Introduction

What does it mean to model behavior? First, suppose we have a discrete-time sequence of symbols that
represent observations of a system under study — call this a behavior sequence. The symbols may be tokens
drawn from a finite alphabet, or be real numbers, or constitute structured descriptors of some kind. They may
represent actions in a story (or in real life), operations performed on a purchase requisition as it wends its way
through an organization, or user input to a computer system. Typically the behavior sequence will be quite long
— perhaps hundreds or thousands of symbols. A causal model of a behavior sequence is a representation of it
which is useful for extrapolating into the future, or for interpolating parts that are unknown, or for identifying
which symbols have high information content, or for producing a summary of the sequence. Often a model is a
finite-state automaton, although it can assume other guises (for example, context models which store a set of
subsequences of the behavior, or linear models which represent it as a set of weighting coefficients). Frequently
the model can be viewed as a compact, approximate representation of the behavior, much smaller than would be
needed to regenerate the sequence exactly.

To model behavior is to take a behavior sequence and build a causal model of it — an important kind of
inductive inference. Certain kinds of sequence are very easy to model. For example, if the behavior is
generated by a deterministic finite automaton, a causal state model can be constructed which is equivalent to the
generator and hence predicts the sequence perfectly. Similarly, a sequence of real numbers which are values of
a polynomial can be modeled by finite differences. However, if the behavior sequence is noisy or generated
randomly from a non-deterministic automaton, the model itself must be non-deterministicf. Then the problem
of causal modeling becomes more difficult. If an oprimal model is sought (say one with a specified number of
states that best fits the behavior in an entropy sense), the problem is very difficult indeed.

Why model behavior sequences? Knowledge — lots and lots of it — is the key to intelligent behavior.
Many knowledge-based computer programs embody finite-state models which represent procedural knowledge,
and use them to predict or interpret new observations. In most cases it would be of great value if the program
could infer models automatically from observations of behavior. From the practical viewpoint, this could mean
that the programmer or expert creating the system no longer has to try to recast his intuitive knowledge of
procedures into formal, usually highly detailed, state machines. Instead he need only provide examples of the
behavior being modeled. Moreover, the machine can continually update the model as it interacts with the
environment, and thus (perhaps) improve performance as it gains experience. From a theoretical viewpoint,
automatic modeling allows one to investigate the use of much more detailed models than were possible before.
It is an open question whether this will improve performance (by providing a more specific context in which to
interpret events) or worsen it (escalating the search problem by burying salient features within a morass of
detail). No doubt it will be a bit of both. But experience in artificial intelligence tends to support the belief that
performance increases as knowledge is added. Consequently models which are created automatically could be
superior to their hand-crafted counterparts.

This paper takes a wide-ranging look at the problems involved in building causal models of discrete
sequences of symbols, and surveys methods of modeling. Having established techniques for representing
knowledge and reasoning with it in ways that can rival expert decision-making, the field of artificial intelligence
is now turning attention to knowledge acquisition. Inductive inference — learning — is a key component of
this enterprise; sequence modeling is a fundamental aspect of induction. Our intention in this paper is to review
the problem of sequence modeling, take stock of the present state of the art, and assess what research directions
hold most promise for the future.

The organization of the paper is as follows. The following section motivates the problem and provides a
sharper context for thinking about sequence modeling by reviewing two areas of application of state-oriented
sequential models in current Al systems. The following section discusses some dimensions along which
modeling problems can vary. This gives an idea of the scope of sequence modeling and the range of situations
to which it can apply. Perhaps the most important dimension is the structure of the alphabet of behavior

t So it must even for a deterministic sequence, if the model is constrained to have fewer states than the generator.



symbols (eg does it support a measure of similarity? — is it continuous?). Next, we survey methods which have
been used for building models, broken down according to the kind of alphabet for which they are suitable.
Some modeling methods rely on the user to help point out the structure of the sequence, and two such systems,
in which the user intervenes in completely different ways, are reviewed. A key question for the future is the
inference of goals and plans from observed behavior. Procedural representations are much less fiexible than the
goal-oriented approach which people seem to favor. However, inferring goals and plans is a very difficult
problem, for the modeler must move up to a higher level by recognizing the intent behind acts. The final
section discusses this issue and speculates on how such inferences might be accomplished.

State-oriented models in Al systems

Many knowledge-based computer programs embody finite-state models which represent sequences of
events and actions, although the formalisms adopted are generally ad hoc and not expressed in systematic terms.
Such models are used to predict or interpret new observations. However, few current systems make any attempt
to infer their models from observations. Instead, they are invariably created by the programmer explicitly for
his program’s use.

This strategy is in keeping with the last decade’s emphasis on explicit representations of knowledge,
constructed by the programmer. In other words, relevant knowledge is ‘‘programmed in’’ to a knowledge-based
system. The approach has resulted in the very successful methodology of expert systems which has gained
commercial respectability for AI. However, the acknowledged bottleneck of knowledge acquisition is forcibly
turning attention to methods of automatic inference. The present paper is concerned with the inference of
models which account for observed sequences of behavior.

In order to provide a focus for thinking about sequence modeling, this section briefly reviews two
applications of state-oriented sequential models in Al systems — scripts and office procedures — and gives
examples of actual models which have been used. In neither of these domains have serious attempts been made
to infer models in bottom-up fashion from examples of behavior, although it is clear that this is highly desirable,
if only to ease the problem of knowledge acquisition. .

