
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2016-01-18

Integrating Flexibility and Fuzziness into

a Question Driven Query Model

Sarhan, Abdullah

Sarhan, A. (2016). Integrating Flexibility and Fuzziness into a Question Driven Query Model

(Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/26577

http://hdl.handle.net/11023/2760

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Integrating Flexibility and Fuzziness into a Question Driven Query Model

by

Abdullah Sarhan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

January, 2016

c© Abdullah Sarhan 2016

Abstract

Data plays an important role in our daily life. Thus, data collection, storage, maintenance

and processing continue to attract considerable attention. Data may exist in various formats,

ranging from unstructured to structured as the two extremes. Traditionally, researchers and

practitioners cooperated and developed various data models which form the main foundation

for existing database management systems. The relational data model is still dominating

despite the rapid development in the techniques used for data collection, storage and pro-

cessing. Further, a relational database management system supports a structured query

language (SQL) for data processing, and it is not possible to access and retrieve data from a

relational database without knowing how to use SQL. However, the wide usage of relational

databases motivated researchers to develop more user friendly interfaces which would allow

a larger population of users to access relational databases. Such interfaces range from visual

to natural language based.

This thesis contributes a question driven query model which falls under the natural lan-

guage based category. The target is to make databases reachable by a larger population,

especially after the Internet increased database availability. The proposed model supports

fuzziness where every user is given the freedom to define his/her own understanding of fuzzy

terms. The developed system absorbs the fuzzy understanding of each user to utilize it while

deciding on the result to be communicated back as answer to the raised question. Data

mining techniques are employed to guide users in defining their fuzzy understanding. The

developed model is intended to help users to retrieve the data they want from a relational

database without expecting them to know SQL. In the current version only questions written

in English are allowed. The system handles different types of questions, such as (1) simple

questions, (2) complex questions with inner joins and where conditions, (3) questions that

involves the usage of aggregate functions (e.g., min, max, etc.), and (4) questions with fuzzy

i

terms. The reported test results demonstrate the effectiveness of the developed system in

handling various types of questions raised by a heterogeneous set of users ranging from pro-

fessionals to naive.

Keywords: Query Model; Fuzzy Model; User Interface; SQL; Relational Database; Struc-

tured Database.

Table of Contents

Abstract . i
Table of Contents . iii
List of Tables . vi
List of Figures . viii
List of Symbols . x
1 Introduction . 1
1.1 Relational Databases . 2
1.2 Problem Definition and Motivation . 6
1.3 The Proposed Solution . 8

1.3.1 Database Configuration . 9
1.3.2 Validating User Input . 9
1.3.3 Analyzing User Request . 10
1.3.4 Displaying the Results . 11
1.3.5 User Feedback . 11

1.4 Thesis Structure . 11
2 Background and Related Work . 13
2.1 Background . 13

2.1.1 Data Mining . 13
Classification . 14
Fuzziness . 18

2.1.2 Natural Language Processing(NLP) 20
Dependency parser . 20
Name Entity Recognition . 21
Dates Phrase Extractor . 21

2.2 Related Work . 22
3 Proposed Solution and Methodology 26
3.1 Development Tools . 27
3.2 User Requirements . 27
3.3 Tools Used . 27

3.3.1 Stanford NLP Parser . 28
SNLP Relation Extractor . 29
SNLP Name Entity Recognizer . 30
SNLP Time Expression Extractor . 31

3.3.2 Hunspell Spell Checker . 32
3.3.3 The Pluralization Library . 33

3.4 Project Configuration . 33
3.4.1 Creating and Loading Project . 34
3.4.2 Database Configuration . 34
3.4.3 Create Fuzzy Domain and Ranges Dictionary 36
3.4.4 Create Word Synonyms Dictionary 36
3.4.5 Create Database Prefix and Suffix Dictionary 36

3.5 System Architecture . 37

iii

3.5.1 User Input . 37
3.5.2 Input Refinement . 39

Spell Checking . 39
Changing Text Based Numbers to Numeric Values 39
Fixing Negation . 40
Replacing Date Expressions with the Actual Date 41

3.5.3 Get Word Dependencies . 42
3.5.4 Eliminate Unnecessary Words and Punctuations 43
3.5.5 Map Words to the Database Schema 44
3.5.6 Tables and Columns Selection . 45
3.5.7 Question’s Return Type . 46
3.5.8 Building the SQL Statement . 47

Constructing the Select Clause . 47
Constructing the From Clause . 49
Constructing the “Where” Clause . 50

3.6 Fuzziness . 52
3.6.1 Fully Automated . 53
3.6.2 Semi Automated . 56
3.6.3 Manual Specification of the Fuzzy Domains and their Ranges 57

3.7 Display the Result and Receiving the Feedback 57
3.8 Summary . 58
4 Experimental Analysis . 62
4.1 Testing Environment . 62
4.2 Data Set . 63
4.3 Example Queries . 64

4.3.1 Simple Questions . 65
4.3.2 Complex Questions . 65
4.3.3 Fuzzy Questions . 66

4.4 Performance Analysis . 66
4.5 System Accuracy . 67
4.6 Summary . 68
5 Conclusion and Future Work . 74
5.1 Summary . 74
5.2 Limitations . 75
5.3 Future Work . 75
Bibliography . 77
A System Documentation . 85
A.1 System Overview . 85
A.2 Query Examples and Results . 86
A.3 Saving Data . 87
A.4 Modules being Used . 88
A.5 System Snapshots . 89
B Data Set Snapshots . 103
B.1 Bulk Insert Application . 103
B.2 Database Tables . 104

iv

B.2.1 People Table Snapshot . 104
B.2.2 Services Table Snapshot . 105
B.2.3 Category Look Up Table Snapshot 110
B.2.4 Service Reviews Table Snapshot . 111
B.2.5 Friends Table Snapshot . 116

v

List of Tables

1.1 Ranking of some Database Systems [2] . 3

2.1 Confidence Table Used to Measure the Accuracy of a Classifier 15
2.2 Example on a Classifier Results . 15
2.3 Comparing our Approach with the Approach of Li et al. [42] 23
2.4 Comparing our Approach with the Approach of Giordani et al. [28] 24
2.5 Comparing Our Approach with the Approach of Agrawal et al. [3] 25

3.1 Word POS Tagger Example . 30
3.2 The Relation between Words in a Sentence 31
3.3 Date Extraction Example . 32
3.4 General Database Schema Prefixes and Suffixes 37
3.5 Examples of Text Based Numbers Converted to Numeric Values 40
3.6 Examples on Transforming Abbreviated Negated Words to Full Word Repre-

sentation . 42
3.7 Examples on Transforming Date Expressions to Actual Dates 42
3.8 List of Unnecessary Words that can be Removed from a Sentence 44
3.9 Examples of WH Phrases and their Expected Results 47
3.10 Examples on WH Phrases and their Expected Parsing 48
3.11 Example on Conditions and their Corresponding Expression in the “Where”

Clause . 51
3.12 Methods for Handling Fuzziness . 53
3.13 Fee Column Values . 53
3.14 Fully Automated Fuzzy Ranges . 54
3.15 Calculated Ranges for the Predefined Five Fuzzy Domains 56

4.1 Characteristics of the Computer Used in Testing the Developed System . . . 63
4.2 Databse Tables’ Columns and their Type . 69
4.3 Expected Input for each Column Type . 70
4.4 Number of Records in the Populated Tables 70
4.5 Sample of Simple Questions . 70
4.6 Sample of Complex Questions with Possible Corresponding SQL Statements 71
4.7 Sample of Fuzzy Questions and Possible Corresponding SQL Queries 72
4.8 Number of Questions Executed to Measure System’s Performance 72
4.9 Average Time Needed for each Query Type 72
4.10 Average Time Needed by each Analysis Component (ms) 72
4.11 Number of Wrongly/Correctly Analyzed Queries 73

A.1 List of External Modules Used by each Feature 89

B.1 List of People Available in the Database . 105
B.2 A Snapshot of Data Stored in Person Services Table 105
B.3 A Snapshot of Data Stored in LKUP Category Table 110

vi

B.4 A Snapshot of some Sample Reviews Maintained in Service Reviews Table . 111
B.5 A Snapshot of Data Stored in Person Friends Table 116

vii

List of Figures and Illustrations

1.1 An example of a Relational Database Diagram 4
1.2 SQL Syntax . 5
1.3 SQL Query for Getting city name for all Canadian people 6
1.4 Example on Fuzzy SQL Query . 8
1.5 Block diagram of the Proposed Query Model 9

2.1 Mapping of Neural Network Nodes . 17
2.2 Triangular Membership Function . 19
2.3 Example on Word Dependencies Generated by Stanford Dependency Parser . 21

3.1 The communication between the System Components 28
3.2 Features of the Stanford NLP Tool . 29
3.3 Suggestions Produced by the Spelling Checker 33
3.4 Database Configuration Helper Form . 35
3.5 The general Flow of Control in the System for Analyzing User Input 59
3.6 An Example SQL Query Using more than 2 Inner Joins 60
3.7 An Example of SQL Query using 2 inner joins 60
3.8 The Five Fuzzy Domains of the “Fee” Column as Discussed in the Example

that Illustrates Semi-Automated Specification of the Fuzzy Domains 60
3.9 Visualization of the Relationship between a User’s Question and the Database

Tables and Columns . 61

4.1 Schematic Diagram of the Example Persons-Services Database 64

A.1 System’s Main Page after a Successful Connection to a Database 86
A.2 A Question to Demonstrate the Usage of an Aggregate Function 87
A.3 A question which Involves the Usage of Fuzziness 87
A.4 An Example Complex Question . 88
A.5 System’s Splash Screen . 89
A.6 The Form Used for Project Selection or Creation 90
A.7 The form Used to Enter Database Information 90
A.8 Helper Form for Displaying a List of Available Databases 91
A.9 Helper Form before Displaying the List of Available Databases 92
A.10 Displaying Tables and Columns for the User 93
A.11 Brief Explanation of Various Database Schema Elements 94
A.12 Suggestions form for the Misspelled Words 95
A.13 The form that Manages Tables’ Synonyms Defined by the User 96
A.14 The form that Manages Columns’ Synonyms Defined by the User 97
A.15 The form that Manages Tables’ Suffix and Prefix 98
A.16 A list of Unnecessary Words that can be Modified by the User 98
A.17 Modifying Unnecessary Words during analysis 99
A.18 Asking for User’s Choice when Ambiguity Occurs 100
A.19 List of Mapped Words Obtained during the Analysis 101

viii

A.20 The form Responsible for Managing Fuzzy Domains and Ranges 101
A.21 A list of all Questions Made by the User . 102
A.22 Providing Users the Ability to Save their Data 102

B.1 A snapshot of the Bulk Insert Application 104

ix

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

C# C# Programming Language

RDBMS Relational Database Management System

SNLP Stanford Natural Language Processing Tool

NLI Natural Language Interface

NLP Natural Language Processing

XML EXtensible Markup Language

SQL Structured Query Language

K-NN K-Nearest Neighbors Algorithm

VIREX VIsual RElational to XML

TP True Positive

TN True Negative

FP False Positive

FN False Negative

ANN Artificial Neural Network

CRF Conditional Random Field

TMF Triangular Membership Function

POS Part Of Speech

OS Operating System

IDE Integrated Development Environment

RAM Random Access Memory

CPU Central Processing Unit

GB Gigabyte

x

Chapter 1

Introduction

It is not possible to think of how people could function without the existence of data which

is a great resource of knowledge for decision making. Over history people realized the need

to collect and store data in various forms. Researchers developed data models to help in

structuring data and hence provide a systematic access to data by a variety of users. For

instance, books are structured into chapters which are composed of sections, subsections,

paragraphs, etc. A table of content or an index allow readers to seek to a specific page to

read. As far as databases are concerned, network and hierarchical models dominated in 1960s

and 1970s until academia and industry adopted the relational data model developed by E.F.

Codd at IBM research centers in 1970s. Since then the relational model is dominating in the

database area. It is so strong that it has resisted to all efforts to replace it by other models,

including object-oriented data model and XML data model, among others. The relational

model survived after absorbing all the additional features that were thought of as advantages

of the other models.

The wide spread of mobile and web applications may be seen as the main reason be-

hind the current increase in the amount of data collected. Though the relational database

management system (RDBMS) has shown a great success in managing the storage and pro-

cessing of structured data, unfortunately not everyone is capable of retrieving data stored

in a RDBMS. Access to a RDBMS is restricted to those who know SQL (structured query

language), which is the standard query language of RDBMS. SQL may be seen as a high

level database programming language. Even experts might face some difficulties when coding

complex queries using SQL. Thus, it is hard for naive users who lack computing background

and programming experience to learn SQL. We argue that naive users should have an al-

1

ternative way to retrieve the data they want without the need to learn SQL or depend on

database experts to extract the reports they need.

Naive users should have direct access to RDBMS to retrieve the data they want for

their work and not to be dependent on reports developed by database experts. This may

become possible by a flexible user-friendly interface for RDBMSs. This thesis proposes a

question-driven user interface that can be equally well be used by expert and naive users

to retrieve data from a RDBMS. The proposed system should retrieve expected results by

analyzing users’ requests expressed as structured English questions. As imprecision is part

of natural language, we decided to extend the model to cover fuzziness in queries [65, 4, 39].

Using Natural Language Processing (NLP) combined with some data mining techniques

will allow us to analyze fuzzy queries. The current system has been configured to work

with Microsoft SQL Server and questions can be expressed in English. However, it can be

smoothly expanded to cover other relational database platforms and languages other than

English. This have been left as future work.

This chapter is organized as follows. Section 1.1 introduces relational databases. Section

1.2 identifies the problem tackled in this thesis along with a description of target users.

Section 1.3 is an overview of the proposed solution. Section 1.4 shows the structure of the

remainder of the thesis.

1.1 Relational Databases

The relational database model was first proposed in 1970 by E.F. Codd [17], since then

researchers have been working extensively on improving this model by absorbing aspects

which have been deemed necessary and hence motivated developing other models which were

developed over the past three decades, e.g., object-oriented model. Thus, many relational

database management systems have been developed [47, 63, 55] by a number of vendors,

including Oracle, IBM, TeraData, etc. However, the recent tremendous increase in the

2

amount of data collected and the rapid increase in the number of users accessing the collected

data has enforced the need for more flexible data and query models which do not require

all data to be mapped into structured relational databases only accessible by SQL. This

motivated a new trend called the not only SQL (NOSQL) databases [31, 11] which allow a

wide range of users to access data in various formats, including structured and unstructured.

Indeed, collecting data at high speed and from a wide variety of sources encouraging adapting

NoSQL databases especially for online and real-time data analysis where it is not affordable

to spent time on matching data to an existing structure to make it understandable and

accessible by a given interface.

However, NoSQL has not been well adopted yet due to immaturity and maintenance dif-

ficulties [52, 41]. Many undergoing improvements of the available RDBMS target expanding

their capabilities to smoothly handle big data with all its characteristics, including volume,

velocity, variety, etc. Table 1.1 shows a ranking of a number of database systems which are

mostly relational; it is obvious that most relational databases rank top in terms of usage

depending on a scoring system that involves the six different criteria explained in [2].

Table 1.1: Ranking of some Database Systems [2]

One of the main attractions of relational databases is the way they manage the storage

of data. The model was inspired from the set theory and hence has a strong mathematical

3

foundations. Data is stored in tables, where each table contains data that describes a specific

entity type or a table may act as a connector between interrelated tables. A table has a list

of columns representing various characteristics of the corresponding entity type. Further,

each table must have a unique primary key which consists of a minimum set of at least one

attribute. An example database schema is shown in Figure 1.1.

Figure 1.1: An example of a Relational Database Diagram

The database schema shown in Figure 1.1 includes three tables, each represents an entity.

The relationships between the three tables are realized using foreign keys as indicated by the

links between tables. It is recommended to assign meaningful names to tables and attributes.

For instance, the table named PersonInfo is intended to contain information about people.

It has three attributes where each attribute has a corresponding column. Each column has a

type which indicates expected domain of the values to be stored in the column, e.g., numeric,

date, text, boolean, etc. This kind of information helps in building conditions that can be

used to filter the retrieved data. Each table in a database should have a primary key which

is a minimum nonempty set of attributes that uniquely identify each row (interchangeably

called tuple). For instance, the table PersonInfo shown in Figure 1.1 has personID as primary

key.

Another type of key directly related to primary key is called foreign key, which is a

representative of a primary key to indicate a link that connects two entities. In other

words, Primary-Foreign key concept is important to build relationships between tables. For

example, the column named PersonCityID in PersonInfo table is linked to cityID column

4

which is the primary key in lkup City table. Here, it is worth mentioning that only primary

keys of tables that represent entities may have corresponding foreign keys; that is, tables that

represent relationships from the entity-relationship diagram will not have any primary key

with corresponding foreign key(s). Finally, more explanation about the relational database

schema, tables, attributes, keys, etc. can be found in [22].

Retrieving and updating data in a relational database is one of the key features provided

by RDBMS. Users can update, add, delete or retrieve data from a RDBMS. In general, a prior

knowledge of SQL is needed to perform such tasks. The retrieval statement of SQL consists

of three main clauses which are “SELECT”, “FROM” and “WHERE” as in the example

query shown in Figure 1.2; other clauses may be added (e.g., having, group by, order by,

etc.) for coding more sophisticated queries that involve aggregation, sorting, etc. [22].

SELECT columne1,columns2

FROM Tablename...

WHERE columne1 <operateor> value. columns2 <operator> value...

Figure 1.2: SQL Syntax

The “Select” clause is used to specify attributes which should be retrieved from the

nonempty set of tables mentioned in the “From” clause. The asterisk (∗) may be used to

retrieve all attributes from the tables expressed in the “From” clause. The “From” clause is

used to specify tables to be used in constructing the result. Listing multiple tables in the

“From” clause means the query will consider their cross product. The “Where” clause is

used to filter the outcome from the “From” clause. A standard “Select”, “From”, “Where”

query corresponds to the cross-product of tables specified in the “From” clause; then filtering

the result by applying on the result of cross-product a select statement with the condition

specified in the “where” clause; after that, the result is processed further by applying a

projection operation to include from the outcome of the selection operation only columns

mentioned in the “Select” clause. Finally, it is possible to explicitly use all types of the join

5

operation in the “From” clause as demonstrated in Figure 1.3.

An example query with the three main clauses is shown in Figure 1.3. A rich set of

comparison operators is allowed in the “Where” clause, including =, !=, >= , <=, <, >,

like, between, etc. The query given in Figure 1.3 retrieves names and cities of Canadians

from the related tables in the database. More examples queries can be found in any classical

database textbook, e.g., the book by Elmasri and Navathe [22].

