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ABSTRACT 

The thesis describes the successful modification of a ring-laser-gyro (RLG) 

strapdown inertial reference unit into a strapdown inertial survey system (SISS) for 

geodetic positioning. The RLG system, a Litton LTN-90-100, has been modified into a 

land-vehicle mode inertial survey system, by developing specialized software and error 

control techniques. The software package integrates the raw body rate and acceleration data 

from the LTN-90- 100 into velocities and coordinates of the system. The error states of the 

SISS are estimated by a Kalman filter-smoother using regular zero velocity measurements 

and occasional control coordinates as updates. The system was tested on two L-shaped 

baselines near Calgary and results show that a positioning accuracy of better than 1 m (1 a) 

is achievable. The thesis describes the developed SISS, the data integration, alignment and 

error estimation software as well as the results of the baseline tests.. 

/ 

In 



ACKNOWLEDGEMENTS 

The author would like to thank Prof. K-P Schwarz for providing the advice and 

support needed to complete his graduate studies and thesis. Mr. H. Martell, Mr. M. 

Szarmes, Mrs. E. Knickmeyer, Ms. A. Rauhut and Mr. A. Tam of the Department of 

Surveying Engineering are acknowledged for helping the author to gather the data 

neccesary for this research. Thanks are due to Mr. J. Smith of Pulsearch Canada Ltd., 

Calgary and Mr. J. Hogan of Litton Systems Canada, Toronto for their advice on the data 

acquisition system and LTN-90- 100 used in this research. Nortech Survey (Canada) Ltd. 

is acknowledged for providing the baseline needed in the field tests 

Profs. E. J. Krakiwsky, J. A. R. Blais and G. Lachapelle of the Department of 

Surveying Engineering, Prof. R. B. Streets of the Department of Electrical Engineering and 

Dr. D. Liang of Defence Research Establishment, Ottawa, are acknowledged for their 

critiques of this thesis. The author also wishes to thank Prof. L. Turner of the Department 

of Electrical Engineering for his assistance in the development of the noise' filter. 

Funding for this research project was provided by Natural Science and Engineering 

Research Council of Canada and Litton Systems Canada of Toronto. 

iv 



TABLE OF CONTENTS 

PAGE 

ABSTRACT Hi 

ACKNOWLEDGEMENTS iv 

TABLE OF CONTENTS V 

LIST OF TABLES vii 

LIST OF FIGURES viii 

NOTATION X 

CHAPTER 

1. INTRODUCTION 1 

2. COORDINATE FRAMES 5 

2.1 Inertial Frame 5 

2.2 Earth-fixed Frame 6 

2.3 Local-level Frame 8 

2.4 Wander Frame  9 

2.5 Body Frame 11 

2.6 Platform Frame 14 

3. INERTIAL SURVEY SYSTEMS 15 

3.1 Gimballed Systems 16 

3.1.1 Space-Stabilized Systems 16 

3.1.2 Local-level Systems 17 

3.2 Strapdown Systems 17 

3.2.1 LTN-90-100 18 

3.2.2 Data Acquisition System  

3.2.3 Data Output 23 

4. NAVIGATION EQUATIONS 31 

4.1 Velocity Integration Module 31 

V 



4.2 Rate Integration Module  

5. ALIGNMENT  41 

5.1 Coarse Alignment 41 

5.2 Fine Alignment 44 

6. ERROR ESTIMATION 48 

6.1 Kalman Filtering 49 

6.2 Error Equations 56 

6.3 Initial Variances and Spectral Densities 63 

6.4 Optimal Smoothing 65 

7. FIELD TESTING 69 

7.1 Baselines 70 

7.2 Velocity Data Test 72 

7.3 Lab Calibration 74 

7.4 Field Tests 75 

8. RESULTS AND ANALYSIS 78 

8.1 Velocity Data 78 

8.2 Rate Data 82 

8.3 Applications in Airborne and Shipborne Environment 87 

9. CONCLUSIONS AND RECOMMENDATIONS 89 

REFERENCES 93 

APPENDIX A 97 

APPENDIX B 100 



UST OF TABLES 

TABLE PAGE 

3-1 Output of the LTN-90-100 24 

3-2 RMS of the Filtered Rate Data of a Stationary LTN-9O-1OO 28 

6-1 Spectral Densities  '65 

8-1 Accuracy of the Weighted Means from Rate Data 87 

8-2 RMS of the Weighted Means from Noisy Velocity Updates Measurement  88 

vu 



LIST OF FIGURES 

FIGURE PAGE 

2-1 Inertial Frame 6 

2-2 Earth-fixed Frame 8 

2-3 Local-level Frame 9 

2-4 Wander Frame 11 

2-5 Body Frame 13 

2-6 Relationship Between the Three Topocentric Frames 13 

3-1 The LTN-90-100 Based Strapdown Inertial Survey System 22 

3-2 X Body Aceeleration of a Stationary LTN-90-100 28 

3-3 Frequency plot of the X Body Acceleration 29 

3-4 Relative PSD of the X body acceleration 30 

4-1 Flowchart of the Integration Module for the Rate Data 40 

5-1 General Flow of Data in the Coarse Alignment Module 47 

6- la Part 1 o the Flow Chart of the Kalman Filter 53 

6- lb Part 20f the Flow Chart of the Kalman Filter 54 

6-2 Flow Chart of the Error Propagation Routine 55 

6-3 Dynamics Matrix of a 15-state Kalman Filter for an SISS for  900 62 

6-4 Flow Chart of the Optimal Smoother 68 

7-1 Calgary Baseline 71 

7-2 Cochrane Baseline 71 

7-3 Offsets Between the SISS and the Reference Point 73 

8-1 Errors of Filtered Coordinates Using Velocity Data 81 

8-2 Errors of Smoothed Coordinates Using Velocity Data 81 

8-3 Errors of Weighted Means Using Velocity Data 82 

8-4 Azimuth During Alignment 83 

8-5 Errors ofFiltered Coordinates Using Rate Data 85 

viii 



8-6 Errors of Smoothed Coordinates Using Rate Data 86 

8-7 Errors of Weighted Means Using Rate Data 86 

B-i Errors After Filtering ( 1st Survey)  100 

B-2 Errors After Filtering (2nd Survey)  100 

B-3 Errors After Filtering (4th survey)  101 

B-4 Errors After Smoothing ( 1st Survey)  101 

B-5 Errors After Smoothing (2nd Survey) 102 

B-6 Errors After Smoothing (4th Survey) 102 

B-7 Errors of the Weighted Means (1st Survey)  103 

B-8 Errors of the Weighted Means (2nd Survey)  103 



NOTATION 

1. CONVENTIONS 

1.1 Vectors and matrices are typed in boldface. 

1.2 Vectors are represented by lower case letters. 

1.3 Matrices are represented by upper case letters. 

1.4 "Vector" means coordinates of a vector. A superscript will be used to indicate the 

particular coordinate frame in which the vector is defined, e.g. 

b b b b T 
r = { r, r, 1 

1.5 Rotation matrices, R are specified by two indices so that the transformation from frame 

b to frame n is given by, 

n n  
r= R b r 

1.6 Angular velocity of frame e with respect to frame i, coordlinatized in frame b is 

described as, wie 

1.7 The following symbols specify an arbitrary quantity x: 

x true value 

c approximate value 

estimated value 

measured value 

E[x} expected value 

6x perturbation in x 

Ax difference in x 

time differential of x 

Xk value at epoch k 

x 



2. COORDINATE FRAMES 

2.1 Inertial, i 

origin - at the mass centre of the earth 

x-axis - pointing towards vernal equinox at to 

y-axis - completes right-handed system 

z-axis - towards north celestial pole at epoch to 

2.2 Earth-fixed, e 

origin - at the mass centre of the earth 

x-axis - towards the Mean Greenwich meridian, in the equatorial plane 

y-axis - 900 east of Greenwich meridian, in the equatorial plane 

z-axis - mean spin axis of the earth, coinciding with minor axis of the reference 

ellipsoid 

2.3 Local-level, n 

origin - at topocentre 

x-axis - ellipsoidal east (also denoted as E axis) 

y-axis - ellipsoidal north (also denoted as N axis) 

z-axis - upward direction along the ellipsoidal normal ( also denoted as U axis) 

2.4 Wander, w 

origin - at topocentre 

x-axis - rotated from the east towards the north on the level plane by an angle a. 

The angle a is called-the wander angle and it is selected to be equal to the 

meridian convergence from the point of alignment 

y-axis - orthogonal to the x-axis on the level plane 

z-axis - upwards along the ellipsoidal normal 

2.5 Body, b 

origin - at centre of inertial survey system 

x-axis - towards the left side of the inertial survey system (ISS) 
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y-axis - towards the back of the ISS, i.e. through the output pins 

z-axis - upwards and perpendicular to the x-y plane 

P2.6 Platform, p 

origin - at the centre of the inertial survey system 

x-axis - slightly misalignd from the x axis of the n or w frame 

y-axis - slightly misaligned from the y axis of the n or w frame 

and orthogonal to the x axis mentioned above 

z-axis - completes the orthogonal right-handed system 

XII 



3. LIST OF SYMBOLS 

SYMBOL DESCRIPTION 

a Semi-major axis of the reference ellipsoid 

b Semi-minor axis of the reference ellipsoid 

b Accelerometer biases 

C, Covariance matrix of the state vector 

Cw Covariance matrix derived from the spectral densities 

d Gyro drift rates 

D Variance matrix of the misciosure vector 

e2 Second eccentricity of the reference ellipsoid 

e Measurement noise 

f Specific force 

F Dynamics matrix 

g' Gravitational acceleration 

g Gravity acceleration 

i.g Gravity anomaly 

H Design matrix 

h Ellipsoidal height 

I Identity matrix 

K Kalman gain matrix 

n White'noise 

Q Spectral density matrix 

q Quaternion vector 

RM Radius of the meridian 

Rp Radius of the prime vertical 



r Position vector from the mass centre of the earth to 

the point of interest 

t Time 

V Velocity vector 

V Skew-symmetric matrix of v 

U Forcing function 

W System noise 

x State vector 

X0 Initial state vector 

(-) State vector before measurement update 

(+) State vector after measurement update 

Normal gravity 

9 Vector of incremental gyro output 

(1) Geodetic latitude 

CD Transition matrix 

we Magnitude of the earth rate of rotation 

0s Schuler frequency 

Q Skew-symmetric form of 

Geodetic longitude 

0 Angular rotation experienced by an inertial survey system due to its 

movement on the earth's surface 

xiv 



CHAPTER 1 

INTRODUC1'ION 

In the vast and sparsely populated regions of Canada where the terrain is undulating 

and covered by dense vegetation, establishment of geodetic control points is a difficult and 

expensive task. The cost of second-order network densification in the past decade has been 

reduced by extensive use of gimballed inertial survey systems ( Babbage, 1981 and Pfeifer 

et al, 1985 ). The level of accuracy achievable is about 10 ppm. Research and field 

experiment have shown that, with improved hardware and software, these gimballed 

systems can also be used to determine the earth's anomalous gravity field. Results reported 

indicate that accuracies of < 1 arcsec (1) for the components of the deflection of the 

vertical and 5 mgal (la) for the gravity anomaly can be obtained with a gimballed inertial 

survey system (Todd, 1981, Hadfield, 1985, and Forsberg and Wong, 1987). However, 

the gimballed systems are very expensive. The initial capital cost of these systems is at least 

half a million dollars and they also require frequent maintenance. Today, efforts are being 

made to develop less costly strapdown inertial survey systems (SISS) to replace the 

existing gimballed systems as their useful life expires. 

At present, there are three types of inertial survey systems available on the market: 

space-stabilized systems, local level systems and strapdown systems. These systems 

contain a set of gyros and three accelerometers that are orthogonally mounted in a sensor 

block. The first two types of systems are gimballed systems which rotate their sensor block 

such that their axes are pointing in the direction of the axes of a well defined coordinate 

frame. The chosen coordinate frame is usually the frame in which the raw data is processed 

into velocities, e.g.. the inertial or local-level coordinate frame. The strapdown systems 

allow their sensor block to rotate with the body of the carrier such that the axes of the 

sensors are aligned with the along-track, cross-track and normal axes of the trajectory of 
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the systems. The output of the sensors are analytically transformed to a well defined 

coordinate frame for processing. 

The gimballed inertial survey systems have been well accepted in the surveying 

community mainly because they are accurate and well developed for positioning and gravity 

survey. They are designed to utilize the power sources in various kinds of land vehicles 

and aircraft used in geodetic surveying. However, the advance in ring-laser-gyro (RLG) 

technology in recent years, has made it possible to produce a new generation of less 

expensive strapdown inertial survey systems that are comparable to the gimballed systems. 

The RLG strapdown inertial survey systems are in general more reliable, and require less 

power than the gimballed systems. The ring-laser-gyros are noisier than the conventional 

gyros used in most of the gimballed systems but, with improved software and accurate 

surveying measurements, ring-laser-gyro SISS have the potential to achieve the same 

positioning accuracy as the inertial survey systems being used today. 

The objective of the research described in this thesis is to convert a RLG strapdown 

inertial reference unit into a land-vehicle mode inertial survey system. The basic theory for 

strapdown inertial navigation and error estimation is well known. The main task of the 

research is the implementation of the theory. It is usually published in general form in the 

context of navigation and has to be adapted to the practical land surveying environment 

using a particular inertial reference unit. The task can be subdivided into three parts 

development of hardware needed to support the inertial reference unit and the data 

acquisition, development of estimation software that utilizes surveying measurements, and 

field testing of the SISS. 

The inertial reference unit used is a Litton LTN-90-100 RLG strapdown system 

which is designed for aircraft navigation purposes. Its software was modified by the 

manufacturer to allow the use for land surveying. An IBM PC-compatible data acquisition 

system was built by a company in Calgary for recording the data from the LTN-90- 100 for 

post-mission data processing. Two types of data are available from the LTN-90-100. They 
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are the 16 Hz velocity data and the 64 Hz rate data. A simple routine was developed to 

process the velocity data into coordinates which can be fed into a Kalman filter developed at 

The University of of Calgary. The Kalman filter is designed to estimate the errors of the 

velocities and coordinates using zero velocity measurements obtained while the vehicle 

stops at the survey points and the control coordinates of known stations on the traverse. 

The LTN-90-100 is designed to output vertical velocity and height only when external 

height information is available to the system. At present, the interface device in the data 

acquisition system cannot send such information back to the LTN-90-100, therefore it is 

not possible to determine the height of the system using the velocity data only. However, 

the horizontal coordinates as well as the height can be estimated from the rate data of the 

LTN-90-100 which consist of three body rotation rates and three body accelerations. A 

computer package containing an integration and an alignment module was developed to 

integrate the rate data into velocities and coordinates and to align the SISS, i.e. to determine 

the initial roll, pitch and azimuth of the system. Like the data integrated from the 16 Hz 

velocity data, the output of the integration module is fed into the Kalman filter for error 

estimation. The same filter used for error estimation process is also used during the 

alignment to fine-tune the estimated initial attitude of the system. An optimal smoother was 

developed to refine the estimates from the Kalman filter. The smoother basically uses all the 

information gathered after a specific epoch to improve the Kalman filter estimates at that 

epoch. Here, the combination of the Kalman filter and the optimal smoother is called 

Kalman filter-smoother. 