Scripts in natural language understanding. The large body of research on natral language
understanding which is based on the ‘‘conceptual dependency’’ theory of language has achieved impressive
resultst. Much of this success is due to the implantation of canned knowledge of stereotyped sequences of
events into the systems to allow them to make sense of narratives which describe such events. This began as
the notion of scripts: data structures that organize commonly shared knowledge about routine activities like
eating at a restaurant, taking a bus, and so on (Cullingford, 1978). The most important part of a script is a state
model which records the order in which things happen. This often takes the form of an expected ‘‘main-line’’
sequence, augmented by minority paths — shortcuts, loops, and the like. Scripts also specify roles that the
actors play, props that they use, and entry and exit conditions.

Figure 1 shows a restaurant script (coffee shop track) taken from Schank & Abelson (1977). The actions
of the script are described in terms of the underlying acts that take place, rather than as surface words. These
acts are primitives of conceptual dependency theory. For example, ptrans means to transfer physical location;
attend means to focus a sense organ on a stimulus; mbuild means to construct new mental information from old;
move means to move a part of one’s own body; mtrans means to transfer mental information; atrans means to
transfer possession; and so on. A conceptual dependency analyzer would take each sentence of a story and map
it into these terms before attempting to apply a script.

1 For example, see Wilensky’s (1983) and Dyer’s (1983) work.
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Main-line:

Variations:

null Event 1 Receive Preliminary
1.1 verify Preliminary
1.2 create Application
1.3 select Interviewer from INTERVIEWERS
1.4a send Final-application-forms
1.4b send Interview-report to Interviewer
—> waiting
waiting Event 2 Receive Final-application-forms
2.1 verify Final-application-forms
2.2 send Final-application-forms.check to MIT-OFFICES (Name="‘Cashier’’)
— complete
complete Event 3 January 20, year-applying-for
3.1 ... specify actions, similarly to 1.1, 1.2, ... above
—> reviewed
reviewed Event 4 February 20, year-applying-for
4.1 ... specify actions
— admitted, done, reviewed (depending on actions)
admitted Event S Receive Reply
5.1 ... specify actions
— done, accepted (depending on actions)
accepted Event 6 July 15, year-applying-for
6.1 ... specify actions
— coming
coming Event 7 September 30, year-applying-for
7.1 ... specify actions
— done
reviewed Event 8 April 15, year-applying-for
8.1 ... specify actions
— done, admitted (depending on actions)

1. where Early-decision = ““T"’ : variation for early-decision applicants

add

replace

reviewed Event 9 November 30, year-applying-for - 1
9.1 ... specify actions

— admitted, reviewed (depending on actions)

Event 3 by Event 3 November 20, year-applying-for - 1

2. where Foreign = “T”’ : variation for foreign applicants

delete
add

replace

Event 1, Step 1
null Event 10 Receive Preliminary
10.1 ... specify actions
— wait-FSO-ok
wait-FSO-ok Event 11 Receive Preliminary-FSO-reply
11.1 ... specify actions
— waiting
Event 3by Event 3 January 31, year-applying-for

Figure 2 Procedure admit-freshman-class from Kunin (1982)



accepted accepted, rejected waitlisted, waitlisted,
but refused then accepted  then rejected

see 1 see 1 see 1 see 1 see 1
do 1.1 do 1.1 do 1.1 do 11 do 1.1
do 12 do 1.2 do 12 do 1.2 do 1.2
do 1.3 do 1.3 do 13 do 1.3 do 1.3
do 14 do 14 do 14 do 14 do 14
see 2 see 2 see 2 see 2 see 2
do 2.1 do 2.1 do 2.1 do 2.1 do 2.1
do 22 do 22 do 22 do 22 do 2.2
see 3 see 3 see 3 see 3 see 3
do 3.1.. do 3.1.. do 3.1.. do 3.1.. do 3.1..
see 4 see 4 see 4 see 4 see 4
do 4.1 do 4.1 do 4.1 do 4.1 do 4.1
do 42 do 4.2 do 4.2 do 42 do 4.2
see admit see admit see reject see waitlist see waitlist
do 43 do 43 do 4.3 do 43 do 4.3
do 44 do 44 do 44 do 44 do 44
see 5(ok) see 5(no) done see 8 see 8
do 5.1 do 5.3 do 8.1 do 8.1
do 52 do 54 see admit see reject
do 5.5 done do 82 do 8.2
see 6 do 83 do 8.3
do 6.1 ... see 5(ok) done
see 7 do 5.1
do 7.1.. do 5.2
done do 5.5

see 6

do 6.1..

see 7

do 7.1..

done

Table 1 Example traces through the procedure of Figure 2

4.2 group applications into {admit, reject, waitlist}

which creates tokens see admit, see reject, and see waitlist in the traces. The crux of the applicant’s letter
accepting or refusing an offer made to him is described by the tokens see 5(ok), see 5(no). The lines prefaced
by ““do’’ are all actions of the procedure in Figure 2.

Some simplifications have been made to Kunin’s representation. The most notable are:
e Kunin allows the specification of constraints, like ‘‘Event 2 precedes Event 4’’. Violation of

constraints constitutes an exception, and it is possible to specify actions to take under such
circumstances (like ‘‘send late-letter’’).



» Kunin permits parallelism between actions within a state, and includes a syntax for expressing it. This
does not seem to cause a problem for inductive inference, for parallelism could be inferred from a
reasonable number of example cases.

e Actions in Kunin’s scheme can be complex and involve testing and branching. Again, this would
appear as an elaboration of the state-machine generated by sequence modeling.