SELECT PersonInfo.PersonFirstname,lkup_City.cityName

FROM personInfo

inner join lkup_City on PersonInfo.personCityID= lkup_City=cityID

inner join lkup_Country on lkup_City.cityCountryID=lkup_Country.countryID

WHERE lkup_country.countryName=’Canada’

Figure 1.3: SQL Query for Getting city name for all Canadian people

To warp up, the relational database model is one the most popular database models

for handling and organizing data. Recent developments in industry and academia clearly

identified the need for some enhancements to RDBMS to be capable of handling big data;

this is one of the main targets RDBMS companies are currently working on. This means

that RDBMS will continue to successfully absorb emerging characteristics distinguishing

their competitors and hence will continue to lead the market as it was the case following

the development of object-oriented databases. The latter disappeared after RDBMS ven-

dors expanded their coverage to subsume the attractive characteristics of object-oriented

databases.

1.2 Problem Definition and Motivation

Though a RDBMS is attractive as a data repository due to the solid underlying mathematical

foundations, accessing data stored in a relational database is mostly restricted to people who

know SQL. In other words, SQL stands as a barrier between domain experts who need data

6

from database repositories. The database community realized this serious issue at early stage

and considerable efforts have been dedicated to provide user-friendly interfaces to RDBMS’s

with the target to increase number of users who can retrieve data from a RDBMS without

any need to know SQL. One trend in this direction is providing natural language interfaces

to RDBMS. This will allow domain experts who are in general not database experts to access

and retrieve data without feeling the need to consult a SQL expert [32].

This thesis provides a possible solution for this problem that naive users are usually facing.

It builds on previous achievements of our research group where VIREX was developed.

VIREX is an attractive user-friendly visual interface that allows users to express their queries

by ticking boxes next to the names of tables and attributes to appear in the result [34, 35,

44, 46, 45]. VIREX also allow users to specify a filtering prediction by using a specific box

that provides a listing of all attributes that exist in the database with opportunity to use

a rich set of comparative operators, including fuzziness. Further, VIREX could connect to

RDBMS and XML databases in the back-end. In this thesis, the target is to extend the

power of the user interface by providing a natural language style that allows to express

queries as questions that follow a specific structure. We argue that deciding on a natural

language extension to the user interface is important to avoid neglecting imprecision which is

a main component of natural language expressions. This is covered in the developed system

by having fuzziness as part of the query model.

SQL suffers from serious limitations when it comes to handling imprecision in queries.

SQL is built on standards that are based on boolean interpretations [3] which prevent

database experts from making fuzzy requests. For example, assume we want to retrieve

cities with high population. Using the database structure in Figure 1.1, the query will be

coded as shown in Figure 1.4. However, executing this SQL query will return an error be-

cause it is not possible to compare text (”high”) with the values in column (”Population”)

which is of type numeric. Handling user’s imprecision is a feature that SQL lacks. However,

7

having such feature will add flexibility to users who are interested in expressing their queries

with imprecision and still get back accurate results. This is what we try to handle in the

proposed system.

SELECT cityPopulation

FROM lkup_City

WHERE lkup_City.cityPopulation=‘‘high’’

Figure 1.4: Example on Fuzzy SQL Query

The need for users to express their queries with imprecision was realized by researchers

since 1980s [27, 26, 51, 58, 62]. However, the efforts of various groups who were involved in

this research trend were not well received by industry simply because the main trend was

to incorporate fuzziness in database design. This means forcing one fuzzy understanding of

imprecision and imposing such understanding on all database users. Such a solution will

lead to confusion on users’ side because each user (group of users) has his/her (have their)

own understanding of imprecision when expressed in natural language. For instance, “hot”

weather has different interpretations by various groups depending on climate of the region

they live in, and hence it is not acceptable to have one understanding of “hot” pinned in the

database.

This thesis describes the development of a question-driven query interface to RDBMS’s.

It allows users to: (1) express queries as spoken English questions, and (2) incorporate

imprecision in their queries to better express their needs.

1.3 The Proposed Solution

The main contribution of this thesis is a flexible question-driven query model that allows

end-users to express their queries without feeling any need to learn a database specific query

language. Users are given the freedom to state their queries as questions that adhere to a

certain structure without sacrificing the opportunity to incorporate imprecision. The block

8

diagram of the proposed query model is shown in Figure 1.1 . Main components of the

system may be enumerated as follows: (1) configuring the database, (2) validating user

input, (3) analyzing user’s request, (4) displaying the result and (5) getting feedback. These

components are briefly described in this section.

Figure 1.5: Block diagram of the Proposed Query Model

1.3.1 Database Configuration

We developed the query model as a plug-in which connects to a given relational database in

order to facilitate question-driven queries. Thus, it is required to set the configuration by

defining the server type and credentials. The collected information is stored in an XML file to

avoid bothering users for entering the same credentials every time they use the system. XML

is a platform independent extensible markup language used to store data, it is a tree based

structure which is different from first normal form based relational database. The reason

behind using XML is the availability of a built in parser in .NET that is fast in loading and

parsing data. The same XML file used for saving the configuration is also used to partially

save database schema information, including tables name,columns name and tables relations.

Chapter 3 describes in details the information stored in the mentioned XML file.

1.3.2 Validating User Input

The main feature of the proposed system is its simplicity, we tried our best to minimize

user involvement in decision making during the analysis; and at the same time we should

return to the user the expected accurate results. Users should only enter their queries in a

question format and the system will analyze the questions and return the results to users.

Limiting users involvement to entering questions is one way to keep track of the structure

9

and content of the user input. Otherwise, if we allow users to specify their queries as free

text then it will be hard to analyze the text properly without involving a very sophisticated

natural language processor. Such an approach is outside the scope of this thesis. Actually,

the database community concentrate only on providing specific yet powerful approaches for

expressing user queries. A high level query language like SQL has been proven effective and

attractive to professional users and a visual user-interface or question-driven model would

be sufficient and satisfactory for a naive user. Finally, it is worth mentioning that users can

still code their queries in SQL and run them using our system.

1.3.3 Analyzing User Request

Questions input by users should be refined before starting the analysis. The refinement is

necessary to make sure that the questions do not suffer from any structure and/or spelling

mistakes which might effect the accuracy of the results. We used Stanford natural language

processing (NLP) tool for dependency extraction, entity name tagger, POS tagging and Data

expression detection. Chapter 3 includes more details about these aspects.

The mapping process between user input words and database schema requires using mul-

tiple techniques. These include pluralization and singularization of word, removing unneeded

words, and usage of word synonyms. A scoring system was built to indicate tables to be

used for the mapped words. In addition, we have a very powerful algorithm that helps in

detecting multiple conditions in questions.

In case of fuzziness, the system analyzes existing data to derive some initial ranges for

the fuzzy sets where triangular shape has been adopted in this study. Users have the option

to modify the suggested ranges or they may add more modules to the analysis. We keep

track of the ranges selected by users for later usage. We also keep track of users’ options in

case of ambiguity during the analysis in order to avoid frustrating/offending users by asking

them to re-input the same information.

The proposed system works perfectly on different types of queries; this will be shown in

10

details in Chapter 5. However, if ambiguous cases exist, users are approached to get the best

options that match their intended requests.

1.3.4 Displaying the Results

For reporting back the results to users, we tried to make this as simple as possible by

employing visualization. We used data grid to display the retrieved results. In addition, we

display for users the translated SQL query that corresponds to their questions. Two benefits

of this approach are: (1) users will trust the output more by reviewing the actual SQL query,

and (2) users will get the opportunity to learn how to code queries in SQL by watching the

SQL code equivalent to their questions.

Another feature added to the system allow users to visualize how their input is connected

to tables and columns in the relational database. For this, we use D3JS which is a java script

based tool that takes data as input and displays how they are connected [1]. Using D3JS it

is possible for users to interactively visualize the output.

1.3.5 User Feedback

In all systems, feedback is one of the most important features that help in evaluating system’s

performance. In our system, we added this feature to measure users’ satisfaction with the

results retrieved. This will help in deciding on improvements to be done to the system. In

other words, system improvements will be decided and conducted based on the feedback

provided by users.

1.4 Thesis Structure

The remaining chapters of this thesis include details related to the proposed approach briefly

described in this chapter. Chapter 2 covers the necessary background required to understand

the techniques used in this research. Chapter 2 also includes an overview of the related work

11

by emphasizing how it is different from our work. Chapter 3 describes the proposed solution

and the methodology, including the techniques used to parse users’ questions and how they

are mapped to the database. Chapter 4 reports the results and the time needed to complete

a query. Also reported in this chapter is the result of the analysis of the feedback that

was collected from users of our system. Chapter 5 includes a summary of the thesis, some

conclusions and future research directions. Finally, Appendices A and B are added at the

end of the thesis to show some snapshots of the developed system and the sample database

used in the testing, respectively.

12

Chapter 2

Background and Related Work

The research described in this thesis is based on NLP and data mining techniques. These

techniques will be briefly discussed in this chapter. We will also discuss the work already

completed and published by different scholars. We will emphasize how our approach is

different.

2.1 Background

Data mining may be seen as the process of automated learning and knowledge discovery by

utilizing a set of algorithms and techniques capable of extracting hidden information from

data [7]. In our research, we used NLP combined with data mining techniques to extract

necessary information from the questions posed by users who are interested in retrieving

some content from a given RDBMS. This section will briefly cover the main data mining and

NLP techniques used in our research.

2.1.1 Data Mining

Data mining is a sub field of computer science which makes use of machine learning tech-

niques to analyze and discover hidden information in data. It is mainly used to return

implicit information from data whose the returned knowledge cannot be easily discovered

otherwise [33]. Data mining employs sophisticated analysis techniques to be able to get

hidden information from data. Various techniques have been developed mostly in the past

three decades to assist in the data mining process.

Learning based data mining techniques are mainly categorized in two main groups,

namely supervised and unsupervised learning algorithms. Supervised learning requires users

13

to predefine domains and then decide on how to map objects into domains by considering

characteristics of some already known objects. The derived mapping policy will be applied

to decide on the domain of any new object; it is the domain that fits the object’s character-

istics the most. Classification is considered to be a supervised learning technique. On the

other hand, a learning technique is said to be unsupervised when domains are not defined

in advance, but they are derived from the data. Clustering is considered to be unsupervised

learning technique [30].

In this research, we apply classification to extract useful information that can be used

to map user’s request to the database schema. In addition, we use clustering to decide on

potential fuzzy sets for the fuzziness model employed in this thesis. We used triangular fuzzy

membership function as described in Section 3.6.

Classification

Classification is one of the most famous techniques in data mining. The classification process

involves two main tasks which are accomplished based on some data; this is the case for all

data mining tasks which are by definition data centric. In other words, it is not possible

to talk about data mining techniques without specifying the application domain and the

particular data to be considered in the mining process.

For the classification process, it is required to have an initial data which consists of a set

of objects each has its own values for some specific characteristics. Also, there should be

some known classes or categories for objects such that each object belongs to one class based

on the combined values of its characteristics relevant to the classification. First the data

is split into two disjoint subsets, one called training data and the other constitutes testing

data. It is important to have all classes somehow represented in the training data which is

used to construct a classification model. The quality of the model is judged by evaluating

its power in finding the right classes for objects in the test set. The accuracy of the model

is measured as the percentage of objects which are correctly classified.

14

A number of classification techniques are described in the literature, such as Neural Net-

work Classifier, Naive Bayes Classifier, Decision Tree Classifier, K-Nearest Neighbor Classi-

fier, Support Vector Machine, among others [30, 56].

To interpret the words constituting questions, we used classification rather than clustering

since we have some predefined domains that every word should be mapped to. In other words,

for named entity recognition (NER) process, we used four domains to map items which are

person, organization, Location and miscellaneous; any new item should be mapped to one

of these four domains. In English, we have some predefined clauses, such as auxiliary,

conjunction, etc., and any clause type should go under one of the specified four categories.

Table 2.1: Confidence Table Used to Measure the Accuracy of a Classifier

Predicted
Class 1 Class 2

A
ct

u
al

Class 1 True
Positive

False
Negative

Class 2 False
Positive

True
Negative

Table 2.2: Example on a Classifier Results

Predicted
Canadians Non-Canadians Total

A
ct

u
al Canadians 10 5 15

Non-Canadians 2 15 17
Total 12 20 32

The quality of a classifier is measured by using the confusion matrix or contingency table,

e.g., the two-class matrix shown in Table 2.1. For example, consider a classifier which has

been set to classify some given objects into one of two classes, say Canadians and Non-

Canadians. Assume there are 32 persons who are actually classified as 15 Canadians and 17

Non-Canadians. The Canadians row in Table 2.2 shows that 5 out of the 15 Canadians have

been predicted as Non-Canadians; and the Non-Canadians row in Table 2.2 shows that 2 out

of the 17 Non-Canadians have been predicted as Canadians. In other words, the result from

15

the classifier employed to classify the 32 persons into Canadians and Non-Canadians reported

15 true positives, 5 false negatives, 2 false positives and 15 true negatives. These four values

are very crucial to study characteristics of the classifier, including recall, precision, accuracy,

etc.

Equations 2.1, 2.2 and 2.3 show the formulas for calculating sensitivity (recall), precision,

and accuracy, respectively. For the classification results reported in Table 2.2, sensitivity is

0.4, precision is 0.83, and accuracy is 0.78125.

TP

(TP + FN)
(2.1)

The Formula for Calculating Sensitivity of a Classifier

TP

(TP + FP)
(2.2)

The Formula for Calculating Precision of a Classifier

TP + TN

(TN + FN + TP + FP)
(2.3)

The Formula for Calculating Accuracy of a Classifier

Two classification techniques are used in our research. The first is called Artificial Neural

network Classifier and the second is Conditional Random Filed Classifier. The former is used

to extract dependencies and the latter is used for name entity recognition. We will elaborate

on the reasons behind using these two kinds of classifiers in the rest of this section.

Artificial Neural Networks (ANN) form one type of computing techniques that are

capable of performing some interesting analysis on non linear data. ANN have proven their

efficiency in dependency extraction (see Section 2.1.2) which we will use in our study [5, 29].

They are characterized by having high accuracy in feature extraction, optimization, noise

immunity and categorization which are among the main requirements for our system. A

16

neural network finds the relationship between the first and the last words in a sentence;

unlike other dependency detection algorithms which decide on word type based only on

preceding and following words, and hence might result in misleading information.

Neural Networks tend to find hidden links between the input. Finding such kind of

hidden information will help us in getting real dependency between words in a sentence, and

hence will lead to more accurate results.

Figure 2.1 shows an example which demonstrates how a neural network works. The input

and the hidden links are mapped based on the trained models which have weighted nodes. In

other words, ANN use observation and weights to generate the best output. Many algorithms

are commonly used in Neural Networks. In our research, we used the cube algorithm which

proves its accuracy over the other presented algorithms [15].

Figure 2.1: Mapping of Neural Network Nodes

Conditional Random Field (CRF) is a statistical model mainly used in machine

learning and pattern recognition. CRF was first introduced by Lafferty [40]. Since then

it started to receive considerable interest and researcher used it in many different domains,

e.g., [66, 25, 64, 60]. Some classifiers usually label an object without taking into consideration

the influence of its neighbors. Neighbors of a given object have a great effect on its type.

For example, Washington can be the name of a person or a place. But, we can’t know its

exact meaning unless we take into consideration its neighbors to understand the context.

CRF effectively uses neighbors to best predict the type of a word. Other models have been

17

proposed for sequential processing, such as Hidden Markov Model (HMM) and Maximum

Entropy Markov Model (MEMM). These models suffer from the label bias problem which

might result in an inaccurate mapping. However, it has been proved that CRF is more

efficient in entity recognition [40, 48] compared to HMM and MEMM. In our research, CRF

classifier is used to identify the type of unmapped words and for extracting date expressions.

Fuzziness

Fuzziness is the act of having vague words in users’ requests. People usually find it easy

to express what they need imprecisely, i.e., in a fuzzy way. In other words, fuzzy words in

general have imprecise meanings and hence it is not possible to retrieve a result based on

fuzzy terms without further analysis [19, 67]. For example, suppose a database user wants

to know people who have high service fee. The word ”high” in this sentence is considered to

be vague. It is not possible to know how much high a user meant, is it the highest, close to

high, etc. To handle such requests effectively, the research conducted for this thesis covers

the ability to handle fuzziness in users’ queries. The limitations that we faced while handling

fuzziness will be described in Chapter 5.

Discrete values have one interpretation, e.g., an object either exists or not, which means

the value of existence is either one or zero. On the other hand, fuzzy values allow for

smooth transition in the [0,1] range to express the degree of existence in the domain with

0 and 1, respectively, refer to 100% does not exist and 100% exists, while all other values

between 0 and 1 refer to partial existence. The degree of membership may be either specified

in discrete form by deciding on degree of membership for each given value or computed

using a function, including triangular, trapezoidal, Gaussian, etc. In other words, various

membership functions have been defined by researchers for handling the fuzzy concept [37,

67]; in our system we used Triangular Membership Function (TMF) due to its simplicity [36,

21, 50]. To use TMF for calculating membership degree for each given value, we should

apply the formula in Equation 2.4, where a is lowest bound value in a specific domain, b is

18

centroid (midpoint) of the domain and c is highest value in the domain.

µF (x, a, b, c)


0 if x < a
x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c

0 if c < x

(2.4)

Triangular Fuzzy Membership Function

Figure 2.2: Triangular Membership Function

To illustrate the computation of membership function values, consider the fuzzy domains

shown in Figure 2.2 which specifies three fuzzy sets for values of a variable called “Grades”,

and assume we want to calculate membership degree when “Grade” takes the value 2. We

first check under which domain the value 2 is located. Using the information in Figure 2.2,

it can be easily seen that the value 2 is located under the domain “Low”. By applying the

formula in Equation 2.4, the membership degree of 2 will be (10−2)
(10−0) = 0.8, this means when

the value of “Grade” is 2 its membership degree in the “Low” domain is 0.8.

Finally, it is worth mentioning that fuzziness refers to possibility which is different from

probability. Though both are expected to take a value in the range [0,1], the former is

measured by a membership score while the latter is computed as the percentage of possible

choices with respect to all existing choices. For example, assume the probability of Chris

19

to have a high grade is 80% and the membership of Chris in the ”High” domain is also

80%. The former value shows that the chance for Chris to have a high grade is 80% and

hence he has 20% chance to be in the other categories of grade. On the other hand, 80%

as membership value indicates that Chris grade is 80% close to be the highest and this has

nothing to do with the membership degree of the grade of Chris in the other fuzzy domains

as each fuzzy domain has its own membership function which should be applied to compute

corresponding degrees of membership.

