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Abstract

Layered double hydroxide (LDH) materials pillared with polyoxometalate (POM)
anions were synthesized via two routes: the organic anion precursor method and the
L DH-OH/L.DH-adipate precursor method. Well ordered [M**xM>*(OH),][POM]+zH,0
M = Mg2*or Zn®*, M* = Ga** or A", R = 2, 3, 4 and POM = H;W1204" or
PW,;03¢") pillared LDH phases were obtained, however significant differences in the
chemical composition and microtextural properties of the products were noted. Most
notably, pillaring resulted in the creation of accessible internal surface area only for the
products synthesized by the LDH-OH/LDH-adipate method. In contrast, the organic
anion precursor method produced layered but non-porous products in which the gallery
region was completely filled by anions.

Jon exchange of the LDH-adipate precursor produced a series of MggrAl-
H2W120406' materials with final R-values of 1.75, 2.31 and 3.51. The pillared products all
had BET-N, surface areas in excess of 110 m’g" and micropore volumes greater than
0.026 mLg'. The micropore size distribution plots obtained from argon adsorption
isotherms indicate that the micropores become smaller as the surface charge density of
the LDH increases; variation of pore size with layer composition has not previously been
reported. In addition, the method was also successfully applied for the first time to other
layer types, resulting in microporous MgrGa-POM and ZnrAl-POM materials with

properties similar to their MgrAl-POM analogues.



The catalytic activity of pillared and unpillared LDH materials prepared via the
LDH-OH/LDH-adipate method was tested using the decomposition of 2-propanol as a
probe reaction. Differences were noted for materials of different chemical composition or
for identical samples that had been subjected to different activation conditions. Only acid
sites associated with the POM pillars were present after activation at 200°C, resulting in
100% selectivity for dehydration to propene. After activation at 550°C, however, the
layers containing Zn’*, and to a lesser degree those containing Ga®", also became active
for dehydrogenation to acetone. Clearly, the strength and number of acid sites may be
varied by changing the layer or pillar composition, or by using different activation
conditions, suggesting that the LDH-OH/LDH-adipate precursor route offers a great deal

of flexibility for synthesizing catalysts with modifiable activity.
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Symbols and Abbreviations

4M2POL 4-methyl-2-pentanol

A Angstrom (10"°m)

A absorbance

A" unspecified interlayer anion species (€.g. COs™, NOy, HaW 120407 etc.)
a,b,c crystallographic unit cell lengths

adipate adipate anion (OOC-(CH,)s-COQ") (i.e. hexanedioate)

Be instrument corrected width of the dgo3 x-ray diffraction peak at half-height,

expressed in radians

BA benzoate anion (C¢Hs-COQ) (i.e. benzenecarboxylate)

BET Brunauer, Emmett and Teller adsorption isotherm equation

¢’ 1/3 the crystallographic ¢ parameter, ¢”= dgo3

cm™ wavenumbers

dhia distance between crystallographic hkl planes

doot distance between crystallographic 00! planes

D mean crystallite size (A) along a line normal to the reflecting plane
DTA differential thermogravimetric analysis

EA elemental analysis (C, H, N)

E. Energy of activation (kJmol) determined from Arrhenius plot
EXAFS extended x-ray absorption fine structure spectroscopy
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FID
FWHM
GC
H,W 2

ICP-AES

LDH

POXRD
PSD
PW,

Ia

flame ionization detector

full width at half maximum

gas chromatography

intact Keggin ion species (HaW2040%)

inductively coupled plasma atomic emission spectroscopy
Infrared (spectroscopy)

wavelength of radiation

layered double hydroxide

divalent metal cation (e.g. Mg?*, Zn*" etc.)
trivalent metal cation (e.g. AI**, Ga®" etc.)
medium intensity band in IR spectrum
nanometer (10’9 m)

para-hydroxybenzoate anion (HO-CsH4-COQ")
pillared layered structure

polyoxometalate anion

preferred orientation x-ray diffraction

pore size distribution

lacunary Keggin ion species (PW} 10397)
rate of formation of acetone (mmol h™ m?)
rate of formation of propene (mmol h™' m?)
ratio of M2*:M>" in the LDH layers

.s
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(s)

SA

(sh)

TA
TMCHOL

Torr

(vs)

strong intensity band in IR spectrum

surface area

IR band appearing as the shoulder of a more intense band

terephthalate anion (OOC-C¢Hs-COO") (i.e. 1,4-benzenedicarboxylate)
3,3,5-trimethylcyclohexanol

units of pressure (mm Hg)

very strong intensity band in IR spectrum

mole fraction of M>* in LDH layers (M>"/(M>*+M*"))

x-ray diffraction
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Chapter 1

Introduction

The term “pillared layered structure (PLS)” is a generic term that is used to
describe any inorganic compound consisting of electrically charged 2-dimensional host
layers intercalated by bulky ionic species of opposite charge. Host materials capable of

123

permanent expansion include aluminosilicate clays (e.g. smectites ~~ and vermiculites'*),

lamellar oxyhalides (e.g. FeOCl)!, layered metal phosphates (e.g. O-zirconium

phosph,:ate)5  and layered silicates (e.g. kanemite and kenyaite)*®. It is important to note
that each preceding class of PLS is composed of negatively charged inorganic layers,
propped apart by positively charged interlayer cations. Layered double hydroxides
(LDHs) intercalated by polyoxometalate (POM) anions constitute yet another important

class of pillared layered structures .