The integration and alignment module, and Kalman filter-smoother were tested with 

data from two different L-shaped baselines in Calgary and Cochrane. The 10-km Calgary 

baseline was surveyed once with the LTN-90- 100 to get the velocity data needed to test the 

Kalman filter-smoother. The rate data obtained from four surveys on the 25-km Cochrane 

baseline were used to test the integration module and the alignment module. 

This thesis is divided into nine chapters. The first chapter explains the objective of 
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the research. The various coordinate frames used in the description of the SISS are 

defined in the Chapter 2. A general description of the characteristics of the two types of 

gimballed systems and a more detailed explanation of the LTN-90- 100 are given in 

Chapter 3. The formulae used in the integration and alignment modules are derived in 

Chapter 4 and 5. Chapter 6 outlines the error estimation process and the Kalman filter-

smoother. The detailed description of the baseline tests are given in Chapter 7 and the 

results of the analysis of the tests are presented in Chapter 8. The final chapter of the thesis 

contains the conclusions derived from the results obtained and the recommendations for the 

use of the SISS in the future. 
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CHAPTER 2 

COORDINATE FRAMES 

In land surveying and geodetic positioning, the final output required by the client 

are usually the coordinates of a point in terms of latitude, longitude and height, and thier 

accuracies. The measurements sensed by an inertial survey system are three orthogonal 

components of the body rotation rates and three accelerations in a coordinate frame which is 

not directly related to any geodetic curvilinear coordinate frame. These measurements have 

to be analytically integrated and transformed, through several coordinate frames, to yield 

changes in the ellipsoidal coordinates. It is, therefore, important that all coordinate frames 

involved in the transformation of the measurements and the results of the integrations are 

well defined before any discussion of the inertial survey system is presented. The 

definition of various coordinate frames associated with the SISS are given in this chapter. 

2.1 Inertial Frame 

According to the Newtonian definition, the inertial frame is a frame which does not 

rotate or accelerate. Such a frame is easy to define in theory but it is almost impossible to 

realize in practice. The best approximation to a truly inertial frame would be one that is 

inertial with respect to the distant stars. One approximation to such a frame known to 

surveyors is the right ascension system. The right ascension system as given in a cataloque 

precesses and nutates at the rate of less than 3.6 1O arcsec/s ( see Mueller, 1977 ) which 

is well below the noise level of the sensors in present inertial survey systems. Thus, for all 

practical inertial surveying purposes, the right ascension system can be treated as an inertial 

coordinate frame. 

The definition of the inertial frame for this thesis is the following: 

origin - at the mass centre of the earth. 
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x-axis - towards mean vernal equinox at to; 

y-axis - completes a right-handed system; and 

z-axis - towards the north celestial pole at epoch to. 

A graphical representation of the inertial frame is shown in Figure 2-1. Note that this is an 

abstract definition of an inertial frame for computational purposes. Measurements are done 

with respect to an inertial frame defined by gyros which has a much poorer accuracy. 

z  

Greenwich 
meridian 

equinox 

xi 

notth 

Figure 2-1 : Inertial Frame 

2.2 Earth-fixed Frame 

The Earth-fixed frame is the frame in which the output coordinates of the inertial 

survey system are given. This frame is not inertial. It is revolving around the sun and 

rotating at a rate of 7.292115- 10-5 rad/s. The definition of the earth fixed frame is the 

following: 

origin - at the mass centre of the earth; 
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x-axis - pointing towards the Greenwich meridian, in the equatorial plane; 

y-axis - 900 east of Greenwich meridian, in the equatorial plane; and 

z-axis - axis of rotation of the reference ellipsoid. 

The coordinates in the earth-fixed frame can be transformed to the inertial frame by a 

negative rotation about the z-axis of the frame by the amount of the Greenwich Mean 

Sidereal Time (GMST). The reference ellipsoid used in this research is the WGS 80 

system. The semi-major and semi-minor axes are 

a=6378137.0m (2-1) 

and 

b = 6356752.3 m, (2-2) 

respectively. 

The relationship between the ellipsoidal coordinates that a surveyor wants and the 

orthogonal Cartesian coordinates of the earth-fixed frame is given by the expressions 

xe = (Rp + h) cos4) cos?, (2-3) 

ye = (Rp + h) cos4) sin? (2-4) 

and 

ze = (Rpb2/a2 + h) sin4), (2-5) 

where 

4),X and h are the ellipsoidal latitude, longitude and height, and 

Rp is the radius of curvature along the prime vertical at the point of interest. 

The value of Rp can be computed with the equation 

where 

a  

Rp - (le2sin24))1t2' 

e2=  a2 - b2  

a 

(2-6) 

(2-7) 



The derivation of equations (2-3) to (2-7) can be found in Krakiwsky and Wells ( 1971). 

The direction of the axes of the earth-fixed frame are illustrated in Figure 2-2. 

Greenwich 
meridian 

north 

Figure 2-2: Earth-fixed Frame 

ye 

equator 

2.3 Local-level Frame 

The local-level frame is a coordinate frame which is known to surveyors as local 

geodetic frame if a change in the direction of the x and y axes is made. The velocity of an 

inertial survey system is usually outputed as components along the axes of the local-level 

frame. The definition of the local-level frame is the following: 

origin - at topocentre; 

x axis - ellipsoidal east (also denoted as E axis); 

y axis - ellipsoidal north (also denoted as N axis); and 

z axis - upward direction along the ellipsoidal normal ( also denoted as U 

axis). 

A vector x in the local-level frame can be transformed to the earth-fixed frame via 

the equation 
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xe = 

where 

R = R3(-A.-90°) R1(-9O°). 

(2-8) 

(2-9) 

Here, R1 and R3 are the rotation matrices about the x and z axes of the Coordinate frame. 

The direction of the axes of the local-level frame and the components of the earths rate of 

rotation along them are shown in Figure 2-3. 

north 

Figure 2-3: Local-level frame 

2.4 Wander Frame 

The local-level frame is convenient for expressing a direction but it is not the best 

coordinate frame in which to perform the integration of the data from an inertial survey 

system. The y axis of the local-level frame is always pointing towards the north. At very 

high latitudes, a large rotation about the z axis is necessary to maintain the orientation of the 

local-level frame whenever it is moved towards the east, even by a small movement. This 

problem may be avoided by performing all the computations in a coordinate frame that does 
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not point north. Such a coordinate frame is called a wander frame. The wander frame is the 

same as the local-level frame in all aspects except that its y axis is not slaved to the north 

direction. It is, therefore, allowed to wander off the north axis at a rate chosen by the user. 

The angle between the y and north axes is called the wander angle. In this research, the rate 

of change of the wander angle is chosen to be 

(2-10) 

The definition of the wander frame is the following: 

origin - at topocentre; 

x-axis - rotated in the level plane by an angle a from the east towards the 

north. The angle a is called the wander angle and it is chosen to be 

equal to the meridian convergence from the point of alignment; 

• y-axis - orthogonal to the x-axis in the level plane; and 

z-axis - upwards along the ellipsoidal normal. 

The transformation matrix between the wander frame and the local-level frame is 

"cosa -sina 0 
n 
R - sina cosa 0 

01 

and the one between the wander frame and earth-fixed frame is 

(2-11) 

(sinXcosacossin4sina sinsina-cossincosa cos?cos4 \ 

R = cos?cosa-sjnsin4sjna -cossina-sin?sin4cosa sincos4 • (2-12) 

cos4sina cos4cosa sin 

Figure 2-4 shows that orientation of the wander frame used in this research. 
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north 

initial yW a yW present 
meridian meridian 
(a=O) I (a=—& sin) 

Figure 2-4: Wander Frame 

equator 

2.5 Body Frame 

The body frame is the orthogonal frame in which the measurements of a strapdown 

inertial survey system are made. Its axes coincide with the output axes of the sensbr block. 

Thus, the raw data output of a SISS are the components of the rotation rate and the 

acceleration experienced by the sensor block along the body axes. The local-level frame can 

be rotated to the body frame by three consecutive right-handed rotations about its three 

axes. The first rotation is made about its z-axis and the angular change is called the yaw of 

the SISS. The second rotation takes place about the rotated x-axis and the amount rotated is 

the pitch of the SISS. The third rotation about the rotated y-axis completes the total rotation 

between the two frames. The amount of rotation about the y-axis is called the roll of the 

SISS. The three angles: roll, pitch and yaw, are commonly referred to as the Euler angles, 

e.g. Giardina et al. ( 1981). The definition of the body frame of the strapdown inertial 

survey system used in this research is the following: 

origin - at the centre of the strapdown inertial survey system; 

x-axis - towards the left side of the SISS; 

y-axis - towards the back of the SISS, i.e. through the output pins; and 

z-axis - upwards and perpendicular to the x-y plane. 
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Quantities in the body frame can be analytically transformed to the locallevel frame 

using the transformation matrix 
n 

Rb = R3(y) R(p) R2(r) , (2-13) 

where y, p and r are the yaw, pitch and roll of the system. The elements in the matrix R 

are given below: 

R(l,l) = cos(y) cos(r) - sin(y) sin(p) sin(r) (2-14a) 

R(l,2) = -sin(y) cos(p) (2-14b) 

R(1,3) = cos(y) sin(r) + sin(y) sin(p) cos(r) (2-14c) 

R(2,1) = sin(y) cos(r) + cos(y) sin(p) sin(r) (2-14d) 

R(2,2) = cos(y) cos(p) (2-14e) 

R(2,3) = sin(y) sin(r) - cos(y) sin(p) cos(r) (2-140 

R(3,l) = -cos(y) sin(r) (2-14g) 

R(3,2) = sin(p) (2-14h) 

R(3,3) = cos(p) cos(r). (2-14i) 

For simplicity, the superscript n and subscript b have been eliminated from equations 

(2-14a) to (2-141). 

The transformation matrix between the body frame and the wander frame similar to 

the one given in equation (2-11) can be derived by substituting the yaw in the equation by 

the wander yaw, i.e. 

yWy..a. (2-15) 

The orientation of the body axes with respect to the strapdown inertial survey system is 

shown in Figure 2-5. and the relationships between the three topocentric frames are plotted 

in Figure 2-6. 
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Figure 2-5 : Body Frame 

zb 

roll 

zn,w 

Figure 2-6: Relationship Between the Three Topocentric Systems 
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2.6 Platform Frame 

The platform frame was created mainly for the derivation of the error equations. 

The frame is very close to the local-level frame. It is an approximation to the local-level 

frame established with the data, i.e. Euler angles, velocities and coordinates integrated from 

the raw data, from the SISS. The angular deviation of the frame from the local-level frame 

is called platform misalignment. The definition of the platform frame is listed below: 

origin - at the centre of the inertial survey system; 

x-axis - slightly misaligned from the x axis of the local-level frame; 

y-axis - slightly misaligned from the y axis of the local-level frame and 

orthogonal to the x axis mentioned above; and 

z-axis - completes the orthogonal right-handed system. 
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CHAPTER 3 

INERTIAL SURVEY SYSTEMS 

It has been thirteen years since inertial survey systems were introduced to the 

surveyors. The most commonly known ones are the gimballed local-level systems. Today, 

there are three major inertial survey systems available. Honeywell's GEO-SPIN, Litton's 

LASS II and Ferranti's F1LS Mark II. The Honeywell system is a space-stabilized system 

that utilizes electrically suspended gyros for maintaining the orientation of its sensor 

platform. The Litton and Ferranti systems are local-level systems that contain 2 to 3 

conventional gyros in their sensor blocks. Detailed descriptions of these three systems can 

-' be found in Harris ( 1981), Pfeifer (1985) and Hagglund (1987). 

A new generation of RLG strapdown inertial navigation/reference systems are being 

developed by various manufacturers for the commercial aviation market These systems are 

designed to meet the requirements of aircraft navigation and to use only the measurements 

from the instruments available in an aircraft to estimate the errors of the systems. Since the 

requirements of aircraft navigation are very different from geodetic surveying, these 

systems cannot be used for surveying as they are built. However, the sensors inside these 

systems are usually accurate enough for surveying purposes. Thus, with accurate 

surveying measurements and proper estimation techniques, it is possible to convert these 

strapdown systems into inertial survey systems. In this research, the Litton LTN-90-lOO 

inertial reference unit was selected for such a conversion. 

In this chapter, the general characteristics of the three types of inertial survey 

systems are briefly discussed. This is followed by the a more detailed description of the 

LTN-90-100 and its output. Readers who are interested in learning more about other 

aspects of inertial survey systems and the basic theory associated with inertial navigation 

are referred to Brining ( 197 1) and Farrell ( 1976). 
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3.1 Gimballed Systems 

In a gimballed system, the sensors, i.e. the gyros and accelerometers, are mounted 

orthogonally on a platform. The platform is constantly torqued such that the output axes of 

the sensors are always aligned with the axes of a well-defined frame. This requires 

real-time computation of the velocity and rate of rotation of the platform from the raw data 

measured by the sensors. Based on the rate of rotation of the platform with respect to a 

chosen coordinate frame computed from the data, the sensors are torqued back to alignment 

with the axes of the frame. Since the raw data contain random and systematic errors, the 

sensor axes are not perfectly aligned to the chosen coordinate frame. The misalignments in 

turn introduce errors in the computed velocities and rates of rotation of the system. This 

results in a characteristic error behaviour of inertial survey systems which, in real time, is 

dependent on the errors in the velocities and rotation rates of the system. Any systematic 

errors in hardware and alignment software, and the resulting system errors are very 

difficult if not impossible to remove or reduce in post-mission processing. Fortunately, the 

hardware and software in the gimballed inertial survey systems available on the market are 

well developed. The only problem is the accumulating system errors which must be 

removed periodically to keep the error behaviour linear. 

3.1.1 Space-stabilized Systems 

The space-stabilized system is a system that keeps its sensor axes aligned with the 

inertial frame or a set of fixed orientations with respect to the frame. This requires the 

system to establish its orientation with respect to the inertial frame and torque the platform 

back by the amount of rotation it senses. The integration of the raw data can then be 

performed in the inertial frame and the output of the system are the velocities and 

coordinates of the system in that frame. All natural rotation and acceleration such as the 

earth's rotation and gravity must be modelled in the inertial frame so that they can be 
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removed from the sensor output. The space-stabilized system performs more computations 

than the local-level system in real-time but it requires less mechanical torquing. 