2.1.2 Natural Language Processing(NLP)

Natural Language processing is a hot topic in computer science and especially the artificial

intelligence domain. The main usage of NLP is to analyze text in order to get meaningful

information. Over the past decades, many researchers have been working in this domain

leading to the development of efficient algorithms used for text analysis [10]. We used NLP

in our system to analyze users requests in order to find relevant words and map them to

database tables and columns.

Two main things were used for the mapping process, the first is dependency between

words and the second is word type which is known as name entity recognition (NER). NER

is applied to know the types of some words in a sentence. In the rest of this section, we will

talk briefly about dependencies and NER.

Dependency parser

Knowing the dependency between words is very important in our research. Dependencies

allow us to discover hidden information in a given text; such information cannot be found

using normal analysis techniques [49].

Figure 2.3 shows some example dependencies, where each POS and Relation tag has a

specific meaning which can be found in the work described in [18]. Many approaches have

been proposed to extract dependencies from a sentence but to the best of our knowledge

20

Figure 2.3: Example on Word Dependencies Generated by Stanford Dependency Parser

Stanford Dependency Parser is the best among the available parsers [15, 38]. However,

the results presented in [12] are related to the old Stanford dependency parser; the new

dependency parser of Stanford uses ANN which has improved its efficiency.

Name Entity Recognition

Name Entity recognition (NER) is one of the subfield in NLP. The main usage of NLP is to

find the type of a specific word in a given sentence [24]. NER can be used in many domains

ranging from health to business, where each has its specific domain reference that can be

used [24, 20]. For example, the type of the word “Abed” is person. We used NER to identify

unmapped words for better accuracy. Many algorithms have been used to detect words

types, such as Hidden Markov Model, Maximum Entropy markup Model and Conditional

Random Field. CRF has demonstrated its high accuracy and efficiency for detecting words

types [24]. Section 2.1.1 demonstrated the effectiveness of CRF compared to other available

algorithms.

Dates Phrase Extractor

Time expression extractor is another field in NLP. Many algorithms were used to extract

time expressions from text. Consider this sentence as an example to illustrate the process:

“last year Chris went to Peru”. Here, the combination of two words “Last year” is considered

as a time expression. However, in text this kind of time expression should be replaced by

the actual date to be used in the mapping.

Several parsers have been proposed to extract date expressions from sentences. However,

none of them works perfectly. The result reported in [23] and [14] show the effectiveness of

21

SUTime parser over other date expression extractors. SUTIME is based on regular expres-

sions that help in detecting date text phrases. Stanford NLP tool uses SUTime library for

extracting time expressions from text [13]. Since we decided to use Stanford NLP tool in our

research and since SUTime has proved its effectiveness, we decided to use SUTime library

for date phrase extraction. Some modification were added to SUTime library which we will

describe in details in Chapter 3.

2.2 Related Work

Natural language processing is used to analyze text with the target to extract useful in-

formation. Researchers have been working extensively on developing algorithms that can

handle this task. Moreover, many approaches have been proposed to include fuzziness in

SQL, e.g., [32, 4, 8, 39, 6, 9]. The work described in this thesis focuses on translating users’

requests into valid SQL queries, regardless whether the requests are fuzzy or not. In this sec-

tion, we focus on approaches that utilize NLP and fuzziness while translating users’ requests

to SQL queries; we also discuss how our work is different from other approaches described

in the literature.

Several approaches have been proposed to handle the mapping of users’ requests to

relational databases using NLP and data mining techniques. For instance, the work proposed

by Li et al. [42] discusses an approach developed to analyze users requests, not necessarily

expressed in question format. Stanford Dependency parser and similarity functions were used

to map words into database tables and columns. However, in our approach we introduce

the use of NER which help in mapping unidentified words without the need to bother users.

In addition, we use synonyms, pluralization and singularization for word mapping. We also

handle fuzzy requests and aggregation functions which are features that the approach of Li

et al. [42] lacks. Table 2.3 includes a detailed comparison between our approach and that of

Li et al. [42].

22

Table 2.3: Comparing our Approach with the Approach of Li et al. [42]

features [42] Our Approach

Used Questions No YES
Stanford Dependency Parser YES YES

Similarity YES YES
Synonyms NO YES

Prefix and Suffix NO YES
NER NO YES

Fuzziness NO YES
Singularization and Pluralization NO YES

Aggregation Functions NO YES
Date Expression Detector NO YES

Transform Numbers in Words to Numeric Values NO YES
Spell Checking NO YES

Handling Ambiguity YES YES

Another approach that analyzes user questions to retrieve data from relational databases

was proposed by Giordani et al.[28]. In this approach, the authors used Stanford dependency

parser and they applied direct mapping with the database schema. They reported 81%

accuracy. However, our system differs from their solution by the way we map words to the

database and the kind of queries we handle. Table 2.4 shows a detailed comparison between

our approach and the approach of Giordani et al. [28]. Only one question was given as proof

of their parsing capability which is considered to be not enough to demonstrate the power

of their work.

Many researchers have been working on building effective systems for handling user

queries. However, not all of them are capable of outputting accurate results. In other

words, their mapping process is different and lacks some features which could help in im-

proving accuracy. For instance, the work done by Nihalami et al. [54] has some limitations,

such as number of inner joins it can handle. In addition, the accuracy reported in their paper

is low and the mapping process depends on direct matching. Another system was proposed

by Samsonova et al. [59]; further, Little et al. [43] is another example that uses NLP to

parse and map users request to SQL. The system proposed by Little et al. [43] provides

23

Table 2.4: Comparing our Approach with the Approach of Giordani et al. [28]

features [28] Our Approach

Used Questions YES YES
Stanford Dependency Parser YES YES

Similarity YES YES
Synonyms YES YES

Prefix and Suffix NO YES
NER NO YES

Fuzziness NO YES
Singularization and Pluralization NO YES

Aggregation Functions YES YES
Date Expression Detector NO YES

Transform Numbers in Words to Numeric Values NO YES
Spell Checking NO YES

Handling Ambiguity NO YES

suggestions to users when writing their queries. Our system doesn’t support such type of

feature. However, fuzziness is not handled in the system proposed by Little et al. [43]. Also

their mapping process is different from the one that we are using in this thesis, since they

only rely on direct matching. Other systems have been implemented such as those described

in [61, 54, 53, 57]. But they also don’t handle fuzziness, and they depend on direct mapping

without adding the extra checking we are applying in our system.

The approach of Agrawal et al. [3] is very close to ours. Stanford Parser was used to get

dependencies between words along with their POS tags. They also worked on intractable

tokens and replaced them with meaningful date/time that can be used in the mapping, e.g.,

the word ”midnight” can be replaced by an actual time which will be more meaningful in the

mapping process. However, Agrawal et al. [3] didn’t use NER and synonyms, though both

might help in the mapping process; also they didn’t handle imprecision in user questions.

Table 2.5 shows a detailed comparison between our approach and the one proposed by

Agrawal et al. [3].

To the best of our knowledge, there is no system described in the literature that translate

users’ requests the way done in this thesis. Our mapping process includes various techniques,

24

Table 2.5: Comparing Our Approach with the Approach of Agrawal et al. [3]

features [3] Our Approach

Used Questions YES YES
Stanford Dependency Parser YES YES

Similarity YES YES
Synonyms YES YES

Prefix and Suffix NO YES
NER NO YES

Fuzziness NO YES
Singularization and Pluralization NO YES

Aggregation Functions NO YES
Date Expression Detector NO YES

Transform Numbers in Words to Numeric Values NO YES
Spell Checking NO YES

such as dependencies, word refinement, synonyms and NER. The combination of these tech-

niques will help in better mapping the results. We also handle nested queries which most

systems don’t do. In addition, we handle questions that include aggregation functions, such

as maximum, average, count, etc. All these features integrated in our system will help in

handling more diverse queries which cannot be handled by other systems described in the

literature. We don’t tight users’ hands to a limited number of conditions in a query. We

also avoid limiting the number of tables that users can refer to in their questions, and hence

will be used for data retrieval. Chapter 3 describes the proposed solution in details and

highlights the steps for analyzing users’ requests to retrieve the intended results from the

database. The accuracy of our results and performance measures are reported in Chapter 4.

25

Chapter 3

Proposed Solution and Methodology

Data is collected every day by different types of devices and applications. The collected data

may be analyzed to discover some hidden information which may help in decision making.

For example, a company might use data related to sales to find out when its products are

bought the most. Such type of analysis will help companies to improve their marketing

plans.

Despite the growing interest in NoSQL, the main data repositories are still RDBMS

based and hence require knowing SQL for data access and retrieval. However, the number

of users interested in retrieving data from existing data repositories is rapidly increasing.

Moreover, the user group is characterized by diversity in background and capabilities ranging

from naive users to professionals. Forcing all user groups to learn and master SQL may be

classified as a harsh expectation. Instead, it is more reasonable and practical to develop

something that could allow all types of users to easily and smoothly access existing data

repositories, including RDBMS’s. In other words, in most organizations data is usually

stored in RDBMS’s which can be only accessed by knowledgeable database experts who

know SQL. For instance, if a manager wants to have a specific report then he/she should

wait for the database expert to write the specified query, design the report and send it to

the manager. All this process is time consuming and expert dependent. This issue and the

like motivated us to build a system that will help naive users to retrieve from RDBMS’s the

data they want without the need to learn SQL.

This chapter will discuss the proposed system in details. The tools used in realizing the

system are described. We also describe the functionality of every component in the system.

In Chapter 4, we elaborate on the efficiency of our system.

26

3.1 Development Tools

Visual studio 2013 and C# programming language were used in developing the proposed

system.. C# is a very powerful and widely used programming language. We built the

natural language interface (NLI) as a desktop application, i.e., it runs on a single machine,

unlike Web applications which can be accessed from anywhere using Internet or Intranet.

3.2 User Requirements

The purpose of this research is to develop a system that will allow naive users to retrieve

data from a relational database. We tried our best to make the system as simple as possible.

However, a user is expected to acquire some minimum computer literacy before trying our

system. Fortunately, it is assumed that every person do have such knowledge by default

especially in this era where most people have mobile devices.

Users might need some help for configuring database credentials in our system. However,

we think users with basic computer literacy will be able to set the configuration on their

own using the automated helper that accompanies our system. The project configuration

is described in Section 3.4.2. Figure 3.1 depicts the interaction between users and the

application as well as between the application and the database server.

3.3 Tools Used

Research groups have developed several tools for text analysis. We decided to use an existing

tool for the text analysis component of the developed system. Actually, this is a very common

practice in the research community. The main motivation for using existing tools is that they

have been well tested and hence adopting an existing tool will save time and effort.

Three existing tools have been integrated into the developed system to help in analyzing

users’ requests. These are: Stanford NLP parser, Hunspell spell checker, and the pluraliza-

27

Figure 3.1: The communication between the System Components

tion. They are briefly described in this section.

3.3.1 Stanford NLP Parser

Stanford NLP parser is one of the best parsers available for dependency extraction and name

entity recognition. SNLP is an open source tool under GNU General public license. It can

be used for research purposes. SNLP have many features which are shown in Figure 3.2.

However we will not use all these features in our research.

Our analysis mainly uses three features that are provided by SNLP. These are dependency

parser, name entity recognizer (NER) and temporary tagger which can help in detecting date

expressions. We already discussed the efficiency of the selected tools in Chapter 2. We used

models to train our data in order to get better results. These models are mainly provided

by Stanford and they are case insensitive. All models are loaded when the developed system

starts; this is way better than loading the models every time a user runs a query.

28

Figure 3.2: Features of the Stanford NLP Tool

SNLP Relation Extractor

The main task for SNLP Relation Extractor is to find the relationship between words in

a given sentence. It identifies the relationship between words and detects POS tags for

each word in a sentence. Detecting POS in a sentence will help in getting better accuracy

when extracting dependencies. Each relation has a type which is also detected by SNLP.

For example, assume it is required to get the relationship between words in the following

sentence: “What are names of people who have highest service fee and are living in New

York”, each word will have a POS tagger as shown in Table 3.1.

Each word in Table 3.1 has an ID which helps in differentiating it from other similar

words in the sentence. Moreover, each relationship has a type which is reported in Table 3.2.

Word ID in Table 3.2 is mapped to “ ID” column in Table 3.1. Relation types can be used

to determine if the relationship between two words is compliment, negation, etc. This type

of relationship is helpful while building a query. The full meaning of POS Tags and Relation

types can be found in [18].

The dependency parser is based on a neural network classifier which should be trained

29

first in order to return accurate results. We used the model developed by Stanford; it is case

insensitive. The name of Stanford model is “englishPCFG.caseless”. Stanford NLP tool

supports multiple languages, including Chinese and Arabic, but only English is used in this

thesis.

Table 3.1: Word POS Tagger Example

ID Word Start position End Position POS NER

1 what 0 4 WP o
2 are 5 7 VBZ o
3 the 8 11 DT o
4 names 12 16 NN o
5 of 17 19 IN o
6 people 20 26 NNS o
7 who 27 30 WP o
8 have 31 35 VBP o
9 the 36 39 DT o
10 highest 40 47 JJS o
11 service 48 55 NN o
12 fee 56 59 NN o
13 and 60 63 CC o
14 are 64 67 VBP o
15 living 68 74 VBG o
16 in 75 77 IN o
17 New 78 81 NNP Location
18 York 82 86 NNP Location

SNLP Name Entity Recognizer

Name entity recognition is another feature we used to analyze users’ requests. After excluding

stop words, unmapped words are those which cannot be mapped to and matched with

existing tables or columns in the database. A detailed explanation about the mapping

process is included in Section 3.5.5. If a type is identified for any of the unmapped words

then we check if there is any table or column that matches the specified type.

For our research, we used four types of classes. These classes are: Location, Organization,

Person, and Date. The Date type is used only for detecting date expression in a sentence.

Adding more classes has been left as a future work. The model used for SNLP NER is

30

Table 3.2: The Relation between Words in a Sentence

First Word First Word ID Second Word Second Word ID Relation Type

Root 0 what 1 root
what 1 is 2 COP
name 4 the 3 DET
what 1 name 4 nsubj
people 6 of 5 case
name 4 people 6 nmod:of
have 8 who 7 nsubj
living 15 who 7 nsubj
people 6 have 8 acl:relcl
fee 12 the 9 det
fee 12 highest 10 amod
fee 12 service 11 compound
have 8 fee 12 dobj
have 8 and 13 cc
living 15 are 14 aux
people 6 living 15 acl:relcl
have 8 living 15 conj:and
york 18 IN 16 case
york 18 new 17 compound
living 15 york 18 nnmod:in

called “english.conll.4class.caseless.distsim”. This model is case insensitive, i.e., it recognizes

“Chris” and “chris” as the same word. Using the sentence “What are names of people who

have highest service fee and live in New York” with its analysis result reported in Table 3.1,

shows that the last two words, namely “New York” were recognized as constituting name of

a city instead of treating them as two separate words. A word is neglected if it does not fall

in any of the four predefined classes.

SNLP Time Expression Extractor

SNLP Tool contains another important feature that recognizes a date expressed in words.

This feature helps us in detecting and replacing dates with corresponding numerical expres-

sions. To illustrate the process, consider the sentence “What are reviews that were completed

last winter”. Here, there is an implicit date expressed as “last winter”. Table 3.3 shows how

this date expression was detected. Based on the outcome, the phrase will be replaced with

31

Table 3.3: Date Extraction Example

ID Word Start Position End Position NER

1 What 0 4 o
2 are 5 8 o
3 the 9 12 o
4 reviews 20 23 o
5 that 21 25 o
6 were 26 30 o
7 made 31 35 o
8 in 36 38 o
9 the 39 42 o
10 last 43 47 Date
11 Winter 48 54 Date

an approximate actual date. Some phrases are detected as date expressions but Stanford

tool does not return an actual corresponding date for them. We extended the coverage of

our implementation to have these cases handled by the developed system. Multiple files were

used for this purpose, in addition to “english-bidirectional-distsim.tagger” tagger.

3.3.2 Hunspell Spell Checker

As the developed system is intended to expand the user group to include naive users, it is

expected to have some typing errors in the questions submitted by the users. This type of

mistakes might negatively affect the analysis. However, we cover this by integrating Hunspell

Spell Checker tool into the developed system. It is a very effective tool for detecting spelling

mistakes in a given text. It also has its own model that should be loaded in advance.

However, the suggestions given by Hunspell spell checker are not always accurate. For

instance, sometimes users might intentionally write some words which may not exist in the

list covered by Hunspell. To handle this, a text-box has been added to allow users to confirm

the words they want to keep untouched despite having them not recognized by the checker.

These additional words will be saved for later usage. Figure 3.3 shows an example which

demonstrates how the spell checker displays suggestions for users as well as the text-box that

allows users to confirm extra words.

32

Figure 3.3: Suggestions Produced by the Spelling Checker

3.3.3 The Pluralization Library

The pluralization library is a .Net library which is used to check if a given word is in plural

or singular format. It is also possible to use the tool to get pluralization or singularization of

a specific word. This will help in mapping words to database tables or columns by not just

checking for exact match. For instance, it is possible to have in the database a table named

“person”, while a user may use the word ”people” in his/her question; the two words are

matched after referring to the library. This tool has its own dictionaries and hence there is

no need for any model to be loaded. Actually, working with pluralization and singularization

of a word is a straight forward concept.

3.4 Project Configuration

In general, a software system should be configured before it is used. We tried to make the

configuration process of the developed system as simple as possible, keeping in mind that a

large number of users of the system are expected to lack advanced computer literacy. The

33

configuration process involves creating a project, fuzzy domains and ranges, word synonyms,

and prefix-suffix words that are used in mapping words to tables or columns.

Various requirements of the configuration process are saved in an XML file on user’s local

machine. There are two alternatives for saving data in a file: (1) using XML, and (2) using

Json parsers. The reason behind selecting XML over JSon is the availability of .NET XML

parser which parses and loads objects in a faster way compared to Json parers. We decided

to store configuration data in a file rather than the database in order to avoid modifying the

database schema. Thus, the database schema is not modified during the analysis. All the

information expected to be needed in the future will be saved in XML file.