Capturing behavior sequences does not seem to present such difficulty in this application as with the
natural language scripts above. The input to the modeling process would be traces such as those of Table 1.
These could be captured from manual operation of the admissions procedure before it had been formalized. Of
course, it would be unreasonable to expect such ‘‘clean’’ traces as those shown. The extent of discrepancies
from the formalized procedure is a question that can only be answered experimentally.

Discussion. It would be attractive to be able to form structural models such as those illustrated in Figures 1
and 2 from samples of observed behavior, and methods for doing so are surveyed in the next section. However,
it is important to realize that modeling a raw sequence of observed events occurs at a fairly low epistemological
level (Klir, 1976). The desirability of going higher, into levels involving goals and intentionality, has been
noted separately in the literature for the example areas reviewed above.

Schank and his co-workers discovered that representing knowledge at the level of primitive events led to
proliferation of scripts. To avoid this, a representation of the goals that occurred in a stereotyped situation was
needed, together with various plans that could realize each goal (Schank & Abelson, 1977). Then a script
constitutes many goals in sequence, and the actor chooses a suitable plan for each, resulting in a much richer set
of possibilities at the event level than the kind of behavior-sequence model shown in Figure 1.

In the office systems area Suchman has been foremost in dispelling the myth that real work consists of
blindly executing pre-specified procedures (Suchman 1983, 1985). She argues that procedures are at most a post
hoc rationalization of what actually happens, which really has the character of problem-solving in terms roughly
equivalent to goals and plans. Much office work is concemned with deciding how to handle exceptions to
procedures — so much that Suchman considers exceptions to be normal and the procedural model an illusion.
This argues strongly against the kind of representation depicted in Figure 2.

The idea of modeling action sequences has been rejected in favor of a goal-based approach in other areas
too. For example, programming by example is another endeavor which involves modeling behavior sequences.
At its simplest, it just involves recording a sequence of commands issued by the user, so that the sequence can
be played back later to re-execute the task. The sequence constitutes a program, and is constructed using the
normal user interface of the system. Generally, however, much more is required than the availability of ‘‘start-
remembering”’, *‘stop-remembering’’, and *‘doit’”’ actions. Control constructs such as iteration and conditional
execution must be inferred from user actions or stated explicitly by the user. Examples of programming by
example can be found in Andreae (1984), Gaines (1976a), Halbert (1981, 1984), Witten (1981a).

But some programming-by-example work advocates a goal-based approach instead of working bottom-up
from action sequences. In his study of editing by example, Nix (1983, 1984) concluded that the sequence of
editing actions that occurs is the wrong level to approach the problem. Command traces are noisy (because the
user makes errors) and idiosyncratic (because there are many ways to perform a given editing task).
Consequently Nix based his work on first analyzing the difference between the original file and the edited
version, and then synthesizing a suitable transformation from scratch. This is quite an unusual case because the
goal is quite explicit — to achieve the given transformation — and can be determined independently of the
example actions used to realize it. In most applications of programming by example, determining the user’s
goal is a major problem.



While sequence modeling may be useful in many applications, the views sketched above all indicate that
its power is likely to increase when it is combined with domain knowledge to provide a higher-level
representation of the intentionality which underlies the overt behavior. We return to this question in the final
section of the paper.

Dimensions of the problem

There are a number of dimensions to the modeling problem which strongly affect the ease with which
causal models can be inferred to account for particular behavior sequences, and the techniques which can be
used. First we list the dimensions and then discuss them individually.

¢ What is the purpose of modeling?

o Is the model to be exact or approximate?

¢ What kind of symbols are used to express the behavior?

¢ Is modeling done once only when the complete behavior sequence is available, or incrementally as
new symbols appear?

¢ How large is the problem?

What is the purpose of modeling? As noted in the Introduction, there are several reasons for modeling
behavior sequences:

o to extrapolate behavior into the future

o to interpolate parts of it that are unknown

o to pinpoint parts with high information content (or ‘‘surprise’” value)

o to provide a compact representation which summarizes what has happened.

Predicting the future is appropriate in prescriptive applications which determine, or suggest, what to do
next. An excellent test of the predictive power of a model is to use it for data compression, for the reduction
achieved is a quantitative measure of success at guessing. For this reason we make occasional reference to data
compression applications throughout the paper.

Interpolating missing information allows a partially-specified behavior sequence to be fleshed out, perhaps
constituting an “‘explanation’’ of it. In story understanding, for example, certain key events are mentioned
explicitly and the reader is expected to infer the intervening actions. In order to interpolate missing parts of a
behavior sequence, the modeler must identify the sequence of states the model passes through from the partial
information available to it. This is a very powerful way of using prior knowledge or past experience to fill in
missing detail. However, I know of no research on inductive inference of models from partially-specified
behavior sequences.

Models are useful for predicting expected or “‘default’’ information based on extrapolating history. Often
it is departures from the default which are most interesting and convey most information. Modeling allows
machines to share our surprise at an unexpected turn of events.

In these three situations the internal representation of the model is imrelevant to the user: only its success
in prediction or identification is of interest. The fourth reason above creates a different requirement, that the
entire model be presented or “explained’’ to the user as a way of summarizing the behavior sequences it
represents. Then it is necessary to consider the internal representation. This issue becomes of the greatest
importance when considering whether context-based or highly redundant state-based models will suffice, or



whether attempts should be made to minimize state models by coalescing equivalent states. For example, in
data compression applications only predictive power is of importance, and huge models can be constructed
which considerably reduce the bandwidth required for transmission (Cleary & Witten, 1984; Cormack &
Horspool, 1985). Huge models may not be tolerable in expert system applications which place emphasis on the
ability to explain decisions and summarize for the user the knowledge structures which support them.