3.1.2 Local-level Systems 

The local-level system differs form the space-stabilized system in the sense that it 

aligns its sensor axes with the local-level frame. This is accomplished by removing the 

earth's rate of rotation from the rate of rotation sensed by the system and by torquing the 

platform back at the reduced rate. Modelling of the gravity field is simple because the z axis 

of the local-level frame coincides with the normal gravity vector. In the absence of any 

knowledge of the anomalous gravity field, the gravity vector can be approximated by the 

normal gravity vector. The computations in the system are performed in the local-level 

frame and no transformation of the normal gravity and velocity data before output is 

necessary. The major limitation of the local-level system is that it cannot be used at very 

high latitude. Near the poles, a small movement to the east would force the system to 

perform a relatively large rotation of its platform about its z axis in order to maintain its 

alignment with the local-level frame. 

3.2 Strapdown Systems 

Although strapdown systems are relatively new in inertial surveying, the basic 

differential equations that describe a moving triad have been around for more than a 

century. A strapdown inertial survey system consists of a triad of sensors which is fixed to 

the body of the system. The sensors measure the components of the rotation rates and the 

specific force as experienced by the unit as it is moved along its trajectory. If the initial 

Euler angles and velocity of the system are known, the rate of rotation of the system due to 

earth rate and system velocity can be removed from the measured rates to obtain the attitude 

rates. By integrating the attitude rates, one can determine increments in the Euler angles of 

the system. Once the Euler angles are known, the sensed components of specific force and 
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the normal gravity vector can be transfoimed to the wander or the local-level frames where 

they can be converted into components of acceleration in those frames. The velocities and 

coordinates of the system can be obtained by integrating the accelerations and adding the 

results to the initial velocity and coordinates. The process repeats itself as the system moves 

along its trajectory. 

Obviously,' no real-time computation or torquing is necessary to operate a 

strapdown system if real-time results are not needed. Users can just record the raw output 

from the gyros and accelerometers and apply, in post mission, any mathematical models 

they choose for data integration, alignment and error estimation. The disadvantage of using 

the strapdown system is that more computation is required to process the data into 

velocities and coordinates. 

Today, there are several strapdown reference/navigation units available on the 

market. Some use conventional gyros for rate measurement while others utilize RLG 

technology. The ring-laser-gyros are in general noisier than the well developed 

conventional gyros but, due to the absence of moving parts, they do not require as much 

power and frequent maintenance as the conventional ones. The new generation of 

ring-laser-gyros available to civilian user today are becoming comparable to conventional 

gyros in terms of accuracy and have the advantage of lower cost and higher reliability. 

Detailed descriptions of various kinds of strapdown gyros and accelerometers used in 

inertial navigation can be found in Savage ( 1978). The flexibility, reliability and lower 

initial cost are the main reasons for this effort to convert an RLG strapdown inertial 

reference unit into a SISS. 

3.2.1 LTN-90-100 

The Litton LTN-90-100 is a ring-laser-gyro inertial reference unit developed for 

civilian airlines. The system together with its control units weights about 29 kg. The 

system was designed to utilize the 400 Hz 115 VAC or 28 VDC current available in an 
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aircraft. The total power requirement of the LTN-90-100 is about 150 watts. The system 

comes in four separate components : the inertial reference unit (IRU), mode selector unit 

(MSU), inertial sensor display unit (ISDU), and a DC or AC support tray. The inertial • 

measurement unit contains the sensor block, microprocessors and the internal power 

supply. There is a panel of pins at the back of the IRU which allows the system to 

communicate with the other units or flight instruments and to receive power from the 

aircraft. The mode selection unit is a small instrument which is used to activate the system. 

It also displays the type of electric current used and indicates whether the system is still in 

alignment state. The inertial sensor disply unit is the control unit which accepts the initial 

horizontal coordinates and displays horizontal coordinates, ground speed, track angle, 

azimuth and status of the system. The ISDU is designed to control three separate IRU 

simultaneously. The IRU can be supported by a tray which has a AC fans mounted on its 

bottom for cooling of the system. The tray is wired to take DC current from the IRU to 

power the fan. An AC version of the tray is also available to users who have access to 

continuous 400 Hz AC supply. 

In its standard navigation mode, the LTN-90- 100 requires 10 minutes for system 

alignment. At the beginning of the alignment, the user is expected to enter the initial latitude 

and longitude of the system. The LTN-90- 100 also tries to obtain height information from 

the baro-altimeter in the aircraft, and will not output any vertical velocity and height data 

during alignment or navigation until the information is available. The initial latitude and 

temperature of the system must be between ± 70° and 0 to 800 C, respectively, for the 

system to initiate the alignment process. The LTN-90-100 outputs the roll and pitch of the 

sensor block almost immediately after it goes into alignment but it needs 4.5 minutes to 

determine a valid initial azimuth. The system also checks the validity of the input latitude by - 

comparing it with the latitude it derives from the measurements. If the difference is greater 

than 30 arc minutes, the system remains in the alignment mode until it receives a set of 

valid initial coordinates. The system issues a flashing warning on the MSU during 
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alignment when it experiences difficulties in getting the power or air for the AC fan to 

operate. The LTN-90-100 displays its ground speed immediately after it finishes the 

alignment and goes into navigation. During navigation, the LTN-90- 100 checks the 

magnitude of its velocity and body rotation rates continuously and resets its velocity to 

zero if they are below a set of limits for more than three minutes. The system also performs 

a coordinate reset after the aircraft has remained stationary for more than 12 minutes. These 

features are built into the LTN-90-100 to improve the positioning accuracy of the system 

when the aircraft makes any intermediate stops along its route. 

Several hardware and software modifications were made to the LTN-90- 100 at The 

University of Calgary before it could be used for inertial surveying. A metallic case was 

built to hold all three units and the DC tray together. Wiring work was done to the DC tray 

to connect the power and I/O pins on the LTN-90-100 to an external DC power supply and 

the two control/display units. These modifications were done with information supplied by 

the staff of Litton Systems Canada in Toronto. After the wiring,the LTN-90-100 can be 

started with 24 VDC power from two deep-cycle batteries arranged in series. Special pins 

on the LTN-90- 100 normally not used were connected to a switch so that the system can be 

changed from the standard navigation mode to the lab testing mode. In the lab testing 

mode, the LTN-90-100 disables the velocity and coordinates reset functions. 

The output of the LTN-90-100 was designed to meet the requirements of aircraft 

navigation, and it is not precise enough for land surveying. Software modification were 

made by the manufacturer to output the data relevant to surveyors in higher precisions. This 

is accomplished by storing the data in larger numbers of bits in the data words. For 

example, the number of bits of the data word that carries the body acceleration was changed 

from 15 to 18. The data frequency was doubled to minimize the errors incurred during 

integration due to system noise and discretization error. In case of the body rates, the 

frequency was changed from 32 to 64 Hz. The precision of the modified output of the 

LTN-90-100 is shown in Table 3-1. The LTN-90-100 filters the data with a first-order lag 
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filter or a second-order Butterworth filter before they are sent to the user. The second-order 

Butterworth filter for the body rates and accelerations was removed from the software to 

'reduce the time delay of the output, and to avoid any systematic smoothing effect that the 

filter may have on the data. ,A very detailed description of the LTN-90-100 is given in 

Litton ( 1984). 

3.2.2 Data Acquisition System 

The raw output of the LTN-90-100 is sent to the flight computer and radar onboard 

an aircraft in ARINC 429 format through several output pins on the system. A survey user 

can record the data with an ARINC 429 compatible interface device. One such device was 

built by Pulsearch Technology Consolidated Ltd. of Calgary for The University of Calgary 

to receive data from the LTN-90- 100. The device was designed to be fitted into an IBM 

PC-compatible computer such that a simple program can be run on the computer to record 

the incoming data rapidly. At present, the interface device is not yet capable of sending 

height information back to the LTN-90-100. Therefore no vertical velocity or height is 

output by the system to the user. A custom made 6/10 MHz IBM PC-compatible data 

acquisition system was built by the same company for recording the data and other 

surveying information in real time using DC power from an aircraft or two deep-cycle 

batteries. There are two 20-Mbyte hard disks in the data acquisition system. About 12 

Mbytes of disk space is permanently used to store system software and processing 

programs and a maximum of 19 Mbytes of data can be stored in the system at a time. The 

data acquisition system can operate at either 6 or 10 MHz clock frequency but it can only 

record the data properly at 10 MHz. The combined power requirement of the LTN-90-100 

and the data acquisition system is about 240 watt. A mass storage device capable of storing 

up to 2 Gbytes of data was acquired to store the large amount of data directly from the data 

acquisition system. A picture of the LTN-90- 100 and the data acquisition system is shown 

in Figure 3-1. 
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Figure 3-1 : The LTN-90-100 Based Strapdown Inertial Survey System 

Two simple programs written in C language were developed with subroutines from 

Pulsearch to record the raw data as well as surveying station information supplied by the 

operator at the start of the survey. The first program records, at 16 Hz, the time, horizontal 

velocities and the Euler angles of the system. When the vehicle stops at a station, the 

program permits the operator to interact with the data acquisition system in real time so that 

he can mark the stop with the station number he entered into the system at the start of the 

survey. The operator can interrupt the data recording process by pressing a key on the 

keyboard of the data acquisition system. The keys to be pressed for various functions are: 

(a) "c't for stop on a survey station and the beginning of velocity observation 

period; 

(b) " z "  for stop on an arbitrary point and the beginning of the velocity observation 

period; 
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(c) 'T' for closing a data file and opening a second file; and 

(d) "s" for terminating the execution of the program. 

The number of every station is entered by the operator at the beginning of the survey. For a 

two-way survey, i.e. one forward run over the entire traverse and then a backward run, the 

number of each station is entered twice : once for the forward run and once for the 

backward run. The program is usually run right after the system finishes the alignment 

process. The data are stored in binary form and the program records about 1 Mbytes of data 

for every hour of navigation. 

The second program has the same features as the first program except that it records 

the 64 Hz rate data, i.e. three body rates and three accelerations. Unlike recording the 

velocity data, at least 10 minutes of rate data need to be recorded for system alignment 

before moving the LTN-90-100 from the initial point. Due to the higher data rate, the 

second program records about 4 Mbytes of data for about one hour of operation. 

3.2.3 Data Output 

The modified output of the LTN-90-100 relevant to surveying is tabulated in Table 

3-1. It shows that the precision of the coordinates of the system is about 17 m which is too 

low for surveying applications. More precise horizontal coordinates may be recovered by 

integrating the north and east velocities. These velocities have a precision of 0.008 m/s and 

have been smoothed by the filter built into the LTN-90- 100. They do not change very much 

when the system is stationary over a short period of time. Thus, if velocity measurements 

of that period are needed, one observation should be sufficient to represent the entire 

sample. The low precision of the velocities is due to the truncation error in the output. The 

data are output as 18-bit integer words plus a sign bit and the range of the velocities is 

2117 m/s. Since the largest possible integer of an 18-bit word is 218 then the smallest 

velocity output possible is 
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2117 m/s  
0.O081 ni/s. 218 (3-I) 

The truncation error is a form of systematic error which can be reduced by adding or 

subtracting half of the maximum error to the number, i.e. 0.00405 m/s, depending on 

whether the number is positive or negative. 

Parameter Rate (Hz) Range Resolution Accuracy (2 a) 

Latitude 16 ±1800 19.127m 3.7km/h 

Longitude 16 ± 180° 19.127m 3.7km/h 

Altitude* 32 ±39928m 0.038m 1,524m 

H. ye!. 16 ±2117ni/s 0.008m/s 4.Om/s 

V. ve1. 32 ±162.6m/s 0.152m/s 1.52m/s 

Roll & Pitch 64 ± 180° 2.47" 1.0° 

Amuth 32 ± 180° 2.47" 1.00 

Body rates 64 ± 128°/s 1.757"/s 0.1°/s 

Body accel. 64 ±39 m/s 2 0.l5nmi/s2 0.098m/s2 

* not available at present 

Table 3-1 : Output of the L1'N-90-100 

The rate data on the other hand are a lot noisier. The vibration of the system caused 

by the dithers in the ring-laser-gyros and the cooling fan introduces high frequency noise to 

the sensor output. The dithers and fans are manufactured such that their frequency are 

restricted to the range of 380 to 420 Hz and the separation between the dither frequencies 

are greater than 5 Hz. Due to the much lower data sampling rate of 64 Hz, the effects of the 

vibration show up as very low frequency components in the frequency spectrum of the rate 
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data. The apparent reduction in frequency of the output caused by the lower data sampling 

rate is known as aliasing effect. Detailed description and explanation of the effect can be 

found in Brigham (1974). As an example, the body accelerations of the SISS along its 

x-axis and the corresponding frequency plot derived by Fast Fourier Transform techniques 

are shown in Figure 3-2 and 3-3. Three large components can be seen in the spectrum near 

the 24-Hz mark. They correspond to the three dither frequencies of the RLG. The fourth 

component near the 8-Hz mark which is smaller than the three but still larger than the 

average component may be caused by the cooling fan. Using the least-squares forward-

backward technique decribed in Blais and Vassiliou ( 1987), the relative power spectral 

densities (PSD) of the data was also derived and shown in Figure 3-4. The PSD plot 

clearly confirms the locations of these large frequency components. Fortunately, due to 

their high frequency nature, the effect of the vibration can be treated as random noise with 

zero mean in the long run. However, it does present a problem when the rate data are used 

to rapidly and coarsely align the system at the beginning of the system alignment process. 

The errors caused by the vibration may be reduced by applying a second-order 

Butterworth filter to the rate data during coarse alignment. The derivation of a recursive 

second-order Butterworth for a discrete time-dependent data sample is well known and can, 

for instance, be found in Kanasewich (1981). Basically, a continuous second-order 

Butterworth filter satisfies the analogue transfer function 

1 

s2-i-r2s+1 
(3-2) 

where s is the normalized frequency variable. The recursive filter can be obtained by 

applying a bilinear transformation of equation (3-2). It consists of two steps. First the 

Z-transformation of the analog function to a discrete function is performed by substituting 

K(z- 1) 
- (z + 1) 
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where z is the transform operator and K is a transformation constant. The effect of the 

bilinear transformation is a warping of the discrete frequency to analog frequency, i.e. 