3.4.1 Creating and Loading Project

Each created project corresponds to a database server. Users might need to create for the

same database multiple projects. Each created project has its own information, including

fuzzy domains, database schema, etc. Further, users can utilize the developed system to

connect to multiple relational database servers such as Microsoft SQL Server, Oracle, MySql,

etc. They can always save their work in XML file and next time they start the application

they can just load the XML file and proceed to retrieve information from the database.

3.4.2 Database Configuration

Creating a project requires a user to know the database server he/she is connecting to. Users

with enough expertise can just insert the connection string directly. Other users should refer

to the helper form shown in Figure 3.3. The main purpose of the helper form is to show users

the information needed to be able to connect to a database. After a user enters server type

(e.g., Microsoft SQL,Oracle or MySQL), server IP, username and password (if available), the

database will be auto populated from the selected server. A user should select the database

that he/she should connect to. After database settings are entered successfully the system

will get the database schema of the selected database.

34

Figure 3.4: Database Configuration Helper Form

The database schema includes all information about tables in the given database, includ-

ing their columns information. Each column has a type. To remove ambiguity for users, we

replace SQL columns types with more general yet easier to understand ones. For example,

instead of putting nvarchar(50) or varchar(50) we just indicate column type as text. We

show to users the set of tables along with their columns information because we think this

will help them in building their questions.

Relationships between tables are determined by Foreign-Primary keys connections. Each

table has a predefined primary key which is a minimal set of attributes that uniquely identifies

each record in the table. On the other hand, a foreign key represents a specific primary key

to simulate a predefined relationship. A primary key may have n ≥ 0 corresponding foreign

keys. A foreign key may exist in the same table with its corresponding primary key and

this simulates a self reference type of relationship. For instance, consider two tables, namely

persons and services and assume ID is the primary key of persons table, a self reference

may be added to “persons” table to show the children of each person; this is simulated by

duplicating ID in “persons” table to have the original primary key and its representative

foreign key. Further, assuming that each person should have a set of services would lead to

have person ID added to “services” table as a foreign key. This kind of information can be

35

retrieved from the database schema.

3.4.3 Create Fuzzy Domain and Ranges Dictionary

One of the main key features in the proposed system is the ability to handle fuzziness in

users’ questions. Section 3.6 talks in details about the fuzzy scenarios built in our system.

Generally, users can specify fuzzy domains and their ranges for each column. For example,

the column ”Fee” in table ”Services” would have 4 fuzzy domains; these are: Expensive,

normal, average and low. Users have the option to define ranges for each domain. Once

these fuzzy domains are defined, every condition in the user question will be checked to see

if it contains a fuzzy domain or not. In our system, we allow users to specify domains for

numeric columns only.

3.4.4 Create Word Synonyms Dictionary

Handling word synonyms is another feature supported by our system to improve accuracy.

Users can define a set of synonyms for each table or column. When a synonym word is

indicated in the text, the word will be mapped to its corresponding table or column. For

instance, the column ”fee” might have the following synonyms ”Service fee”,”Price” and

”payment”, so that when one of these is detected in a sentence we directly use its associated

column and assign to it a score of 100. All this information will be saved in XML file to

allow users to update or modify them any time.

3.4.5 Create Database Prefix and Suffix Dictionary

Tables in a database may have prefixes and/or suffixes. Suffixes and prefixes might lead

to mismatching between tables or columns on one side and words on the other side. These

words should be removed during the mapping process in order to get more accurate matching

with database tables or columns. We created our own list of prefixes and suffixes, but we

also give users the option to modify the list. Table 3.4 shows a general list of words that can

36

be used as suffix or prefix for tables and columns in the database.

Table 3.4: General Database Schema Prefixes and Suffixes

Suffix/prefix Meaning

Tbl table
New New Table
LKUP Look Up Table
Tx Text field
Dt Date Type
API Application Program Interface
ASPnet represents the ASP.Net tool
Tmp Temporary table
TLKP Look Up Table

3.5 System Architecture

A number of predefined steps should be applied to ensure high quality in the analysis of

users requests. These steps are given in Figure 3.5 which shows the flowchart that depicts

the flow of control in the system from receiving a user question to delivering the result back

to the user. A given request (question) submitted by a user goes through the following

steps: refining the request, mapping keywords to tables/columns, building SQL statement,

resolving fuzziness, and seeking feedback from users. Here it is worth mentioning that

loading a project is not considered part of the flowchart shown in Figure 3.5. Instead it is

assumed that a user configures database connection and the related information once before

initiating a session which may include submitting a number of requests. Finally, the various

steps shown in Figure 3.5 are described in details in the rest of this section.

3.5.1 User Input

In general, it is not possible to keep track of and evaluate the background of the wide range

of users, the level of their computer literacy, and their ability to write SQL queries. This

has been the main motivation to have commercial DBMS’s apply optimization on every SQL

37

query submitted by a user. The query passes through a number of steps that produce what

is expected to be an equivalent optimized query. Such a process may be just a validation

for queries written by professionals as their original queries are expected to be similar to the

optimized query because they are expected to keep in mind the optimization of time and

space utilization related to their queries.

The developed system has been set in a way such that it accepts from users queries

expressed in SQL or as questions which are written in English and follow a certain format.

For questions, the system takes responsibility of producing the corresponding SQL statement;

and providing this facility will eliminate the risk of having some users submitting inaccurate

SQL statements in case they do not have any other choice. Further, the current version of

the developed system is capable of handling only WH (Which, What and How many) types

of questions. Each WH question may target the retrieval of a different type of data. We

will talk about each type in Section 3.5.7. As other researchers who have tackled the same

problem did, we avoid giving users full freedom in constructing their questions because it

will be hard to parse a sentence that does not follow a predefined structure, and hence it

will not be possible to produce results that satisfy users. Losing users’ trust in the system

will diminish its acceptability and hence the main target of providing the new interface will

not be satisfied.

Though it is preferred to have queries coded as questions written in English, the system

still provides the option to submit queries in SQL. The latter option is mostly used by

database experts who are even given opportunity to build fuzzy SQL queries which are

smoothly handled and transferred by our system. Coding fuzzy SQL queries has been made

possible because as depicted in Figure 3.5, fuzziness is handled after the SQL statement

becomes available regardless whether it is submitted by a user or derived by the system from

a user’s question.

Regular Expressions are used to check whether a user input is an SQL query or not. We

38

check if the user input has the Select and the From clauses then it is interpreted as an SQL

statement, otherwise it is considered as an invalid SQL query. For the latter case, i.e., for

queries which have not been identified as SQL statements, we check if the user input is in

question format that can be processed; otherwise the system asks the user to enter a valid

question. We mainly allow three types of WH questions; these are: ”Which”,”What” and

“How many”. More detailed information about these types of questions will be covered in

Section 3.5.7.

3.5.2 Input Refinement

Some refinement should be applied on the user input before starting the analysis. This

includes spell check, replacing numbers expressed in words by corresponding numeric values,

identifying dates expressed in words in order to replace them with corresponding actual date,

and fixing negation in a sentence. All these should be done before getting the dependency

between words so that we can get a better dependency information.

Spell Checking

Spell checking is used to make sure that all words in a question are what the user really

meant and no typing mistakes exist. We are using Hunspell tool (Section 3.3.2) to check

spelling mistakes and to give suggestions for corrections. However, Hunspell tool does not

alway give correct suggestions. Thus, we give users the opportunity to add correct words in

case they were not found in the list as discussed in Section 3.3.

After completing the spell checking process, the sentence will be updated with the correct

words and new values (in case they were determined); then the user will be able to see the

modified sentence.

Changing Text Based Numbers to Numeric Values

Numeric values can be expressed using two formats, either text based format such as ”Five”

or as digits such as ”5”. Using the first format will cause some difficulties while getting the

39

Table 3.5: Examples of Text Based Numbers Converted to Numeric Values

Text Based Numeric WordsWord Numeric Value

five 5
one hundred and five 105
two millions and three hundred 2000300
one million, one hundred and one thousand, two hundred and thirty-one 1101231
one million, one hundred and one thousand, 5 hundred and thirty-one 1101531
one hundred and one thousand 101000

dependency and building the query. For example, consider the following sentence: “What is

the number of people who have a service fee greater than five hundred and twelve”. When

getting the relation between words, SNLP will detect the expression “Five hundred and

twelve” as number but it will deal with each word alone; each word will be mapped to the

corresponding digit(s). However, including in the sentence the numeric value ”512” instead

of the expression “Five hundred and twelve” will lead to a different outcome. Namely, the

value ”512” will be mapped to the word ”fee” directly without splitting. Another reason for

converting text based numbers to numeric values is that when building the “where” condition

in SQL statement we should use with the condition operator numeric values instead of text

base values.

We convert all text base numbers to numeric values. Table 3.5 shows a list of text based

numbers and their representation as numeric values. Algorithm 1 is invoked for replacing

text based numbers with numeric values. The input parameters are a list of constituents of

text based number and the original sentence in which text based number will be replaced

with its numeric value. Extracting the expression of the text based number from a sentence

is done by another function.

Fixing Negation

Fixing negation in sentences is another refinement done on the user input. This kind of

refinement is not displayed for the user. It is rather intended for internal usage by the

system. Fixing negation includes replacement of negation words with corresponding full

40

Algorithm 1 Parsing Text Based Numbers to Numeric Values

Require: a! = ”” and numExpressions.length > 0
1: numDictionary = [”one” : 1, ...”nine” : 9, ”ten” : 10, ...”ninteen” : 19, ”twenty” :

20.....”ninty” : 90]
2: uniteDictionary = [”hundred” : 100, ...]
3: for sentence ∈ numExpressions do
4: words = sentence.split(’ ’)
5: numV al = 0
6: for w ∈ words do
7: if w is numeric and w not in uniteDictionary then
8: numV al = numV al + w
9: else if w is numeric and w in uniteDictionary then
10: numV al = numV al ∗ w
11: else if w is not numeric and w in numDictionary then
12: numV al = numV al + numDictionary[w]
13: else
14: numV al = numV al ∗ numDictionary[w]
15: end if
16: end for
17: a = replace w in a with numV al
18: end for
19: return a

words without abbreviation. For example, the word ”don’t” is transformed to ”do not”.

Doing this will help us when building the “where” condition. Here it is important to mention

that the developed system does not support types of negation that will lead to set difference.

We rather support negation at the record level, i.e., to filter records that do not satisfy a

given condition. The former has been left as future work. Finally, Table 3.6 includes some

examples of words that are used to express negation in sentences.

Replacing Date Expressions with the Actual Date

For this refinement, we get help of Stanford SU library. The main task of this library is to

detect dates expression in a sentences and replace them with corresponding actual dates.

However, this library doesn’t transform all the detected date related expressions to actual

dates. In other words, Stanford SU library is capable of handling mostly straight forward

conversions and it skips some complicated cases like “Winter”. Thus, we had to expand

41

Table 3.6: Examples on Transforming Abbreviated Negated Words to Full Word Represen-
tation

Negated Word Full Word

Don’t Do not
Doesn’t Does not
Wasn’t Was not
Didn’t Did not
Weren’t Were not
Haven’t Have not

the coverage of our system to deal with complex cases unconverted by Stanford SU library.

Explicitly speaking, we developed an algorithm for handling expressions for which Stanford

SU library doesn’t produce actual dates. Table 3.7 gives a list of date expressions, how they

were parsed, and whether by Stanford SU library (Stanford for short) or by our algorithm;

we assumed current data is 11/08/2015 (mm/dd/yyyy).

Table 3.7: Examples on Transforming Date Expressions to Actual Dates

Date Expression Actual date Notes

Last Monday 11/02/2015 Parsed by Stanford
Last Year 1/1/2014 Parsed by Stanford
Last 4 winters 12/01/2011 This is detected by Stanford but parsed by our system
Coming 4 winters 12/01/2019 This is detected by Stanford but parsed by our system
Last 4 days 11/04/2015 This is detected by Stanford but parsed by our system
Last 6 months 05/08/2015 Parsed by Stanford
Coming 4 Days 11/12/2015 This is detected by Stanford but parsed by our system

3.5.3 Get Word Dependencies

After completing all refinements for the user input, we get relationships between words. This

will help in detecting which values are related to which columns while building the “where”

condition in SQL statement; in addition this will help in figuring out columns that should be

retrieved and in case they were specified. The latter columns are part of the “select” clause

of the SQL statement.

Stanford NLP tool is used for getting the dependencies. This tool helps in getting re-

42

lationships between words along with the relationship type. We get dependencies in a tree

format; we then parse them into a dictionary by grouping each word with words that depend

on it. This will help us in faster checking for words that are related to each others.

3.5.4 Eliminate Unnecessary Words and Punctuations

Punctuation and unnecessary words are removed from the given sentence before starting to

match words with database tables and columns. This is not done before getting dependencies

as it might affect the output of Stanford Dependency Parser. Also unnecessary words should

be removed from the sentence. Keeping unnecessary words in the sentence will result in

consuming extra time for the mapping process.

We usually have a predefined list of unnecessary words that we usually remove from

a sentence. However, this list might change depending on the database application from

which the data is to be retrieved because some words may be relevant for one application

and irrelevant for another. For example, the word “From” is considered to be unnecessary

word for a student database, but it might be very relevant for an airlines reservation database

where “From” may be used as a column name. For the latter case and the like, we don’t

remove from the sentence words which are expected to be relevant due to the investigated

database application. Users also have the option to expand the list of unnecessary words.

Table 3.8 contains a list of words that are usually removed from a sentence before starting

the mapping process.

Moreover, we also remove duplicate words in a sentence. We don’t need the same word

to be mapped twice as this might consume more time without affecting the output. All these

modifications are not made to the original sentence; instead changes are done on a copy of

the original sentence.

43

Table 3.8: List of Unnecessary Words that can be Removed from a Sentence

This The Equal
That Which And
New Previous Best
With Coming Do
Not Last Does
Between Like Of
By To Often
Made Too You

3.5.5 Map Words to the Database Schema

Here, we concentrate on identifying the main words to be mapped to the database schema.

Numbers and dates are ignored in the mapping process because these should be handled in

the condition. Each word in the modified sentence is compared with database tables. The

mapping involves the following:

• pluralization or singularization of a word and checking if there is a match.

• checking if the word is a synonym of a specific table or column.

• removing prefixes and suffixes from the names of tables and columns and

checking if there is a match.

• checking if the word was already mapped to a table or not.

If one of the specified conditions returns true then the word will be added to a dictionary

and its relationship score with the corresponding table will be 100. Partial scoring is given to

words that don’t have exact match with existing tables. For example, assume there are two

tables one named ”Service Reviews” and another called ” Services”, then the word “Services”

will have a score of 100 with the second table and its score is 50 with the first table. The

scoring system we created is a straight forward process that will help us in filtering tables

we need to get data from.

44

Mapped words are also removed from the sentence to avoid any trial to map them again.

Then the remaining words will be mapped to columns of existing tables by applying the same

process described above to handle tables. Each word mapped to a column is removed from

further consideration. In case of any remaining words, other than dates and numbers, the

user will be consulted to specify whether these words are necessary or not, if the user decides

that the remaining words should be included in the analysis then the extra step described

in Section 3.5.6 will be executed.

3.5.6 Tables and Columns Selection

The process of mapping words to tables and columns results in two lists, the first is a

dictionary of words with their mapped tables and associated scores for each relationship and

the other is a dictionary of words with corresponding columns and associated relationship

scores. These lists should be filtered to find: (1) the tables to be included in the “From”

clause of the SQL statement (these are in general tables from which the target data is to be

retrieved) and (2) the columns that should appear in the “Select” and “Where” clauses of

the SQL statement.

We iterate over all the keys in a dictionary. These should be the mapped to the words

identified by the process described above. We first select tables that have a relationship score

of 100. Each word is expected to have at most one corresponding table of score 100. However,

it is possible to have some words which do not have a corresponding table associated with a

score of 100. Each such word is associated with a corresponding table that has the highest

score. A number of scenarios could be applied to narrow down the association to a single

table in case the latter check identifies more than one candidate table sharing the same

highest score. The first scenario gives priority to the table which has direct connection with

the largest number of tables identified with a high score, preferably 100. The second choice

will be to consider the table which has some of its columns already identified as part of the

query with a 100 score. The last chance is to consult the user who is expect to know his

45

target result and hence should be able to select a single table from the set of all candidates

identified by the system. The same process is repeated for matching columns. However,

the system considers only columns which have a 100 score or which are linked to one of the

tables filtered by the process described above.

At the end of the matching process, it is possible to have remaining unmapped words.

These words are handled by first prompting the user who is expected to suggest whether

these words are necessary for the analysis. Accordingly, each necessary word is linked to the

query by applying the following two steps in order:

• Use NER to check the word type; if a type was returned then check which

table matches with the type

• Check for each table’s neighbors (directly related tables) whether any of their

columns of type text contains the candidate word as a value

The two tests are applied in order. In case one of them retrieves a table then the table

will be added to the filtered list to be used in forming the SQL query. Here it is important

to make sure that the returned table has a relationship with other tables that exist in the

filtered list. We know it is not very practical to apply the last step which requires checking

the content of specific columns. However, we are forced to go this way to avoid omitting

possibly important word(s). We improve the performance by maintaining inverted lists of the

key words available in the content of each column. Any words which are left unmatched after

applying all the test scenarios will be reported to the user as not considered in constructing

the SQL query to be executed.

3.5.7 Question’s Return Type

Users may ask questions in different ways so that they can get the information they need.

Some questions may involve the retrieval of a single numeric value while others may involve

retrieving a set of records. For instance, some questions submitted by users may involve the

46

usage of aggregation functions while others may target the retrieval of a list of records. In

our research, we benefit from the advantage of knowing the question structure which would

lead to the question type, and hence will reveal what should be retrieved to the inquiring

user. Table 3.9 shows a set of WH phrases and their expected results. Implementing other

question types has been left as a future work.

Table 3.9: Examples of WH Phrases and their Expected Results

WH Phrase Expected Results

What is the Number Single numeric value that represents the count per a retrieved result

What is the count Single numeric value that represents the count per a retrieved result

What is the average Single numeric value that represents the average value of a numeric column

What is the lowest Single numeric value that represents the lowest value of a numeric column

What is the highest Single numeric value that represents the highest value of a numeric column

How many Single numeric value that represents the count per a retrieved result

Which <table or column name> A list of records

What is the <table/column name> A list of records

3.5.8 Building the SQL Statement

After filtering the selected tables and columns, it is time to build the SQL query, which

consists of three main clauses and some other optional clauses as mentioned in Chapter 1.