Is the model to be exact or approximate? If the sequence being modeled has been generated by a
deterministic finite-state system, the classical technique of Nerode equivalence (Nerode, 1958) will find an exact
causal model of it. However, this method breaks down completely when noise is present (Gaines, 1976b) — the
universe becomes incredibly complex and models of it nonsensical if determinism is assumed in the face of even
the slightest trace of acausal behavior. Or consider a sequence of real numbers that are values of a polynomial
at equally-spaced ordinates. This can be modeled very simply by finite differences. For high-order polynomials,
however, the method is unstable if any noise (eg rounding error) is present.

Consequently a robust modeler is forced to abandon the deterministic approach, since if nothing else,
occasional errors in the input will introduce acausality. There is no real alternative to approximate models.

What kind of symbols are used to express the behavior? The alphabet of symbols, or “‘descriptors’’,
from which elements of the behavior sequence are drawn, may have structure of its own, Following Michalski
(1983), we distinguish three types of alphabet:

e categorical
* metric
o structured.

Categorical descriptors are independent atomic symbols or names, with no more structure than the set.
They are used in traditional automata theory, often with rather small alphabets.

Linear system theory uses descriptors which take on values in a metric space. In practice this is
invariably the real line or a Euclidean space. Although an infinite alphabet is involved, modeling is simplified
because there are richer possibilities for combining symbols. Arithmetic operators can be used for such purposes
as averaging several different symbols into a representative value, reflecting relative importances with numeric
weights, basing predictions on successive differences, etc. Moreover, there exists a generally accepted measure
of approximation, the least-mean-square criterion. Unfortunately the assumption of linearity (with Gaussian
noise) on which essentially all existing techniques depend rules out these models for most knowledge-based
applications, and so they are described here only briefly.

The third kind of descriptor takes on values from a ‘‘generalization hierarchy’’. Knowledge-based systems
frequently make use of such structures, which are typically sets partially ordered by a relation called
‘‘generalization’’, or more complex structures of classes under the inclusion relation and instances or members
of the classes (Brachman, 1983). Such partial orderings induce a relation between descriptors based on whether
they have a common generalization, and a partial function from related pairs to their most specific common
generalization. Descriptors may be parametrized, giving a very large set of potential symbols. Another kind of
structured descriptor is a vector whose components represent different aspects of behavior. The events in the
script of Figure 1 are expressed as primitive actions (ptrans, attend, etc) with parameters (such as ‘‘S”’, “‘inside
restaurant’’, “‘table”’, ““menu’’) which are themselves taken from a generalization hierarchy. There are clearly
limitless possibilities for structured descriptors.
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Is modeling once-off or incremental? In some modeling situations it is sufficient to wait until the
behavior sequence has been completed, and then to create an a posteriori model of it which will never be
changed again. More often, a model is sought which is updated incrementally as the behavior sequence unfolds.
Of course it is possible to remodel from scratch whenever an event is encountered which is inconsistent with the
current model, thereby using the a posteriori technique to maintain an evolving model; but this requires
complete storage of past history, and moreover implies a heavy time penalty in remodeling.

One option with incremental modeling is to let the model itself stand as the only memory of the behavior
sequence which is retained, so that when an inconsistency is discovered it must be rectified by an incremental
change to the current model. A second is either to store past history separately, or to augment the model with
enough information to recreate the behavior exactly. A third is to avoid inconsistency altogether by insisting
that enough evidence is available when building the model! that ‘‘mistakes’’ do not occur. Finally, one can use
a control mechanism such as Prolog’s backtracking to hide the details of how the behavior sequence is
remembered.

How large is the problem? The size of modeling problems can vary enormously. For data compression,
behavior sequences with up to 0.5 Msymbols have been used, with models occupying several Mbytes (Cleary &
Witten, 1984). In other work (eg Gaines 1976a) on problems of a different character, useful results are obtained
with models having only a handful of states. Since non-deterministic modeling is not a well-understood
problem, it is not surprising that most research involves relatively small models.

Methods of attack

This section reviews methods which have been proposed and used for modeling behavior sequences. The
intention is to take stock of the state of the art, not to provide a tutorial survey — for this reason the reader who
is unfamiliar with the workings of individual methods will have to consult the references for detailed
descriptions. It is convenient to break the review down into subsections according to the character of the
alphabet — categorical, metric, and structured. A final subsection looks at how the user can intervene to
increase the power and reliability of modeling.

Categorical descriptors. A number of methods have been investigated for non-deterministic finite-state
modeling of behavior sequences with categorical descriptors.