COa = Kta.n(1tcOdLt), (3-4) 

where Wa is the analogue frequency, C0d is the discrete frequency and At is the sampling 

interval. In the second step, the transformation constant is chosen such that 

1 = K tan (irtf), (3-5) 

where f is the cutoff frequency. The result is a transfer function that links the input X in 

the frequency domain to the output Y as 

where 

and 

Z-2 + 2z -1 + 1  
kz-2 + kiz' + ko X 

ko = K2 + + 1, 

k1=2( 1-K2)' 

k2 = K2 - 'r2K + 1, 

1  
K= 

tan(itf14t) 

(3-6) 

(3-7a) 

(3-7b) 

(3-7c) 

(3-7d) 

Multiplying the left hand side of equation (3-6) with the denominator on the right hand side 

one gets 

Y = (z-2X + 2z-1X + X - k2z2Y - kiz-'Y)/k. (3-8) 

Since the effect of the z1 operator on the input X and output Y is a shift in the time domain, 

the Z inverse transform of equation (3-8) becomes 

yk = + Xk4 + Xk - k2yk..2 - klyk..i)/ko. (3-9) 

Equation (3-8) is the recursive second-order Butterworth filter for input x at epoch k. Note 

that the subscripts k, k-i, k-2 are used to denote the epoch of the input and output and they 

should not be confused with the coefficients k0, k1 and k2. The recursive equation (3-9) 
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can be initiated with yo and yi equal to the expected value of y such as the approximate 

mean of the sample. 

In order to remove most of the noise caused by the system vibration, the cutoff 

frequency of the second-order Butterworth filter developed for all six rate data was chosen 

to be 1 Hz and its coefficients are 

k0 = 444.13204, (3-l0a) 

kj = -826.69012, . (3- lob) 

= 386.55808. (3-lOc) 

The initial values of the rate data are computed by the transformations 

-b - b 
°ib = Rn 0e 

and 

(3-11) 

(3-12) 

where y is normal gravity and fZis the approximate attitude matrix computed from the 

approximate Euler angles obtained at initialization. 

Results from the application of the filter show that the standard deviation of the 

sample of the data is reduced by an order of magnitude after filtering. As an example, the 

RMS of the rate data of a stationary LTN-90-100 before and after filtering are tabulated in 

Table 3-2 to show the effect of the 1-Hz Butterworth filter. They show that filtering 

reduces the noise considerably but does not change the mean very much. However, the 

effect on the mean is large enough to corrupt the precise deternination of the Euler angles 

and velocities of the SISS in fine alignment and navigation. Therefore the filter is not used 

there. 
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Data 
Before After 

Mean RMS Mean RMS 

x-body rate ("/s) 1.368 167.148 1.404 3.816 

y-body rate ("Is) -11.520 181.332 -11.448 20.52 

z-body rate ("Is) -12.060 203.580 -12.060 3.492 

x-acc. (mgal) 10443 2742 10406 571 

y-acc. (mgal) -41891 3089 -41865 392 
z-acc. (mgal) -1404 3435 -1404 80 

Table 3-2 : RMS of the Filtered Rate Data of a Stationary LTN-90-100 
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Figure 3-3: Frequency Plot of the X Body Acceleration 
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CHAPTER 4 

NAVIGATION EQUATIONS 

The two types of data recorded by the data acquisition software are either velocities 

and Euler angles or body rates and accelerations. The main task of any navigation software 

is to integrate these velocities and rates into velocities and coordinates. The integration of 

the velocity data is straightforward whereas a much more complex set of navigation 

equations is needed to process the rate data. The navigation equations in general form are 

well known, see Stieler ( 1981). However, the application of these equations to practical 

inertial surveying has never been published. The purpose of this chapter is to list the 

equations needed to integrate the two types of output of the LTN-90-100 recorded by the 

data acquisition software into the quantities that surveyors need. The initial Euler angles, 3-

D velocities and coordinates are assumed to be approximately known at the beginning. 

4.1 Velocity Integration Module 

There are six numbers in each velocity data record. For a small time interval At, the 

north and east velocities can be directly integrated into change in the latitude and longitude 

using the equations 

L &VN 
- MM + Ii 

and 
itV  

RE + h sec4 

where 

R a(1-e2)  
M --  (1-e2sin)3a 

and 
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RE = Rpsec4). (4-4) 

The quantities RM and RE are the radii of curvature along the meridian and parallel 

respectively, and h is the ellipsoidal height of the strapdown inertial survey system. The 

current horizontal coordinates of the SISS can be obtained by simply adding these changes 

to the initial coordinates. The Euler angles in the data set are not used in the integration 

module for the velocity data. They are only needed later in the estimation process. 

Since equations (4-1) and (4-2) require ellipsoidal height and the LTN-90-100 does 

not output height data without obtaining external height information first, the value of h 

may only be approximated by the mean height of the area of interest in terrestrial surveying. 

The accuracy of the integration can be significantly affected if the change in height in the 

area in drastic and large. The velocities are the result of integrating the rate data by the built-

in software. Their accuracy is dependent on the alignment accuracy of the LTN-90- 100 

which deteriorates with time until a re-alignment is performed. In post-mission processing, 

the errors in the velocities can only be estimated but not removed. In other words, the 

situation is the same as processing the data from a gimballed system. 

4.2 Rate Integration Module 

Unlike the velocity integration, the navigation equations for the rate data are lengthy 

and more complex. Each record of rate data contains six numbers : the x-y-z body rates and 

the corresponding body accelerations. The integration of the data requires two recursive 

steps. First, the change of the Euler angles are computed from the body rates and then, in 

the second step, the body accelerations are transformed to the wander frame where they are 

integrated into changes in velocities and coordinates. The computation of the Euler angles 

can be accomplished by using numerical techniques such as the three-parameter 

propagation or the quaternion approach, see Giardina et al. ( 1981). All these methods have 

their advantages and disadvantages. The quaternion approach was adopted in this research 

mainly because it is numerically stable and efficient, and the normalization of the attitude 
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matrix, i.e.body to wander frame transformation matrix, is less complex than the other 

methods. The use of quaternion and other methods for the propagation of the attitude 

matrix are well documented in the literature, e.g. Grubin (1970) , therefore it is not given 

here. 

The LTN-90-100 is factory calibrated and the sensor biases in the system are 

compensated with the stored calibration parameters. However, due to errors in the 

calibration and is the different environments in which the systems are used, the biases 

cannot be completely removed by the application of calibration parameters alone. Users 

may have to perform, from time to time, their own in-house calibration to obtain additional 

calibration parameters which can account for the biases in the sensors and their working 

environment. The results of such an in-house calibration are usually 3 gyro drift and 

accelerometer bias correction parameters. The calibration procedure used in this research 

will be discussed in the next chapter. 

The body rates of a SISS can be computed from the sensed body rates by the 

equation 

and the specific force by 

where 

-b - - lb =if_ a - b + g0 , 

I, 0 
g0= 0 

9.7802703 + 0.05 17993sin24 - 19.694059h/a 

(4-5) 

(4-6) 

(4-7) 

d is the correction vector for the body rates, and b is the correction vector for the body 

accelerations. The thirdelement in g0 is the equation used in the LTN-90-100 for the 

computation of normal gravity. When external height information is not available the value 

of h in the formula is set to zero. This formula is not consistent with the normal gravity 
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formula of the reference ellipsoid of interest therefore the value of g0 is added back to the 

measured accelerations to recover the specific force so that a proper formula may be applied 

later to compute the body acceleration with respect to the ellipsoid. 

The raw angular rotation of the body with respect to the inertial frame, i.e. O'b, can 

be integrated from the compensated body rate, ib by 

(4-8) 

Expanding the sine and cosine of the angular rotation body frame with respect to the inertial 

frame into Taylor series and truncating them after the fourth term results in 

2sin(O/2) - 02 
se e 1- 24 

cO 2(cos(O/2) - 1) 0.25( + 04 

where 0 is the magnitude of 6 . Let ib 

and 

Ae = so O ib - OiW 

(4-9) 

(4-10) 

(4-11) 

(4-12) 

then the quaternion components of the body to wander frame transformation can be 

propagated by the equations 

q  = q  + 0.5( cOqi + zOxq2 - zOyq3 +.Ozq4) (4-13a) 

q2 = q2 + 0.5( - Ozql + c0q2 + Oxq3+zOyq4) (4-13b) 

q3 = q3 + 0.5( tOyq1 - iOxq2 + cOq3 + AO,zq4) (4-13c) 

q4 = q4 + 0.5( -i0xq1 - Oyq2 - iX0zq3 + c9q4) (4-13d) 

for AOx, i.Oy and AOz being the x-y-z components of i0. A detailed explanation of the 

propagation of the quaternion components is given in Appendix A. These quaternion 

34 



components can be used to construct the body to wander frame transformation matrix. The 

relationship between individual element in the transformation matrix and quaternion 

components is given by the following equation: 

w 
Rb -. 

i'q1 2 -q22 -q32 +q42 2(qlq2-q3q4) 2(qlq3+q2q4) ' 

2(qlq2+q3q4) q22 - q1 2 - q32 + q42 2(q2q3-qlq4) 

2( qlq3 - q2q4) 2( q2q3 + qlq4) q3 2 - q1 2 - q22 + q42 1 

(4-14) 

In order to apply equation (4-13), one has to know the initial latitude and Euler 

angles so that the matrix R, and the vector öS iw may be constructed for the initialization of 

the process. This information is obtained during the cparse alignment process. More 

discussion on the initialization will be given later. 

The specific force in the body frame can be transformed to the wander frame via 

;W _Dwb 
'ib'b ' ib (4-15) 

The raw specific force contains the vehicle, Coriolis, gravitational and centrifugal 

accelerations. The non-vehicle accelerations must be removed from fib before it can be 

integrated into velocity increments. 

The Coriolis acceleration is a velocity-dependent quantity and it can be computed as 

where 

-w - -w -w 
a = -VN( 2°ie + 

( -  - '\ 
(OeSiflacOS4 

O)eCoScoS4 

\ (OeSifl ) 
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°ew = 

'\ 0 ,/ 

- RMRP 

and 

(RMC0Sa - Rpsin() 

RMRP  

(RMsina + Rpcosa) 

(4-18) 

(4-19) 

(4-20) 

The combined effect of the gravitational and the centrifugal acceleration on the 

specific force may be approximated by the free-air normal gravity formula for the WGS 80 

ellipsoid (Moritz, 1984). 

'?'= 9.780327(1 + 0.0O527094sin2 + 0.0O0O232718sin4 ) - 0.3O86•10 51 

(4-21) 

The estimated height in metre, is used in equation (4-21) to minimize the height-

dependent vertical acceleration error, which accounts for the exponential growth behaviour 

of the error in height. 

Once all components of the specific force are calculated, the change in velocity can 

be computed as 

(4-22) 

where the subscript k denotes the present epoch. The velocity of the present epoch can be 

expressed as 

—w —w 
"k = "k-1 + 0.5( AVw + AVw 
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Since the computation of the various components of the- specific force are dependent on the 

velocity of the vehicle, the errors due to the use of time-lagged velocity in the computation 

may be reduced by repeating equations (4-16) to (4-23). Obviously, the change in velocity 

must be stored for the computation in the next epoch. 

The integration of the change in velocity into change in position can be divided into 

two parts : the propagation of the wander to earth transformation matrix and the 

computation of the change in height. The horizontal coordinates of the SISS and the 

wander azimuth can be computed from the elements of the matrix R after the propagation 

of the matrix. The required equations for the two parts are 

and 

= (R,)k..1 + t (R)k-1, (4-24) 

hk =hk-1+ LtVV . (4-25) 

-w 
After the propagation of the wander to earth transformation matrix, a new °ew can 

be computed, and thus a more accurate R' matrix by repeating equations (4-8) to (4-14). 

Whenever they are needed, the Euler angles of the SISS can be computed from the 

elements of the body to wander frame transformation matrix, i.e. 

and 

pitch = sin-1(R d(32)) (426) 

roll = tan-1 

azimuth = tan-1 

(4-27) 

a (4-28) 
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The wander angle c, the latitude, and longitude of the SISS can be obtained from the 

elements of the wander to earth transformation matrix, i.e. 

= sin-1(R(33)) (4-29) 

and 

7= tan-

&= tan-1 

Re ( 1,3) 
\\ W ,J 

(4-30) 

(4-31) 

The navigation equations given in this section describe an iterative process therefore 

certain quantities must be made available or initialized before the process can start. These 

quantities are the Euler angles, the velocities and the coordinates of the SISS at the initial 

epoch. During the coarse alignment process, approximate values for each of the Euler 

angles are computed from the raw measurements for the initialization. With these angles, 

one can compute the body to wander transformation matrix by substituting the yaw in 

equations (2-14a) to (2-14i) by the wander yaw, if the wander angle is set to zero at the 

initial epoch, then the wander azimuth is equal to the azimuth of the SISS. The quaternion 

components corresponding to the transformation matrix are: 

4=0.5./1 + R''(1,1) + R''(2,2) + R''(3,3) (4-32a) 

qi = 0.25( R"(3,2) - R'(2,3))/q4 (4-32b) 

q2 = 0.25( R"(1,3) - R'(3,1))/q4 (4-32c) 

q3 = 0.25( R w b (2,1) - R'(1,2))/q4 (4-32d) 
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Another quantity that must be initialized at the starting epoch is the wander to earth 

transformation matrix. Given the initial latitude, longitude and wander angle, the matrix 

can be computed with the equation (2-12). A general flowchart, that describes the flow of 

data within the integration module developed for the rate data from the LTN-90-lOO with 

the navigation equations listed in this chapter, is shown in Figure 4-1. The equations in this 

chapter are written specifically for an inertial strapdown survey system in the land-vehicle 

mode. However, only minor changes may be necessary to adapt these equations to the 

aircraft or ship-mode SISS. In the airborne or marine environment, external height 

information may be available and can be used instead of the estimated height to compute 

normal gravity. The different dampening effects when using various external heights would 

cause small changes to the error model used in estimating the height error. 
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CHAPTER 5 

ALIGNMENT 

Alignment of a stationary strapdown inertial survey system is a process whereby 

the initial Euler angles or the attitude matrix of the system are determined from its sensor 

output, approximate coordinates and the observed velocities. This process is divided into 

two parts: the coarse and the fine alignment. During the coarse alignment, approximate 

values for the roll, pitch and azimuth of the system are rapidly obtained from the rate data 

and approximate coordinates. The approximate Euler angles are refined in the fine 

alignment process by a Kalman filter using the raw velocity data from the rate integration 

module as external observations in the measurement update. Alignment is necessary when 

processing the rate data because the initial orientation of the SISS is unknown. Usually, the 

surveyor can obtain a rough indication of the yaw of the system with a magnetic compass 

and, since the SISS is usually set up on a relatively level surface, the roll and pitch of the 

system may be considered zero. However, the errors in these values are too large to be 

used as initial values for fine alignment. The Kalman filter used in fine alignment is a 

first-order error estimation tool therefore the coarse alignment process is needed to estimate 

a better set of Euler angles. This chapter presents the equations used in the alignment 

module developed for the LTN-90-lOO rate data. 