LDHs are unique among PLS materials because
the distribution of charge is reversed compared to the other classes, i.e. the LDH layers
carTy a net positive charge that is balanced by interlayer anions.

The development of novel PLS phases has historically been driven by the

petroleumn industry and the search for new catalysts with larger pore sizes, which are
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capable of processing heavier crude oil feedstocks than the zeolite based catalysts that are
currently in widespread use. It is therefore somewhat ironic that the anticipated
commercialization of PLS based processes will likely occur in the fine chemicals'® and
environmental catalysis industries’. The “soft” (low temperature; mild regeneration)
catalysis conditions that are typically employed in the manufacture of fine chemicals or in
environmental conditioning processes are more compatible with the relatively low

thermal and hydrothermal stabilities that are exhibited by many PLS materials.

1.1 Layered Double Hydroxides (LDHs)

1.1.1 The LDH structure

Layered double hydroxides are a class of naturally occurring and synthetic ionic
lamellar solids. The general LDH formula is 2 M (OH)21[A" wn] *zH,0, where
M?* is a divalent metal cation such as Mg?*, Zn**, etc., M*" is a trivalent metal cation
such as AI**, Ga®", etc., A™ is a simple or complex organic or inorganic anion and x is the
ratio M>*/(M**+M>"). The most commonly occurring natural LDH is hydrotalcite,
MgsAl,(OH)6CO3e 4 H>O, which occurs in foliated and contorted plates and/or fibrous
masses'!. In order to visualize the hydrotalcite structure, it is convenient to start with that
of brucite, Mg(OH),, shown in polyhedral representation in Fig. 1.1. In brucite, edge-
sharing Mg®" octahedra (in which the Mg”* is six-fold coordinated to OH") form infinite,
two-dimensional layers. Individual layers, which are electrically neutral, are stacked one

on top of another and are held together by hydrogen bonding between the layers.
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Fig 1.1: Schematic representation of one layer of the Mg(OH), (brucite) lattice

Mg AL(OH),”
layers

Fig 1.2: Schematic representation of the Mg Al,(OH),,CO; (hydrotalcite) structure
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The hydrotalcite structure (Fig. 1.2) is formed by the isomorphous substitution of
some of the Mg®* cations by AI**. Each AP®** octahedron contributes one unit of positive
charge to the layers. Electrostatic repulsion between AP*" ions results in “self avoidance”
and an approximately homogeneous surface charge distribution according to the cation
avoidance rule'2. The net positive charge is balanced by hydrated interlayer anions that
also serve to prop the layers apart and impose regular layer spacing. Lateral spacing
between the anions is determined by both the density of positive charges introduced by
the M>* octahedra in the layers, and by the magnitude of the negative charge carried by
the anion itself. Thus high surface charge density on the LDH layers and low anion
chargé favor a close packing arrangement, whereas low surface charge density and high
anion charge encourage greater anion separation. In practice, the spaces between the
anions are often completely filled with water molecules, which act as bridging species in
the hydrogen bonding between the layers and the anions.

Individual LDH layers can stack one on the other with two different symmetries,
rhombohedral or hexagonal“'13 . Minerals such as hydrotalcite crystallize in
rhombohedral 3R symmetry (space group R3m), with three LDH layers in the unit cell
and a crystallographic ¢ parameter equal to three times the basal spacing. Other minerals,
including those of the sjogrenite group, crystallize with hexagonal 2H symmetry (space
_ group P6;mmc), and have two LDH layers per unit cell'''*. Some natural minerals of the
pyroaurite-sjégrenite group have been listed in Table 1.1, along with the approximate

compositions and unit cell parameters. Most naturally occurring LDHs are of
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rhombohedral symmetry‘s ; the hexagonal polytype may be the high temperature form of

the rhombohedral one.

Table 1.1: Natural minerals of the pyroaurite-sjogrenite group’!

Approximate Composition Name
3R-polytype 2H-polytupe

Mg3F e(OH)3(COs)0.5(H20)2 pyroaurite sjogr enite
Mg; AI(OH)3(CO3)0.5(H20)2 hydrotalcite manasseite
Mg3Cr(OH)s(COs3)os5(H20)2 stichtite barbertonite
Niz;F C(OH)g(CO3)o 5(H20)2 reevesite -
NizAl(OH)3(COs)o.s(H20)2 eardleyite -

a 3.1A 3.1A

¢ 23.4 A 15.6 A

 approximate unit cell parameters

Synthetic LDHs are often characterized by stacking faults as a result of the
intergrowth of the rhombohedral and hexagonal polytypes; the severity of these faults
depends upon the type and relative amounts of divalent and trivalent metal cations present
in the layers'®. It has been found that Mg/Al LDHs have a preference for the
rhombohedral polytype, however the Mg/Ga and Ni/Al containing analogues display a
random stacking order, as indicated by the broad and asymmetric (01¢) reflections in the
X-ray powder diffraction patterns. Since the stacking faults affect only the long range
layer-layer interactions and not the local topology of the layer-interlayer bonding, there is
no need to take special precautions to prevent the intergrowth of the two polytypes during

the synthesis of LDH matenals.
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1.1.2 The nature of M>* and M>*

A wide variety of M?* and M** cations have been used to form the LDH structure,
the main criterion being that the ionic radius of the M?* or M** ion is not too different
from that of Mg2+. A summary of various metal cations that have been used to form the
LDH structure is presented in Table 1.2. LDHs containing Cu®* can only be