Enumeration and evaluation. One can enumerate all automata which could have generated a-given
behavior sequence, beginning with the simplest (generally the smallest). This has been developed into a well-
defined methodology by Gaines (1976a, 1977), who defines the subset of admissible models, given a measure of
poorness-of-fit of a model to the behavior sequence and a criterion of model simplicity. The admissible subset
contains only models which cannot be improved in simplicity without increasing poorness-of-fit, and cannot be
improved in goodness-of-fit without increasing complexity. If a probabilistic model is desired the problem may
appear to be insoluble, for the space of possible models is continuous rather than discrete; but this is not so, for
an optimal assignment of probabilities to the branches of a non-deterministic model may be made by running the
behavior sequence through the model and making frequency counts (Gaines, 1976a). As in other domains (eg
coding, see Cover, 1973), enumeration is completely impractical for large problems, but provides a useful
standard by which to compare other, heuristic, methods. In the case of non-deterministic modeling of behavior
sequences, enumeration has super-exponential complexity in the size of the modelt.

t If determinism is assumed the problem is much easier. For example, the finite-state control for Turing machines has been inferred us-
ing a data-driven, simplest-first search with backtracking; see Biermann (1972).
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Reduction and evaluation. An alternative to building and evaluating successively more elaborate models
is to start with a very large one and reduce it. The initial model could be a direct representation of the sequence
itself (that is, an n-state model of an n-element behavior sequence); if this is too large then a fixed-context
method with long context could be used (see below). Reduction can be done by heuristic methods (eg Evans,
1971), or by evaluating each reduced model according to a goodness-of-fit yardstick (Witten, 1981b). The most
straightforward way to determine which states should be merged is to evaluate the models which result from
merging each pair of states and select the pair with the best evaluation. This gives polynomial rather than
exponential complexity in the number of states, but sacrifices the optimality which enumeration guarantees.

Fixed-context methods. Fixed-context methods of building a causal model of a behavior sequence
characterize the sequence by the set of k-tuples of symbols which occur in it, for some given *‘context’’ length
k. Different techniques have been developed by a number of researchers. Biermann & Feldman's (1972)
method is suitable for approximate modeling of deterministic sequences, but breaks down in the face of non-
determinism. Andreae (1977) has pioneered methods of fixed-context modeling which literally store all k-tuples
in a hash table (for rapid access). The same information can be recoded as a state-transition model and reduced
to a near-minimum number of states; this can be accomplished without sacrificing the possibility of incremental
modifications to the model when new behavior is encountered (Witten, 1979).

Variable-length matching. Fixed-context methods effectively use k-tuples for prediction by matching the
first k—1 symbols of each tuple in memory against the last k-1 symbols seen. The final kth symbol of those that
match are taken to be predictions of the next symbol. However, if no tuple in memory matches the last k-1
symbols seen, there is no prediction. The method of variable-length modeling weakens the match criterion
under these circumstances by reverting from k-tuples to (k~1)-tuples, and then (if necessary) to (k—2)-tuples, and
so on until a match is found. This makes it much more likely that predictions are actually made, especially in
the early stages of modeling when little behavior has been seen. Limited-context methods with variable-length
modeling can exhibit remarkable predictive power in data compression applications, which provide an excellent
way of evaluating predictions quantitatively (Cleary & Witten, 1984).

Dynamic Markov modeling. A method of incrementally updating a state model directly has recently been
developed for data compression (Cormack & Horspool, 1985). This maintains a non-deterministic model which
can generate all sequences, with the observed frequency count recorded on each state transition. A state is
“‘cloned’’ — that is to say copied — when

o it leads non-deterministically to two or more successor states
and e it is entered from two or more predecessor states.

In other words, when the model enters that state, some contextual information is lost which may help resolve the
ambiguity of successor; and cloning the state gives the opportunity to recreate that context. One clone is
selected for one predecessor state, the other for the remaining predecessors, and the frequency counts associated
with the original state are split between the two new versions in an appropriate ratio. To start, the model is
chosen as the trivial one-state one, and the cloning process causes it to grow. Experiments have shown that it is
beneficial to clone states as soon as practicable (ie as soon as they have been entered and exited a couple of
times from different places). This makes the model grow very quickly. However, no notion of model
contraction has been investigated: the model expands continually until it reaches a maximum upper limit
imposed by system resources. This technique has been evaluated on data compression problems and has much
the same predictive power as the variable-length matching method above.

Metric descriptors. Behavior sequences whose symbols are real numbers are common in signal processing
applications. The method of linear prediction, due to Wiener (1947) and resurrected by Atal & Hanauer (1971)
for speech processing, is by far the dominant technique for modeling real-valued signals, and can easily be
extended to the prediction of vectors as well (Ha & Witten, 1980). Linear prediction has proven advantages
over other methods of signal analysis and low data-rate speech storage and synthesis. However, it seems too
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tightly-defined and simple to deserve the label “‘inductive inference’’, and the underlying assumption of linearity
is inappropriate for most knowledge-based applications. A brief description is included here for completeness.

A linear predictor is a fixed-context model, with context length typically between 10 and 15 for speech
applications, so that the most recent k symbols seen are used to predict the next one. The prediction is a
weighted sum of the context values. The weights are derived by minimizing the squared distance between the
predicted values and the observed next values, over the past few (between 30 and 250 for speech) samples.
Minimization is easily accomplished by partially differentiating with respect to each weight, and the result is a
matrix equation involving correlation coefficients of the recent observed behavior. The matrix has different
properties depending on whether the “‘recent observed behavior’’ is terminated abruptly or tapered gradually
with a windowing function, and various methods of efficient solution of the matrix equation have been proposed.

Structured descriptors. Structured descriptors lie between categorical and metric ones. Work with the
former generally uses a rather small (<256 symbols) alphabet of symbols. The latter invariably involves the
infinite alphabet of real (or rational) numbers, although of course in practice they are quantized and
discrepancies between the model and its implementation are treated as noise. Structured descriptors usually
form a large, and in some cases (when descriptors are parametrized) infinite, set. Although they occur naturally
in sequential modeling situations like those reviewed earlier, surprisingly few methods are known for modeling
with structured descriptors. ’

Vector descriptors. Klir and his colleagues (Klir 1975, 1976; Uyttenhove 1980) consider behavior
sequences in which each symbol is a vector whose components represent different aspects which are sampled
simultaneously. In this work the components are categorical descriptors and have no further structure. The
limited-context modeling method is used, but the context does not necessarily have the same length for each
component. The problem is to find that pattern of context lengths for the components which has most predictive
power; rather extensive searches are required for this.