5.1 Coarse Alignment 

The approximate value of the yaw of the SISS can be directly computed from the 

mean value of the x and y body rotation rates through an iterative process if the 

approximate coordinates of the system are given. When the system is stationary the sensed 

rate data are the components of earth's rate of rotation and of the gravity vector in the body 

41 



• frame. Assuming that the rate data have been filtered by the second-order Butterworth 

filter, the mean value of the x and y body rates can be written as 

J 

[wit =  ie le 

k=0 

(5-i) 

where J is the size of the data sample used and i denotes the x or y-axis. The body rates in 

equations (5-1) should be the body rates corrected for gyro biases. The approximate 

wander yaw of the system, i.e. the angle on the horizontal plane measured from the y-axis 

of the wander frame, can be computed with equations 

-w 
Wie Kb °ie' 

(c" 1w\ 
L°)XJje 

= 

(5-2) 

(5-3) 

The quantities {&] and in equation (5-3) are the x and y components of the 

AW 
vector If the initial wander angle is chosen to be zero, then the yaw is equal to the 

wander yaw at the initial point. Since equation (5-2) requires the knowledge of the attitude 

matrix, the computation of the yaw or wander yaw can only be done in an iterative manner. 

In the coarse alignment module developed for the LTN-90- 100 data, the attitude matrix is 

updated and reset every 4 seconds with the approximate yaw obtained in the coarse 

alignment. The roll and pitch of the system, needed to complete the update, will be 

discussed later in this section. 

The error in the approximate wander yaw can be derived by applying the law of 

error propagation to equation (5-3) to get 
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A w 
-Cos 6[(Ox]W + ie 

A sin(y) öYhie  ec0s (5-4) 

Equation (5-4) show that, due to the fact that the earth has a rotation rate of = 15 arcsec/s, 

an error of 0.26 arcsec/s in the body rates can introduce a one degree error in the wander 

yaw. That is the reason for the application of the second-order Butterworth filter to reduce 

the size of the random noise caused by the vibration of the system. The effect of the 

random noise can also be reduced if a large sample of data is used to determine the mean 

value of the x and y body rates, although that increases the computation time. 

The coarse leveling of the SISS involves the use of the raw velocities from the 

integration module. The approximate roll and pitch of the system can be determined in two 

steps. First, the 3-D velocities are transformed to the body frame by 

and then, in the second step, the error in roll and pitch are computed by the equations 

(-b 
vx 

= sin-1 

and 

(5-5) 

(5-6) 

(5-7) 

where T is the time between velocity and attitude resets. During the reset, the velocities are 

set to zero and the errors in the Euler angles are subtracted from the approximate values. 

If the initial latitude of the SISS is known, the drift in the z-gyro may be computed 

as 
A  

b = ° ib - 0e sln4L 
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The coarse alignment usually takes about 1 minute to converge to an accurate 

solution. Lab tests show that, during coarse alignment on a stable surface, the yaw or 

azimuth of the system can be determined to an accuracy of one degree while the roll and 

pitch are good to about 40 arcsec. Figure 5-1 shows the general flow of data in the coarse 

alignment module developed for the data from the LTN-90-100. 

5.2 Fine Alignment 

The fine alignment process that follows the coarse alignment is actually a special 

case of inertial surveying. During standard inertial surveying, the system stops regularly to 

update its error states with velocity measurements and, whenever it is necessary, resets its 

raw navigation quantities with the estimated values. In fine alignment, the system is 

stationary. The interval between updates is much shorter, for example 10 seconds, and the 

reset is done after every update. The estimation software required for the fine alignment is 

he same as the one used in surveying with some minor changes. A Kalman filter was 

developed to estimate the errors in the navigation quantities, and any residual biases in the 

sensors that are not removed in the system calibration. The errors are called the error states 

of the SISS, and the vector that contains these errors are the state vector. In this section, 

only the use of the estimated error states to align the SISS is discussed. Details on the 

Kalman filter will be presented later in Chapter 6. 

The state vector of the Kalman filter consists of the misalignment errors between the 

platform frame and the local-level frame, errors in the coordinates and velocities, residual 

gyro drifts and accelerometer biases. These errors are estimated with velocity 

measurements during fine alignment. If the alignment errors are denoted as 

cfl=[ CE, CN,Eu]T, (5-9) 

where 

CE is the misalignment of the east axis, 
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EN is the misalignment of the north axis, and 

eU is the misalignment of the vertical axis, i. e. yaw error, 

and if it is assumed that the second-order errors are negligible, the relationship between the 

true and approximate attitude matrix can be expressed as 

R = (I - E) R, (5-10) 

where E is the skew-symmetric matrix 

(o -ej e 
E= crj 0 -CE  

CN CE 0 j 

This relationship can be applied to reset the attitude matrix and the Euler angles with the 

misalignment errors estimated by the Kalman filter. Equation (5-10) is based on the 

assumption that the misalignment errors of the system are small. Any large misalignment 

and second-order errors can cause the process to diverge. That is the reason for performing 

the coarse alignment as accurately as possible before the fine alignment. 

Since the yaw is different from the wander yaw by the wander angle, a, equations 

similar to equations (5-10) can be derived to reset the R' matrix. The relationship between 

the error in the yaw and the wander yaw can be written as 

Ewander yaw = CU - 

Since 

(5-12) 

(5-13) 

the error öa can be expressed as 

6a = -J sin d  

—Lt A j Siflcj, 
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where W. is the error of the rate of longitude, for n = t/tt. Thus, the roll, pitch and wander 

yaw can be updated with equations (5-10) and (5-11) by substituting ELI by Ewander yaw 

and R n b by R w b. 

During fine alignment, the coordinates of the initial point, if known, can be used as 

update measurements to improve the estimates of the Kalman filter. However, due to the 

accurate velocity updates, the coordinate update usually does not bring substantial 

improvement to the estimated misalignment errors. It is recommended that these be 

performed only at the beginning and end of the fine alignment period. 
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CHAPTER 6 

ERROR ESITh'IATION 

Systematic errors in the sensors of a strapdown inertial survey system are usually 

invariant with respect to time. Unfortunately, due to the interdependent relationship 

between the navigation quantities, the effect of the sensor errors on the error states of the 

SISS is cumulative and time-dependent. Analytical formulae for the behaviour of the effect 

given in Wong (1979) show that the errors in the alignment, horizontal velocities and 

coordinates are bounded and sinusoidal while errors in the vertical velocity and height grow 

exponentially. The unbounded growth of the errors in the vertical velocity and height are 

mainly caused by the error in computing the normal gravity with the raw height. They can 

be dampened if an external height is used instead. 

There are many ways to estimate the time-dependent errors of the raw navigation 

quantities generated by the integration module. Some of the techniques are stochastic, such 

as Kalman filtering and smoothing (Wong, 1982), and others are combinations of 

stochastic and deterministic methods, for example the spectral decomposition method 

(Vassiliou, 1983) and least-squares quadratic curve fitting (Schwarz, 1985). Results from 

the application of these techniques show that they all yield sub-metre (1a) accuracy on an 

L-shaped traverse. The spectral decomposition method, which can only be applied in post 

mission, and least-squares curve fitting have been tested with data from a Ferranti Inertial 

Land Surveyor on land. However, these two methods are either incapable or not refined 

enough to utilize a wide variety of external measurements to estimate the error states of the 

inertial survey system. On the other hand, the Kalman filtering and smoothing approach 

allows the user to include data from external sensors, such as GPS satellite receivers, 

radio-navigation systems and baro-altimeters, to update its state vector. For that reason, a 
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Kalman filter-smoother was developed to estimate the error states of the strapdown inertial 

survey system. 

6.1 Kalman Filtering 

The derivation of the Kalman filtering equations is well documented in literature on 

linear optimal estimation, e.g. Gelb ( 1974) and Schwarz (1980) therefore it is not given 

here. The filter is a linear optimal estimator for a set of time-dependent error states x which 

obeys the condition that 

x=Fx+w, (6-1) 

where 

x is the state vector, 

F is the dynamics matrix of the system and 

w is the system noise. 

In this case, the error states are the first-order error of the navigation quantities generated 

by the integration module and the residual sensor errors, i.e. 

X = [EN, CE, EU, 64), 8, &f, 65k, oh, 011, d, d, d, b, by, b 1T, (6-2) 

where 

EN, C, EU are the three misalignments of the platform frame, 

64), OA., Oh are the error states in latitude, longitude and height, 

&, OX, 5fi are the error states in latitude, longitude and height rates, 

d, d, dz are the x-y-z residual gyro drifts in the body frame in arcsec/sec and 

b, b, bz are the x-y-z residual accelerometer biases in rn/s2. 

The variance-covariance matrix of the state vector at epoch k 

C, k = E([xk'k][xk'k]T } C, k , (6-3) 

becomes the variance-covariance matrix of the estimated navigation quantities 

Xk=Xk -k. (6-4) 
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The vector S in equation (6-4) contains raw integrated data from the integration modules 

and the corrections a and 5 obtained from system calibration. The estimated navigation 

quantities are obtained by subtracting the corresponding error states from these integrated 

data. 

Assuming a zero mean for the system noise w in between epoch o and k, the 

solution to the first-order homogeneous differential equation (6-1) is 

Xk = k,o Xo, (6-5) 

where i) is the transition matrix which can be expressed as 

ci) = etF (6-6) 

for a dynamics matrix with constant coefficients. Equation (6-4) can be expanded into a 

Taylor series 

ci) = I + AtF + O.5tF2 +   (6-7) 

if F is constant in the interval it ( see Wong, 1979). For small At, equation (6-7) can be 

approximated by 

ci)=I+itF. (6-8) 

The total transition matrix between epoch o and k becomes the product 
k 

o,k = 
1=1 

The error propagation of the state '?ector is obtained from equation (6-5), i.e. 

Xi = i) 1j.1 x. 1, 

and its variance-covariance matrix from the application of the covariance law 

where 

CXj = ci) 1 4:D 11+ C, 

(6-9) 

(6-10) 

(6-11) 

At 

CW = J( Di ' j-1 Q dt (6-12) 
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At 
I + AtF)Q( I + AtF)T 

[AtQ + O.5At2FQ + O.5At2QFT + 

AtQ, 

and Q is the spectral density matrix of the system noise w. The matrix Cw is the variance-

covariance matrix that accounts for the noise in the sensors. 

Whenever an external measurement is available in the form of 

y=Hx+e, (6-13) 

where y is the vector of measurements, H is the design matrix and e is the measurement 

noise, the propagated state vector can be estimated or updated by the Kalman update 

equations 

K = Cx()HT(HCx()HT + Cy) 1, (6-14) 

and 

Here 

x(-i-) = x(-) -K(Hx(-) - y) 

C(+) = (I - KH)Cx(). 

(6-15) 

(6-16) 

K is the gain matrix and 

C, is the variance matrix of the measurements. 

The symbols (-) and (+) in equations (6-14) to (6-16) denote quantities before and after 

measurement update. 

During alignment or navigation, velocity information can be obtained either by 

stopping the vehicle or by external velocity sensors. If the vehicle is not moving the non-

zero raw velocity output is equal to the velocity error states. The observation equations for 

the 3 velocities become 

VEvE - REöA., 

VNVN -RM&, 
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and 

u=v-6h. (619) 

Similar equations can also be derived for the control coordinates of the known stations on 

the traverse, i.e. 

(6-20) 

(6-21) 

(6-22) 

There are two quantities in the Kalman filtering equations that distinguish them 

from sequential adjustment formulae : the dynamics matrix F and the spectral density 

matrix Q. Sequential adjustment is basically a special case of Kalman filtering when 

F=Q=0. (6-23) 

The most difficult part of implementing a Kalman filter is finding the most efficient 

way to propagate the variance-covariance matrix of the state vector. More than 70% of the 

computation time of the filtering process may be spent on repeating the execution of 

equation (6-11). In the Kalman filter developed for the LTN-90-i0O, a simple algorithm 

*that takes advantage of the sparsely populated characteristic of the dynamics matrix is used 

to propagate the variance-covariance matrix of the state vector of the SISS. The flow chart 

of the Kalman filter and its error propagation routine are shown in Figures 6- la, 6- lb and 

6-2. 
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6.2 Error Equations 

In order to apply the Kalman filtering equations in the estimation of the error states 

of a strapdown inertial survey system, one must develop a dynamics matrix that can 

describe their rates of change. This section contains the derivation of the error equations 

used in the development of the dynamics matrix of a SISS. The error equations are 

equations that satisfy the condition given by equation (6-1). These equations can be derived 

by the perturbation approach which examines the error states as perturbation of the 

navigation quantities under the influence of various error sources (Benson, 1975). In this 

approach, the first-order differential equation for the error states is obtained by applying the 

law of error propagation to the expression for the rate of change of the navigation 

quantities. 

The raw angular rate of the body frame with respect to the local-level frame can be 

derived by subtracting the angular rate of the local-level frame with respect to inertial space 

from the measured body rates of the SISS 

where 

—b b —b—n 
0nb ib -Ro1, 

R=R(I-E). 

(6-24) 

(6-25) 

Since Onb is the relative angular rate between the body and the local-level frame, its errors 

are also the rates of the three misalignments of the sensor block coordinatized in the body 

frame. These errors & Onb can be expressed as 

(6-26) 

where 3d is the residual gyro drift vector. By rearranging the elements in the first term of 

equation (6-26) and multiplying both sides of the equation by R, one can obtained the 

final vector expression of the error equations of the misalignments 
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—n 
OO)nb = 8 

for 

and 

=-e-&+R1 Od 

1' 0 (esjn -WeCO$'\ 

-O)eSrn4) 0 -4) 
\.,C0eCoSc1 4) 0 

(6-27) 

(6-28) 

Coin = (We+)sinO4 + cos482 , (6-29) 

+ sin48? j 

where We is the rate of rotation of the earth. For a detailed discussion of the system errors, 

see Britting ( 1971). The transformation matrix R has been given in Chapter 2 therefore it 

is not listed here. 

The first three rows of the dynamics matrix can be constructed by substituting 

equations (6-28), (6-29) and (2-14a) to (2-14i) into (6-27). If the misalignments are 

expressed in radian and the drift rates are in arcsec/s then the elements in equations (2-14a) 

to (2-14i) must be divided by 206264.8 before they can be put into the dynamics matrix. 

Since the rates of change of the coordinate states are part of x, their error equations 

are simply 

= , (6-30a) 

(6-30b) 

(6-30c) 

They form the 4th, 5th and 8th rows of the dynamics matrix. 

The derivation of the equation for the acceleration errors of the SISS is more 

involved than that of the other states. From the specific force equation given in Brining 

(1971), i.e. 
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çfl= an + + 2f2) yfl - yfl, 
en le 

the equation for the raw acceleration can be written as 

jin = i - + 2 ie ) fl + 

(6-3 1) 

(6-32) 

where 6b is the vector of residual accelerometer biases. The errors in acceleration can be 

obtained by applying perturbation theory to an. Subtracting the true acceleration from 

equation (6-32) and multiplying the errors in velocity and coordinates into the partial 

derivatives of the Coriolis acceleration, the error in acceleration can be written as 

i.e. 

