x) as the one obtained with the previous 

method. 

5.2 Example 2  

Consider the hyperelastic response of B (dim B > 1) 

given by: 

where 

W(Gx, X) = a(X) +tr(G) 

G: TxB - 
a: B -* IR 

In continuum mechanics, the laws of constitution are almost 

always given in a reference configuration which is most of 

the time a diffeomorphism of B into U c E. Let 

C1 = F thC11, FaGL(n), .'c: B - E is 
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a local configuration of an open set S in B, X€S. In 

coordinate form 

F = Fk e. e  and dici = (d,) 1 e. 0 da(X) 

where the set {e.} is a fixed basis of V, i = l,...,n. The 

basis (da} 4T jçB form a smooth field of cotangent vectors on 

S and each set £da(X)}, a = l,...,n span TB. It is not 

relevant here to which configuration the field {da} is 

referred to. For instance, let us assume that 

(di) l{ea}, the set {ea} being the dual of the set 

{e}. The induced basis {d}6TxB should not be confused with 

the uniformity basis introduced in [9] for we do not require 

the maps'07)1 , to be a uniform on S. 

So, Gx = FJi(dII)1a e 0 da(X) and 

tr(G) = F3 .(dg ' 

1 'Xj 

Therefore, 

W(Gx, X) = W(F, x) = a() + b1 (X)F 1 

where b ij ) = (dx(X))'-j 1 RX is the place, of X in the 

reference configuration i. (Note that we do not differentiate 

between the place of upper and lower indices anymore). 

Now it is observed that if given 

W IC (F, X) 1J a(X) + b.. ii 3. , 

the b  must be interpreted as the gradient of the 

reference configuration with respect to which W(Gx X) is 

given. 

As before, 

W 1< (FP(t), X 0 ) = a 0 ( 1 0 ) • b. .3 (X 0 )F ik kj P .(t) 
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is the curve in N'1 (n = 10, for dim B = 3) generated by the 

one parameter subgroup of transformations P(t). Its action is 

given by: 

b.-+b-P. 
i j ik 3k 

a -a 
0 0 

i.e. the point (a ) b..) is mapped on to the point 

(a o i ,b k kj P .). Let c: I c fR _ B be a curve in B and 

n 
W(F, X(c(t))) be its image in N . Denote 

W(FP(t), X) and (t) = W(F, X(c(t))), 

such that P(0) = IGL(3), X X(c(0)) for dim B = 3. The 

curves P and b do not coincide unless B is uniform along  

c(t). The criterion for this is given in [9]. The weaker 

condition is the tangency of these curves at W(F, X(c(d)))e.N, 

which can be checked 1y comparing their tangent vectors. 

d'' d = A - I= , AE.IR leading to: 
UT 

a i (X ) + b (X )P. (t) F 
0 0 k 0 3k 1= L3 

A[a(X) _ - + i ,W I- - F1 .] 
x=x x=x 

0 0 

-, a(X) = constant 

T(t)1 = Ab ' (X 0 )b(X(t))to 

(Note that b is invertible since K is one-to-one). 

The linear maps P(t) are the material isomorphisms 

with respect to the configuration K and the chosen frame in V 

and the field (d CL }. Obviously, for all W(F, x) of the given 

form, namely linear in F, we can find material isomorphisms 

locally along a given curve and therefore, such bodies are 
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always tangentially uniform. 

The material isomorphisms in the configuration ic 

are given by the exponential mapping 

P(t) = exp(tbTb T1 I + t(b b) T 

recalling that (denote X(c(t)) by X(t) for short). 

(dK(X(t)))'F(t)dK(X(0)) = 9(.Y o ) X(t)): TxB Tx(t).B 

is the material isomorphism of TxB and Tx(t)B defined for 

X(t) close to X(0) along c(t). 

Note that P(t 2 - t 1 ) is the representative of 

(x(t 1 ), K(t 2 )) with respect to K. 

5•3 Example 3  

For non—linear hyperelastic response functions, we 

obtain additional requirements on the coefficients, unlike 

the linear case treated in the previous example. 

Let WK(F, X) be given by: 

W (F, X) = a . . .. ij (X) + b(X)F + c ij (X)FF 
o kl  1<1 

Assuming W is tangentially uniform along c: I C IR -' B, we 

again attempt to find the conditions on W imposed by this 

requirement: 

Let: 

'P(t) = W,(FP(t) , X0 ) 

and (t) = W(F,X(c(t))). 

The action of the transformation group is defined 

by 
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W(FP(t), X ) = i a (X) + b P. F. 
o o k 3k 13 

+ c iinkn P. P lFiiFkl 

C. 
ijkl 

- T T 
where c. .kl = c imkn mj P . P ij ni 

The tangency condition of the curve '(t) to the 

variety generated by GL(3) at W(F, X) is given by: 

(a) 

(b) Ab±3(X(t)) t o = bik((0))Pj(0) 

(c) Acjjkl(X(t))1t0 = cj1P jin° + Cijkn Pl n (0) 

where P(0) = I by definition. From condition (b) we get as 

before, 

0 

= ,\ b 1 

Substituting this in the third condition (for 

compatibility), 

. ((t)) Cc (b 1) b + c (b 1) b 
ijkl t0 iinkl mp p3 ijkn nq qi 

Ix 
0 

Therefore, for the tangential uniformity, these 

relations between c ij. . kl and b 13 . . must be satisfied along the 

given curve at the point under consideration. 

5.3.1 Remark  

We check this condition to see if the one 

dimensional form of the compatibility is obtained. In that 

case we have b 1 = 1/b and all tensors reduce to scalars, 

i.e., b 13 . . ijkl b, c = c, etc. 



76 

b 
c ....._. b + c b = 2 c 

or 

c - b as expected. 

For polynomials of higher degree than two, we shall expect 

relations among the coefficients similar to the above. 
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CHAPTER 6  

CONCLUSIONS  

Considering the initial objectives of this study, 

it seems that there is still some work needed to be done. 

This mainly includes removing the following mathematical 

restrictions on: 

1. The type of the representation space for the 

constitutive function, and 

2. The type of the isotropy group of B (which was taken to 

be discrete in this thesis). 

The former enables us to do computations as in 

Chapter 5 since it defines the action of G explicitly; it 

must be noted, however, that the ideas presented here are 

invariant. Therefore once the representation space is fixed, 

the results are valid as they are given irrespective of the 

space chosen. The second restriction allows one to construct 

a one-to-one correspondence between the generators of the one 

parameter subgroups in T e G and the Killing vectors in 

at cz leading to the proposition (4.3.8). This assumption, 

however, can be removed if one has the information on the 

type of the isotropy group of B (say an m-parameter 

continuous group) at X. We will have (r-m+l) linearly 

independent Killing vectors. In this instance, the criterion 

in proposition (4.3.8) must be. modified so that the augmented 

matrix will be required to be of rank (r-iu+l) for B to be 
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tangentially uniform at X. 

The assumption of smooth material response given in 

definition (2.2.19),, contrary to the above mathematical 

assumptions is purely a physical one and it essentially 

excludes non-smooth changes in the material properties of the 

body. It allows one to formulate the problem without any 

reference to the material uniformity and all that is required 

is that, the image of a smooth 'curve in B be smooth under the 

mapping 2: B -, A. With this restriction, it was possible to 

construct a theory that includes a wider class of elastic 

bodies, namely those which are tangentially uniform along a 

smooth curve in B. 
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