These clauses should follow a certain structure. We should make sure that each clause we

build is valid and error free. In this section, we describe how our system builds the Select,

From and Where clauses. First each of the three clauses is separately formed and then they

are combined together into SQL statement to be executed. Finally, this section includes also

some examples that show how the developed system handles nested conditions.

Constructing the Select Clause

In general, the Select clause includes a list of columns that should be retrieved. Since

we have multiple types of questions, it is necessary to first check the type of the question

submitted by the user. Knowing question type will guide the construction of the “Select”

47

clause. For instance, some types of questions might involve the selection of columns and other

types might require computing certain values from one or more columns. The latter process

involves applying some aggregation functions which are predefined in SQL environment.

Table 3.10 lists some of the aggregation functions used in SQL such as Count, Min, Max

and Average. Some of these aggregation functions don’t require a column name in general,

such as Count where we can use “*” which means count all rows that satisfy the query.

However, other aggregation functions require explicit specification of a numeric column;

then values in the specified column will be used to calculate or determine the target value,

e.g., Min, Max, Average, etc. Table 3.10 lists some WH phrases together with possible

corresponding content of the “Select” clause.

Table 3.10: Examples on WH Phrases and their Expected Parsing

WH Phrase Select Query

What is the number Select Count(*)
What is the count Select Count(*)
What is the average Select AVG(columnName)
What is the lowest Select Min(columnName)
What is the highest Select max(columnName)
How many Select Count(*)
What is the <columnName> Select <columnName>

Some questions might target the selection of multiple columns. This can be determined

from the words that were mapped to columns and their specific locations in the question.

When dealing with multiple tables in a query, it is possible for one or more target columns

to exist in more than one of the tables considered in the query. This is resolved by adding

aliases to SQL queries to be constructed. As an alternative, it is possible to write the name

of a table followed by “.” (period) as prefix for the name(s) of its column(s) used in queries.

For example, when name of a person is a target column from the person table, the column

could appear in the query as “person.name”.

Columns in the filtered list are checked to determine the ones that should be in the Select

clause. These are mostly columns specified towards the beginning of the question. Having

48

only a table name specified towards the head of the question would be interpreted as no

specific column is the target. Accordingly, all columns of the specified table will be retrieved

and this is expressed by having only the asterisk (“*”) in the “Select” clause.

However, having in a given question some aggregate functions without corresponding

column(s) explicitly specified is considered as an error. Users will be advised to revise the

question by addressing the specific error message. Finally, it is important to note that

columns used in the filtering condition (i.e., in the “Where” claue) will not appear in the

“Select” clause unless they are explicitly specified as target columns by listing them close

to the head of the question. In other words, it is possible to have the same column in both

the “Select” and the “Where” clauses. Further, we run a final refinement process on the

“Select” clause to avoid listing the same column ‘multiple times.

Constructing the From Clause

In general, the “From” clause is used to specify tables to be used in the query. At least one

table should be listed in the “From” clause. When more than one table are listed in the

“From” clause, the RDBMS takes their cross product. However, it is possible to have various

versions of the join operation used in the “From” clause. Shown in Figure 1.3 is an example

SQL query which illustrates the usage of the inner join in the “From” clause. It is important

that all columns used in the select statement have their corresponding tables specified in the

“from” clause. The developed system does this check while filtering the tables and columns

as described in Section 3.5.6.

Join is one of the most interesting operations in the relational model. It is derived by a

selection operation applied on the outcome from a cross-product operation. It matches and

combines records from two tables. There are various versions of the join operation, including

theta join, equi-join, natural join, semi-join, etc. In our research, we used the inner join as

the default join. Integrating other versions of the join has been left as future work. Our

system is capable of realizing multiple inner joins in a user’s question. For example, consider

49

the database diagram shown in Figure 1.1 and the query: “What is the population of the

country where Chris lives”; the question will be converted by the developed system into the

SQL query shown in Figure 3.6.

Ambiguity may occur while analyzing user’s input. When it is not possible to resolve the

ambiguity using the steps described in Section 3.5.6, the system will ask the user to select

the table/column he/she meant. The information supplied by the user will be stored for

later usage. Algorithm 2 is responsible for constructing the “From” clause in the SQL query

under construction by the system.

Algorithm 2 Building the “From” Clause for SQL

Require: tables which is the list of tables to be used
1: relations = listoftuples(string, string)
2: query = ””
3: for table ∈ tables do
4: for t ∈ tables do
5: if table 6= t then
6: if there is relation between table and t then
7: if relations don′t have table and t then
8: relations.Add(table, t)
9: query = query+ ”innerjoin” + t+ ”on” table.primrayKey = t.foreignKey
10: end if
11: end if
12: end if
13: end for
14: end for
15: return query

Constructing the “Where” Clause

Building the where clause is one of the most important steps in coding a SQL query. Users

might have multiple conditions, each with a different operator and complexity. Users might

target to retrieve records based on a specific range, date, etc. or they might need to get

records based on a specific instance in the database.

Table 3.11 shows some example conditions and how they are reflected in the “Where”

clause. In these examples, we assumed there are two tables, namely ”Person” and ”Services”,

50

and there is a relation between the two tables where every person has a list of services

provided.

Table 3.11: Example on Conditions and their Corresponding Expression in the “Where”
Clause

Condition SQL translated

Service fee between 5 and 10 Where services.fee between 5 and 10

Service fee is the highest Where services.fee=(select max(service.fee) from services)

Service fee is higher than the average
or service fee between 5 and 10

Where services.fee >(select min(services.fee) from services) or services.fee between
5 and 10

Service fee is higher than the average
and service fee between 5 and 10

Where services.fee >(select min(services.fee) from services) and services.fee between
5 and 10

Service fee is equal to the average ser-
vice fee provided by abed

Where services.fee=(select avg(services.fee) from services inner join person on ser-
vices.pid=person.pid Where person.name=”abed”)

Services made by abed Where services.serviceID=(select services.serviceID from services inner join person
on services.pid=person.pid Where person.name=”abed”)

Service fee is the lowest Where services.fee=(select min(service.fee) from services)

Services created after 1/1/2015 and
have a service fee greater than 5

Where services.creationDate >1/1/2015 and services.fee >5

One advantage of the developed system is its capability to handle multiple conditions.

On the other hand, many other systems can handle only a limit number of conditions. Our

system is also capable of considering and differentiating between “and” and “or” connectors

in compound conditions.

Conditions are split using a separate function. In general, a user question consists of a

main clause and condition clause. The condition clause might have multiple conditions. We

built our own algorithm to detect these multiple conditions based on different predefined

tokens. During the process, we make sure that when we split a condition in a sentence we do

not map values to other conditions, especially when there are ranges. Fuzzy conditions are

kept aside; they are added to a list that will be checked later on because fuzziness requires

a special treatment as explained in Section 3.6.

Each condition is expected to have at least one column that should be used in the coding.

This is accomplished based on the dependency between the operator and the value from the

filtered columns list. We check the type of each column to make sure that the correct

51

mapping is done using the correct value. We also check whether the relation between a

column and an operator is negation. Some conditions might cover tables, such as “What

are names of people who have services”; here ”Services” is a table name. Such cases are

successfully handled by our system. However, there are cases which our system cannot

handle as mentioned in Chapter 5; these have been left as future work.

3.6 Fuzziness

Fuzziness is handled as the last step before submitting the constructed SQL for execution.

Recall that the developed system supports fuzziness both in the two types of allowed queries:

(1) questions may include fuzzy terms, and these are captured as part of the condition in

the “Where” clause, and (2) a user who decides to submit an SQL statement is allowed

to have incorporate fuzziness as part of the condition in the “Where” clause. The second

case is possible because the developed system pre-process every submitted SQL statement

to validate its content and to resolve fuzziness, if exists. In other words, when a user inputs

the query as a question, the system checks resolves the fuzziness while building the “Where”

condition; alternatively, the system checks for and resolves fuzziness that may exist in the

“where” clause of any actual SQL query submitted by a user.

The result from a given query is post processed before it is delivered to the user. The post

processing step is needed to deal with values related to a fuzzy term in the input query, if any.

For each returned row, the system calculates the membership degree to show the closeness

of the retrieved record to the domain centroid related to the fuzzy term. Finally, in case

none of the records in the database matches the condition in the “where” clause (including

the fuzzy condition), a message is delivered to the user to indicate that the system could not

find any result that matches the submitted query.

We have adopted from a previous work by our group [34] the three methods shown in

Table 3.12 for specifying and handling the fuzzy sets associated with fuzzy terms allowed in

52

Table 3.12: Methods for Handling Fuzziness

Possible Method Specifying Fuzzy Domains Deciding on Fuzzy Ranges

Manual By User By User
Semi Automated By User By System

Automated By System By System

queries. The details related to each of these three alternatives are covered in this section.

As a running example for the material covered in this section, assume there is a column

called “Fee” which contains the values listed in Figure 3.13. Here it is important to note

that we have adopted triangular fuzzy membership functions for this study. Further, a user

got the opportunity to modify the fuzzy membership functions at any time. Finally, the

membership degree for each given value is computed using Equation 2.4.

Table 3.13: Fee Column Values

Fee 10 15 0 12 25 28.5 16.5 4 20 2 3 5.5 11 18 30 55 26

3.6.1 Fully Automated

The users may decide to leave it up to the system to take full control for deciding on the fuzzy

sets and their ranges. In this case, the system decides on having three fuzzy domains/sets

by default. These are named as “High”, “Medium”, and “Low”. The ranges for these three

fuzzy domains and their centroids are determined by analyzing the values present in the

corresponding column which is intended to be queried based on a fuzzy term. The centroids

of the “High” and ‘Low” domains take the maximum and minimum values in the analyzed

column, respectively. By default, the ranges for these two fuzzy domains will have one side

with slope= 1. However, the range may be adjusted by the system based on the distribution

of the values present in the column. For the “Medium” fuzzy domain, its centroid is normally

taken as the middle point between the maximum and minimum values present in the column.

The range of the “Medium” fuzzy domain is specified between two lines each with slope= 1

on the two sides of the centroid. As it is the case with the other two fuzzy domains, it is

53

also possible to adjust and tune-up the range of the “Medium” fuzzy domain by considering

the values in the column.

To illustrate the fully automated specification of the fuzzy domains, assume it is required

to evaluate the following query: “What are names of people who have high service fee?”.

Here, “High” is determined as a fuzzy term. The system checks if already the “Fee” column

has corresponding fuzzy domains defined for the specific user who submitted the query, or

in general otherwise. The general case means the system has already or will split the range

of the values present in the “Fee” column into three domains as described above; these

ranges are shown in Figure 3.14. Since the user specified “High” in the query, the system

will retrieve all services that have an associated fee between 55 and 34.5, inclusively. Then,

Equation 2.4 will be used to compute the corresponding membership values.

Table 3.14: Fully Automated Fuzzy Ranges

Fuzzy Domain Ranges

High 36.67-55
Medium 9.17-45.83

Low 0-18.33

We developed our own algorithm for computing the ranges of the fuzzy domains. The

default number of domains is 3. Our algorithm has been built to work on triangular shaped

fuzzy domains which is the shape we have adopted for the study in this thesis. Choosing

any other shape for the fuzzy domains will not have major effect on the study; only some

tuning is required in the developed algorithms. We will refer to Figure 3.7 to explain how the

triangles are determined. To demonstrate how the algorithm works, we used three domains

in Figure 3.7, namely “Low”, “Medium”, and “High”. The bases of the three triangles

extend along the x-axis with some overlap. The segment “ac” forms the base for “Low”,

the segment “bf” forms the base for “Medium”, and the segment “eg” forms the base for

“High”.

Assume the length of the segment “ab” is x. The range of the values along the base is

54

divided into six equal segments, namely, “ab”, “bc”, “cd”, “de”, “ef”, and “fg”. The length of

each of these segments is x. The length of the segment separating two consecutive centriods

is 3x. For instance, “a” is the centroid of “Low” and “d” is the centroid of “Medium”; the

length of the segment “ad” is —”ab”—+—”bc”—+—”cd”—=3x. This way, we know the

number of segments needed for constructing the bases of the fuzzy domains along the x-axis.

The base of each of the left-most and right-most triangles should be 2x, while the base of

each intermediate triangle should be 4x. Further, each two adjacent triangles overlap by a

segment of length x. All of these can be easily realized by considering the example fuzzy

domains shown in Figure 3.7.

Equation 3.1 is used to calculate the membership values for n fuzzy domains. In Equa-

tion 3.1, HighValue and MinValue, respectively, stand for the maximum and minimum values

in the column for which the fuzzy domains are to be derived. The start and the End point

for each intermediate range (other than the left-most and right-most ranges) are calculated

using Equations 3.2 and 3.3 respectively.

3.1: Calculating the value of x

x =
maxV alue−MinV alue

3 · (n− 1)
(3.1)

3.2: Calculating the start point for each intermediate range

startPoint = endPointOfPreviousRange− x (3.2)

3.3: Calculating the end point for each intermediate range

endpoint = startPoint+ 4× x (3.3)

55

3.6.2 Semi Automated

Semi automated fuzziness means the user is expected to decide on the domains but the

system will work out the range to be covered by each domain. For instance, a user may

decide on having five domains, and accordingly the system has to analyze the data to find

the range of each domain. The system first finds the maximum and minimum values of the

column for which the fuzzy domains are to be determined. Second, the system divides the

area between the minimum and maximum values along the x-axis by considering the analysis

done above for the fully automated case. This way, the system will find the base of each

fuzzy domain.

To illustrate the semi-automated specification of the fuzzy domains, assume a user decided

to have five fuzzy domains for “Fee” column. These five fuzzy domains will be named:

“High”, “MidHigh”, “Medium”, “MidLow”, and “Low”. By considering the values in “Fee”

column as listed in Table 3.13, it is possible to find the maximum and the minimum values

as 0 and 55, respectively. This range along the x-axis is to be divided into segments of equal

size x as explained in the previous section. The number of segments depends on the number

of fuzzy domains. For the five fuzzy domains in the illustrating examples, 3× (5− 1) = 12

consecutive segments are needed. Accordingly, the length of each segment is computed as

(55−0)
3×(5−1) = 4.583. Finally, the computed length of the five bases for the five fuzzy domains

are listed in Table 3.15. These five triangular fuzzy domains are shown in Figure 3.8.

Table 3.15: Calculated Ranges for the Predefined Five Fuzzy Domains

Domain Range

High 45.833 – 55
MidHigh 32.083 – 50.417
Medium 18.333 – 36.667
MidLow 4.583 – 22.917

Low 0 – 9.167

56

3.6.3 Manual Specification of the Fuzzy Domains and their Ranges

To avoid imposing certain specification on the users, the developed system provides the

opportunity to the users to decide on both the fuzzy domains and their ranges. Then based

on the values entered by the user, the system determines the slope of the lines surrounding

each fuzzy domain. For the two extremes, i.e., the leftmost and the rightmost domains, only

one line is considered for each of them. But for each intermediate fuzzy domain, the system

determines the slopes of the two lines the domain, one on the left side and one on the right

side.

The system stores all the fuzzy domains regardless how they are specified, using any

of the three strategies described above. As the content of the database may change, it is

expected that the fuzzy domains may need some tune up to keep the good coverage of the

data. This can be done either by the system or the users may adjust the ranges as they wish.

3.7 Display the Result and Receiving the Feedback

After successfully completing all the analysis needed, the query is executed and the result is

returned to the user in the form of a grid which contains all the information requested by

the user and retrieved from the database. In case fuzziness is detected for the first time in

link to a particular user, the user has the option to save the specified ranges for later usage,

regardless whether the ranges were determined by the system or decided manually by the

user. In addition, users have the option to complete a report that reflects their degree of

satisfaction with the results. The system also displays for the users the translated queries so

that they can see how their queries were transformed into SQL and how the fuzziness was

handled. Moreover, each parsed question will be saved in the XML file to save the processing

time in case the user will decide to execute the same query again in the future.

For the visualization, we used D3JS which is a JavaScript library. This library is used to

show the users how their questions are linked to the database schema. We believe this kind

57

of visualization will increase the confidence of the users in the accuracy and completeness

of the retrieved data. Figure 3.9 illustrates the visualization of the links between users’

questions and the database tables and columns. Here it is worth mentioning that this is

an interactive visualization where a user can hover on each node to see it name.The orange

nodes represent the words in the question (sentence), the dark blue node are names of the

tables and the light blue nodes refer to names of the columns. The arrows between nodes

indicate the existence of a mapping between each directly linked two nodes.

3.8 Summary

This chapter covered in details how the developed system deals with users’ queries expressed

either as questions or as normal SQL queries with the opportunity to incorporate fuzziness.

All steps of the process are described from the submission of the query to the delivery of

the result to the user who submitted the query. We believe that the proposed approach will

lead to high accuracy in retrieving data by database users who are not experts in coding

SQL statements. While developing the system we tried to minimize the interference of the

users and also at the same time retrieve the most accurate result possible. However, our

system doesn’t always report 100% accuracy due to the difficulty in completely understand

and execute a query submitted by a naive user. In other words, the source of the lower

accuracy may be due to having users unable to fully express their intension and target from

the database. Still we admit that there are some limitations in the system and these will

be discussed in Chapter 5. Finally, the next chapter describes the database used in testing

the developed system; also covered in the next chapter are the test scenarios used to check

the accuracy of the results retrieved by the system. We used multiple type of questions with

different structure to check the efficiency of the developed system.

58

Figure 3.5: The general Flow of Control in the System for Analyzing User Input

59

SELECT lkup_country.countryPopulation

FROM personInfo

inner join lkup_City on PersonInfo.personCityID= lkup_City=cityID

inner join lkup_Country on lkup_City.cityCountryID=lkup_Country.countryID

WHERE PersonInfo.personFirstName=’Chris’

Figure 3.6: An Example SQL Query Using more than 2 Inner Joins

Figure 3.7: An Example of SQL Query using 2 inner joins

Figure 3.8: The Five Fuzzy Domains of the “Fee” Column as Discussed in the Example that
Illustrates Semi-Automated Specification of the Fuzzy Domains

60

Figure 3.9: Visualization of the Relationship between a User’s Question and the Database
Tables and Columns

61

Chapter 4

Experimental Analysis

Though the proposed system has been thoroughly covered in Chapter 3, we understand the

need to support that by conducting some experiments to demonstrate its various aspects.

Accordingly, this chapter is dedicated to describe the test environment, the conducted ex-

periments and to report the results together with the necessary validation. The database

described in Section 4.2 will be used in the experiments. The created test cases are very close

to real life scenarios. A variety of illustrative questions are used to show how the feedback

process works.