= Efn - + 22) 6" + V" (&i + 2&o) + R b - 215 h.ah (6-33) 

The first term of equation (6-33) can be rearranged in terms of the misalignments 

0 fU -fN (cE 

Ef'1= _ fU 0 fE CN 

fN fE 0 ) ••Uj 

With the vectors 

and 

co.= [4, £c054, .sin4 1T 

Wie = [0, COe COS4, We sin4 1T, 

(6-34) 

(6-35a) 

(6-35b) 

one can construct their skew-symmetric matrices and write the second term of equation 

(6-33) as 
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0 -R(2O)e+?)Sin4) (2O)e+?)cos(t) " (ö'\ 

= R(2(Oe+?)sin4)cos4) 0 4) 64) , (6-36) 

-R(2O)e+?)cos24) -R4 0 ) 6h1 

where R is the mean radius of the earth. The third term in equation (6-33) can be obtained 

by cross-multiplying 

(0 -VUVN'\ 

VflIvu 0 -VEJ, 
-VN yE 0 ) 

with 

( -& 
n n 

&Oen + 26ie = -(2@e+)s1n4)64) + cos4)6? 

\ (2C0e+A)cos4)64) + sin4)& 1 

The result is 

V" (6O) + 2&z) 

( 2vU051n4)+2vNocos4) -vUcos4)+vNsin4) 0 ' "&I \ 
-2VE(OCOS4) -VES1n4) 

-2VEoSin4) VECOS4) VN , 

(6-37) 

(6-38) 

(6-39) 

where a is used to denote (0)e+A.). Assuming that the products of velocities are relatively 

small, and 

and 4,?.>> 1i/R, 

the third term can be written as 

V(&On + 2&o) = 

( 0 0 0(6k.'\ 

-RAcos4)sin4) 0 0 

Rcos24) R4 0, \61 ) 
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and the sum of the second and third terms becomes 

- (I + 2) '' + V' (&o + 2& ie i) 

( 0 2Rosin4 -2ci.cos4 

= -2Rcosincos4 0 -4) & 

2Ro)cos2 2R4) 0 j 

(6-41) 

The second last term in equation (6-33) transforms the accelerometer biases from 

the body frame to the local-level frame. The last term in equation (6-33) is the error in 

normal gravity due to the uncertainty in the raw height. It can be dampened by using other 

more accurate height information to compute normal gravity. The normal gravity gradient 

can be approximated by 

(6-42) 

A damping factor k can be added to equation (6-42) if external and more accurate height 

(e.g. estimated, weighted or measured height) is used to compute normal gravity. In this 

research, the estimated height is used to compute normal gravity. As shown later in Chapter 

8, the accuracy of the estimated height is well below 10 m, therefore the error in the 

computed normal gravity may be considered as negligible. Thus, the factor k is set to 2y/R. 

The acceleration errors in equation (6-33) are in ni/s2• They can be reduced to 

angular acceleration errors in x by the relation 

(6aE/(Rpcos)'\ 

= 6aN/RM 

For a first-order error analysis, Rp and RM can be replaced by the mean radius of the earth 

because the influence of the approximation on the error states is smaller than 0.35%. It 

(6-43) 

60 



leads to a major simplification and thus requires less computer time. The scaled form of 

equation (6-33) fills the 6th, 7th and 9th rows of the dynamics matrix. 

The variation of the residual gyro drifts and accelerometer biases contained in x 

from one alignment to the next is random but bounded. Therefore, they can be modeled by 

a first-order Gauss-Markov process 

= -Cx +w, (6-44) 

where C is 1/(correlation time) of the process. The assumption behind equation (6-44) is 

that the auto-correlation function of the error can be described by 

'Pxx = Co et , (6-45) 

where Co is the initial variance ( see Gelb, 1974). The initial variances of the biases are 

determined by the range of the error and the correlation time of the process is dependent on 

its stability. Thus, the error equations for the drifts and biases are 

d = -Cd + w (6-46) 

and 

b=-f3b+w. (6-47) 

Together, they form the 10th to 15th rows of the dynamics matrix. The correlation length 

of the drifts and biases is either obtained from factory calibration, or can be determined 

from the error behaviour of the sensors observed over a long period of time in the 

laboratory or from the results of field tests. 

The dynamics matrix developed from the error equations derived in this chapter is 

given in the Figure 6-3. A similar matrix can also be found in Schmidt (1978). 
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o -O)sin4 - sin4 0 0 -cos4 0 0 R21 R22 R23 0 0 0 

O)sin 0 -O)cos4 0 0 1 0 0 0 RII R12 R13 0 0 0 

O)cos 0 -cocos 0 0 -sin4 0 0 R31 R32 R33 0 0 0 

o o 0 0 0 1 0 0 0 0 0 0 0 0 0 

o o 0 0 0 0 1 0 0 0 0 0 0 0 0 

o -fU/RM fE/RM 0 0 0 -cosin24 0 -4/RM 0 0 0 D21 D22 D23 

fU/RE 0 -fN/RE 0 0 2u'tax4 0 0 -2O(Rp 0 0 0 Eli E12 E13 

o 0 0 00 0 0 0 1 0 0 0 0 0 0 

-fE N 0 0 0 2RM 2RE0C0S4 c 0 0 0 0 F31 F32 F33 

o o 0 0 0 0 0 0 0 -c 0 0 0 0 0 

00 0 0 0 0 0 0 0 - 0 0 0 0 

o o 0 0 0 0 0 0 0 0 0 - 0 0 0 

o o 0 0 0 0 0 0 0 0 0 0 -p 0 0 

o o .0 0 0 0 0 0 0 0 0 0 0 - 0 

0 0 0 0 0 0 0, 0 0 0 0 0 0 0 - 

c=-2y/R+k, 

Fij is the element in the ith row and jth column of the matrix R, 

Rij is Fij divided by 206264.8, 

D1 is Fij divided by RM and 

Eij is Fij divided by RE. 

Figure 6-3: Dynamics Matrix of a 15-state Kalman Filter for an SISS for f :t- 900 



6.3 Initial Variances and Spectral Densities 

At the starting epoch of the Kalman filtering process, the values of the error states 

re unknown. They are usually assumed to be zero because, for a well calibrated system, 

the errors of the navigation quantities at the end of the coarse alignment are random from 

one alignment to the next. Thus, the Kalman filtering process can be initiated by setting 

x0 = 0 (6-48) 

and the diagonal initial variance-covariance matrix 

C, 0 = E(x0x}. (6-49) 

The initial variance of the misalignments of the platform frame should be dependent 

on the accuracy of the coarse alignment. In this case, at the starting epoch, 

cE = GEN =40 arcsec, (6-50) 

and 

aeu= 1 degree. (6-51) 

If velocity data were used in the analysis, the value of acu is reduced to 100 arcsec which 

is the estimated alignment accuracy of the LTN-90-100. 

The initial variance of the coordinates is given by the accuracy of the input 

coordinates of the starting point. When processing the velocity data and the initial 

coordinates are not accurately known, the approximate coordinates may be entered into the 

LTN-90-100 during alignment in the field and a coordinate update can be performed with 

the known coordinates at the beginning of filtering in post mission processing. In that case, 

a larger value should be used as the initial variance of the coordinates. The Kalman filter 

developed for the SISS is designed to start with standard deviations 

cy4=cA=cyh=20m, . (6-52) 

even when the initial coordinates are known and perform a coordinate update with the 

known coordinates at the end of fine alignment. 
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If the SISS is stationary during alignment and the velocities are reset to zero at the 

end of of alignment, the initial variance of the velocities should be set to a very small value. 

The initial standard deviations for velocities in the Kalman filter developed for the SISS are 

cYvE = cYVN = ovu = 0.0001 rn/s. (6-53) 

The initial variance of the residual gyro drifts and accelerometer biases are 

dependent on the accuracy of the system calibration. The system calibration of the 

LTN-9O-100 conducted at The University of Calgary for the determination of the drifts and 

biases in the rate data will be given in the next chapter. The standard deviation of the 

residual gyro drifts and accelerometer biases from their zero mean are estimated to be 

cydx = (Ydz = adz =0.01 deg/h, (6-54) 

cb = cYby = cYbz = 10 mgal. (6-55) 

These values should be increased as time elapses until the next system calibration.The 

amount increased depends on the change of the drift rates and biases in between 

calibrations. 

Another set of variances that must be determined for the Kalman filter is the 

diagonal of the spectral density matrix. The non-zero elements in Q are determined from 

sensor accuracies and system calibration. They account for the noise in the rate of change 

of the error states due to noise in the sensors and vibration from the vehicle. The elements 

pertaining to the non-sensor errors can be determined by examinating the RMS of the basic 

sensor noise and by field calibration. In field calibration, the errors of the estimated 

navigation quantities are compared with their estimated standard deviation and the elements 

in the spectral density matrix are adjusted until an acceptable agreement between the size of 

the errors and their standard deviations is reached. Usually many calibration runs 

performed in a typical surveying environment are needed before an optimal set of spectral 

densities can be obtained for a particular system. Since the vibration of the vehicle is 

dependent on the dynamics of the environment in which the system is used, the spectral 

density matrix changes for different applications. 
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The spectral densities for the error states modelled as a first-order Gauss-Markov 

process can be computed from the equation 

2 (6-56) 

where is the initial variance of the error (Gelb, 1974). Results from field tests show that 

the spectral densities tabulated in Table 6-1 are the most appropriate for the LTN-90-100 at 

the University of Calgary. In order to account for the time-stationary behaviour of the 

residual drifts and biases, the correlation length for the system is chosen to be 40 hours for 

all sensor errors. 

state spectral density 

€E, EN" EU 

&I, 8X, 6h 

3, 8, 5h 

dx, dv dy 

bbybz 

0.1 aresec2/s 

0 

1.0.10 6rn/s 

1.410 9deg2/h3 

1.4.10 3mga1% 

Table 6-1 : Spectral Densities 

6.4 Optimal Smoothing 

During Kalman filtering, the error states ,of a SISS at a particular epoch are 

estimated with the external information gathered up to that epoch. In optimal smoothing, 

the process utilizes all the information obtained after the epoch to improve the estimates of 

the Kalman filter. Obviously such a process can only be applied after the fact or in post-

mission analysis. The derivation of the discrete optimal smoothing equations can be found 

in Bierman (1973), and therefore it is not given here. The basic equations are: 
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Xk(+) = k,k+1 

Zk(+) = k,k+1 Z11(-) k,k+1 

Dk = HCx,k()HT + Cy,k 

Xk(-) = - { HTD 1 (y -Hx + DKTX(+)) }k, 

Zk(-) = (I - Kkllk) Zk(-) (I - KkHk)T + H 

X  = xk() - C 

and 

T-1 11 
kLk '1k 

(6-57) 

(6-58) 

(6-59) 

(6-60) 

(6-61) 

CS = c x,k - x,k k C (662) 

In equations (6-57) to (6-62), the first subscript of a variance-covariance matrix C denotes 

the vector to which the matrix is associated. The subscript after the comma is the epoch of 

interest. The superscript "s" is used to denote smoothed quantities. The matrix DOS called 

the innovation matrix. The optimal smoothing of the state vector can be initiated at any 

epoch n under the assumption that there is no observation after n, i.e. 

Hk= Xk(+) = 0 

for k>n,thus 

and 

Xk() = -H D 1 (y - Hx) 

Zk(-) = H 

(6-63) 

(6-64) 

(6-65) 

The smoother described by equations (6-57) to (6-61) is called the optimal modified 

Bryson-Fraser smoother (Bierman, 1973). This smoother is based on the algorithm 

presented in Bryson and Ho (1969). It was chosen for refinement of the estimates from the 

Kalman filter because the smoother avoids the implementation problems in other optimal 

methods. An optimal backward smoothing method such as the Rauch -Tung- S trei bel, 

smoother is elegant but, as shown by Bierman (1977, pp 222-223), it is too complex to 

implement in practice. Other approaches like square-root filtering and smoothing can only 

provide estimates at the observation epochs. The duality of equations (6-57) to (6-61) with 

the Kalman filtering equations makes implementation of this smoother very simple. If the 
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measurements are uncorrelated, the efficiency of Kalman filtering equations is maximized 

by processing the measurements one at a time. Thus, the innovation matrix becomes a 

scalar quantity, and the inversion of the matrix is reduced to a division. The modified 

Bryson-Fraser smoother retains this efficiency by utilizing the duals of the Kalman filtering 

mechanization. Such an approach is essentially a form of recursive backward filtering of 

the filtered estimates (Blais, 1988). The duals in the modified Bryson-Fraser smoother are 

the X vector (dual of the state vector) and the Z matrix (dual of the variance-covariance 

matrix). By propagating and estimating these quantities backward in time, the smoother can 

work on the estimates from the Kalman filter in the same way as the forward filtering on 

the predicted states. This method is not only computationally less costly but also 

numerically more stable. Unlike square-root filtering, the smoother can provide estimates 

as well as their variance-covariance matrices at epochs where there is no measurement 

update. 

The quantities required from the Kalman filter for optimal smoothing at every 

update epoch k are the measurements, design matrix, variance-covariance matrix of the 

measurements, total transition matrix since last update, state vector and its variance-

covariance matrix. Raw navigation quantities and other surveying information should also 

be stored so that smoothed Euler angles, velocities and coordinates of the SISS can be 

computed from the smoothed state vector. In general, optimal smoothing is less 

time-consuming than filtering but it requires a lot computer disk space for data storage. A 

general flow chart of the smoother developed for the SISS is shown in Figure 6-4. 
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Figure 6-4: Flow Chart of the Optimal Smoother 
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CHAPTER 7 

FIELD TESTING 

In the spring and summer of 1988, tests of the hardware and software of the 

LTN-90-100 based strapdown inertial survey system were conducted over two L-shaped 

baselines near Calgary. The objectives of the tests were: 

(1) to gain more experience with the operation of the LTN-90-100 and the 

data acquisition system; 

(2) to conduct field calibration of the SISS; 

(3) to determine the spectral densities for an SISS operating in the land 

surveying environment; 

(4) to test various modules; and 

(5) to test the design of the Kalman filter-smoother. 

The tests were conducted on L-shaped traverses because some of the less well-known 

errors in the SISS are azimuth-dependent. On a straight traverse, these errors are usually 

buried in the larger time-dependent but better modeled errors and are removed along with 

them. Deficiencies in the error model of the azimuth-dependent errors would only show up 

if data from an L-shaped traverse were used in the field tests. 