Distinguishing symbol types by confirmation level. In an investigation of programming a simple electronic
calculator by example, Witten (1981a) noted a difference between the way numbers and operators are used in
calculation sequences. When numbers constitute ‘‘inputs’’ to the calculation they are inherently unpredictable,
which contrasts with the case of operators or numbers used as ‘‘constants’. Consequently the system was
constructed to be more conservative about predicting numbers than operators. No prediction was made unless it
would have been correct the previous n times it occurred, and n was set differently for operators (n=1) and
numbers (n=2). This ad hoc policy of altering the level of confirmation required depending on the type of
symbol is a simple but effective way of dealing with prior knowledge about the character of descriptors.

Constraint-limited generalization. Andreae (1984) describes a system for acquiring procedures from
examples which makes use of an explicit generalization hierarchy for descriptors. It works as follows. The
problem is to meld two example traces of execution of a procedure into one state-transition representation which
encompasses them both. If two descriptors are identical they are assumed to emanate from the same state — a
degenerate case of fixed-context modeling with a context length of zero. In particular, each trace begins with a
start descriptor which forces the initial states of the two sequences to be merged, and ends with stop which
merges final states. Thus a non-deterministic state model is built from the traces. However it is usually little
use for prediction, since descriptors are rarely identical (apart from start and stop). The second stage examines
states which are different but whose predecessor states are the same, or whose sucessor states are the same, and
attempts to unify the descriptors associated with each — fixed-context modeling with a context length of one. If
they can be unified, then the states are coalesced. Unification is done through the generalization hierarchy, and
succeeds if the two descriptors have a common generalization. Finally, a third stage examines states which are
different but whose predecessors and successors are the same, and again attempts to unify the descriptors but
this time with a more liberal unification procedure. This unification uses the same generalization hierarchy as
before, but involves synthesizing functions which unify parameters of the descriptors. Synthesis is accomplished
by searching a function space, possibly utilizing numbers which have been *‘mentioned’’ in nearby descriptors
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as constants in the function. This is a very expensive process in terms of search time. However, it is only
undertaken when there is strong evidence (identical predecessor and successor states) that the descriptors
matcht.

Using limited-context methods on sequences with structured descriptors, there are three dimensions in
which different points in a behavior sequence can be tested for similarity. The first is the spatial dimension —
the extent to which the descriptors match in the generalization hierarchy. The second is the sequential
dimension — whether the preceding (or even succeeding) context is the same. The third is the dimension of
degree of confirmation — how often the sequences have occurred before. If the points match sufficiently well
on these counts, then they can be merged in the state diagram. Andreae’s constraint-limited generalization
stresses the spatial dimension, merging states immediately if they produce the same symbol. It makes limited
use of the sequential dimension, using a context-1 match in either forward or backward directions to permit a
looser spatial match, or in both forward and backward directions to permit an even looser match. Witten’s
system made simple use of the degree of confirmation dimension to distinguish between ‘‘constants’ and
“‘variables’’. It is easy to model sequences based on any mix of the three dimensions: what is lacking is a
general theory of the trade-offs involved.

Symbiotic modeling: involving the user. Sequential modeling can be made easier and more reliable by
allowing the user to intervene in the modeling process. Two rather different projects have shown how useful
this can be in the sequential and spatial domains.

Increasing the power of limited-context modeling. Limited-context modelers discard all information in a
behavior sequence except the set of k-tuples which occur in it. This restricts their power to the ‘‘non-counting
events’’, a strict subset of finite-state events (McNaughton & Papert, 1971). However, it is rather obvious that if
appropriate extra information is made available to the modeler, the full power of finite-state events can be
regained. In particular, supplying it with state markers which reveal the states passed through by a (mon-
deterministic) finite-state model gives the game away and makes the modeler’s task trivial (Witten, 1981b).
Moreover, state markers need only be supplied initially; once they have been assimilated the modeler is capable
of regenerating them automatically and thereby keeping itself synchronized with the behavior sequence. It
would be unusual to have available markers which precisely represent states. However, even partial information
is useful, and since a limited-context modeler can learn non-counting events itself, only information pertinent to
the “‘counting’’ component need be included. These ideas have been developed within the PURR-PUSS
leamning system of Andreae (1977). This achieves its power through a simple, uniform storage structure for
fixed-length pieces of behavior, combined with a method of operator intervention which enables counting events
to be leamed. To allow the user to provide state-feedback, Andreae has introduced the idea of ‘‘multiple
contexts’’, each context being an input stream, so that state information can be provided separately from the
behavior sequence itself. This makes it easier for the identification procedure to take over the user’s role and
supply the state markers itself when it has learned how to do so.