4.1 Testing Environment

The developed question driven query system can be used as front-end to any relational

database. This is true because the whole process depends on finding keywords in a given

question and then matching them with names of tables/columns in the given database. We

used Microsoft SQL Server 2014 in the testing. Here it is worth mentioning that neither the

test scenarios nor the outcome will be affected in case another DBMS is used, e.g., MySQL,

Oracle, etc. The only reason for using Microsoft SQL server 2014 is the available free license

for University of Calgary students as part of dreams park provided by Microsoft.

The SQL server was installed on a desktop computer in the database lab at the University

of Calgary. Characteristics of the computer are listed in Table 4.1. Though it is a powerful

machine, the minimum requirements to run the developed system are Windows OS 7 and

2 GB RAM.

62

Table 4.1: Characteristics of the Computer Used in Testing the Developed System

Feature Description

CPU Intel Core i5-2400
RAM 8GB RAM
Hard disk Capacity 500 GB
Operating System Windows 8 - 64bit

4.2 Data Set

A variety of techniques exist for collecting data which may be stored in a number of possible

formats, including structured, semi-structured, plain text, etc. However, since the relational

data model was development in 1970s, most enterprise data is stored in structured relational

databases. Further, data repositories are currently characterized by increased availability

and reachability by a wide variety of users from naive to professionals. Thus, question

driven queries are gaining popularity where all types of users could enjoy running their own

queries without any barriers like the need to learn SQL.

For the experiments, we defined and populated an example relational database which

includes data related to persons and the services they provide to people living in their

neighborhood. In other words, the example database structure is based on a test scenario

where people are providing services such that each service has a category and reviews. The

problem definition underlying the database could be briefly articulated as follows. Persons

may register their services in the given relational database and neighbors may seek specific

services by running their own queries. It is also possible to add a review and rate a given

service. Further, the example database keeps the friendship relationship between persons.

A person may refer others to use services provided by his/her friends; he gets credit in case

the service receives good review and rating. The database diagram is shown in Figure 4.1,

and the columns associated with each table in the example database are listed in Table 4.2.

Expected values for the various types are given in Table 4.3.

The primary key of each table is indicated in Figure 4.1. Further, the relationships

63

Figure 4.1: Schematic Diagram of the Example Persons-Services Database

between tables are visualized as links connecting primary keys with corresponding foreign

keys. For example, a link connects ”friendID” in “Person friends” and “pID” in “People”

because the former is a foreign key that represents the latter which is a primary key.

Content of the database have been populated using an automated bulk insert program

which is capable of producing reasonable dummy data. Table 4.4 includes the number of

records inserted in each table. Though dummy, the populated data is very close to a real

life scenario. Some example records from each table can be found in Appendix B.

4.3 Example Queries

Multiple types of queries can be executed using the developed system. These range from

simple queries to complex queries. By simple queries we mean those that don’t have many

conditions and inner joins which are expected to be discovered by the system. The more

64

inner joins and conditions are involved in a user’s question, the more time will be need to

analyze the question. In this section, we will describe each type of query which can be

executed using the developed system.

4.3.1 Simple Questions

In general, a simple question involves a simple select statement from a single table. These

question are attractive because they can be executed almost instantly without consuming

many resources. However, there are some cases where a simple question may turn into a

nightmare when it contains some words which could be directly linked to tables/columns in

the database. Recall that such case requires analyzing all values in specific columns to find

out whether it is possible to report some matching.

Table 4.5 shows a sample set of simple questions and their corresponding SQL statements.

4.3.2 Complex Questions

In general, complex queries involve more than one table and hence may be coded either as

traditional cross product with associated conditions or as inner joins. Further, it is possible

for a complex query to have a number of sophisticated conditions which include a mixture

of disjunctive and conjunctive conditions, i.e., connected by “and” or “or”. Recall that a

complex condition is split and recognized as explained in Chapter 3. This type of queries is

expected to consume more time and resources to be processed by the system.

In addition to having columns used in conditions on either or both sides of an operator,

some conditions might contain nested queries or aggregation functions. Some conditions

might even need description with other records in the database, and this will require sev-

eral steps to be completed. Table 4.6 shows some example complex queries with possible

corresponding parsed SQL statements.

One attraction of the developed system is the variety of queries it is capable of handling.

65

Indeed, allowing arbitrary numbers of conditions per question and arbitrary number of inner

loops per query, as well as having different types of questions that involve various types of

conditions are very important feature of our system that other existing systems lack. In the

testing, we tried to focus on the variety of question that are expected to be commonly asked

by users.

To test the developed system we used multiple queries similar to the examples shown in

Table 4.6 and Table 4.5. This testing style adds some credit to our system and removes the

bias. The cost of complex questions will be discussed in Section 4.4. Finally, Appendix B

shows results for some of the questions shown in Table 4.6 and Table 4.5.

4.3.3 Fuzzy Questions

Fuzziness is another feature that distinguishes our system. We implemented a set of fuzzy

questions to test the effectiveness of our system. Table 4.7 shows some fuzzy questions.

Some limitations were faced when dealing with fuzziness, i.e., the developed system still

needs some tuneup to be capable of handling fuzziness more comprehensively. The deeper

the fuzziness is in users’ queries the less accurate will be the results; we plan to improve this

as future work.

Finally, the three approaches described earlier (namely, manual, semi-automated and

fully automated) were employed to decide on number of fuzzy domains and their ranges for

the fuzzy terms used in the example queries listed in Table 4.7.

4.4 Performance Analysis

Measuring system performance is an integral part to determine the quality of the developed

system, and to decide whether it meets the expectations. In this section, we will describe

how to measure the time needed for each query type. For this purpose, we used the same

computer with the specifications described in Table 4.1. We run visual studio in a release

66

mode and we used a built-in time function in visual studio to measure the time needed.

Some users were asked to provide some questions to measure system’s performance. Users

submitted 95 questions which follow the distribution shown in Table 4.9.

For effective analysis we measured the average execution time of the queries in Table 4.8.

We separated queries that require user interaction from those that were analyzed without

any user interference. The obtained results are shown in Table 4.9. Recall that users are

expected to interfere just in case of ambiguity or in case there was remaining unmapped

words.

The results shown in Table 4.9 demonstrate that complex queries usually take double

the time needed by a simple query. The measured time includes retrieval time, i.e., the time

needed to retrieve data from the database. The number of conditions used in the complex

questions executed in the experiments ranges from one to three. The fuzzy queries executed

contain only one fuzzy condition and at most two inner joins.

We also measured the time needed for the steps of the analysis. To be able to know which

analysis step is consuming the most time we should record the average time needed by each

category from the 95 queries. We didn’t consider in this test user interaction because we are

measuring only analysis time of any interaction. The results are shown in Table 4.10.

As reported in Table 4.10, fuzzy questions are the most time consuming because data

should be retrieved before deciding on the various parameters related to fuzziness.

4.5 System Accuracy

System’s effectiveness is directly related to its accuracy level. In this section, we describe

the queries used for measuring system’s effectiveness and we elaborate on some queries for

which our system failed.

Accuracy was checked using the same queries that were used to measure system’s per-

formance. Table 4.8 includes the number of queries used for each type. Each query is tested

67

alone and it is given a score equal to one if it retrieved the correct result. Table 4.11 shows

the number of questions that were analyzed correctly and those which were wrongly analyzed

for each query type. It is not surprising to realize that all simple queries were correctly an-

alyzed since they are straightforward. However, our system failed to correctly analyze some

complex questions and some fuzzy questions. In Chapter 5, we elaborate on these types of

queries.

4.6 Summary

The time needed by our system to analyze users’ requests ranges between 1 to 3 seconds per

request which is acceptable. Also, we shouldn’t forget that there is some dependency on the

database size and the amount of information to be retrieved. Of course, the time is directly

proportional to the database size.

Our system reported around 90% accuracy which proves its efficiency in handling user

requests in a reasonable amount of time. Some enhancements should be done to handle more

sophisticated questions which will be discussing in Chapter 5.

68

Table 4.2: Databse Tables’ Columns and their Type

Table Name Column Name Column Type

Person firstName bigint
Person lastName nvarachar(50)
Person phoneNumber nvarachar(50)
Person Email nvarachar(50)
Person Password nvarachar(50)
Person imagePath nvarachar(50)
Person Degree nvarachar(50)
Person birthdate datetime
Person Country nvarachar(50)
Person City nvarachar(50)

Lkup category categoryId bigint
Lkup category categoryDescription nvarachar(50)
Lkup category imagePath nvarachar(50)
Person Friends personFriendId bigint
Person Friends personId bigint
Person Friends friendId bigint
Person Friends isActive bit
Person Friends friendshipDate datetime
Person Services personServiceId bigint
Person Services personId bigint
Person Services serviceDescription nvarchar(max)
Person Services categoryId bigint
Person Services Fee money
Person Services longtitude decimal (18,10)
Person Services Latitude decimal (18,10)
Person Services expiryDate date
Person Services anyTime bit
Person Services visistorsNumber bigint
Person Services creationDate datetime
Service Reviews serviceReviewId bigint
Service Reviews serviceId bigint
Service Reviews reviewComments nvarchar(max)
Service Reviews personId bigint
Service Reviews reviewDate datetime
Service Reviews ratingValue int

69

Table 4.3: Expected Input for each Column Type

ColumnType Expected Input

Datetime Date value(mm/dd/yy)
Nvarchar(50) or Nvarchar(max) Text

Bit 0 or 1
Bigint Number without decimals
Money Number with decimals

Int Number without decimals
Decimal Number with decimals

Table 4.4: Number of Records in the Populated Tables

Table Name Number of Records

person 11
Service Reviews 4253
Person Services 2996
person friends 30
Lkup category 13

Table 4.5: Sample of Simple Questions

Question Parsed Query

What is the highest service fee Select max(Person Services.fee) from Person Services

What is the lowest service fee Select min(Person Services.fee) from Person Services

what is the average service fee Select AVG(Person Services.fee) from Person Services

What are the names of the providers Select name from people

How many service reviews are in the
database

Select count(*) from Service Reviews

What are the services stored in the
database

Select * from Person Services

How many categories are in the
database

Select * from Lkup Category

What are the descriptions of the cate-
gories

Select categoryDescription from Lkup Category

70

Table 4.6: Sample of Complex Questions with Possible Corresponding SQL Statements

Question Corresponding Query

What services were made by first user Select * from Person Services inner join Person on Person Services.personID=Person.personId
where LOWER(LTRIM(RTRIM(Person.firstName)))=’first’ and LOWER(
LTRIM(RTRIM(Person.lastName)))=’user’

What is the average fee for services
made by first user

Select avg(Pesron Services.fee) from Person Services inner join Person on Per-
son Services.personID=Person.personId where LOWER(LTRIM(RTRIM(Person.firstName)))=’first’
and LOWER(LTRIM(RTRIM(Person.lastName)))=’user’

What servers were created after
10/10/2015

Select * from Person Services where Person Services.creationdate ¿ ’10/10/2015’

What is the number of people who have
a service fee greater than 5

select count(*) from People inner join Person Services on Person.personId=Person Services.personID
where Person Services.fee ¿5

How many service reviews exist in the
database

select count(*) from Service Reviews

How many people have a service fee
greater than the average

select count(*) from People inner join Person Services on Person.personId=Person Services.personId where
Person Services.fee ¿(Select avg(Person Services.fee) from Person Services)

What are the names of people who have
the highest number of services

select Person.firstName, Person.lastName from Person Services inner join Person on Per-
son.personID=Person Services.personId where Person.personID in (2)

What are services which don’t have the
highest number of reviews

select * from Person Services inner join Service Reviews on Per-
son Services.pServiceId=Service Reviews.serviceId where Person Services.pServiceId not in (16662)

What are the names of people who have
friends

select Person.firstName, Person.lastName from Person inner join Person Friends on Per-
son.personID=Person Friends.personId

What are the average ratings for ser-
vices

select Avg(Service reviews.ratingValue) from Person Services inner join Service Reviews on Per-
son ServicespServiceId=Service reviews.serviceId

71

Table 4.7: Sample of Fuzzy Questions and Possible Corresponding SQL Queries

Fuzzy Question Translated Query

What are names of people who have a
high service fee and more than 5 service
visitors

select Person.firstName, Person.lastName,(Person Services.fee-4)10 as HowFar-
FromBeinglow Person Services fee from Person Services inner join Person on
Person.personID=Person Services.personId inner join Service Reviews on Per-
son Services.pServiceId=Service Reviews.serviceId where Service Reviews.ratingValue 5̄ and Per-
son Services.fee between 4 and 9999.5

Which reviews have moderate rating select *,(Service Reviews.ratingValue-2)10 as HowFarFromBeingmedium Service Reviews ratingValue
from Service Reviews where Service Reviews.ratingValue between 1 and 3

Which services have the best service fee select *,(Person Services.fee-19995)10 as HowFarFromBeinghigh Person Services fee from Person Services
where Person Services.fee between 9999.5 and 19995

Which services have a low service fee
and the highest number of reviews

select *,(Person Services.fee-4)10 as HowFarFromBeinglow Person Services fee from Person Services
inner join Service Reviews on Person Services.pServiceId=Service Reviews.serviceId where Per-
son Services.pServiceId in (16662) and Person Services.fee between 4 and 9999.5

What are names of people who have the
highest number of service reviews and
normal number of service visitors

select Person.firstName, Person.lastName,(Person Services.visitorsNumber-12484.5)10 as
HowFarFromBeingmedium Person Services visitorsNumber from Person Services inner join
Person on Person.personIDPerson Services.personId inner join Service Reviews on Per-
son Services.pServiceIdService Reviews.serviceId where Person.personID in (10) and Per-
son Services.visitorsNumber between 6245.75 and 18723.25

What are names of people who have
high service fee or low number of ser-
vice visitors and high number of service
reviews rating

select Person.firstName, Person.lastName,(Person Services.fee-19995)10 as HowFar-
FromBeinghigh Person Services fee,(Person Services.visitorsNumber-7)10 as HowFar-
FromBeinglow Person Services visitorsNumber,(Service Reviews.ratingValue-4)10 as How-
FarFromBeinghigh Service Reviews ratingValue from Person Services inner join Per-
son on Person.personIDP̄erson Services.personId inner join Service Reviews on Per-
son Services.pServiceIdS̄ervice Reviews.serviceId and Person Services.fee between 9999.5 and 19995
or Person Services.visitorsNumber between 7 and 12484.5 and Service Reviews.ratingValue between 2
and 4

Table 4.8: Number of Questions Executed to Measure System’s Performance

Query Type Number of Executed Query

Simple Queries 20
Complex Queries 55
Fuzzy Queries 20

Table 4.9: Average Time Needed for each Query Type

Query Type With Interaction Without Interaction

Simple 2 1.2
Complex 3.4 2.5
Fuzzy 4.5 3.8

Table 4.10: Average Time Needed by each Analysis Component (ms)

Query Type Refinement Process mapping Process SQL Formation Process Fuzziness Process Data Retrieval Total

Simple 86.70 333.12 6.13 0 864.55 1290.5
Complex 253.08 578.29 14.56 0 1662.04 2507.9

Fuzzy 39.18 1216.73 1.19 29.774 2547 3834

72

Table 4.11: Number of Wrongly/Correctly Analyzed Queries

Query Type Correct Wrong Total

Simple 20 0 20
Complex 51 4 55
Fuzzy 15 5 20

73

Chapter 5

Conclusion and Future Work

In this chapter, we will summarize the outcome of this thesis, discuss limitations of the

proposed framework, and list several directions for future work.

5.1 Summary

This thesis propose a new system as a friendly visual interface between naive users and

RDBMS. The proposed system shows efficiency in analyzing user queries in reasonable

amount of time with a very high accuracy. Users will be able to use this system to re-

trieve data from a RDBMS by writing some questions that follow a predefined structure.

Users are allowed to use fuzziness in their queries.

The basic features provided by the developed system can be summarized as follows:

• It allow all types of users (naive to professionals) to connect to and query a

RDBMS.

• It allow users to define specific fuzzy domains for each numeric column intended

to be queried using fuzzy terms. Ranges of the various fuzzy domains may be

specified by users or the system may derive them by data analysis.

• It allows the system to learn and build decisions automatically by analyzing

previous users’ decisions

• It allow users to view their previously executed queries and run them again

without any need to repeat the conversion into SQL.

• It refines user’s input that might effect system’s accuracy

74

• It detects date and number phrases expressed in words and parses them into

their corresponding actual values.

• It allow users to see database structure to help them in building their queries.

• It allow users to write questions that involve fuzziness and multiple conditions

from different tables.

The reported accuracy and performance analysis prove system’s efficiency in handling

users’ request. To the best of our knowledge there is no system that can handle user questions

with fuzziness and complex conditions as our system does.

5.2 Limitations

Some limitations have been faced during the analysis. These limitations are mostly faced

when there is imprecision in user’s questions. In other words, some user’s questions may

involve more rule based fuzziness which is a case not handled in our system. This kind

of analysis has been left as future work. In addition, when mapping components of users’

questions to database schema elements we didn’t take into consideration the grammatical

relation between words. Also this has been left as future work.

5.3 Future Work

The developed system can be used and enhanced in many different ways. Multiple com-

ponents can be enhanced to positively affect the analysis process for better accuracy and

accessibility. These changes can be summarized as follows:

• Change the system into a web based application where everyone will be able

to use regardless of their operating system. This kind of improvement will

lead to better learning system that may be used by users who have Internet

75

connection and are capable of connecting to the system remotely regardless of

their locations.

• Add speech recognition as an alternative user input. This way users may avoid

typing their questions and depend on the voice recognizer instead.

• Enhance the mapping process using grammatical relations.

• Develop more sophisticated algorithm to enhance the handling fuzziness which

might involve multiple columns to be used in a set of rules.

• Provide the ability to handle prediction in users’ questions so that when users

ask about some information that might happen in the future then the answer

will be based on some intelligent data analysis.

• Provide the ability to handle multiple languages

All these extra features and enhancement are on our to do list. We will start to work on

them shortly. However, following the completion of these extensions some more test scenarios

should be run to check the influence on the system as a whole and to find out whether new

subsequent extension may become feasible.

76

Bibliography

[1] D3js tool used for visualization. http://d3js.org/. Accessed: 2015-11-10.

[2] Relational database ranking. http://db-engines.com/en/ranking. Accessed: 2015-

10-21.

[3] Rajeev Agrawal, Amogh Chakkarwar, Prateek Choudhary, Usha Jogalekar, Deepa H

Kulkarni, et al. Dbiqsan intelligent system for querying and mining databases using

nlp. In Information Systems and Computer Networks (ISCON), 2014 International

Conference on, pages 39–44. IEEE, 2014.