There were two separate groups of tests in the over-all testing program. In the first 

test, velocity data were recorded to check the survey procedures, data acquisition hardware 

and software, and the Kalman filter-smoother. After correcting the shortcomings 

discovered in the tests, the four tests were conducted on a longer baseline to check the 

accuracy of the rate integration and alignment modules. In this chapter, the description of 

the baselines, procedures used in the tests and lab calibration are presented and discussed. 
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7.1 Baselines 

The baseline used in the velocity-data test is located 10 km north of Calgary. The 

total length of the baseline is about 10 km. There are 11 stations on the baseline which are 

approximately 800 in apart. It requires 3 minutes to travel from one station to the next, 

position the vehicle at the station and perform the velocity update. A two-way survey which 

consists of a forward and backward run takes about 1 hour. The speed limit for the north-

south section of the baseline is 80 km/h and for the east-west section 100 km/h. The 

baseline is situated on a paved road but the north-south section had not been properly 

maintained and was therefore very bumpy. The maximum height difference between any 

two adjacent stations is less than 20 m. The gentle terrain is the main reason for chosing the 

baseline as testing ground for the velocity-data test. Since the LTN-90-100 does not 

estimate its vertical velocity and height, the gentle terrain may help to minimize any height-

dependent errors in the horizontal velocities. The coordinates of the baseline were 

determined by conventional means fo 0.5 m (la). Due to the lack of geodetic control 

information in that area, only the first point of the traverse was tied to an Alberta geodetic 

control point. Figure 7-1 is a general diagram of the L-shaped Calgary baseline. 

The second and longer baseline used in the field test is located north west of 

Calgary, near the town of Cochrane. The length of the baseline is about 24 km and there 

are 11 stations on the traverse. It is a baseline established by Nortech Survey (Canada) Ltd. 

for testing their inertial survey systems and GPS satellite receivers. The coordinates of the 

stations were determined from differential GPS phase measurements to 10 cm (la). The 

road condition of the baseline is generally good except for part of the north-south section 

which is a gravel road. There are potholes on the gravel part of the baseline where the 

vehicle must be slowed down to 40 km/h in order to minimize the vibration due to road 

conditions. As on the first baseline, the speed limit of the north-south section of the 

baseline is 80 km/h and the east-west section 100 km/h. The distance between two stations 

is about 2.5 km and the time required to complete one leg of 
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Figure 7-1 Calgary Baseline 

Figure 7-2: Cochrane Baseline 
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the survey is about 4.5 minutes. A two-way survey takes slightly more than one and half 

hour. The terrain in the area is more undulating than in the first case. Maximum change in 

height between two adjacent stations is more than 100 m. The large change in height makes 

it a baseline better suited for testing the rate data processing software which estimates and 

outputs the vertical velocity and height. 

7.2 Velocity-Data Test 

The velocity-data test was conducted on the Calgary baseline in the spring of 1988. 

North and east velocities along with the Euler angles were recorded in the test. The vehicle 

used was a 9-passenger suburban without the backsçat. At that time, the case for the 

LTN-90- 100 was not developed yet therefore two pieces of wood were used to support the 

system in the vehicle. The survey was performed by a three-man crew although a two-man 

crew should have been sufficient to complete the job. The SISS was placed at the back of 

the vehicle approximately 2 m away from the back door. The trailer hitch of the vehicle was 

selected to be the reference point. The plan was to have the driver position the vehicle such 

that the reference point was located directly above the station marker. The x-y-z offsets of 

the hitch from the SISS were measured so that they could be transformed to N-E-U offsets 

between the SISS and the station marker via the body to local-level frame transformation 

matrix constructed from the Euler angles given by SISS during velocity update. Figure 7-3 

shows the relationship between the SISS and the reference point on the vehicle. 

A ten-minute alignment was performed at the beginning of the survey. At the end of 

the alignment, the data acquisition software was activated and station information was 

entered into the data acquisition system. The surveying procedure was simple. Upon' arrival 

at each point, one of the members of the crew would leave the vehicle and direct the driver 

to the station marker. Once the reference point had been placed above the marker, the 

engine of the vehicle would be turned off and the other member of the crew could press the 

'c' key of the keyboard of the data acquisition system to signal the beginning of the update 
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period. The update period of the test was about 20 second. The procedure was repeated on 

every station until the vehicle returned to the starting point. The crew discovered that a great 

deal of time was spent directing the driver to position the reference point above 

'I, '' 

I.. 

reference point 

A 

(•_) survey 
marker 

Figure 7-3 : Offsets between the SISS and the Reference Point 

the station marker. The total surveying time could be shortened if the reference point was 

moved to within 1 m of the station marker and the offsets of the reference point to the 

marker were measured. The offsets required would be the horizontal angle from the y body 

axis to the plumbline through the station marker measured at the reference point and the 
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horizontal distance between the reference point and the marker. Since the area around the 

markers was generally flat, no vertical offset was needed. This procedure was later adopted 

in the second group of tests conducted in the summer. 

7.3 Lab Calibration 

Four tests were conducted in the summer on the 24 km baseline to gather data for 

the system calibration and the testing of the rate integration and alignment module. The 

system calibration consists of a lab calibration and field refinement test. In the lab 

calibration, 1-minute samples of rate data of a stationary LTN-90-100 in four different 

azimuths are collected on a stable and level surface and the mean of the body rates and 

accelerations in each sample were calculated. The azimuths are: 0°, 90°, 180°, 270°. Since 

the system is sitting on a level surface, the roll and pitch of the system may be assumed as 

zero in the calibration and the biases in means can be computed from the equations 

4 

and 

where 

- 'nie1 

- b 1c0s(az) -sin(az) 0 
R = j sin(az) cos(az) 0 

01 

n 
°)ie 

'0 

cos4 

sin 

(7-1) 

(7-2) 

(7-3) 

74 



( '\ 

g= yq (7-4) 

+ 

where i is the sample number, and az is the azimuth of the sample. The symbol "TA" is used 

to denote the mean value of the sample. The latitude and height required in equation (7-3) 

and the computation of normal gravity can be approximated by the known coordinates of 

the lab. The local-level to body transformation given in equation (7-2) is an approximate 

quantities. A more accurate matrix can also be constructed from the Euler angles given by 

the LTN-90-100 or other instruments available in the lab. 

In this case, due to the absence of any turntable, the lab calibration was performed 

on a trolley and the orientation of the system was determined by the azimuth displayed on 

the LTN-90-100. Results from the lab calibration show that the drift and biases in this 

particular LTN-90-100 are 

and 

(0.864 \ 
i=I -0.828 Iarcsecfs 
L -0.900) 

t -50 
1=I 20 lmgal. 

L-1 '° ) 

(7-5) 

(7-6) 

The magnitude of the accelerometer biases is within the specification of the sensors but drift 

rates appeared to be large and systematic. At present, an explanation for these large values 

is not yet available. 

7.4 Field Tests 

The correction parameters for the body rates and accelerations obtained from lab 

calibration are still too crude to be used as an approximation to the gyro drifts and biases in 

high-accuracy inertial surveying. However, they can be improved by information from the 

field calibration of the system. Field calibration is the refinement of the correction 

parameters by estimating the residual drifts and biases in the corrected sensor output via the 

Kalman filter-smoother with the rate data collected on a baseline. During the field 

75 



calibration, all coordinates on the baseline are used as control measurements to update the 

state vector. The coordinate updates at the two ends of the baseline help the Kalman filter-

smoother to accurately separate the azimuth-dependent effect of the residual drift rates and 

biases from the initial azimuth misalignment. 

The 24-km Cochrane baseline was used to calibrate the strapdown inertial survey 

system. The survey procedure was slightly changed from the velocity-data test. A point at 

the front of the vehicle was used as the reference point which was moved within a metre of 

the marker at each station before the velocity update. The horizontal angle and distance 

between the reference point and the marker were measured with a protractor, ruler and 

plumbob. Ten minutes of rate data were recorded at the initial point for system alignment 

and the Euler angles estimated by the LTN-90-100 were also.recorded for comparison of. 

the system output and that of the fine alignment module. The two-way survey took 

approximately one hour and forty minutes. 

After the field calibration of the system, the estimated residual drift rates and biases 

were added to those obtained in lab calibration. Three more surveys were conducted on the 

Cochrane baseline to test the Kalman filter-smoother. Unfortunately, due to the presence of 

other users at the two ends of the baseline, only a one-way run was possible in the last 

survey. Since the second and the last survey did not reach the ends of the baseline, the 

second and 10th point were used as the end points of the traverse. Due to the improper 

mounting of the SISS in the vehicle, the SISS was also bouncing up and down in the last 

survey. These three sets of data along with the first set of rate data were processed with the 

Kalman filter-smoother using the stations at the two ends of the traverse as control stations. 

Experience from the field tests shows that two deep-cycle batteries can power the 

SISS for about 4 hours. A simple protractor, ruler and plumball can be used to measure the 

offsets between the reference point and the marker with adequate speed. The accuracy of 

the offset determined in this manner is dependent how carefully the measurements are made 

and the accuracy of the estimated Euler angles Higher accuracy may be obtained by using 
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precise optical survey instruments to measure the horizontal offsets. However, such an 

approach is more expensive because it is time-consuming and dependent on the experience 

of the operator of the instruments. 

In order to minimize the effect of system vibrations during alignment and 

navigation, the system should be properly mounted and the engine should not be running. 

Shock absorption material may be used to reduced the vibration but care should be taken to 

ensure that the material and the system do not shake with respect to the vehicle. 
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CHAPTER 8 

RESULTS AND ANALYSIS 

There are two parts to the error analysis of the field tests and calibration. In the first 

part, the software and error model developed for the SISS is checked for proper 

functioning. They comprise the Kalman filter-smoother, integration module, alignment 

modules and error model for the field calibration. The second part of the analysis 

concentrates on the refinement of the weighting scheme and the accuracy of The estimates. 

The results and analysis of the field tests of the strapdown inertial survey system are 

presented and discussed in this chapter. 

8.1 Velocity Data 

The post-mission analysis of the velocity data was performed on the VAX main 

frame computer of the Department of Surveying Engineering at the University of Calgary. 

The binary data from the LTN-90-100 were converted into ASCII characters in the data 

acquisition system and sent to the VAX computer via a inter-computer communication 

program called Kermit provided by the university. The size of an ASCII file is more than 

twice that of a binary file. A 45-minute survey would produce a ASCII file of 

approximately 2 Mbytes. At 9600 baud, the program Kermit needs almost half an hour to 

transfer the whole file to the VAX computer. The analysis of the field data can also be done 

in the data acquisition system, but due to some ventilation problem in the system, it 

requires 4 to 5 times the CPU time the VAX computer needs to complete the job. 

The velocity data were put through the velocity integration routine and Kalman filter 

to produce the filtered coordinates of the stations on the Calgary baseline. Since the 

LTN-90-100 did not output any vertical velocity due the absence of external height 

information, the height of the system was assumed to be equal to the height of the initial 
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point and the error states of the vertical channel, i.e. height error, vertical velocity error and 

z accelerometer biases, were not used during filtering. The CPU time needed was about 80 

to 90% of the surveying time. The long processing time is mainly due to the numerical 

approach used to propagate the variance-covariance matrix of the state vector. These filtered 

coordinates were compared to the known coordinates of the stations and the difference 

between them were calculated for the error analysis. During the test, the velocity error of 

the LTN-90-100 grew to a maximum of about 0.9 m/s in about 1 hour which is within the 

specification of the system. Comparison between the displayed coordinates and the known 

coordinates shows that the position error of the LTN-90-100 was less than 500 m at the 

end of the two-way survey which took about one hour. The errors and standard deviations 

of the filtered coordinates, i.e. the coordinate difference between the filtered and known 

coordinates, are plotted in Figure 8-1. They grow steadily to about 3.5 m in half an hour. 

The behaviour of the errors is clearly azimuth-dependent. Since it is not possible to reset 

the azimuth of the SISS when processing velocity data, the trend continues at a slower rate 

even after the coordinate update at the end of the forward run. The estimated standard 

deviation of the filtered coordinates exhibit the same behaviour as the errors but in a larger 

magnitude. They indicate that the weighting scheme of the Kalman filter is slightly 

pessimistic. The azimuth error FU of the system at the end of the survey was estimated to be 

72 arcsec. The residual gyro drifts and accelerometer biases were estimated to be about: 

C 0.00 14\ 
o1 = .0051 arcsec/s 

0.0004) 

and 

(8- la) 

= (17 ) mgal. (8-ib) 

Due to the lack of vertical velocity data, only the biases in the x and y acceleration could be 

estimated from the velocity data. 

The output from the Kalman filter was processed again by the optimal smoother 

which requires approximately 5 minutes of CPU time to finish the job. The results of the 
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smoothing are plotted in Figure 8-2. They show that the smoother has improved the 

accuracy of the coordinates to the 1-metre level and the errors appear to be random. These 

results indicate that the error states were accurately modelled by the dynamics matrix of the 

Kalman filter. Since there is a coordinate update at the end of the forward run, the 

smoothed coordinates of the forward and backward run may be considered as independent 

(see Wong, 1982). The weighted mean of the coordinates of the stations on the baseline 

can be computed by assigning the reciprocal of the variance of smoothed coordinates as 

weights. The error of the weighted means of the smoothed coordinates are shown in Figure 

8-3. The RMS computed from the error.of the weighted mean of the latitudes and 

longitudes are 0.64 m and 0.26 in respectively. However, due to the pessimistic weights 

used in the Kalman filter, the estimated standard deviation of the weighted means are twice 

as big as the errors. These results show that sub-metre horizontal positioning accuracy is 

achievable on a 10-km L-shaped traverse using the velocity data from the SISS but more 

experiments are needed to confirm the accuracy and to determine a more optimal weighting 

scheme for the Kalman filter. 
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Figure 8-1: Errors of Filtered Coordinates Using Velocity Data 
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8.2 Rate Data 

In the first rate-data test, data were collected for the field calibration of the SISS and 

the refinement of the Kalman. filter-smoother. Using the initial weighting scheme given in 

Chapter 7, the data were put through integration and alignment modules to produce the 

navigation quantities which were then processed by the Kalman filter-smoother. A 

coordinate update was performed on every station to determine the residual drifts and 

biases in the corrected body rates and accelerations. These residual drifts and biases were 

added to the correction parameters obtained from lab calibration to form the refined 

correction parameters for all subsequent tests of the Kalman filter-smoother. The 

combination of the lab and field calibration is called the system calibration of the SISS. The 

refined correction for the body rates form the LTN-90-100 were found to be 

C_O.164) 
= 0.864  arcsec/s. (8-2) 

0.9OO 

No significant changes of the acceleration biases were estimated therefore the parameters 

from the lab calibration were kept. 
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After the field calibration, all four data sets were processed with the Kalman filter-

smoother. This time, only the stations at the two ends of the traverse were treated as known 

point and the data were processed as if they had been collected in a standard field survey. 