Data descriptions: user-controlled generalization. In his study of programming by example for the Star
office information system, Halbert (1984) concluded that it was simply not feasible in this domain to generalize
user actions automatically. The problem is that when an icon is selected on the screen, the user’s intention is
concealed from the system. It can be guessed by inductive inference, particularly if the example is repeated
several times in different ways; but the system can never be sure — especially in a rich problem domain where
there are likely to be a number of reasonable alternatives. Consequently Halbert resolved to let the user choose
how descriptors are generalized by presenting a ‘‘data description” property sheet for him to fill in. For
example, a document can be described by name (in which case a name pattern may be specified as a regular
expression), by position (eg first-in-folder or last-in-folder), by prompt (in which case the user is prompted every
time the item is required), or as a special type any for use in set iteration. Other kinds of descriptor offer more

t In fact, the procedure does not require both predecessor and successor states to be identical, but is applied to parallel chains of states
which begin and end in the same state and, if successful, merges corresponding members of the chains. Consequently the merging is
only done if both predecessor and successor states end up being identical



-14.

sophisticated options. This is not pure programming by example, because the user must interrupt his example to
clarify the generalization mode. However, having introduced the idea of user intervention to specify
generalization, Halbert found he could make more extensive use of it. For example, set iteration is specified by
selecting the any generalization mode. As one generates the behavior sequence which constitutes the example
that defines a procedure, a written representation of the procedure appears step by step on the screen. The scope
of iteration is indicated by selecting the appropriate part of the written procedure (with a mouse). Conditionals
are added in a somewhat similar way. Already-recorded programs can be corrected or altered by editing them
using the written representation. The result is a powerful and easy-to-use casual-user programming system, but
one which is somewhat removed from the behavior-sequence modeling paradigm of programming by example.

Inference of goals and plans

The next step in sequential modeling is to allow the modeler to move to a higher level by recognizing the
intent behind the acts, and infer the teleological structure of the input. This is indeed an ambitious aim, which
needless to say has not yet been achieved! But the time is ripe to speculate on what may be involved in the
inference of purpose. And although it seems next to impossible to divine the more grandiose of human
aspirations from mere observations of behavior, there are a host of modest goals which present an easier target.
Obviously we must assume that domain knowledge is available about the preconditions and consequences of
individual acts which are represented by descriptors in the behavior sequence, and probably also about the
overall *‘top-level’” goals of actors. Moreover, it is clear that the task will be much easier if the user is allowed
to intervene in the modeling process to ‘‘explain’’ aspects of the behavior sequence — the benefits of symbiotic
modeling become even more striking at this level.

What are goals and plans? A goal is an intention, the object of one’s effort. Some goals — satisfaction
of hunger, reproduction, self-esteem, etc — are top-level ones that stem from the intrinsic nature of humanity.
Others, such as changing location, or gaining control of some object, are desired changes in state of the world.
These are subordinate goals which are executed as necessary parts of a higher-level plan because they are
needed as preconditions by other parts of the plan (Schank & Abelson, 1977). Even at the lower levels, it is not
easy to specify unambiguously what the goals are — we are now dealing with intentionality rather than the

“‘objective reality”” of behavior sequences. The nature of goals is inextricably intertwined with their realization
in terms of plans.

With each goal are stored a number of plans which represent different ways of achieving it. A plan is a
sequence of subordinate goals and, at the lower levels, basic actions, which will (probably) achieve the higher-
level goal. The realization of goals through hierarchical decomposition into plans containing lower-level goals
is somewhat analogous to the decomposition of a program into a hierarchical structure of subprograms, with the
following important differences:

o for each goal (ie subprogram name) there exist several alternative plans (ie subprogram definitions) for
realizing that goal;

o the order in which goals are executed may not necessarily be completely determined in advance
(although it may be constrained);

o goals include an explicit representation of themselves from which it can be tested if they are already
satisfied, or if a plan which purports to realize that goal has succeeded;

¢ plans include an explicit representation of the preconditions which must be met if they are to work, the
postconditions which they are designed to produce, and any side effects they may generate — ie they
satisfy the ‘‘Strips assumption’’ that all changes they induce in the state of the world are listed in the
description of the plan.
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What is meant by ‘‘goals’’ in our example domains of natural-language understanding and office
information systems? For the restaurant script of Figure 1, the following goals can be identified?:

satisfy hunger

£0 to restaurant

get seated

order
get menu
choose
communicate choice

get food

eat

pay

leave

Satisfy hunger is a top-level goal which is intrinsic to the actor; the others are subgoals. The order subgoal is
further elaborated into second-level subgoals, through choice of a plan. There are alternative plans for ordering
in other kinds of restaurants. The get menu and communicate choice subgoals will themselves have a few
associated plans. The other first-level subgoals can also be achieved by several alternatives (eg go fo restaurant
can be accomplished by walking, hitch-hiking, riding a horse). Achieving a goal is accomplished by selecting
and executing one of the plans stored with it. For the admit-freshman-class procedure of Figure 2, part of the
goal tree looks like this:

process a student
get complete application
make decision
communicate and confirm decision

This is perhaps a better-defined example than the previous one, for it is a less familiar and natural activity.

Why use goals and plans? Tt was noted earlier that the move to higher levels of intentionality has been
advocated apparently independently in each example domain. For example, Schank & Abelson (1977) argued
that the old notion of scripts as the medium for the representation of sequential knowledge should be replaced
by a more flexible representation involving plans and goals. In essence, this allows questions like ‘‘why did you
do that’’ to be answered by reference to the goal stack along the lines of ‘‘because I was trying to do this”.
Contrast this with procedure-based scripts, where the answer might be ‘‘because that’s what’s usually done after

In an office information system, the advantage of a goal-based over a procedure-based representation is
seen to be that more unstructured tasks can be handled by establishing user goals and attempting to achieve
them (Croft & Lefkowitz, 1984). The goal-oriented perspective does not commit one to a fixed sequence of
actions. Any particular goal can be realized in a number of different ways (by different plans), including,
perhaps, recourse to the user. If a plan fails to achieve the intended goal, this can be detected and alternative
plans tried.