[4] Amira Aloui and Amel Grissa. A new approach for flexible queries using fuzzy on-

tologies. In Computational Intelligence Applications in Modeling and Control, pages

315–342. Springer, 2015.

[5] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique of tech-

niques for extracting rules from trained artificial neural networks. Knowledge-based

systems, 8(6):373–389, 1995.

[6] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering

algorithm. Computers & Geosciences, 10(2):191–203, 1984.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[8] Livia Borjas, Josué Ramı́rez, Rosseline Rodŕıguez, and Leonid Tineo. Automated sys-

tem for tests preparation and configuration using fuzzy queries. In Computational In-

telligence, pages 199–212. Springer, 2015.

[9] Patrick Bosc and Olivier Pivert. Sqlf: a relational database language for fuzzy querying.

Fuzzy Systems, IEEE Transactions on, 3(1):1–17, 1995.

77

[10] Erik Cambria and Bruce White. Jumping nlp curves: a review of natural language pro-

cessing research [review article]. Computational Intelligence Magazine, IEEE, 9(2):48–

57, 2014.

[11] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12–27,

2011.

[12] Daniel M Cer, Marie-Catherine De Marneffe, Daniel Jurafsky, and Christopher D Man-

ning. Parsing to stanford dependencies: Trade-offs between speed and accuracy. In

LREC, 2010.

[13] Angel X Chang and Christopher D Manning. Sutime: A library for recognizing and

normalizing time expressions. In LREC, pages 3735–3740, 2012.

[14] Angel X Chang and Christopher D Manning. Sutime: Evaluation in tempeval-3. At-

lanta, Georgia, USA, page 78, 2013.

[15] Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using

neural networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), volume 1, pages 740–750, 2014.

[16] Philipp Cimiano, Peter Haase, Jörg Heizmann, Matthias Mantel, and Rudi Studer.

Towards portable natural language interfaces to knowledge bases–the case of the orakel

system. Data & Knowledge Engineering, 65(2):325–354, 2008.

[17] Edgar F Codd. Further normalization of the data base relational model. Data base

systems, pages 33–64, 1972.

[18] Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed dependen-

cies manual. Technical report, Technical report, Stanford University, 2008.

[19] Richard Dietz and Sebastiano Moruzzi. Cuts and clouds: Vaguenesss, its nature and

its logic. Oxford University Press, 2010.

78

[20] Shipra Dingare, Malvina Nissim, Jenny Finkel, Christopher Manning, and Claire

Grover. A system for identifying named entities in biomedical text: How results from

two evaluations reflect on both the system and the evaluations. Comparative and Func-

tional Genomics, 6(1-2):77–85, 2005.

[21] Dimiter Driankov, Hans Hellendoorn, and Michael Reinfrank. An introduction to fuzzy

control. Springer Science & Business Media, 2013.

[22] Ramez Elmasri and Shamkant B Navathe. Fundamentals of database systems. Pearson,

2014.

[23] Anton Fagerberg. Temporal information extraction using regular expressions. 2014.

[24] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local

information into information extraction systems by gibbs sampling. In Proceedings of

the 43rd Annual Meeting on Association for Computational Linguistics, pages 363–370.

Association for Computational Linguistics, 2005.

[25] Jenny Rose Finkel, Alex Kleeman, and Christopher D Manning. Efficient, feature-based,

conditional random field parsing. In ACL, volume 46, pages 959–967, 2008.

[26] J. Galindo, J. M. Medina, and M. C. Aranda. Querying fuzzy relational databases

through fuzzy domain calculus. International Journal of Intelligent Systems, 14(4):375–

41, 1999.

[27] J. Galindo, M. Medina, O. Pons, and J. C. Cubero. A server for fuzzy sql queries. In

In T. Andreasen, H. Christiansen, & H. L. Larsen (Eds.), Lecture Notes in Artificial

Intelligence (Vol. 1495): Flexible query answering systems, pages 164–174. Springer,

1998.

[28] Alessandra Giordani and Alessandro Moschitti. Generating sql queries using natural

language syntactic dependencies and metadata. In Natural Language Processing and

79

Information Systems, pages 164–170. Springer, 2012.

[29] Martin T Hagan, Howard B Demuth, Mark H Beale, et al. Neural network design. Pws

Pub. Boston, 1996.

[30] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques:

concepts and techniques. Elsevier, 2011.

[31] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Pervasive

computing and applications (ICPCA), 2011 6th international conference on, pages 363–

366. IEEE, 2011.

[32] Janusz Kacprzyk, S lawomir Zadrożny, and Guy De Tré. Fuzziness in database manage-

ment systems: Half a century of developments and future prospects. Fuzzy Sets and

Systems, 2015.

[33] Micheline Kamber, Lara Winstone, Wan Gong, Shan Cheng, and Jiawei Han. General-

ization and decision tree induction: efficient classification in data mining. In Research

Issues in Data Engineering, 1997. Proceedings. Seventh International Workshop on,

pages 111–120. IEEE, 1997.

[34] Keivan Kianmehr, Negar Koockakzadeh, and Reda Alhajj. Askfuzzy: Attractive visual

fuzzy query builder. In IEEE ICDE 2012, 2012.

[35] Keivan Kianmehr, Tansel Özyer, Mehmet Kaya, and Reda Alhajj. Wrapping vrxquery

with self-adaptive fuzzy capabilities. Web Intelli. and Agent Sys., 7(3):269–279, 2009.

[36] Keivan Kianmehr, Tansel Özyer, Mehmet Kaya, and Reda Alhajj. Wrapping vrxquery

with self-adaptive fuzzy capabilities. Web Intelligence and Agent Systems, 7(3):269–279,

2009.

[37] George Klir and Bo Yuan. Fuzzy sets and fuzzy logic, volume 4. Prentice Hall New

Jersey, 1995.

80

[38] Lingpeng Kong and Noah A Smith. An empirical comparison of parsing methods for

stanford dependencies. arXiv preprint arXiv:1404.4314, 2014.

[39] Donald H Kraft, Erin Colvin, Gloria Bordogna, and Gabriella Pasi. Fuzzy informa-

tion retrieval systems: A historical perspective. In Fifty Years of Fuzzy Logic and its

Applications, pages 267–296. Springer, 2015.

[40] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. 2001.

[41] Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2):12–14,

2010.

[42] Fei Li and HV Jagadish. Constructing an interactive natural language interface for

relational databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

[43] Jim Little, Michael de Ga, Tansel Özyer, and Reda Alhajj. Query builder: A natural

language interface for structured databases. In Computer and Information Sciences-

ISCIS 2004, pages 470–479. Springer, 2004.

[44] Anthony Lo, Reda Alhajj, and Keivan Barker. Virex: Visual relational to xml conver-

sion tool. Journal of Visual Languages and Computing, 17(1):25–45, 2006.

[45] Anthony Lo, Tansel ’́Ozyer, Keivan Kianmehr, and Reda Alhajj. Virex and vrxquery:

Interactive approach for visual querying of relational databases to produce xml. Journal

of Intelligent Information Systems, 35(1):21–49, 2010.

[46] Anthony Lo, Tansel ’́Ozyer, Radwan Tahboob, Keivan Kianmehr, Jamal Jida, and Reda

Alhajj. Xml materialized views and schema evolution in virex. Information Sciences,

180(24):4940–4957, 2010.

[47] David Maier. The theory of relational databases, volume 11. Computer science press

Rockville, 1983.

81

[48] Gideon S Mann and Andrew McCallum. Generalized expectation criteria for semi-

supervised learning of conditional random fields. 2008.

[49] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective de-

pendency parsing using spanning tree algorithms. In Proceedings of the conference on

Human Language Technology and Empirical Methods in Natural Language Processing,

pages 523–530. Association for Computational Linguistics, 2005.

[50] Claudio Moraga and Rodrigo Salas. A new aspect for the optimization of fuzzy if-then

rules. In null, pages 160–165. IEEE, 2005.

[51] H. Nakajima, T. Sogoh, and M. Arao. Fuzzy database language and library: Fuzzy ex-

tension to sql. In Proceedings of the Second International Conference on Fuzzy Systems

(FUZZ-IEEE93), pages 477–482, 1993.

[52] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of nosql databases and its

comparison with relational databases. International Journal of Applied Information

Systems, 5(4):16–19, 2013.

[53] Anh Kim Nguyen and Phuong Hong Nguyen. An intelligent natural language interface

to relational databases. In 6th international conference on information technology and

applications, ICITA, 2009.

[54] Mrs Neelu Nihalani, Sanjay Silakari, and Mahesh Motwani. Natural language interface

for database: A brief review. 2011.

[55] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems.

Springer Science & Business Media, 2011.

[56] Thair Nu Phyu. Survey of classification techniques in data mining. In Proceedings of the

International MultiConference of Engineers and Computer Scientists, volume 1, pages

18–20, 2009.

82

[57] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates.

Modern natural language interfaces to databases: Composing statistical parsing with

semantic tractability. In Proceedings of the 20th international conference on Computa-

tional Linguistics, page 141. Association for Computational Linguistics, 2004.

[58] L. Portinale and A. Verrua. Exploiting fuzzy-sql in case-based reasoning. In Fourteenth

International Florida Artificial Intelligence Research Society Conference (FLAIRS),

AAAI Press, pages 103–107, 2001.

[59] Maria Samsonova, Andrei Pisarev, and Maxim Blagov. Processing of natural language

queries to a relational database. Bioinformatics, 19(suppl 1):i241–i249, 2003.

[60] Charles Sutton and Andrew McCallum. An introduction to conditional random fields

for relational learning. Introduction to statistical relational learning, pages 93–128, 2006.

[61] Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva. A natural language query

interface to structured information. Springer, 2008.

[62] V. Tahani. A conceptual framework for fuzzy query processing: a step toward very

intelligent database systems. Information Processing and Management, 13:289–303,

1977.

[63] Jeffrey D Ullman. Principles of database systems. Galgotia publications, 1984.

[64] Mustafa Gokhan Uzunbas, Chao Chen, and Dimitris Metaxas. An efficient conditional

random field approach for automatic and interactive neuron segmentation. Medical

image analysis, 2015.

[65] Peter Vojtáš. Fuzzy logic programming. Fuzzy sets and systems, 124(3):361–370, 2001.

[66] Yang Wang, Kia-Fock Loe, and Jian-Kang Wu. A dynamic conditional random field

model for foreground and shadow segmentation. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 28(2):279–289, 2006.

83

[67] Lotfi A Zadeh. Toward a theory of fuzzy information granulation and its centrality in

human reasoning and fuzzy logic. Fuzzy sets and systems, 90(2):111–127, 1997.

84

Appendix A

System Documentation

This appendix is dedicated to reflect on various characteristics of the developed system. It

covers system documentation, some snapshots, data saving and some illustrative examples.

A.1 System Overview

Many features have been implemented in the developed system to achieve more accurate

mapping while analyzing user queries. In this section, we will just show the main page in

our system and its functionality; other features will be discussed in the following sections.

To view the system main page, some modules should be loaded and and connection to a

specific database should be established. Users shouldn’t bother about the modules since the

system will detect their location automatically. However, users should manage connecting

to a database which will be used in answering their questions.

Figure A.1 shows the main page of our system. The ”loadProject” and ”OpenProject”

are used in case users want to switch to another project. The “Save” button is used to

save the loaded information into an XML file. The system prompts the user to specify the

location where the XML file should be stored. It is also possible to save the current data

to a separate file instead of modifying the original loaded file. The “Database Dictionaries”

button at the top of the page is used to define the dictionaries needed for the system. These

include dictionaries related to synonyms,prefixes and suffixes, unnecessary words and fuzzy

domains and ranges. Finally, the various forms supported by the system are covered in the

rest of this chapter.

85

Figure A.1: System’s Main Page after a Successful Connection to a Database

A.2 Query Examples and Results

Recall that the developed system can handle three main types of questions, namely simple,

complex and fuzzy. All valid questions are expected to return a result which may be either

a set of records or a single value. A number of examples are presented in this section to

demonstrate the output produced by different types of questions.

Figure A.2 shows an example of a question that involves the usage of an aggregate

function. As previously discussed, aggregation functions involve some calculations, such as

sum, count, average, etc. A single value is returned as a result when only an aggregate

function appears in the “Select” clause of a SQL statement.

Figure A.3 and Figure A.4, respectively, show examples on fuzzy and complex query

types. Complex questions lead to SQL queries that involve a compound condition in the

“Where” clause and/or multiple tables in the “From” clause. It is also possible for a com-

plex question to involve fuzziness which will lead to at least one fuzzy sub-condition in the

“Where” clause.

86

Figure A.2: A Question to Demonstrate the Usage of an Aggregate Function

Figure A.3: A question which Involves the Usage of Fuzziness

A.3 Saving Data

Data is loaded and saved in XML format. We decided to use XML due to the availability of

a built in .Net parser which performs faster than other Json parsers. A XML File is used to

store the following information:

• Database Connection String.

• Database Schema information, such as names of tables and columns, types of

columns, and primary keys.

87

Figure A.4: An Example Complex Question

• Relationships between tables.

• Fuzzy domains and corresponding ranges

• Unnecessary Words to be eliminated in the analysis

• Synonyms of columns and tables

• Suffixes and prefixes

• Mapped Values which can be used for later analysis to remove ambiguity.

All these dictionaries are updated and saved upon users’ need. These are saved to avoid

asking users to enter the same information every time they login. This information is also

useful for automated learning. The system learns from historical preferences to resolve any

possible ambiguity and to serve users better.

A.4 Modules being Used

Multiple modules have been used in our system. modules are usually used as training data

to help in making a specific prediction about a new item. Table A.1 shows a list of modules

used for each feature in our system. These modules are loaded when users run the system,

i.e., before loading or creating any project.

88

Table A.1: List of External Modules Used by each Feature

Feature module name
Dependency parser englishPCFG.caseless.ser.gz
Spelling Corrector en us dic

Date Expression Detector english-bidirectional-distsim.tagger
defs.sutime.txt

english.holidays.sutime.txt
english.sutime.txt

Name Entity Recognizer english.conll.4class.caseless.distsim.crf.ser.gz

A.5 System Snapshots

In this section, we will discuss the implemented feature. The main task of the splash screen

shown in Figure A.5 is to show the user the progress of loading the modules. For the

computing environment used in the testing, all modules need around 4 minutes load. Of

course this depends on the available RAM and CPU power. The memory needed for loading

these modules id around 350 MB. A caption under the progress bars shows modules that

were successfully loaded.

Figure A.5: System’s Splash Screen

Once all modules are successfully loaded, users have the option either to load or open a

project as shown in Figure A.6. If users select the option to load a file then a windows will

89

Figure A.6: The Form Used for Project Selection or Creation

pop up to inquire about the location of the XML file to be loaded. Otherwise, a connection

form will appear asking for credentials of the database to connect to, as shown in Figure A.7.

A helper form is created for non-expert users to help them in building connection string.

Here a user is expected to enter server credentials and the system will display a list of available

databases for the user to select the database he/she wants to connect to. Figure A.6 and

Figure A.8 show the helper form before and after displaying available databases, respectively.

Figure A.7: The form Used to Enter Database Information

90

Figure A.8: Helper Form for Displaying a List of Available Databases

After database credentials are all specified, the system will upload and display the

database schema as shown in Figure A.10. Users are given the additional opportunity to

request further explanation regarding any part of the database schema (Figure A.11). This

will help users in articulating their questions in a more informative way and hence will reduce

the risk of errors during the parsing and validation phase. Finally, users have to click on a

specific button to reflect any possible database schema updates to the corresponding XML

file.

Users’ input passes through multiple sentence refinements to ensure more satisfactory

results. Users may get involved in the refinement process to deal with spelling mistakes.

Figure A.12 shows the spell checker form used in our system to display the suggestions

related to a misspelled word. However, users are not restricted to choose from the displayed

list. Instead, a user may choose to either keep the current word as spelled or type a new

word to replace a mistaken word. All words typed by users as replacements will be added

91

Figure A.9: Helper Form before Displaying the List of Available Databases

to the existing list and will be used as part of future suggestions.

Multiple dictionaries should be defined for a more accurate mapping process while an-

alyzing users’ requests, such as synonyms, fuzzy domains, unnecessary words, etc. We will

start with the synonym forms shown in Figure A.13 and Figure A.14, which are responsible

for defining the synonyms for tables and columns, respectively. Duplicates are not allowed

in the lists maintained by the system, e.g., list of synonyms, fuzzy domains, unnecessary

words, etc.

Names of tables and columns might have some prefixes or suffixes, which are not necessary

in the mapping process, and hence removing them will lead to a more accurate mapping. To

manage this we allow users to enter their own prefixes and suffixes that were used for names

of tables or columns. These are removed during the mapping. Figure A.15 shows the form

for managing prefixes and suffixes; the same form allows users to add their own prefixes and

suffixes, as well as remove existing ones.

Another feature supported by the system is receiving feedback from users regarding

92

Figure A.10: Displaying Tables and Columns for the User

words deemed unnecessary. Indeed, it is not acceptable in a database environment to keep a

static list of unnecessary words because relevance of words is directly related to the specific

domain covered by the database. For instance, the word “From” may be the name of a

table or a column in an airlines reservation database. Also, users are consulted to help in

deciding whether any words that remain unmapped during the analysis should be identified

as unnecessary.

Figure A.16 shows the form used to add or remove unnecessary words from a list. The

form shown in Figure A.17 is used to indicate if a specific word should be eliminated from a

sentence during the analysis.

Figure A.18 shows the form used for getting users’ decisions when ambiguity occurs. For

instance, users should be consulted to help in resolving the ambiguity when a word has the

potential to be mapped to two or more tables or columns. Users decide on the most fitting

column/table for each word. The system keeps track of users’ decisions for later use, i.e.,

users’ choices are added to the list of mapped words. Figure A.19 shows a list of words that

were discovered and mapped during the analysis; users still have the option to remove these

words.

93

Figure A.11: Brief Explanation of Various Database Schema Elements

Fuzziness is one of the main features in our system. The form shown in Figure A.20

is used to allow users to add their own fuzzy domains and ranges. Users have the option

to define their fuzzy domains and may depend on the system to automatically decide on

corresponding ranges. Domains are generally specified/decided only for columns that contain

numeric values.

Users can initiate the process of defining fuzzy domains by selecting a specific table with

at least one column with numeric values. Table name should be entered in the combo box

shown in Figure A.20. In case there exist in the table more than one column with numeric

values, users are expected to choose column(s) fo which fuzzy domains are to be defined. A

user who decides to decide on his/her own fuzzy domains may do this by defining at least

two fuzzy domains per fuzzy column. These domains can be saved by clicking the’ “Save”

button.