The rate data were corrected with the parameters given in equations (7-6) and (8-2) before 

they were integrated into angular and velocity increments. The alignment process took 

about 10 minutes. The estimated roll and pitch converged to a stable solution immediately 

after the first velocity update in fine alignment whereas the azimuth, as shown in Figure 

8-4, required approximately 5 to 7 minutes. Results from the alignments show that the roll 

and pitch estimated by the Kalman filter were within 20 arcsec of the ones given by the 

LTN-90-100 and that the differences between the azimuths were below 300 arcsec. These 

differences were within the 95% confidence region of the estimated Euler angles. They 

show that the alignment software in the LTN-90-100 and estimation package developed at 

The University of Calgary are compatible. 

coarse alignment 

-4 

A
Z
I
M
U
T
H
 I
N
 D
E
G
 

-6 

-8 

-10 

12 

fine alignment 

0 2 4 6 8 10 

TIME IN MIN 

Figure 8-4 Azimuth During Alignment 

83 



During filtering, the estimation package resets the navigation quantities after every 

coordinate update, which only happened at the two ends of each run. By resetting the 

navigation quantities, the filter minimized the effect of any second-order, errors in the 

process and reduced the errors in the filtered results. As an example, the filtered coordinate 

errors, i.e. differences between the filtered and known coordinates, and the standard 

deviation of the filtered latitudes are plotted in Figure 8-5. The azimuth-dependent trend of 

the horizontal coordinates is obvious in the forward run which ended about 40 minutes 

after the start of the survey. The size of the error drops to less than 2 m after the coordinate 

update at the end of the forward run. It indicates that the reset after the coordinate update, 

which significantly improved the accuracy of the estimated azimuth, helps to reduce the 

erroi in the filtered coordinates. Results from the processing of the other sets of data also 

indicate that the reset also improved the over-all accuracy of the smoothed coordinates. As 

shown by the plot of the standard deviation of the filtered latitudes in Figure 8-5, the 

estimated variances, although slightly pessimistic in this particular survey, follow closely 

the error behaviour of the coordinates. The height error shows a different and more 

favourable behaviour than the latitude and longitude errors. In this survey all errors were 

below one metre. Results from the other surveys show that one metre (1) height accuracy 

is achievable after filtering. The plots of the filtered errors of the other three runs are shown 

in Appendix B. The estimated residual drift rates öd and accelerometer biases 6b were 

found to be compatible with the initial standard deviation of the residual sensor errors 

except for the z residual drift of the second run. The z residual drift was estimated to about 

0.05 arcsec/s which indicates that its initial standard deviation was slightly optimistic. 

Like the velocity-data test, the accuracy of the estimated coordinates was improved 

after smoothing. The errors in the smoothed coordinates of the same run shown in Figure 

8-5 are plotted in Figure 8-6 for comparison. In this survey, the first and eleventh station of 

baseline were occupied by other users during the backward run, and a less accurate station 

was established near the first station as the end point of the traverse. Thus, the second and 
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tenth station were used as control points in the iterating process. The azimuth-dependent 

trend is still there but it has been reduced to the one-metre range and it is harder to 

distinguish from other time-dependent and random errors. The errors of the weighted 

means of the survey, plotted in Figure 8-7, show that sub-metre ( lo) accuracy for the 

horizontal coordinates and 0.5 m (1) for height determination are achievable with the 

SISS on a L-shaped traverse up to 24 km in length. The errors of the smoothed coordinates 

of the the other three runs and their weighted means are shown in Appendix B. The RMS 

computed with errors of the weighted means from the 4 surveys are tabulated in Table 8-1. 

The larger height errors of the 4th survey may be caused by the bouncing of the system 

during the survey. It shows the importance of proper mounting of the SISS while 

surveying on rugged terrain. 
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RMS (m) 
Survey 

Lat. Long. Hgt. 

1 

2 

3 

4* 

0.48 0.66 0.35 

0.60 0.58 0.48 

0.49 0.77 0.29 

0.74 0.59 0.67 

* one-way run 

Table 8-1 : Accuracy of the Weighted Means from 

Rate Data 

8.3 Applications in Airborne and Shipborne Environment 

In the land-vehicle mode, the error states of the SISS can be accurately determined 

by zero-velocity updates. The application of the SISS may be extended to other 

environments, where the carrier of the system cannot be stopped regularly for measurement 

update. However, the error states of the strapdown inertial survey system can be estimated 

by using other form of surveying measurements which satisfy the condition given by 

equation (6-13). 

In airborne or underground applications, velocities from other sources such as the 

Doppler radar in the aircraft, can be used to provide the external velocities needed to update 

the error states. The positioning accuracy of the SISS would not be as high as in the 

land-vehicle mode due to the larger measurement errors in the observed velocities. If 

continuous homogeneous velocity measurements are available for updates then the use of 

the optimal smoother will not improve the accuracy of the system. 

As a crude attempt to show the effect of the higher velocity measurement noise on 

the positioning accuracy of the SISS, the observed velocities of the third survey, i.e the 

example shown in the last section, were corrupted with random noise and re-processed 
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with the Kalman filter-smoother. The noise levels were set at 0.01 and 0.1 m/s, which are 

one and two orders of magnitude, respectively, higher than the standard zero-velocity 

measurements. The errors of the weighted means of the simulation are tabulated in 

Table 8-2. As expected, The results show the same general error pattern after filtering, 

and an overall poorer accuracy after smoothing due to larger uncertainty in the update 

measurements. 

Noise 
level 
(m/s) 

RIMS (m) 

Lat. Long. Hgt. 

0.01 2.10 0.80 1.13 

0.1 3.75 •4.24 3.60 

Table 8-2: RIMS of Weighted Means from Noisy 
Velocity Update Measurements 

The SISS can also be integrated with other positioning systems such as OPS 

satellite receivers or radio navigation systems used at sea. The range measurements or the 

coordinates provided by these positioning systems can be treated as external measurements 

for updating the error states. In these cases, there is no velocity update but positioning 

accuracies are maintained by continuous position or range updates (Wong et al., 1987), and 

the level of accuracy achievable is dependent on the external positioning system used. 

Since the accuracy of the external positioning system is usually affected by the geometry of 

the ranges, the accuracy of the integrated system can change from one period to another. 

The optimal smoother can be used to improve the accuracy of the integrated system in 

periods of poor geometry with information gathered afterward, when the geometry has 

improved. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

A Litton LTN-90-100 inertial reference unit has been successfully converted into a 

ring-laser-gyro strapdown inertial survey system (SISS). The system consists of the 

inertial reference unit and a IBM PC-compatible data acquisition system. The data 

processing software package includes a velocity integration routine, rate data integration 

module, alignment module and Kalman filter-smoother. The data acquisition software was 

designed to record either the velocity or rate data from the LTN-90- 100. In case of velocity 

data, the integration routine can be used to integrate the data into raw coordinates. The error 

states of the LTN-90-100 are estimated by a Kalman filter and then refined by an optimal 

smoother. If the rate data are recorded, the rate integration module is used to integrate the 

data into changes in navigation quantities, i.e. Euler angles, 3-D velocities and coordinates. 

At the beginning of the survey, the alignment module is activated to determine the initial 

Euler angles of the system from the rate and velocity measurements. Navigation quantities 

at any epoch are calculated by adding increments to the value at the previous epoch. The 

errors of these navigation quantities are estimated by the same Kalman filter-smoother used 

in processing the velocity data. 

Results from the testing of the LTN-90-100 in the laboratory show that there are 

gyro drifts of the order of 0.8 arcsec/s, in the body rates which were apparently not 

removed by factory calibration. These gyro drifts, as well as the small but significant biases 

left in the body accelerations, may be estimated by a combination of lab and baseline 

calibration of the system. The accuracy of the gyro drifts and acceleration biases calculated 

from the calibrations are estimated to be 0.01 to 0.02 arcsec/s and 10 mgal respectively. 

The hardware and software were tested with data from surveys on two L-shaped 

baselines near Calgary. Results of the error analysis indicate that sub-metre (1) horizontal 
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positioning accuracy is achievable on a 10-km L-shaped traverse if the raw data are the 

north and east velocities, and controls are available at both ends of the traverse. The results 

also show that the same accuracy for the horizontal coordinates and 0.5 m (lo) for height 

can be obtained over a 24-km L-shaped baseline if rate data are used as raw data. 

High frequency system noise caused by the dithers in the RLG and the cooling fans 

is the major source of errors during coarse alignment. The noise can be reduced by an order 

of magnitude using a 1-Hz second-order Butterworth filter which, however, may introduce 

a small bias to the data. Since the noise has a very high frequency, i.e. approximately 400 

Hz, and zero mean in the long run, the use of the filter during fine alignment and navigation 

is not recommended. 

The major error sources detected in the field tests are the initial azimuth 

misalignment and residual gyro drifts in the system. These errors and their effect may be 

minimized by frequent system calibration and reset of the error states after each coordinate 

update. Vibration caused by the dithers in the gyros and the cooling fans is the main 

limiting factor for the accuracy of the initial alignment. 

At present offsets between the reference point on the vehicle and the station are 

measured with a protractor, ruler and plumbob. The accuracy of the offsets can be 

improved by measuring horizontal angles with precise optical instruments but it is operator-

dependent and more time-consuming. Such an approach is recommended for very precise 

and short-distance surveying only. 

The level of positioning accuracy achievable with the present LTN-90-100 based 

SISS may be reduced to <0.5 m (la) if the residual drifts and biases can be removed by 

better system calibration. However, due to large system noise in the data, it is unlikely that 

the positioning accuracy can be improved to < 0.3 m (1) without any modification to the 

sensors. 

The use of velocity data for positioning requires less computation time and storage 

space than rate data but it does not permit the user to reset any navigation quantities in the 
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SISS. The accuracy of the survey is dependent on the alignment accuracy of the real-time 

software in the system. 

The residual drifts and biases left in the corrected rate data are large and random 

from one alignment to the next but they remain stable through the survey. Thus, with 

accurate coordinate and deflection controls on both ends of the traverse, it may be possible 

to use the SISS for the recovery of the anomalous gravity field. 

Stochastic and empirical methods such as spectral decomposition, least-squares 

adjustment and Kalman filtering/empirical smoothing can be applied to estimate the errors 

of a strapdown inertial survey system in the same way as for the local-level system, with 

minor changes to the transition matrix or design matrix to account for the azimuth-

dependent effect of the sensor biases. 

At present, the LTN-90-100 does not output any vertical velocity or height to the 

user because it cannot obtain the external height data from the data acquisition system. The 

system interface device in the data acquisition system should be upgraded so that it can 

supply such height information to the LTN-90-100. The data acquisition system should 

also be modified so that it can be used for prolonged numerical computation at the 10-MHz 

clock rate. 

A special mounting rack should be designed to hold the SISS firmly to the floor of 

the vehicle to prevent it from sliding or bouncing when the vehicle is travelling on rough 

terrain. A turntable may be built to facilitate the lab calibration of the SISS which requires 

the body rates and accelerations to be measured on a very level surface in different 

azimuths. 

In the land surveying mode, the Kalman filter-smoother uses the velocity 

measurements obtained at each stop and the known coordinates on the traverse to update its 

error states. It can also be modified to accept other data, such as ranges and phase 

measurements from the a GPS satellite receiver or other radio navigation system, for the 

update. Integration of the SISS with these sensors would permit inertial surveys to be 
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conducted in the airborne or marine environment where the carrier cannot be stopped 

regularly for velocity update. 
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APPENDIX A 

This appendix contains the derivation of the equation for the propagation of the 

uatemion components for the body to wander frame transformation matrix of a strapdown 

inertial survey system. 

A theorem given by Eulerin the 18th century states that a sequence of rotations of a 

rigid body, represented by the body frame, with respect to a reference frame, represented 

by the inertial frame, can be expressed as a single rotation 8 about a fixed axis. The 

quaternion components are the four parameters required to describe the rotation without 

singularity. These components are also functions of the elements in the transformation 

matrix between the reference frame and the rigid body. The rate of change of the four 

components satisfy the differential equation: 

q=qxO (A- 1) 

where q, the quaternion vector, is given in Grubin (1970) and Catford (1978) as 

q= 

/,'q l '\ 

q2 

q3 

\q4) 

sin8/2' 

_!. sinO/2 

O OzsinO/2 

cosO/2 ,, 

(A-2) 

In equations (A- 1)and (A-2), 8 is the rotation rate vector of the rigid frame with respect to 

the reference frame and 8x 8,, and Oz are the x-y-z components of the rotation vector 0 

with respect to the reference frame, i.e. 

O=it8. (A-3) 

The vector cross-product in equation (A-i) can be re-written into 

q 

97 



2 

( o O -OO (q1\ 

-ez 0 OxOy 
by -Ox 0 O 

q2 

q3 
(A-3) 

where O,,O,, and bz are the x-y-z components of the vector 8. the Assuming that 0 is 

constant over a small interval At, the solution of equation (A-3) can be written as 

qk+1 = e0.5®tt qk 

= J + I bAt + ---L  2At2 + 3t3 + 1 ë& 4 + 
4•2! 8•3! 16.4! 

Since 

q (A-4) 

= -62 1, (A-5) 

equation (A-5) can be expressed as the sum of two Taylor's series, i.e. 

qk+1=(I+®At- 1 O2IAt2.. 1 O2IAt3+ 1 OI&  )q 
4.2! 8•3! 16•4! 

= H I - 1 02 Lt2 + 1 64 IAt4 +   
42! 16•4! 

11 

At 1 02 At3 +  1  b4 At5 + ....] ® } q 
8•3! 32•5! 

(A-6) 

Obviously, the two series are the Taylor expansions of the sine and cosine functions, 

therefore equation (A-6) can be expressed as 

where 

qk+1 = qk+ [ (CO 4 1)I+ 1 si4®] qk, (A-7) 
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e=Lt 

o e -by e 

_ez 0 Ox by 

by -Ox 0 Oz 

\-Ox -Oy -Oz 0) 

(A-8) 

If there is another rigid body, represented by the wander frame, which is also 

rotating with respect to the reference frame at a known rate CO, then the rate of change of the 

quaternion components of the relative rotation between the two rotating frame is 

=qxO - coxq. (A-9) 

The solution to the second term of equation (A-8) can be approximated by 

(o ü- COyO\ 
At AtCi)zOo)xcoy 
--oxq=-y (Oy0x 0 o 

at 

0)x -coy 0z 0 

q, (A- 10) 

provided Co is very small. In the case of strapdown inertial surveying, the rotation of the 

wander frame with respect to the inertial frame is so small ( 15 arcsec/s) that equations 

(A-7) and (A-9) can be applied for the propagation of the quaternion components for the 

relative rotation between the body and wander frame, i.e. 

where' 

and 

qk+1=qk+[(cos- 1)I + 1- si4®4Atw ]qk, (A- 11) 

9=LtIwl (A-12) 

(A13) 

Equation (A- 11)is the expression used in Chapter 4 for the propagation of the quaternion 

components of the body to wander frame transformation matrix of the SISS. 
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APPENDIX B 

This appendix contains the plots of the errors of the filtered and smoothed 

coordinates, and the weighted means of the coordinates of three of the four surveys 

performed on the 25-km L-shaped traverse. The results of the third survey are shown in 

Chapter 8. 
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Figure B-i : Errors After Filtering (1st Survey) 
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Figure B-2: Errors After Filtering (2nd Survey) 
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