In both domains, systems have been developed which reason about goals and plans, and can even
contemplate contradictions between goals and isolate inconsistencies between plans (Barber, 1983; Wilensky,
1983).

t This is by no means the only way of assigning goals to Figure 1; we noted above that goals depart from objective reality and, in a
sense, exist only in the mind of the planner.
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Can goals and plans be inferred from observed behavior? 1t seems an enormous leap from the
behavior-sequence modeling techniques reviewed earlier to representations in terms of goals and plans. Suppose
a script like that of Figure 1 has been constructed from observation of behavior. It will likely be considerably
more complex, however; for all sorts of other events — relevant or irrelevant — will have occurred as part of
the restaurant experience. Moreover, we must assume the existence of a large number of other scripts for other
events as well. These scripts constitute the ‘‘input’’ to the goal/plan inference process. The extent to which
goals and plans can be inferred in bottom-up fashion from event-based scripts is an open question. In particular,
it seems necessary that the system is supplied with advance knowledge of top-level goals, and that some top-
down reasoning is incorporated to make use of this knowledge.

The first step towards generating a higher-level representation of a finite-state model of behavior from a
causal model is to detect ‘‘subprocedures’’ which occur elsewhere. For example, in Figure 1, Scene 1 —
entering and choosing a seat — occurs in a number of other circumstances (lectures, theaters, ...). The first part
of Scene 2 — gaining control of an object from one whose role it is to serve — is also not confined to
restaurants. So also for the pay-and-tip-for-service part of Scene 4. Detecting common parts of existing scripts
is clearly a very difficult search problem, and one that will require clever schemes for indexing and storage. It
is, however, possible in principlef. Perhaps the higher-order statistics of behavior sequences will help in
segmenting scripts into subprocedures. ,

A subprocedure which occurs in several different places is a candidate plan. To identify a plan, its
preconditions and postconditions must be determined. These can only come from an analysis of the causal chain
of acts involved in this plan, and in those that precede and follow it. Clearly the structure of the descriptors will
be essential here. The restaurant script of Figure 1 uses as descriptors conceptualizations built around a small
number of primitive acts. Associated with each act are pre- and post-conditions, and perhaps other deductions
(for example, before actor § causes himself to go from A to B he must be at A, afterwards he will be at B, and a
likely intention is that he wanted to be at B). Thus a complete behavior sequence will be a causal chain with
the descriptors interlinked through preconditions and postconditions. Since several instances of the plan have
been observed, there is some basis for separating commonly-occurring conditions from fortuitous ones.

Associating postconditions with plans allows goals to be postulated, and plans indexed under them. A
goal constitutes a set of plans with the same postconditions. It is critical to the plan-goal methodology that
several alternatives exist for satisfying each goal (otherwise it is tantamount to fixed procedures).

While this is clearly highly speculative and leaves many details open to question, it does at least indicate
that there are possible lines of attack on the very difficult problem of inferring goals and plans from observation
of behavior.

Conclusions

This paper has taken a wide-ranging look at the problems involved in creating models of sequences of
symbols. Under certain tightly-defined circumstances — discrete sequences from a deterministic finite-state
automaton, or real-valued signals from a linear system with Gaussian noise — the modeling process is supported
by well-developed theory and optimal procedures are completely understood. When the descriptors are
categorical but sequences are generated non-deterministically, one must resort to weaker methods —
enumeration, or limited-context modeling — although they are still amenable to theoretical analysis and
comparison. When the alphabet of descriptors from which elements of the behavior are drawn has its own
structure, the problem becomes more complex. ‘‘Knowledge’” can be added to the modeler in the form of more
structured  alphabets (typically through generalization hierarchies, or multidimensional, parametrized,

1 For example, the enumeration and evaluation paradigm for behavior sequence modeling has been extended to recursive transition net-
works, and thus can identify common subprograms (Witten, 1981b). No infinite search is involved because the stack depth is obviously
bounded for finite behavior sequences. However, the enumeration procedure is exceedingly time-consuming.
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descriptors). However, the number of dimensions in which similarity can be measured increases, and one has to
resort to heuristic methods, losing the benefits of any insight into the process from a formal perspective. One of
the challenges for modeling systems of the future is to find ways of dealing with more highly-structured
situations while still retaining the ability to analyze what is going on from a theoretical point of view.

Another facet of sequence modeling is the need to communicate with the user. The modeler can often
benefit from the user’s knowledge, and we have examined systems which permit this kind of interaction. Efforts
need to be made to increase the bandwidth of communication for maximum effect. Moreover, as sequence
modeling is used for knowledge acquisition, the need arises for better communication in the other direction.
Modelers must become able to describe the models they have inferred, in different ways and at different levels
of detail. For example, a rough sketch of the dominant path through the state representation of the model may
suffice, with the ability to describe minority paths and elaborate on specific areas as directed. The emphasis on

“‘explanation’ in expert systems research encourages the view that all programs should be able to articulate
their own workings.

Finally, a key question for the future is the inference of goals and plans. Can the modeler move from an
operational summary of behavior sequences to higher epistemological levels by recognizing the intent behind the

acts, without human intervention? We have tried to indicate that while this is an open question at the moment,
it is not beyond the realm of possibility.
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