We also keep track of all requests submitted by users and successfully analyzed by the

system. Figure A.21 shows some illustrative examples of past questions maintained by the

system. Maintaining such record would save time and effort which were to be consumed

94

Figure A.12: Suggestions form for the Misspelled Words

in case users decide to resubmit some already processed questions. Users are expected to

help the system in deciding on questions for which a record is to be maintained for future

usage. This is done using the screen shown in Figure A.22. On the other hand, the system

decides to keep track of questions which may help in trend analysis. The latter record should

be clean from duplicates which may occupy more space without extra contribution to the

analysis.

95

Figure A.13: The form that Manages Tables’ Synonyms Defined by the User

96

Figure A.14: The form that Manages Columns’ Synonyms Defined by the User

97

Figure A.15: The form that Manages Tables’ Suffix and Prefix

Figure A.16: A list of Unnecessary Words that can be Modified by the User

98

Figure A.17: Modifying Unnecessary Words during analysis

99

Figure A.18: Asking for User’s Choice when Ambiguity Occurs

100

Figure A.19: List of Mapped Words Obtained during the Analysis

Figure A.20: The form Responsible for Managing Fuzzy Domains and Ranges

101

Figure A.21: A list of all Questions Made by the User

Figure A.22: Providing Users the Ability to Save their Data

102

Appendix B

Data Set Snapshots

As discussed in Chapter 4, the data used in testing the developed system is larger than what

could fit in couple pages. Thus, we will not be able to view all database content as part of

this thesis document. In this appendix, we will show snapshots that contain some illustrative

records from various tables in the database. We will also describe the application dedicated

for bulk insertions in the database.

B.1 Bulk Insert Application

The bulk insert application populates the database with dummy data which is intended to

be used in the analysis. Figure B.1 shows a snapshot of the bulk insert application. The

List box on the left-side of the screen shows a list of users; we made them unclear for privacy

concerns. Three text boxes are used for inserting bulk data into the database. We first select

a specific user for whom we want to add data; then we decide on the number of records we

need to populate. For example, if we need to add 10 services for the first user then we put

10 in the text box beside the ”Add Services” button, and then we click the button.

The bulk insert application locates and eliminates duplicates. Further, the application

keeps track of time to impose some ordering on certain insert operations, e.g., to avoid

generating reviews for data that does not exist. Also it validates dates to make sure that

expiry date of a service does not precede its generation date.

103

Figure B.1: A snapshot of the Bulk Insert Application

B.2 Database Tables

B.2.1 People Table Snapshot

“Person” table keeps information about people, including first name, last name, phone,

address, birth date, phone number, email, etc. These attributes help in identifying a better

service when needed. Each person has a unique ID which acts as primary of “Person” table.

Table B.1 shows a list of records from ”Person” table. For privacy reasons, we replaced

actual names in the database by “First User”, “Second User”, etc.

104

Table B.2 – Continued from previous page

personId categoryId fee expiryDate visistorsNumber creationDate

2 4 4980.00 2014-08-01 20560 2013-08-27

2 11 583.00 2016-12-01 18730 2016-01-13

2 5 741.00 2015-02-07 14188 2014-07-15

2 11 16344.00 2014-09-12 12358 2014-03-05 1

2 2 7394.00 2015-09-15 13240 2014-12-13

2 10 7551.00 2016-08-17 8699 2016-03-11

2 8 7630.00 2015-09-21 6428 2014-10-05

2 11 18679.00 2016-09-22 7310 2015-07-15

2 9 18758.00 2015-10-27 5039 2015-06-22

2 5 18837.00 2014-11-30 2768 2014-01-15

2 3 18916.00 2016-09-28 497 2016-09-18

2 4 10044.00 2016-11-04 24108 2016-01-22

2 2 10123.00 2015-12-08 21837 2014-08-16

2 8 5726.00 2015-07-14 20007 2014-04-07

2 5 5805.00 2014-08-16 17737 2014-03-15

2 13 1329.00 2015-02-16 18177 2013-11-26

2 2 5884.00 2016-06-15 15466 2015-07-05

2 11 1408.00 2016-12-16 15907 2016-07-31

2 3 17012.00 2016-07-21 14077 2016-03-21

2 1 17090.00 2015-08-25 11806 2014-10-15

2 6 12694.00 2015-03-30 9976 2014-06-05

2 2 8218.00 2015-09-30 10417 2015-07-01

2 4 12773.00 2017-01-27 7705 2015-09-25

Continued on next page

106

Table B.2 – Continued from previous page

personId categoryId fee expiryDate visistorsNumber creationDate

2 8 3822.00 2015-05-05 8587 2015-02-19

2 5 3901.00 2017-03-04 6316 2016-06-11

2 11 19504.00 2016-10-07 4486 2016-01-31

2 13 4058.00 2015-05-11 1775 2014-12-12

2 9 19583.00 2015-11-11 2215 2014-08-26

2 12 15265.00 2014-07-20 23115 2014-03-24

2 5 10869.00 2016-11-19 21285 2016-08-09

2 13 11026.00 2015-01-26 16743 2013-09-28

2 9 6551.00 2015-07-29 17184 2014-10-24

2 5 6630.00 2014-08-31 14913 2013-05-19

2 6 17758.00 2014-10-07 13524 2014-02-03

2 2 17915.00 2015-09-09 8983 2015-05-03

2 5 8964.00 2016-09-10 9864 2016-02-09

2 13 9122.00 2014-11-18 5323 2014-08-13

2 11 9201.00 2016-09-16 3052 2015-12-02

2 1 250.00 2014-12-24 3934 2013-12-15

2 12 329.00 2016-10-23 1663 2016-08-19

2 4 15932.00 2016-05-28 24833 2016-04-08

2 13 16090.00 2014-08-04 20291 2013-05-28

2 5 11693.00 2016-12-04 18461 2015-10-14

2 6 2821.00 2017-01-09 17072 2016-06-30

2 4 2900.00 2016-02-13 14802 2015-01-24

2 6 7454.00 2014-09-15 12090 2013-12-05

Continued on next page

107

Table B.2 – Continued from previous page

personId categoryId fee expiryDate visistorsNumber creationDate

2 1 2979.00 2015-03-18 12531 2014-12-31

2 10 18504.00 2015-09-18 12972 2014-09-14

2 12 3058.00 2017-01-15 10260 2016-04-22

2 8 18582.00 2014-10-22 10701 2014-08-22

2 2 14107.00 2015-04-23 11142 2014-05-05

2 4 18661.00 2016-08-20 8430 2015-12-12

2 13 14186.00 2017-02-20 8871 2017-01-06

2 2 18740.00 2015-09-24 6159 2014-07-07

2 11 15090.00 2016-04-10 3777 2016-02-18

2 6 10614.00 2016-10-11 4218 2015-11-02

2 9 15168.00 2015-05-14 1506 2014-09-13

2 3 10693.00 2015-11-14 1947 2015-10-09

2 12 6218.00 2016-05-16 2388 2015-06-23

2 1 10772.00 2014-12-18 24676 2014-05-05

2 10 6296.00 2015-06-20 117 2015-05-31

2 5 1821.00 2015-12-20 558 2015-02-11

2 8 6375.00 2014-07-23 22846 2013-12-24

2 2 1900.00 2015-01-23 23287 2015-01-19

2 4 6454.00 2016-05-22 20575 2015-04-15

2 13 1979.00 2016-11-22 21016 2016-05-11

2 9 17503.00 2014-08-28 21457 2013-04-27

2 11 2057.00 2015-12-26 18746 2014-12-04

2 5 17582.00 2016-06-27 19186 2015-12-30

Continued on next page

108

Table B.2 – Continued from previous page

personId categoryId fee expiryDate visistorsNumber creationDate

2 1 13107.00 2016-12-28 19627 2015-09-13

2 3 17661.00 2015-08-01 16916 2014-07-26

2 12 13185.00 2016-02-01 17356 2015-08-21

2 1 17740.00 2014-09-03 14645 2014-07-02

2 9 13264.00 2015-03-06 15086 2014-03-16

2 4 8789.00 2015-09-06 15527 2015-04-11

2 6 13343.00 2017-01-03 12815 2016-11-17

2 2 8868.00 2014-10-10 13256 2013-11-05

2 10 4392.00 2015-04-11 13697 2014-11-30

2 12 8946.00 2016-08-08 10985 2016-07-08

2 8 4471.00 2017-02-08 11426 2016-03-22

2 10 9025.00 2015-09-12 8714 2015-02-01

2 5 4550.00 2016-03-14 9155 2016-02-28

2 13 74.00 2016-09-13 9596 2015-11-10

2 2 4629.00 2015-04-17 6884 2014-09-22

2 11 153.00 2015-10-18 7325 2014-06-06

2 6 15678.00 2016-04-19 7766 2015-07-02

2 9 232.00 2014-11-21 5054 2014-05-14

2 3 15757.00 2015-05-24 5495 2014-01-26

2 5 311.00 2016-09-19 2783 2015-09-03

2 1 15836.00 2017-03-22 3224 2016-09-28

2 10 11360.00 2014-12-27 3665 2013-09-16

2 12 15914.00 2016-04-25 954 2015-04-24

Continued on next page

109

Table B.2 – Continued from previous page

personId categoryId fee expiryDate visistorsNumber creationDate

2 6 11439.00 2016-10-26 1394 2016-05-20

2 2 6964.00 2014-08-01 1835 2013-05-07

2 4 11518.00 2015-11-29 24124 2014-12-13

2 13 7042.00 2016-05-31 24565 2016-01-09

2 2 11597.00 2015-01-02 21853 2014-11-21

2 10 7121.00 2015-07-05 22294 2014-08-04

B.2.3 Category Look Up Table Snapshot

Each service in the database is linked to a category which describes its kind the most. Users

can view group services based on a specific category they are interested in. Table B.3 shows

all categories defined in the database. For the analysis, the word “LKup” was defined as a

prefix in order to help in conducting a more accurate mapping.

Table B.3: A Snapshot of Data Stored in LKUP Category Table

categoryId categoryDescription imagePath

1 Electrician ../img/icon/Electrician.png

2 Tutor ../img/icon/Tutor.png

3 Health Care ../img/icon/HealthCare.png

4 Child Care ../img/icon/ChildCare.png

5 Plumber ../img/icon/Plumber.png

6 Cleaning ../img/icon/Cleaning.png

8 Constructor ../img/icon/HealthCare.png

9 Gardener ../img/icon/Gardner.png

10 General ../img/icon/General.png

Continued on next page

110

Table B.3 – Continued from previous page

categoryId categoryDescription imagePath

11 Scientist ../img/icon/General.png

12 Technician ../img/icon/General.png

13 Translator ../img/icon/General.png

14 lawyer ../img/icon/General.png

B.2.4 Service Reviews Table Snapshot

It has become a common practice to add a feedback option to systems that provide some

services to users, regardless whether a service is free or has an associated fee. Such option

allows users to share their experience with others including providers who may depend heavily

on feedback to improve their service and in their marketing campaigns.

The developed system provides the feedback option only to registered users, i.e., only to

users recorded in the database. Users are allowed to provide a rating as part of the services

related feedback captured by the system. Some sample reviews maintained by the system

are shown in Table B.4. Each review has a comment expressed as free text, associated date,

and rating value.

Table B.4: A Snapshot of some Sample Reviews Maintained in Service Reviews Table

serviceId reviewComments personId reviewDate ratingValue

15714 good but there are better people 4 8/6/2016 1

15252 good but there are better people 8 9/14/2015 0

17807 Perfect 8 11/25/2015 3

15062 Great Work 3 10/5/2015 4

14965 Advice Every one to Work with him 6 10/13/2015 4

16266 not that good 8 8/14/2013 2

Continued on next page

111

Table B.4 – Continued from previous page

serviceId reviewComments personId reviewDate ratingValue

15371 not that good 4 8/10/2015 0

15569 not that good 4 7/12/2015 0

15399 perfect Service 11 8/28/2016 4

16049 good but there are better people 11 11/26/2015 2

16115 Great Work 3 5/26/2015 4

15398 perfect Service 3 9/1/2015 4

16181 not that good 11 1/10/2014 2

16209 not that good 6 2/8/2015 2

17626 not that good 11 6/13/2016 0

15319 Perfect 9 11/25/2014 3

14962 Great Work 10 8/12/2013 3

15311 Great Work 10 1/16/2016 3

15494 perfect Service 6 10/5/2014 4

15751 not that good 3 9/16/2016 1

15555 not that good 11 8/14/2015 1

17752 Advice Every one to Work with him 12 1/9/2016 4

16082 Advice Every one to Work with him 9 8/25/2015 4

15058 not that good 9 3/27/2014 1

15065 good but there are better people 3 8/1/2015 1

15826 perfect Service 11 4/18/2015 3

15300 perfect Service 3 6/25/2015 3

15385 not that good 3 5/26/2017 2

15437 Great Work 12 3/9/2014 4

Continued on next page

112

Table B.4 – Continued from previous page

serviceId reviewComments personId reviewDate ratingValue

16249 not that good 9 4/30/2014 0

17863 good but there are better people 8 3/20/2017 1

15545 not that good 6 6/18/2015 0

15130 good but there are better people 8 6/2/2015 2

15888 Great Work 6 12/28/2015 4

15022 perfect Service 10 11/11/2015 4

15249 Advice Every one to Work with him 8 10/7/2015 3

17901 good but there are better people 10 9/8/2014 2

16209 good but there are better people 9 3/10/2015 1

17761 perfect Service 12 3/24/2014 4

17669 Great Work 3 1/3/2015 4

15615 Advice Every one to Work with him 12 7/16/2014 3

15309 good but there are better people 11 6/14/2014 2

17809 good but there are better people 4 9/15/2014 1

15596 good but there are better people 10 5/11/2015 2

17806 Advice Every one to Work with him 11 7/20/2016 3

15080 good but there are better people 12 6/23/2016 1

15167 perfect Service 11 2/19/2016 3

15029 Advice Every one to Work with him 10 1/2/2016 4

17717 Advice Every one to Work with him 11 6/11/2015 3

16246 perfect Service 9 5/12/2014 4

15297 good but there are better people 6 3/2/2016 0

16006 Advice Every one to Work with him 9 4/8/2016 4

Continued on next page

113

Table B.4 – Continued from previous page

serviceId reviewComments personId reviewDate ratingValue

15382 perfect Service 6 11/18/2014 3

15039 perfect Service 12 10/30/2016 3

16174 good but there are better people 11 6/5/2016 0

15104 perfect Service 8 1/17/2017 4

15887 not that good 6 9/18/2014 0

16290 Great Work 10 4/23/2014 4

15684 good but there are better people 12 6/4/2016 1

15869 Great Work 9 10/13/2015 4

16329 perfect Service 6 4/13/2014 4

15521 Perfect 3 4/23/2014 3

15260 Advice Every one to Work with him 12 8/8/2016 4

17744 Perfect 3 9/15/2014 4

15625 good but there are better people 6 9/22/2013 1

16177 Great Work 8 11/29/2015 3

15857 not that good 11 1/18/2014 1

15292 Perfect 9 4/22/2015 4

16108 not that good 6 3/15/2014 1

15830 perfect Service 3 7/13/2014 3

15678 Create Work 3 12/19/2013 3

15744 Create Work 12 10/17/2015 4

17847 Create Work 10 8/26/2014 4

15567 good but there are better people 6 8/7/2016 2

15466 good but there are better people 8 2/27/2017 2

Continued on next page

114

Table B.4 – Continued from previous page

serviceId reviewComments personId reviewDate ratingValue

15038 Perfect 11 7/7/2015 4

16046 good but there are better people 4 4/5/2016 1

15788 perfect Service 10 2/17/2015 3

15390 good but there are better people 12 2/23/2015 1

17894 not that good 10 7/9/2014 1

15373 Great Work 6 8/10/2015 3

14953 not that good 4 7/28/2013 1

16160 Perfect 3 3/20/2016 3

16231 good but there are better people 3 10/20/2015 0

16131 Great Work 12 11/22/2014 4

15674 perfect Service 12 10/31/2014 3

15550 Perfect 4 11/23/2015 3

15489 perfect Service 4 5/28/2016 4

15452 perfect Service 3 3/28/2016 3

15387 not that good 10 10/9/2015 0

17762 Great Work 8 7/5/2016 3

15530 Advice Every one to Work with him 9 4/6/2016 4

15025 perfect Service 10 1/21/2015 3

15764 good but there are better people 10 7/7/2015 2

15932 Advice Every one to Work with him 8 6/30/2015 4

16045 not that good 11 8/19/2016 2

16205 Great Work 12 7/10/2014 4

17715 Perfect 4 2/3/2015 4

Continued on next page

115

Table B.4 – Continued from previous page

serviceId reviewComments personId reviewDate ratingValue

16242 Perfect 9 9/25/2017 3

B.2.5 Friends Table Snapshot

“Friends” table keeps information about who is a friend of whom. This kind of relationship

may increase the trust in services which have been positively reviewed by friends. Only first

level of direct friendship is maintained and explicitly stored. All other levels of friendship

(e.g., friend of a friend, etc.) may be extracted from by running some queries that simulate

recursion which is not explicitly supported as part of SQL. A snapshot of the “Friends” table

is shown in Table B.5.

Table B.5: A Snapshot of Data Stored in Person Friends Table

personId friendId isActive friendshipdate

2 11 true 4/5/2015

2 9 true 3/27/2015

2 12 true 3/28/2015

2 6 true 8/20/2014

2 3 true 9/17/2015

2 4 true 9/17/2014

4 10 true 10/3/2014

4 3 true 12/16/2014

6 9 true 4/20/2015

6 10 true 7/30/2014

6 3 true 7/28/2014

13 11 true 4/13/2015

Continued on next page

116

Table B.5 – Continued from previous page

personId friendId isActive friendshipdate

13 6 true 3/2/2015

13 2 true 8/22/2015

13 3 true 3/14/2015

10 9 true 2/20/2015

10 3 true 1/3/2015

10 8 true 2/1/2015

10 11 true 12/25/2014

10 2 true 1/25/2015

10 12 true 7/23/2014

12 11 true 2/17/2015

12 4 true 2/13/2015

12 6 true 10/2/2014

12 9 true 5/7/2015

12 3 true 11/3/2014

8 3 true 9/21/2015

8 2 true 7/17/2014

8 6 true 5/25/2015

8 9 true 5/6/2015

117

